Brace expansion using ranges
Write and test a function which expands one or more Unix-style numeric and alphabetic range braces embedded in a larger string.
The brace strings used by Unix shells permit expansion of both:
- Recursive comma-separated lists (covered by the related task: Brace_expansion, and can be ignored here)
- ordered numeric and alphabetic ranges, which are the object of this task.
The general pattern of brace ranges is:
{<START>..<END>}
and, in more recent shells:
{<START>..<END>..<INCR>}
(See https://wiki.bash-hackers.org/syntax/expansion/brace)
Expandable ranges of this kind can be ascending or descending:
simpleNumber{1..3}.txt simpleAlpha-{Z..X}.txt
and may have a third INCR element specifying ordinal intervals larger than one. The increment value can be preceded by a - minus sign, but not by a + sign.
The effect of the minus sign is to always to reverse the natural order suggested by the START and END values.
Any level of zero-padding used in either the START or END value of a numeric range is adopted in the expansions.
steppedDownAndPadded-{10..00..5}.txt minusSignFlipsSequence {030..20..-5}.txt
A single string may contain more than one expansion range:
combined-{Q..P}{2..1}.txt
Alphabetic range values are limited to a single character for START and END but these characters are not confined to the ASCII alphabet.
emoji{🌵..🌶}{🌽..🌾}etc
Unmatched braces are simply ignored, as are empty braces, and braces which contain no range (or list).
li{teral rangeless{}empty rangeless{random}string
Generate and display here the expansion of (at least) each of the nine example lines shown above.
The JavaScript implementation below uses parser combinators, aiming to encode a more or less full and legible description of the<PREAMBLE><AMBLE><POSTSCRIPT>range brace grammar, but you should use any resource that suggests itself in your language, including parser libraries.
(The grammar of range expansion, unlike that of nested list expansion, is not recursive, so even regular expressions should prove serviceable here).
The output of the JS implementation, which aims to match the brace expansion behaviour of the default zsh shell on macOS Catalina is:
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt -> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral -> li{teral rangeless{}empty -> rangeless{}empty rangeless{random}string -> rangeless{random}string
- Metrics
- Counting
- Word frequency
- Letter frequency
- Jewels and stones
- I before E except after C
- Bioinformatics/base count
- Count occurrences of a substring
- Remove/replace
- XXXX redacted
- Remove vowels from a string
- Strip block comments
- Strip comments from a string
- Strip a set of characters from a string
- Strip whitespace from a string -- top and tail
- Strip control codes and extended characters from a string
- Anagrams/Derangements/shuffling
- Word wheel
- ABC problem
- Anagrams
- Anagrams/Deranged anagrams
- Permutations/Derangements
- Superpermutation minimisation
- Sattolo cycle
- Knuth shuffle
- Ordered words
- Textonyms (using a phone text pad)
- Find/Search/Determine
- ABC words
- Odd words
- Semordnilap
- String matching
- Alternade words
- Changeable words
- String comparison
- Extract file extension
- Levenshtein distance
- Palindrome detection
- Compare a list of strings
- Longest common prefix
- Longest common suffix
- Longest common substring
- Find common directory path
- Words from neighbour ones
- Change e letters to i in words
- Non-continuous subsequences
- Longest common subsequence
- Longest palindromic substrings
- Longest increasing subsequence
- Words containing "the" substring
- Determine if a string is numeric
- Determine if a string is collapsible
- Determine if a string is squeezable
- Determine if a string has all unique characters
- Determine if a string has all the same characters
- Find words which contains all the vowels
- Find words which contains most consonants
- Find words which contains more than 3 vowels
- Find words which first and last three letters are equals
- Find words which odd letters are consonants and even letters are vowels or vice_versa
- Formatting
- String case
- Align columns
- Literals/String
- Repeat a string
- Brace expansion
- Brace expansion using ranges
- Reverse a string
- Phrase reversals
- Comma quibbling
- Special characters
- String concatenation
- Substring/Top and tail
- Commatizing numbers
- Reverse words in a string
- Suffixation of decimal numbers
- Long literals, with continuations
- Numerical and alphabetical suffixes
- Abbreviations, easy
- Abbreviations, simple
- Abbreviations, automatic
- Song lyrics/poems/Mad Libs/phrases
- 99 Bottles of Beer
- The Twelve Days of Christmas
- The Old lady swallowed a fly
- The Name Game (a song)
- Magic 8-ball
- Mad Libs
- Tokenize
- Word break problem
- Tokenize a string
- Tokenize a string with escaping
- Split a character string based on change of character
- Sequences
Go[edit]
package main
import (
"fmt"
"strconv"
"strings"
"unicode/utf8"
)
func parseRange(r string) []string {
if r == "" {
return []string{"{}"} // rangeless, empty
}
sp := strings.Split(r, "..")
if len(sp) == 1 {
return []string{"{" + r + "}"} // rangeless, random value
}
sta := sp[0]
end := sp[1]
inc := "1"
if len(sp) > 2 {
inc = sp[2]
}
n1, ok1 := strconv.Atoi(sta)
n2, ok2 := strconv.Atoi(end)
n3, ok3 := strconv.Atoi(inc)
if ok3 != nil {
return []string{"{" + r + "}"} // increment isn't a number
}
numeric := (ok1 == nil) && (ok2 == nil)
if !numeric {
if (ok1 == nil && ok2 != nil) || (ok1 != nil && ok2 == nil) {
return []string{"{" + r + "}"} // mixed numeric/alpha not expanded
}
if utf8.RuneCountInString(sta) != 1 || utf8.RuneCountInString(end) != 1 {
return []string{"{" + r + "}"} // start/end are not both single alpha
}
n1 = int(([]rune(sta))[0])
n2 = int(([]rune(end))[0])
}
width := 1
if numeric {
if len(sta) < len(end) {
width = len(end)
} else {
width = len(sta)
}
}
if n3 == 0 { // zero increment
if numeric {
return []string{fmt.Sprintf("%0*d", width, n1)}
} else {
return []string{sta}
}
}
var res []string
asc := n1 < n2
if n3 < 0 {
asc = !asc
n1, n2 = n2, n1
n3 = -n3
}
i := n1
if asc {
for ; i <= n2; i += n3 {
if numeric {
res = append(res, fmt.Sprintf("%0*d", width, i))
} else {
res = append(res, string(rune(i)))
}
}
} else {
for ; i >= n2; i -= n3 {
if numeric {
res = append(res, fmt.Sprintf("%0*d", width, i))
} else {
res = append(res, string(rune(i)))
}
}
}
return res
}
func rangeExpand(s string) []string {
res := []string{""}
rng := ""
inRng := false
for _, c := range s {
if c == '{' && !inRng {
inRng = true
rng = ""
} else if c == '}' && inRng {
rngRes := parseRange(rng)
rngLen := len(rngRes)
var res2 []string
for i := 0; i < len(res); i++ {
for j := 0; j < rngLen; j++ {
res2 = append(res2, res[i]+rngRes[j])
}
}
res = res2
inRng = false
} else if inRng {
rng += string(c)
} else {
for i := 0; i < len(res); i++ {
res[i] += string(c)
}
}
}
if inRng {
for i := 0; i < len(res); i++ {
res[i] += "{" + rng // unmatched braces
}
}
return res
}
func main() {
examples := []string{
"simpleNumberRising{1..3}.txt",
"simpleAlphaDescending-{Z..X}.txt",
"steppedDownAndPadded-{10..00..5}.txt",
"minusSignFlipsSequence {030..20..-5}.txt",
"combined-{Q..P}{2..1}.txt",
"emoji{🌵..🌶}{🌽..🌾}etc",
"li{teral",
"rangeless{}empty",
"rangeless{random}string",
"mixedNumberAlpha{5..k}",
"steppedAlphaRising{P..Z..2}.txt",
"stops after endpoint-{02..10..3}.txt",
}
for _, s := range examples {
fmt.Print(s, "->\n ")
res := rangeExpand(s)
fmt.Println(strings.Join(res, "\n "))
fmt.Println()
}
}
- Output:
Same as Wren entry.
JavaScript[edit]
(() => {
'use strict';
// --------------- BRACE-RANGE EXPANSION ---------------
// braceExpandWithRange :: String -> [String]
const braceExpandWithRange = s => {
// A list containing either the expansions
// of s, if there are any, or s itself.
const
expansions = parse(some(
braceRangeExpansion()
))(s);
return 0 < expansions.length ? (() => {
const [parsed, residue] = Array.from(
expansions[0]
);
return suffixAdd(
parsed.reduce(
uncurry(suffixMultiply),
['']
)
)([residue.join('')])
})() : [s];
};
// ----------- BRACE-RANGE EXPANSION PARSER ------------
// braceRangeExpansion :: [String]
const braceRangeExpansion = () =>
// List of strings expanded from a
// a unix shell {<START>..<END>} or
// {<START>..<END>..<INCR>} expression.
// See https://wiki.bash-hackers.org/syntax/expansion/brace
fmapP(([preamble, amble, postscript]) =>
suffixAdd(
suffixMultiply(preamble)(amble)
)(postscript)
)(sequenceP([
affixLeaf(),
fmapP(xs => [xs])(
between(char('{'))(char('}'))(
altP(
numericSequence()
)(
characterSequence()
)
)
),
affixLeaf()
]));
// ----------------------- TESTS -----------------------
// main :: IO ()
const main = () => {
const tests = [
'simpleNumberRising{1..3}.txt',
'simpleAlphaDescending-{Z..X}.txt',
'steppedDownAndPadded-{10..00..5}.txt',
'minusSignFlipsSequence {030..20..-5}.txt',
'combined-{Q..P}{2..1}.txt',
'emoji{🌵..🌶}{🌽..🌾}etc',
'li{teral',
'rangeless{}empty',
'rangeless{random}string'
];
return tests.map(
s => s + ' -> ' + '\n\t' + (
braceExpandWithRange(s).join('\n\t')
)
).join('\n\n');
};
// ----------- BRACE-RANGE COMPONENT PARSERS -----------
// affixLeaf :: () -> Parser String
const affixLeaf = () =>
// A sequence of literal (non-syntactic)
// characters before or after a pair of braces.
fmapP(cs => [
[cs.join('')]
])(
many(choice([noneOf('{\\'), escape()]))
);
// characterSequence :: () -> Parser [Char]
const characterSequence = () =>
// A rising or descending alphabetic
// sequence of characters.
fmapP(ab => {
const [from, to] = ab;
return from !== to ? (
enumFromThenToChar(from)(
(from < to ? succ : pred)(from)
)(to)
) : [from];
})(
ordinalRange(satisfy(
c => !'0123456789'.includes(c)
))
);
// enumerationList :: ((Bool, String), String) ->
// ((Bool, String), String) ->
// ((Bool, String), String) -> [String]
const enumerationList = triple => {
// An ordered list of numeric strings either
// rising or descending, in numeric order, and
// possibly prefixed with zeros.
const
w = padWidth(triple[0][1])(triple[1][1]),
[from, to, by] = triple.map(
sn => (sn[0] ? negate : identity)(
parseInt(sn[1])
)
);
return map(
compose(justifyRight(w)('0'), str)
)(
0 > by ? (
enumFromThenTo(to)(to - by)(from)
) : enumFromThenTo(from)(
from + (to >= from ? by : -by)
)(to)
);
};
// numericPart :: () -> Parser (Bool, String)
const numericPart = () =>
// The Bool is True if the string is
// negated by a leading '-'
// The String component contains the digits.
bindP(
option('')(char('-'))
)(sign => bindP(
some(digit())
)(ds => pureP(
Tuple(Boolean(sign))(concat(ds))
)));
// numericSequence :: () -> Parser [String]
const numericSequence = () =>
// An ascending or descending sequence
// of numeric strings, possibly
// left-padded with zeros.
fmapP(enumerationList)(sequenceP([
ordinalRange(numericPart()),
numericStep()
]));
// numericStep :: () -> Parser (Bool, Int)
const numericStep = () =>
// The size of increment for a numeric
// series. Descending if the Bool is True.
// Defaults to (False, 1).
option(Tuple(false)(1))(
bindP(
string('..')
)(_ => bindP(
numericPart()
)(pureP))
);
// ordinalRange :: Enum a =>
// Parser a -> Parser (a, a)
const ordinalRange = p =>
// A pair of enumerable values of the same
// type, representing the start and end of
// a range.
bindP(
p
)(from => bindP(
string('..')
)(_ => bindP(
p
)(compose(pureP, append([from])))));
// padWidth :: String -> String -> Int
const padWidth = cs =>
// The length of the first of cs and cs1 to
// start with a zero. Otherwise (if neither
// starts with a zero) then 0.
cs1 => [cs, cs1].reduce(
(a, x) => (0 < a) || (1 > x.length) ? (
a
) : '0' !== x[0] ? a : x.length,
0
);
// suffixAdd :: [String] -> [String] -> [String]
const suffixAdd = xs =>
ys => xs.flatMap(
flip(append)(ys)
);
// suffixMultiply :: [String] -> [String] -> [String]
const suffixMultiply = xs =>
apList(xs.map(append));
// ------------ GENERIC PARSER COMBINATORS -------------
// Parser :: String -> [(a, String)] -> Parser a
const Parser = f =>
// A function lifted into a Parser object.
({
type: 'Parser',
parser: f
});
// altP (<|>) :: Parser a -> Parser a -> Parser a
const altP = p =>
// p, or q if p doesn't match.
q => Parser(s => {
const xs = parse(p)(s);
return 0 < xs.length ? (
xs
) : parse(q)(s);
});
// apP <*> :: Parser (a -> b) -> Parser a -> Parser b
const apP = pf =>
// A new parser obtained by the application
// of a Parser-wrapped function,
// to a Parser-wrapped value.
p => Parser(
s => parse(pf)(s).flatMap(
vr => parse(
fmapP(vr[0])(p)
)(vr[1])
)
);
// between :: Parser open -> Parser close ->
// Parser a -> Parser a
const between = pOpen =>
// A version of p which matches between
// pOpen and pClose (both discarded).
pClose => p => bindP(
pOpen
)(_ => bindP(
p
)(x => bindP(
pClose
)(_ => pureP(x))));
// bindP (>>=) :: Parser a ->
// (a -> Parser b) -> Parser b
const bindP = p =>
// A new parser obtained by the application of
// a function to a Parser-wrapped value.
// The function must enrich its output, lifting it
// into a new Parser.
// Allows for the nesting of parsers.
f => Parser(
s => parse(p)(s).flatMap(
tpl => parse(f(tpl[0]))(tpl[1])
)
);
// char :: Char -> Parser Char
const char = x =>
// A particular single character.
satisfy(c => x == c);
// choice :: [Parser a] -> Parser a
const choice = ps =>
// A parser constructed from a
// (left to right) list of alternatives.
ps.reduce(uncurry(altP), emptyP());
// digit :: Parser Char
const digit = () =>
// A single digit.
satisfy(isDigit);
// emptyP :: () -> Parser a
const emptyP = () =>
// The empty list.
Parser(_ => []);
// escape :: Parser String
const escape = () =>
fmapP(xs => xs.join(''))(
sequenceP([char('\\'), item()])
);
// fmapP :: (a -> b) -> Parser a -> Parser b
const fmapP = f =>
// A new parser derived by the structure-preserving
// application of f to the value in p.
p => Parser(
s => parse(p)(s).flatMap(
vr => Tuple(f(vr[0]))(vr[1])
)
);
// item :: () -> Parser Char
const item = () =>
// A single character.
Parser(
s => 0 < s.length ? [
Tuple(s[0])(
s.slice(1)
)
] : []
);
// liftA2P :: (a -> b -> c) ->
// Parser a -> Parser b -> Parser c
const liftA2P = op =>
// The binary function op, lifted
// to a function over two parsers.
p => apP(fmapP(op)(p));
// many :: Parser a -> Parser [a]
const many = p => {
// Zero or more instances of p.
// Lifts a parser for a simple type of value
// to a parser for a list of such values.
const some_p = p =>
liftA2P(
x => xs => [x].concat(xs)
)(p)(many(p));
return Parser(
s => parse(
0 < s.length ? (
altP(some_p(p))(pureP([]))
) : pureP([])
)(s)
);
};
// noneOf :: String -> Parser Char
const noneOf = s =>
// Any character not found in the
// exclusion string.
satisfy(c => !s.includes(c));
// option :: a -> Parser a -> Parser a
const option = x =>
// Either p or the default value x.
p => altP(p)(pureP(x));
// parse :: Parser a -> String -> [(a, String)]
const parse = p =>
// The result of parsing s with p.
s => {
//showLog('s', s)
return p.parser([...s]);
};
// pureP :: a -> Parser a
const pureP = x =>
// The value x lifted, unchanged,
// into the Parser monad.
Parser(s => [Tuple(x)(s)]);
// satisfy :: (Char -> Bool) -> Parser Char
const satisfy = test =>
// Any character for which the
// given predicate returns true.
Parser(
s => 0 < s.length ? (
test(s[0]) ? [
Tuple(s[0])(s.slice(1))
] : []
) : []
);
// sepBy1 :: Parser a -> Parser b -> Parser [a]
const sepBy1 = p =>
// One or more occurrences of p, as
// separated by (discarded) instances of sep.
sep => bindP(
p
)(x => bindP(
many(bindP(
sep
)(_ => bindP(
p
)(pureP))))(
xs => pureP([x].concat(xs))));
// sequenceP :: [Parser a] -> Parser [a]
const sequenceP = ps =>
// A single parser for a list of values, derived
// from a list of parsers for single values.
Parser(
s => ps.reduce(
(a, q) => a.flatMap(
vr => parse(q)(snd(vr)).flatMap(
first(xs => fst(vr).concat(xs))
)
),
[Tuple([])(s)]
)
);
// some :: Parser a -> Parser [a]
const some = p => {
// One or more instances of p.
// Lifts a parser for a simple type of value
// to a parser for a list of such values.
const many_p = p =>
altP(some(p))(pureP([]));
return Parser(
s => parse(
liftA2P(
x => xs => [x].concat(xs)
)(p)(many_p(p))
)(s)
);
};
// string :: String -> Parser String
const string = s =>
// A particular string.
fmapP(cs => cs.join(''))(
sequenceP([...s].map(char))
);
// ----------------- GENERAL FUNCTIONS -----------------
// Tuple (,) :: a -> b -> (a, b)
const Tuple = a =>
b => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// apList (<*>) :: [(a -> b)] -> [a] -> [b]
const apList = fs =>
// The sequential application of each of a list
// of functions to each of a list of values.
// apList([x => 2 * x, x => 20 + x])([1, 2, 3])
// -> [2, 4, 6, 21, 22, 23]
xs => fs.flatMap(f => xs.map(f));
// append (++) :: [a] -> [a] -> [a]
const append = xs =>
// A list obtained by the
// concatenation of two others.
ys => xs.concat(ys);
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs => (
ys => 0 < ys.length ? (
ys.every(Array.isArray) ? (
[]
) : ''
).concat(...ys) : ys
)(list(xs));
// enumFromThenTo :: Int -> Int -> Int -> [Int]
const enumFromThenTo = x1 =>
x2 => y => {
const d = x2 - x1;
return Array.from({
length: Math.floor(y - x2) / d + 2
}, (_, i) => x1 + (d * i));
};
// enumFromThenToChar :: Char -> Char -> Char -> [Char]
const enumFromThenToChar = x1 =>
x2 => y => {
const [i1, i2, iY] = Array.from([x1, x2, y])
.map(x => x.codePointAt(0)),
d = i2 - i1;
return Array.from({
length: (Math.floor(iY - i2) / d) + 2
}, (_, i) => String.fromCodePoint(i1 + (d * i)));
};
// first :: (a -> b) -> ((a, c) -> (b, c))
const first = f =>
// A simple function lifted to one which applies
// to a tuple, transforming only its first item.
xy => Tuple(f(xy[0]))(
xy[1]
);
// flip :: (a -> b -> c) -> b -> a -> c
const flip = op =>
// The binary function op with
// its arguments reversed.
1 < op.length ? (
(a, b) => op(b, a)
) : (x => y => op(y)(x));
// fst :: (a, b) -> a
const fst = tpl =>
// First member of a pair.
tpl[0];
// fromEnum :: Enum a => a -> Int
const fromEnum = x =>
typeof x !== 'string' ? (
x.constructor === Object ? (
x.value
) : parseInt(Number(x))
) : x.codePointAt(0);
// identity :: a -> a
const identity = x =>
// The identity function. (`id`, in Haskell)
x;
// isAlpha :: Char -> Bool
const isAlpha = c =>
/[A-Za-z\u00C0-\u00FF]/.test(c);
// isDigit :: Char -> Bool
const isDigit = c => {
const n = c.codePointAt(0);
return 48 <= n && 57 >= n;
};
// justifyRight :: Int -> Char -> String -> String
const justifyRight = n =>
// The string s, preceded by enough padding (with
// the character c) to reach the string length n.
c => s => n > s.length ? (
s.padStart(n, c)
) : s;
// list :: StringOrArrayLike b => b -> [a]
const list = xs =>
// xs itself, if it is an Array,
// or an Array derived from xs.
Array.isArray(xs) ? (
xs
) : Array.from(xs || []);
// map :: (a -> b) -> [a] -> [b]
const map = f =>
// The list obtained by applying f
// to each element of xs.
// (The image of xs under f).
xs => [...xs].map(f);
// maxBound :: a -> a
const maxBound = x => {
const e = x.enum;
return Boolean(e) ? (
e[e[x.max]]
) : {
'number': Number.MAX_SAFE_INTEGER,
'string': String.fromCodePoint(0x10FFFF),
'boolean': true
} [typeof x];
};
// minBound :: a -> a
const minBound = x => {
const e = x.enum;
return Boolean(e) ? (
e[e[0]]
) : {
'number': Number.MIN_SAFE_INTEGER,
'string': String.fromCodePoint(0),
'boolean': false
} [typeof x];
};
// negate :: Num -> Num
const negate = n =>
-n;
// pred :: Enum a => a -> a
const pred = x => {
const t = typeof x;
return 'number' !== t ? (() => {
const [i, mn] = [x, minBound(x)].map(fromEnum);
return i > mn ? (
toEnum(x)(i - 1)
) : Error('succ :: enum out of range.');
})() : x > Number.MIN_SAFE_INTEGER ? (
x - 1
) : Error('succ :: Num out of range.');
};
// showLog :: a -> IO ()
const showLog = (...args) =>
console.log(
args
.map(JSON.stringify)
.join(' -> ')
);
// snd :: (a, b) -> b
const snd = tpl =>
// Second member of a pair.
tpl[1];
// str :: a -> String
const str = x =>
Array.isArray(x) && x.every(
v => ('string' === typeof v) && (1 === v.length)
) ? (
x.join('')
) : x.toString();
// succ :: Enum a => a -> a
const succ = x => {
const t = typeof x;
return 'number' !== t ? (() => {
const [i, mx] = [x, maxBound(x)].map(fromEnum);
return i < mx ? (
toEnum(x)(1 + i)
) : Error('succ :: enum out of range.')
})() : x < Number.MAX_SAFE_INTEGER ? (
1 + x
) : Error('succ :: Num out of range.')
};
// toEnum :: a -> Int -> a
const toEnum = e =>
// The first argument is a sample of the type
// allowing the function to make the right mapping
x => ({
'number': Number,
'string': String.fromCodePoint,
'boolean': Boolean,
'object': v => e.min + v
} [typeof e])(x);
// uncurry :: (a -> b -> c) -> ((a, b) -> c)
const uncurry = f =>
// A function over a pair, derived
// from a curried function.
function () {
const
args = arguments,
xy = Boolean(args.length % 2) ? (
args[0]
) : args;
return f(xy[0])(xy[1]);
};
// MAIN ---
return main();
})();
- Output:
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt -> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral -> li{teral rangeless{}empty -> rangeless{}empty rangeless{random}string -> rangeless{random}string
Julia[edit]
padzeros(str) = (len = length(str)) > 1 && str[1] == '0' ? len : 0
function ranged(str)
rang = filter(!isempty, split(str, r"\{|\}|\.\."))
delta = length(rang) > 2 ? parse(Int, rang[3]) : 1
if delta < 0
rang[1], rang[2], delta = rang[2], rang[1], -delta
end
if '0' <= rang[1][1] <= '9' || rang[1][1] == '-'
try x, y = parse(Int, rang[1]), parse(Int, rang[2]) catch; return [str] end
pad = max(padzeros(rang[1]), padzeros(rang[2]))
return [string(x, pad=pad) for x in range(x, step=(x < y) ? delta : -delta, stop=y)]
else
x, y, z = rang[1][end], rang[2][end], rang[1][1:end-1]
return [z * string(x) for x in range(x, step=(x < y) ? delta : -delta, stop=y)]
end
end
function splatrange(s)
m = match(r"([^\{]*)(\{[^}]+\.\.[^\}]+\})(.*)", s)
m == nothing && return [s]
c = m.captures
return vec([a * b for b in splatrange(c[3]), a in [c[1] * x for x in ranged(c[2])]])
end
for test in [
"simpleNumberRising{1..3}.txt",
"simpleAlphaDescending-{Z..X}.txt",
"steppedDownAndPadded-{10..00..5}.txt",
"minusSignFlipsSequence {030..20..-5}.txt",
"combined-{Q..P}{2..1}.txt",
"emoji{🌵..🌶}{🌽..🌾}etc",
"li{teral",
"rangeless{}empty",
"rangeless{random}string",
"mixedNumberAlpha{5..k}",
"steppedAlphaRising{P..Z..2}.txt",
"stops after endpoint-{02..10..3}.txt",
]
println(test, "->\n", [" " * x * "\n" for x in splatrange(test)]...)
end
- Output:
simpleNumberRising{1..3}.txt-> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt-> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt-> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt-> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt-> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc-> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral-> li{teral rangeless{}empty-> rangeless{}empty rangeless{random}string-> rangeless{random}string mixedNumberAlpha{5..k}-> mixedNumberAlpha{5..k} steppedAlphaRising{P..Z..2}.txt-> steppedAlphaRisingP.txt steppedAlphaRisingR.txt steppedAlphaRisingT.txt steppedAlphaRisingV.txt steppedAlphaRisingX.txt steppedAlphaRisingZ.txt stops after endpoint-{02..10..3}.txt-> stops after endpoint-02.txt stops after endpoint-05.txt stops after endpoint-08.txt
Phix[edit]
requires("0.8.2") -- (is_integer() is new, plus "==sign(inc)" found me a long-buried compiler bug)
function parse_range(string r)
sequence sp = split(r,"..")&{"1"},
res = {}
if length(sp)>=3 then
string {strange,ending,step} = sp
integer inc = to_integer(step)
if inc!=0 then
bool ns = is_integer(strange),
ne = is_integer(ending)
if ns=ne then
if ns then
integer s = to_integer(strange),
e = to_integer(ending),
w = max(length(strange),length(ending))
if inc<0 then {s,e,inc} = {e,s,-inc} end if
if s>e then inc *= -1 end if
integer zfill = (length(strange)>1 and strange[1]='0') or
(length(ending)>1 and ending[1]='0')
string fmt = iff(zfill?sprintf("%%0%dd",{w}):"%d")
for k=s to e by inc do
res = append(res,sprintf(fmt,k))
end for
return res
elsif length(strange)=length(ending) then
bool ok = (length(strange)=1)
if not ok then
object s32 = utf8_to_utf32(strange,-1),
e32 = utf8_to_utf32(ending,-1)
if sequence(s32) and length(s32)=1
and sequence(e32) and length(e32)=1 then
ok = true
end if
end if
if ok then
if strange>ending then inc *= -1 end if
while true do
res = append(res,strange)
integer sdx = length(strange)
while true do
integer ch = strange[sdx]+inc
if ch<=#FF and ch>=#00 then
strange[sdx] = ch
exit
end if
strange[sdx] = iff(inc<0?#FF:#00)
sdx -= 1
end while
if compare(strange,ending)==sign(inc) then exit end if
if length(res)>10 then ?9/0 end if -- (sanity check)
end while
return res
end if -- ([utf8] strings not single char)
end if -- (neither numeric nor same-length alpha)
end if -- (mixed numeric/alpha)
end if -- (non-numeric increment)
end if -- (rangeless)
return {"{"&r&"}"}
end function
function range_expand(string s)
sequence res = {""}
string range = ""
bool in_range = false
for k=1 to length(s) do
integer c = s[k]
if c == '{' and not in_range then
in_range = true
range = ""
elsif c == '}' and in_range then
sequence range_res = parse_range(range),
prev_res = res
res = {}
for i=1 to length(prev_res) do
for j=1 to length(range_res) do
res = append(res, prev_res[i] & range_res[j])
end for
end for
in_range = false
elsif in_range then
range &= c
else
for i=1 to length(res) do
res[i] &= c
end for
end if
end for
if in_range then
for i=1 to length(res) do
res[i] &= "{" & range // unmatched braces
end for
end if
return res
end function
constant examples = {
"simpleNumberRising{1..3}.txt",
"simpleAlphaDescending-{Z..X}.txt",
"steppedDownAndPadded-{10..00..5}.txt",
"minusSignFlipsSequence {030..20..-5}.txt",
"combined-{Q..P}{2..1}.txt",
"emoji{🌵..🌶}{🌽..🌾}etc",
"multi char emoji ranges fail {🌵🌵..🌵🌶}",
"li{teral",
"rangeless{}empty",
"rangeless{random}string",
"mixedNumberAlpha{5..k}",
"steppedAlphaRising{P..Z..2}.txt",
"stops after endpoint-{02..10..3}.txt"
}
for i=1 to length(examples) do
string s = examples[i]
printf(1,"%s ->\n %s\n",{s,join(range_expand(s),"\n ")})
end for
- Output:
Note that, as usual, unicode output does not look good on a windows console for tests 6 & 7 (linux output shown)
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt -> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc multi char emoji ranges fail {🌵🌵..🌵🌶} -> multi char emoji ranges fail {🌵🌵..🌵🌶} li{teral -> li{teral rangeless{}empty -> rangeless{}empty rangeless{random}string -> rangeless{random}string mixedNumberAlpha{5..k} -> mixedNumberAlpha{5..k} steppedAlphaRising{P..Z..2}.txt -> steppedAlphaRisingP.txt steppedAlphaRisingR.txt steppedAlphaRisingT.txt steppedAlphaRisingV.txt steppedAlphaRisingX.txt steppedAlphaRisingZ.txt stops after endpoint-{02..10..3}.txt -> stops after endpoint-02.txt stops after endpoint-05.txt stops after endpoint-08.txt
Python[edit]
"""Brace range expansion. Requires Python >=3.6.
Here we use regular expressions for parsing and take an object orientated approach
to expansion of range expressions.
NOTE: With my current version of bash (GNU bash, version 5.0.3(1)-release), a ``-``
or ``+`` character in front of a `step` has no effect. This implementation reverses
the range if a ``-`` immediately precedes a step, and does not recognize range
expressions that use a ``+``.
NOTE: This implementation supports stepped ordinal range expressions.
"""
from __future__ import annotations
import itertools
import re
from abc import ABC
from abc import abstractmethod
from typing import Iterable
from typing import Optional
RE_SPEC = [
(
"INT_RANGE",
r"\{(?P<int_start>[0-9]+)..(?P<int_stop>[0-9]+)(?:(?:..)?(?P<int_step>-?[0-9]+))?}",
),
(
"ORD_RANGE",
r"\{(?P<ord_start>[^0-9])..(?P<ord_stop>[^0-9])(?:(?:..)?(?P<ord_step>-?[0-9]+))?}",
),
(
"LITERAL",
r".+?(?=\{|$)",
),
]
RE_EXPRESSION = re.compile(
"|".join(rf"(?P<{name}>{pattern})" for name, pattern in RE_SPEC)
)
class Expression(ABC):
"""Brace expression abstract base class."""
@abstractmethod
def expand(self, prefix: str) -> Iterable[str]:
pass
class Literal(Expression):
"""An expression literal."""
def __init__(self, value: str):
self.value = value
def expand(self, prefix: str) -> Iterable[str]:
return [f"{prefix}{self.value}"]
class IntRange(Expression):
"""An integer range expression."""
def __init__(
self, start: int, stop: int, step: Optional[int] = None, zfill: int = 0
):
self.start, self.stop, self.step = fix_range(start, stop, step)
self.zfill = zfill
def expand(self, prefix: str) -> Iterable[str]:
return (
f"{prefix}{str(i).zfill(self.zfill)}"
for i in range(self.start, self.stop, self.step)
)
class OrdRange(Expression):
"""An ordinal range expression."""
def __init__(self, start: str, stop: str, step: Optional[int] = None):
self.start, self.stop, self.step = fix_range(ord(start), ord(stop), step)
def expand(self, prefix: str) -> Iterable[str]:
return (f"{prefix}{chr(i)}" for i in range(self.start, self.stop, self.step))
def expand(expressions: Iterable[Expression]) -> Iterable[str]:
"""Expand a sequence of ``Expression``s. Each expression builds on the results
of the expressions that come before it in the sequence."""
expanded = [""]
for expression in expressions:
expanded = itertools.chain.from_iterable(
[expression.expand(prefix) for prefix in expanded]
)
return expanded
def zero_fill(start, stop) -> int:
"""Return the target zero padding width."""
def _zfill(s):
if len(s) <= 1 or not s.startswith("0"):
return 0
return len(s)
return max(_zfill(start), _zfill(stop))
def fix_range(start, stop, step):
"""Transform start, stop and step so that we can pass them to Python's
built-in ``range`` function."""
if not step:
# Zero or None. Explicit zero gets changed to default.
if start <= stop:
# Default step for ascending ranges.
step = 1
else:
# Default step for descending ranges.
step = -1
elif step < 0:
# A negative step means we reverse the range.
start, stop = stop, start
step = abs(step)
elif start > stop:
# A descending range with explicit step.
step = -step
# Don't overshoot or fall short.
if (start - stop) % step == 0:
stop += step
return start, stop, step
def parse(expression: str) -> Iterable[Expression]:
"""Generate a sequence of ``Expression``s from the given range expression."""
for match in RE_EXPRESSION.finditer(expression):
kind = match.lastgroup
if kind == "INT_RANGE":
start = match.group("int_start")
stop = match.group("int_stop")
step = match.group("int_step")
zfill = zero_fill(start, stop)
if step is not None:
step = int(step)
yield IntRange(int(start), int(stop), step, zfill=zfill)
elif kind == "ORD_RANGE":
start = match.group("ord_start")
stop = match.group("ord_stop")
step = match.group("ord_step")
if step is not None:
step = int(step)
yield OrdRange(start, stop, step)
elif kind == "LITERAL":
yield Literal(match.group())
def examples():
cases = [
r"simpleNumberRising{1..3}.txt",
r"steppedNumberRising{1..6..2}.txt",
r"steppedNumberDescending{20..9..2}.txt",
r"simpleAlphaDescending-{Z..X}.txt",
r"steppedDownAndPadded-{10..00..5}.txt",
r"minusSignFlipsSequence {030..20..-5}.txt",
r"combined-{Q..P}{2..1}.txt",
r"emoji{🌵..🌶}{🌽..🌾}etc",
r"li{teral",
r"rangeless{random}string",
r"rangeless{}empty",
r"steppedAlphaDescending-{Z..M..2}.txt",
r"reversedSteppedAlphaDescending-{Z..M..-2}.txt",
]
for case in cases:
print(f"{case} ->")
expressions = parse(case)
for itm in expand(expressions):
print(f"{' '*4}{itm}")
print("") # Blank line between cases
if __name__ == "__main__":
examples()
- Output:
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt steppedNumberRising{1..6..2}.txt -> steppedNumberRising1.txt steppedNumberRising3.txt steppedNumberRising5.txt steppedNumberDescending{20..9..2}.txt -> steppedNumberDescending20.txt steppedNumberDescending18.txt steppedNumberDescending16.txt steppedNumberDescending14.txt steppedNumberDescending12.txt steppedNumberDescending10.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt -> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral -> li{teral rangeless{random}string -> rangeless{random}string rangeless{}empty -> rangeless{}empty steppedAlphaDescending-{Z..M..2}.txt -> steppedAlphaDescending-Z.txt steppedAlphaDescending-X.txt steppedAlphaDescending-V.txt steppedAlphaDescending-T.txt steppedAlphaDescending-R.txt steppedAlphaDescending-P.txt steppedAlphaDescending-N.txt reversedSteppedAlphaDescending-{Z..M..-2}.txt -> reversedSteppedAlphaDescending-M.txt reversedSteppedAlphaDescending-O.txt reversedSteppedAlphaDescending-Q.txt reversedSteppedAlphaDescending-S.txt reversedSteppedAlphaDescending-U.txt reversedSteppedAlphaDescending-W.txt reversedSteppedAlphaDescending-Y.txt
Raku[edit]
Also implements some of the string list functions described on the bash-hackers page.
my $range = rx/ '{' $<start> = <-[.]>+? '..' $<end> = <-[.]>+? ['..' $<incr> = ['-'?\d+] ]? '}' /;
my $list = rx/ ^ $<prefix> = .*? '{' (<-[,}]>+) +%% ',' '}' $<postfix> = .* $/;
sub expand (Str $string) {
my @return = $string;
if $string ~~ $range {
quietly my ($start, $end, $incr) = $/<start end incr>».Str;
$incr ||= 1;
($end, $start) = $start, $end if $incr < 0;
$incr.=abs;
if try all( +$start, +$end ) ~~ Numeric {
$incr = - $incr if $start > $end;
my ($sl, $el) = 0, 0;
$sl = $start.chars if $start.starts-with('0');
$el = $end.chars if $end.starts-with('0');
my @this = $start < $end ?? (+$start, * + $incr …^ * > +$end) !! (+$start, * + $incr …^ * < +$end);
@return = @this.map: { $string.subst($range, sprintf("%{'0' ~ max $sl, $el}d", $_) ) }
}
elsif try +$start ~~ Numeric or +$end ~~ Numeric {
return $string #fail
}
else {
my @this;
if $start.chars + $end.chars > 2 {
return $string if $start.succ eq $start or $end.succ eq $end; # fail
@this = $start lt $end ?? ($start, (*.succ xx $incr).tail …^ * gt $end) !! ($start, (*.pred xx $incr).tail …^ * lt $end);
}
else {
$incr = -$incr if $start gt $end;
@this = $start lt $end ?? ($start, (*.ord + $incr).chr …^ * gt $end) !! ($start, (*.ord + $incr).chr …^ * lt $end);
}
@return = @this.map: { $string.subst($range, sprintf("%s", $_) ) }
}
}
if $string ~~ $list {
my $these = $/[0]».Str;
my ($prefix, $postfix) = $/<prefix postfix>».Str;
if ($prefix ~ $postfix).chars {
@return = $these.map: { $string.subst($list, $prefix ~ $_ ~ $postfix) } if $these.elems > 1
}
else {
@return = $these.join: ' '
}
}
my $cnt = 1;
while $cnt != [email protected]return {
$cnt = [email protected]return;
@return.=map: { |.&expand }
}
@return
}
for qww<
# Required tests
simpleNumberRising{1..3}.txt
simpleAlphaDescending-{Z..X}.txt
steppedDownAndPadded-{10..00..5}.txt
minusSignFlipsSequence{030..20..-5}.txt
combined-{Q..P}{2..1}.txt
emoji{🌵..🌶}{🌽..🌾}etc
li{teral
rangeless{}empty
rangeless{random}string
# Test some other features
'stop point not in sequence-{02..10..3}.txt'
steppedAlphaRising{P..Z..2}.txt
'simple {just,give,me,money} list'
{thatʼs,what,I,want}
'emoji {☃,☄}{★,🇺🇸,☆} lists'
'alphanumeric mix{ab7..ac1}.txt'
'alphanumeric mix{0A..0C}.txt'
# fail by design
'mixed terms fail {7..C}.txt'
'multi char emoji ranges fail {🌵🌵..🌵🌶}'
> -> $test {
say "$test ->";
say (' ' xx * Z~ expand $test).join: "\n";
say '';
}
- Output:
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence{030..20..-5}.txt -> minusSignFlipsSequence020.txt minusSignFlipsSequence025.txt minusSignFlipsSequence030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral -> li{teral rangeless{}empty -> rangeless{}empty rangeless{random}string -> rangeless{random}string stop point not in sequence-{02..10..3}.txt -> stop point not in sequence-02.txt stop point not in sequence-05.txt stop point not in sequence-08.txt steppedAlphaRising{P..Z..2}.txt -> steppedAlphaRisingP.txt steppedAlphaRisingR.txt steppedAlphaRisingT.txt steppedAlphaRisingV.txt steppedAlphaRisingX.txt steppedAlphaRisingZ.txt simple {just,give,me,money} list -> simple just list simple give list simple me list simple money list {thatʼs,what,I,want} -> thatʼs what I want emoji {☃,☄}{★,🇺🇸,☆} lists -> emoji ☃★ lists emoji ☃🇺🇸 lists emoji ☃☆ lists emoji ☄★ lists emoji ☄🇺🇸 lists emoji ☄☆ lists alphanumeric mix{ab7..ac1}.txt -> alphanumeric mixab7.txt alphanumeric mixab8.txt alphanumeric mixab9.txt alphanumeric mixac0.txt alphanumeric mixac1.txt alphanumeric mix{0A..0C}.txt -> alphanumeric mix0A.txt alphanumeric mix0B.txt alphanumeric mix0C.txt mixed terms fail {7..C}.txt -> mixed terms fail {7..C}.txt multi char emoji ranges fail {🌵🌵..🌵🌶} -> multi char emoji ranges fail {🌵🌵..🌵🌶}
Wren[edit]
Added three further examples to test:
- Mixed number/alpha ranges which apparently are not expanded.
- Stepped alpha ranges which appear to be allowed.
- Stepped ranges which stop after the endpoint (Raku example).
import "/fmt" for Fmt
var parseRange = Fn.new { |r|
if (r == "") return ["{}"] // rangeless, empty
var sp = r.split("..")
if (sp.count == 1) return ["{%(r)}"] // rangeless, random value
var sta = sp[0]
var end = sp[1]
var inc = (sp.count == 2) ? "1" : sp[2]
var n1 = Num.fromString(sta)
var n2 = Num.fromString(end)
var n3 = Num.fromString(inc)
if (!n3) return ["{%(r)}"] // increment isn't a number
var numeric = n1 && n2
if (!numeric) {
if ((n1 && !n2) || (!n1 && n2)) return ["{%(r)}"] // mixed numeric/alpha not expanded
if (sta.count != 1 || end.count != 1) return ["{%(r)}"] // start/end are not both single alpha
n1 = sta.codePoints[0]
n2 = end.codePoints[0]
}
var width = 1
if (numeric) width = (sta.count < end.count) ? end.count : sta.count
if (n3 == 0) return (numeric) ? [Fmt.dz(width, n1)] : [sta] // zero increment
var res = []
var asc = n1 < n2
if (n3 < 0) {
asc = !asc
var t = n1
n1 = n2
n2 = t
n3 = -n3
}
var i = n1
if (asc) {
while (i <= n2) {
res.add( (numeric) ? Fmt.dz(width, i) : String.fromCodePoint(i) )
i = i + n3
}
} else {
while (i >= n2) {
res.add(( numeric) ? Fmt.dz(width, i) : String.fromCodePoint(i) )
i = i - n3
}
}
return res
}
var rangeExpand = Fn.new { |s|
var res = [""]
var rng = ""
var inRng = false
for (c in s) {
if (c == "{" && !inRng) {
inRng = true
rng = ""
} else if (c == "}" && inRng) {
var rngRes = parseRange.call(rng)
var rngCount = rngRes.count
var res2 = []
for (i in 0...res.count) {
for (j in 0...rngCount) res2.add(res[i] + rngRes[j])
}
res = res2
inRng = false
} else if (inRng) {
rng = rng + c
} else {
for (i in 0...res.count) res[i] = res[i] + c
}
}
if (inRng) for (i in 0...res.count) res[i] = res[i] + "{" + rng // unmatched braces
return res
}
var examples = [
"simpleNumberRising{1..3}.txt",
"simpleAlphaDescending-{Z..X}.txt",
"steppedDownAndPadded-{10..00..5}.txt",
"minusSignFlipsSequence {030..20..-5}.txt",
"combined-{Q..P}{2..1}.txt",
"emoji{🌵..🌶}{🌽..🌾}etc",
"li{teral",
"rangeless{}empty",
"rangeless{random}string",
"mixedNumberAlpha{5..k}",
"steppedAlphaRising{P..Z..2}.txt",
"stops after endpoint-{02..10..3}.txt"
]
for (s in examples) {
System.write("%(s) ->\n ")
var res = rangeExpand.call(s)
System.print(res.join("\n "))
System.print()
}
- Output:
simpleNumberRising{1..3}.txt -> simpleNumberRising1.txt simpleNumberRising2.txt simpleNumberRising3.txt simpleAlphaDescending-{Z..X}.txt -> simpleAlphaDescending-Z.txt simpleAlphaDescending-Y.txt simpleAlphaDescending-X.txt steppedDownAndPadded-{10..00..5}.txt -> steppedDownAndPadded-10.txt steppedDownAndPadded-05.txt steppedDownAndPadded-00.txt minusSignFlipsSequence {030..20..-5}.txt -> minusSignFlipsSequence 020.txt minusSignFlipsSequence 025.txt minusSignFlipsSequence 030.txt combined-{Q..P}{2..1}.txt -> combined-Q2.txt combined-Q1.txt combined-P2.txt combined-P1.txt emoji{🌵..🌶}{🌽..🌾}etc -> emoji🌵🌽etc emoji🌵🌾etc emoji🌶🌽etc emoji🌶🌾etc li{teral -> li{teral rangeless{}empty -> rangeless{}empty rangeless{random}string -> rangeless{random}string mixedNumberAlpha{5..k} -> mixedNumberAlpha{5..k} steppedAlphaRising{P..Z..2}.txt -> steppedAlphaRisingP.txt steppedAlphaRisingR.txt steppedAlphaRisingT.txt steppedAlphaRisingV.txt steppedAlphaRisingX.txt steppedAlphaRisingZ.txt stops after endpoint-{02..10..3}.txt -> stops after endpoint-02.txt stops after endpoint-05.txt stops after endpoint-08.txt