Sum of the digits of n is substring of n

From Rosetta Code
Sum of the digits of n is substring of n is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Find and show numbers   n   with property that the sum of the decimal digits of   n   is substring of   n,   where   n   <   1,000


Other tasks related to string operations:
Metrics
Counting
Remove/replace
Anagrams/Derangements/shuffling
Find/Search/Determine
Formatting
Song lyrics/poems/Mad Libs/phrases
Tokenize
Sequences



11l

Translation of: Python
Translation of: Nim
V count = 0
L(n) 1000
   I String(sum(String(n).map(Int))) C String(n)
      count++
      print(f:‘{n:3}’, end' I count % 8 == 0 {"\n"} E ‘ ’)
Output:
  0   1   2   3   4   5   6   7
  8   9  10  20  30  40  50  60
 70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

8080 Assembly

puts:	equ	9
	org	100h
	lxi	h,-1	; Number
loop:	inx	h
	push	h	; Keep number
	lxi	d,-1000	; Are we there yet?
	dad	d
	pop	d
	rc		; If so, stop
	push	d	; Keep number
	lxi	h,buf0
	call	digits	; Get digits
	push	h	; Keep pointer to digits
	call	dgsum	; Sum digits
	lxi	h,buf1
	call	digits	; Get digits for sum
	pop	d	; Retrieve pointer to digits of original
	push	d
	call	find	; Does the original contain the sum of the digits?
	pop	d	; Retrieve digit pointer
	pop	h	; And number
	jc	loop	; If the sum of the digits is not found, try next
	push	h
	call	print	; Otherwise, print it
	pop 	h
	jmp 	loop
	;;;	Find digits of number in DE, store at HL.
	;;;	Beginning of string returned in HL.
digits:	lxi	b,-10	; Divisor
	mvi	m,'$'	; String terminator
	push	h	; Output pointer on stack
digit:	xchg		; Number in HL
	lxi	d,-1	; Quotient
dgtdiv:	inx	d	; Trial subtaction
	dad	b
	jc 	dgtdiv
	mvi	a,10	; Calculate value of digit
	add	l
	pop	h	; Store digit
	dcx	h
	mov	m,a
	push	h
	mov	a,d	; Done?
	ora	e
	jnz	digit	; If not, find next digit
	pop	h	; Remove pointer from stack
	ret
	;;;	Calculate sum of digits starting at HL
dgsum:	lxi	d,0
dgloop:	mov	a,m
	cpi	'$'
	rz
	add	e
	mov	e,a
	inx	h
	jmp	dgloop
	;;;	See if the string at DE contains the string at HL
find:	ldax	d	; Load character from haystack
	cpi	'$'	; Reached the end?
	stc		; Then it is not found
	rz
	push	d	; Save pointers
	push	h
	xchg		; Swap pointers
floop:	ldax 	d	; Load character from needle
	cpi	'$'	; Reached the end?
	jz	found	; Then we found it
	cmp	m	; Compare to haystack
	inx	h	; Increment the pointers
	inx	d
	jz 	floop	; If equal, keep going
	pop	h	; Restore pointers
	pop	d
	inx	d	; Try next position
	jmp	find
found:	pop	h	; Clean up stack
	pop 	d
	ret
	;;;	Print number
print:	push	d
ploop:	ldax	d
	cpi	'$'
	jz	pdone
	adi	'0'
	stax 	d
	inx	d
	jmp 	ploop
pdone:	xchg
	mvi	m,13
	inx	h
	mvi	m,10
	inx	h
	mvi 	m,'$'
	pop 	d
	mvi	c,puts
	jmp	5
buf0:	equ	$+32
buf1:	equ	$+64
Output:
0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919

Action!

INT FUNC SumDigits(INT num)
  INT res,a

  res=0
  WHILE num#0
  DO
    res==+num MOD 10
    num=num/10
  OD
RETURN (res)

BYTE Func IsValidNumber(INT num)
  CHAR ARRAY s(5),sub(5)
  INT sum,v,len,start

  sum=SumDigits(num)
  StrI(num,s)
  FOR len=1 TO s(0)
  DO
    FOR start=1 TO s(0)-len+1
    DO
      SCopyS(sub,s,start,start+len-1)
      IF ValI(sub)=sum THEN
        RETURN (1)
      FI
    OD
  OD
RETURN (0)

PROC Main()
  INT i,count=[0]

  FOR i=0 TO 999
  DO
    IF IsValidNumber(i) THEN
      PrintI(i) Put(32)
      count==+1
    FI
  OD
  PrintF("%E%EThere are %I numbers",count)
RETURN
Output:

Screenshot from Atari 8-bit computer

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179
189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

There are 48 numbers

ALGOL 68

ALGOL 68G has the procedure "string in string" in the prelude, for other compilers, a version is available here: ALGOL_68/prelude.

BEGIN # find n where the sum of the digits is a substring of the representaton of n #
    INT max number = 1 000;
    INT n count   := 0;
    FOR n FROM 0 TO max number - 1 DO
        INT d sum := 0;
        INT v     := n;
        WHILE v > 0 DO
            d sum +:= v MOD 10;
            v  OVERAB 10
        OD;
        IF string in string( whole( d sum, 0 ), NIL, whole( n, 0 ) ) THEN
            # the string representaton of the digit sum is contained in the representation of n #
            print( ( " ", whole( n, -4 ) ) );
            n count +:= 1;
            IF n count MOD 8 = 0 THEN print( ( newline ) ) FI
        FI
    OD
END
Output:
    0    1    2    3    4    5    6    7
    8    9   10   20   30   40   50   60
   70   80   90  100  109  119  129  139
  149  159  169  179  189  199  200  300
  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

ALGOL-M

begin
integer function mod(a,b);
integer a,b;
mod := a-a/b*b;

integer function digitsum(n);
integer n;
digitsum :=
    if n=0 then 0
    else mod(n,10) + digitsum(n/10);

integer function chop(n);
integer n;
begin
    integer i;
    i := 1;
    while i<n do i := i * 10;
    i := i/10;
    chop := if i=0 then 0 else mod(n, i);
end;

integer function infix(n,h);
integer n,h;
begin
    integer pfx, sfx, r;
    r := if n=h then 1 else 0;
    pfx := h;
    while pfx <> 0 do
    begin
        sfx := pfx;
        while sfx <> 0 do
        begin
            if sfx = n then
            begin
                r := 1;
                go to stop;
            end;
            sfx := chop(sfx);
        end;
        pfx := pfx/10;
    end;
stop:
    infix := r;
end;

integer i, n, d;
n := 0;
for i := 0 step 1 until 999 do
begin
    d := digitsum(i);
    if infix(d, i) = 1 then
    begin
        if (n-1)/10 <> n/10 then write(i)
        else writeon(i);
        n := n + 1;
    end;
end;        
end
Output:
     0     1     2     3     4     5     6     7     8     9
    10    20    30    40    50    60    70    80    90   100
   109   119   129   139   149   159   169   179   189   199
   200   300   400   500   600   700   800   900   910   911
   912   913   914   915   916   917   918   919

ALGOL W

begin % find numbers n, where the sum of the digits is a substring of n %
    % returns true if the digits of s contains the digits of t, false otherwise %
    logical procedure containsDigits( integer value s, t ) ;
    if s = t then true
    else begin
        integer tPower, v, u;
        logical isContained;
        % find the lowest power of 10 that is greater then t %
        tPower := 10;
        v      := abs t;
        while v > 9 do begin
            tPower := tPower * 10;
            v      := v div 10
        end while_v_gt_9 ;
        isContained := false;
        v           := abs t;
        u           := abs s;
        while not isContained and u > 0 do begin
            isContained := ( u rem tPower ) = v;
            u           := u div 10
        end while_not_isContained_and_u_gt_0 ;
        isContained
    end containsDigits ;
    % find and show the matching numbers up to 1000 %
    integer nCount;
    nCount    := 0;
    for n := 0 until 999 do begin
        integer dSum, v;
        dSum := 0;
        v    := n;
        while v > 0 do begin
            dSum := dSum + ( v rem 10 );
            v    := v div 10
        end while_v_gt_0 ;
        if containsDigits( n, dSum ) then begin
            writeon( i_w := 5, s_w := 0, n );
            nCount := nCount + 1;
            if nCount rem 8 = 0 then write()
        end if_n_contains_dSum
    end for_n
end.
Output:
    0    1    2    3    4    5    6    7
    8    9   10   20   30   40   50   60
   70   80   90  100  109  119  129  139
  149  159  169  179  189  199  200  300
  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

APL

Works with: Dyalog APL
((/⍨)(/(+/(¨))⍷⍕)¨)0,⍳999
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900
      910 911 912 913 914 915 916 917 918 919

Arturo

print select 1..999 'num ->
    contains? to :string num 
              to :string sum digits num
Output:
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

AutoHotkey

result := "", cntr := 1
loop 1000{
	n := A_Index-1, sum := 0
	for i, v in StrSplit(n)
		sum += v
	if InStr(n, sum){
		result .= n (mod(cntr, 8)?"`t":"`n")
		if (++cntr = 50)
			break
	}
}
MsgBox % result
Output:
0	1	2	3	4	5	6	7
8	9	10	20	30	40	50	60
70	80	90	100	109	119	129	139
149	159	169	179	189	199	200	300
400	500	600	700	800	900	910	911
912	913	914	915	916	917	918	919

AWK

# syntax: GAWK -f SUM_OF_THE_DIGITS_OF_N_IS_SUBSTRING_OF_N.AWK
BEGIN {
    start = 0
    stop = 999
    for (i=start; i<=stop; i++) {
      if (i ~ ""sum_digits(i)) { # TAWK needs the ""
        printf("%4d%1s",i,++count%10?"":"\n")
      }
    }
    printf("\nSum of the digits of n is substring of n %d-%d: %d\n",start,stop,count)
    exit(0)
}
function sum_digits(n,  i,sum) {
    for (i=1; i<=length(n); i++) {
      sum += substr(n,i,1)
    }
    return(sum)
}
Output:
   0    1    2    3    4    5    6    7    8    9
  10   20   30   40   50   60   70   80   90  100
 109  119  129  139  149  159  169  179  189  199
 200  300  400  500  600  700  800  900  910  911
 912  913  914  915  916  917  918  919
Sum of the digits of n is substring of n 0-999: 48

BASIC

10 DEFINT I,J,K
20 FOR I=0 TO 999
30 J=0: K=I
40 IF K>0 THEN J=J+K MOD 10: K=K\10: GOTO 40
41 I$=STR$(I): I$=RIGHT$(I$,LEN(I$)-1)
42 J$=STR$(J): J$=RIGHT$(J$,LEN(J$)-1)
50 IF INSTR(I$,J$) THEN PRINT I,
60 NEXT I
Output:
 0             1             2             3             4
 5             6             7             8             9
 10            20            30            40            50
 60            70            80            90            100
 109           119           129           139           149
 159           169           179           189           199
 200           300           400           500           600
 700           800           900           910           911
 912           913           914           915           916
 917           918           919

BCPL

get "libhdr"

let dsum(n) = n=0 -> 0, n rem 10 + dsum(n/10)

let chop(n) = valof
$(  let i=1
    while i<n do i := i * 10
    i := i / 10
    resultis i=0 -> 0, n rem i
$)

let infix(n,h) =
    n = h            -> true,
    h = 0            -> false,
    infix(n,h/10)    -> true,
    infix(n,chop(h)) -> true,
    false

let start() be
$(  let c=0
    for i=0 to 999 do
    $(  if infix(dsum(i),i) then
        $(  writef("%I5",i)
            c := c + 1
            if c rem 10=0 then wrch('*N')
        $)
    $)
    wrch('*N')
$)
Output:
    0    1    2    3    4    5    6    7    8    9
   10   20   30   40   50   60   70   80   90  100
  109  119  129  139  149  159  169  179  189  199
  200  300  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

BQN

DigitSum  +´•Fmt-'0'˙
Contains  (´˜ )•Fmt
6 ( Contains DigitSum)¨/↕1000
Output:
┌─                         
╵   0   1   2   3   4   5  
    6   7   8   9  10  20  
   30  40  50  60  70  80  
   90 100 109 119 129 139  
  149 159 169 179 189 199  
  200 300 400 500 600 700  
  800 900 910 911 912 913  
  914 915 916 917 918 919  
                          ┘

C

#include <stdio.h>
#include <string.h>

int digitSum(int n) {
    int s = 0;
    do {s += n % 10;} while (n /= 10);
    return s;
}

int digitSumIsSubstring(int n) {
    char s_n[32], s_ds[32];
    sprintf(s_n, "%d", n);
    sprintf(s_ds, "%d", digitSum(n));
    return strstr(s_n, s_ds) != NULL;
}

int main() {
    int i;
    for (i=0; i<1000; i++)
        if (digitSumIsSubstring(i))
            printf("%d ",i);
    printf("\n");
    
    return 0;
}
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

C++

#include <iostream>

int digitSum(int n) {
    int s = 0;
    do {s += n % 10;} while (n /= 10);
    return s;
}

int main() {
    for (int i=0; i<1000; i++) {
        auto s_i = std::to_string(i);
        auto s_ds = std::to_string(digitSum(i));
        if (s_i.find(s_ds) != std::string::npos) {
            std::cout << i << " ";
        }
    }
    std::cout << std::endl;
    return 0;
}
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

CLU

digit_sum = proc (n: int) returns (int)
    sum: int := 0
    while n > 0 do
        sum := sum + n // 10
        n := n / 10
    end
    return (sum)
end digit_sum

digit_sum_is_substring = proc (n: int) returns (bool)
    n_str: string := int$unparse(n)
    ds_str: string := int$unparse(digit_sum(n))
    return (string$indexs(ds_str, n_str) ~= 0)
end digit_sum_is_substring

match_range = iter (from, to: int, p: proctype (int) returns (bool)) 
              yields (int)
    for i: int in int$from_to(from,to) do
        if p(i) then yield(i) end
    end
end match_range

start_up = proc ()
    po: stream := stream$primary_output()
    col: int := 0
    
    for i: int in match_range(0, 999, digit_sum_is_substring) do
        stream$putright(po, int$unparse(i), 4)
        col := col + 1
        if col // 10 = 0 then stream$putc(po, '\n') end
    end
end start_up
Output:
   0   1   2   3   4   5   6   7   8   9
  10  20  30  40  50  60  70  80  90 100
 109 119 129 139 149 159 169 179 189 199
 200 300 400 500 600 700 800 900 910 911
 912 913 914 915 916 917 918 919

COBOL

        IDENTIFICATION DIVISION.
        PROGRAM-ID. SUM-SUBSTRING.
            
        DATA DIVISION.
        WORKING-STORAGE SECTION.
        01 CALCULATION.
           02 N         PIC 9999.
           02 X         PIC 9.
           02 DSUM      PIC 99.
           02 N-DIGITS  REDEFINES N.
              03 ND     PIC 9 OCCURS 4 TIMES.
           02 S-DIGITS  REDEFINES DSUM.
              03 SUMD   PIC 9 OCCURS 2 TIMES.
        01 OUTPUT-FORMAT.
           02 N-OUT     PIC ZZZ9.
        
        PROCEDURE DIVISION.
        BEGIN.
            PERFORM TESTNUMBER VARYING N FROM 0 BY 1
                    UNTIL N IS EQUAL TO 1000.
            STOP RUN.
        
        TESTNUMBER SECTION.
        BEGIN.
            PERFORM SUM-DIGITS.
            SET X TO 1.
            IF DSUM IS LESS THAN 10 GO TO ONE-DIGIT-CHECK.
        
        TWO-DIGIT-CHECK.
            IF X IS GREATER THAN 3 GO TO DONE.
            IF ND(X) = SUMD(1) AND ND(X + 1) = SUMD(2) GO TO SHOW.
            ADD 1 TO X.
            GO TO TWO-DIGIT-CHECK.
            
        ONE-DIGIT-CHECK.
            IF X IS GREATER THAN 4 GO TO DONE.
            IF ND(X) = SUMD(2) GO TO SHOW.
            ADD 1 TO X.
            GO TO ONE-DIGIT-CHECK.
        
        SHOW.
            MOVE N TO N-OUT.
            DISPLAY N-OUT.
        DONE. EXIT.
        
        SUM-DIGITS SECTION.
        BEGIN.
            SET DSUM TO 0.
            SET X TO 1.
        LOOP.    
            ADD ND(X) TO DSUM.
            ADD 1 TO X.
            IF X IS LESS THAN 5 GO TO LOOP.
Output:
   0
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  20
  30
  40
  50
  60
  70
  80
  90
 100
 109
 119
 129
 139
 149
 159
 169
 179
 189
 199
 200
 300
 400
 500
 600
 700
 800
 900
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919

Comal

0010 FUNC digit'sum#(n#) CLOSED
0020   sum#:=0
0030   WHILE n# DO sum#:+n# MOD 10;n#:=n# DIV 10
0040   RETURN sum#
0050 ENDFUNC digit'sum#
0060 //
0070 col#:=0
0080 ZONE 4
0090 FOR i#:=0 TO 999 DO
0100   IF STR$(digit'sum#(i#)) IN STR$(i#) THEN
0110     PRINT i#,
0120     col#:+1
0130     IF col# MOD 15=0 THEN PRINT
0140   ENDIF
0150 ENDFOR i#
0160 PRINT
0170 END
Output:
0   1   2   3   4   5   6   7   8   9   10  20  30  40  50
60  70  80  90  100 109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911 912 913 914 915 916
917 918 919

Cowgol

include "cowgol.coh";

sub digitSum(n: uint16): (s: uint16) is
    s := 0;
    while n != 0 loop
        s := s + n % 10;
        n := n / 10;
    end loop;
end sub;

sub contains(haystack: [uint8], needle: [uint8]): (r: uint8) is
    r := 0;
    while [haystack] != 0 loop
        var h := haystack;
        var n := needle;
        while [h] == [n] and [h] != 0 and [n] != 0 loop
            h := @next h;
            n := @next n;
        end loop;
        if [n] == 0 then
            r := 1;
            return;
        end if;
        haystack := @next haystack;
    end loop;
end sub;

sub digitSumIsSubstring(n: uint16): (r: uint8) is
    var s1: uint8[6];
    var s2: uint8[6];
    var dummy := UIToA(n as uint32, 10, &s1[0]);
    dummy := UIToA(digitSum(n) as uint32, 10, &s2[0]);
    r := contains(&s1[0], &s2[0]);
end sub;

var i: uint16 := 0;
while i < 1000 loop
    if digitSumIsSubstring(i) != 0 then
        print_i16(i);
        print_char(' ');
    end if;
    i := i + 1;
end loop;
print_nl();
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

D

Translation of: C++
import std.algorithm;
import std.conv;
import std.stdio;

int digitSum(int n) {
    int s = 0;
    do {
        s += n % 10;
    } while (n /= 10);
    return s;
}

void main() {
    foreach (i; 0 .. 1000) {
        if (i.to!string.canFind(digitSum(i).to!string)) {
            write(i, ' ');
        }
    }
    writeln;
}
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

Delphi

Works with: Delphi version 6.0


{This code would normally be in a library, but is included here for clarity}

procedure GetDigits(N: integer; var IA: TIntegerDynArray);
{Get an array of the integers in a number}
{Numbers returned from least to most significant}
var T,I,DC: integer;
begin
DC:=Trunc(Log10(N))+1;
SetLength(IA,DC);
for I:=0 to DC-1 do
	begin
	T:=N mod 10;
	N:=N div 10;
	IA[I]:=T;
	end;
end;


procedure SumDigitsSubstring(Memo: TMemo);
var N,J,Cnt,Sum: integer;
var Dg: TIntegerDynArray;
var NS,SS,S: string;
begin
S:='';
Cnt:=0;
for N:=0 to 1000-1 do
	begin
	GetDigits(N,Dg);
	Sum:=0;
	for J:=0 to High(Dg) do
	  Sum:=Sum+Dg[J];
	NS:=IntToStr(N);
	SS:=IntToStr(Sum);
	if Pos(SS,NS)>0 then
		begin
		Inc(Cnt);
		S:=S+Format('%4d',[N]);
		if (Cnt mod 10)=0 then S:=S+CRLF;
		end;
	end;
Memo.Lines.Add(S);
end;
Output:
   0   1   2   3   4   5   6   7   8   9
  10  20  30  40  50  60  70  80  90 100
 109 119 129 139 149 159 169 179 189 199
 200 300 400 500 600 700 800 900 910 911
 912 913 914 915 916 917 918 919

Elapsed Time: 1.433 ms.


Draco

\util.g

proc nonrec digit_sum(word n) word:
    word sum;
    sum := 0;
    while n ~= 0 do
        sum := sum + n % 10;
        n := n / 10;
    od;
    sum
corp

proc nonrec itoa(word n; *char buf) void:
    channel output text ch;
    open(ch, buf);
    write(ch; n);
    close(ch)
corp

proc nonrec digit_sum_is_substring(word n) bool:
    [10] char dstr, dsub;
    itoa(n, &dstr[0]);
    itoa(digit_sum(n), &dsub[0]);
    CharsIndex(&dstr[0], &dsub[0]) ~= -1
corp

proc nonrec main() void:
    word i, seen;
    seen := 0;
    for i from 0 upto 999 do
        if digit_sum_is_substring(i) then
            write(i:4);
            seen := seen + 1;
            if seen % 20 = 0 then writeln() fi
        fi
    od
corp
Output:
   0   1   2   3   4   5   6   7   8   9  10  20  30  40  50  60  70  80  90 100
 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911
 912 913 914 915 916 917 918 919

EasyLang

fastfunc digsum h .
   while h > 0
      sum += h mod 10
      h = h div 10
   .
   return sum
.
for i = 0 to 999
   h = digsum i
   if strpos i h <> 0
      write i & " "
   .
.
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919 

F#

// Sum digits of n is substring of n: Nigel Galloway. April 16th., 2021
let rec fG n g=match (n/10,n%(if g<10 then 10 else 100)) with (_,n) when n=g->true |(0,_)->false |(n,_)->fG n g
let rec fN g=function n when n<10->n+g |n->fN(g+n%10)(n/10) 
{1..999}|>Seq.filter(fun n->fG n (fN 0 n))|>Seq.iter(printf "%d "); printfn ""
Output:
1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919
Real: 00:00:00.003

Factor

Works with: Factor version 0.99 2021-02-05
USING: grouping kernel math.text.utils present prettyprint
sequences ;

1000 <iota>
[ [ 1 digit-groups sum present ] [ present ] bi subseq? ] filter
8 group simple-table.
Output:
0   1   2   3   4   5   6   7
8   9   10  20  30  40  50  60
70  80  90  100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

Fermat

No string conversion.

Func Digsum(n, b) =
    ds:=0;                   {digital sum of n in base b}
    while n>0 do
        ds:+(n|b);
        n:=n\b;
    od;
    ds.;

Func Numdig(n, b) =
    nd:=0;                   {number of digits of n in base b}
    while n > 0 do
        nd:+;
        n:=n\b;
    od;
    nd.;

for n = 1 to 999 do
    ds:=Digsum(n, 10);       {digital sum of n}
    nd:=Numdig(ds, 10);      {how many digits does the digital sum itself have?}
    nt:=n;                   {temporary copy of n}
    while nt>0 do
        if ds=(nt|(10^(nd))) then
            !!n;             {if the last nt digits of n are the digital sum, print and exit the loop}
            &>;
        fi;
        nt:=nt\10;
    od;
od;
Output:

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

FOCAL

01.10 F N=0,999;D 2;D 4
01.20 Q

02.10 S A=0
02.20 S B=N
02.30 S C=FITR(B/10)
02.40 S A=A+(B-C*10)
02.50 S B=C
02.60 I (-B)2.3

03.10 S B=1
03.20 S B=B*10
03.30 I (B-M)3.2,3.2
03.40 S B=B/10
03.50 S M=M-FITR(M/B)*B

04.10 S P=N
04.20 S M=P
04.30 I (M-A)4.4,4.9,4.4
04.40 D 3
04.50 I (M)4.3,4.6,4.3
04.60 S P=FITR(P/10)
04.70 I (P)4.2,4.8,4.2
04.80 R
04.90 T %3,N,!
Output:
=   0
=   1
=   2
=   3
=   4
=   5
=   6
=   7
=   8
=   9
=  10
=  20
=  30
=  40
=  50
=  60
=  70
=  80
=  90
= 100
= 109
= 119
= 129
= 139
= 149
= 159
= 169
= 179
= 189
= 199
= 200
= 300
= 400
= 500
= 600
= 700
= 800
= 900
= 910
= 911
= 912
= 913
= 914
= 915
= 916
= 917
= 918
= 919

FreeBASIC

function is_substring( s as string, j as string ) as boolean
    dim as integer nj = len(j), ns = len(s)
    for i as integer = 1 to ns - nj + 1
        if mid(s,i,nj) = j then return true
    next i
    return false
end function

function sumdig( byval n as integer ) as integer
    dim as integer sum
    do
        sum += n mod 10
        n \= 10
    loop until n = 0
    return sum
end function

for i as uinteger = 0 to 999
    if is_substring( str(i), str(sumdig(i))) then print i;" ";
next i : print : end
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Go

Translation of: Wren
Library: Go-rcu
package main

import (
    "fmt"
    "rcu"
    "strings"
)

func main() {
    var numbers []int
    for n := 0; n < 1000; n++ {
        ns := fmt.Sprintf("%d", n)
        ds := fmt.Sprintf("%d", rcu.DigitSum(n, 10))
        if strings.Contains(ns, ds) {
            numbers = append(numbers, n)
        }
    }
    fmt.Println("Numbers under 1,000 whose sum of digits is a substring of themselves:")
    rcu.PrintTable(numbers, 8, 3, false)
    fmt.Println()
    fmt.Println(len(numbers), "such numbers found.")
}
Output:
Numbers under 1,000 whose sum of digits is a substring of themselves:
  0   1   2   3   4   5   6   7 
  8   9  10  20  30  40  50  60 
 70  80  90 100 109 119 129 139 
149 159 169 179 189 199 200 300 
400 500 600 700 800 900 910 911 
912 913 914 915 916 917 918 919 

48 such numbers found.

Haskell

import Data.Char (digitToInt)
import Data.List (isInfixOf)
import Data.List.Split (chunksOf)

-------- SUM OF THE DIGITS OF N IS A SUBSTRING OF N ------

digitSumIsSubString :: String -> Bool
digitSumIsSubString =
  isInfixOf
    =<< show . foldr ((+) . digitToInt) 0


--------------------------- TEST -------------------------
main :: IO ()
main =
  mapM_ putStrLn $
    showMatches digitSumIsSubString <$> [999, 10000]

showMatches :: (String -> Bool) -> Int -> String
showMatches p limit =
  ( show (length xs)
      <> " matches in [0.."
      <> show limit
      <> "]\n"
  )
    <> unlines
      ( unwords
          <$> chunksOf 10 (justifyRight w ' ' <$> xs)
      )
    <> "\n"
  where
    xs = filter p $ fmap show [0 .. limit]
    w = length (last xs)

justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
Output:
48 matches in [0..999]
  0   1   2   3   4   5   6   7   8   9
 10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919


365 matches in [0..10000]
    0     1     2     3     4     5     6     7     8     9
   10    20    30    40    50    60    70    80    90   100
  109   119   129   139   149   159   169   179   189   199
  200   300   400   500   600   700   800   900   910   911
  912   913   914   915   916   917   918   919  1000  1009
 1018  1027  1036  1045  1054  1063  1072  1081  1090  1108
 1109  1118  1127  1128  1136  1138  1145  1148  1154  1158
 1163  1168  1172  1178  1181  1188  1190  1198  1209  1218
 1227  1236  1245  1254  1263  1272  1281  1290  1309  1318
 1327  1336  1345  1354  1363  1372  1381  1390  1409  1418
 1427  1436  1445  1454  1463  1472  1481  1490  1509  1518
 1527  1536  1545  1554  1563  1572  1581  1590  1609  1618
 1627  1636  1645  1654  1663  1672  1681  1690  1709  1718
 1727  1736  1745  1754  1763  1772  1781  1790  1809  1810
 1811  1812  1813  1814  1815  1816  1817  1818  1819  1827
 1836  1845  1854  1863  1872  1881  1890  1909  1918  1927
 1936  1945  1954  1963  1972  1981  1990  2000  2099  2107
 2117  2127  2137  2147  2157  2167  2177  2187  2197  2199
 2299  2399  2499  2599  2699  2710  2711  2712  2713  2714
 2715  2716  2717  2718  2719  2799  2899  2999  3000  3106
 3116  3126  3136  3146  3156  3166  3176  3186  3196  3610
 3611  3612  3613  3614  3615  3616  3617  3618  3619  4000
 4105  4115  4125  4135  4145  4155  4165  4175  4185  4195
 4510  4511  4512  4513  4514  4515  4516  4517  4518  4519
 5000  5104  5114  5124  5134  5144  5154  5164  5174  5184
 5194  5410  5411  5412  5413  5414  5415  5416  5417  5418
 5419  6000  6103  6113  6123  6133  6143  6153  6163  6173
 6183  6193  6310  6311  6312  6313  6314  6315  6316  6317
 6318  6319  7000  7102  7112  7122  7132  7142  7152  7162
 7172  7182  7192  7210  7211  7212  7213  7214  7215  7216
 7217  7218  7219  8000  8101  8110  8111  8112  8113  8114
 8115  8116  8117  8118  8119  8121  8131  8141  8151  8161
 8171  8181  8191  9000  9010  9011  9012  9013  9014  9015
 9016  9017  9018  9019  9100  9110  9120  9130  9140  9150
 9160  9170  9180  9190  9209  9219  9229  9239  9249  9259
 9269  9279  9289  9299  9920  9921  9922  9923  9924  9925
 9926  9927  9928  9929 10000

J

([#~(":+./@E.~[:":+/@(10&#.^:_1))"0)i.999
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

jq

Works with: jq

Works with gojq, the Go implementation of jq

def sum_of_digits_is_substring:
  tostring
  | . as $s
  | (explode | map([.]|implode))
  | (map(tonumber)|add|tostring) as $ss
  | $s | index($ss);

[range(0;1000) | select(sum_of_digits_is_substring)]
Output:
[0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,109,119,129,139,149,159,169,179,189,199,200,300,400,500,600,700,800,900,910,911,912,913,914,915,916,917,918,919]

Julia

issumsub(n, base=10) = occursin(string(sum(digits(n, base=base)), base=base), string(n, base=base))

foreach(p -> print(rpad(p[2], 4), p[1] % 10 == 0 ? "\n" : ""), enumerate(filter(issumsub, 0:999)))
Output:
0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90  100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

Kotlin

Translation of: Go
fun digitSum(n: Int): Int {
    var nn = n
    var sum = 0
    while (nn > 0) {
        sum += (nn % 10)
        nn /= 10
    }
    return sum
}

fun main() {
    var c = 0
    for (i in 0 until 1000) {
        val ds = digitSum(i)
        if (i.toString().contains(ds.toString())) {
            print("%3d ".format(i))

            c += 1
            if (c == 8) {
                println()
                c = 0
            }
        }
    }
    println()
}
Output:
  0   1   2   3   4   5   6   7 
  8   9  10  20  30  40  50  60 
 70  80  90 100 109 119 129 139 
149 159 169 179 189 199 200 300 
400 500 600 700 800 900 910 911 
912 913 914 915 916 917 918 919 

MAD

            NORMAL MODE IS INTEGER
            
            INTERNAL FUNCTION(A,B)
            ENTRY TO REM.
            FUNCTION RETURN A-A/B*B
            END OF FUNCTION
            
            INTERNAL FUNCTION(X)
            ENTRY TO DSUM.
            TEMP = X
            SUM = 0
SUML        WHENEVER TEMP.NE.0
                SUM = SUM + REM.(TEMP,10)
                TEMP = TEMP / 10
                TRANSFER TO SUML
            END OF CONDITIONAL
            FUNCTION RETURN SUM
            END OF FUNCTION
            
            INTERNAL FUNCTION(X)
            ENTRY TO DELFST.
            FDGT = 1
SIZE        WHENEVER FDGT.LE.X
                FDGT = FDGT * 10
                TRANSFER TO SIZE
            END OF CONDITIONAL
            FUNCTION RETURN REM.(X,FDGT/10)
            END OF FUNCTION
            
            INTERNAL FUNCTION(N,H)
            ENTRY TO INFIX.
            WHENEVER N.E.H, FUNCTION RETURN 1B
            PFX = H
PFXL        WHENEVER PFX.NE.0
                SFX = PFX
SFXL            WHENEVER SFX.NE.0
                    WHENEVER SFX.E.N, FUNCTION RETURN 1B
                    SFX = DELFST.(SFX)
                    TRANSFER TO SFXL
                END OF CONDITIONAL 
                PFX = PFX/10
                TRANSFER TO PFXL
            END OF CONDITIONAL
            FUNCTION RETURN 0B
            END OF FUNCTION
            
            THROUGH SHOW, FOR I=0, 1, I.GE.1000
            WHENEVER INFIX.(DSUM.(I),I)
                PRINT FORMAT FMT, I
            END OF CONDITIONAL
SHOW        CONTINUE

            VECTOR VALUES FMT = $I3*$
            END OF PROGRAM
Output:
  0
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 20
 30
 40
 50
 60
 70
 80
 90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919

Mathematica /Wolfram Language

ClearAll[SumAsSubString]
SumAsSubString[n_Integer] := Module[{id, s},
  id = IntegerDigits[n];
  s = Total[id];
  SequenceCount[id, IntegerDigits[s]] > 0
  ]
Select[Range[999], SumAsSubString]
Output:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 200, 300, 400, 500, 600, 700, 800, 900, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919}

Miranda

main :: [sys_message]
main = [Stdout (table 5 10 taskresults)]
       where taskresults = filter digit_sum_is_substring [0..999]

table :: num->num->[num]->[char]
table cw w ns = lay (map concat (split (map fmt ns)))
                where split [] = []
                      split ls = take w ls : split (drop w ls)
                      fmt n    = reverse (take cw ((reverse (shownum n)) ++ repeat ' '))

digit_sum_is_substring :: num->bool
digit_sum_is_substring n = (digitsum n) $infix n

digitsum :: num->num
digitsum 0 = 0
digitsum n = n mod 10 + digitsum (n div 10)

infix :: num->num->bool
infix n h = True,   if n = h
          = False,  if h = 0
          = True,   if n $infix (h div 10)
          = True,   if n $infix (chop h)
          = False,  otherwise

chop :: num->num
chop n = 0,          if n<10
       = n mod mask, otherwise
         where mask = last (takewhile (<n) (iterate (*10) 1))
Output:
    0    1    2    3    4    5    6    7    8    9
   10   20   30   40   50   60   70   80   90  100
  109  119  129  139  149  159  169  179  189  199
  200  300  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

Nim

import strutils

func digitsum(n: Natural): int =
  if n == 0: return 0
  var n = n
  while n != 0:
    result += n mod 10
    n = n div 10

var count = 0
for n in 0..<1000:
  let sn = $n
  if $digitsum(n) in sn:
    inc count
    stdout.write sn.align(3), if count mod 8 == 0: '\n' else: ' '
Output:
  0   1   2   3   4   5   6   7
  8   9  10  20  30  40  50  60
 70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

Nu

Works with: Nushell version 0.97.1
seq 0 999
| into string
| filter {|n| split chars | into int | math sum | into string | $in in $n }
| str join ' '
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

Perl

as one-liner ..

// 20210415 Perl programming solution

perl -e 'for(0..999){my$n;s/(\d)/$n+=$1/egr;print"$_ "if/$n/}'
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

Phix

function sdn(integer n)
    string sn = sprint(n)
    return match(sprint(sum(sq_sub(sn,'0'))),sn)
end function
for n in {999,10000} do
    sequence res = apply(filter(tagset(n,0),sdn),sprint)
    printf(1,"Found %d such numbers < %d: %s\n",{length(res),n+1,join(shorten(res,"",5),", ")})
end for
Output:
Found 48 such numbers < 1000: 0, 1, 2, 3, 4, ..., 915, 916, 917, 918, 919
Found 365 such numbers < 10001: 0, 1, 2, 3, 4, ..., 9926, 9927, 9928, 9929, 10000

PL/I

sumOfDigitsIsSubstring: procedure options(main);
    digitSum: procedure(n) returns(fixed);
        declare (ds, x, n) fixed;
        ds = 0;
        do x=n repeat(x/10) while(x>0);
            ds = ds + mod(x, 10);
        end;
        return(ds);
    end digitSum;
    
    chop: procedure(n) returns(fixed);
        declare (i, n) fixed;
        i = 1;
        do while(i<n);
            i = i * 10;
        end;
        i = i/10;
        if i=0 then return(0);
        else return(mod(n, i));
    end chop;
    
    infix: procedure(n, h) returns(bit) recursive;
        declare (n, h) fixed;
        if n=h then return('1'b);
        if h=0 then return('0'b);
        if infix(n, h/10) then return('1'b);
        return(infix(n, chop(h)));
    end infix;
    
    declare (i, col) fixed;
    col = 0;
    do i=0 to 999;
        if infix(digitSum(i), i) then do;
            put edit(i) (F(5));
            col = col + 1;
            if mod(col, 10)=0 then put skip;
        end;
    end;
    put skip;
end sumOfDigitsIsSubstring;
Output:
    0    1    2    3    4    5    6    7    8    9
   10   20   30   40   50   60   70   80   90  100
  109  119  129  139  149  159  169  179  189  199
  200  300  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

PL/M

100H:
DIGIT$SUM: PROCEDURE (N) BYTE;
    DECLARE N ADDRESS, SUM BYTE;
    SUM = 0;
    DO WHILE N > 0;
        SUM = SUM + N MOD 10;
        N = N / 10;
    END;
    RETURN SUM;
END DIGIT$SUM;

ITOA: PROCEDURE (N) ADDRESS;
    DECLARE S (6) BYTE INITIAL ('.....$');
    DECLARE (N, P) ADDRESS, C BASED P BYTE;
    P = .S(5);
DIGIT:
    P = P - 1;
    C = N MOD 10 + '0';
    IF (N := N / 10) > 0 THEN GO TO DIGIT;
    RETURN P;
END ITOA;

COPY$STRING: PROCEDURE (IN, OUT);
    DECLARE (IN, OUT) ADDRESS;
    DECLARE (I BASED IN, O BASED OUT) BYTE;
    DO WHILE I <> '$';
        O = I;
        IN = IN + 1;
        OUT = OUT + 1;
    END;
    O = '$';
END COPY$STRING;

CONTAINS: PROCEDURE (HAYSTACK, NEEDLE) BYTE;
    DECLARE (NEEDLE, HAYSTACK, NPOS, HPOS) ADDRESS;
    DECLARE (N BASED NPOS, H BASED HPOS, HS BASED HAYSTACK) BYTE;
    
    DO WHILE HS <> '$';
        NPOS = NEEDLE;
        HPOS = HAYSTACK;
        DO WHILE N = H AND H <> '$' AND N <> '$';
            NPOS = NPOS + 1;
            HPOS = HPOS + 1;
        END;
        IF N = '$' THEN RETURN 1;
        HAYSTACK = HAYSTACK + 1;
    END;
    RETURN 0;
END CONTAINS;

BDOS: PROCEDURE (FN, ARG);
    DECLARE FN BYTE, ARG ADDRESS;
    GO TO 5;
END BDOS;

PRINT: PROCEDURE (STRING);
    DECLARE STRING ADDRESS;
    CALL BDOS(9, STRING);
END PRINT;

DECLARE N ADDRESS;
DECLARE S1 (6) BYTE, S2 (6) BYTE;
DO N = 0 TO 999;
    CALL COPY$STRING(ITOA(N), .S1);
    CALL COPY$STRING(ITOA(DIGIT$SUM(N)), .S2);
    IF CONTAINS(.S1, .S2) THEN DO;
        CALL PRINT(.S1);
        CALL PRINT(.' $');
    END;
END;

CALL BDOS(0,0);
EOF
Output:
0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

Python

Just using the command line:

Python 3.9.0 (tags/v3.9.0:9cf6752, Oct  5 2020, 15:34:40) [MSC v.1927 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> x = [n for n in range(1000) if str(sum(int(d) for d in str(n))) in str(n)]
>>> len(x)
48
>>> for i in range(0, len(x), (stride:= 10)): print(str(x[i:i+stride])[1:-1])

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
10, 20, 30, 40, 50, 60, 70, 80, 90, 100
109, 119, 129, 139, 149, 159, 169, 179, 189, 199
200, 300, 400, 500, 600, 700, 800, 900, 910, 911
912, 913, 914, 915, 916, 917, 918, 919
>>>


or as a full script, taking an alternative route, and slightly reducing the number of str conversions required:

'''Sum of the digits of n is substring of n'''

from functools import reduce
from itertools import chain


# digitSumIsSubString :: String -> Bool
def digitSumIsSubString(s):
    '''True if the sum of the decimal digits in s
       matches any contiguous substring of s.
    '''
    return str(
        reduce(lambda a, c: a + int(c), s, 0)
    ) in s


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''Matches in [0..999]'''
    print(
        showMatches(
            digitSumIsSubString
        )(999)
    )


# ----------------------- DISPLAY ------------------------

# showMatches :: (String -> Bool) -> Int -> String
def showMatches(p):
    '''A listing of the integer strings [0..limit]
       which match the predicate p.
    '''
    def go(limit):
        def triage(n):
            s = str(n)
            return [s] if p(s) else []

        xs = list(
            chain.from_iterable(
                map(triage, range(0, 1 + limit))
            )
        )
        w = len(xs[-1])
        return f'{len(xs)} matches < {limit}:\n' + (
            '\n'.join(
                ' '.join(cell.rjust(w, ' ') for cell in row)
                for row in chunksOf(10)(xs)
            )
        )

    return go


# ----------------------- GENERIC ------------------------

# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
    '''A series of lists of length n, subdividing the
       contents of xs. Where the length of xs is not evenly
       divible, the final list will be shorter than n.
    '''
    def go(xs):
        return (
            xs[i:n + i] for i in range(0, len(xs), n)
        ) if 0 < n else None
    return go


# MAIN ---
if __name__ == '__main__':
    main()
Output:
48 matches < 1000:

  0   1   2   3   4   5   6   7   8   9
 10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

Quackery

  [ over findseq swap found ] is hasseq ( [ [ --> b )

  [ [] swap
    [ 10 /mod
      rot join swap
      dup 0 = until ]
    drop ]                    is digits (   n --> [ )

 [ digits
   0 over witheach +
   digits hasseq ]            is subsum (   n --> b )

 [] 1000 times
    [ i^ subsum if
        [ i^ join ] ]
 dup echo
 cr cr
 say "There are " size echo say " numbers."
Output:
[ 0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919 ]

There are 48 numbers.

Raku

say "{+$_} matching numbers\n{.batch(10)».fmt('%3d').join: "\n"}" given (^1000).grep: { .contains: .comb.sum }
Output:
48 matching numbers
  0   1   2   3   4   5   6   7   8   9
 10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

Refal

$ENTRY Go {
    = <Table (8 5) <Filter DigitSumSubstring <Iota 0 999>>>;
};

Cell {
    s.W s.N, <Repeat s.W ' '> <Symb s.N>: e.C,
             <Last s.W e.C>: (e.X) e.CI = e.CI;
}

Table {
    (s.Cols s.CW) e.X = <Table () (s.Cols s.Cols s.CW) e.X>;
    (e.Row) (s.Cols s.N s.CW), e.Row: {
        = ;
        e.Row = <Prout e.Row>;
    };
    (e.Row) (s.Cols 0 s.CW) e.X =
        <Prout e.Row>
        <Table () (s.Cols s.Cols s.CW) e.X>;
    (e.Row) (s.Cols s.N s.CW) s.I e.X =
        <Table (e.Row <Cell s.CW s.I>) (s.Cols <- s.N 1> s.CW) e.X>;
};

Repeat {
    0 s.C = ;
    s.N s.C = s.C <Repeat <- s.N 1> s.C>;
};

Filter {
    s.F = ;
    s.F s.I e.X, <Mu s.F s.I>: {
        True = s.I <Filter s.F e.X>;
        False = <Filter s.F e.X>;
    };
};

Iota {
    s.End s.End = s.End;
    s.Start s.End = s.Start <Iota <+ 1 s.Start> s.End>;
};

DigitSumSubstring {
    s.N, <Symb <DigitSum s.N>>: e.2,
         <Symb s.N>: e.1 e.2 e.3 = True;
    s.N = False;
};

DigitSum {
    0 = 0;
    s.N, <Divmod s.N 10>: (s.R) s.D = <+ s.D <DigitSum s.R>>;
};
Output:
    0    1    2    3    4    5    6    7
    8    9   10   20   30   40   50   60
   70   80   90  100  109  119  129  139
  149  159  169  179  189  199  200  300
  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

REXX

/*REXX pgm finds integers whose sum of decimal digits is a substring of  N,   N < 1000. */
parse arg hi cols .                              /*obtain optional argument from the CL.*/
if   hi=='' |   hi==","  then   hi= 1000         /*Not specified?  Then use the default.*/
if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */
w= 10                                            /*width of a number in any column.     */
@sdsN= ' integers whose sum of decimal digis of  N  is a substring of  N,  where  N  < ' ,
                                                                           commas(hi)
if cols>0 then say ' index │'center(@sdsN,    1 + cols*(w+1)     )
if cols>0 then say '───────┼'center(""   ,    1 + cols*(w+1), '─')
finds= 0;                  idx= 1                /*initialize # of found numbers & index*/
$=                                               /*a list of found integers  (so far).  */
     do j=0  for hi;     #= sumDigs(j)           /*obtain sum of the decimal digits of J*/
     if pos(#, j)==0     then iterate            /*Sum of dec. digs in J?  No, then skip*/
     finds= finds + 1                            /*bump the number of found integers.   */
     if cols==0          then iterate            /*Build the list  (to be shown later)? */
     $= $  right( commas( commas(j) ),  w)       /*add a found number ──► the  $  list. */
     if finds//cols\==0  then iterate            /*have we populated a line of output?  */
     say center(idx, 7)'│'  substr($, 2);   $=   /*display what we have so far  (cols). */
     idx= idx + cols                             /*bump the  index  count for the output*/
     end   /*j*/

if $\==''  then say center(idx, 7)"│"  substr($, 2)  /*possible display residual output.*/
if cols>0 then say '───────┴'center(""   ,    1 + cols*(w+1), '─')
say
say 'Found '       commas(finds)      @sdsN
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?
sumDigs:procedure; parse arg x 1 s 2;do j=2 for length(x)-1;s=s+substr(x,j,1);end;return s
output   when using the default inputs:
 index │              integers whose sum of decimal digis of  N  is a substring of  N,  where  N  <  1,000
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
   1   │          0          1          2          3          4          5          6          7          8          9
  11   │         10         20         30         40         50         60         70         80         90        100
  21   │        109        119        129        139        149        159        169        179        189        199
  31   │        200        300        400        500        600        700        800        900        910        911
  41   │        912        913        914        915        916        917        918        919
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  48  integers whose sum of decimal digis of  N  is a substring of  N,  where  N  <  1,000

Ring

load "stdlib.ring"
see "working..." + nl
see "Numbers n with property that the sum of the digits of n is substring of n are:" + nl
see "p p+2 p+6" + nl
row = 0
limit = 1000
 
for n = 0 to limit-1
    str = 0
    strn = string(n)
    for m = 1 to len(strn)
        str = str + number(strn[m])        
    next
    str = string(str)
    ind = substr(strn,str)
    if ind > 0
       row = row + 1
       see "" + n + " "
       if row%10 = 0
          see nl
       ok
    ok
next

see nl + "Found " + row + " numbers" + nl
see "done..." + nl
Output:
working...
Numbers n with property that the sum of the digits of n is substring of n are:
0 1 2 3 4 5 6 7 8 9 
10 20 30 40 50 60 70 80 90 100 
109 119 129 139 149 159 169 179 189 199 
200 300 400 500 600 700 800 900 910 911 
912 913 914 915 916 917 918 919 
Found 48 numbers
done...

RPL

≪ →STR 0 1 3 PICK SIZE FOR j 
      OVER j DUP SUB STR→ + NEXT 
   →STR POS 
≫ ‘∑DIN?’ STO
≪ { } 1 1000 FOR j IF j ∑DIN? THEN j + END NEXT ≫ EVAL
Output:
1: { 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919 1000 }

Ruby

p (0...1000).select{|n| n.to_s.match? n.digits.sum.to_s}
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 200, 300, 400, 500, 600, 700, 800, 900, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 1000]

Rust

fn sum_digits( mut num : u32 ) -> u32 {
   let mut sum : u32 = 0 ;
   while num != 0 {
      sum += num % 10 ;
      num /= 10 ;
   }
   sum 
}

fn main() {
    let solution : Vec<u32> = (0..1000).filter( | &d | {
          let digit_sum : u32 = sum_digits( d ) ;
          let sumstring = digit_sum.to_string( ) ;
          let sumstr : &str = sumstring.as_str( ) ;
          let numstring : String = d.to_string( ) ;
          let numstr : &str = numstring.as_str( ) ;
          numstr.contains( &sumstr )
          }).collect( ) ;
    println!("{:?}" , solution ) ;
}
Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 200, 300, 400, 500, 600, 700, 800, 900, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919]

SETL

program sum_of_digits_of_n_is_substring_of_n;
    loop for n in [0..999] | str digitsum n in str n do
        nprint(lpad(str n, 5));
        if (col +:= 1) mod 8 = 0 then print; end if;
    end loop;

    op digitsum(n);
        s := 0;
        loop while n>0 do
            s +:= n mod 10;
            n div:= 10;
        end loop;
        return s;
    end op;
end program;
Output:
    0    1    2    3    4    5    6    7
    8    9   10   20   30   40   50   60
   70   80   90  100  109  119  129  139
  149  159  169  179  189  199  200  300
  400  500  600  700  800  900  910  911
  912  913  914  915  916  917  918  919

Sidef

var upto = 1000
var base = 10

var list = (^upto -> grep {
    .digits(base).contains(.sumdigits(base).digits(base)...)
})

say "Numbers under #{upto} whose sum of digits is a substring of themselves:"

list.each_slice(8, {|*a|
    say a.map { '%3s' % _ }.join(' ')
})

say "\n#{list.len} such numbers found."
Output:
Numbers under 1000 whose sum of digits is a substring of themselves:
  0   1   2   3   4   5   6   7
  8   9  10  20  30  40  50  60
 70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

48 such numbers found.

SNOBOL4

        define('digsum(n)')             :(digsum_end)
digsum  digsum = 0
dsloop  digsum = digsum + remdr(n,10)   
        n = ne(n,0) n / 10              :s(dsloop)f(return)
digsum_end

        define('sumsub(n)')             :(sumsub_end)
sumsub  n digsum(n)                     :s(return)f(freturn)
sumsub_end

        i = 0
loop    output = sumsub(i) i
        i = lt(i,999) i + 1             :s(loop)
end
Output:
0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919

Wren

Library: Wren-math
Library: Wren-fmt
import "./math" for Int
import "./fmt" for Fmt

var numbers = []
for (n in 0..999) {
    var ns = n.toString
    var ds = Int.digitSum(n).toString
    if (ns.contains(ds)) numbers.add(n)
}
System.print("Numbers under 1,000 whose sum of digits is a substring of themselves:")
Fmt.tprint("$3d", numbers, 8)
System.print("\n%(numbers.count) such numbers found.")
Output:
Numbers under 1,000 whose sum of digits is a substring of themselves:
  0   1   2   3   4   5   6   7
  8   9  10  20  30  40  50  60
 70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

48 such numbers found.

XPL0

func Check(N);  \Return 'true' if sum of digits of N is a substring of N
int     N, Sum, A, B, C;
[N:= N/10;
C:= rem(0);
N:= N/10;
B:= rem(0);
A:= N;
Sum:= A+B+C;
if Sum=A or Sum=B or Sum=C then return true;
if Sum = B*10 + C then return true;
if Sum = A*10 + B then return true;
return false;
];

int Count, N;
[Count:= 0;
for N:= 0 to 1000-1 do
    if Check(N) then
        [IntOut(0, N);
        Count:= Count+1;
        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);
        ];
CrLf(0);
IntOut(0, Count);
Text(0, " such numbers found below 1000.
");
]
Output:
0       1       2       3       4       5       6       7       8       9
10      20      30      40      50      60      70      80      90      100
109     119     129     139     149     159     169     179     189     199
200     300     400     500     600     700     800     900     910     911
912     913     914     915     916     917     918     919     
48 such numbers found below 1000.

Yabasic

// Rosetta Code problem: http://rosettacode.org/wiki/Sum_of_the_digits_of_n_is_substring_of_n
// by Galileo, 04/2022

for n = 0 to 999
    if isSubstring(n) print n using "####";
next
print
 
sub isSubstring(n)
    local n$, lon, i, p
    
    n$ = str$(n)
    lon = len(n$)
    for i = 1 to lon
        p = p + val(mid$(n$,i,1))
    next
    
    return instr(n$, str$(p))   
end sub
Output:
   0    1    2    3    4    5    6    7    8    9   10   20   30   40   50   60   70   80   90  100  109  119  129  139  149  159  169  179  189  199  200  300  400  500  600  700  800  900  910  911  912  913  914  915  916  917  918  919
---Program done, press RETURN---