Tokenize a string with escaping
You are encouraged to solve this task according to the task description, using any language you may know.
Write a function or program that can split a string at each non-escaped occurrence of a separator character.
It should accept three input parameters:
- The string
- The separator character
- The escape character
It should output a list of strings.
Rules for splitting:
- The fields that were separated by the separators, become the elements of the output list.
- Empty fields should be preserved, even at the start and end.
Rules for escaping:
- "Escaped" means preceded by an occurrence of the escape character that is not already escaped itself.
- When the escape character precedes a character that has no special meaning, it still counts as an escape (but does not do anything special).
- Each occurrence of the escape character that was used to escape something, should not become part of the output.
Demonstrate that your function satisfies the following test-case:
Input | Output | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
(Print the output list in any format you like, as long as it is it easy to see what the fields are.)
- Metrics
- Counting
- Word frequency
- Letter frequency
- Jewels and stones
- I before E except after C
- Bioinformatics/base count
- Count occurrences of a substring
- Count how many vowels and consonants occur in a string
- Remove/replace
- XXXX redacted
- Conjugate a Latin verb
- Remove vowels from a string
- String interpolation (included)
- Strip block comments
- Strip comments from a string
- Strip a set of characters from a string
- Strip whitespace from a string -- top and tail
- Strip control codes and extended characters from a string
- Anagrams/Derangements/shuffling
- Word wheel
- ABC problem
- Sattolo cycle
- Knuth shuffle
- Ordered words
- Superpermutation minimisation
- Textonyms (using a phone text pad)
- Anagrams
- Anagrams/Deranged anagrams
- Permutations/Derangements
- Find/Search/Determine
- ABC words
- Odd words
- Word ladder
- Semordnilap
- Word search
- Wordiff (game)
- String matching
- Tea cup rim text
- Alternade words
- Changeable words
- State name puzzle
- String comparison
- Unique characters
- Unique characters in each string
- Extract file extension
- Levenshtein distance
- Palindrome detection
- Common list elements
- Longest common suffix
- Longest common prefix
- Compare a list of strings
- Longest common substring
- Find common directory path
- Words from neighbour ones
- Change e letters to i in words
- Non-continuous subsequences
- Longest common subsequence
- Longest palindromic substrings
- Longest increasing subsequence
- Words containing "the" substring
- Sum of the digits of n is substring of n
- Determine if a string is numeric
- Determine if a string is collapsible
- Determine if a string is squeezable
- Determine if a string has all unique characters
- Determine if a string has all the same characters
- Longest substrings without repeating characters
- Find words which contains all the vowels
- Find words which contain the most consonants
- Find words which contains more than 3 vowels
- Find words whose first and last three letters are equal
- Find words with alternating vowels and consonants
- Formatting
- Substring
- Rep-string
- Word wrap
- String case
- Align columns
- Literals/String
- Repeat a string
- Brace expansion
- Brace expansion using ranges
- Reverse a string
- Phrase reversals
- Comma quibbling
- Special characters
- String concatenation
- Substring/Top and tail
- Commatizing numbers
- Reverse words in a string
- Suffixation of decimal numbers
- Long literals, with continuations
- Numerical and alphabetical suffixes
- Abbreviations, easy
- Abbreviations, simple
- Abbreviations, automatic
- Song lyrics/poems/Mad Libs/phrases
- Mad Libs
- Magic 8-ball
- 99 bottles of beer
- The Name Game (a song)
- The Old lady swallowed a fly
- The Twelve Days of Christmas
- Tokenize
- Text between
- Tokenize a string
- Word break problem
- Tokenize a string with escaping
- Split a character string based on change of character
- Sequences
11l
F token_with_escape(a, escape = ‘^’, separator = ‘|’)
[String] result
V token = ‘’
V state = 0
L(c) a
I state == 0
I c == escape
state = 1
E I c == separator
result.append(token)
token = ‘’
E
token ‘’= c
E I state == 1
token ‘’= c
state = 0
result.append(token)
R result
print(token_with_escape(‘one^|uno||three^^^^|four^^^|^cuatro|’).map(s -> ‘'’s‘'’).join(‘, ’))
- Output:
'one|uno', '', 'three^^', 'four^|cuatro', ''
8080 Assembly
org 100h
jmp demo
;;; Routine to split a 0-terminated string
;;; Input: B=separator, C=escape, HL=string pointer.
;;; Output: DE=end of list of strings
;;; The split strings are stored in place.
split: mov d,h ; Set DE = output pointer
mov e,l
snext: mov a,m ; Get current input character
inx h ; Advance input pointer
stax d ; Write character at output pointer
ana a ; If zero, we are done
rz
cmp c ; Is it the escape character?
jz sesc
cmp b ; Is it the separator character?
jz ssep
inx d ; Otherwise, advance output pointer,
jmp snext ; and get the next character
sesc: mov a,m ; Store the escaped character without
inx h ; checking for anything except zero.
stax d
inx d
ana a ; Zero is still end of string
rz
jmp snext
ssep: xra a ; End of string, write zero terminator
stax d
inx d
jmp snext
;;; Use the routine to split the test-case string
demo: mvi b,'|' ; Separator character
mvi c,'^' ; Escape character
lxi h,test ; Pointer to test string
call split
;;; Print each string on its own line
lxi h,test
str: call puts ; Print string
call cmp16 ; Are we there yet?
jnc str ; If not, print the next string
ret
;;; 16-bit compare
cmp16: mov a,d
cmp h
rnz
mov a,e
cmp l
ret
;;; Print zero-terminated string with newline
puts: push d ; Keep DE registers
push h ; Keep pointer
lxi d,pfx ; Print prefix
mvi c,9
call 5
pop h ; Restore pointer
ploop: mov e,m ; Get current character
push h ; Keep pointer
mvi c,2 ; CP/M print character
call 5
pop h ; Restore pointer
mov a,m ; Is character zero?
ora a
inx h ; Increment pointer
jnz ploop ; If not, there are more characters
push h ; Keep pointer
lxi d,nl ; Write newline
mvi c,9 ; CP/M print string
call 5
pop h
pop d ; Restore DE registers
ret
pfx: db '> $' ; Prefix to make the output more obvious
nl: db 13,10,'$'
test: db 'one^|uno||three^^^^|four^^^|^cuatro|',0
- Output:
> one|uno > > three^^ > four^|cuatro >
Action!
DEFINE PTR="CARD"
TYPE Tokens=[
PTR buf ;BYTE ARRAY
PTR arr ;CARD ARRAY
PTR endPtr
BYTE count]
PROC Init(Tokens POINTER t BYTE ARRAY b PTR ARRAY a)
t.buf=b
t.arr=a
t.endPtr=b
t.count=0
RETURN
PROC AddToken(Tokens POINTER t CHAR ARRAY s)
PTR ARRAY a
CHAR ARRAY tmp
a=t.arr
tmp=t.endPtr
SCopy(tmp,s)
a(t.count)=tmp
t.count==+1
t.endPtr=t.endPtr+s(0)+1
RETURN
PROC PrintTokens(Tokens POINTER t)
BYTE i
PTR ARRAY a
a=t.arr
FOR i=0 TO t.count-1
DO
PrintF("""%S""%E",a(i))
OD
RETURN
PROC Append(CHAR ARRAY s CHAR c)
s(0)==+1
s(s(0))=c
RETURN
PROC Tokenize(CHAR ARRAY s CHAR sep,esc Tokens POINTER res)
BYTE ARRAY b(200)
PTR ARRAY a(20)
CHAR ARRAY tmp(255)
BYTE i,isEsc
CHAR c
Init(res,b,a)
isEsc=0
tmp(0)=0
FOR i=1 TO s(0)
DO
c=s(i)
IF isEsc THEN
isEsc=0
Append(tmp,c)
ELSE
IF c=esc THEN
isEsc=1
ELSEIF c=sep THEN
AddToken(res,tmp)
tmp(0)=0
ELSE
Append(tmp,c)
FI
FI
OD
AddToken(res,tmp)
RETURN
PROC Main()
Tokens t
Tokenize("one^|uno||three^^^^|four^^^|^cuatro|",'|,'^,t)
PrintTokens(t)
RETURN
- Output:
Screenshot from Atari 8-bit computer
"one|uno" "" "three^^" "four^|cuatro" ""
Ada
with Ada.Text_Io;
with Ada.Containers.Indefinite_Vectors;
with Ada.Strings.Unbounded;
procedure Tokenize is
package String_Vectors is
new Ada.Containers.Indefinite_Vectors (Positive, String);
use String_Vectors;
function Split (Text : String;
Separator : Character := '|';
Escape : Character := '^') return Vector
is
use Ada.Strings.Unbounded;
Result : Vector;
Escaped : Boolean := False;
Accu : Unbounded_String;
begin
for Char of Text loop
case Escaped is
when False =>
if Char = Escape then
Escaped := True;
elsif Char = Separator then
Append (Result, To_String (Accu));
Accu := Null_Unbounded_String;
else
Append (Accu, Char);
end if;
when True =>
Append (Accu, Char);
Escaped := False;
end case;
end loop;
Append (Result, To_String (Accu));
return Result;
end Split;
procedure Put_Vector (List : Vector) is
use Ada.Text_Io;
begin
for Element of List loop
Put ("'"); Put (Element); Put ("'"); New_Line;
end loop;
end Put_Vector;
begin
Put_Vector (Split ("one^|uno||three^^^^|four^^^|^cuatro|"));
end Tokenize;
- Output:
'one|uno' '' 'three^^' 'four^|cuatro' ''
ALGOL 68
BEGIN
# returns s parsed according to delimiter and escape #
PROC parse with escapes = ( STRING s, CHAR delimiter, escape )[]STRING:
IF ( UPB s - LWB s ) + 1 < 1 THEN
# empty string #
[ 1 : 0 ]STRING empty array;
empty array
ELSE
# at least one character #
# allow for a string composed entirely of delimiter characters #
[ 1 : ( UPB s - LWB s ) + 3 ]STRING result;
INT r pos := 1;
INT s pos := LWB s;
result[ r pos ] := "";
WHILE s pos <= UPB s DO
CHAR c = s[ s pos ];
IF c = delimiter THEN
# start a new element #
result[ r pos +:= 1 ] := ""
ELIF c = escape THEN
# use the next character even if it is an escape #
s pos +:= 1;
IF s pos < UPB s THEN
# the escape is not the last character #
result[ r pos ] +:= s[ s pos ]
FI
ELSE
# normal character #
result[ r pos ] +:= c
FI;
s pos +:= 1
OD;
result[ 1 : r pos ]
FI; # parse with escapes #
# task test case #
[]STRING tokens = parse with escapes( "one^|uno||three^^^^|four^^^|^cuatro|", "|", "^" );
FOR t pos FROM LWB tokens TO UPB tokens DO print( ( "[", tokens[ t pos ], "]", newline ) ) OD
END
- Output:
[one|uno] [] [three^^] [four^|cuatro] []
AppleScript
------------------ TOKENIZE WITH ESCAPING ----------------
-- tokenize :: String -> Character -> Character -> [String]
on tokenize(str, delimChar, chrEsc)
script charParse
-- Record: {esc:Bool, token:String, tokens:[String]}
-- charParse :: Record -> Character -> Record
on |λ|(a, x)
set blnEsc to esc of a
set blnEscChar to ((not blnEsc) and (x = chrEsc))
if ((not blnEsc) and (x = delimChar)) then
set k to ""
set ks to (tokens of a) & token of a
else
set k to (token of a) & cond(blnEscChar, "", x)
set ks to tokens of (a)
end if
{esc:blnEscChar, token:k, tokens:ks}
end |λ|
end script
set recParse to foldl(charParse, ¬
{esc:false, token:"", tokens:[]}, splitOn("", str))
tokens of recParse & token of recParse
end tokenize
--------------------------- TEST -------------------------
on run
script numberedLine
on |λ|(a, s)
set iLine to lineNum of a
{lineNum:iLine + 1, report:report of a & iLine & ":" & tab & s & linefeed}
end |λ|
end script
report of foldl(numberedLine, {lineNum:1, report:""}, ¬
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^"))
end run
-------------------- GENERIC FUNCTIONS -------------------
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- splitOn :: String -> String -> [String]
on splitOn(pat, src)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, pat}
set xs to text items of src
set my text item delimiters to dlm
return xs
end splitOn
-- cond :: Bool -> a -> a -> a
on cond(bool, f, g)
if bool then
f
else
g
end if
end cond
- Output:
1: one|uno 2: 3: three^^ 4: four^|cuatro 5:
Arturo
tokenize: function [s sep esc][
escaping: 0
loop 0..(size s)-1 [i][
chr: get split s i
if? escaping=1 [
prints chr
escaping: 0
]
else [
case [chr]
when? [=sep] [print ""]
when? [=esc] [escaping: 1]
else [prints chr]
]
]
print ""
]
str: "one^|uno||three^^^^|four^^^|^cuatro|"
tokenize str "|" "^"
- Output:
one|uno three^^ four^|cuatro
AutoHotkey
Tokenize(s,d,e){
for i,v in x:=StrSplit(StrReplace(StrReplace(StrReplace(s,e e,Chr(0xFFFE)),e d,Chr(0xFFFF)),e),d)
x[i]:=StrReplace(StrReplace(v,Chr(0xFFFE),e),Chr(0xFFFF),d)
return x
}
Examples:
str := "one^|uno||three^^^^|four^^^|^cuatro|"
for i, v in Tokenize(str, "|", "^")
output .= i " : " v "`n"
MsgBox % output
- Output:
1 : one|uno 2 : 3 : three^^ 4 : four^|cuatro 5 :
BBC BASIC
REM >tokenizer
PROC_tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^")
END
:
DEF PROC_tokenize(src$, sep$, esc$)
LOCAL field%, char$, escaping%, i%
field% = 1
escaping% = FALSE
PRINT field%; " ";
FOR i% = 1 TO LEN src$
char$ = MID$(src$, i%, 1)
IF escaping% THEN
PRINT char$;
escaping% = FALSE
ELSE
CASE char$ OF
WHEN sep$
PRINT
field% += 1
PRINT field%; " ";
WHEN esc$
escaping% = TRUE
OTHERWISE
PRINT char$;
ENDCASE
ENDIF
NEXT
PRINT
ENDPROC
- Output:
1 one|uno 2 3 three^^ 4 four^|cuatro 5
BQN
str ← "one^|uno||three^^^^|four^^^|^cuatro|"
Split ← ((⊢-˜+`׬)∘=⊔⊢)
SplitE ← {
esc ← <`'^'=𝕩
rem ← »esc
spl ← (¬rem)∧'|'=𝕩
𝕩⊔˜(⊢-(esc∨spl)×1⊸+)+`spl
}
•Show SplitE str
⟨ "one|uno" ⟨⟩ "three^^" "four^|cuatro" ⟩
C
#include <stdlib.h>
#include <stdio.h>
#define STR_DEMO "one^|uno||three^^^^|four^^^|^cuatro|"
#define SEP '|'
#define ESC '^'
typedef char* Str; /* just for an easier reading */
/* ===> FUNCTION PROTOTYPES <================================================ */
unsigned int ElQ( const char *s, char sep, char esc );
Str *Tokenize( char *s, char sep, char esc, unsigned int *q );
/*==============================================================================
Main function.
Just passes a copy of the STR_DEMO string to the tokenization function and shows
the results.
==============================================================================*/
int main() {
char s[] = STR_DEMO;
unsigned int i, q;
Str *list = Tokenize( s, SEP, ESC, &q );
if( list != NULL ) {
printf( "\n Original string: %s\n\n", STR_DEMO );
printf( " %d tokens:\n\n", q );
for( i=0; i<q; ++i )
printf( " %4d. %s\n", i+1, list[i] );
free( list );
}
return 0;
}
/*==============================================================================
"ElQ" stands for "Elements Quantity". Counts the amount of valid element in the
string s, according to the separator character provided in sep and the escape
character provided in esc.
==============================================================================*/
unsigned int ElQ( const char *s, char sep, char esc ) {
unsigned int q, e;
const char *p;
for( e=0, q=1, p=s; *p; ++p ) {
if( *p == esc )
e = !e;
else if( *p == sep )
q += !e;
else e = 0;
}
return q;
}
/*==============================================================================
The actual tokenization function.
Allocates as much dynamic memory as needed to contain the pointers to the
tokenized portions of the string passed as the "s" parameter, then looks for the
separators characters sep, paying attention to the occurrences of the escape
character provided in esc. When a valid separator is found, the function swaps
it with a '\0' terminator character and stores the pointer to the next string
into the array of pointers in dynamic memory. On output, the value of *q is the
number of pointers in the array. The caller is responsible for deallocating with
free() the returned array of pointers when it is no longer needed.
In case of failure, NULL is returned.
==============================================================================*/
Str *Tokenize( char *s, char sep, char esc, unsigned int *q ) {
Str *list = NULL;
*q = ElQ( s, sep, esc );
list = malloc( *q * sizeof(Str) );
if( list != NULL ) {
unsigned int e, i;
char *p;
i = 0;
list[i++] = s;
for( e=0, p=s; *p; ++p ) {
if( *p == esc ) {
e = !e;
}
else if( *p == sep && !e ) {
list[i++] = p+1;
*p = '\0';
}
else {
e = 0;
}
}
}
return list;
}
- Output:
Original string: one^|uno||three^^^^|four^^^|^cuatro| 5 tokens: 1. one^|uno 2. 3. three^^^^ 4. four^^^|^cuatro 5.
C#
using System;
using System.Text;
using System.Collections.Generic;
public class TokenizeAStringWithEscaping
{
public static void Main() {
string testcase = "one^|uno||three^^^^|four^^^|^cuatro|";
foreach (var token in testcase.Tokenize(separator: '|', escape: '^')) {
Console.WriteLine(": " + token); //Adding a : so we can see empty lines
}
}
}
public static class Extensions
{
public static IEnumerable<string> Tokenize(this string input, char separator, char escape) {
if (input == null) yield break;
var buffer = new StringBuilder();
bool escaping = false;
foreach (char c in input) {
if (escaping) {
buffer.Append(c);
escaping = false;
} else if (c == escape) {
escaping = true;
} else if (c == separator) {
yield return buffer.Flush();
} else {
buffer.Append(c);
}
}
if (buffer.Length > 0 || input[input.Length-1] == separator) yield return buffer.Flush();
}
public static string Flush(this StringBuilder stringBuilder) {
string result = stringBuilder.ToString();
stringBuilder.Clear();
return result;
}
}
- Output:
: one|uno : : three^^ : four^|cuatro :
C++
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
using namespace std;
vector<string> tokenize(const string& input, char seperator, char escape) {
vector<string> output;
string token;
bool inEsc = false;
for (char ch : input) {
if (inEsc) {
inEsc = false;
} else if (ch == escape) {
inEsc = true;
continue;
} else if (ch == seperator) {
output.push_back(token);
token = "";
continue;
}
token += ch;
}
if (inEsc)
throw new invalid_argument("Invalid terminal escape");
output.push_back(token);
return output;
}
int main() {
string sample = "one^|uno||three^^^^|four^^^|^cuatro|";
cout << sample << endl;
cout << '[';
for (auto t : tokenize(sample, '|', '^')) {
cout << '"' << t << "\", ";
}
cout << ']' << endl;
return 0;
}
- Output:
one^|uno||three^^^^|four^^^|^cuatro| ["one|uno", "", "three^^", "four^|cuatro", "", ]
CLU
tokenize = iter (sep, esc: char, s: string) yields (string)
escape: bool := false
part: array[char] := array[char]$[]
for c: char in string$chars(s) do
if escape then
escape := false
array[char]$addh(part,c)
elseif c=esc then
escape := true
elseif c=sep then
yield(string$ac2s(part))
part := array[char]$[]
else
array[char]$addh(part,c)
end
end
yield(string$ac2s(part))
end tokenize
start_up = proc ()
po: stream := stream$primary_output()
testcase: string := "one^|uno||three^^^^|four^^^|^quatro|"
for part: string in tokenize('|', '^', testcase) do
stream$putl(po, "\"" || part || "\"")
end
end start_up
- Output:
"one|uno" "" "three^^" "four^|quatro" ""
COBOL
>>SOURCE FORMAT FREE
identification division.
program-id. 'tokenizewithescaping'.
environment division.
configuration section.
repository.
function all intrinsic.
data division.
working-storage section.
01 escape-char pic x value '^'.
01 separator-char pic x value '|'.
01 reference-string pic x(64) value
'one^|uno||three^^^^|four^^^|^cuatro|'.
01 input-string pic x(64).
01 c pic 99.
01 escaped pic x.
01 t pic 99.
01 t-max pic 99.
01 t-lim pic 99 value 32.
01 token-entry occurs 32.
03 token-len pic 99.
03 token pic x(16).
01 l pic 99.
01 l-lim pic 99 value 16.
01 error-found pic x.
procedure division.
start-tokenize-with-escaping.
move reference-string to input-string
perform tokenize
move 'token' to input-string
perform tokenize
move '^^^^^^^^' to input-string
perform tokenize
move '||||||||' to input-string
perform tokenize
move all 'token' to input-string
perform tokenize
move all 't|' to input-string
perform tokenize
move spaces to input-string
perform tokenize
display space
stop run
.
tokenize.
display space
display 'string:'
display input-string
move 'N' to escaped error-found
move 1 to t-max
initialize token-entry(t-max)
move 0 to l
perform varying c from 1 by 1 until
c > length(input-string)
or input-string(c:) = spaces
evaluate escaped also input-string(c:1)
when 'N' also escape-char
move 'Y' to escaped
when 'N' also separator-char
perform increment-t-max
if error-found = 'Y'
exit paragraph
end-if
when 'N' also any
perform move-c
if error-found = 'Y'
exit paragraph
end-if
when 'Y' also any
perform move-c
if error-found = 'Y'
exit paragraph
end-if
move 'N' to escaped
end-evaluate
end-perform
if l > 0
move l to token-len(t-max)
end-if
if c = 1
display 'no tokens'
else
display 'tokens:'
perform varying t from 1 by 1 until t > t-max
if token-len(t) > 0
display t ': ' token-len(t) space token(t)
else
display t ': ' token-len(t)
end-if
end-perform
end-if
.
increment-t-max.
if t-max >= t-lim
display 'error: at ' c ' number of tokens exceeds ' t-lim
move 'Y' to error-found
else
move l to token-len(t-max)
add 1 to t-max
initialize token-entry(t-max)
move 0 to l
move 'N' to error-found
end-if
.
move-c.
if l >= l-lim
display 'error: at ' c ' token length exceeds ' l-lim
move 'Y' to error-found
else
add 1 to l
move input-string(c:1) to token(t-max)(l:1)
move 'N' to error-found
end-if
.
end program 'tokenizewithescaping'.
- Output:
$ cobc -xj tokenizewithescaping.cbl string: one^|uno||three^^^^|four^^^|^cuatro| tokens: 01: 07 one|uno 02: 00 03: 07 three^^ 04: 12 four^|cuatro 05: 00 string: token tokens: 01: 05 token string: ^^^^^^^^ tokens: 01: 04 ^^^^ string: |||||||| tokens: 01: 00 02: 00 03: 00 04: 00 05: 00 06: 00 07: 00 08: 00 09: 00 string: tokentokentokentokentokentokentokentokentokentokentokentokentoke error: at 17 token length exceeds 16 string: t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t|t| error: at 64 number of tokens exceeds 32 string: no tokens
Common Lisp
(defun split (input separator escape)
(flet ((make-string-buffer ()
(make-array 0 :element-type 'character :adjustable t :fill-pointer t)))
(loop with token = (make-string-buffer)
with result = nil
with to-be-escaped = nil
for ch across input
do (cond (to-be-escaped
(vector-push-extend ch token)
(setf to-be-escaped nil))
((char= ch escape)
(setf to-be-escaped t))
((char= ch separator)
(push token result)
(setf token (make-string-buffer)))
(t
(vector-push-extend ch token)))
finally (push token result)
(return (nreverse result)))))
(defun main ()
(dolist (token (split "one^|uno||three^^^^|four^^^|^cuatro|" #\| #\^))
(format t "'~A'~%" token)))
- Output:
'one|uno' '' 'three^^' 'four^|cuatro' ''
D
import std.stdio;
void main() {
string sample = "one^|uno||three^^^^|four^^^|^cuatro|";
writeln(sample);
writeln(tokenizeString(sample, '|', '^'));
}
auto tokenizeString(string source, char seperator, char escape) {
import std.array : appender;
import std.exception : enforce;
auto output = appender!(string[]);
auto token = appender!(char[]);
bool inEsc;
foreach(ch; source) {
if (inEsc) {
inEsc = false;
} else if (ch == escape) {
inEsc = true;
continue;
} else if (ch == seperator) {
output.put(token.data.idup);
token.clear();
continue;
}
token.put(ch);
}
enforce(!inEsc, "Invalid terminal escape");
output.put(token.data.idup);
return output.data;
}
- Output:
one^|uno||three^^^^|four^^^|^cuatro| ["one|uno", "", "three^^", "four^|cuatro", ""]
Dyalect
func String.Tokenize(separator, escape) {
var buffer = []
var escaping = false
for c in this {
if escaping {
buffer.Add(c)
escaping = false
} else if c == escape {
escaping = true
} else if c == separator {
yield buffer.Flush();
} else {
buffer.Add(c);
}
}
if buffer.Length() > 0 || this[this.Length() - 1] == separator {
yield buffer.Flush()
}
}
func Array.Flush() {
var str = String.Concat(values: this)
this.Clear()
str
}
let testcase = "one^|uno||three^^^^|four^^^|^cuatro|";
for token in testcase.Tokenize(separator: '|', escape: '^') {
print(": \(token)")
}
- Output:
: one|uno : : three^^ : four^|cuatro :
EasyLang
func$[] tokenize src$ sep$ esc$ .
r$[] = [ "" ]
for i = 1 to len src$
c$ = substr src$ i 1
if esc = 1
r$[$] &= c$
esc = 0
else
if c$ = sep$
r$[] &= ""
elif c$ = esc$
esc = 1
else
r$[$] &= c$
.
.
.
return r$[]
.
print tokenize "one^|uno||three^^^^|four^^^|^cuatro|" "|" "^"
- Output:
[ "one|uno" "" "three^^" "four^|cuatro" "" ]
Elena
ELENA 6.x :
import extensions;
import extensions'routines;
import system'collections;
import system'routines;
import system'text;
extension op : String
{
tokenize(separator,escape)
{
auto buffer := new TextBuilder();
auto list := new ArrayList();
bool escaping := false;
self.forEach::(ch)
{
if (escaping)
{
buffer.write(ch);
escaping := false
}
else if (ch == escape)
{
escaping := true
}
else if (ch == separator)
{
list.append(buffer.Value);
buffer.clear()
}
else
{
buffer.write(ch)
}
};
^ list
}
}
const string testcase = "one^|uno||three^^^^|four^^^|^cuatro|";
public program()
{
testcase.tokenize("|", "^").forEach(printingLn)
}
- Output:
one|uno three^^ four^|cuatro
F#
open System
open System.Text.RegularExpressions
(*
.NET regexes have unlimited look-behind, so we can look for separators
which are preceeded by an even number of (or no) escape characters
*)
let split esc sep s =
Regex.Split (
s,
String.Format("(?<=(?:\b|[^{0}])(?:{0}{0})*){1}", Regex.Escape(esc), Regex.Escape(sep))
)
let unescape esc s =
Regex.Replace(
s,
Regex.Escape(esc) + "(.)",
"$1"
)
[<EntryPoint>]
let main argv =
let (esc, sep) = ("^", "|")
"one^|uno||three^^^^|four^^^|^cuatro|"
|> split esc sep
|> Seq.map (unescape esc)
|> Seq.iter (fun s -> printfn "'%s'" s)
0
- Output:
'one|uno' '' 'three^^' 'four^|cuatro' ''
Factor
This example uses Factor's parser-combinators
vocabulary, which is modeled after Haskell's parser combinators. Page 51 of this pdf contains a useful introduction to this vocabulary.
USING: accessors kernel lists literals namespaces
parser-combinators prettyprint sequences strings ;
SYMBOLS: esc sep ;
: set-chars ( m n -- ) [ sep set ] [ esc set ] bi* ;
: escape ( -- parser ) esc get 1token ;
: escaped ( -- parser ) escape any-char-parser &> ;
: separator ( -- parser ) sep get 1token ;
: character ( -- parser )
${ esc get sep get } [ member? not ] curry satisfy ;
: my-token ( -- parser ) escaped character <|> <*> ;
: token-list ( -- parser )
my-token separator list-of [ [ >string ] map ] <@ ;
: tokenize ( str sep-char esc-char -- seq )
set-chars token-list parse car parsed>> ;
"one^|uno||three^^^^|four^^^|^cuatro|"
CHAR: | CHAR: ^ tokenize .
- Output:
{ "one|uno" "" "three^^" "four^|cuatro" "" }
Forth
variable 'src
variable #src
variable offset
: advance 1 offset +! ;
: chr@ offset @ 'src @ + c@ ;
: nextchr advance chr@ ;
: bound offset @ #src @ u< ;
: separator? dup [char] | = if drop cr else emit then ;
: escape? dup [char] ^ = if drop nextchr emit else separator? then ;
: tokenize 0 offset ! begin bound while nextchr escape? repeat ;
\ Test of function
Here 'src ! ," one^|uno||three^^^^|four^^^|^cuatro|" here 'src @ - #src !
page
cr ." #### start ####" cr tokenize cr ." #### End ####" cr
- Output:
#### start #### one|uno three^^ four^|cuatro #### End ####
Fortran
First Fortran (1958) offered no facilities for inspecting or manipulating text, until Fortran IV when the A
format code was introduced whereby text could be read or written from numeric variables. The difficulties and incompatibilities between different computers were eased with F77 that offered CHARACTER*n variables, though they are not quite strings that have a varying length. F95 introduces the ability to define a compound entity such as a string and F2003 standardised a version of strings whereby with each assignment to such a variable, it would be re-allocated with the required amount of storage. Otherwise, one proceeds with CHARACTER variables and an associated variable containing its current length as with TOKEN
and L
. However, when passed to subroutines (or functions) as a parameter, a CHARACTER variable is supplied along with a secret additional parameter giving the size of the variable, and this is stringlike, so long as there is no need to change the length. Thus, the length of parameter TEXT to subroutine SPLIT can be found via LEN(TEXT).
The source style is F90 simply for the convenience of having subroutine SPLOT defined within subroutine SPLIT so as to gain access to certain variables. If separate subroutines were to be used, then there would have to be parameters or COMMON variables, or, one could just replicate the code within SPLIT. A further F90 feature involves declaring the size of internal variable TOKEN
to be LEN(TEXT)
, which is surely the largest it could be. Otherwise, one would have to select some "surely big enough" value.
SUBROUTINE SPLIT(TEXT,SEP,ESC) !Identifies and prints tokens from within a text.
CHARACTER*(*) TEXT !To be scanned.
CHARACTER*(1) SEP !The only separator for tokens.
CHARACTER*(1) ESC !Miscegnator.
CHARACTER*(LEN(TEXT)) TOKEN !Surely sufficient space.
INTEGER N !Counts the tokens as they're found.
INTEGER I !Steps through the text.
INTEGER L !Length of the token so far accumulated.
LOGICAL ESCAPING !Miscegnatory state.
N = 0 !No tokens so far.
L = 0 !Nor any text for the first.
ESCAPING = .FALSE. !And the state is good.
DO I = 1,LEN(TEXT) !Step through the text.
IF (ESCAPING) THEN !Are we in a mess?
L = L + 1 !Yes. An ESC character had been seen.
TOKEN(L:L) = TEXT(I:I) !So, whatever follows is taken as itself.
ESCAPING = .FALSE. !There are no specially-recognised names.
ELSE !Otherwise, we're in text to inspect.
IF (TEXT(I:I).EQ.ESC) THEN !So, is it a troublemaker?
ESCAPING = .TRUE. !Yes! Trouble is to follow.
ELSE IF (TEXT(I:I).EQ.SEP) THEN !If instead a separator,
CALL SPLOT !Then the token up to it is complete.
ELSE !Otherwise, a simple constituent character.
L = L + 1 !So, count it in.
TOKEN(L:L) = TEXT(I:I) !And copy it in.
END IF !So much for grist.
END IF !So much for that character.
END DO !On to the next.
Completes on end-of-text with L > 0, or, if the last character had been SEP, a null token is deemed to be following.
CALL SPLOT !Tail end.
CONTAINS !Save on having two copies of this code.
SUBROUTINE SPLOT !Show the token and scrub.
N = N + 1 !Another one.
WRITE (6,1) N,TOKEN(1:L) !Reveal.
1 FORMAT ("Token ",I0," >",A,"<")!Fancy layout.
L = 0 !Prepare for a fresh token.
END SUBROUTINE SPLOT !A brief life.
END SUBROUTINE SPLIT !And then oblivion.
PROGRAM POKE
CALL SPLIT("one^|uno||three^^^^|four^^^|^cuatro|","|","^")
END
The output has the text of the tokens marked >thus<
Token 1 >one|uno< Token 2 >< Token 3 >three^^< Token 4 >four^|cuatro< Token 5 ><
The terminating separator character is deemed to mark the start of a null token in the problem's specification. If the text ends without one, then the end-of-text ends the token and the DO-loop quits with L > 0 and so something for SPLOT. If the penultimate character were an ESC followed by a SEP, then the loop also ends with L > 0. If the text ends with a SEP but not preceded by an ESC (as in the example) then L = 0 - but SPLOT is invoked unconditionally. A SEP at the start of the text will also elicit a null token, as will an entirely null text.
If the text ends with an ESC, then this is surely a mistake and could be caught via a test that ESCAPING
was true on exit from the loop. But no error messages are called for...
In this example the DO-loop relentlessly steps through the text, and in general this would not be convenient. Normally, token identification proceeds within a much larger context where one would not discard the token immediately after it is isolated, and rather than copying the text hither and thither, one might prefer to identify it in-place, say with variables L1
and L2
identifying the start and end positions within the working area. In such a case there would no longer be a need for a variable TOKEN
and the angst of deciding on a suitable maximum size. This would also make it easier in any error messages to show context and provenance. However, the bizarre miscegnation of "escape" sequences (especially confusing within text literals), means that the source text does not necessarily constitute the text of the token.
FreeBASIC
Sub tokenize(cadena As String, separador As String, escape As String)
Dim As Integer campo = 1
Dim As Boolean escapando = false
Dim As String char
Print ""; campo; " ";
For i As Integer = 1 To Len(cadena)
char = Mid(cadena, i, 1)
If escapando Then
Print char;
escapando = false
Else
Select Case char
Case separador
Print
campo += 1
Print ""; campo; " ";
Case escape
escapando = true
Case Else
Print char;
End Select
End If
Next i
Print
End Sub
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^")
Sleep
- Output:
Igual que la entrada de Ring.
Go
package main
import (
"errors"
"fmt"
)
func TokenizeString(s string, sep, escape rune) (tokens []string, err error) {
var runes []rune
inEscape := false
for _, r := range s {
switch {
case inEscape:
inEscape = false
fallthrough
default:
runes = append(runes, r)
case r == escape:
inEscape = true
case r == sep:
tokens = append(tokens, string(runes))
runes = runes[:0]
}
}
tokens = append(tokens, string(runes))
if inEscape {
err = errors.New("invalid terminal escape")
}
return tokens, err
}
func main() {
const sample = "one^|uno||three^^^^|four^^^|^cuatro|"
const separator = '|'
const escape = '^'
fmt.Printf("Input: %q\n", sample)
tokens, err := TokenizeString(sample, separator, escape)
if err != nil {
fmt.Println("error:", err)
} else {
fmt.Printf("Tokens: %q\n", tokens)
}
}
- Output:
Input: "one^|uno||three^^^^|four^^^|^cuatro|" Tokens: ["one|uno" "" "three^^" "four^|cuatro" ""]
Haskell
Deterministic Finite Automaton
splitEsc :: (Foldable t1, Eq t) => t -> t -> t1 t -> [[t]]
splitEsc sep esc = reverse . map reverse . snd . foldl process (0, [[]])
where process (st, r:rs) ch
| st == 0 && ch == esc = (1, r:rs)
| st == 0 && ch == sep = (0, []:r:rs)
| st == 1 && sep == esc && ch /= sep = (0, [ch]:r:rs)
| otherwise = (0, (ch:r):rs)
- Output:
λ> splitEsc '|' '^' "one^|uno||three^^^^|four^^^|^cuatro|" ["one|uno","","three^^","four^|cuatro",""]
The solution works with any foldable structures.
λ> splitEsc 11 0 [2,3,11,3,4,5,11,0,11,2,3,4] [[2,3],[3,4,5],[11,2,3,4]]
It handles pathological case when separator and escape are the same:
λ> split '|' '|' "one^|uno||three^^^^|four^^^|^cuatro|" ["one^","uno|three^^^^","four^^^","^cuatro"]
For splitting lists without escaping see Data.List.Split package.
Counduit-based solution
Constant in space (~ O(k), where k -- is token length), as fast as DFA-based solution.
{-#Language LambdaCase #-}
import Conduit
splitEscC :: (Monad m, Eq t) => t -> t -> Conduit t m [t]
splitEscC sep esc = mapOutput reverse $ go True []
where
go notEsc b = await >>= \case
Nothing -> yield b
Just ch | notEsc && ch == esc -> go False b
| notEsc && ch == sep -> yield b >> go True []
| otherwise -> go True (ch:b)
This new conduit could be used in a pipeline as follows:
main = runConduit $
yieldMany "one^|uno||three^^^^|four^^^|^cuatro|"
.| splitEscC '|' '^'
.| mapM_C print
λ> main "one|uno" "" "three^^" "four^|cuatro" ""
Alternative
This is essentially equivalent to the first (DFA) example, but, though possibly less elegant than the guard idiom, appears to be fractionally faster with larger (eg 180k) test strings.
import Data.Bool (bool)
------------------ TOKENIZE WITH ESCAPING ----------------
tokenize :: Char -> Char -> String -> [String]
tokenize delim esc str =
reverse $
reverse <$> (token : list)
where
(token, list, _) =
foldr
( \x (aToken, aList, aEsc) ->
let literal = not aEsc
isEsc = literal && (x == esc)
in bool
( bool (x : aToken) aToken isEsc,
aList,
isEsc
)
([], aToken : aList, isEsc)
(literal && x == delim)
)
([], [], False)
(reverse str)
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_ print $
tokenize
'|'
'^'
"one^|uno||three^^^^|four^^^|^cuatro|"
- Output:
"one|uno" "" "three^^" "four^|cuatro" ""
J
From the python example:
tokenize1=: tokenize =: '^|'&$: :(4 : 0)
'ESC SEP' =. x
STATE =. 0
RESULT =. 0 $ a:
TOKEN =. ''
for_C. y do.
if. STATE do.
TOKEN =. TOKEN , C
STATE =. 0
else.
if. C = ESC do.
STATE =. 1
elseif. C = SEP do.
RESULT =. RESULT , < TOKEN
TOKEN =. ''
elseif. do.
TOKEN =. TOKEN , C
end.
end.
end.
RESULT =. RESULT , < TOKEN
)
tokenize 'one^|uno||three^^^^|four^^^|^cuatro|' ┌───────┬┬───────┬────────────┬┐ │one|uno││three^^│four^|cuatro││ └───────┴┴───────┴────────────┴┘
Here's a somewhat more efficient approach (over 100 times faster on a 100k textual example):
tokenize2=: tokenize=:3 :0
'^|' tokenize2 y NB. task default escape and separator
:
'ESC SEP'=. x
E=. 18 b./\.&.|.ESC=y NB. escape positions
S=. (SEP=y)>_1}.0,E NB. separator positions
K=. -.E+.S NB. keep positions
T=. (#y){. 1,}.S NB. token beginnings
(T<;.1 K)#&.>T<;.1 y
)
Example use:
'^|' tokenize 'one^|uno||three^^^^|four^^^|^cuatro|'
┌───────┬┬───────┬────────────┬┐
│one|uno││three^^│four^|cuatro││
└───────┴┴───────┴────────────┴┘
Solution invoking the sequential machine primitive verb.[this thread.]
charTokens =: (0;(3 2 2$(2 1 1 1 2 2 1 2 1 0 1 0));<<'^')&;: NB. sequential machine
splitTokens =: ((<,'|')&= <;._1 ])@:((<,'|'),])
removeExtra =: (}.^:(1<#)) L:0
tokenize3=: tokenize=: ; each @: (removeExtra @: splitTokens @: charTokens)
Example use:
t=: 'one^|uno||three^^^^|four^^^|^cuatro|'
tokenize t
┌───────┬┬───────┬────────────┬┐
│one|uno││three^^│four^|cuatro││
└───────┴┴───────┴────────────┴┘
$tokenize t
5
Relative efficiencies:
txt=: 1e5$'one^|uno||three^^^^|four^^^|^cuatro|'
(%"1 <./) timespacex every 'tokenize1 txt';'tokenize2 txt';'tokenize3 txt'
132.856 1
1 7.73534
8.29568 19.9766
So tokenize2 is the fastest, while tokenize1 uses the least amount of memory. Also, tokenize1 is the slowest and tokenize3 uses the most memory. (First column is relative time used, second is relative space used, rows correspond to implementations.)
Java
import java.util.*;
public class TokenizeStringWithEscaping {
public static void main(String[] args) {
String sample = "one^|uno||three^^^^|four^^^|^cuatro|";
char separator = '|';
char escape = '^';
System.out.println(sample);
try {
System.out.println(tokenizeString(sample, separator, escape));
} catch (Exception e) {
System.out.println(e);
}
}
public static List<String> tokenizeString(String s, char sep, char escape)
throws Exception {
List<String> tokens = new ArrayList<>();
StringBuilder sb = new StringBuilder();
boolean inEscape = false;
for (char c : s.toCharArray()) {
if (inEscape) {
inEscape = false;
} else if (c == escape) {
inEscape = true;
continue;
} else if (c == sep) {
tokens.add(sb.toString());
sb.setLength(0);
continue;
}
sb.append(c);
}
if (inEscape)
throw new Exception("Invalid terminal escape");
tokens.add(sb.toString());
return tokens;
}
}
[one|uno, , three^^, four^|cuatro, ]
JavaScript
ES5
Iterative
function tokenize(s, esc, sep) {
for (var a=[], t='', i=0, e=s.length; i<e; i+=1) {
var c = s.charAt(i)
if (c == esc) t+=s.charAt(++i)
else if (c != sep) t+=c
else a.push(t), t=''
}
a.push(t)
return a
}
var s = 'one^|uno||three^^^^|four^^^|^cuatro|'
document.write(s, '<br>')
for (var a=tokenize(s,'^','|'), i=0; i<a.length; i+=1) document.write(i, ': ', a[i], '<br>')
- Output:
one^|uno||three^^^^|four^^^|^cuatro| 0: one|uno 1: 2: three^^ 3: four^|cuatro 4:
Functional
(function () {
'use strict';
// tokenize :: String -> Character -> Character -> [String]
function tokenize(str, charDelim, charEsc) {
var dctParse = str.split('')
.reduce(function (a, x) {
var blnEsc = a.esc,
blnBreak = !blnEsc && x === charDelim,
blnEscChar = !blnEsc && x === charEsc;
return {
esc: blnEscChar,
token: blnBreak ? '' : (
a.token + (blnEscChar ? '' : x)
),
list: a.list.concat(blnBreak ? a.token : [])
};
}, {
esc: false,
token: '',
list: []
});
return dctParse.list.concat(
dctParse.token
);
}
return tokenize(
'one^|uno||three^^^^|four^^^|^cuatro|',
'|','^'
)
.join('\n');
})();
- Output:
one|uno three^^ four^|cuatro
ES6
Hand-parsed
(Single fold version)
((() => {
// tokenize :: String -> Character -> Character -> [String]
const tokenize = (charDelim, charEsc, str) => {
const [token, list, _] = str.split('')
.reduce(([aToken, aList, aEsc], x) => {
const
blnBreak = !aEsc && x === charDelim,
blnEscChar = !aEsc && x === charEsc;
return [
blnBreak ? '' : (
aToken + (blnEscChar ? '' : x)
),
aList.concat(blnBreak ? aToken : []),
blnEscChar
];
}, ['', [], false]);
return list.concat(token);
};
// splitEsc :: String -> [String]
const splitEsc = str => tokenize('|', '^', str);
// TEST
// show :: a -> String
const show = x => JSON.stringify(x, null, 2);
return splitEsc(
'one^|uno||three^^^^|four^^^|^cuatro|',
)
.map(show)
.join('\n');
}))();
- Output:
"one|uno" "" "three^^" "four^|cuatro" ""
Parser combinators
Defining the function as a composition of generics from a parser combinator library:
(() => {
'use strict';
// ------ TOKENIZATION OF A STRING WITH ESCAPES ------
// tokenizedWithEscapes :: Char -> Char ->
// String -> [String]
const tokenizedWithEscapes = esc =>
// A list of tokens in a given string,
// where the separator character is sep
// and any character may be escaped by
// a preceding esc character.
sep => compose(
concatMap(fst),
parse(
sepBy(
takeWhileEscP(esc)(
constant(true)
)(
ne(sep)
)
)(char(sep))
)
);
// ---------------------- TEST -----------------------
// main :: IO ()
const main = () =>
JSON.stringify(
tokenizedWithEscapes('^')('|')(
'one^|uno||three^^^^|four^^^|^cuatro|'
),
null, 2
);
// -->
// [
// "one|uno",
// "",
// "three^^",
// "four^|cuatro",
// ""
// ]
// ----------- GENERIC PARSER COMBINATORS ------------
// Parser :: String -> [(a, String)] -> Parser a
const Parser = f =>
// A function lifted into a Parser object.
({
type: 'Parser',
parser: f
});
// altP (<|>) :: Parser a -> Parser a -> Parser a
const altP = p =>
// p, or q if p doesn't match.
q => Parser(s => {
const xs = parse(p)(s);
return 0 < xs.length ? (
xs
) : parse(q)(s);
});
// anyChar :: () -> Parser Char
const anyChar = () =>
// A single character.
Parser(
s => 0 < s.length ? [
Tuple(s[0])(
s.slice(1)
)
] : []
);
// apP <*> :: Parser (a -> b) -> Parser a -> Parser b
const apP = pf =>
// A new parser obtained by the application
// of a Parser-wrapped function,
// to a Parser-wrapped value.
p => Parser(
s => parse(pf)(s).flatMap(
vr => parse(
fmapP(vr[0])(p)
)(vr[1])
)
);
// bindP (>>=) :: Parser a ->
// (a -> Parser b) -> Parser b
const bindP = p =>
// A new parser obtained by the application of
// a function to a Parser-wrapped value.
// The function must enrich its output, lifting it
// into a new Parser.
// Allows for the nesting of parsers.
f => Parser(
s => parse(p)(s).flatMap(
tpl => parse(f(tpl[0]))(tpl[1])
)
);
// char :: Char -> Parser Char
const char = x =>
// A particular single character.
satisfy(c => x == c);
// fmapP :: (a -> b) -> Parser a -> Parser b
const fmapP = f =>
// A new parser derived by the structure-preserving
// application of f to the value in p.
p => Parser(
s => parse(p)(s).flatMap(
first(f)
)
);
// liftA2P :: (a -> b -> c) ->
// Parser a -> Parser b -> Parser c
const liftA2P = op =>
// The binary function op, lifted
// to a function over two parsers.
p => apP(fmapP(op)(p));
// many :: Parser a -> Parser [a]
const many = p => {
// Zero or more instances of p.
// Lifts a parser for a simple type of value
// to a parser for a list of such values.
const some_p = p =>
liftA2P(
x => xs => [x].concat(xs)
)(p)(many(p));
return Parser(
s => parse(
0 < s.length ? (
altP(some_p(p))(pureP(''))
) : pureP('')
)(s)
);
};
// parse :: Parser a -> String -> [(a, String)]
const parse = p =>
// The result of parsing a string with p.
p.parser;
// pureP :: a -> Parser a
const pureP = x =>
// The value x lifted, unchanged,
// into the Parser monad.
Parser(s => [Tuple(x)(s)]);
// satisfy :: (Char -> Bool) -> Parser Char
const satisfy = test =>
// Any character for which the
// given predicate returns true.
Parser(
s => 0 < s.length ? (
test(s[0]) ? [
Tuple(s[0])(s.slice(1))
] : []
) : []
);
// sepBy :: Parser a -> Parser b -> Parser [a]
const sepBy = p =>
// Zero or more occurrences of p, as
// separated by (discarded) instances of sep.
sep => altP(
sepBy1(p)(sep)
)(
pureP([])
);
// sepBy1 :: Parser a -> Parser b -> Parser [a]
const sepBy1 = p =>
// One or more occurrences of p, as
// separated by (discarded) instances of sep.
sep => bindP(
p
)(x => bindP(
many(
thenP(sep)(
bindP(p)(pureP)
)
)
)(xs => pureP([x].concat(xs))));
// takeWhileEscP :: Char -> (Char -> Bool) ->
// (Char -> Bool) -> Parser Text
const takeWhileEscP = esc =>
escTest => test => {
// Longest prefix, including any escaped
// characters, in which escTest returns
// true for all escaped characters, and
// test returns true for all other chars.
const plain = takeWhileP(
c => (esc !== c) && test(c)
);
const escaped = thenBindP(
char(esc)
)(
anyChar()
)(x => bindP(
plain
)(
compose(pureP, cons(x))
));
return bindP(
plain
)(x => bindP(
many(escaped)
)(xs => pureP(concat([x].concat(xs)))));
};
// takeWhileP :: (Char -> Bool) -> Parser String
const takeWhileP = p =>
// The largest prefix in which p is
// true over all the characters.
Parser(
compose(
pureList,
first(concat),
span(p)
)
);
// thenBindP :: Parser a -> Parser b ->
// (b -> Parser c) Parser c
const thenBindP = o =>
// A combination of thenP and bindP in which a
// preliminary parser consumes text and discards
// its output, before any output of a subsequent
// parser is bound.
p => f => Parser(
s => parse(o)(s).flatMap(
vr => parse(p)(vr[1]).flatMap(
tpl => parse(f(tpl[0]))(tpl[1])
)
)
);
// thenP (>>) :: Parser a -> Parser b -> Parser b
const thenP = o =>
// A composite parser in which o just consumes text
// and then p consumes more and returns a value.
p => Parser(
s => parse(o)(s).flatMap(
vr => parse(p)(vr[1])
)
);
// --------------------- GENERIC ---------------------
// Tuple (,) :: a -> b -> (a, b)
const Tuple = a =>
b => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs => (
ys => 0 < ys.length ? (
ys.every(Array.isArray) ? (
[]
) : ''
).concat(...ys) : ys
)(list(xs));
// concatMap :: (a -> [b]) -> [a] -> [b]
const concatMap = f =>
// List monad bind operator.
xs => xs.flatMap(f);
// cons :: a -> [a] -> [a]
const cons = x =>
// A list constructed from the item x,
// followed by the existing list xs.
xs => Array.isArray(xs) ? (
[x].concat(xs)
) : 'GeneratorFunction' !== xs
.constructor.constructor.name ? (
x + xs
) : ( // cons(x)(Generator)
function* () {
yield x;
let nxt = xs.next();
while (!nxt.done) {
yield nxt.value;
nxt = xs.next();
}
}
)();
// constant :: a -> b -> a
const constant = k =>
_ => k;
// first :: (a -> b) -> ((a, c) -> (b, c))
const first = f =>
// A simple function lifted to one which applies
// to a tuple, transforming only its first item.
xy => Tuple(f(xy[0]))(
xy[1]
);
// fst :: (a, b) -> a
const fst = tpl =>
// First member of a pair.
tpl[0];
// list :: StringOrArrayLike b => b -> [a]
const list = xs =>
// xs itself, if it is an Array,
// or an Array derived from xs.
Array.isArray(xs) ? (
xs
) : Array.from(xs || []);
// map :: (a -> b) -> [a] -> [b]
const map = f =>
// The list obtained by applying f
// to each element of xs.
// (The image of xs under f).
xs => [...xs].map(f);
// ne :: a -> a -> Bool
const ne = a =>
b => a !== b;
// pureList :: a -> [a]
const pureList = x => [x];
// span p xs is equivalent to (takeWhile p xs, dropWhile p xs)
// span :: (a -> Bool) -> [a] -> ([a], [a])
const span = p =>
// Longest prefix of xs consisting of elements which
// all satisfy p, tupled with the remainder of xs.
xs => {
const
ys = 'string' !== typeof xs ? (
list(xs)
) : xs,
iLast = ys.length - 1;
return splitAt(
until(
i => iLast < i || !p(ys[i])
)(i => 1 + i)(0)
)(ys);
};
// splitAt :: Int -> [a] -> ([a], [a])
const splitAt = n =>
xs => Tuple(xs.slice(0, n))(
xs.slice(n)
);
// unlines :: [String] -> String
const unlines = xs =>
// A single string formed by the intercalation
// of a list of strings with the newline character.
xs.join('\n');
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = p =>
f => x => {
let v = x;
while (!p(v)) v = f(v);
return v;
};
// MAIN ---
return main();
})();
- Output:
[ "one|uno", "", "three^^", "four^|cuatro", "", "" ]
jq
# Tokenize the input using the string "escape" as the prefix escape string
def tokenize(separator; escape):
# Helper functions:
# mapper/1 is like map/1, but for each element, $e, in the input array,
# if $e is an array, then it is inserted,
# otherwise the elements of ($e|f) are inserted.
def mapper(f): reduce .[] as $e
( [];
if ($e|type) == "array" then . + [$e] else . + ($e | f) end ) ;
# interpolate x
def interpolate(x):
reduce .[] as $i ([]; . + [$i, x]) | .[0:-1];
def splitstring(s; twixt):
if type == "string" then split(s) | interpolate(twixt)
else .
end;
# concatenate sequences of non-null elements:
def reform:
reduce .[] as $x ([];
if $x == null and .[-1] == null then .[0:-1] + ["", null]
elif $x == null then . + [null]
elif .[-1] == null then .[0:-1] + [$x]
else .[0:-1] + [ .[-1] + $x ]
end)
| if .[-1] == null then .[-1] = "" else . end;
splitstring(escape + escape; [escape])
| mapper( splitstring( escape + separator; [separator]) )
| mapper( splitstring( separator; null ) )
| map( if type == "string" then split(escape) else . end)
| flatten
| reform ;
Example:
"one^|uno||three^^^^|four^^^|^cuatro|" | tokenize("|"; "^")
- Output:
$ jq -n -f tokenize.jq
[
"one|uno",
"",
"three^^",
"four^|cuatro",
""
]
Julia
function tokenize2(s::AbstractString, sep::Char, esc::Char)
SPE = "\ufffe"
SPF = "\uffff"
s = replace(s, "$esc$esc", SPE) |>
s -> replace(s, "$esc$sep", SPF) |>
s -> last(s) == esc ? string(replace(s[1:end-1], esc, ""), esc) : replace(s, esc, "")
return map(split(s, sep)) do token
token = replace(token, SPE, esc)
return replace(token, SPF, sep)
end
end
@show tokenize2("one^|uno||three^^^^|four^^^|^cuatro|", '|', '^')
- Output:
tokenize2("one^|uno||three^^^^|four^^^|^cuatro|", '|', '^') = String["one|uno", "", "three^^", "four^|cuatro", ""]
Kotlin
// version 1.1.3
const val SPE = "\ufffe" // unused unicode char in Specials block
const val SPF = "\uffff" // ditto
fun tokenize(str: String, sep: Char, esc: Char): List<String> {
var s = str.replace("$esc$esc", SPE).replace("$esc$sep", SPF)
s = if (s.last() == esc) // i.e. 'esc' not escaping anything
s.dropLast(1).replace("$esc", "") + esc
else
s.replace("$esc", "")
return s.split(sep).map { it.replace(SPE, "$esc").replace(SPF, "$sep") }
}
fun main(args: Array<String>) {
var str = "one^|uno||three^^^^|four^^^|^cuatro|"
val sep = '|'
val esc = '^'
val items = tokenize(str, sep, esc)
for (item in items) println(if (item.isEmpty()) "(empty)" else item)
}
- Output:
one|uno (empty) three^^ four^|cuatro (empty)
Lingo
-- in some movie script
on tokenize (str, sep, esc)
l = []
_player.itemDelimiter = sep
cnt = str.item.count
repeat with i = 1 to cnt
prev = l.getLast() -- can be VOID
if _trailEscCount(prev, esc) mod 2 then
l[l.count] = prev.char[1..prev.length-1]&sep&str.item[i]
else
l.add(str.item[i])
end if
end repeat
-- remove escape characters from tokens
cnt = l.count
repeat with i = 1 to cnt
l[i] = _removeEsc(l[i], esc)
end repeat
return l
end
-- counts number of trailing escape characters
on _trailEscCount (str, esc)
n = 0
repeat with i = str.length down to 1
if str.char[i]=esc then n=n+1
else exit repeat
end repeat
return n
end
-- could be implemented more efficiently by using offset()
on _removeEsc (str, esc)
cnt = str.length-1
repeat with i = 1 to cnt
if str.char[i]=esc then
delete char i of str
cnt = cnt-1
end if
end repeat
return str
end
str = "one^|uno||three^^^^|four^^^|^cuatro|"
sep = "|"
esc = "^"
put tokenize(str, sep, esc)
-- ["one|uno", "", "three^^", "four^|cuatro", ""]
Lua
function tokenise (str, sep, esc)
local strList, word, escaped, ch = {}, "", false
for pos = 1, #str do
ch = str:sub(pos, pos)
if ch == esc then
if escaped then
word = word .. ch
escaped = false
else
escaped = true
end
elseif ch == sep then
if escaped then
word = word .. ch
escaped = false
else
table.insert(strList, word)
word = ""
end
else
escaped = false
word = word .. ch
end
end
table.insert(strList, word)
return strList
end
local testStr = "one^|uno||three^^^^|four^^^|^cuatro|"
local testSep, testEsc = "|", "^"
for k, v in pairs(tokenise(testStr, testSep, testEsc)) do
print(k, v)
end
- Output:
1 one|uno 2 3 three^^ 4 four^|cuatro 5
Mathematica / Wolfram Language
ClearAll[Tokenize]
Tokenize[str_String, escape_String : "^", sep_String : "|"] :=
Module[{results = {}, token = "", state = 0, a},
a = Characters[str];
Do[
If[state == 0,
Switch[c,
escape,
state = 1
,
sep,
AppendTo[results, token];
token = "";
,
_,
token = token <> c;
]
,
If[state == 1,
token = token <> c;
state = 0;
]
]
,
{c, a}
];
AppendTo[results, token];
results
]
Tokenize["one^|uno||three^^^^|four^^^|^cuatro|"]
- Output:
{"one|uno", "", "three^^", "four^|cuatro", ""}
Nim
import streams
proc tokenize(s: Stream, sep: static[char] = '|', esc: static[char] = '^'): seq[string] =
var buff = ""
while not s.atEnd():
let c = s.readChar
case c
of sep:
result.add buff
buff = ""
of esc:
buff.add s.readChar
else:
buff.add c
result.add buff
for i, s in tokenize(newStringStream "one^|uno||three^^^^|four^^^|^cuatro|"):
echo i, ":", s
- Output:
0:one|uno 1: 2:three^^ 3:four^|cuatro 4:
OCaml
let split_with_escaping ~esc ~sep s =
let len = String.length s in
let buf = Buffer.create 16 in
let rec loop i =
if i = len then [Buffer.contents buf]
else if s.[i] = esc && i + 1 < len then begin
Buffer.add_char buf s.[i + 1];
loop (i + 2)
end else if s.[i] = sep then begin
let s = Buffer.contents buf in
Buffer.clear buf;
s :: loop (i + 1)
end else begin
Buffer.add_char buf s.[i];
loop (i + 1)
end
in
loop 0
Example:
let res = split_with_escaping ~esc:'^' ~sep:'|' "one^|uno||three^^^^|four^^^|^cuatro|";;
val res : string list = ["one|uno"; ""; "three^^"; "four^|cuatro"; ""]
Perl
The built-in split
function can be used with a regex that matches the delimiter (although advanced backtracking control verbs are needed to skip escaped delimiters):
sub tokenize {
my ($string, $sep, $esc) = (shift, quotemeta shift, quotemeta shift);
my @fields = split /$esc . (*SKIP)(*FAIL) | $sep/sx, $string, -1;
return map { s/$esc(.)/$1/gsr } @fields;
}
A more traditional approach is to parse the input string step by step (using a repeatedly-matching regex of the form /\G.../g
), and throw away the separators (which can be done implicitly using \K):
my @fields = $string =~ /\G (?:^ | $sep) \K (?: [^$sep$esc] | $esc .)*/gsx;
In both cases, stripping the escape characters happens as a separate step.
Testing:
print "'$_'\n" for tokenize("one^|uno||three^^^^|four^^^|^cuatro|", '|', '^');
- Output:
'one|uno' '' 'three^^' 'four^|cuatro' ''
Phix
function tokenize(string s, integer sep, integer esc) sequence ret = {} string word = "" integer skip = 0 if length(s)!=0 then for i=1 to length(s) do integer si = s[i] if skip then word &= si skip = 0 elsif si=esc then skip = 1 elsif si=sep then ret = append(ret,word) word = "" else word &= si end if end for ret = append(ret,word) end if return ret end function ?tokenize("one^|uno||three^^^^|four^^^|^cuatro|",'|','^')
- Output:
{"one|uno","","three^^","four^|cuatro",""}
PicoLisp
(de tokenize (Str Sep Esc)
(split
(make
(for (L (chop Str) L)
(let C (pop 'L)
(cond
((= C Esc) (link (pop 'L)))
((= C Sep) (link 0))
(T (link C)) ) ) ) )
0 ) )
Test:
(for (I . S) (tokenize "one\^|uno||three\^\^\^\^|four\^\^\^|\^cuatro|" "|" "\^")
(prinl I ": " S) )
Output:
1: one|uno 2: 3: three^^ 4: four^|cuatro 5:
PowerShell
function Split-String ([string]$String, [char]$Separator, [char]$Escape)
{
if ($String -notmatch "\$Separator|\$Escape") {return $String}
[bool]$escaping = $false
[string]$output = ""
for ($i = 0; $i -lt $String.Length; $i++)
{
[char]$character = $String.Substring($i,1)
if ($escaping)
{
$output += $character
$escaping = $false
}
else
{
switch ($character)
{
{$_ -eq $Separator} {$output; $output = ""; break}
{$_ -eq $Escape} {$escaping = $true ; break}
Default {$output += $character}
}
}
}
if ($String[-1] -eq $Separator) {[String]::Empty}
}
Split-String "one^|uno||three^^^^|four^^^|^cuatro|" -Separator "|" -Escape "^" | ForEach-Object `
-Begin {$n = 0} `
-Process {$n+= 1; "{0}: {1}" -f $n, $_}
- Output:
1: one|uno 2: 3: three^^ 4: four^|cuatro 5:
Python
Procedural
def token_with_escape(a, escape = '^', separator = '|'):
'''
Issue python -m doctest thisfile.py to run the doctests.
>>> print(token_with_escape('one^|uno||three^^^^|four^^^|^cuatro|'))
['one|uno', '', 'three^^', 'four^|cuatro', '']
'''
result = []
token = ''
state = 0
for c in a:
if state == 0:
if c == escape:
state = 1
elif c == separator:
result.append(token)
token = ''
else:
token += c
elif state == 1:
token += c
state = 0
result.append(token)
return result
Functional
'''Tokenize a string with escaping'''
from functools import reduce
# tokenize :: Char -> Char -> String -> [String]
def tokenize(delim):
'''A list of the tokens in a string, given
a delimiting char and an escape char.
'''
def go(esc, s):
def chop(a, x):
tkn, xs, escaped = a
literal = not escaped
isEsc = literal and (esc == x)
return ([], [tkn] + xs, isEsc) if (
literal and (delim == x)
) else (tkn if isEsc else [x] + tkn, xs, isEsc)
tkn, xs, _ = reduce(chop, list(s), ([], [], False))
return list(reversed(
[''.join(reversed(x)) for x in [tkn] + xs]
))
return lambda esc: lambda s: go(esc, s)
# --------------------------TEST---------------------------
# main :: IO ()
def main():
'''Test'''
print(
tokenize('|')('^')(
"one^|uno||three^^^^|four^^^|^cuatro|"
)
)
# MAIN ---
if __name__ == '__main__':
main()
- Output:
['one|uno', '', 'three^^', 'four^|cuatro', '']
Regex-based
Using Scanner
The python re
library has a handy class Scanner
which is intended precisely for this use-case.
It takes a list of pairs regex, action and whenever it encounters regex in the input, it executes action.
This allows us to solve this task very efficiently with minimum effort, the hardest part being the correct definition of the regular expressions.
The following code also illustrates an important feature of Python ‒ nested functions with closures.
Owing to this feature, the inner functions, such as start_new_token
, are able to access the local variable tokens
of their enclosing function tokenize
.
For the inner function, the name tokens
is nonlocal, and is in the enclosing scope of the inner function (as opposed to the parameters scanner
and substring
, which are in the local scope).
import re
STRING = 'one^|uno||three^^^^|four^^^|^cuatro|'
def tokenize(string=STRING, escape='^', separator='|'):
escape, separator = map(re.escape, (escape, separator))
tokens = ['']
def start_new_token(scanner, substring):
tokens.append('')
def add_escaped_char(scanner, substring):
char = substring[1]
tokens[-1] += char
def add_substring(scanner, substring):
tokens[-1] += substring
re.Scanner([
# an escape followed by a character produces that character
(fr'{escape}.', add_escaped_char),
# when encountering a separator not preceded by an escape,
# start a new token
(fr'{separator}', start_new_token),
# a sequence of regular characters (i.e. not escape or separator)
# is just appended to the token
(fr'[^{escape}{separator}]+', add_substring),
]).scan(string)
return tokens
if __name__ == '__main__':
print(list(tokenize()))
Output is the same as in the functional Python version above.
Simpler version with preprocessing
This version does not require any extra state, such as the token
list in the Scanner-based version above.
It first preprocesses the input, since Python does not support variable-length lookbehind assertions.
Then it works only with the primitive regex operations re.findall
and re.sub
.
Note that the regex used here is compiled with the re.VERBOSE
flag.
This allows us to write the regex on several lines (since unescaped whitespace is ignored in this mode), and use comments inside the regex (starting with #
).
import re
STRING = 'one^|uno||three^^^^|four^^^|^cuatro|'
def tokenize(string=STRING, escape='^', separator='|'):
re_escape, re_separator = map(re.escape, (escape, separator))
# token regex
regex = re.compile(fr'''
# lookbehind: a token must be preceded by a separator
# (note that `(?<=^|{re_separator})` doesn't work in Python)
(?<={re_separator})
# a token consists either of an escape sequence,
# or a regular (non-escape, non-separator) character,
# repeated arbitrarily many times (even zero)
(?:{re_escape}.|[^{re_escape}{re_separator}])*
''',
flags=re.VERBOSE
)
# since each token must start with a separator,
# we must add an extra separator at the beginning of input
preprocessed_string = separator + string
for almost_token in regex.findall(preprocessed_string):
# now get rid of escape characters: '^^' -> '^' etc.
token = re.sub(fr'{re_escape}(.)', r'\1', almost_token)
yield token
if __name__ == '__main__':
print(list(tokenize()))
Racket
#lang racket/base
(require racket/match)
;; Returns a tokenising function based on sep and esc
(define ((tokenise-with-escape sep esc) str)
(define tsil->string (compose list->string reverse))
(define (inr rem l-acc acc)
(match rem
['() (if (and (null? acc) (null? l-acc)) null (reverse (cons (tsil->string l-acc) acc)))]
[(list (== sep) tl ...) (inr tl null (cons (tsil->string l-acc) acc))]
[(list (== esc) c tl ...) (inr tl (cons c l-acc) acc)]
[(list c tl ...) (inr tl (cons c l-acc) acc)]))
(inr (string->list str) null null))
;; This is the tokeniser that matches the parameters in the task
(define task-tokeniser (tokenise-with-escape #\| #\^))
(define (report-input-output str)
(printf "Input: ~s~%Output: ~s~%~%" str (task-tokeniser str)))
(report-input-output "one^|uno||three^^^^|four^^^|^cuatro|")
(report-input-output "")
(report-input-output "|")
(report-input-output "^")
(report-input-output ".")
- Output:
Input: "one^|uno||three^^^^|four^^^|^cuatro|" Output: ("one|uno" "" "three^^" "four^|cuatro" "") Input: "" Output: () Input: "|" Output: ("" "") Input: "^" Output: ("^") Input: "." Output: (".")
Raku
(formerly Perl 6)
sub tokenize ($string, :$sep!, :$esc!) {
return $string.match(/([ <!before $sep | $esc> . | $esc . ]*)+ % $sep/)\
.[0].map(*.subst: /$esc )> ./, '', :g);
}
say "'$_'" for tokenize 'one^|uno||three^^^^|four^^^|^cuatro|', sep => '|', esc => '^';
- Output:
'one|uno' '' 'three^^' 'four^|cuatro' ''
Notable Raku innovations that make this different from the equivalent #Perl solution:
- string variables can be safely interpolated into regexes without having to 'quotemeta' them
- regexes matches return a nested
Match
object which allows retrieving all results for a given capture group (rather than just the last thing that it matched), thus getting rid of the need for repeated global matching - the
<field>+ % <delimiter>
regex construct allows handling the delimiters in a more idiomatic way - the
)>
regex construct can be used to exclude anything that follows it from the returned match result
REXX
IF/THEN logic
/*REXX program demonstrates tokenizing and displaying a string with escaping sequences. */
str = 'one^|uno||three^^^^|four^^^|^cuatro|' /*the character string to be tokenized.*/
esc = '^' /* " escape character to be used. */
sep = '|' /* " separator " " " " */
out = /* " output string (so far). */
eMode = 0 /*a flag, escape is in progress. */
do j=1 for length(str); _=substr(str, j, 1) /*parse a single character at a time. */
if eMode then do; out=out || _; eMode=0; iterate; end /*are we in escape mode? */
if _==esc then do; eMode=1; iterate; end /*is it an escape char ? */
if _==sep then do; call show; iterate; end /* " " a separator char?*/
out=out || _ /*append the character. */
end /*j*/
if out\=='' | _==sep then call show /*handle a residual str or a separator.*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: say '[length'right(length(out),4)"]" out; out=; return
output
[length 7] one|uno [length 0] [length 7] three^^ [length 12] four^|cuatro [length 0]
SELECT logic
This REXX version also shows a scale in the output.
/*REXX program demonstrates tokenizing and displaying a string with escaping sequences. */
str = 'one^|uno||three^^^^|four^^^|^cuatro|' /*the character string to be tokenized.*/
esc = '^' /* " escape character to be used. */
sep = '|' /* " separator " " " " */
$ = /* " output string (so far). */
eMode = 0 /*a flag, escape is in progress. */
say ' output len output' /*title verbiage used for the output.*/
say '──────────── ────────────────────' /* " separator " " " " */
do j=1 for length(str); _=substr(str, j, 1) /*parse a single character at a time. */
select
when eMode then do; $=$ || _; eMode=0; end /*are we in in escape mode? */
when _==esc then eMode=1 /*is it an escape character? */
when _==sep then do; call show; end /* " " a separator character? */
otherwise $=$ || _ /*append the single character. */
end /*select*/
end /*j*/
if $\=='' | _==sep then call show /*handle a residual str or a separator.*/
say '──────────── ────────────────────' /*the foot separator for the output. */
say ' ····^····1····^····2' /*show the top part of the scale.*/
say ' {scale} 12345678901234567890' /* " " bottom " " " " */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: say '[length'right(length($),4)"]" $; $=; return
output
output len output ──────────── ──────────────────── [length 7] one|uno [length 0] [length 7] three^^ [length 12] four^|cuatro [length 0] ──────────── ──────────────────── ····^····1····^····2 {scale} 12345678901234567890
Ring
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^")
func tokenize(src, sep, esc)
field = 1
escaping = false
see "" + field + " "
for i = 1 to len(src)
char = substr(src, i, 1)
if escaping
see char
escaping = false
else
switch char
on sep
see nl
field = field + 1
see "" + field + " "
on esc
escaping = true
other
see char
off
ok
next
see nl
Output:
1 one|uno 2 3 three^^ 4 four^|cuatro 5
Ruby
I had to drop the \K flag and instead drop the seperator at the beginning manually. I am not sure if \K is broken or works different than Perl
def tokenize(string, sep, esc)
sep = Regexp.escape(sep)
esc = Regexp.escape(esc)
string.scan(/\G (?:^ | #{sep}) (?: [^#{sep}#{esc}] | #{esc} .)*/x).collect do |m|
m.gsub(/#{esc}(.)/, '\1').gsub(/^#{sep}/, '')
end
end
p tokenize('one^|uno||three^^^^|four^^^|^cuatro|', '|', '^')
Rust
const SEPARATOR: char = '|';
const ESCAPE: char = '^';
const STRING: &str = "one^|uno||three^^^^|four^^^|^cuatro|";
fn tokenize(string: &str) -> Vec<String> {
let mut token = String::new();
let mut tokens: Vec<String> = Vec::new();
let mut chars = string.chars();
while let Some(ch) = chars.next() {
match ch {
SEPARATOR => {
tokens.push(token);
token = String::new();
},
ESCAPE => {
if let Some(next) = chars.next() {
token.push(next);
}
},
_ => token.push(ch),
}
}
tokens.push(token);
tokens
}
fn main() {
println!("{:#?}", tokenize(STRING));
}
- Output:
[ "one|uno", "", "three^^", "four^|cuatro", "", ]
Scala
Old fashioned Imperative
Imperative with removed (ugly) mutable variables.
object TokenizeStringWithEscaping0 extends App {
val (markerSpE,markerSpF) = ("\ufffe" , "\uffff")
def tokenize(str: String, sep: String, esc: String): Array[String] = {
val s0 = str.replace( esc + esc, markerSpE).replace(esc + sep, markerSpF)
val s = if (s0.last.toString == esc) s0.replace(esc, "") + esc else s0.replace(esc, "")
s.split(sep.head).map (_.replace(markerSpE, esc).replace(markerSpF, sep))
}
def str = "one^|uno||three^^^^|four^^^|^cuatro|"
tokenize(str, "|", "^").foreach(it => println(if (it.isEmpty) "<empty token>" else it))
}
Idiomatic
Functional with Tail recursion
import scala.annotation.tailrec
object TokenizeStringWithEscaping1 extends App {
def tokenize(str: String, sep: String, esc: String): Seq[String] = {
@tailrec
def loop(accu: Seq[String], s: String): Seq[String] = {
def append2StringInList(char: String): Seq[String] =
accu.init :+ (accu.last + char)
s.length match {
case 0 => accu
case 1 => if (s.head.toString == sep) accu :+ "" else append2StringInList(s)
case _ => (s.head.toString, s.tail.head.toString) match {
case c@((`esc`, `sep`) | (`esc`, `esc`)) => loop(append2StringInList(c._2), s.tail.tail)
case (`sep`, _) => loop(accu :+ "", s.tail)
case (`esc`, _) => loop(accu, s.tail)
case (sub, _) => loop(append2StringInList(sub.head.toString), s.tail)
}
}
}
loop(Seq(""), str)
}
def str = "one^|uno||three^^^^|four^^^|^cuatro|"
tokenize(str, "|", "^")
.foreach(it =>
println(
f"[length:${it.length}%3d] ${if (it.isEmpty) "<empty token>" else it}"))
}
- Output:
See it in running in your browser by ScalaFiddle (JavaScript) or by Scastie (JVM).
Sidef
func tokenize(string, sep, esc) {
var fields = string.split(
Regex(esc.escape + '.(*SKIP)(*FAIL)|' + sep.escape, 's'), -1
)
fields.map{.gsub(Regex(esc.escape + '(.)'), {|s1| s1 }) }
}
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", '|', '^').each { |str|
say str.dump
}
- Output:
"one|uno" "" "three^^" "four^|cuatro" ""
Simula
SIMSET
BEGIN
LINK CLASS ITEM(TXT); TEXT TXT;;
REF(HEAD) PROCEDURE SPLIT(TXT, SEP, ESC); TEXT TXT; CHARACTER SEP, ESC;
BEGIN
REF(HEAD) PARTS;
CHARACTER CH;
TEXT PART;
PART :- BLANKS(TXT.LENGTH);
PARTS :- NEW HEAD;
TXT.SETPOS(1);
WHILE TXT.MORE DO BEGIN
CH := TXT.GETCHAR;
IF CH = ESC THEN BEGIN
IF TXT.MORE THEN BEGIN
CH := TXT.GETCHAR;
PART.PUTCHAR(CH);
END ELSE BEGIN
ERROR("SPLIT: ESCAPE CHAR AT END OF STRING");
END;
END ELSE IF CH = SEP THEN BEGIN
NEW ITEM(COPY(PART.SUB(1,PART.POS-1))).INTO(PARTS);
PART.SETPOS(1);
END ELSE BEGIN
PART.PUTCHAR(CH);
END;
END;
NEW ITEM(COPY(PART.SUB(1,PART.POS-1))).INTO(PARTS);
SPLIT :- PARTS;
END SPLIT;
TEXT EXAMPLE;
REF(HEAD) RESULT;
REF(ITEM) PART;
INTEGER NO;
FOR EXAMPLE :- "ONE^|UNO||THREE^^^^|FOUR^^^|^CUATRO|" DO
BEGIN
OUTTEXT("INPUT: '");
OUTTEXT(EXAMPLE);
OUTTEXT("'");
OUTIMAGE;
RESULT :- SPLIT(EXAMPLE, '|', '^');
PART :- RESULT.FIRST;
NO := 0;
WHILE PART =/= NONE DO
BEGIN
NO := NO + 1;
OUTTEXT("PART");
OUTINT(NO, 0);
OUTTEXT(": '");
OUTTEXT(PART.TXT);
OUTTEXT("'");
OUTIMAGE;
PART :- PART.SUC;
END;
END;
END.
- Output:
INPUT: 'ONE^|UNO||THREE^^^^|FOUR^^^|^CUATRO|' PART1: 'ONE|UNO' PART2: '' PART3: 'THREE^^' PART4: 'FOUR^|CUATRO' PART5: ''
SNOBOL4
* Program: tokenize_with_escape.sbl
* To run: sbl tokenize_with_escape.sbl
* Description: Tokenize a string with escaping
* Comment: Tested using the Spitbol for Linux version of SNOBOL4
lf = substr(&alphabet,11,1) ;* New line or line feed
* Function tokenize will break parts out of a string, which are
* separated by c, which defaults to a comma, into
* an array. Parameter kp=1 to keep null parts, which is the default,
* and 0 to discard.
define('tokenize(s,c,kp)tokenizepat,part,t,i,j')
:(tokenize_end)
tokenize
c = (ident(c) ',', substr(c,1,1)) :f(freturn)
kp = (ident(kp) 1, eq(kp,0) 0, 1) :f(freturn)
t = table()
tokenizepat = breakx(c) . part c | (len(1) rem) . part
s ? eq(kp,1) rtab(1) c = s c
tokenize1
s ? tokenizepat = "" :f(tokenize2)
t[i = eq(kp,0) differ(part) i + 1] = part
t[i = eq(kp,1) i + 1] = part
:(tokenize1)
tokenize2
tokenize = array(i) :f(errr)
j = 0
tokenize3 tokenize[j = lt(j,i) j + 1] = t[j] :s(tokenize3)
:(return)
tokenize_end
* Function tokcan will a normalize a string by applying separator and escape
* rules to string ts. Parameter sep is the separator, while esc is the escape
* character. Parameter tesc is the new separator character to substitute for
* parameter sep. It defaults to a comma, ",".
define('tokcan(ts,sep,esc,tesc)tpat,part1,part2,notany') :(tokcan_end)
tokcan
tesc = (ident(tesc) ',', substr(tesc,1,1))
tpat = (breakx(sep esc) . part1
+ (sep | esc sep | esc esc | (esc len(1) . notany)) . part2
+ )
+ | (len(1) rem) . part1
tokcan1
ts ? tpat = :f(tokcan2)
part2 = (leq(part2,sep) tesc
+ ,leq(part2,esc sep) sep
+ ,leq(part2,esc esc) esc
+ ,differ(notany) leq(part2,esc notany) notany
+ )
tokcan = (ident(tokcan) "", tokcan) part1 part2
:(tokcan1)
tokcan2
:(return)
tokcan_end
test_string = "one^|uno||three^^^^|four^^^|^cuatro|"
sep = "|"
esc = "^"
hline = tokcan(test_string,sep,esc) :f(err)
output = " Input: " test_string lf
output = "Output1: " hline lf
output = "Output2: "
tokenized = tokenize(hline,",")
p1 output = "'" tokenized[z = z + 1] "'" :s(p1)
END
- Output:
Input: one^|uno||three^^^^|four^^^|^cuatro| Output1: one|uno,,three^^,four^|cuatro, Output2: 'one|uno' '' 'three^^' 'four^|cuatro' ''
Swift
extension String {
func tokenize(separator: Character, escape: Character) -> [String] {
var token = ""
var tokens = [String]()
var chars = makeIterator()
while let char = chars.next() {
switch char {
case separator:
tokens.append(token)
token = ""
case escape:
if let next = chars.next() {
token.append(next)
}
case _:
token.append(char)
}
}
tokens.append(token)
return tokens
}
}
print("one^|uno||three^^^^|four^^^|^cuatro|".tokenize(separator: "|", escape: "^"))
- Output:
["one|uno", "", "three^^", "four^|cuatro", ""]
Tcl
Putting a coroutine in a TclOO object following the "generator pattern" gives a nice structure:
oo::class create tokens {
constructor {s} {
puts [coroutine Next my Iter $s]
oo::objdefine [self] forward next Next
}
method Iter {s} {
yield [info coroutine]
for {set i 0} {$i < [string length $s]} {incr i} {
yield [string index $s $i]
}
return -code break
}
}
proc tokenize {s {sep |} {escape ^}} {
set part ""
set parts ""
set iter [tokens new $s]
while {1} {
set c [$iter next]
if {$c eq $escape} {
append part [$iter next]
} elseif {$c eq $sep} {
lappend parts $part
set part ""
} else {
append part $c
}
}
lappend parts $part
return $parts
}
puts [tokenize one^|uno||three^^^^|four^^^|^cuatro| | ^]
- Output:
one|uno {} three^^ four^|cuatro {}
TMG
Unix TMG:
prog: char(sep) *
char(esc) *
str: smark
token: forw/outp
( [ch==esc?] char(ch) any(!<<>>) token
| [ch==sep?] char(ch) outp str
| any(!<<>>) token );
outp: parse(( scopy = { <"> 1 <"> * } ));
forw: peek/chkeof;
peek: [ch=0] char(ch) fail;
chkeof: ( [ch?] succ | fail );
ch: 0;
sep: 0;
esc: 0;
Input:
| ^ one^|uno||three^^^^|four^^^|^cuatro|
Output:
"one|uno" "" "three^^" "four^|cuatro" ""
VBA
Private Function tokenize(s As String, sep As String, esc As String) As Collection
Dim ret As New Collection
Dim this As String
Dim skip As Boolean
If Len(s) <> 0 Then
For i = 1 To Len(s)
si = Mid(s, i, 1)
If skip Then
this = this & si
skip = False
Else
If si = esc Then
skip = True
Else
If si = sep Then
ret.Add this
this = ""
Else
this = this & si
End If
End If
End If
Next i
ret.Add this
End If
Set tokenize = ret
End Function
Public Sub main()
Dim out As Collection
Set out = tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|", "^")
Dim outstring() As String
ReDim outstring(out.Count - 1)
For i = 0 To out.Count - 1
outstring(i) = out(i + 1)
Next i
Debug.Print Join(outstring, ", ")
End Sub
- Output:
one|uno, , three^^, four^|cuatro,
V (Vlang)
fn tokenize_string(s string, sep u8, escape u8) ?[]string {
mut tokens := []string{}
mut runes := []u8{}
mut in_escape := false
for r in s {
if in_escape {
in_escape = false
runes << r
} else if r == escape {
in_escape = true
} else if r == sep {
tokens << runes.bytestr()
runes = runes[..0]
} else {
runes << r
}
}
tokens << runes.bytestr()
if in_escape {
return error("invalid terminal escape")
}
return tokens
}
const sample = "one^|uno||three^^^^|four^^^|^cuatro|"
const separator = `|`
const escape = `^`
fn main() {
println("Input: $sample")
tokens := tokenize_string(sample, separator, escape)?
println("Tokens: $tokens")
}
- Output:
Input: one^|uno||three^^^^|four^^^|^cuatro| Tokens: ['one|uno', '', 'three^^', 'four^|cuatro', ''] )
Wren
var SPE = "\ufffe" // unused unicode character in Specials block
var SPF = "\uffff" // ditto
var tokenize = Fn.new { |str, sep, esc|
str = str.replace(esc + esc, SPE).replace(esc + sep, SPF)
str = (str[-1] == esc) ? str[0...-1].replace(esc, "") + esc : str.replace(esc, "")
return str.split(sep).map { |s| s.replace(SPE, esc).replace(SPF, sep) }.toList
}
var str = "one^|uno||three^^^^|four^^^|^cuatro|"
var sep = "|"
var esc = "^"
var items = tokenize.call(str, sep, esc)
for (item in items) System.print((item == "") ? "(empty)" : item)
- Output:
one|uno (empty) three^^ four^|cuatro (empty)
zkl
Two simplifying assumptions (since their behavior is undefined): A string ending with an un-escaped escape is an error and 0xff is not an allowed character in the string.
fcn tokenize(str,sep,esc){
sink:=Sink(String);
foreach c in (str){
switch(c){
case(esc){ sink.write(__cWalker.next()); } // error if ^EoS
case(sep){ sink.write("\xff"); }
else { sink.write(c) }
}
}
sink.close().split("\xff");
}
Or, if you prefer brevity:
fcn tokenize(str,sep,esc){
sink:=Sink(String);
foreach c in (str){ sink.write( (c==esc and __cWalker.next()) or (c==sep and "\xff") or c ) }
sink.close().split("\xff");
}
tokenize("one^|uno||three^^^^|four^^^|^cuatro|", "|","^").println();
- Output:
L("one|uno","","three^^","four^|cuatro","")
- Programming Tasks
- String manipulation
- 11l
- 8080 Assembly
- Action!
- Ada
- ALGOL 68
- AppleScript
- Arturo
- AutoHotkey
- BBC BASIC
- BQN
- C
- C sharp
- C++
- CLU
- COBOL
- Common Lisp
- D
- Dyalect
- EasyLang
- Elena
- F Sharp
- Factor
- Forth
- Fortran
- FreeBASIC
- Go
- Haskell
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lingo
- Lua
- Mathematica
- Wolfram Language
- Nim
- OCaml
- Perl
- Phix
- PicoLisp
- PowerShell
- Python
- Racket
- Raku
- REXX
- Ring
- Ruby
- Rust
- Scala
- Sidef
- Simula
- SNOBOL4
- Swift
- Tcl
- TMG
- VBA
- V (Vlang)
- Wren
- Zkl