# Longest common subsequence

Longest common subsequence
You are encouraged to solve this task according to the task description, using any language you may know.

Introduction

Define a subsequence to be any output string obtained by deleting zero or more symbols from an input string.

The Longest Common Subsequence (LCS) is a subsequence of maximum length common to two or more strings.

Let AA[0]… A[m - 1] and BB[0]… B[n - 1], m < n be strings drawn from an alphabet Σ of size s, containing every distinct symbol in A + B.

An ordered pair (i, j) will be referred to as a match if A[i] = B[j], where 0 ≤ i < m and 0 ≤ j < n.

The set of matches M defines a relation over matches: M[i, j] ⇔ (i, j) ∈ M.

Define a non-strict product-order (≤) over ordered pairs, such that (i1, j1) ≤ (i2, j2) ⇔ i1 ≤ i2 and j1 ≤ j2. We define (≥) similarly.

We say ordered pairs p1 and p2 are comparable if either p1 ≤ p2 or p1 ≥ p2 holds. If i1 < i2 and j2 < j1 (or i2 < i1 and j1 < j2) then neither p1 ≤ p2 nor p1 ≥ p2 are possible, and we say p1 and p2 are incomparable.

Define the strict product-order (<) over ordered pairs, such that (i1, j1) < (i2, j2) ⇔ i1 < i2 and j1 < j2. We define (>) similarly.

A chain C is a subset of M consisting of at least one element m; and where either m1 < m2 or m1 > m2 for every pair of distinct elements m1 and m2. An antichain D is any subset of M in which every pair of distinct elements m1 and m2 are incomparable.

A chain can be visualized as a strictly increasing curve that passes through matches (i, j) in the m*n coordinate space of M[i, j].

Every Common Sequence of length q corresponds to a chain of cardinality q, over the set of matches M. Thus, finding an LCS can be restated as the problem of finding a chain of maximum cardinality p.

According to [Dilworth 1950], this cardinality p equals the minimum number of disjoint antichains into which M can be decomposed. Note that such a decomposition into the minimal number p of disjoint antichains may not be unique.

Background

Where the number of symbols appearing in matches is small relative to the length of the input strings, reuse of the symbols increases; and the number of matches will tend towards O(m*n) quadratic growth. This occurs, for example, in the Bioinformatics application of nucleotide and protein sequencing.

The divide-and-conquer approach of [Hirschberg 1975] limits the space required to O(n). However, this approach requires O(m*n) time even in the best case.

This quadratic time dependency may become prohibitive, given very long input strings. Thus, heuristics are often favored over optimal Dynamic Programming solutions.

In the application of comparing file revisions, records from the input files form a large symbol space; and the number of symbols approaches the length of the LCS. In this case the number of matches reduces to linear, O(n) growth.

A binary search optimization due to [Hunt and Szymanski 1977] can be applied to the basic Dynamic Programming approach, resulting in an expected performance of O(n log m). Performance can degrade to O(m*n log m) time in the worst case, as the number of matches grows to O(m*n).

Note

[Rick 2000] describes a linear-space algorithm with a time bound of O(n*s + p*min(m, n - p)).

Legend

```A, B are input strings of lengths m, n respectively
p is the length of the LCS
M is the set of matches (i, j) such that A[i] = B[j]
r is the magnitude of M
s is the magnitude of the alphabet Σ of distinct symbols in A + B
```

References

[Dilworth 1950] "A decomposition theorem for partially ordered sets" by Robert P. Dilworth, published January 1950, Annals of Mathematics [Volume 51, Number 1, pp. 161-166]

[Goeman and Clausen 2002] "A New Practical Linear Space Algorithm for the Longest Common Subsequence Problem" by Heiko Goeman and Michael Clausen, published 2002, Kybernetika [Volume 38, Issue 1, pp. 45-66]

[Hirschberg 1975] "A linear space algorithm for computing maximal common subsequences" by Daniel S. Hirschberg, published June 1975 Communications of the ACM [Volume 18, Number 6, pp. 341-343]

[Hunt and McIlroy 1976] "An Algorithm for Differential File Comparison" by James W. Hunt and M. Douglas McIlroy, June 1976 Computing Science Technical Report, Bell Laboratories 41

[Hunt and Szymanski 1977] "A Fast Algorithm for Computing Longest Common Subsequences" by James W. Hunt and Thomas G. Szymanski, published May 1977 Communications of the ACM [Volume 20, Number 5, pp. 350-353]

[Rick 2000] "Simple and fast linear space computation of longest common subsequences" by Claus Rick, received 17 March 2000, Information Processing Letters, Elsevier Science [Volume 75, pp. 275–281]

Examples

The sequences "1234" and "1224533324" have an LCS of "1234":

```1234
1224533324
```

For a string example, consider the sequences "thisisatest" and "testing123testing". An LCS would be "tsitest":

```thisisatest
testing123testing
```

In this puzzle, your code only needs to deal with strings. Write a function which returns an LCS of two strings (case-sensitive). You don't need to show multiple LCS's.

## 11l

Translation of: Python
```F lcs(a, b)
V lengths = [[0] * (b.len+1)] * (a.len+1)
L(x) a
V i = L.index
L(y) b
V j = L.index
I x == y
lengths[i + 1][j + 1] = lengths[i][j] + 1
E
lengths[i + 1][j + 1] = max(lengths[i + 1][j], lengths[i][j + 1])

V result = ‘’
V j = b.len
L(i) 1..a.len
I lengths[i][j] != lengths[i - 1][j]
result ‘’= a[i - 1]
R result

print(lcs(‘1234’, ‘1224533324’))
print(lcs(‘thisisatest’, ‘testing123testing’))```
Output:
```1234
tisitst
```

Using recursion:

```with Ada.Text_IO;  use Ada.Text_IO;

procedure Test_LCS is
function LCS (A, B : String) return String is
begin
if A'Length = 0 or else B'Length = 0 then
return "";
elsif A (A'Last) = B (B'Last) then
return LCS (A (A'First..A'Last - 1), B (B'First..B'Last - 1)) & A (A'Last);
else
declare
X : String renames LCS (A, B (B'First..B'Last - 1));
Y : String renames LCS (A (A'First..A'Last - 1), B);
begin
if X'Length > Y'Length then
return X;
else
return Y;
end if;
end;
end if;
end LCS;
begin
Put_Line (LCS ("thisisatest", "testing123testing"));
end Test_LCS;
```
Output:
```tsitest
```

Non-recursive solution:

```with Ada.Text_IO;  use Ada.Text_IO;

procedure Test_LCS is
function LCS (A, B : String) return String is
L : array (A'First..A'Last + 1, B'First..B'Last + 1) of Natural;
begin
for I in L'Range (1) loop
L (I, B'First) := 0;
end loop;
for J in L'Range (2) loop
L (A'First, J) := 0;
end loop;
for I in A'Range loop
for J in B'Range loop
if A (I) = B (J) then
L (I + 1, J + 1) := L (I, J) + 1;
else
L (I + 1, J + 1) := Natural'Max (L (I + 1, J), L (I, J + 1));
end if;
end loop;
end loop;
declare
I : Integer := L'Last (1);
J : Integer := L'Last (2);
R : String (1..Integer'Max (A'Length, B'Length));
K : Integer := R'Last;
begin
while I > L'First (1) and then J > L'First (2) loop
if L (I, J) = L (I - 1, J) then
I := I - 1;
elsif L (I, J) = L (I, J - 1) then
J := J - 1;
else
I := I - 1;
J := J - 1;
R (K) := A (I);
K := K - 1;
end if;
end loop;
return R (K + 1..R'Last);
end;
end LCS;
begin
Put_Line (LCS ("thisisatest", "testing123testing"));
end Test_LCS;
```
Output:
```tsitest
```

## ALGOL 68

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386
```main:(
PROC lcs = (STRING a, b)STRING:
BEGIN
IF UPB a = 0 OR UPB b = 0 THEN
""
ELIF a [UPB a] = b [UPB b] THEN
lcs (a [:UPB a - 1], b [:UPB b - 1]) + a [UPB a]
ELSE
STRING x = lcs (a, b [:UPB b - 1]);
STRING y = lcs (a [:UPB a - 1], b);
IF UPB x > UPB y THEN x ELSE y FI
FI
END # lcs #;
print((lcs ("thisisatest", "testing123testing"), new line))
)```
Output:
```tsitest
```

## APL

Works with: Dyalog APL
```lcs←{
⎕IO←0
betterof←{⊃(</+/¨⍺ ⍵)⌽⍺ ⍵}                     ⍝ better of 2 selections
cmbn←{↑,⊃∘.,/(⊂⊂⍬),⍵}                          ⍝ combine lists
rr←{∧/↑>/1 ¯1↓[1]¨⊂⍵}                          ⍝ rising rows
hmrr←{∨/(rr ⍵)∧∧/⍵=⌈\⍵}                        ⍝ has monotonically rising rows
rnbc←{{⍵/⍳⍴⍵}¨↓[0]×⍵}                          ⍝ row numbers by column
valid←hmrr∘cmbn∘rnbc                           ⍝ any valid solutions?
a w←(</⊃∘⍴¨⍺ ⍵)⌽⍺ ⍵                            ⍝ longest first
matches←a∘.=w
aps←{⍵[;⍒+⌿⍵]}∘{(⍵/2)⊤⍳2*⍵}                    ⍝ all possible subsequences
swps←{⍵/⍨∧⌿~(~∨⌿⍺)⌿⍵}                          ⍝ subsequences with possible solns
sstt←matches swps aps⊃⍴w                       ⍝ subsequences to try
w/⍨{
⍺←0⍴⍨⊃⍴⍵                                   ⍝ initial selection
(+/⍺)≥+/⍵[;0]:⍺                            ⍝ no scope to improve
this←⍺ betterof{⍵×valid ⍵/matches}⍵[;0]    ⍝ try to improve
1=1⊃⍴⍵:this                                ⍝ nothing left to try
this ∇ 1↓[1]⍵                              ⍝ keep looking
}sstt
}
```

## Arturo

Translation of: Python
```lcs: function [a,b][
ls: new array.of: @[inc size a, inc size b] 0

loop.with:'i a 'x [
loop.with:'j b 'y [
ls\[i+1]\[j+1]: (x=y)? -> ls\[i]\[j] + 1
-> max @[ls\[i+1]\[j], ls\[i]\[j+1]]
]
]
[result, x, y]: @[new "", size a, size b]

while [and? [x > 0][y > 0]][
if? ls\[x]\[y] = ls\[x-1]\[y] -> x: x-1
else [
if? ls\[x]\[y] = ls\[x]\[y-1] -> y: y-1
else [
result: a\[x-1] ++ result
x: x-1
y: y-1
]
]
]
return result
]

print lcs "1234" "1224533324"
print lcs "thisisatest" "testing123testing"
```
Output:
```1234
tsitest```

## AutoHotkey

Translation of: Java

using dynamic programming

ahk forum: discussion

```lcs(a,b) { ; Longest Common Subsequence of strings, using Dynamic Programming
Loop % StrLen(a)+2 {                          ; Initialize
i := A_Index-1
Loop % StrLen(b)+2
j := A_Index-1, len%i%_%j% := 0
}
Loop Parse, a                                 ; scan a
{
i := A_Index, i1 := i+1, x := A_LoopField
Loop Parse, b                              ; scan b
{
j := A_Index, j1 := j+1, y := A_LoopField
len%i1%_%j1% := x=y ? len%i%_%j% + 1
: (u:=len%i1%_%j%) > (v:=len%i%_%j1%) ? u : v
}
}
x := StrLen(a)+1, y := StrLen(b)+1
While x*y {                                   ; construct solution from lengths
x1 := x-1, y1 := y-1
If (len%x%_%y% = len%x1%_%y%)
x := x1
Else If  (len%x%_%y% = len%x%_%y1%)
y := y1
Else
x := x1, y := y1, t := SubStr(a,x,1) t
}
Return t
}
```

## BASIC

### QuickBASIC

Works with: QuickBasic version 4.5
Translation of: Java
```FUNCTION lcs\$ (a\$, b\$)
IF LEN(a\$) = 0 OR LEN(b\$) = 0 THEN
lcs\$ = ""
ELSEIF RIGHT\$(a\$, 1) = RIGHT\$(b\$, 1) THEN
lcs\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), LEFT\$(b\$, LEN(b\$) - 1)) + RIGHT\$(a\$, 1)
ELSE
x\$ = lcs\$(a\$, LEFT\$(b\$, LEN(b\$) - 1))
y\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), b\$)
IF LEN(x\$) > LEN(y\$) THEN
lcs\$ = x\$
ELSE
lcs\$ = y\$
END IF
END IF
END FUNCTION
```

## BASIC256

Translation of: FreeBASIC
```function LCS(a, b)
if length(a) = 0 or length(b) = 0 then return ""
if right(a, 1) = right(b, 1) then
LCS = LCS(left(a, length(a) - 1), left(b, length(b) - 1)) + right(a, 1)
else
x = LCS(a, left(b, length(b) - 1))
y = LCS(left(a, length(a) - 1), b)
if length(x) > length(y) then return x else return y
end if
end function

print LCS("1234", "1224533324")
print LCS("thisisatest", "testing123testing")
end```

## BBC BASIC

This makes heavy use of BBC BASIC's shortcut LEFT\$(a\$) and RIGHT\$(a\$) functions.

```      PRINT FNlcs("1234", "1224533324")
PRINT FNlcs("thisisatest", "testing123testing")
END

DEF FNlcs(a\$, b\$)
IF a\$="" OR b\$="" THEN = ""
IF RIGHT\$(a\$) = RIGHT\$(b\$) THEN = FNlcs(LEFT\$(a\$), LEFT\$(b\$)) + RIGHT\$(a\$)
LOCAL x\$, y\$
x\$ = FNlcs(a\$, LEFT\$(b\$))
y\$ = FNlcs(LEFT\$(a\$), b\$)
IF LEN(y\$) > LEN(x\$) SWAP x\$,y\$
= x\$
```

Output:

```1234
tsitest
```

## BQN

It's easier and faster to get only the length of the longest common subsequence, using `LcsLen ← ¯1 ⊑ 0¨∘⊢ {𝕩⌈⌈`𝕨+»𝕩}˝ =⌜⟜⌽`. This function can be expanded by changing `⌈` to `⊣⍟(>○≠)` (choosing from two arguments one that has the greatest length), and replacing the empty length 0 with the empty string `""` in the right places.

```LCS ← ¯1 ⊑ "" <⊸∾ ""¨∘⊢ ⊣⍟(>○≠){𝕩𝔽¨𝔽`𝕨∾¨""<⊸»𝕩}˝ (=⌜⥊¨⊣)⟜⌽
```

Output:

```   "1234" LCS "1224533324"
"1234"
"thisisatest" LCS "testing123testing"
"tsitest"
```

## Bracmat

```  ( LCS
=   A a ta B b tb prefix
.     !arg:(?prefix.@(?A:%?a ?ta).@(?B:%?b ?tb))
& ( !a:!b&LCS\$(!prefix !a.!ta.!tb)
| LCS\$(!prefix.!A.!tb)&LCS\$(!prefix.!ta.!B)
)
| !prefix:? ([>!max:[?max):?lcs
|
)
& 0:?max
& :?lcs
& LCS\$(.thisisatest.testing123testing)
& out\$(max !max lcs !lcs);```
Output:
`max 7 lcs t s i t e s t`

## C

```#include <stdio.h>
#include <stdlib.h>

#define MAX(a, b) (a > b ? a : b)

int lcs (char *a, int n, char *b, int m, char **s) {
int i, j, k, t;
int *z = calloc((n + 1) * (m + 1), sizeof (int));
int **c = calloc((n + 1), sizeof (int *));
for (i = 0; i <= n; i++) {
c[i] = &z[i * (m + 1)];
}
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
if (a[i - 1] == b[j - 1]) {
c[i][j] = c[i - 1][j - 1] + 1;
}
else {
c[i][j] = MAX(c[i - 1][j], c[i][j - 1]);
}
}
}
t = c[n][m];
*s = malloc(t);
for (i = n, j = m, k = t - 1; k >= 0;) {
if (a[i - 1] == b[j - 1])
(*s)[k] = a[i - 1], i--, j--, k--;
else if (c[i][j - 1] > c[i - 1][j])
j--;
else
i--;
}
free(c);
free(z);
return t;
}
```

Testing

```int main () {
char a[] = "thisisatest";
char b[] = "testing123testing";
int n = sizeof a - 1;
int m = sizeof b - 1;
char *s = NULL;
int t = lcs(a, n, b, m, &s);
printf("%.*s\n", t, s); // tsitest
return 0;
}
```

## C#

### With recursion

```using System;

namespace LCS
{
class Program
{
static void Main(string[] args)
{
string word1 = "thisisatest";
string word2 = "testing123testing";

Console.WriteLine(lcsBack(word1, word2));
}

public static string lcsBack(string a, string b)
{
string aSub = a.Substring(0, (a.Length - 1 < 0) ? 0 : a.Length - 1);
string bSub = b.Substring(0, (b.Length - 1 < 0) ? 0 : b.Length - 1);

if (a.Length == 0 || b.Length == 0)
return "";
else if (a[a.Length - 1] == b[b.Length - 1])
return lcsBack(aSub, bSub) + a[a.Length - 1];
else
{
string x = lcsBack(a, bSub);
string y = lcsBack(aSub, b);
return (x.Length > y.Length) ? x : y;
}
}
}
}
```

## C++

Hunt and Szymanski algorithm

```#include <stdint.h>
#include <string>
#include <memory>                       // for shared_ptr<>
#include <iostream>
#include <deque>
#include <unordered_map>                //[C++11]
#include <algorithm>                    // for lower_bound()
#include <iterator>                     // for next() and prev()

using namespace std;

class LCS {
protected:
// Instances of the Pair linked list class are used to recover the LCS:
class Pair {
public:
uint32_t index1;
uint32_t index2;
shared_ptr<Pair> next;

Pair(uint32_t index1, uint32_t index2, shared_ptr<Pair> next = nullptr)
: index1(index1), index2(index2), next(next) {
}

static shared_ptr<Pair> Reverse(const shared_ptr<Pair> pairs) {
for (auto next = pairs; next != nullptr; next = next->next)
}
};

typedef deque<shared_ptr<Pair>> PAIRS;
typedef deque<uint32_t> INDEXES;
typedef unordered_map<char, INDEXES> CHAR_TO_INDEXES_MAP;
typedef deque<INDEXES*> MATCHES;

static uint32_t FindLCS(
MATCHES& indexesOf2MatchedByIndex1, shared_ptr<Pair>* pairs) {
auto traceLCS = pairs != nullptr;
PAIRS chains;
INDEXES prefixEnd;

//
//[Assert]After each index1 iteration prefixEnd[index3] is the least index2
// such that the LCS of s1[0:index1] and s2[0:index2] has length index3 + 1
//
uint32_t index1 = 0;
for (const auto& it1 : indexesOf2MatchedByIndex1) {
auto dq2 = *it1;
auto limit = prefixEnd.end();
for (auto it2 = dq2.rbegin(); it2 != dq2.rend(); it2++) {
// Each index1, index2 pair corresponds to a match
auto index2 = *it2;

//
// Note: The reverse iterator it2 visits index2 values in descending order,
// allowing in-place update of prefixEnd[].  std::lower_bound() is used to
// perform a binary search.
//
limit = lower_bound(prefixEnd.begin(), limit, index2);

//
// Look ahead to the next index2 value to optimize Pairs used by the Hunt
// and Szymanski algorithm.  If the next index2 is also an improvement on
// the value currently held in prefixEnd[index3], a new Pair will only be
// superseded on the next index2 iteration.
//
// Verify that a next index2 value exists; and that this value is greater
// than the final index2 value of the LCS prefix at prev(limit):
//
auto preferNextIndex2 = next(it2) != dq2.rend() &&
(limit == prefixEnd.begin() || *prev(limit) < *next(it2));

//
// Depending on match redundancy, this optimization may reduce the number
// of Pair allocations by factors ranging from 2 up to 10 or more.
//
if (preferNextIndex2) continue;

auto index3 = distance(prefixEnd.begin(), limit);

if (limit == prefixEnd.end()) {
// Insert Case
prefixEnd.push_back(index2);
// Refresh limit iterator:
limit = prev(prefixEnd.end());
if (traceLCS) {
chains.push_back(pushPair(chains, index3, index1, index2));
}
}
else if (index2 < *limit) {
// Update Case
// Update limit value:
*limit = index2;
if (traceLCS) {
chains[index3] = pushPair(chains, index3, index1, index2);
}
}
}                                   // next index2

index1++;
}                                     // next index1

if (traceLCS) {
// Return the LCS as a linked list of matched index pairs:
auto last = chains.empty() ? nullptr : chains.back();
// Reverse longest chain
*pairs = Pair::Reverse(last);
}

auto length = prefixEnd.size();
return length;
}

private:
static shared_ptr<Pair> pushPair(
PAIRS& chains, const ptrdiff_t& index3, uint32_t& index1, uint32_t& index2) {
auto prefix = index3 > 0 ? chains[index3 - 1] : nullptr;
return make_shared<Pair>(index1, index2, prefix);
}

protected:
//
// Match() avoids m*n comparisons by using CHAR_TO_INDEXES_MAP to
// achieve O(m+n) performance, where m and n are the input lengths.
//
// The lookup time can be assumed constant in the case of characters.
// The symbol space is larger in the case of records; but the lookup
// time will be O(log(m+n)), at most.
//
static void Match(
CHAR_TO_INDEXES_MAP& indexesOf2MatchedByChar, MATCHES& indexesOf2MatchedByIndex1,
const string& s1, const string& s2) {
uint32_t index = 0;
for (const auto& it : s2)
indexesOf2MatchedByChar[it].push_back(index++);

for (const auto& it : s1) {
auto& dq2 = indexesOf2MatchedByChar[it];
indexesOf2MatchedByIndex1.push_back(&dq2);
}
}

static string Select(shared_ptr<Pair> pairs, uint32_t length,
bool right, const string& s1, const string& s2) {
string buffer;
buffer.reserve(length);
for (auto next = pairs; next != nullptr; next = next->next) {
auto c = right ? s2[next->index2] : s1[next->index1];
buffer.push_back(c);
}
return buffer;
}

public:
static string Correspondence(const string& s1, const string& s2) {
CHAR_TO_INDEXES_MAP indexesOf2MatchedByChar;
MATCHES indexesOf2MatchedByIndex1;  // holds references into indexesOf2MatchedByChar
Match(indexesOf2MatchedByChar, indexesOf2MatchedByIndex1, s1, s2);
shared_ptr<Pair> pairs;             // obtain the LCS as index pairs
auto length = FindLCS(indexesOf2MatchedByIndex1, &pairs);
return Select(pairs, length, false, s1, s2);
}
};
```

Example:

```    auto s = LCS::Correspondence(s1, s2);
cout << s << endl;
```

More fully featured examples are available at Samples/C++/LCS.

## Clojure

Based on algorithm from Wikipedia.

```(defn longest [xs ys] (if (> (count xs) (count ys)) xs ys))

(def lcs
(memoize
(fn [[x & xs] [y & ys]]
(cond
(or (= x nil) (= y nil)) nil
(= x y) (cons x (lcs xs ys))
:else (longest (lcs (cons x xs) ys)
(lcs xs (cons y ys)))))))
```

## CoffeeScript

```lcs = (s1, s2) ->
len1 = s1.length
len2 = s2.length

# Create a virtual matrix that is (len1 + 1) by (len2 + 1),
# where m[i][j] is the longest common string using only
# the first i chars of s1 and first j chars of s2.  The
# matrix is virtual, because we only keep the last two rows
# in memory.
prior_row = ('' for i in [0..len2])

for i in [0...len1]
row = ['']
for j in [0...len2]
if s1[i] == s2[j]
row.push prior_row[j] + s1[i]
else
subs1 = row[j]
subs2 = prior_row[j+1]
if subs1.length > subs2.length
row.push subs1
else
row.push subs2
prior_row = row

row[len2]

s1 = "thisisatest"
s2 = "testing123testing"
console.log lcs(s1, s2)
```

## Common Lisp

Here's a memoizing/dynamic-programming solution that uses an n × m array where n and m are the lengths of the input arrays. The first return value is a sequence (of the same type as array1) which is the longest common subsequence. The second return value is the length of the longest common subsequence.

```(defun longest-common-subsequence (array1 array2)
(let* ((l1 (length array1))
(l2 (length array2))
(results (make-array (list l1 l2) :initial-element nil)))
(declare (dynamic-extent results))
(labels ((lcs (start1 start2)
;; if either sequence is empty, return (() 0)
(if (or (eql start1 l1) (eql start2 l2)) (list '() 0)
;; otherwise, return any memoized value
(let ((result (aref results start1 start2)))
(if (not (null result)) result
;; otherwise, compute and store a value
(setf (aref results start1 start2)
(if (eql (aref array1 start1) (aref array2 start2))
;; move forward in both sequences
(destructuring-bind (seq len)
(lcs (1+ start1) (1+ start2))
(list (cons (aref array1 start1) seq) (1+ len)))
;; otherwise, move ahead in each separately,
;; and return the better result.
(let ((a (lcs (1+ start1) start2))
(b (lcs start1 (1+ start2))))
(if (> (second a) (second b))
a
b)))))))))
(destructuring-bind (seq len) (lcs 0 0)
(values (coerce seq (type-of array1)) len)))))
```

For example,

```(longest-common-subsequence "123456" "1a2b3c")
```

produces the two values

```"123"
3
```

### An alternative adopted from Clojure

Here is another version with its own memoization macro:

```(defmacro mem-defun (name args body)
(let ((hash-name (gensym)))
`(let ((,hash-name (make-hash-table :test 'equal)))
(defun ,name ,args
(or (gethash (list ,@args) ,hash-name)
(setf (gethash (list ,@args) ,hash-name)
,body))))))

(mem-defun lcs (xs ys)
(labels ((longer (a b) (if (> (length a) (length b)) a b)))
(cond ((or (null xs) (null ys)) nil)
((equal (car xs) (car ys)) (cons (car xs) (lcs (cdr xs) (cdr ys))))
(t (longer (lcs (cdr xs) ys)
(lcs xs (cdr ys)))))))
```

When we test it, we get:

```(coerce (lcs (coerce "thisisatest" 'list) (coerce "testing123testing" 'list)) 'string))))

"tsitest"
```

## D

Both versions don't work correctly with Unicode text.

### Recursive version

```import std.stdio, std.array;

T[] lcs(T)(in T[] a, in T[] b) pure nothrow @safe {
if (a.empty || b.empty) return null;
if (a[0] == b[0])
return a[0] ~ lcs(a[1 .. \$], b[1 .. \$]);
const longest = (T[] x, T[] y) => x.length > y.length ? x : y;
return longest(lcs(a, b[1 .. \$]), lcs(a[1 .. \$], b));
}

void main() {
lcs("thisisatest", "testing123testing").writeln;
}
```
Output:
`tsitest`

### Faster dynamic programming version

The output is the same.

```import std.stdio, std.algorithm, std.traits;

T[] lcs(T)(in T[] a, in T[] b) pure /*nothrow*/ {
auto L = new uint[][](a.length + 1, b.length + 1);

foreach (immutable i; 0 .. a.length)
foreach (immutable j; 0 .. b.length)
L[i + 1][j + 1] = (a[i] == b[j]) ? (1 + L[i][j]) :
max(L[i + 1][j], L[i][j + 1]);

Unqual!T[] result;
for (auto i = a.length, j = b.length; i > 0 && j > 0; ) {
if (a[i - 1] == b[j - 1]) {
result ~= a[i - 1];
i--;
j--;
} else
if (L[i][j - 1] < L[i - 1][j])
i--;
else
j--;
}

result.reverse(); // Not nothrow.
return result;
}

void main() {
lcs("thisisatest", "testing123testing").writeln;
}
```

### Hirschberg algorithm version

This is currently a little slower than the classic dynamic programming version, but it uses a linear amount of memory, so it's usable for much larger inputs. To speed up this code on dmd remove the memory allocations from lensLCS, and do not use the retro range (replace it with foreach_reverse). The output is the same.

```import std.stdio, std.algorithm, std.range, std.array, std.string, std.typecons;

uint[] lensLCS(R)(R xs, R ys) pure nothrow @safe {
auto prev = new typeof(return)(1 + ys.length);
auto curr = new typeof(return)(1 + ys.length);

foreach (immutable x; xs) {
swap(curr, prev);
size_t i = 0;
foreach (immutable y; ys) {
curr[i + 1] = (x == y) ? prev[i] + 1 : max(curr[i], prev[i + 1]);
i++;
}
}

return curr;
}

void calculateLCS(T)(in T[] xs, in T[] ys, bool[] xs_in_lcs,
in size_t idx=0) pure nothrow @safe {
immutable nx = xs.length;
immutable ny = ys.length;

if (nx == 0)
return;

if (nx == 1) {
if (ys.canFind(xs[0]))
xs_in_lcs[idx] = true;
} else {
immutable mid = nx / 2;
const xb = xs[0.. mid];
const xe = xs[mid .. \$];
immutable ll_b = lensLCS(xb, ys);

const ll_e = lensLCS(xe.retro, ys.retro); // retro is slow with dmd.

//immutable k = iota(ny + 1)
//              .reduce!(max!(j => ll_b[j] + ll_e[ny - j]));
immutable k = iota(ny + 1)
.minPos!((i, j) => tuple(ll_b[i] + ll_e[ny - i]) >
tuple(ll_b[j] + ll_e[ny - j]))[0];

calculateLCS(xb, ys[0 .. k], xs_in_lcs, idx);
calculateLCS(xe, ys[k .. \$], xs_in_lcs, idx + mid);
}
}

const(T)[] lcs(T)(in T[] xs, in T[] ys) pure /*nothrow*/ @safe {
auto xs_in_lcs = new bool[xs.length];
calculateLCS(xs, ys, xs_in_lcs);
return zip(xs, xs_in_lcs).filter!q{ a[1] }.map!q{ a[0] }.array; // Not nothrow.
}

string lcsString(in string s1, in string s2) pure /*nothrow*/ @safe {
return lcs(s1.representation, s2.representation).assumeUTF;
}

void main() {
lcsString("thisisatest", "testing123testing").writeln;
}
```

## Dart

```import 'dart:math';

String lcsRecursion(String a, String b) {
int aLen = a.length;
int bLen = b.length;

if (aLen == 0 || bLen == 0) {
return "";
} else if (a[aLen-1] == b[bLen-1]) {
return lcsRecursion(a.substring(0,aLen-1),b.substring(0,bLen-1)) + a[aLen-1];
} else {
var x = lcsRecursion(a, b.substring(0,bLen-1));
var y = lcsRecursion(a.substring(0,aLen-1), b);
return (x.length > y.length) ? x : y;
}
}

String lcsDynamic(String a, String b) {
var lengths = new List<List<int>>.generate(a.length + 1,
(_) => new List.filled(b.length+1, 0), growable: false);

// row 0 and column 0 are initialized to 0 already
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < b.length; j++) {
if (a[i] == b[j]) {
lengths[i+1][j+1] = lengths[i][j] + 1;
} else {
lengths[i+1][j+1] = max(lengths[i+1][j], lengths[i][j+1]);
}
}
}

// read the substring out from the matrix
StringBuffer reversedLcsBuffer = new StringBuffer();
for (int x = a.length, y = b.length; x != 0 && y != 0;) {
if (lengths[x][y] == lengths[x-1][y]) {
x--;
} else if (lengths[x][y] == lengths[x][y-1]) {
y--;
} else {
assert(a[x-1] == b[y-1]);
reversedLcsBuffer.write(a[x-1]);
x--;
y--;
}
}

// reverse String
var reversedLCS = reversedLcsBuffer.toString();
var lcsBuffer = new StringBuffer();
for(var i = reversedLCS.length - 1; i>=0; i--) {
lcsBuffer.write(reversedLCS[i]);
}
return lcsBuffer.toString();
}

void main() {
print("lcsDynamic('1234', '1224533324') =  \${lcsDynamic('1234', '1224533324')}");
print("lcsDynamic('thisisatest', 'testing123testing') = \${lcsDynamic('thisisatest', 'testing123testing')}");
print("lcsDynamic('', 'x') = \${lcsDynamic('', 'x')}");
print("lcsDynamic('x', 'x') = \${lcsDynamic('x', 'x')}");
print('');
print("lcsRecursion('1234', '1224533324') = \${lcsRecursion('1234', '1224533324')}");
print("lcsRecursion('thisisatest', 'testing123testing') = \${lcsRecursion('thisisatest', 'testing123testing')}");
print("lcsRecursion('', 'x') = \${lcsRecursion('', 'x')}");
print("lcsRecursion('x', 'x') = \${lcsRecursion('x', 'x')}");
}
```
Output:
```lcsDynamic('1234', '1224533324') = 1234
lcsDynamic('thisisatest', 'testing123testing') = tsitest
lcsDynamic('', 'x') =
lcsDynamic('x', 'x') = x

lcsRecursion('1234', '1224533324') = 1234
lcsRecursion('thisisatest', 'testing123testing') = tsitest
lcsRecursion('', 'x') =
lcsRecursion('x', 'x') = x```

## EasyLang

Translation of: BASIC256
```func\$ right a\$ n .
return substr a\$ (len a\$ - n + 1) n
.
func\$ left a\$ n .
if n < 0
n = len a\$ + n
.
return substr a\$ 1 n
.
func\$ lcs a\$ b\$ .
if len a\$ = 0 or len b\$ = 0
return ""
.
if right a\$ 1 = right b\$ 1
return lcs left a\$ -1 left b\$ -1 & right a\$ 1
.
x\$ = lcs a\$ left b\$ -1
y\$ = lcs left a\$ -1 b\$
if len x\$ > len y\$
return x\$
else
return y\$
.
.
print lcs "1234" "1224533324"
print lcs "thisisatest" "testing123testing"
```
Output:
```1234
tsitest
```

## Egison

```(define \$common-seqs
(lambda [\$xs \$ys]
(match-all [xs ys] [(list char) (list char)]
[[(loop \$i [1 \$n] <join _ <cons \$c_i ...>> _)
(loop \$i [1 ,n] <join _ <cons ,c_i ...>> _)]
(map (lambda [\$i] c_i) (between 1 n))])))

(define \$lcs (compose common-seqs rac))```

Output:

```> (lcs "thisisatest" "testing123testing"))
"tsitest"```

## Elixir

Works with: Elixir version 1.3

### Simple recursion

This solution is Brute force. It is slow

Translation of: Ruby
```defmodule LCS do
def lcs(a, b) do
lcs(to_charlist(a), to_charlist(b), []) |> to_string
end

defp lcs([h|at], [h|bt], res), do: lcs(at, bt, [h|res])
defp lcs([_|at]=a, [_|bt]=b, res) do
Enum.max_by([lcs(a, bt, res), lcs(at, b, res)], &length/1)
end
defp lcs(_, _, res), do: res |> Enum.reverse
end

IO.puts LCS.lcs("thisisatest", "testing123testing")
IO.puts LCS.lcs('1234','1224533324')
```

### Dynamic Programming

Translation of: Erlang
```defmodule LCS do
def lcs_length(s,t), do: lcs_length(s,t,Map.new) |> elem(0)

defp lcs_length([],t,cache), do: {0,Map.put(cache,{[],t},0)}
defp lcs_length(s,[],cache), do: {0,Map.put(cache,{s,[]},0)}
defp lcs_length([h|st]=s,[h|tt]=t,cache) do
{l,c} = lcs_length(st,tt,cache)
{l+1,Map.put(c,{s,t},l+1)}
end
defp lcs_length([_sh|st]=s,[_th|tt]=t,cache) do
if Map.has_key?(cache,{s,t}) do
{Map.get(cache,{s,t}),cache}
else
{l1,c1} = lcs_length(s,tt,cache)
{l2,c2} = lcs_length(st,t,c1)
l = max(l1,l2)
{l,Map.put(c2,{s,t},l)}
end
end

def lcs(s,t) do
{s,t} = {to_charlist(s),to_charlist(t)}
{_,c} = lcs_length(s,t,Map.new)
lcs(s,t,c,[]) |> to_string
end

defp lcs([],_,_,acc), do: Enum.reverse(acc)
defp lcs(_,[],_,acc), do: Enum.reverse(acc)
defp lcs([h|st],[h|tt],cache,acc), do: lcs(st,tt,cache,[h|acc])
defp lcs([_sh|st]=s,[_th|tt]=t,cache,acc) do
if Map.get(cache,{s,tt}) > Map.get(cache,{st,t}) do
lcs(s,tt,cache,acc)
else
lcs(st,t,cache,acc)
end
end
end

IO.puts LCS.lcs("thisisatest","testing123testing")
IO.puts LCS.lcs("1234","1224533324")
```
Output:
```tsitest
1234
```

Referring to LCS here.

## Erlang

This implementation also includes the ability to calculate the length of the longest common subsequence. In calculating that length, we generate a cache which can be traversed to generate the longest common subsequence.

```module(lcs).
-compile(export_all).

lcs_length(S,T) ->
{L,_C} = lcs_length(S,T,dict:new()),
L.

lcs_length([]=S,T,Cache) ->
{0,dict:store({S,T},0,Cache)};
lcs_length(S,[]=T,Cache) ->
{0,dict:store({S,T},0,Cache)};
lcs_length([H|ST]=S,[H|TT]=T,Cache) ->
{L,C} = lcs_length(ST,TT,Cache),
{L+1,dict:store({S,T},L+1,C)};
lcs_length([_SH|ST]=S,[_TH|TT]=T,Cache) ->
case dict:is_key({S,T},Cache) of
true -> {dict:fetch({S,T},Cache),Cache};
false ->
{L1,C1} = lcs_length(S,TT,Cache),
{L2,C2} = lcs_length(ST,T,C1),
L = lists:max([L1,L2]),
{L,dict:store({S,T},L,C2)}
end.

lcs(S,T) ->
{_,C} = lcs_length(S,T,dict:new()),
lcs(S,T,C,[]).

lcs([],_,_,Acc) ->
lists:reverse(Acc);
lcs(_,[],_,Acc) ->
lists:reverse(Acc);
lcs([H|ST],[H|TT],Cache,Acc) ->
lcs(ST,TT,Cache,[H|Acc]);
lcs([_SH|ST]=S,[_TH|TT]=T,Cache,Acc) ->
case dict:fetch({S,TT},Cache) > dict:fetch({ST,T},Cache) of
true ->
lcs(S,TT,Cache, Acc);
false ->
lcs(ST,T,Cache,Acc)
end.
```

Output:

```77> lcs:lcs("thisisatest","testing123testing").
"tsitest"
78> lcs:lcs("1234","1224533324").
"1234"
```

We can also use the process dictionary to memoize the recursive implementation:

```lcs(Xs0, Ys0) ->
CacheKey = {lcs_cache, Xs0, Ys0},
case get(CacheKey)
of  undefined ->
Result =
case {Xs0, Ys0}
of  {[], _} -> []
;   {_, []} -> []
;   {[Same | Xs], [Same | Ys]} ->
[Same | lcs(Xs, Ys)]
;   {[_ | XsRest]=XsAll, [_ | YsRest]=YsAll} ->
A = lcs(XsRest, YsAll),
B = lcs(XsAll , YsRest),
case length(A) > length(B)
of  true  -> A
;   false -> B
end
end,
undefined = put(CacheKey, Result),
Result
;   Result ->
Result
end.
```

Similar to the above, but without using the process dictionary:

```-module(lcs).

%% API exports
-export([
lcs/2
]).

%%====================================================================
%% API functions
%%====================================================================

lcs(A, B) ->
{LCS, _Cache} = get_lcs(A, B, [], #{}),
lists:reverse(LCS).

%%====================================================================
%% Internal functions
%%=====================================================

get_lcs(A, B, Acc, Cache) ->
case maps:find({A, B, Acc}, Cache) of
{ok, LCS} -> {LCS, Cache};
error     ->
{NewLCS, NewCache} = compute_lcs(A, B, Acc, Cache),
{NewLCS, NewCache#{ {A, B, Acc} => NewLCS }}
end.

compute_lcs(A, B, Acc, Cache) when length(A) == 0 orelse length(B) == 0 ->
{Acc, Cache};
compute_lcs([Token |ATail], [Token |BTail], Acc, Cache) ->
get_lcs(ATail, BTail, [Token |Acc], Cache);
compute_lcs([_AToken |ATail]=A, [_BToken |BTail]=B, Acc, Cache) ->
{LCSA, CacheA} = get_lcs(A, BTail, Acc, Cache),
{LCSB, CacheB} = get_lcs(ATail, B, Acc, CacheA),
LCS = case length(LCSA) > length(LCSB) of
true  -> LCSA;
false -> LCSB
end,
{LCS, CacheB}.
```

Output:

```48> lcs:lcs("thisisatest", "testing123testing").
"tsitest"
```

## F#

Copied and slightly adapted from OCaml (direct recursion)

```open System

let longest xs ys = if List.length xs > List.length ys then xs else ys

let rec lcs a b =
match a, b with
| [], _
| _, []        -> []
| x::xs, y::ys ->
if x = y then
x :: lcs xs ys
else
longest (lcs a ys) (lcs xs b)

[<EntryPoint>]
let main argv =
let split (str:string) = List.init str.Length (fun i -> str.[i])
printfn "%A" (String.Join("",
(lcs (split "thisisatest") (split "testing123testing"))))
0
```

## Factor

```USE: lcs
"thisisatest" "testing123testing" lcs print
```
Output:
```tsitest
```

## Fortran

Works with: Fortran version 95

Using the iso_varying_string module which can be found here (or equivalent module conforming to the ISO/IEC 1539-2:2000 API or to a subset according to the need of this code: `char`, `len`, `//`, `extract`, `==`, `=`)

```program lcstest
use iso_varying_string
implicit none

type(varying_string) :: s1, s2

s1 = "thisisatest"
s2 = "testing123testing"
print *, char(lcs(s1, s2))

s1 = "1234"
s2 = "1224533324"
print *, char(lcs(s1, s2))

contains

recursive function lcs(a, b) result(l)
type(varying_string) :: l
type(varying_string), intent(in) :: a, b

type(varying_string) :: x, y

l = ""
if ( (len(a) == 0) .or. (len(b) == 0) ) return
if ( extract(a, len(a), len(a)) == extract(b, len(b), len(b)) ) then
l = lcs(extract(a, 1, len(a)-1), extract(b, 1, len(b)-1)) // extract(a, len(a), len(a))
else
x = lcs(a, extract(b, 1, len(b)-1))
y = lcs(extract(a, 1, len(a)-1), b)
if ( len(x) > len(y) ) then
l = x
else
l = y
end if
end if
end function lcs

end program lcstest
```

## FreeBASIC

```Function LCS(a As String, b As String) As String
Dim As String x, y
If Len(a) = 0 Or Len(b) = 0 Then
Return ""
Elseif Right(a, 1) = Right(b, 1) Then
LCS = LCS(Left(a, Len(a) - 1), Left(b, Len(b) - 1)) + Right(a, 1)
Else
x = LCS(a, Left(b, Len(b) - 1))
y = LCS(Left(a, Len(a) - 1), b)
If Len(x) > Len(y) Then Return x Else Return y
End If
End Function

Print LCS("1234", "1224533324")
Print LCS("thisisatest", "testing123testing")
Sleep
```

## Go

Translation of: Java

### Recursion

Brute force

```func lcs(a, b string) string {
aLen := len(a)
bLen := len(b)
if aLen == 0 || bLen == 0 {
return ""
} else if a[aLen-1] == b[bLen-1] {
return lcs(a[:aLen-1], b[:bLen-1]) + string(a[aLen-1])
}
x := lcs(a, b[:bLen-1])
y := lcs(a[:aLen-1], b)
if len(x) > len(y) {
return x
}
return y
}
```

### Dynamic Programming

```func lcs(a, b string) string {
arunes := []rune(a)
brunes := []rune(b)
aLen := len(arunes)
bLen := len(brunes)
lengths := make([][]int, aLen+1)
for i := 0; i <= aLen; i++ {
lengths[i] = make([]int, bLen+1)
}
// row 0 and column 0 are initialized to 0 already

for i := 0; i < aLen; i++ {
for j := 0; j < bLen; j++ {
if arunes[i] == brunes[j] {
lengths[i+1][j+1] = lengths[i][j] + 1
} else if lengths[i+1][j] > lengths[i][j+1] {
lengths[i+1][j+1] = lengths[i+1][j]
} else {
lengths[i+1][j+1] = lengths[i][j+1]
}
}
}

// read the substring out from the matrix
s := make([]rune, 0, lengths[aLen][bLen])
for x, y := aLen, bLen; x != 0 && y != 0; {
if lengths[x][y] == lengths[x-1][y] {
x--
} else if lengths[x][y] == lengths[x][y-1] {
y--
} else {
s = append(s, arunes[x-1])
x--
y--
}
}
// reverse string
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
return string(s)
}
```

## Groovy

Recursive solution:

```def lcs(xstr, ystr) {
if (xstr == "" || ystr == "") {
return "";
}

def x = xstr[0];
def y = ystr[0];

def xs = xstr.size() > 1 ? xstr[1..-1] : "";
def ys = ystr.size() > 1 ? ystr[1..-1] : "";

if (x == y) {
return (x + lcs(xs, ys));
}

def lcs1 = lcs(xstr, ys);
def lcs2 = lcs(xs, ystr);

lcs1.size() > lcs2.size() ? lcs1 : lcs2;
}

println(lcs("1234", "1224533324"));
println(lcs("thisisatest", "testing123testing"));
```
Output:
```1234
tsitest```

The Wikipedia solution translates directly into Haskell, with the only difference that equal characters are added in front:

```longest xs ys = if length xs > length ys then xs else ys

lcs [] _ = []
lcs _ [] = []
lcs (x:xs) (y:ys)
| x == y    = x : lcs xs ys
| otherwise = longest (lcs (x:xs) ys) (lcs xs (y:ys))
```

A Memoized version of the naive algorithm.

```import qualified Data.MemoCombinators as M

lcs = memoize lcsm
where
lcsm [] _ = []
lcsm _ [] = []
lcsm (x:xs) (y:ys)
| x == y    = x : lcs xs ys
| otherwise = maxl (lcs (x:xs) ys) (lcs xs (y:ys))

maxl x y = if length x > length y then x else y
memoize = M.memo2 mString mString
mString = M.list M.char -- Chars, but you can specify any type you need for the memo
```

Memoization (aka dynamic programming) of that uses zip to make both the index and the character available:

```import Data.Array

lcs xs ys = a!(0,0) where
n = length xs
m = length ys
a = array ((0,0),(n,m)) \$ l1 ++ l2 ++ l3
l1 = [((i,m),[]) | i <- [0..n]]
l2 = [((n,j),[]) | j <- [0..m]]
l3 = [((i,j), f x y i j) | (x,i) <- zip xs [0..], (y,j) <- zip ys [0..]]
f x y i j
| x == y    = x : a!(i+1,j+1)
| otherwise = longest (a!(i,j+1)) (a!(i+1,j))
```

All 3 solutions work of course not only with strings, but also with any other list. Example:

```*Main> lcs "thisisatest" "testing123testing"
"tsitest"
```

The dynamic programming version without using arrays:

```import Data.List

longest xs ys = if length xs > length ys then xs else ys

lcs xs ys = head \$ foldr(\xs -> map head. scanr1 f. zipWith (\x y -> [x,y]) xs) e m where
m = map (\x -> flip (++) [[]] \$ map (\y -> [x | x==y]) ys) xs
e = replicate (length ys) []
f [a,b] [c,d]
| null a = longest b c: [b]
| otherwise = (a++d):[b]
```

Simple and slow solution:

```import Data.Ord
import Data.List

--          longest                        common
lcs xs ys = maximumBy (comparing length) \$ intersect (subsequences xs) (subsequences ys)

main = print \$ lcs "thisisatest" "testing123testing"
```
Output:
`"tsitest"`

## Icon and Unicon

This solution is a modified variant of the recursive solution. The modifications include (a) deleting all characters not common to both strings and (b) stripping off common prefixes and suffixes in a single step.

```procedure main()
LCSTEST("thisisatest","testing123testing")
LCSTEST("","x")
LCSTEST("x","x")
LCSTEST("beginning-middle-ending","beginning-diddle-dum-ending")
end

procedure LCSTEST(a,b)    #: helper to show inputs and results
write("lcs( ",image(a),", ",image(b)," ) = ",image(res := lcs(a,b)))
return res
end

procedure lcs(a,b)     #: return longest common sub-sequence of characters (modified recursive method)
local i,x,y
local c,nc

if *(a|b) = 0 then return ""                               # done if either string is empty
if a == b then return a                                    # done if equal

if *(a ++ b -- (c := a ** b)) > 0 then {                   # find all characters not in common
a := deletec(a,nc := ~c)                                # .. remove
b := deletec(b,nc)                                      # .. remove
}                                                       # only unequal strings and shared characters beyond

i := 0 ; while a[i+1] == b[i+1] do i +:=1                  # find common prefix ...
if *(x := a[1+:i]) > 0  then                               # if any
return x || lcs(a[i+1:0],b[i+1:0])                      # ... remove and process remainder

i := 0 ; while a[-(i+1)] == b[-(i+1)] do i +:=1            # find common suffix ...
if *(y := a[0-:i]) > 0 then                                # if any
return lcs(a[1:-i],b[1:-i]) || y                        # ... remove and process remainder

return if *(x := lcs(a,b[1:-1])) > *(y := lcs(a[1:-1],b)) then x else y  # divide, discard, and keep longest
end
```
Output:
```lcs( "thisisatest", "testing123testing" ) = "tsitest"
lcs( "", "x" ) = ""
lcs( "x", "x" ) = "x"
lcs( "beginning-middle-ending", "beginning-diddle-dum-ending" ) = "beginning-iddle-ending"```

## J

```lcs=: dyad define
|.x{~ 0{"1 cullOne^:_ (\: +/"1)(\:{."1) 4\$.\$. x =/ y
)

cullOne=: ({~[: <@<@< [: (i. 0:)1,[: *./[: |: 2>/\]) :: ]
```

Here's another approach:

```mergeSq=: ;@}:  ~.@, {.@;@{. ,&.> 3 {:: 4&{.
common=: 2 2 <@mergeSq@,;.3^:_ [: (<@#&.> i.@\$) =/
lcs=: [ {~ 0 {"1 ,&\$ #: 0 ({:: (#~ [: (= >./) #@>)) 0 ({:: ,) common
```

Example use (works with either definition of lcs):

```   'thisisatest' lcs 'testing123testing'
tsitest
```

Dynamic programming version

```longest=: ]`[@.(>&#)
upd=:{:@[,~ ({.@[ ,&.> {:@])`({:@[ longest&.> {.@])@.(0 = #&>@{.@[)
lcs=: 0{:: [: ([: {.&> [: upd&.>/\.<"1@:,.)/ a:,.~a:,~=/{"1 a:,.<"0@[
```

Output:

```   '1234' lcs '1224533324'
1234

'thisisatest' lcs 'testing123testing'
tsitest
```

Recursion

```lcs=:;((\$:}.) longest }.@[ \$: ])`({.@[,\$:&}.)@.(=&{.)`((i.0)"_)@.(+.&(0=#))&((e.#[)&>/) ;~
```

## Java

### Recursion

This is not a particularly fast algorithm, but it gets the job done eventually. The speed is a result of many recursive function calls.

```public static String lcs(String a, String b){
int aLen = a.length();
int bLen = b.length();
if(aLen == 0 || bLen == 0){
return "";
}else if(a.charAt(aLen-1) == b.charAt(bLen-1)){
return lcs(a.substring(0,aLen-1),b.substring(0,bLen-1))
+ a.charAt(aLen-1);
}else{
String x = lcs(a, b.substring(0,bLen-1));
String y = lcs(a.substring(0,aLen-1), b);
return (x.length() > y.length()) ? x : y;
}
}
```

### Dynamic Programming

```public static String lcs(String a, String b) {
int[][] lengths = new int[a.length()+1][b.length()+1];

// row 0 and column 0 are initialized to 0 already

for (int i = 0; i < a.length(); i++)
for (int j = 0; j < b.length(); j++)
if (a.charAt(i) == b.charAt(j))
lengths[i+1][j+1] = lengths[i][j] + 1;
else
lengths[i+1][j+1] =
Math.max(lengths[i+1][j], lengths[i][j+1]);

// read the substring out from the matrix
StringBuffer sb = new StringBuffer();
for (int x = a.length(), y = b.length();
x != 0 && y != 0; ) {
if (lengths[x][y] == lengths[x-1][y])
x--;
else if (lengths[x][y] == lengths[x][y-1])
y--;
else {
assert a.charAt(x-1) == b.charAt(y-1);
sb.append(a.charAt(x-1));
x--;
y--;
}
}

return sb.reverse().toString();
}
```

## JavaScript

### Recursion

Translation of: Java

This is more or less a translation of the recursive Java version above.

```function lcs(a, b) {
var aSub = a.substr(0, a.length - 1);
var bSub = b.substr(0, b.length - 1);

if (a.length === 0 || b.length === 0) {
return '';
} else if (a.charAt(a.length - 1) === b.charAt(b.length - 1)) {
return lcs(aSub, bSub) + a.charAt(a.length - 1);
} else {
var x = lcs(a, bSub);
var y = lcs(aSub, b);
return (x.length > y.length) ? x : y;
}
}
```

ES6 recursive implementation

```const longest = (xs, ys) => (xs.length > ys.length) ? xs : ys;

const lcs = (xx, yy) => {
if (!xx.length || !yy.length) { return ''; }

const [x, ...xs] = xx;
const [y, ...ys] = yy;

return (x === y) ? (x + lcs(xs, ys)) : longest(lcs(xx, ys), lcs(xs, yy));
};
```

### Dynamic Programming

This version runs in O(mn) time and consumes O(mn) space. Factoring out loop edge cases could get a small constant time improvement, and it's fairly trivial to edit the final loop to produce a full diff in addition to the lcs.

```function lcs(x,y){
var s,i,j,m,n,
lcs=[],row=[],c=[],
left,diag,latch;
//make sure shorter string is the column string
if(m<n){s=x;x=y;y=s;}
m = x.length;
n = y.length;
//build the c-table
for(j=0;j<n;row[j++]=0);
for(i=0;i<m;i++){
c[i] = row = row.slice();
for(diag=0,j=0;j<n;j++,diag=latch){
latch=row[j];
if(x[i] == y[j]){row[j] = diag+1;}
else{
left = row[j-1]||0;
if(left>row[j]){row[j] = left;}
}
}
}
i--,j--;
//row[j] now contains the length of the lcs
//recover the lcs from the table
while(i>-1&&j>-1){
switch(c[i][j]){
default: j--;
lcs.unshift(x[i]);
case (i&&c[i-1][j]): i--;
continue;
case (j&&c[i][j-1]): j--;
}
}
return lcs.join('');
}
```

BUG note: In line 6, m and n are not yet initialized, and so x and y are never swapped. Swapping is useless here, and becomes wrong when extending the algorithm to produce a diff.

The final loop can be modified to concatenate maximal common substrings rather than individual characters:

```	var t=i;
while(i>-1&&j>-1){
switch(c[i][j]){
default:i--,j--;
continue;
case (i&&c[i-1][j]):
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}
t=--i;
continue;
case (j&&c[i][j-1]): j--;
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}
t=i;
}
}
if(t!==i){lcs.unshift(x.substring(i+1,t+1));}
```

### Greedy Algorithm

This is an heuristic algorithm that won't always return the correct answer, but is significantly faster and less memory intensive than the dynamic programming version, in exchange for giving up the ability to re-use the table to find alternate solutions and greater complexity in generating diffs. Note that this implementation uses a binary buffer for additional efficiency gains, but it's simple to transform to use string or array concatenation;

```function lcs_greedy(x,y){
var p1, i, idx,
symbols = {},
r = 0,
p = 0,
l = 0,
m = x.length,
n = y.length,
s = new Buffer((m < n) ? n : m);

p1 = popsym(0);

for (i = 0; i < m; i++) {
p = (r === p) ? p1 : popsym(i);
p1 = popsym(i + 1);
if (p > p1) {
i += 1;
idx = p1;
} else {
idx = p;
}

if (idx === n) {
p = popsym(i);
} else {
r = idx;
s[l] = x.charCodeAt(i);
l += 1;
}
}
return s.toString('utf8', 0, l);

function popsym(index) {
var s = x[index],
pos = symbols[s] + 1;

pos = y.indexOf(s, ((pos > r) ? pos : r));
if (pos === -1) { pos = n; }
symbols[s] = pos;
return pos;
}
}
```

Note that it won't return the correct answer for all inputs. For example:

```lcs_greedy('bcaaaade', 'deaaaabc'); // 'bc' instead of 'aaaa'
```

## jq

Naive recursive version:

```def lcs(xstr; ystr):
if (xstr == "" or ystr == "") then ""
else
xstr[0:1] as \$x
|  xstr[1:] as \$xs
|  ystr[1:] as \$ys
| if (\$x == ystr[0:1]) then (\$x + lcs(\$xs; \$ys))
else
lcs(xstr; \$ys) as \$one
| lcs(\$xs; ystr) as \$two
| if (\$one|length) > (\$two|length) then \$one else \$two end
end
end;```

Example:

```lcs("1234"; "1224533324"),
lcs("thisisatest"; "testing123testing")```

Output:

```# jq -n -f lcs-recursive.jq
"1234"
"tsitest"
```

## Julia

Works with: Julia version 0.6
```longest(a::String, b::String) = length(a) ≥ length(b) ? a : b

"""
julia> lcsrecursive("thisisatest", "testing123testing")
"tsitest"
"""
# Recursive
function lcsrecursive(xstr::String, ystr::String)
if length(xstr) == 0 || length(ystr) == 0
return ""
end

x, xs, y, ys = xstr[1], xstr[2:end], ystr[1], ystr[2:end]
if x == y
return string(x, lcsrecursive(xs, ys))
else
return longest(lcsrecursive(xstr, ys), lcsrecursive(xs, ystr))
end
end

# Dynamic
function lcsdynamic(a::String, b::String)
lengths = zeros(Int, length(a) + 1, length(b) + 1)

# row 0 and column 0 are initialized to 0 already
for (i, x) in enumerate(a), (j, y) in enumerate(b)
if x == y
lengths[i+1, j+1] = lengths[i, j] + 1
else
lengths[i+1, j+1] = max(lengths[i+1, j], lengths[i, j+1])
end
end

# read the substring out from the matrix
result = ""
x, y = length(a) + 1, length(b) + 1
while x > 1 && y > 1
if lengths[x, y] == lengths[x-1, y]
x -= 1
elseif lengths[x, y] == lengths[x, y-1]
y -= 1
else
@assert a[x-1] == b[y-1]
result = string(a[x-1], result)
x -= 1
y -= 1
end
end

return result
end

@show lcsrecursive("thisisatest", "testing123testing")
@time lcsrecursive("thisisatest", "testing123testing")
@show lcsdynamic("thisisatest", "testing123testing")
@time lcsdynamic("thisisatest", "testing123testing")
```
Output:
```lcsrecursive("thisisatest", "testing123testing") = "tsitest"
0.038153 seconds (537.77 k allocations: 16.415 MiB)
lcsdynamic("thisisatest", "testing123testing") = "tsitest"
0.000004 seconds (12 allocations: 2.141 KiB)```

## Kotlin

```// version 1.1.2

fun lcs(x: String, y: String): String {
if (x.length == 0 || y.length == 0) return ""
val x1 = x.dropLast(1)
val y1 = y.dropLast(1)
if (x.last() == y.last()) return lcs(x1, y1) + x.last()
val x2 = lcs(x, y1)
val y2 = lcs(x1, y)
return if (x2.length > y2.length) x2 else y2
}

fun main(args: Array<String>) {
val x = "thisisatest"
val y = "testing123testing"
println(lcs(x, y))
}
```
Output:
```tsitest
```

## Liberty BASIC

```'variation of BASIC example
w\$="aebdef"
z\$="cacbc"
print lcs\$(w\$,z\$)

'output:
'ab

wait

FUNCTION lcs\$(a\$, b\$)
IF LEN(a\$) = 0 OR LEN(b\$) = 0 THEN
lcs\$ = ""
exit function
end if

IF RIGHT\$(a\$, 1) = RIGHT\$(b\$, 1) THEN
lcs\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), LEFT\$(b\$, LEN(b\$) - 1)) + RIGHT\$(a\$, 1)
exit function
ELSE
x\$ = lcs\$(a\$, LEFT\$(b\$, LEN(b\$) - 1))
y\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), b\$)
IF LEN(x\$) > LEN(y\$) THEN
lcs\$ = x\$
exit function
ELSE
lcs\$ = y\$
exit function
END IF
END IF
END FUNCTION```

## Logo

This implementation works on both words and lists.

```to longest :s :t
output ifelse greater? count :s count :t [:s] [:t]
end
to lcs :s :t
if empty? :s [output :s]
if empty? :t [output :t]
if equal? first :s first :t [output combine  first :s  lcs bf :s bf :t]
output longest lcs :s bf :t  lcs bf :s :t
end```

## Lua

```function LCS( a, b )
if #a == 0 or #b == 0 then
return ""
elseif string.sub( a, -1, -1 ) == string.sub( b, -1, -1 ) then
return LCS( string.sub( a, 1, -2 ), string.sub( b, 1, -2 ) ) .. string.sub( a, -1, -1 )
else
local a_sub = LCS( a, string.sub( b, 1, -2 ) )
local b_sub = LCS( string.sub( a, 1, -2 ), b )

if #a_sub > #b_sub then
return a_sub
else
return b_sub
end
end
end

print( LCS( "thisisatest", "testing123testing" ) )
```

## M4

```define(`set2d',`define(`\$1[\$2][\$3]',`\$4')')
define(`get2d',`defn(\$1[\$2][\$3])')
define(`tryboth',
`pushdef(`x',lcs(`\$1',substr(`\$2',1),`\$1 \$2'))`'pushdef(`y',
lcs(substr(`\$1',1),`\$2',`\$1 \$2'))`'ifelse(eval(len(x)>len(y)),1,
`x',`y')`'popdef(`x')`'popdef(`y')')
define(`checkfirst',
`ifelse(substr(`\$1',0,1),substr(`\$2',0,1),
`substr(`\$1',0,1)`'lcs(substr(`\$1',1),substr(`\$2',1))',
`tryboth(`\$1',`\$2')')')
define(`lcs',
`ifelse(get2d(`c',`\$1',`\$2'),`',
`pushdef(`a',ifelse(
`\$1',`',`',
`\$2',`',`',
`checkfirst(`\$1',`\$2')'))`'a`'set2d(`c',`\$1',`\$2',a)`'popdef(`a')',
`get2d(`c',`\$1',`\$2')')')

lcs(`1234',`1224533324')

lcs(`thisisatest',`testing123testing')```

Note: the caching (set2d/get2d) obscures the code even more than usual, but is necessary in order to get the second test to run in a reasonable amount of time.

## Maple

```> StringTools:-LongestCommonSubSequence( "thisisatest", "testing123testing" );
"tsitest"```

## Mathematica /Wolfram Language

A built-in function can do this for us:

```a = "thisisatest";
b = "testing123testing";
LongestCommonSequence[a, b]
```

gives:

```tsitest
```

Note that Mathematica also has a built-in function called LongestCommonSubsequence[a,b]:

finds the longest contiguous subsequence of elements common to the strings or lists a and b.

which would give "test" as the result for LongestCommonSubsequence[a, b].

The description for LongestCommonSequence[a,b] is:

finds the longest sequence of contiguous or disjoint elements common to the strings or lists a and b.

I added this note because the name of this article suggests LongestCommonSubsequence does the job, however LongestCommonSequence performs the puzzle-description.

## Nim

### Recursion

Translation of: Python
```proc lcs(x, y: string): string =
if x == "" or y == "":
return ""

if x[0] == y[0]:
return x[0] & lcs(x[1..x.high], y[1..y.high])

let a = lcs(x, y[1..y.high])
let b = lcs(x[1..x.high], y)
result = if a.len > b.len: a else: b

echo lcs("1234", "1224533324")
echo lcs("thisisatest", "testing123testing")
```

This recursive version is not efficient but the execution time can be greatly improved by using memoization.

### Dynamic Programming

Translation of: Python
```proc lcs(a, b: string): string =
var ls = newSeq[seq[int]](a.len+1)
for i in 0 .. a.len:
ls[i].newSeq(b.len+1)

for i, x in a:
for j, y in b:
if x == y:
ls[i+1][j+1] = ls[i][j] + 1
else:
ls[i+1][j+1] = max(ls[i+1][j], ls[i][j+1])

result = ""
var x = a.len
var y = b.len
while x > 0 and y > 0:
if ls[x][y] == ls[x-1][y]:
dec x
elif ls[x][y] == ls[x][y-1]:
dec y
else:
assert a[x-1] == b[y-1]
result = a[x-1] & result
dec x
dec y

echo lcs("1234", "1224533324")
echo lcs("thisisatest", "testing123testing")
```

## OCaml

### Recursion

```let longest xs ys = if List.length xs > List.length ys then xs else ys

let rec lcs a b = match a, b with
[], _
| _, []        -> []
| x::xs, y::ys ->
if x = y then
x :: lcs xs ys
else
longest (lcs a ys) (lcs xs b)
```

### Memoized recursion

```let lcs xs ys =
let cache = Hashtbl.create 16 in
let rec lcs xs ys =
try Hashtbl.find cache (xs, ys) with
| Not_found ->
let result =
match xs, ys with
| [], _ -> []
| _, [] -> []
| x :: xs, y :: ys when x = y ->
x :: lcs xs ys
| _ :: xs_rest, _ :: ys_rest ->
let a = lcs xs_rest ys in
let b = lcs xs      ys_rest in
if (List.length a) > (List.length b) then a else b
in
result
in
lcs xs ys
```

### Dynamic programming

```let lcs xs' ys' =
let xs = Array.of_list xs'
and ys = Array.of_list ys' in
let n = Array.length xs
and m = Array.length ys in
let a = Array.make_matrix (n+1) (m+1) [] in
for i = n-1 downto 0 do
for j = m-1 downto 0 do
a.(i).(j) <- if xs.(i) = ys.(j) then
xs.(i) :: a.(i+1).(j+1)
else
longest a.(i).(j+1) a.(i+1).(j)
done
done;
a.(0).(0)
```

Because both solutions only work with lists, here are some functions to convert to and from strings:

```let list_of_string str =
let result = ref [] in
String.iter (fun x -> result := x :: !result)
str;
List.rev !result

let string_of_list lst =
let result = String.create (List.length lst) in
ignore (List.fold_left (fun i x -> result.[i] <- x; i+1) 0 lst);
result
```

Both solutions work. Example:

```# string_of_list (lcs (list_of_string "thisisatest")
(list_of_string "testing123testing"));;
- : string = "tsitest"
```

## Oz

Recursive solution:

```declare
fun {LCS Xs Ys}
case [Xs Ys]
of [nil _]                   then nil
[] [_ nil]                   then nil
[] [X|Xr  Y|Yr] andthen X==Y then X|{LCS Xr Yr}
[] [_|Xr  _|Yr]              then {Longest {LCS Xs Yr} {LCS Xr Ys}}
end
end

fun {Longest Xs Ys}
if {Length Xs} > {Length Ys} then Xs else Ys end
end
in
{System.showInfo {LCS "thisisatest" "testing123testing"}}```

## Pascal

Translation of: Fortran
```Program LongestCommonSubsequence(output);

function lcs(a, b: string): string;
var
x, y: string;
lenga, lengb: integer;
begin
lenga := length(a);
lengb := length(b);
lcs := '';
if (lenga >  0) and (lengb >  0) then
if a[lenga] =  b[lengb] then
lcs := lcs(copy(a, 1, lenga-1), copy(b, 1, lengb-1)) + a[lenga]
else
begin
x := lcs(a, copy(b, 1, lengb-1));
y := lcs(copy(a, 1, lenga-1), b);
if length(x) > length(y) then
lcs := x
else
lcs := y;
end;
end;

var
s1, s2: string;
begin
s1 := 'thisisatest';
s2 := 'testing123testing';
writeln (lcs(s1, s2));
s1 := '1234';
s2 := '1224533324';
writeln (lcs(s1, s2));
end.
```
Output:
```:> ./LongestCommonSequence
tsitest
1234
```

## PascalABC.NET

```function Lengths(x,y: string): array[,] of integer;
begin
var (m,n) := (x.Length,y.Length);
var C := new integer[m+1, n+1]; // filled with zeroes
for var i:=1 to m do
for var j:=1 to n do
if x[i] = y[j] then
C[i,j] := C[i-1,j-1] + 1
else C[i,j] := max(C[i,j-1], C[i-1,j]);
Result := C;
end;

function lcshelper(x,y: string; i,j: integer): string;
begin
var C := Lengths(x,y);
if (i = 0) or (j = 0) then
Result := ''
else if  X[i] = Y[j] then
Result := lcshelper(X, Y, i-1, j-1) + X[i]
else if C[i,j-1] > C[i-1,j] then
Result := lcshelper(X, Y, i, j-1)
else Result := lcshelper(X, Y, i-1, j)
end;

function lcs(x,y: string) := lcshelper(x,y,x.Length,y.Length);

begin
Println(lcs('1234','1224533324'));
Println(lcs('thisisatest','testing123testing'));
end.
```
Output:
```1234
tsitest
```

## Perl

```sub lcs {
my (\$a, \$b) = @_;
if (!length(\$a) || !length(\$b)) {
return "";
}
if (substr(\$a, 0, 1) eq substr(\$b, 0, 1)) {
return substr(\$a, 0, 1) . lcs(substr(\$a, 1), substr(\$b, 1));
}
my \$c = lcs(substr(\$a, 1), \$b) || "";
my \$d = lcs(\$a, substr(\$b, 1)) || "";
return length(\$c) > length(\$d) ? \$c : \$d;
}

print lcs("thisisatest", "testing123testing") . "\n";
```

### Alternate letting regex do all the work

```use strict;
use warnings;
use feature 'bitwise';

print "lcs is ", lcs('thisisatest', 'testing123testing'), "\n";

sub lcs
{
my (\$c, \$d) = @_;
for my \$len ( reverse 1 .. length(\$c &. \$d) )
{
"\$c\n\$d" =~ join '.*', ('(.)') x \$len, "\n", map "\\\$_", 1 .. \$len and
return join '', @{^CAPTURE};
}
return '';
}
```
Output:
`lcs is tastiest`

## Phix

If you want this to work with (utf8) Unicode text, just chuck the inputs through utf8_to_utf32() first (and the output through utf32_to_utf8()).

```with javascript_semantics
function lcs(sequence a, b)
sequence res = ""
if length(a) and length(b) then
if a[\$]=b[\$] then
res = lcs(a[1..-2],b[1..-2])&a[\$]
else
sequence l = lcs(a,b[1..-2]),
r = lcs(a[1..-2],b)
res = iff(length(l)>length(r)?l:r)
end if
end if
return res
end function

constant tests = {{"1234","1224533324"},
{"thisisatest","testing123testing"}}
for i=1 to length(tests) do
string {a,b} = tests[i]
?lcs(a,b)
end for
```
Output:
```"1234"
"tsitest"
```

### Alternate version

same output

```with javascript_semantics
function LCSLength(sequence X, sequence Y)
sequence C = repeat(repeat(0,length(Y)+1),length(X)+1)
for i=1 to length(X) do
for j=1 to length(Y) do
if X[i]=Y[j] then
C[i+1][j+1] := C[i][j]+1
else
C[i+1][j+1] := max(C[i+1][j], C[i][j+1])
end if
end for
end for
return C
end function

function backtrack(sequence C, sequence X, sequence Y, integer i, integer j)
if i=0 or j=0 then
return ""
elsif X[i]=Y[j] then
return backtrack(C, X, Y, i-1, j-1) & X[i]
else
if C[i+1][j]>C[i][j+1] then
return backtrack(C, X, Y, i, j-1)
else
return backtrack(C, X, Y, i-1, j)
end if
end if
end function

function lcs(sequence a, sequence b)
return backtrack(LCSLength(a,b),a,b,length(a),length(b))
end function

constant tests = {{"1234","1224533324"},
{"thisisatest","testing123testing"}}
for i=1 to length(tests) do
string {a,b} = tests[i]
?lcs(a,b)
end for
```

## Picat

### Wikipedia algorithm

With some added trickery for a 1-based language.

```lcs_wiki(X,Y) = V =>
[C, _Len] = lcs_length(X,Y),
V = backTrace(C,X,Y,X.length+1,Y.length+1).

lcs_length(X, Y) = V=>
M = X.length,
N = Y.length,
C = [[0 : J in 1..N+1]  : I in 1..N+1],
foreach(I in 2..M+1,J in 2..N+1)
if X[I-1] == Y[J-1] then
C[I,J] := C[I-1,J-1] + 1
else
C[I,J] := max([C[I,J-1], C[I-1,J]])
end
end,
V = [C, C[M+1,N+1]].

backTrace(C, X, Y, I, J) = V =>
if I == 1; J == 1 then
V = ""
elseif X[I-1] == Y[J-1] then
V = backTrace(C, X, Y, I-1, J-1) ++ [X[I-1]]
else
if C[I,J-1] > C[I-1,J] then
V = backTrace(C, X, Y, I, J-1)
else
V = backTrace(C, X, Y, I-1, J)
end
end.```

### Rule-based

Translation of: SETL
```table
lcs_rule(A, B) = "", (A == ""; B == "") => true.
lcs_rule(A, B) = [A[1]] ++ lcs_rule(butfirst(A), butfirst(B)), A[1] == B[1] => true.
lcs_rule(A, B) = longest(lcs_rule(butfirst(A), B), lcs_rule(A, butfirst(B))) => true.

% Return the longest string of A and B
longest(A, B) = cond(A.length > B.length, A, B).

% butfirst (everything except first element)
butfirst(A) = [A[I] : I in 2..A.length].```

### Test

```go =>
Tests = [["thisisatest","testing123testing"],
["XMJYAUZ", "MZJAWXU"],
["1234", "1224533324"],
["beginning-middle-ending","beginning-diddle-dum-ending"]
],
Funs = [lcs_wiki,lcs_rule],

foreach(Fun in Funs)
println(fun=Fun),
foreach(Test in Tests)
printf("%w : %w\n", Test, apply(Fun,Test[1],Test[2]))
end,
nl
end,

nl.```
Output:
```fun = lcs_wiki
[thisisatest,testing123testing] : tsitest
[XMJYAUZ,MZJAWXU] : MJAU
[1234,1224533324] : 1234
[beginning-middle-ending,beginning-diddle-dum-ending] : beginning-iddle-ending

fun = lcs_rule
[thisisatest,testing123testing] : tsitest
[XMJYAUZ,MZJAWXU] : MJAU
[1234,1224533324] : 1234
[beginning-middle-ending,beginning-diddle-dum-ending] : beginning-iddle-ending```

## PicoLisp

```(de commonSequences (A B)
(when A
(conc
(when (member (car A) B)
(mapcar '((L) (cons (car A) L))
(cons NIL (commonSequences (cdr A) (cdr @))) ) )
(commonSequences (cdr A) B) ) ) )

(maxi length
(commonSequences
(chop "thisisatest")
(chop "testing123testing") ) )```
Output:
`-> ("t" "s" "i" "t" "e" "s" "t")`

## PowerShell

Returns a sequence (array) of a type:

```function Get-Lcs (\$ReferenceObject, \$DifferenceObject)
{
\$longestCommonSubsequence = @()
\$x = \$ReferenceObject.Length
\$y = \$DifferenceObject.Length

\$lengths = New-Object -TypeName 'System.Object[,]' -ArgumentList (\$x + 1), (\$y + 1)

for(\$i = 0; \$i -lt \$x; \$i++)
{
for (\$j = 0; \$j -lt \$y; \$j++)
{
if (\$ReferenceObject[\$i] -ceq \$DifferenceObject[\$j])
{
\$lengths[(\$i+1),(\$j+1)] = \$lengths[\$i,\$j] + 1
}
else
{
\$lengths[(\$i+1),(\$j+1)] = [Math]::Max((\$lengths[(\$i+1),\$j]),(\$lengths[\$i,(\$j+1)]))
}
}
}

while ((\$x -ne 0) -and (\$y -ne 0))
{
if ( \$lengths[\$x,\$y] -eq \$lengths[(\$x-1),\$y])
{
--\$x
}
elseif (\$lengths[\$x,\$y] -eq \$lengths[\$x,(\$y-1)])
{
--\$y
}
else
{
if (\$ReferenceObject[(\$x-1)] -ceq \$DifferenceObject[(\$y-1)])
{
\$longestCommonSubsequence = ,(\$ReferenceObject[(\$x-1)]) + \$longestCommonSubsequence
}

--\$x
--\$y
}
}

\$longestCommonSubsequence
}
```

Returns the character array as a string:

```(Get-Lcs -ReferenceObject "thisisatest" -DifferenceObject "testing123testing") -join ""
```
Output:
```tsitest
```

Returns an array of integers:

```Get-Lcs -ReferenceObject @(1,2,3,4) -DifferenceObject @(1,2,2,4,5,3,3,3,2,4)
```
Output:
```1
2
3
4
```

Given two lists of objects, return the LCS of the ID property:

```\$list1

ID   X   Y
--   -   -
1 101 201
2 102 202
3 103 203
4 104 204
5 105 205
6 106 206
7 107 207
8 108 208
9 109 209

\$list2

ID   X   Y
--   -   -
1 101 201
3 103 203
5 105 205
7 107 207
9 109 209

Get-Lcs -ReferenceObject \$list1.ID -DifferenceObject \$list2.ID
```
Output:
```1
3
5
7
9
```

## Prolog

### Recursive Version

First version:

```test :-
time(lcs("thisisatest", "testing123testing", Lcs)),
writef('%s',[Lcs]).

lcs([ H|L1],[ H|L2],[H|Lcs]) :- !,
lcs(L1,L2,Lcs).

lcs([H1|L1],[H2|L2],Lcs):-
lcs(    L1 ,[H2|L2],Lcs1),
lcs([H1|L1],    L2 ,Lcs2),
longest(Lcs1,Lcs2,Lcs),!.

lcs(_,_,[]).

longest(L1,L2,Longest) :-
length(L1,Length1),
length(L2,Length2),
((Length1 > Length2) -> Longest = L1; Longest = L2).
```

Second version, with memoization:

```%declare that we will add lcs_db facts during runtime
:- dynamic lcs_db/3.

test :-
retractall(lcs_db(_,_,_)), %clear the database of known results
time(lcs("thisisatest", "testing123testing", Lcs)),
writef('%s',[Lcs]).

% check if the result is known
lcs(L1,L2,Lcs) :-
lcs_db(L1,L2,Lcs),!.

lcs([ H|L1],[ H|L2],[H|Lcs]) :- !,
lcs(L1,L2,Lcs).

lcs([H1|L1],[H2|L2],Lcs) :-
lcs(    L1 ,[H2|L2],Lcs1),
lcs([H1|L1],    L2 ,Lcs2),
longest(Lcs1,Lcs2,Lcs),!,
assert(lcs_db([H1|L1],[H2|L2],Lcs)).

lcs(_,_,[]).

longest(L1,L2,Longest) :-
length(L1,Length1),
length(L2,Length2),
((Length1 > Length2) -> Longest = L1; Longest = L2).
```
Demonstrating:

Example for "beginning-middle-ending" and "beginning-diddle-dum-ending"
First version :

```?- time(lcs("beginning-middle-ending","beginning-diddle-dum-ending", Lcs)),writef('%s', [Lcs]).
% 10,875,184 inferences, 1.840 CPU in 1.996 seconds (92% CPU, 5910426 Lips)
beginning-iddle-ending
```

Second version which is much faster :

```?- time(lcs("beginning-middle-ending","beginning-diddle-dum-ending", Lcs)),writef('%s', [Lcs]).
% 2,376 inferences, 0.010 CPU in 0.003 seconds (300% CPU, 237600 Lips)
beginning-iddle-ending
```

## PureBasic

Translation of: Basic
```Procedure.s lcs(a\$, b\$)
Protected x\$ , lcs\$
If Len(a\$) = 0 Or Len(b\$) = 0
lcs\$ = ""
ElseIf Right(a\$, 1) = Right(b\$, 1)
lcs\$ = lcs(Left(a\$, Len(a\$) - 1), Left(b\$, Len(b\$) - 1)) + Right(a\$, 1)
Else
x\$ = lcs(a\$, Left(b\$, Len(b\$) - 1))
y\$ = lcs(Left(a\$, Len(a\$) - 1), b\$)
If Len(x\$) > Len(y\$)
lcs\$ = x\$
Else
lcs\$ = y\$
EndIf
EndIf
ProcedureReturn lcs\$
EndProcedure
OpenConsole()
PrintN( lcs("thisisatest", "testing123testing"))
PrintN("Press any key to exit"): Repeat: Until Inkey() <> ""
```

## Python

The simplest way is to use LCS within mlpy package

### Recursion

This solution is similar to the Haskell one. It is slow.

```def lcs(xstr, ystr):
"""
>>> lcs('thisisatest', 'testing123testing')
'tsitest'
"""
if not xstr or not ystr:
return ""
x, xs, y, ys = xstr[0], xstr[1:], ystr[0], ystr[1:]
if x == y:
return str(lcs(xs, ys)) + x
else:
return max(lcs(xstr, ys), lcs(xs, ystr), key=len)
```

Test it:

```if __name__=="__main__":
import doctest; doctest.testmod()
```

### Dynamic Programming

```def lcs(a, b):
# generate matrix of length of longest common subsequence for substrings of both words
lengths = [[0] * (len(b)+1) for _ in range(len(a)+1)]
for i, x in enumerate(a):
for j, y in enumerate(b):
if x == y:
lengths[i+1][j+1] = lengths[i][j] + 1
else:
lengths[i+1][j+1] = max(lengths[i+1][j], lengths[i][j+1])

# read a substring from the matrix
result = ''
j = len(b)
for i in range(1, len(a)+1):
if lengths[i][j] != lengths[i-1][j]:
result += a[i-1]

return result
```

## Racket

```#lang racket
(define (longest xs ys)
(if (> (length xs) (length ys))
xs ys))

(define memo (make-hash))
(define (lookup xs ys)
(hash-ref memo (cons xs ys) #f))
(define (store xs ys r)
(hash-set! memo (cons xs ys) r)
r)

(define (lcs/list sx sy)
(or (lookup sx sy)
(store sx sy
(match* (sx sy)
[((cons x xs) (cons y ys))
(if (equal? x y)
(cons x (lcs/list xs ys))
(longest (lcs/list sx ys) (lcs/list xs sy)))]
[(_ _) '()]))))

(define (lcs sx sy)
(list->string (lcs/list (string->list sx) (string->list sy))))

(lcs "thisisatest" "testing123testing")
```
Output:
`"tsitest">`

## Raku

(formerly Perl 6)

### Recursion

Works with: rakudo version 2015-09-16

This solution is similar to the Haskell one. It is slow.

```say lcs("thisisatest", "testing123testing");sub lcs(Str \$xstr, Str \$ystr) {
return "" unless \$xstr && \$ystr;

my (\$x, \$xs, \$y, \$ys) = \$xstr.substr(0, 1), \$xstr.substr(1), \$ystr.substr(0, 1), \$ystr.substr(1);
return \$x eq \$y
?? \$x ~ lcs(\$xs, \$ys)
!! max(:by{ \$^a.chars }, lcs(\$xstr, \$ys), lcs(\$xs, \$ystr) );
}

say lcs("thisisatest", "testing123testing");
```

### Dynamic Programming

Translation of: Java
```sub lcs(Str \$xstr, Str \$ystr) {
my (\$xlen, \$ylen) = (\$xstr, \$ystr)>>.chars;
my @lengths = map {[(0) xx (\$ylen+1)]}, 0..\$xlen;

for \$xstr.comb.kv -> \$i, \$x {
for \$ystr.comb.kv -> \$j, \$y {
@lengths[\$i+1][\$j+1] = \$x eq \$y ?? @lengths[\$i][\$j]+1 !! (@lengths[\$i+1][\$j], @lengths[\$i][\$j+1]).max;
}
}

my @x = \$xstr.comb;
my (\$x, \$y) = (\$xlen, \$ylen);
my \$result = "";
while \$x != 0 && \$y != 0 {
if @lengths[\$x][\$y] == @lengths[\$x-1][\$y] {
\$x--;
}
elsif @lengths[\$x][\$y] == @lengths[\$x][\$y-1] {
\$y--;
}
else {
\$result = @x[\$x-1] ~ \$result;
\$x--;
\$y--;
}
}

return \$result;
}

say lcs("thisisatest", "testing123testing");
```

### Bit Vector

Bit parallel dynamic programming with nearly linear complexity O(n). It is fast.

```sub lcs(Str \$xstr, Str \$ystr) {
my (@a, @b) := (\$xstr, \$ystr)».comb;
my (%positions, @Vs, \$lcs);

for @a.kv -> \$i, \$x { %positions{\$x} +|= 1 +< (\$i % @a) }

my \$S = +^ 0;
for (0 ..^ @b) -> \$j {
my \$u = \$S +& (%positions{@b[\$j]} // 0);
@Vs[\$j] = \$S = (\$S + \$u) +| (\$S - \$u)
}

my (\$i, \$j) = @a-1, @b-1;
while (\$i ≥ 0 and \$j ≥ 0) {
unless (@Vs[\$j] +& (1 +< \$i)) {
\$lcs [R~]= @a[\$i] unless \$j and ^@Vs[\$j-1] +& (1 +< \$i);
\$j--
}
\$i--
}
\$lcs
}

say lcs("thisisatest", "testing123testing");
```

## ReasonML

```let longest = (xs, ys) =>
if (List.length(xs) > List.length(ys)) {
xs;
} else {
ys;
};

let rec lcs = (a, b) =>
switch (a, b) {
| ([], _)
| (_, []) => []
| ([x, ...xs], [y, ...ys]) =>
if (x == y) {
[x, ...lcs(xs, ys)];
} else {
longest(lcs(a, ys), lcs(xs, b));
}
};
```

## REXX

```/*REXX program tests the  LCS  (Longest Common Subsequence)  subroutine.                */
parse arg aaa bbb .                              /*obtain optional arguments from the CL*/
say 'string A ='     aaa                         /*echo the string   A   to the screen. */
say 'string B ='     bbb                         /*  "   "     "     B    "  "     "    */
say '     LCS ='     LCS(aaa, bbb)               /*tell the  Longest Common Sequence.   */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
LCS: procedure; parse arg a,b,z                  /*Longest Common Subsequence.          */
/*reduce recursions, removes the       */
/*chars in  A ¬ in B,   and vice─versa.*/
if z==''  then return LCS( LCS(a,b,0), LCS(b,a,0), 9)   /*Is Z null?   Do recurse. */
j= length(a)
if z==0 then do                             /*a special invocation:  shrink  Z.    */
do j=1  for j;                 _= substr(a, j, 1)
if pos(_, b)\==0  then z= z || _
end   /*j*/
return substr(z, 2)
end
k= length(b)
if j==0 | k==0  then return ''              /*Is either string null?    Bupkis.    */
_= substr(a, j, 1)
if _==substr(b, k, 1)  then return LCS( substr(a, 1, j - 1), substr(b, 1, k - 1), 9)_
x= LCS(a, substr(b, 1, k - 1), 9)
y= LCS(   substr(a, 1, j - 1), b, 9)
if length(x)>length(y)  then return x
return y
```
output   when using the input of:     1234   1224533324
```string A = 1234
string B = 1224533324
LCS = 1234
```
output   when using the input of:     thisisatest   testing123testing
```string A = thisisatest
string B = testing123testing
LCS = tsitest
```

## Ring

```see longest("1267834", "1224533324") + nl

func longest a, b
if a = "" or b = "" return "" ok
if right(a, 1) = right(b, 1)
lcs = longest(left(a, len(a) - 1), left(b, len(b) - 1)) + right(a, 1)
return lcs
else
x1 = longest(a, left(b, len(b) - 1))
x2 = longest(left(a, len(a) - 1), b)
if len(x1) > len(x2)
lcs = x1
return lcs
else
lcs = x2
return lcs ok ok```

Output:

```1234
```

## Ruby

### Recursion

This solution is similar to the Haskell one. It is slow (The time complexity is exponential.)

Works with: Ruby version 1.9
```=begin
irb(main):001:0> lcs('thisisatest', 'testing123testing')
=> "tsitest"
=end
def lcs(xstr, ystr)
return "" if xstr.empty? || ystr.empty?

x, xs, y, ys = xstr[0..0], xstr[1..-1], ystr[0..0], ystr[1..-1]
if x == y
x + lcs(xs, ys)
else
[lcs(xstr, ys), lcs(xs, ystr)].max_by {|x| x.size}
end
end
```

### Dynamic programming

Works with: Ruby version 1.9

Walker class for the LCS matrix:

```class LCS
SELF, LEFT, UP, DIAG = [0,0], [0,-1], [-1,0], [-1,-1]

def initialize(a, b)
@m = Array.new(a.length) { Array.new(b.length) }
a.each_char.with_index do |x, i|
b.each_char.with_index do |y, j|
match(x, y, i, j)
end
end
end

def match(c, d, i, j)
@i, @j = i, j
@m[i][j] = compute_entry(c, d)
end

def lookup(x, y)        [@i+x, @j+y]                      end
def valid?(i=@i, j=@j)  i >= 0 && j >= 0                  end

def peek(x, y)
i, j = lookup(x, y)
valid?(i, j) ? @m[i][j] : 0
end

def compute_entry(c, d)
c == d ? peek(*DIAG) + 1 : [peek(*LEFT), peek(*UP)].max
end

def backtrack
@i, @j = @m.length-1, @m[0].length-1
y = []
y << @i+1 if backstep? while valid?
y.reverse
end

def backtrack2
@i, @j = @m.length-1, @m[0].length-1
y = []
y << @j+1 if backstep? while valid?
[backtrack, y.reverse]
end

def backstep?
backstep = compute_backstep
@i, @j = lookup(*backstep)
backstep == DIAG
end

def compute_backstep
case peek(*SELF)
when peek(*LEFT) then LEFT
when peek(*UP)   then UP
else                  DIAG
end
end
end

def lcs(a, b)
walker = LCS.new(a, b)
walker.backtrack.map{|i| a[i]}.join
end

if \$0 == __FILE__
puts lcs('thisisatest', 'testing123testing')
puts lcs("rosettacode", "raisethysword")
end
```
Output:
```tsitest
rsetod
```

Referring to LCS here and here.

## Run BASIC

```a\$	= "aebdaef"
b\$	= "cacbac"
print lcs\$(a\$,b\$)
end

FUNCTION lcs\$(a\$, b\$)
IF a\$ = "" OR b\$ = "" THEN
lcs\$ = ""
goto [ext]
end if

IF RIGHT\$(a\$, 1) = RIGHT\$(b\$, 1) THEN
lcs\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), LEFT\$(b\$, LEN(b\$) - 1)) + RIGHT\$(a\$, 1)
goto [ext]
ELSE
x1\$ = lcs\$(a\$, LEFT\$(b\$, LEN(b\$) - 1))
x2\$ = lcs\$(LEFT\$(a\$, LEN(a\$) - 1), b\$)
IF LEN(x1\$) > LEN(x2\$) THEN
lcs\$ = x1\$
goto [ext]
ELSE
lcs\$ = x2\$
goto [ext]
END IF
END IF
[ext]
END FUNCTION```
`aba`

## Rust

Dynamic programming version:

```use std::cmp;

fn lcs(string1: String, string2: String) -> (usize, String){
let total_rows = string1.len() + 1;
let total_columns = string2.len() + 1;
// rust doesn't allow accessing string by index
let string1_chars = string1.as_bytes();
let string2_chars = string2.as_bytes();

let mut table = vec![vec![0; total_columns]; total_rows];

for row in 1..total_rows{
for col in 1..total_columns {
if string1_chars[row - 1] == string2_chars[col - 1]{
table[row][col] = table[row - 1][col - 1] + 1;
} else {
table[row][col] = cmp::max(table[row][col-1], table[row-1][col]);
}
}
}

let mut common_seq = Vec::new();
let mut x = total_rows - 1;
let mut y = total_columns - 1;

while x != 0 && y != 0 {
// Check element above is equal
if table[x][y] == table[x - 1][y] {
x = x - 1;
}
// check element to the left is equal
else if table[x][y] == table[x][y - 1] {
y = y - 1;
}
else {
// check the two element at the respective x,y position is same
assert_eq!(string1_chars[x-1], string2_chars[y-1]);
let char = string1_chars[x - 1];
common_seq.push(char);
x = x - 1;
y = y - 1;
}
}
common_seq.reverse();
(table[total_rows - 1][total_columns - 1], String::from_utf8(common_seq).unwrap())
}

fn main() {
let res = lcs("abcdaf".to_string(), "acbcf".to_string());
assert_eq!((4 as usize, "abcf".to_string()), res);
let res = lcs("thisisatest".to_string(), "testing123testing".to_string());
assert_eq!((7 as usize, "tsitest".to_string()), res);
// LCS for input Sequences “AGGTAB” and “GXTXAYB” is “GTAB” of length 4.
let res = lcs("AGGTAB".to_string(), "GXTXAYB".to_string());
assert_eq!((4 as usize, "GTAB".to_string()), res);
}
```

## Scala

Works with: Scala 2.13

Using lazily evaluated lists:

```  def lcsLazy[T](u: IndexedSeq[T], v: IndexedSeq[T]): IndexedSeq[T] = {
def su = subsets(u).to(LazyList)
def sv = subsets(v).to(LazyList)
case Some(sub) => sub
case None => IndexedSeq[T]()
}
}

def subsets[T](u: IndexedSeq[T]): Iterator[IndexedSeq[T]] = {
u.indices.reverseIterator.flatMap{n => u.indices.combinations(n + 1).map(_.map(u))}
}
```

Using recursion:

```  def lcsRec[T]: (IndexedSeq[T], IndexedSeq[T]) => IndexedSeq[T] = {
case (a +: as, b +: bs) if a == b => a +: lcsRec(as, bs)
case (as, bs) if as.isEmpty || bs.isEmpty => IndexedSeq[T]()
case (a +: as, b +: bs) =>
val (s1, s2) = (lcsRec(a +: as, bs), lcsRec(as, b +: bs))
if(s1.length > s2.length) s1 else s2
}```
Output:
```scala> lcsLazy("thisisatest", "testing123testing").mkString
res0: String = tsitest

scala> lcsRec("thisisatest", "testing123testing").mkString
res1: String = tsitest```
Works with: Scala 2.9.3

Recursive version:

```  def lcs[T]: (List[T], List[T]) => List[T] = {
case (_, Nil) => Nil
case (Nil, _) => Nil
case (x :: xs, y :: ys) if x == y => x :: lcs(xs, ys)
case (x :: xs, y :: ys)           => {
(lcs(x :: xs, ys), lcs(xs, y :: ys)) match {
case (xs, ys) if xs.length > ys.length => xs
case (xs, ys)                          => ys
}
}
}```

The dynamic programming version:

```  case class Memoized[A1, A2, B](f: (A1, A2) => B) extends ((A1, A2) => B) {
val cache = scala.collection.mutable.Map.empty[(A1, A2), B]
def apply(x: A1, y: A2) = cache.getOrElseUpdate((x, y), f(x, y))
}

lazy val lcsM: Memoized[List[Char], List[Char], List[Char]] = Memoized {
case (_, Nil) => Nil
case (Nil, _) => Nil
case (x :: xs, y :: ys) if x == y => x :: lcsM(xs, ys)
case (x :: xs, y :: ys)           => {
(lcsM(x :: xs, ys), lcsM(xs, y :: ys)) match {
case (xs, ys) if xs.length > ys.length => xs
case (xs, ys)                          => ys
}
}
}```
Output:
``` scala> lcsM("thisiaatest".toList, "testing123testing".toList).mkString
res0: String = tsitest
```

## Scheme

Port from Clojure.

```;; using srfi-69
(define (memoize proc)
(let ((results (make-hash-table)))
(lambda args
(or (hash-table-ref results args (lambda () #f))
(let ((r (apply proc args)))
(hash-table-set! results args r)
r)))))

(define (longest xs ys)
(if (> (length xs)
(length ys))
xs ys))

(define lcs
(memoize
(lambda (seqx seqy)
(if (pair? seqx)
(let ((x (car seqx))
(xs (cdr seqx)))
(if (pair? seqy)
(let ((y (car seqy))
(ys (cdr seqy)))
(if (equal? x y)
(cons x (lcs xs ys))
(longest (lcs seqx ys)
(lcs xs seqy))))
'()))
'()))))```

Testing:

```(test-group
"lcs"
(test '()  (lcs '(a b c) '(A B C)))
(test '(a) (lcs '(a a a) '(A A a)))
(test '()  (lcs '() '(a b c)))
(test '()  (lcs '(a b c) '()))
(test '(a c) (lcs '(a b c) '(a B c)))
(test '(b) (lcs '(a b c) '(A b C)))

(test     '(  b   d e f     g h   j)
(lcs '(a b   d e f     g h i j)
'(A b c d e f F a g h   j))))```

## Seed7

```\$ include "seed7_05.s7i";

const func string: lcs (in string: a, in string: b) is func
result
var string: lcs is "";
local
var string: x is "";
var string: y is "";
begin
if a <> "" and b <> "" then
if a[length(a)] = b[length(b)] then
lcs := lcs(a[.. pred(length(a))], b[.. pred(length(b))]) & str(a[length(a)]);
else
x := lcs(a, b[.. pred(length(b))]);
y := lcs(a[.. pred(length(a))], b);
if length(x) > length(y) then
lcs := x;
else
lcs := y;
end if;
end if;
end if;
end func;

const proc: main is func
begin
writeln(lcs("thisisatest", "testing123testing"));
writeln(lcs("1234", "1224533324"));
end func;```

Output:

```tsitest
1234
```

## SequenceL

Translation of: C#

It is interesting to note that x and y are computed in parallel, dividing work across threads repeatedly down through the recursion.

```import <Utilities/Sequence.sl>;

lcsBack(a(1), b(1)) :=
let
aSub := allButLast(a);
bSub := allButLast(b);

x := lcsBack(a, bSub);
y := lcsBack(aSub, b);
in
[] when size(a) = 0 or size(b) = 0
else
lcsBack(aSub, bSub) ++ [last(a)] when last(a) = last(b)
else
x when size(x) > size(y)
else
y;

main(args(2)) :=
lcsBack(args[1], args[2]) when size(args) >=2
else
lcsBack("thisisatest", "testing123testing");```
Output:
```"tsitest"
```

## SETL

Recursive; Also works on tuples (vectors)

```    op .longest(a, b);
return if #a > #b then a else b end;
end .longest;

procedure lcs(a, b);
if exists empty in {a, b} | #empty = 0 then
return empty;
elseif a(1) = b(1) then
return a(1) + lcs(a(2..), b(2..));
else
return lcs(a(2..), b) .longest lcs(a, b(2..));
end;
end lcs;```

## Sidef

```func lcs(xstr, ystr) is cached {

xstr.is_empty && return xstr
ystr.is_empty && return ystr

var(x, xs, y, ys) = (xstr.first(1), xstr.slice(1),
ystr.first(1), ystr.slice(1))

if (x == y) {
x + lcs(xs, ys)
} else {
[lcs(xstr, ys), lcs(xs, ystr)].max_by { .len }
}
}

say lcs("thisisatest", "testing123testing")```
Output:
```tsitest
```

## Slate

We define this on the Sequence type since there is nothing string-specific about the concept.

### Recursion

Translation of: Java
```s1@(Sequence traits) longestCommonSubsequenceWith: s2@(Sequence traits)
[
s1 isEmpty \/ s2 isEmpty ifTrue: [^ {}].
s1 last = s2 last
ifTrue: [(s1 allButLast longestCommonSubsequenceWith: s2 allButLast) copyWith: s1 last]
ifFalse: [| x y |
x: (s1 longestCommonSubsequenceWith: s2 allButLast).
y: (s1 allButLast longestCommonSubsequenceWith: s2).
x length > y length ifTrue: [x] ifFalse: [y]]
].```

### Dynamic Programming

Translation of: Ruby
```s1@(Sequence traits) longestCommonSubsequenceWith: s2@(Sequence traits)
[| lengths |
lengths: (ArrayMD newWithDimensions: {s1 length `cache. s2 length `cache} defaultElement: 0).
s1 doWithIndex: [| :elem1 :index1 |
s2 doWithIndex: [| :elem2 :index2 |
elem1 = elem2
ifTrue: [lengths at: {index1 + 1. index2 + 1} put: (lengths at: {index1. index2}) + 1]
ifFalse: [lengths at: {index1 + 1. index2 + 1} put:
((lengths at: {index1 + 1. index2}) max: (lengths at: {index1. index2 + 1}))]]].
([| :result index1 index2 |
index1: s1 length.
index2: s2 length.
[index1 isPositive /\ index2 isPositive]
whileTrue:
[(lengths at: {index1. index2}) = (lengths at: {index1 - 1. index2})
ifTrue: [index1: index1 - 1]
ifFalse: [(lengths at: {index1. index2}) = (lengths at: {index1. index2 - 1})]
ifTrue: [index2: index2 - 1]
ifFalse: ["assert: (s1 at: index1 - 1) = (s2 at: index2 - 1)."
result nextPut: (s1 at: index1 - 1).
index1: index1 - 1.
index2: index2 - 1]]
] writingAs: s1) reverse
].```

## Swift

Swift 5.1

### Recursion

```rlcs(_ s1: String, _ s2: String) -> String {
if s1.count == 0 || s2.count == 0 {
return ""
} else if s1[s1.index(s1.endIndex, offsetBy: -1)] == s2[s2.index(s2.endIndex, offsetBy: -1)] {
return rlcs(String(s1[s1.startIndex..<s1.index(s1.endIndex, offsetBy: -1)]),
String(s2[s2.startIndex..<s2.index(s2.endIndex, offsetBy: -1)])) + String(s1[s1.index(s1.endIndex, offsetBy: -1)])
} else {
let str1 = rlcs(s1, String(s2[s2.startIndex..<s2.index(s2.endIndex, offsetBy: -1)]))
let str2 = rlcs(String(s1[s1.startIndex..<s1.index(s1.endIndex, offsetBy: -1)]), s2)

return str1.count > str2.count ? str1 : str2
}
}```

### Dynamic Programming

```func lcs(_ s1: String, _ s2: String) -> String {
var lens = Array(
repeating:Array(repeating: 0, count: s2.count + 1),
count: s1.count + 1
)

for i in 0..<s1.count {
for j in 0..<s2.count {
if s1[s1.index(s1.startIndex, offsetBy: i)] == s2[s2.index(s2.startIndex, offsetBy: j)] {
lens[i + 1][j + 1] = lens[i][j] + 1
} else {
lens[i + 1][j + 1] = max(lens[i + 1][j], lens[i][j + 1])
}
}
}

var returnStr = ""
var x = s1.count
var y = s2.count
while x != 0 && y != 0 {
if lens[x][y] == lens[x - 1][y] {
x -= 1
} else if lens[x][y] == lens[x][y - 1] {
y -= 1
} else {
returnStr += String(s1[s1.index(s1.startIndex, offsetBy:  x - 1)])
x -= 1
y -= 1
}
}

return String(returnStr.reversed())
}```

## Tcl

### Recursive

Translation of: Java
```proc r_lcs {a b} {
if {\$a eq "" || \$b eq ""} {return ""}
set a_ [string range \$a 1 end]
set b_ [string range \$b 1 end]
if {[set c [string index \$a 0]] eq [string index \$b 0]} {
return "\$c[r_lcs \$a_ \$b_]"
} else {
set x [r_lcs \$a \$b_]
set y [r_lcs \$a_ \$b]
return [expr {[string length \$x] > [string length \$y] ? \$x :\$y}]
}
}```

### Dynamic

Translation of: Java
Works with: Tcl version 8.5
```package require Tcl 8.5
namespace import ::tcl::mathop::+
namespace import ::tcl::mathop::-
namespace import ::tcl::mathfunc::max

proc d_lcs {a b} {
set la [string length \$a]
set lb [string length \$b]
set lengths [lrepeat [+ \$la 1] [lrepeat [+ \$lb 1] 0]]

for {set i 0} {\$i < \$la} {incr i} {
for {set j 0} {\$j < \$lb} {incr j} {
if {[string index \$a \$i] eq [string index \$b \$j]} {
lset lengths [+ \$i 1] [+ \$j 1] [+ [lindex \$lengths \$i \$j] 1]
} else {
lset lengths [+ \$i 1] [+ \$j 1] [max [lindex \$lengths [+ \$i 1] \$j] [lindex \$lengths \$i [+ \$j 1]]]
}
}
}

set result ""
set x \$la
set y \$lb
while {\$x > 0 && \$y > 0} {
if {[lindex \$lengths \$x \$y] == [lindex \$lengths [- \$x 1] \$y]} {
incr x -1
} elseif {[lindex \$lengths \$x \$y] == [lindex \$lengths \$x [- \$y 1]]} {
incr y -1
} else {
if {[set c [string index \$a [- \$x 1]]] ne [string index \$b [- \$y 1]]} {
error "assertion failed: a.charAt(x-1) == b.charAt(y-1)"
}
append result \$c
incr x -1
incr y -1
}
}
return [string reverse \$result]
}```

### Performance Comparison

```% time {d_lcs thisisatest testing123testing} 10
637.5 microseconds per iteration
% time {r_lcs thisisatest testing123testing} 10
1275566.8 microseconds per iteration```

## Ursala

This uses the same recursive algorithm as in the Haskell example, and works on lists of any type.

```#import std

lcs = ~&alrB^& ~&E?abh/~&alh2fabt2RC @faltPrXlrtPXXPW leql?/~&r ~&l```

test program:

```#cast %s

example = lcs('thisisatest','testing123testing')```
Output:
`'tsitest'`

## Wren

Translation of: Kotlin
```var lcs // recursive
lcs = Fn.new { |x, y|
if (x.count == 0 || y.count == 0) return ""
var x1 = x[0...-1]
var y1 = y[0...-1]
if (x[-1] == y[-1]) return lcs.call(x1, y1) + x[-1]
var x2 = lcs.call(x, y1)
var y2 = lcs.call(x1, y)
return (x2.count > y2.count) ? x2 : y2
}

var x = "thisisatest"
var y = "testing123testing"
System.print(lcs.call(x, y))```
Output:
```tsitest
```

## zkl

This is quite vile in terms of [time] efficiency, another algorithm should be used for real work.

Translation of: D
```fcn lcs(a,b){
if(not a or not b) return("");
if (a[0]==b[0]) return(a[0] + self.fcn(a[1,*],b[1,*]));
return(fcn(x,y){if(x.len()>y.len())x else y}(lcs(a,b[1,*]),lcs(a[1,*],b)))
}```

The last line looks strange but it is just return(lambda longest(lcs.lcs))

Output:
```zkl: lcs("thisisatest", "testing123testing")
tsitest
```