Comma quibbling
You are encouraged to solve this task according to the task description, using any language you may know.
Comma quibbling is a task originally set by Eric Lippert in his blog.
- Task
Write a function to generate a string output which is the concatenation of input words from a list/sequence where:
- An input of no words produces the output string of just the two brace characters "{}".
- An input of just one word, e.g. ["ABC"], produces the output string of the word inside the two braces, e.g. "{ABC}".
- An input of two words, e.g. ["ABC", "DEF"], produces the output string of the two words inside the two braces with the words separated by the string " and ", e.g. "{ABC and DEF}".
- An input of three or more words, e.g. ["ABC", "DEF", "G", "H"], produces the output string of all but the last word separated by ", " with the last word separated by " and " and all within braces; e.g. "{ABC, DEF, G and H}".
Test your function with the following series of inputs showing your output here on this page:
- [] # (No input words).
- ["ABC"]
- ["ABC", "DEF"]
- ["ABC", "DEF", "G", "H"]
Note: Assume words are non-empty strings of uppercase characters for this task.
- Metrics
- Counting
- Word frequency
- Letter frequency
- Jewels and stones
- I before E except after C
- Bioinformatics/base count
- Count occurrences of a substring
- Count how many vowels and consonants occur in a string
- Remove/replace
- XXXX redacted
- Conjugate a Latin verb
- Remove vowels from a string
- String interpolation (included)
- Strip block comments
- Strip comments from a string
- Strip a set of characters from a string
- Strip whitespace from a string -- top and tail
- Strip control codes and extended characters from a string
- Anagrams/Derangements/shuffling
- Word wheel
- ABC problem
- Sattolo cycle
- Knuth shuffle
- Ordered words
- Superpermutation minimisation
- Textonyms (using a phone text pad)
- Anagrams
- Anagrams/Deranged anagrams
- Permutations/Derangements
- Find/Search/Determine
- ABC words
- Odd words
- Word ladder
- Semordnilap
- Word search
- Wordiff (game)
- String matching
- Tea cup rim text
- Alternade words
- Changeable words
- State name puzzle
- String comparison
- Unique characters
- Unique characters in each string
- Extract file extension
- Levenshtein distance
- Palindrome detection
- Common list elements
- Longest common suffix
- Longest common prefix
- Compare a list of strings
- Longest common substring
- Find common directory path
- Words from neighbour ones
- Change e letters to i in words
- Non-continuous subsequences
- Longest common subsequence
- Longest palindromic substrings
- Longest increasing subsequence
- Words containing "the" substring
- Sum of the digits of n is substring of n
- Determine if a string is numeric
- Determine if a string is collapsible
- Determine if a string is squeezable
- Determine if a string has all unique characters
- Determine if a string has all the same characters
- Longest substrings without repeating characters
- Find words which contains all the vowels
- Find words which contain the most consonants
- Find words which contains more than 3 vowels
- Find words whose first and last three letters are equal
- Find words with alternating vowels and consonants
- Formatting
- Substring
- Rep-string
- Word wrap
- String case
- Align columns
- Literals/String
- Repeat a string
- Brace expansion
- Brace expansion using ranges
- Reverse a string
- Phrase reversals
- Comma quibbling
- Special characters
- String concatenation
- Substring/Top and tail
- Commatizing numbers
- Reverse words in a string
- Suffixation of decimal numbers
- Long literals, with continuations
- Numerical and alphabetical suffixes
- Abbreviations, easy
- Abbreviations, simple
- Abbreviations, automatic
- Song lyrics/poems/Mad Libs/phrases
- Mad Libs
- Magic 8-ball
- 99 bottles of beer
- The Name Game (a song)
- The Old lady swallowed a fly
- The Twelve Days of Christmas
- Tokenize
- Text between
- Tokenize a string
- Word break problem
- Tokenize a string with escaping
- Split a character string based on change of character
- Sequences
11l
F quibble(words)
R S words.len
0
‘{}’
1
‘{’words[0]‘}’
E
‘{’words[0.<(len)-1].join(‘, ’)‘ and ’words.last‘}’
print(quibble([‘’] * 0))
print(quibble([‘ABC’]))
print(quibble([‘ABC’, ‘DEF’]))
print(quibble([‘ABC’, ‘DEF’, ‘G’, ‘H’]))
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
360 Assembly
* Comma quibbling 13/03/2017
COMMAQUI CSECT
USING COMMAQUI,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
LA R6,1 i=1
DO WHILE=(C,R6,LE,=A(N)) do i=1 to hbound(t)
LR R1,R6 i
SLA R1,5 *32
LA R2,T-32 @t(0)
AR R1,R2 @t(i)
MVC S1,0(R1) s1=t(i)
MVC S2,=CL32'{' s2='{'
LA R8,S2+1 s2ins=1
MVC I2,=F'0' i2=0
LA R7,1 j=1
DO WHILE=(C,R7,LE,=A(L'T)) do j=1 to length(t)
LA R1,S1 @s1
BCTR R1,0 @s1-1
AR R1,R7 @s1-1+j
MVC CJ,0(R1) cj=mid(s1,j,1)
CLI CJ,C' ' if cj=' '
BE EXITJ then goto exitj
IF CLI,CJ,EQ,C',' THEN if cj="," then
MVC 0(2,R8),=C', ' s2=s2||", "
LA R8,2(R8) s2ins=s2ins+2
LR R0,R8 s2ins
LA R1,S2+1 @s2+1
SR R0,R1 len(s2)-1
ST R0,I2 i2=len(s2)-1
ELSE , else
MVC 0(1,R8),CJ s2=s2||cj
LA R8,1(R8) s2ins=s2ins+1
ENDIF , endif
LA R7,1(R7) j++
ENDDO , enddo j
EXITJ MVI 0(R8),C'}' s2=s2||"}"
LA R8,1(R8) s2ins=s2ins+1
L R0,I2 i2
IF LTR,R0,NZ,R0 THEN if i2<>0 then
MVC S2B,S2 s2b=mid(s2,1,i2-1)
LA R1,S2B-1 @s2b-1
A R1,I2 +i2
MVC 0(5,R1),=C' and ' s2b||" and "
LA R1,5(R1) +5
LA R2,S2+1 @s2+1
A R2,I2 +i2
LR R3,R8 s2ins
LA R0,S2+1 @s2+1
SR R3,R0 s2ins-(@s2+1)
S R3,I2 -i2
BCTR R3,0 -1
EX R3,XMVC s2b||=mid(s2,i2+2)
MVC S2,S2B s2=mid(s2,1,i2-1)||" and "||mid(s2,i2+2)
ENDIF , endif
XPRNT S2,L'S2 print s2
LA R6,1(R6) i++
ENDDO , enddo i
L R13,4(0,R13) restore previous savearea pointer
LM R14,R12,12(R13) restore previous context
XR R15,R15 rc=0
BR R14 exit
XMVC MVC 0(0,R1),0(R2) mvc @r1,@r2
N EQU (TEND-T)/L'T items of t
T DC CL32' ',CL32'ABC',CL32'ABC,DEF',CL32'ABC,DEF,G,H'
TEND DS 0C
I2 DS F
S1 DS CL(L'T)
S2 DS CL(L'T)
S2B DS CL(L'T)
CJ DS CL1
YREGS
END COMMAQUI
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
8080 Assembly
org 100h
jmp demo
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Given a list of strings in HL, and a pointer in DE, write
;; the resulting string starting at DE.
quibble: mvi a,'{' ; Write the first {,
stax d
inx d ; And increment the pointer
push h ; Keep start of list
call strseqlen ; Get length of list
pop h ; Restore start of list
xra a ; Is the list empty?
ora b
jz quibend ; If empty list, we're done.
quibcopy: call strcpy ; Copy current string into output
inx h ; Advance input pointer to next string
dcr b ; Decrement counter
jz quibend ; If zero, that was the last string
push h ; Push input pointer
mov a,b ; Is the counter 1 now?
cpi 1
lxi h,quibcomma ; Add a comma and space,
jnz quibsep ; unless the counter was 1,
lxi h,quiband ; then use " and "
quibsep: call strcpy ; Copy the separator into the output
pop h ; Restore the input pointer
jmp quibcopy ; Do the next string in the list
quibend: mvi a,'}' ; Write the final '}'
stax d
inx d
mvi a,'$' ; And write a string terminator
stax d
ret
quibcomma: db ', $'
quiband: db ' and $'
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Copy the string under HL to DE until the terminator $.
;; The terminator is not copied; HL and DE are left one byte
;; beyond the last byte copied.
strcpy: mov a,m ; Get byte from input
cpi '$' ; Are we at the end?
rz ; Then stop.
stax d ; Otherwise, store byte at output
inx h ; Increment the pointers
inx d
jmp strcpy ; Copy next byte.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Return in B the amount of strings in the string list in HL
strseqlen: mvi a,'$' ; String end
mvi b,0 ; String counter
count: cmp m ; Empty string?
rz ; Then we're done
inr b ; Otherwise, we have a string
strsrch: cmp m ; Find the end of the string
inx h
jnz strsrch
jmp count
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Demo code: run 'quibble' on the examples
demo: mvi c,4 ; Four examples
lxi h,examples ; Pointer to first example
example: push b ; Push example count
lxi d,buffer ; Into the buffer,
call quibble ; write the output of comma-quibbling
inx h ; Point to next example
push h ; Save pointer to next example
lxi d,buffer ; Write the output to the console
mvi c,9
call 5
lxi d,newline ; Write a newline to the console
mvi c,9
call 5
pop h ; Restore example pointer
pop b ; Restore example counter
dcr c ; If not zero,
jnz example ; do the next example.
ret
newline: db 10,13,'$'
examples: db '$'
db 'ABC$$'
db 'ABC$DEF$$'
db 'ABC$DEF$G$H$$'
buffer:
- Output:
A>quib {} {ABC} {ABC and DEF} {ABC, DEF, G and H}
AArch64 Assembly
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program Comma quibbling */
/*******************************************/
/* Constantes */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ BUFFERSIZE, 80
/*******************************************/
/* macros */
/*******************************************/
//.include "../../ficmacros64.inc" // for developper debugging
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessDebutPgm: .asciz "Program 64 bits start. \n"
szCarriageReturn: .asciz "\n"
szMessFinOK: .asciz "Program normal end. \n"
szMessStringError: .asciz "Error : Empty string !!!\n"
szMessBufferError: .asciz "Error : Buffer too small !!\n"
szMessEndStringError: .asciz "Error: End string, not ].\n"
szMessWordErr: .asciz "Error word empty.\n"
szAnd: .asciz " and "
szString1: .asciz "[]"
szString2: .asciz "[\"ABC\"]"
szString3: .asciz "[\"ABC\",\"DEF\"]"
szString4: .asciz "[\"ABC\",\"DEF\",\"G\",\"H\"]"
szString5: .asciz "[\"AB"
szString6: .asciz "[\"ABC\",,\"DEF\"]"
.align 4
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sBuffer: .skip BUFFERSIZE
.align 4
/*********************************/
/* code section */
/*********************************/
.text
.global main
main:
ldr x0,qAdrszMessDebutPgm
bl affichageMess // start message
ldr x0,qAdrszString1
bl execTest
ldr x0,qAdrszString2
bl execTest
ldr x0,qAdrszString3
bl execTest
ldr x0,qAdrszString4
bl execTest
ldr x0,qAdrszString5
bl execTest
ldr x0,qAdrszString6
bl execTest
ldr x0,qAdrszMessFinOK
bl affichageMess
100:
mov x8,EXIT
svc #0 // system call
qAdrszMessDebutPgm: .quad szMessDebutPgm
qAdrszMessFinOK: .quad szMessFinOK
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrszString1: .quad szString1
qAdrszString2: .quad szString2
qAdrszString3: .quad szString3
qAdrszString4: .quad szString4
qAdrszString5: .quad szString5
qAdrszString6: .quad szString6
qAdrsBuffer: .quad sBuffer
/******************************************************************/
/* test execution */
/******************************************************************/
/* x0 contains string address */
execTest:
stp x1,lr,[sp,-16]!
stp x2,x4,[sp,-16]!
mov x4,x0
bl affichageMess // display start string
ldr x0,qAdrszCarriageReturn
bl affichageMess
mov x0,x4 // string address
ldr x1,qAdrsBuffer // buffer address
mov x2,#BUFFERSIZE
bl stringAnalyse
cmp x0,#-1 // error ?
beq 100f
ldr x0,qAdrsBuffer // buffer display
bl affichageMess
ldr x0,qAdrszCarriageReturn
bl affichageMess
100:
ldp x2,x4,[sp],16
ldp x1,lr,[sp],16
ret
/******************************************************************/
/* string conversion */
/******************************************************************/
/* x0 contains string address */
/* x1 contains buffer address */
/* x2 contains buffer length */
stringAnalyse:
stp x1,lr,[sp,-16]!
stp x2,x3,[sp,-16]!
stp x4,x5,[sp,-16]!
stp x6,x7,[sp,-16]!
stp x8,x9,[sp,-16]!
sub sp,sp,#BUFFERSIZE // reserve area on stack for temporary buffer
mov fp,sp
mov x7,#0 // indice write buffer
mov x5,#0 // word counter
mov x6,#0 // word char count
mov x3,#0 // indice string
1:
ldrb w4,[x0,x3] // load string char
cmp x4,#0 // end ?
bne 2f
cmp x3,#0 // first char ?
beq 97f // error empty string
b 97f // end string error
2:
cmp x4,#'[' // first symbol ?
bne 3f
mov x4,#'{' // write symbol
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
add x3,x3,#1 // increment indice
b 1b // and loop
3:
cmp x4,#']' // end symbol ?
bne 8f
cmp x5,#0 // no word ?
beq 7f
cmp x5,#1
beq 5f // last and first word
mov x9,#0
ldr x12,qAdrszAnd
4: // loop write and
ldrb w4,[x12,x9]
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
add x9,x9,#1
cmp x9,#5
blt 4b
5: // last word
mov x9,#0
6: // loop write temporary buffer
ldrb w4,[fp,x9]
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
add x9,x9,#1
cmp x9,x6
blt 6b
mov x6,#0 // raz indice temporary buffer
7:
mov x4,#'}'
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
mov x4,#0
strb w4,[x1,x7] // final 0
b 100f
8:
cmp x4,#',' // comma ?
beq 9f
cmp x6,#0
cinc x5,x5,eq // new word increment word counter
//addeq x5,x5,#1 // new word increment word counter
strb w4,[fp,x6] // store char in temporary buffer
add x6,x6,#1
add x3,x3,#1
b 1b // loop
9:
cmp x6,#0 // word empty ?
beq 96f
cmp x5,#1 // first word ?
bne 11f
// first word, write only the word
mov x9,#0
10: // loop write temporary buffer
ldrb w4,[fp,x9]
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
add x9,x9,#1
cmp x9,x6
blt 10b
mov x6,#0 // raz indice temporary buffer
add x3,x3,#1
b 1b // loop
11:
mov x4,#','
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
mov x9,#0
12: // loop write temporary buffer
ldrb w4,[fp,x9]
strb w4,[x1,x7]
add x7,x7,#1
cmp x7,x2
bge 99f // buffer error
add x9,x9,#1
cmp x9,x6
blt 12b
mov x6,#0 // raz indice temporary buffer
add x3,x3,#1
b 1b // loop
96: // errors messages
ldr x0,qAdrszMessWordErr
bl affichageMess
mov x0,#-1
b 100f
97:
ldr x0,qAdrszMessEndStringErr
bl affichageMess
mov x0,#-1
b 100f
98:
ldr x0,qAdrszMessStringError
bl affichageMess
mov x0,#-1
b 100f
99:
ldr x0,qAdrszMessBufferError
bl affichageMess
mov x0,#-1
100:
add sp,sp,#BUFFERSIZE
ldp x8,x9,[sp],16
ldp x6,x7,[sp],16
ldp x4,x5,[sp],16
ldp x2,x3,[sp],16
ldp x1,lr,[sp],16
ret
qAdrszMessStringError: .quad szMessStringError
qAdrszMessBufferError: .quad szMessBufferError
qAdrszMessEndStringErr: .quad szMessEndStringError
qAdrszMessWordErr: .quad szMessWordErr
qAdrszAnd: .quad szAnd
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeARM64.inc"
- Output:
Program 64 bits start. [] {} ["ABC"] {"ABC"} ["ABC","DEF"] {"ABC" and "DEF"} ["ABC","DEF","G","H"] {"ABC","DEF","G" and "H"} ["AB Error: End string, not ]. ["ABC",,"DEF"] Error word empty. Program normal end.
ABC
HOW TO RETURN quibble words:
PUT "" IN result
PUT #words IN remaining
FOR word IN words:
PUT result^word IN result
PUT remaining-1 IN remaining
IF remaining = 1: PUT result^" and " IN result
IF remaining > 1: PUT result^", " IN result
RETURN "{" ^ result ^ "}"
PUT {} IN tests
INSERT {} IN tests
INSERT {[1]: "ABC"} IN tests
INSERT {[1]: "ABC"; [2]: "DEF"} IN tests
INSERT {[1]: "ABC"; [2]: "DEF"; [3]: "G"; [4]: "H"} IN tests
FOR test IN tests:
WRITE quibble test/
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Acornsoft Lisp
There's no string data type; symbols are used instead. The implode
function is used to concatenate a list of symbols. When writing a symbol in source code, exclamation mark is an escape character that allows characters such as spaces and exclamation marks to be treated as part of the symbol's name.
(defun examples ()
(map '(lambda (words) (printc (quibble words)))
'(() (ABC) (ABC DEF) (ABC DEF G H))))
(defun quibble (words)
(implode (list '{ (quibbles words) '})))
(defun quibbles (words)
(implode (conjunction words)))
(defun conjunction (words)
(cond ((null words)
'())
((null (cdr words))
words)
((null (cddr words))
(list (car words) '! and! (cadr words)))
(t
(cons (car words)
(cons ',! (conjunction (cdr words)))))))
- Output:
Calling (examples)
will output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Action!
DEFINE PTR="CARD"
PROC Append(CHAR ARRAY text,suffix)
BYTE POINTER srcPtr,dstPtr
BYTE len
len=suffix(0)
IF text(0)+len>255 THEN
len=255-text(0)
FI
IF len THEN
srcPtr=suffix+1
dstPtr=text+text(0)+1
MoveBlock(dstPtr,srcPtr,len)
text(0)==+suffix(0)
FI
RETURN
PROC Quibble(PTR ARRAY items INT count CHAR ARRAY result)
INT i
result(0)=0
Append(result,"(")
FOR i=0 TO count-1
DO
Append(result,items(i))
IF i=count-2 THEN
Append(result," and ")
ELSEIF i<count-2 THEN
Append(result,", ")
FI
OD
Append(result,")")
RETURN
PROC Test(PTR ARRAY items BYTE count)
CHAR ARRAY result(256)
Quibble(items,count,result)
PrintE(result)
RETURN
PROC Main()
PTR ARRAY items(5)
Test(items,0)
items(0)="ABC"
Test(items,1)
items(1)="DEF"
Test(items,2)
items(2)="G"
Test(items,3)
items(3)="H"
Test(items,4)
RETURN
- Output:
Screenshot from Atari 8-bit computer
() (ABC) (ABC and DEF) (ABC, DEF and G) (ABC, DEF, G and H)
Ada
with Ada.Text_IO, Ada.Command_Line; use Ada.Command_Line;
procedure Comma_Quibble is
begin
case Argument_Count is
when 0 => Ada.Text_IO.Put_Line("{}");
when 1 => Ada.Text_IO.Put_Line("{" & Argument(1) & "}");
when others =>
Ada.Text_IO.Put("{");
for I in 1 .. Argument_Count-2 loop
Ada.Text_IO.Put(Argument(I) & ", ");
end loop;
Ada.Text_IO.Put(Argument(Argument_Count-1) & " and " &
Argument(Argument_Count) & "}");
end case;
end Comma_Quibble;
- Output:
./comma_quibble {} ./comma_quibble abc {abc} ./comma_quibble abc def {abc and def} ./comma_quibble abc def g h {abc, def, g and h}
ALGOL 68
# returns a string ( assumed to be of space-separated words ) with the words #
# separated by ", ", except for the last which is separated from the rest by #
# " and ". The list is enclosed by braces #
PROC to list = ( STRING words ) STRING:
BEGIN
# count the number of words #
INT word count := 0;
BOOL in word := FALSE;
FOR char pos FROM LWB words TO UPB words
DO
IF NOT is upper( words[ char pos ] )
THEN
# not an upper-case letter, possibly a word has been ended #
in word := FALSE
ELSE
# not a delimitor, possibly the start of a word #
IF NOT in word
THEN
# we are starting a new word #
word count +:= 1;
in word := TRUE
FI
FI
OD;
# format the result #
STRING result := "{";
in word := FALSE;
INT word number := 0;
FOR char pos FROM LWB words TO UPB words
DO
IF NOT is upper( words[ char pos ] )
THEN
# not an upper-case letter, possibly a word has been ended #
in word := FALSE
ELSE
# not a delimitor, possibly the start of a word #
IF NOT in word
THEN
# we are starting a new word #
word number +:= 1;
in word := TRUE;
IF word number > 1
THEN
# second or subsequent word - need a separator #
result +:= IF word number = word count
THEN # final word #
" and "
ELSE # non-final word #
", "
FI
FI
FI;
# add the character to the result #
result +:= words[ char pos ]
FI
OD;
result + "}"
END # to list # ;
# procedure to test the to list PROC #
PROC test to list = ( STRING words ) VOID:
print( ( ( words
+ ": "
+ to list( words )
)
, newline
)
);
# test the to list PROC #
test to list( "" );
test to list( "ABC" );
test to list( "ABC DEF" );
test to list( "ABC DEF G H" )
- Output:
: {} ABC: {ABC} ABC DEF: {ABC and DEF} ABC DEF G H: {ABC, DEF, G and H}
ALGOL W
begin
% returns a list of the words contained in wordString, separated by ", ", %
% except for the last which is separated from the rest by " and ". %
% The words are enclosed by braces %
string(256) procedure toList ( string(256) value words ) ;
begin
string(256) list;
integer wordCount, wordNumber, listPos;
logical inWord;
% returns true if ch is an upper-case letter, false otherwise %
% assumes the letters are consecutive in the character set %
% (as in ascii) would not be correct if the character set was %
% ebcdic (as in the original implementations of Algol W) %
logical procedure isUpper ( string(1) value ch ) ; ch >= "A" and ch <= "Z" ;
% adds a character to the result %
procedure addChar( string(1) value ch ) ;
begin
list( listPos // 1 ) := ch;
listPos := listPos + 1;
end addChar ;
% adds a string to the result %
procedure addString( string(256) value str
; integer value len
) ;
for strPos := 0 until len - 1 do addChar( str( strPos // 1 ) );
% count the number of words %
wordCount := 0;
inWord := false;
for charPos := 0 until 255
do begin
if isUpper( words( charPos // 1 ) ) then begin
% not an upper-case letter, possibly a word has been ended %
inWord := false
end
else begin
% not a delimitor, possibly the start of a word %
if not inWord then begin
% we are starting a new word %
wordCount := wordCount + 1;
inWord := true
end if_not_inWord
end
end for_charPos;
% format the result %
list := "";
listPos := 0;
inWord := false;
wordNumber := 0;
addChar( "{" );
for charPos := 0 until 255
do begin
if not isUpper( words( charPos // 1 ) ) then begin
% not an upper-case letter, possibly a word has been ended %
inWord := false
end
else begin
% not a delimitor, possibly the start of a word %
if not inWord then begin
% we are starting a new word %
wordNumber := wordNumber + 1;
inWord := true;
if wordNumber > 1 then begin
% second or subsequent word - need a separator %
if wordNumber = wordCount then addString( " and ", 5 ) % final word %
else addString( ", ", 2 ) % non-final word %
end
end;
% add the character to the result %
addChar( words( charPos // 1 ) )
end
end for_charPos ;
addChar( "}" );
list
end toList ;
% procedure to test the toList procedure %
procedure testToList ( string(256) value words ) ;
begin
string(256) list;
list := toList( words );
write( s_w := 0
, words( 0 // 32 )
, ": "
, list( 0 // 32 )
)
end testToList ;
% test the toList procedure %
testToList( "" );
testToList( "ABC" );
testToList( "ABC DEF" );
testToList( "ABC DEF G H" );
end.
- Output:
: {} ABC : {ABC} ABC DEF : {ABC and DEF} ABC DEF G H : {ABC, DEF, G and H}
APL
quibble ← 1⌽'}{',(∊⊢,¨2↓(' and ' ''),⍨(⊂', ')⍴⍨⍴)
- Output:
quibble ⍬ {} quibble ⊂'ABC' {ABC} quibble 'ABC' 'DEF' {ABC and DEF} quibble 'ABC' 'DEF' 'G' 'H' {ABC, DEF, G and H}
AppleScript
-- quibble :: [String] -> String
on quibble(xs)
if length of xs > 1 then
set applyCommas to ¬
compose([curry(my intercalate)'s |λ|(", "), my |reverse|, my tail])
intercalate(" and ", ap({applyCommas, my head}, {|reverse|(xs)}))
else
concat(xs)
end if
end quibble
-- TEST -----------------------------------------------------------------------
on run
script braces
on |λ|(x)
"{" & x & "}"
end |λ|
end script
unlines(map(compose({braces, quibble}), ¬
append({{}, {"ABC"}, {"ABC", "DEF"}, {"ABC", "DEF", "G", "H"}}, ¬
map(|words|, ¬
{"One two three four", "Me myself I", "Jack Jill", "Loner"}))))
end run
-- GENERIC FUNCTIONS ----------------------------------------------------------
-- A list of functions applied to a list of arguments
-- (<*> | ap) :: [(a -> b)] -> [a] -> [b]
on ap(fs, xs)
set {intFs, intXs} to {length of fs, length of xs}
set lst to {}
repeat with i from 1 to intFs
tell mReturn(item i of fs)
repeat with j from 1 to intXs
set end of lst to |λ|(contents of (item j of xs))
end repeat
end tell
end repeat
return lst
end ap
-- (++) :: [a] -> [a] -> [a]
on append(xs, ys)
xs & ys
end append
-- compose :: [(a -> a)] -> (a -> a)
on compose(fs)
script
on |λ|(x)
script
on |λ|(a, f)
mReturn(f)'s |λ|(a)
end |λ|
end script
foldr(result, x, fs)
end |λ|
end script
end compose
-- concat :: [[a]] -> [a] | [String] -> String
on concat(xs)
script append
on |λ|(a, b)
a & b
end |λ|
end script
if length of xs > 0 and class of (item 1 of xs) is string then
set unit to ""
else
set unit to {}
end if
foldl(append, unit, xs)
end concat
-- curry :: (Script|Handler) -> Script
on curry(f)
script
on |λ|(a)
script
on |λ|(b)
|λ|(a, b) of mReturn(f)
end |λ|
end script
end |λ|
end script
end curry
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- foldr :: (a -> b -> a) -> a -> [b] -> a
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldr
-- head :: [a] -> a
on head(xs)
if length of xs > 0 then
item 1 of xs
else
missing value
end if
end head
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- |reverse| :: [a] -> [a]
on |reverse|(xs)
if class of xs is text then
(reverse of characters of xs) as text
else
reverse of xs
end if
end |reverse|
-- tail :: [a] -> [a]
on tail(xs)
if length of xs > 1 then
items 2 thru -1 of xs
else
{}
end if
end tail
-- unlines :: [String] -> String
on unlines(xs)
intercalate(linefeed, xs)
end unlines
-- words :: String -> [String]
on |words|(s)
words of s
end |words|
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {One, two, three and four} {Me, myself and I} {Jack and Jill} {Loner}
ARM Assembly
/* ARM assembly Raspberry PI */
/* program Comma quibbling */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/*******************************************/
/* Constantes */
/*******************************************/
.include "../constantes.inc"
.equ BUFFERSIZE, 80
/*******************************************/
/* macros */
/*******************************************/
//.include "../../ficmacros32.inc" @ for developper debugging
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessDebutPgm: .asciz "Program 32 bits start. \n"
szCarriageReturn: .asciz "\n"
szMessFinOK: .asciz "Program normal end. \n"
szMessStringError: .asciz "Error : Empty string !!!\n"
szMessBufferError: .asciz "Error : Buffer too small !!\n"
szMessEndStringError: .asciz "Error: End string, not ].\n"
szMessWordErr: .asciz "Error word empty.\n"
szAnd: .asciz " and "
szString1: .asciz "[]"
szString2: .asciz "[\"ABC\"]"
szString3: .asciz "[\"ABC\",\"DEF\"]"
szString4: .asciz "[\"ABC\",\"DEF\",\"G\",\"H\"]"
szString5: .asciz "[\"AB"
szString6: .asciz "[\"ABC\",,\"DEF\"]"
.align 4
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sBuffer: .skip BUFFERSIZE
.align 4
/*********************************/
/* code section */
/*********************************/
.text
.global main
main:
ldr r0,iAdrszMessDebutPgm
bl affichageMess @ start message
ldr r0,iAdrszString1
bl execTest
ldr r0,iAdrszString2
bl execTest
ldr r0,iAdrszString3
bl execTest
ldr r0,iAdrszString4
bl execTest
ldr r0,iAdrszString5
bl execTest
ldr r0,iAdrszString6
bl execTest
ldr r0,iAdrszMessFinOK
bl affichageMess
100:
mov r7,#EXIT @ program end
svc #0 @ system call
iAdrszMessDebutPgm: .int szMessDebutPgm
iAdrszMessFinOK: .int szMessFinOK
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszString1: .int szString1
iAdrszString2: .int szString2
iAdrszString3: .int szString3
iAdrszString4: .int szString4
iAdrszString5: .int szString5
iAdrszString6: .int szString6
iAdrsBuffer: .int sBuffer
/******************************************************************/
/* test execution */
/******************************************************************/
/* r0 contains string address */
execTest:
push {r1-r4,lr} @ save registers
mov r4,r0
bl affichageMess @ display start string
ldr r0,iAdrszCarriageReturn
bl affichageMess
mov r0,r4 @ string address
ldr r1,iAdrsBuffer @ buffer address
mov r2,#BUFFERSIZE
bl stringAnalyse
cmp r0,#-1 @ error ?
beq 100f
ldr r0,iAdrsBuffer @ buffer display
bl affichageMess
ldr r0,iAdrszCarriageReturn
bl affichageMess
100:
pop {r1-r4,pc}
/******************************************************************/
/* string conversion */
/******************************************************************/
/* r0 contains string address */
/* r1 contains buffer address */
/* r2 contains buffer length */
stringAnalyse:
push {r1-r9,fp,lr} @ save registers
sub sp,sp,#BUFFERSIZE @ reserve area on stack for temporary buffer
mov fp,sp
mov r7,#0 @ indice write buffer
mov r5,#0 @ word counter
mov r6,#0 @ word char count
mov r3,#0 @ indice string
1:
ldrb r4,[r0,r3] @ load string char
cmp r4,#0 @ end ?
bne 2f
cmp r3,#0 @ first char ?
beq 97f @ error empty string
b 97f @ end string error
2:
cmp r4,#'[' @ first symbol ?
bne 3f
mov r4,#'{' @ write symbol
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
add r3,r3,#1 @ increment indice
b 1b @ and loop
3:
cmp r4,#']' @ end symbol ?
bne 8f
cmp r5,#0 @ no word ?
beq 7f
cmp r5,#1
beq 5f @ last and first word
mov r9,#0
ldr r12,iAdrszAnd
4: @ loop write and
ldrb r4,[r12,r9]
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
add r9,r9,#1
cmp r9,#5
blt 4b
5: @ last word
mov r9,#0
6: @ loop write temporary buffer
ldrb r4,[fp,r9]
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
add r9,r9,#1
cmp r9,r6
blt 6b
mov r6,#0 @ raz indice temporary buffer
7:
mov r4,#'}'
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
mov r4,#0
strb r4,[r1,r7] @ final 0
b 100f
8:
cmp r4,#',' @ comma ?
beq 9f
cmp r6,#0
addeq r5,r5,#1 @ new word increment word counter
strb r4,[fp,r6] @ store char in temporary buffer
add r6,r6,#1
add r3,r3,#1
b 1b @ loop
9:
cmp r6,#0 @ word empty ?
beq 96f
cmp r5,#1 @ first word ?
bne 11f
@ first word, write only the word
mov r9,#0
10: @ loop write temporary buffer
ldrb r4,[fp,r9]
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
add r9,r9,#1
cmp r9,r6
blt 10b
mov r6,#0 @ raz indice temporary buffer
add r3,r3,#1
b 1b @ loop
11:
mov r4,#','
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
mov r9,#0
12: @ loop write temporary buffer
ldrb r4,[fp,r9]
strb r4,[r1,r7]
add r7,r7,#1
cmp r7,r2
bge 99f @ buffer error
add r9,r9,#1
cmp r9,r6
blt 12b
mov r6,#0 @ raz indice temporary buffer
add r3,r3,#1
b 1b @ loop
96: @ errors messages
ldr r0,iAdrszMessWordErr
bl affichageMess
mov r0,#-1
b 100f
97:
ldr r0,iAdrszMessEndStringErr
bl affichageMess
mov r0,#-1
b 100f
98:
ldr r0,iAdrszMessStringError
bl affichageMess
mov r0,#-1
b 100f
99:
ldr r0,iAdrszMessBufferError
bl affichageMess
mov r0,#-1
100:
add sp,sp,#BUFFERSIZE
pop {r1-r9,fp,pc}
iAdrszMessStringError: .int szMessStringError
iAdrszMessBufferError: .int szMessBufferError
iAdrszMessEndStringErr: .int szMessEndStringError
iAdrszMessWordErr: .int szMessWordErr
iAdrszAnd: .int szAnd
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
- Output:
Program 32 bits start. [] {} ["ABC"] {"ABC"} ["ABC","DEF"] {"ABC" and "DEF"} ["ABC","DEF","G","H"] {"ABC","DEF","G" and "H"} ["AB Error: End string, not ]. ["ABC",,"DEF"] Error word empty. Program normal end.
Arturo
quibble: $[sequence :block][
if? 0 = size sequence
-> return "{}"
if? 1 = size sequence
-> return ~"{|sequence\0|}"
last: pop 'sequence
return ~« {|join.with: ", " sequence| and |last|}
]
sentences: [
[]
["ABC"]
["ABC" "DEF"]
["ABC" "DEF" "G" "H"]
]
loop sentences 'sentence [
print quibble sentence
]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Astro
fun quibble(s):
let result = s.join(' and ').replace(|| and ||, ", ", length(s) - 1)
return "{ $result }"
let s = [
[]
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
]
for i in s:
print(quibble i)
AutoHotkey
MsgBox % quibble([])
MsgBox % quibble(["ABC"])
MsgBox % quibble(["ABC", "DEF"])
MsgBox % quibble(["ABC", "DEF", "G", "H"])
quibble(d) {
s:=""
for i, e in d
{
if (i<d.MaxIndex()-1)
s:= s . e . ", "
else if (i=d.MaxIndex()-1)
s:= s . e . " and "
else
s:= s . e
}
return "{" . s . "}"
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
AWK
function quibble(a, n, i, s) {
for (i = 1; i < n - 1; i++) s = s a[i] ", "
i = n - 1; if (i > 0) s = s a[i] " and "
if (n > 0) s = s a[n]
return "{" s "}"
}
BEGIN {
print quibble(a, 0)
n = split("ABC", b); print quibble(b, n)
n = split("ABC DEF", c); print quibble(c, n)
n = split("ABC DEF G H", d); print quibble(d, n)
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Batch File
@echo off
setlocal enabledelayedexpansion
::THE MAIN THING...
echo.
set inp=[]
call :quibble
set inp=["ABC"]
call :quibble
set inp=["ABC","DEF"]
call :quibble
set inp=["ABC","DEF","G","H"]
call :quibble
echo.
pause
exit /b
::/THE MAIN THING...
::THE FUNCTION
:quibble
set cont=0
set proc=%inp:[=%
set proc=%proc:]=%
for %%x in (%proc%) do (
set /a cont+=1
set x=%%x
set str!cont!=!x:"=!
)
set /a bef=%cont%-1
set output=%str1%
if %cont%==2 (set output=%str1% and %str2%)
if %cont% gtr 2 (
for /l %%y in (2,1,%bef%) do (
set output=!output!^, !str%%y!
)
set output=!output! and !str%cont%!
)
echo {!output!}
goto :EOF
::/THE FUNCTION
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} Press any key to continue . . .
BCPL
get "libhdr"
// Add a character to the end of a string
let addch(s, ch) be
$( s%0 := s%0 + 1
s%(s%0) := ch
$)
// Add s2 to the end of s1
and adds(s1, s2) be
for i = 1 to s2%0 do
addch(s1, s2%i)
// Comma quibbling on strs, which should be a 0-terminated
// vector of string pointers.
let quibble(strs, buf) = valof
$( buf%0 := 0
addch(buf, '{')
until !strs = 0 do
$( addch(buf, '"')
adds(buf, !strs)
addch(buf, '"')
unless strs!1 = 0
test strs!2 = 0
then adds(buf, " and ")
else adds(buf, ", ")
strs := strs + 1
$)
addch(buf, '}')
resultis buf
$)
let start() be
$( let words = vec 4
let buf = vec 63
words!0 := 0
writef("%S*N", quibble(words, buf))
words!0 := "ABC" ; words!1 := 0
writef("%S*N", quibble(words, buf))
words!1 := "DEF" ; words!2 := 0
writef("%S*N", quibble(words, buf))
words!2 := "G" ; words!3 := "H" ; words!4 := 0
writef("%S*N", quibble(words, buf))
$)
- Output:
{} {"ABC"} {"ABC" and "DEF"} {"ABC", "DEF", "G" and "H"}
Bracmat
( :?L1
& ABC:?L2
& ABC DEF:?L3
& ABC DEF G H:?L4
& L1 L2 L3 L4:?names
& ( quibble
= w
. !arg:%?w (% %:?arg)
& !w ", " quibble$!arg
| !arg:%?w %?arg&!w " and " quibble$!arg
| !arg
)
& (concat=.str$("{" quibble$!arg "}"))
& whl
' (!names:%?name ?names&out$(!name concat$!!name))
);
- Output:
L1 {} L2 {ABC} L3 {ABC and DEF} L4 {ABC, DEF, G and H}
C
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
char *quib(const char **strs, size_t size)
{
size_t len = 3 + ((size > 1) ? (2 * size + 1) : 0);
size_t i;
for (i = 0; i < size; i++)
len += strlen(strs[i]);
char *s = malloc(len * sizeof(*s));
if (!s)
{
perror("Can't allocate memory!\n");
exit(EXIT_FAILURE);
}
strcpy(s, "{");
switch (size) {
case 0: break;
case 1: strcat(s, strs[0]);
break;
default: for (i = 0; i < size - 1; i++)
{
strcat(s, strs[i]);
if (i < size - 2)
strcat(s, ", ");
else
strcat(s, " and ");
}
strcat(s, strs[i]);
break;
}
strcat(s, "}");
return s;
}
int main(void)
{
const char *test[] = {"ABC", "DEF", "G", "H"};
char *s;
for (size_t i = 0; i < 5; i++)
{
s = quib(test, i);
printf("%s\n", s);
free(s);
}
return EXIT_SUCCESS;
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF and G} {ABC, DEF, G and H}
C#
using System;
using System.Linq;
namespace CommaQuibbling
{
internal static class Program
{
#region Static Members
private static string Quibble(string[] input)
{
return
String.Format("{{{0}}}",
String.Join("",
input.Reverse().Zip(
new [] { "", " and " }.Concat(Enumerable.Repeat(", ", int.MaxValue)),
(x, y) => x + y).Reverse()));
}
private static void Main()
{
Console.WriteLine( Quibble( new string[] {} ) );
Console.WriteLine( Quibble( new[] {"ABC"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF"} ) );
Console.WriteLine( Quibble( new[] {"ABC", "DEF", "G", "H"} ) );
Console.WriteLine( "< Press Any Key >" );
Console.ReadKey();
}
#endregion
}
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} < Press Any Key >
C++
#include <iostream>
template<class T>
void quibble(std::ostream& o, T i, T e) {
o << "{";
if (e != i) {
T n = i++;
const char* more = "";
while (e != i) {
o << more << *n;
more = ", ";
n = i++;
}
o << (*more?" and ":"") << *n;
}
o << "}";
}
int main(int argc, char** argv) {
char const* a[] = {"ABC","DEF","G","H"};
for (int i=0; i<5; i++) {
quibble(std::cout, a, a+i);
std::cout << std::endl;
}
return 0;
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF and G} {ABC, DEF, G and H}
Clojure
(defn quibble [sq]
(let [sep (if (pos? (count sq)) " and " "")]
(apply str
(concat "{" (interpose ", " (butlast sq)) [sep (last sq)] "}"))))
; Or, using clojure.pprint's cl-format, which implements common lisp's format:
(defn quibble-f [& args]
(clojure.pprint/cl-format nil "{~{~a~#[~; and ~:;, ~]~}}" args))
(def test
#(doseq [sq [[]
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]]]
((comp println %) sq)))
(test quibble)
(test quibble-f)
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
CLU
quibble = proc (words: array[string]) returns (string)
out: string := "{"
last: int := array[string]$high(words)
for i: int in array[string]$indexes(words) do
out := out || words[i]
if i < last-1 then
out := out || ", "
elseif i = last-1 then
out := out || " and "
end
end
return(out || "}")
end quibble
start_up = proc ()
as = array[string]
aas = array[as]
po: stream := stream$primary_output()
testcases: aas := aas$
[as$[],
as$["ABC"],
as$["ABC","DEF"],
as$["ABC","DEF","G","H"]]
for testcase: as in aas$elements(testcases) do
stream$putl(po, quibble(testcase))
end
end start_up
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
COBOL
>>SOURCE FORMAT IS FREE
IDENTIFICATION DIVISION.
PROGRAM-ID. comma-quibbling-test.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
FUNCTION comma-quibbling
.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 strs-area.
03 strs-len PIC 9.
03 strs PIC X(5)
OCCURS 0 TO 9 TIMES
DEPENDING ON strs-len.
PROCEDURE DIVISION.
MOVE "ABC" TO strs (1)
MOVE "DEF" TO strs (2)
MOVE "G" TO strs (3)
MOVE "H" TO strs (4)
PERFORM VARYING strs-len FROM 0 BY 1 UNTIL strs-len > 4
DISPLAY FUNCTION comma-quibbling(strs-area)
END-PERFORM
.
END PROGRAM comma-quibbling-test.
IDENTIFICATION DIVISION.
FUNCTION-ID. comma-quibbling.
DATA DIVISION.
LOCAL-STORAGE SECTION.
01 i PIC 9.
01 num-extra-words PIC 9.
LINKAGE SECTION.
01 strs-area.
03 strs-len PIC 9.
03 strs PIC X(5)
OCCURS 0 TO 9 TIMES
DEPENDING ON strs-len.
01 str PIC X(50).
PROCEDURE DIVISION USING strs-area RETURNING str.
EVALUATE strs-len
WHEN ZERO
MOVE "{}" TO str
GOBACK
WHEN 1
MOVE FUNCTION CONCATENATE("{", FUNCTION TRIM(strs (1)), "}")
TO str
GOBACK
END-EVALUATE
MOVE FUNCTION CONCATENATE(FUNCTION TRIM(strs (strs-len - 1)),
" and ", FUNCTION TRIM(strs (strs-len)), "}")
TO str
IF strs-len > 2
SUBTRACT 2 FROM strs-len GIVING num-extra-words
PERFORM VARYING i FROM num-extra-words BY -1 UNTIL i = 0
MOVE FUNCTION CONCATENATE(FUNCTION TRIM(strs (i)), ", ", str)
TO str
END-PERFORM
END-IF
MOVE FUNCTION CONCATENATE("{", str) TO str
.
END FUNCTION comma-quibbling.
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF and G} {ABC, DEF, G and H}
CoffeeScript
quibble = ([most..., last]) ->
'{' +
(most.join ', ') +
(if most.length then ' and ' else '') +
(last or '') +
'}'
console.log quibble(s) for s in [ [], ["ABC"], ["ABC", "DEF"],
["ABC", "DEF", "G", "H" ] ]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Commodore BASIC
The Commodore character set has no curly braces, so I substituted square brackets. The solution could no doubt be improved, but some of the elegance of other solutions is not possible simply because a FOR loop always executes at least once, even if its parameters would seem to indicate that it should not.
100 DIM A$(3)
110 FOR TC=1 TO 4
120 : READ A: IF A=0 THEN 160
130 : FOR I=0 TO A-1
140 : READ A$(I)
150 : NEXT I
160 : GOSUB 200
170 : PRINT CQ$
180 NEXT TC
190 END
200 CQ$="["
210 IF A < 1 THEN 290
220 CQ$ = CQ$ + A$(0)
230 IF A < 2 THEN 290
240 IF A < 3 THEN 280
250 FOR I=1 TO A - 2
260 : CQ$ = CQ$ + ", " + A$(I)
270 NEXT I
280 CQ$ = CQ$ + " AND " + A$(A - 1)
290 CQ$ = CQ$ + "]"
300 RETURN
310 DATA 0
320 DATA 1, ABC
330 DATA 2, ABC, DEF
340 DATA 4, ABC, DEF, G, H
- Output:
[] [ABC] [ABC AND DEF] [ABC, DEF, G AND H]
Common Lisp
(defun quibble (&rest args)
(format t "{~{~a~#[~; and ~:;, ~]~}}" args))
(quibble)
(quibble "ABC")
(quibble "ABC" "DEF")
(quibble "ABC" "DEF" "G" "H")
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Cowgol
include "cowgol.coh";
sub quibble(words: [[uint8]],
length: intptr,
buf: [uint8]):
(out: [uint8]) is
sub append(s: [uint8]) is
while [s] != 0 loop
[buf] := [s];
buf := @next buf;
s := @next s;
end loop;
end sub;
out := buf;
append("{");
while length > 0 loop
append([words]);
words := @next words;
case length is
when 1: break;
when 2: append(" and ");
when else: append(", ");
end case;
length := length - 1;
end loop;
append("}");
[buf] := 0;
end sub;
var w1: [uint8][] := {};
var w2: [uint8][] := {"ABC"};
var w3: [uint8][] := {"ABC","DEF"};
var w4: [uint8][] := {"ABC","DEF","G","H"};
print(quibble(&w1[0], @sizeof w1, LOMEM)); print_nl();
print(quibble(&w2[0], @sizeof w2, LOMEM)); print_nl();
print(quibble(&w3[0], @sizeof w3, LOMEM)); print_nl();
print(quibble(&w4[0], @sizeof w4, LOMEM)); print_nl();
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
D
import std.stdio, std.string;
string quibbler(in string[] seq) pure /*nothrow*/ {
if (seq.length <= 1)
return format("{%-(%s, %)}", seq);
else
return format("{%-(%s, %) and %s}", seq[0 .. $-1], seq[$-1]);
}
void main() {
//foreach (immutable test; [[],
foreach (const test; [[],
["ABC"],
["ABC", "DEF"],
["ABC", "DEF", "G", "H"]])
test.quibbler.writeln;
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Alternative Version
import std.stdio, std.string, std.algorithm, std.conv, std.array;
enum quibbler = (in string[] a) pure =>
"{%-(%s and %)}".format(a.length < 2 ? a :
[a[0 .. $-1].join(", "), a.back]);
void main() {
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]
.map!quibbler.writeln;
}
- Output:
["{}", "{ABC}", "{ABC and DEF}", "{ABC, DEF, G and H}"]
dc
[(q)uibble: main entry point. print brackets, calling n in between if stack not
empty.]sx
[ [{]n z 0 !=n [}]pR ]sq
[(n)onempty: if more than 1 item, call m. then print top of stack.]sx
[ z 1 !=m n ]sn
[(m)ore: call f to flip stack into r register, call p to print most of it,
then pop the last item back onto the main stack so it's there to be printed
after we return]sx
[ lfx lpx Lr ]sm
[(f)lip: utility routine to reverse the stack into the r register]sx
[ Sr z 0 !=f ]sf
[(p)rint: get next item from stack in r register and print it. If there are
more than 2 items left on the register stack (which never drops below one
item), print a comma (c) and recurse. If there are exactly two items left,
print " and " (a) and return.]sx
[ Lr n 2 yr >c 2 yr =a 2 yr >p]sp
[(c)omma: utility routine to print a comma followed by a space]sx
[ [, ]n ]sc
[(a)and: utility routine to print " and "]sx
[ [ and ]n ]sa
[run tests]sx
lqx
[ABC] lqx
[ABC] [DEF] lqx
[ABC] [DEF] [G] [H] lqx
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
DCL
$ list = "[]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC"", ""DEF""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ list = "[""ABC"", ""DEF"", ""G"", ""H""]"
$ gosub comma_quibbling
$ write sys$output return_string
$
$ exit
$
$ comma_quibbling:
$ list = list - "[" - "]"
$ return_string = "{}"
$ if list .eqs. "" then $ return
$ return_string = "{" + f$element( 0, ",", list ) - """" - """"
$ if f$locate( ",", list ) .eq. f$length( list ) then $ goto done2
$ i = 1
$ loop:
$ word = f$element( i, ",", list ) - """" - """"
$ if word .eqs. "," then $ goto done1
$ return_string = return_string - "^" + "^," + word
$ i = i + 1
$ goto loop
$ done1:
$ return_string = f$element( 0, "^", return_string ) + " and" + ( f$element( 1, "^", return_string ) - "," )
$ done2:
$ return_string = return_string + "}"
$ return
{}out}}
$ @comma_quibbling {} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Delphi
See Pascal.
Déjà Vu
comma-quibble lst:
"}" )
if lst:
pop-from lst
if lst:
" and "
pop-from lst
for item in lst:
item ", "
concat( "{"
!. comma-quibble []
!. comma-quibble [ "ABC" ]
!. comma-quibble [ "ABC" "DEF" ]
!. comma-quibble [ "ABC" "DEF" "G" "H" ]
- Output:
"{}" "{ABC}" "{ABC and DEF}" "{ABC, DEF, G and H}"
EasyLang
func$ tolist s$ .
s$[] = strsplit s$ " "
r$ = "{"
n = len s$[]
for i = 1 to n - 2
r$ &= s$[i] & ", "
.
if n > 0
if n > 1
r$ &= s$[n - 1] & " and "
.
r$ &= s$[n]
.
r$ &= "}"
return r$
.
print tolist ""
print tolist "ABC"
print tolist "ABC DEF"
print tolist "ABC DEF G H"
EchoLisp
(lib 'match)
(define (quibble words)
(match words
[ null "{}"]
[ (a) (format "{ %a }" a)]
[ (a b) (format "{ %a and %a }" a b)]
[( a ... b c) (format "{ %a %a and %a }" (for/string ([w a]) (string-append w ", ")) b c)]
[else 'bad-input]))
;; output
(for ([t '(() ("ABC") ("ABC" "DEF") ("ABC" "DEF" "G" "H"))])
(writeln t '----> (quibble t)))
null ----> "{}"
("ABC") ----> "{ ABC }"
("ABC" "DEF") ----> "{ ABC and DEF }"
("ABC" "DEF" "G" "H") ----> "{ ABC, DEF, G and H }"
ed
Uses basic regular expressions (BREs).
# by Artyom Bologov
H
,p
g/.*/s/ /, /g
g/[,]/s/,\([^,]*\)$/ and\1/
g/.*/s//{&}/
,p
Q
- Output:
$ ed -s comma-quibling.input < comma-quibling.ed Newline appended ABC ABC DEF ABC DEF G H {} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Eiffel
class
APPLICATION
create
make
feature
make
-- Test of the feature comma_quibbling.
local
l: LINKED_LIST [STRING]
do
create l.make
io.put_string (comma_quibbling (l) + "%N")
l.extend ("ABC")
io.put_string (comma_quibbling (l) + "%N")
l.extend ("DEF")
io.put_string (comma_quibbling (l) + "%N")
l.extend ("G")
l.extend ("H")
io.put_string (comma_quibbling (l) + "%N")
end
comma_quibbling (l: LINKED_LIST [STRING]): STRING
-- Elements of 'l' seperated by a comma or an and where appropriate.
require
l_not_void: l /= Void
do
create Result.make_empty
Result.extend ('{')
if l.is_empty then
Result.append ("}")
elseif l.count = 1 then
Result.append (l [1] + "}")
else
Result.append (l [1])
across
2 |..| (l.count - 1) as c
loop
Result.append (", " + l [c.item])
end
Result.append (" and " + l [l.count] + "}")
end
end
end
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Elixir
defmodule RC do
def generate( list ), do: "{#{ generate_content(list) }}"
defp generate_content( [] ), do: ""
defp generate_content( [x] ), do: x
defp generate_content( [x1, x2] ), do: "#{x1} and #{x2}"
defp generate_content( xs ) do
[last, second_to_last | t] = Enum.reverse( xs )
with_commas = for x <- t, do: x <> ","
Enum.join(Enum.reverse([last, "and", second_to_last | with_commas]), " ")
end
end
Enum.each([[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]], fn list ->
IO.inspect RC.generate(list)
end)
- Output:
"{}" "{ABC}" "{ABC and DEF}" "{ABC, DEF, G and H}"
Erlang
-module( comma_quibbling ).
-export( [task/0] ).
task() -> [generate(X) || X <- [[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]].
generate( List ) -> "{" ++ generate_content(List) ++ "}".
generate_content( [] ) -> "";
generate_content( [X] ) -> X;
generate_content( [X1, X2] ) -> string:join( [X1, "and", X2], " " );
generate_content( Xs ) ->
[Last, Second_to_last | T] = lists:reverse( Xs ),
With_commas = [X ++ "," || X <- T],
string:join(lists:reverse([Last, "and", Second_to_last | With_commas]), " ").
- Output:
36> comma_quibbling:task(). ["{}","{ABC}","{ABC and DEF}","{ABC, DEF, G and H}"]
F#
One Way
let quibble list =
let rec inner = function
| [] -> ""
| [x] -> x
| [x;y] -> sprintf "%s and %s" x y
| h::t -> sprintf "%s, %s" h (inner t)
sprintf "{%s}" (inner list)
// test interactively
quibble []
quibble ["ABC"]
quibble ["ABC"; "DEF"]
quibble ["ABC"; "DEF"; "G"]
quibble ["ABC"; "DEF"; "G"; "H"]
Output from testing (in F# Interactive 3.0, Open Source version):
> quibble [];;
val it : string = "{}"
> quibble ["ABC"];;
val it : string = "{ABC}"
> quibble ["ABC"; "DEF"];;
val it : string = "{ABC and DEF}"
> quibble ["ABC"; "DEF"; "G"];;
val it : string = "{ABC, DEF and G}"
> quibble ["ABC"; "DEF"; "G"; "H"];;
val it : string = "{ABC, DEF, G and H}"
or Another
The Function
let quibble quibbler quibblee = Seq.zip quibblee quibbler //Sorry, just too good a line to miss, back in my Latin classes
The Task
let fN n = quibble (List.mapi(fun n _->match n with 0->"" |1-> " and " |_->", ") n |> List.rev) n
printf "{"; fN ["ABC"; "DEF"; "G"; "H"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"; "DEF"; "G"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"; "DEF"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN ["ABC"] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
printf "{"; fN [] |> Seq.iter(fun(n,g)->printf "%s%s" n g); printfn"}"
- Output:
{ABC, DEF, G and H} {ABC, DEF and G} {ABC and DEF} {ABC} {}
Factor
This example uses the inverse
vocabulary, which builds on the concept of invertible quotations as the basis for pattern matching. It is discussed at length in this approachable paper.
USING: inverse qw sequences ;
: (quibble) ( seq -- seq' )
{
{ [ { } ] [ "" ] }
{ [ 1array ] [ ] }
{ [ 2array ] [ " and " glue ] }
[ unclip swap (quibble) ", " glue ]
} switch ;
: quibble ( seq -- str ) (quibble) "{%s}" sprintf ;
{ } qw{ ABC } qw{ ABC DEF } qw{ ABC DEF G H }
[ quibble print ] 4 napply
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Forth
The efficient and beautiful way to solve the task is to keep a sliding triplet of consequent words. First we unconditionally read the first two words; if there are none, "read" gives us an empty word. Then we read the input stream, typing third to last word together with a comma. When the loop ends, we have two (possible empty) words on the stack, and the only thing left to do is to output it accordingly.
: read bl parse ;
: not-empty? ( c-addr u -- c-addr u true | false ) ?dup-if true else drop false then ;
: third-to-last 2rot ;
: second-to-last 2swap ;
: quibble
." {"
read read begin read not-empty? while third-to-last type ." , " repeat
second-to-last not-empty? if type then
not-empty? if ." and " type then
." }" cr ;
quibble
quibble ABC
quibble ABC DEF
quibble ABC DEF G H
Fortran
The usual problem of "How long is a piece of string?" is answered in the usual way with a declaration that is "surely long enough", at least for anticipated problems. Thus, variable TEXT is declared as 666 characters long. The input statement reads up to that number of characters, or the length of the record if shorter, and supplies trailing spaces to pad the recipient variable to its full length. There is unfortunately no read feature that will create a recipient storage area that matches the size of the record being read. There is such a facility in pl/i, except that the recipient variable still has a pre-specified upper bound to its size.
Subroutine QUIBBLE doesn't have to worry about this because it works with TEXT as a parameter, whatever its size (various integer limits apply) however, it too has the same problem because it locates the start and end positions of each word, and, how many words are going to be found? So once again, the arrays are made "surely large enough" for the expected class of problem. The first stage is to locate the words separated by any amount of "white space", which, thanks to the inability to rely on the evaluation of compound boolean expressions (of the form IF (in bounds & Array indexing)
) in the "shortcut" manner, employs a battery of IF-statements. Fortran does not offer a data type "list of ..." so there is no prospect of placing the words into such an entity then inserting commas and "and" elements into the list to taste. Instead, the list of words is represented by a sequence of values in ordinary arrays.
The source style is Fortran 77, thus the use of COMMON to pass some I/O unit numbers. The plan initially was to engage in trickery with the variable FORMAT features, of the form <expression>(blah blah) to signify some number of repetitions of (blah blah), which number might be zero, but alas, although <0>X works, it proved not to work for grouped items in place of a format code. So the <..> extension had to be abandoned, and plainer F77 results.
SUBROUTINE QUIBBLE(TEXT,OXFORDIAN) !Punctuates a list with commas and stuff.
CHARACTER*(*) TEXT !The text, delimited by spaces.
LOGICAL OXFORDIAN !Just so.
INTEGER IST(6),LST(6) !Start and stop positions.
INTEGER N,L,I !Counters.
INTEGER L1,L2 !Fingers for the scan.
INTEGER MSG !Output unit.
COMMON /IODEV/MSG !Share.
Chop the text into words.
N = 0 !No words found.
L = LEN(TEXT) !Multiple trailing spaces - no worries.
L2 = 0 !Syncopation: where the previous chomp ended.
10 L1 = L2 !Thus, where a fresh scan should follow.
11 L1 = L1 + 1 !Advance one.
IF (L1.GT.L) GO TO 20 !Finished yet?
IF (TEXT(L1:L1).LE." ") GO TO 11 !No. Skip leading spaces.
L2 = L1 !Righto, L1 is the first non-blank.
12 L2 = L2 + 1 !Scan through the non-blanks.
IF (L2.GT.L) GO TO 13 !Is it safe to look?
IF (TEXT(L2:L2).GT." ") GO TO 12 !Yes. Speed through non-blanks.
13 N = N + 1 !Righto, a word is found in TEXT(L1:L2 - 1)
IST(N) = L1 !So, recall its first character.
LST(N) = L2 - 1 !And its last.
IF (L2.LT.L) GO TO 10 !Perhaps more text follows.
Comma time...
20 WRITE (MSG,21) "{" !Start the output.
21 FORMAT (A,$) !The $, obviously, specifies that the line is not finished.
DO I = 1,N !Step through the texts, there possibly being none.
IF (I.GT.1) THEN !If there has been a predecessor, supply separators.
IF (I.LT.N) THEN !Up to the last two, it's easy.
WRITE (MSG,21) ", " !Always just a comma.
ELSE IF (OXFORDIAN) THEN !But after the penultimate item, what?
WRITE (MSG,21) ", and " !Supply the comma omitted above: a double-power separator.
ELSE !One fewer comma, with possible ambiguity arising.
WRITE (MSG,21) " and " !A single separator.
END IF !So much for the style.
END IF !Enough with the separation.
WRITE (MSG,21) TEXT(IST(I):LST(I)) !The text at last!
END DO !On to the next text.
WRITE (MSG,"('}')") !End the line, marking the end of the text.
END !That was fun.
PROGRAM ENCOMMA !Punctuate a list with commas.
CHARACTER*(666) TEXT !Holds the text. Easily long enough.
INTEGER KBD,MSG,INF !Now for some messing.
COMMON /IODEV/MSG,KBD !Pass the word.
KBD = 5 !Standard input.
MSG = 6 !Standard output.
INF = 10 !Suitable for a disc file.
OPEN (INF,FILE="List.txt",ACTION = "READ") !Attach one.
10 WRITE (MSG,11) "To insert commas into lists..." !Announce.
11 FORMAT (A) !Just the text.
12 READ (INF,11,END = 20) TEXT !Grab the text, with trailing spaces to fill out TEXT.
CALL QUIBBLE(TEXT,.FALSE.) !One way to quibble.
GO TO 12 !Try for another.
20 REWIND (INF) !Back to the start of the file.
WRITE (MSG,11) !Set off a bit.
WRITE (MSG,11) "Oxford style..." !Announce the proper style.
21 READ (INF,11,END = 30) TEXT !Grab the text.
CALL QUIBBLE(TEXT,.TRUE.) !The other way to quibble.
GO TO 21 !Have another try.
Closedown
30 END !All files are closed by exiting.
Output:
To insert commas into lists... {} {ABC} {ABC and DEF} {ABC, DEF, G and H} Oxford style... {} {ABC} {ABC, and DEF} {ABC, DEF, G, and H}
FreeBASIC
' FB 1.05.0 Win64
Sub Split(s As String, sep As String, result() As String)
Dim As Integer i, j, count = 0
Dim temp As String
Dim As Integer position(Len(s) + 1)
position(0) = 0
For i = 0 To Len(s) - 1
For j = 0 To Len(sep) - 1
If s[i] = sep[j] Then
count += 1
position(count) = i + 1
End If
Next j
Next i
position(count + 1) = Len(s) + 1
Redim result(count)
For i = 1 To count + 1
result(i - 1) = Mid(s, position(i - 1) + 1, position(i) - position(i - 1) - 1)
Next
End Sub
Function CommaQuibble(s As String) As String
Dim i As Integer
Dim As String result
Dim As String words()
s = Trim(s, Any "[]""")
' Now remove internal quotes
Split s, """", words()
s = ""
For i = 0 To UBound(words)
s &= words(i)
Next
' Now split 's' using the comma as separator
Erase words
Split s, ",", words()
' And re-assemble the string in the desired format
result = "{"
For i = 0 To UBound(words)
If i = 0 Then
result &= words(i)
ElseIf i = UBound(words) Then
result &= " and " & words(i)
Else
result &= ", " + words(i)
EndIf
Next
Return result & "}"
End Function
' As 3 of the strings contain embedded quotes these need to be doubled in FB
Print CommaQuibble("[]")
Print CommaQuibble("[""ABC""]")
Print CommaQuibble("[""ABC"",""DEF""]")
Print CommaQuibble("[""ABC"",""DEF"",""G"",""H""]")
Print
Print "Press any key to quit the program"
Sleep
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Frink
quibble[enum] :=
{
list = toArray[enum] // This makes it work on any enumerating expression
size = length[list]
if size >= 2
return "{" + join[", ", first[list, size-1]] + " and " + last[list] + "}"
else
return "{" + join["", list] + "}"
}
data = [[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]
for line = data
println[quibble[line]]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
FutureBasic
Long solution:
include "NSLog.incl"
local fn CommaQuibber( string as CFStringRef ) as CFStringRef
CFStringRef tempStr
NSUInteger i
tempStr = fn StringByReplacingOccurrencesOfString( string, @"[", @"" )
tempStr = fn StringByReplacingOccurrencesOfString( tempStr, @"]", @"" )
tempStr = fn StringByReplacingOccurrencesOfString( tempStr, @" ", @"" )
tempStr = fn StringByReplacingOccurrencesOfString( tempStr, @"\"", @"" )
CFMutableStringRef quibStr = fn MutableStringWithCapacity(0)
CFArrayRef arr = fn StringComponentsSeparatedByString( tempStr, @"," )
NSUInteger count = len(arr)
select switch ( count )
case 0 : MutableStringSetString( quibStr, @"{}" ) : break
case 1 : MutableStringSetString( quibStr, fn StringWithFormat( @"{%@}", arr[0] ) ) : break
case 2 : MutableStringSetString( quibStr, fn StringWithFormat( @"{%@ and %@}", arr[0], arr[1] ) ) : break
case else
MutableStringAppendFormat( quibStr, @"{" )
for i = 0 to count -1
if ( i != count -1 )
MutableStringAppendFormat( quibStr, @"%@, ", arr[i] )
else
MutableStringAppendFormat( quibStr, @"and %@}", arr[i] )
end if
next
end select
end fn = quibStr
NSLog( @"%@", fn CommaQuibber( @"[]" ) )
NSLog( @"%@", fn CommaQuibber( @"[\"ABC\"]" ) )
NSLog( @"%@", fn CommaQuibber( @"[\"ABC\", \"DEF\"]" ) )
NSLog( @"%@", fn CommaQuibber( @"[\"ABC\", \"DEF\", \"G\", \"H\"]" ) )
HandleEvents
Short solution:
local fn CommaQuibbler( s as CFArrayRef ) as CFStringRef
CFStringRef result = NULL
select ( len(s) )
case 0: exit fn = @"{}"
case 1: exit fn = fn StringWithFormat( @"{%@}", s[0] )
case 2: exit fn = fn StringWithFormat( @"{%@ and %@}", s[0], s[1] )
case else
result = fn StringWithFormat( @"{%@}", fn ArrayComponentsJoinedByString( s, @", " ) )
CFRange lastComma = fn StringRangeOfStringWithOptions( result, @",", NSBackwardsSearch )
result = fn StringByReplacingCharactersInRange( result, lastComma, @" and" )
end select
end fn = result
print fn CommaQuibbler( @[] )
print fn CommaQuibbler( @[@"ABC"] )
print fn CommaQuibbler( @[@"ABC", @"DEF"] )
print fn CommaQuibbler( @[@"ABC", @"DEF", @"G", @"H"] )
HandleEvents
Shorter solution:
local fn Quibble( string as CFStringRef ) as CFStringRef
CfArrayRef arr = fn StringComponentsSeparatedByString( string, @" " )
CFStringRef rst
if ( len(arr) == 0 ) then rst = @"" else rst = fn StringWithFormat( @"%@", fn ArrayLastObject( arr ) )
if ( len(arr) > 1 )
CFArrayRef subArray = fn ArraySubarrayWithRange( arr, fn CFRangeMake( 0, len(arr) - 1 ) )
rst = fn StringWithFormat( @"%@ and %@", fn ArrayComponentsJoinedByString( subArray, @", " ), rst )
end if
end fn = fn StringWithFormat( @"{%@}", rst )
print fn Quibble( @"" )
print fn Quibble( @"ABC")
print fn Quibble( @"ABC DEF" )
print fn Quibble( @"ABC DEF G H" )
HandleEvents
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G, and H}
Gambas
Click this link to run this code
Public Sub Main()
Dim sInput As String[] = ["", "ABC", "ABC DEF", "ABC DEF G H"]
Dim sTemp As String
For Each sTemp In sInput
Print sTemp & " = ";
sTemp = Replace(sTemp, " ", ",")
If RInStr(sTemp, ",") > 0 Then
sTemp = Mid(sTemp, 1, RInStr(sTemp, ",") - 1) & " and " & Mid(sTemp, RInStr(sTemp, ",") + 1)
End If
sTemp = "{" & sTemp & "}"
Print sTemp
Next
End
Output:
= {} ABC = {ABC} ABC DEF = {ABC and DEF} ABC DEF G H = {ABC,DEF,G and H}
Go
The blog mentioned code maintenence. The idea here is to make the code easy for maintainers to understand by making it correspond as directly as possible to the problem description.
package main
import (
"fmt"
"strings"
)
func q(s []string) string {
switch len(s) {
case 0:
return "{}"
case 1:
return "{" + s[0] + "}"
case 2:
return "{" + s[0] + " and " + s[1] + "}"
default:
return "{" +
strings.Join(s[:len(s)-1], ", ") +
" and " +
s[len(s)-1] +
"}"
}
}
func main() {
fmt.Println(q([]string{}))
fmt.Println(q([]string{"ABC"}))
fmt.Println(q([]string{"ABC", "DEF"}))
fmt.Println(q([]string{"ABC", "DEF", "G", "H"}))
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Groovy
def commaQuibbling = { it.size() < 2 ? "{${it.join(', ')}}" : "{${it[0..-2].join(', ')} and ${it[-1]}}" }
Testing:
['{}': [], '{ABC}': ['ABC'], '{ABC and DEF}': ['ABC', 'DEF'], '{ABC, DEF, G and H}': ['ABC', 'DEF', 'G', 'H']].each { expected, input ->
println "Verifying commaQuibbling($input) == $expected"
assert commaQuibbling(input) == expected
}
- Output:
Verifying commaQuibbling([]) == {} Verifying commaQuibbling([ABC]) == {ABC} Verifying commaQuibbling([ABC, DEF]) == {ABC and DEF} Verifying commaQuibbling([ABC, DEF, G, H]) == {ABC, DEF, G and H}
Haskell
quibble ws = "{" ++ quibbles ws ++ "}"
where quibbles [] = ""
quibbles [a] = a
quibbles [a,b] = a ++ " and " ++ b
quibbles (a:bs) = a ++ ", " ++ quibbles bs
main = mapM_ (putStrLn . quibble) $
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]] ++
(map words ["One two three four", "Me myself I", "Jack Jill", "Loner" ])
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {One, two, three and four} {Me, myself and I} {Jack and Jill} {Loner}
Or, defining just two cases, and drawing more on standard libraries than on hand-crafted pattern-matching and recursion:
import Data.List (intercalate)
--------------------- COMMA QUIBBLING --------------------
quibble :: [String] -> String
quibble ws@(_ : _ : _) =
intercalate
" and "
( [intercalate ", " . reverse . tail, head]
<*> [reverse ws]
)
quibble xs = concat xs
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_ (putStrLn . (`intercalate` ["{", "}"]) . quibble) $
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]
<> ( words
<$> [ "One two three four",
"Me myself I",
"Jack Jill",
"Loner"
]
)
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {One, two, three and four} {Me, myself and I} {Jack and Jill} {Loner}
Icon and Unicon
The following works in both languages:
procedure main()
every write(quibble([] | ["ABC"] | ["ABC","DEF"] | ["ABC","DEF","G","H"]))
end
procedure quibble(A)
join := s := ""
while s := pull(A)||join||s do join := if *join = 0 then " and " else ", "
return "{"||s||"}"
end
Sample run:
->cq {} {ABC} {ABC and DEF} {ABC, DEF, G and H} ->
J
quibLast2=: ' and ' joinstring (2 -@<. #) {. ]
withoutLast2=: ([: # _2&}.) {. ]
quibble=: '{', '}' ,~ ', ' joinstring withoutLast2 , <@quibLast2
Testing:
Tests=: (<<<3){(i.5)<@{."0 1;:'ABC DEF G H'
quibble every Tests
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Alternative implementation:
commaand=: 1 ;@}.&, ] ,.~ 1 |.!.(<' and ') (<', ')"0
quibble=: '{','}',~ commaand
(same results)
Java
public class Quibbler {
public static String quibble(String[] words) {
String qText = "{";
for(int wIndex = 0; wIndex < words.length; wIndex++) {
qText += words[wIndex] + (wIndex == words.length-1 ? "" :
wIndex == words.length-2 ? " and " :
", ";
}
qText += "}";
return qText;
}
public static void main(String[] args) {
System.out.println(quibble(new String[]{}));
System.out.println(quibble(new String[]{"ABC"}));
System.out.println(quibble(new String[]{"ABC", "DEF"}));
System.out.println(quibble(new String[]{"ABC", "DEF", "G"}));
System.out.println(quibble(new String[]{"ABC", "DEF", "G", "H"}));
}
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
JavaScript
ES5
function quibble(words) {
return "{" +
words.slice(0, words.length-1).join(",") +
(words.length > 1 ? " and " : "") +
(words[words.length-1] || '') +
"}";
}
[[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]].forEach(
function(s) {
console.log(quibble(s));
}
);
- Output:
{} {ABC} {ABC and DEF} {ABC,DEF,G and H}
ES6
Composing from a set of generic functions:
(() => {
'use strict';
// ----------------- COMMA QUIBBLING -----------------
// quibble :: [String] -> String
const quibble = xs =>
1 < xs.length ? (
intercalate(' and ')(
ap([
compose(
intercalate(', '),
reverse,
tail
),
head
])([reverse(xs)])
)
) : concat(xs);
// ---------------------- TEST -----------------------
const main = () =>
unlines(
map(compose(x => '{' + x + '}', quibble))(
append([
[],
["ABC"],
["ABC", "DEF"],
["ABC", "DEF", "G", "H"]
])(
map(words)([
"One two three four",
"Me myself I",
"Jack Jill",
"Loner"
])
)
));
// ---------------- GENERIC FUNCTIONS ----------------
// ap (<*>) :: [(a -> b)] -> [a] -> [b]
const ap = fs =>
// The sequential application of each of a list
// of functions to each of a list of values.
// apList([x => 2 * x, x => 20 + x])([1, 2, 3])
// -> [2, 4, 6, 21, 22, 23]
xs => fs.flatMap(f => xs.map(f));
// append (++) :: [a] -> [a] -> [a]
const append = xs =>
// A list defined by the
// concatenation of two others.
ys => xs.concat(ys);
// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs => (
ys => 0 < ys.length ? (
ys.every(Array.isArray) ? (
[]
) : ''
).concat(...ys) : ys
)(xs);
// head :: [a] -> a
const head = xs => (
ys => ys.length ? (
ys[0]
) : undefined
)(list(xs));
// intercalate :: String -> [String] -> String
const intercalate = s =>
// The concatenation of xs
// interspersed with copies of s.
xs => xs.join(s);
// list :: StringOrArrayLike b => b -> [a]
const list = xs =>
// xs itself, if it is an Array,
// or an Array derived from xs.
Array.isArray(xs) ? (
xs
) : Array.from(xs || []);
// map :: (a -> b) -> [a] -> [b]
const map = f =>
// The list obtained by applying f
// to each element of xs.
// (The image of xs under f).
xs => [...xs].map(f);
// reverse :: [a] -> [a]
const reverse = xs =>
'string' !== typeof xs ? (
xs.slice(0).reverse()
) : xs.split('').reverse().join('');
// tail :: [a] -> [a]
const tail = xs =>
// A new list consisting of all
// items of xs except the first.
xs.slice(1);
// unlines :: [String] -> String
const unlines = xs =>
// A single string formed by the intercalation
// of a list of strings with the newline character.
xs.join('\n');
// words :: String -> [String]
const words = s =>
// List of space-delimited sub-strings.
s.split(/\s+/);
// MAIN ---
return main();
})();
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {One, two, three and four} {Me, myself and I} {Jack and Jill} {Loner}
Alternative implementation:
function quibble(words) {
var words2 = words.join()
var words3 = [...words2].reverse().join('');
var res = words3.replace(",", " dna ");
var words4 = [...res].reverse().join('');
return '{'+words4+'}';
}
jq
def quibble:
if length == 0 then ""
elif length == 1 then .[0]
else (.[0:length-1] | join(", ")) + " and " + .[length-1]
end
| "{" + . + "}";
Example:
( [], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]) | quibble
- Output:
jq -n -r -f Comma_quibbling.jq
{}
{ABC}
{ABC and DEF}
{ABC, DEF, G and H}
Julia
function quibble(arr::Array)
if isempty(arr) rst = "" else rst = "$(arr[end])" end
if length(arr) > 1 rst = join(arr[1:end-1], ", ") * " and " * rst end
return "{" * rst * "}"
end
@show quibble([])
@show quibble(["ABC"])
@show quibble(["ABC", "DEF"])
@show quibble(["ABC", "DEF", "G", "H"])
- Output:
quibble([]) = "{}" quibble(["ABC"]) = "{ABC}" quibble(["ABC", "DEF"]) = "{ABC and DEF}" quibble(["ABC", "DEF", "G", "H"]) = "{ABC, DEF, G and H}"
Kotlin
// version 1.0.6
fun commaQuibble(s: String): String {
val t = s.trim('[', ']').replace(" ", "").replace("\"", "")
val words = t.split(',')
val sb = StringBuilder("{")
for (i in 0 until words.size) {
sb.append(when (i) {
0 -> ""
words.lastIndex -> " and "
else -> ", "
})
sb.append(words[i])
}
return sb.append("}").toString()
}
fun main(args: Array<String>) {
val inputs = arrayOf(
"""[]""",
"""["ABC"]""",
"""["ABC", "DEF"]""",
"""["ABC", "DEF", "G", "H"]"""
)
for (input in inputs) println("${input.padEnd(24)} -> ${commaQuibble(input)}")
}
- Output:
[] -> {} ["ABC"] -> {ABC} ["ABC", "DEF"] -> {ABC and DEF} ["ABC", "DEF", "G", "H"] -> {ABC, DEF, G and H}
Lang
fp.quibble = (&words) -> {
$len $= @&words
$output = \{\e
$i
repeat($[i], $len) {
$output += &words[$i] ||| ($i == -|$len?\e:($i == $len - 2?\sand\s:\,\s))
}
$output += \}\e
return $output
}
fn.println(fp.quibble(fn.arrayOf()))
fn.println(fp.quibble(fn.arrayOf(ABC)))
fn.println(fp.quibble(fn.arrayOf(ABC, DEF)))
fn.println(fp.quibble(fn.arrayOf(ABC, DEF, G, H)))
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Lasso
#!/usr/bin/lasso9
local(collection =
array(
array,
array("ABC"),
array("ABC", "DEF"),
array("ABC", "DEF", "G", "H")
)
)
with words in #collection do {
if(#words -> size > 1) => {
local(last = #words -> last)
#words -> removelast
stdoutnl('{' + #words -> join(', ') + ' and ' + #last'}')
else(#words -> size == 1)
stdoutnl('{' + #words -> first + '}')
else
stdoutnl('{}')
}
}
Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Liberty BASIC
do
read in$
if in$ ="END" then wait
w =wordCount( in$)
select case w
case 0
o$ ="{}"
case 1
o$ ="{" +in$ +"}"
case 2
o$ ="{" +word$( in$, 1) +" and " +word$( in$, 2) +"}"
case else
o$ ="{"
o$ =o$ +word$( in$, 1)
for k =2 to w -1
o$ =o$ +", " +word$( in$, k)
next k
o$ =o$ +" and " +word$( in$, w) +"}"
end select
if w =1 then
print "'"; in$; "'"; " held "; w; " word. "; tab( 30); o$
else
print "'"; in$; "'"; " held "; w; " words. "; tab( 30); o$
end if
loop until 0
wait
function wordCount( IN$)
wordCount =1
for i =1 to len( IN$)
if mid$( IN$, i, 1) =" " then wordCount =wordCount +1
next i
end function
end
data "" 'No input words.
data "ABC" 'One input word.
data "ABC DEF" 'Two words.
data "ABC DEF G" 'Three words.
data "ABC DEF G H" 'Four words.
data "END" 'Sentinel for EOD.
- Output:
'' held 1 word. {} 'ABC' held 1 word. {ABC} 'ABC DEF' held 2 words. {ABC and DEF} 'ABC DEF G' held 3 words. {ABC, DEF and G} 'ABC DEF G H' held 4 words. {ABC, DEF, G and H}
Logo
to join :delimiter :list [:result []]
output cond [
[ [empty? :list] :result ]
[ [empty? :result] (join :delimiter butfirst :list first :list) ]
[ else (join :delimiter butfirst :list
(word :result :delimiter first :list)) ]
]
end
to quibble :list
local "length
make "length count :list
make "text (
ifelse [:length <= 2] [
(join "\ and\ :list)
] [
(join "\ and\ (sentence join ",\ butlast :list last :list))
])
output ifelse [empty? :text] "\{\} [(word "\{ :text "\})]
end
foreach [ [] [ABC] [ABC DEF] [ABC DEF G H] ] [
print quibble ?
]
bye
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Lua
function quibble (strTab)
local outString, join = "{"
for strNum = 1, #strTab do
if strNum == #strTab then
join = ""
elseif strNum == #strTab - 1 then
join = " and "
else
join = ", "
end
outString = outString .. strTab[strNum] .. join
end
return outString .. '}'
end
local testCases = {
{},
{"ABC"},
{"ABC", "DEF"},
{"ABC", "DEF", "G", "H"}
}
for _, input in pairs(testCases) do print(quibble(input)) end
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
M2000 Interpreter
Using string as argument
Module Checkit {
function f$ {
what$=mid$(trim$(letter$),2)
what$=Left$(what$, len(what$)-1)
flush ' erase any argument from stack
Data param$(what$)
m=stack.size
document resp$="{"
if m>2 then {
shift m-1, 2 ' get last two as first two
push letter$+" and "+letter$
m-- ' one less
shiftback m ' move to last position
}
while not empty {
resp$=letter$+if$(not empty->", ", "")
}
=resp$+"}"
}
\\ we use ? for Print
? f$({[]})
? f$({["ABC"]})
? f$({["ABC", "DEF"]})
? f$({["ABC","DEF", "G", "H"]})
}
Checkit
Using String functions only
Module Checkit {
function f$ {
what$=filter$(trim$(letter$), chr$(34))
what$=Mid$(what$, 2, len(what$)-2)
count=Len(what$)-Len(filter$(what$,","))
if count>2 then m=rinstr(what$, ", ") : insert m, 2 what$=" and "
="{"+what$+"}"
}
? f$({[]})
? f$({["ABC"]})
? f$({["ABC", "DEF"]})
? f$({["ABC","DEF", "G", "H"]})
}
Checkit
Using array as argument
Module Checkit {
function f$(ar) {
flush
Data ! ar
m=stack.size
document resp$="{"
if m>2 then {
shift m-1, 2 ' get last two as first two
push letter$+" and "+letter$
m-- ' one less
shiftback m ' move to last position
}
while not empty {
resp$=letter$+if$(not empty->", ", "")
}
=resp$+"}"
}
? f$((,))
? f$(("ABC",))
? f$(("ABC", "DEF"))
? f$(("ABC","DEF", "G", "H"))
}
Checkit
- Output:
{} {ABC} {ABC, DEF} {ABC, DEF, G and H}
Maple
Quibble := proc( los )
uses StringTools;
Fence( proc()
if los = [] then
""
elif numelems( los ) = 1 then
los[ 1 ]
else
cat( Join( los[ 1 .. -2 ], ", " ), " and ", los[ -1 ] )
end if
end(), "{", "}" )
end proc:
Check it on the required inputs:
> Quibble([]);
"{}"
> Quibble( [ "ABC" ] );
"{ABC}"
> Quibble( [ "ABC", "DEF" ] );
"{ABC and DEF}"
> Quibble( ["ABC", "DEF", "G", "H"] );
"{ABC, DEF, G and H}"
Mathematica / Wolfram Language
quibble[words___] :=
ToString@{StringJoin@@
Replace[Riffle[{words}, ", "],
{most__, ", ", last_} -> {most, " and ", last}]}
- Output:
In[2]:= quibble[] Out[2]= {} In[3]:= quibble["ABC"] Out[3]= {ABC} In[4]:= quibble["ABC","DEF"] Out[4]= {ABC and DEF} In[5]:= quibble["ABC","DEF","G","H"] Out[5]= {ABC, DEF, G and H}
MATLAB / Octave
function r = comma_quibbling(varargin)
if isempty(varargin)
r = '';
elseif length(varargin)==1;
r = varargin{1};
else
r = [varargin{end-1},' and ', varargin{end}];
for k=length(varargin)-2:-1:1,
r = [varargin{k}, ', ', r];
end
end
end;
- Output:
octave:73> comma_quibbling('') ans = octave:74> comma_quibbling('ABC') ans = ABC octave:75> comma_quibbling('ABC','DEF') ans = ABC and DEF octave:76> comma_quibbling('ABC','DEF','G') ans = ABC, DEF and G octave:77> comma_quibbling('ABC','DEF','G','H') ans = ABC, DEF, G and H
MAXScript
fn separate words: =
(
if words == unsupplied or words == undefined or classof words != array then return "{}"
else
(
local toReturn = "{"
local pos = 1
while pos <= words.count do
(
if pos == 1 then (append toReturn words[pos]; pos+=1)
else
(
if pos <= words.count-1 then (append toReturn (", "+words[pos]); pos+=1)
else
(
append toReturn (" and " + words[pos])
pos +=1
)
)
)
return (toReturn+"}")
)
)
Output:
separate words:#()
"{}"
separate words:#("ABC")
"{ABC}"
separate words:#("ABC","DEF")
"{ABC and DEF}"
separate words:#("ABC","DEF","G","H")
"{ABC, DEF, G and H}"
Miranda
main :: [sys_message]
main = [Stdout (show test ++ ": {" ++ quibble test ++ "}\n") | test <- tests]
tests :: [[[char]]]
tests = [ [],
["ABC"],
["ABC","DEF"],
["ABC","DEF","G","H"] ]
quibble :: [[char]]->[char]
quibble [] = []
quibble [word] = word
quibble [word1,word2] = word1 ++ " and " ++ word2
quibble (word:words) = word ++ ", " ++ quibble words
- Output:
[]: {} ["ABC"]: {ABC} ["ABC","DEF"]: {ABC and DEF} ["ABC","DEF","G","H"]: {ABC, DEF, G and H}
NetRexx
/* NetRexx */
options replace format comments java crossref symbols nobinary
runSample(arg)
return
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method quibble(arg) public static
parse arg '[' lst ']'
lst = lst.changestr('"', '').space(1)
lc = lst.lastpos(',')
if lc > 0 then
lst = lst.insert('and', lc).overlay(' ', lc)
return '{'lst'}'
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
lists = ['[]', - -- {}
'["ABC"]', - -- {ABC}
'["ABC", "DEF"]', - -- {ABC and DEF}
'["ABC", "DEF", "G", "H"]'] -- {ABC, DEF, G and H}
loop lst over lists
say lst.right(30) ':' quibble(lst)
end lst
return
- Output:
[] : {} ["ABC"] : {ABC} ["ABC", "DEF"] : {ABC and DEF} ["ABC", "DEF", "G", "H"] : {ABC, DEF, G and H}
Nim
proc commaQuibble(s: openArray[string]): string =
result = ""
for i, c in s:
if i > 0: result.add (if i < s.high: ", " else: " and ")
result.add c
result = "{" & result & "}"
var s = @[@[], @["ABC"], @["ABC", "DEF"], @["ABC", "DEF", "G", "H"]]
for i in s:
echo commaQuibble(i)
Nu
def quibble [] {
if ($in | length) < 3 { $in } else [($in | drop | str join ', ') ($in | last)]
| $'{($in | str join " and ")}'
}
# test
[
[]
[ABC]
[ABC DEF]
[ABC DEF G H]
]
| each { quibble }
- Output:
╭───┬─────────────────────╮ │ 0 │ {} │ │ 1 │ {ABC} │ │ 2 │ {ABC and DEF} │ │ 3 │ {ABC, DEF, G and H} │ ╰───┴─────────────────────╯
Oberon-2
MODULE CommaQuibbling;
IMPORT
NPCT:Args,
Strings,
Out;
VAR
str: ARRAY 256 OF CHAR;
PROCEDURE Do(VAR s: ARRAY OF CHAR);
VAR
aux: ARRAY 128 OF CHAR;
i,params: LONGINT;
BEGIN
params := Args.Number() - 1;
CASE params OF
0:
COPY("{}",s)
|1:
Args.At(1,aux);
Strings.Append("{",s);
Strings.Append(aux,s);
Strings.Append("}",s);
ELSE
Strings.Append("{",s);
FOR i := 1 TO params - 1 DO
Args.At(i,aux);
Strings.Append(aux,s);
IF i # params - 1 THEN
Strings.Append(", ",s)
ELSE
Strings.Append(" and ", s)
END
END;
Args.At(params,aux);
Strings.Append(aux,s);
Strings.Append("}",s)
END;
END Do;
BEGIN
Do(str);
Out.String(":> ");Out.String(str);Out.Ln
END CommaQuibbling.
- Output:
$ bin/CommaQuibbling :> {} $ bin/CommaQuibbling ABC :> {ABC} $ bin/CommaQuibbling ABC DEF :> {ABC and DEF} $ bin/CommaQuibbling ABC DEF G :> {ABC, DEF and G} $ bin/CommaQuibbling ABC DEF G H :> {ABC, DEF, G and H}
Objeck
class Quibbler {
function : Quibble(words : String[]) ~ String {
text := "{";
each(i : words) {
text += words[i];
if(i < words->Size() - 2) {
text += ", ";
}
else if(i = words->Size() - 2) {
text += " and ";
};
};
text += "}";
return text;
}
function : Main(args : String[]) ~ Nil {
words := String->New[0];
Quibble(words)->PrintLine();
words := ["ABC"];
Quibble(words)->PrintLine();
words := ["ABC", "DEF"];
Quibble(words)->PrintLine();
words := ["ABC", "DEF", "G", "H"];
Quibble(words)->PrintLine();
}
}
Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
OCaml
open Printf
let quibble list =
let rec aux = function
| a :: b :: c :: d :: rest -> a ^ ", " ^ aux (b :: c :: d :: rest)
| [a; b; c] -> sprintf "%s, %s and %s}" a b c
| [a; b] -> sprintf "%s and %s}" a b
| [a] -> sprintf "%s}" a
| [] -> "}" in
"{" ^ aux list
let test () =
[[];
["ABC"];
["ABC"; "DEF"];
["ABC"; "DEF"; "G"; "H"]]
|> List.iter (fun list -> print_endline (quibble list))
open Core
let quibble = function
| [| |] -> "{}"
| [| a |] -> sprintf "{%s}" a
| array ->
let last, rest = Array.last array, Array.slice array 0 (-1) in
sprintf "{%s and %s}" (String.concat_array ~sep:", " rest) last
let test () =
[[||];
[|"ABC"|];
[|"ABC"; "DEF"|];
[|"ABC"; "DEF"; "G"; "H"|]]
|> List.iter ~f:(fun list -> print_endline (quibble list))
- Output:
# test ();; {} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Oforth
: quibbing(l) -- string
| i s |
StringBuffer new "{" <<
l size dup 1- ->s loop: i [
l at(i) <<
i s < ifTrue: [ ", " << continue ]
i s == ifTrue: [ " and " << ]
]
"}" << dup freeze ;
- Output:
[ [], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"] ] map(#quibbing) . [{}, {ABC}, {ABC and DEF}, {ABC, DEF, G and H}]
Ol
(define (quibble . args)
(display "{")
(let loop ((args args))
(unless (null? args) (begin
(display (car args))
(cond
((= 1 (length args)) #t)
((= 2 (length args))
(display " and "))
(else
(display ", ")))
(loop (cdr args)))))
(print "}"))
; testing =>
(quibble)
(quibble "ABC")
(quibble "ABC" "DEF")
(quibble "ABC" "DEF" "G" "H")
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
PARI/GP
comma(v)={
if(#v==0, return("{}"));
if(#v==1, return(Str("{"v[1]"}")));
my(s=Str("{",v[1]));
for(i=2,#v-1,s=Str(s,", ",v[i]));
Str(s," and ",v[#v],"}")
};
comma([])
comma(["ABC"])
comma(["ABC", "DEF"])
comma(["ABC", "DEF", "G", "H"])
Output:
%1 = "{}" %2 = "{ABC}" %3 = "{ABC and DEF}" %4 = "{ABC, DEF, G and H}"
Pascal
program CommaQuibbling;
uses
SysUtils,
Classes,
StrUtils;
const
OuterBracket =['[', ']'];
type
{$IFNDEF FPC}
SizeInt = LongInt;
{$ENDIF}
{ TCommaQuibble }
TCommaQuibble = class(TStringList)
private
function GetCommaquibble: string;
procedure SetCommaQuibble(AValue: string);
public
property CommaQuibble: string read GetCommaquibble write SetCommaQuibble;
end;
{$IFNDEF FPC} // Delphi support
function WordPosition(const N: Integer; const S: string; const WordDelims:
TSysCharSet): SizeInt;
var
PS, P, PE: PChar;
Count: Integer;
begin
Result := 0;
Count := 0;
PS := PChar(pointer(S));
PE := PS + Length(S);
P := PS;
while (P < PE) and (Count <> N) do
begin
while (P < PE) and (P^ in WordDelims) do
inc(P);
if (P < PE) then
inc(Count);
if (Count <> N) then
while (P < PE) and not (P^ in WordDelims) do
inc(P)
else
Result := (P - PS) + 1;
end;
end;
function ExtractWordPos(N: Integer; const S: string; const WordDelims:
TSysCharSet; out Pos: Integer): string;
var
i, j, l: SizeInt;
begin
j := 0;
i := WordPosition(N, S, WordDelims);
if (i > High(Integer)) then
begin
Result := '';
Pos := -1;
Exit;
end;
Pos := i;
if (i <> 0) then
begin
j := i;
l := Length(S);
while (j <= l) and not (S[j] in WordDelims) do
inc(j);
end;
SetLength(Result, j - i);
if ((j - i) > 0) then
Result := copy(S, i, j - i);
end;
function ExtractWord(N: Integer; const S: string; const WordDelims: TSysCharSet):
string; inline;
var
i: SizeInt;
begin
Result := ExtractWordPos(N, S, WordDelims, i);
end;
{$ENDIF}
{ TCommaQuibble }
procedure TCommaQuibble.SetCommaQuibble(AValue: string);
begin
AValue := ExtractWord(1, AValue, OuterBracket);
commatext := AValue;
end;
function TCommaQuibble.GetCommaquibble: string;
var
x: Integer;
Del: string;
begin
result := '';
Del := ', ';
for x := 0 to Count - 1 do
begin
result := result + Strings[x];
if x = Count - 2 then
Del := ' and '
else if x = Count - 1 then
Del := '';
result := result + Del;
end;
result := '{' + result + '}';
end;
const
TestData: array[0..7] of string = ('[]', '["ABC"]', '["ABC", "DEF"]',
'["ABC", "DEF", "G", "H"]', '', '"ABC"', '"ABC", "DEF"', '"ABC", "DEF", "G", "H"');
var
Quibble: TCommaQuibble;
TestString: string;
begin
Quibble := TCommaQuibble.Create;
for TestString in TestData do
begin
Quibble.CommaQuibble := TestString;
writeln(Quibble.CommaQuibble);
end;
end.
Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Perl
sub comma_quibbling :prototype(@) {
return "{$_}" for
@_ < 2 ? "@_" :
join(', ', @_[0..@_-2]) . ' and ' . $_[-1];
}
print comma_quibbling(@$_), "\n" for
[], [qw(ABC)], [qw(ABC DEF)], [qw(ABC DEF G H)];
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Perl 5.01 version and other approach:
use 5.01;
sub comma_quibbling {
my $last = pop // '';
return '{'. (@_ ? (join ', ', @_).' and '.$last : $last).'}';
}
say for map {comma_quibbling(@$_)}
[], [qw(ABC)], [qw(ABC DEF)], [qw(ABC DEF G H)];
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Phix
function quibble(sequence words) if length(words)>=2 then words[-2..-1] = {words[-2]&" and "&words[-1]} end if return "{"&join(words,", ")&"}" end function constant tests = {{}, {"ABC"}, {"ABC","DEF"}, {"ABC","DEF","G","H"}} for i=1 to length(tests) do ?quibble(tests[i]) end for
- Output:
"{}" "{ABC}" "{ABC and DEF}" "{ABC, DEF, G and H}"
PHP
<?php
function quibble($arr) {
switch (count($arr)) {
case 0:
return '{}';
case 1:
return "{{$arr[0]}}";
default:
$left = implode(', ', array_slice($arr, 0, -1));
$right = array_slice($arr, -1)[0];
return "{{$left} and {$right}}";
}
}
$tests = [
[],
["ABC"],
["ABC", "DEF"],
["ABC", "DEF", "G", "H"]
];
foreach ($tests as $test) {
echo quibble($test) . PHP_EOL;
}
?>
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
PicoLisp
(for L '([] ["ABC"] ["ABC", "DEF"] ["ABC", "DEF", "G", "H"])
(let H (head -1 L)
(prinl
"{"
(glue ", " H)
(and H " and ")
(last L)
"}" ) ) )
Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
PL/I
*process or(!);
quib: Proc Options(main);
/*********************************************************************
* 06.10.2013 Walter Pachl
*********************************************************************/
put Edit*process or(!);
quib: Proc Options(main);
/*********************************************************************
* 06.10.2013 Walter Pachl
* 07.10.2013 -"- change "Oxford comma" to and
*********************************************************************/
put Edit(quibbling(''))(Skip,a);
put Edit(quibbling('ABC'))(Skip,a);
put Edit(quibbling('ABC DEF'))(Skip,a);
put Edit(quibbling('ABC DEF G H'))(Skip,a);
return;
quibbling: proc(s) Returns(Char(100) Var);
Dcl s Char(*);
Dcl result Char(100) Var Init('');
Dcl word(10) Char(100) Var;
Dcl (wi,p) Bin Fixed(31);
If s='' Then result='';
Else Do;
Do wi=1 By 1 While(s^='');
p=index(s,' ');
if p=0 Then Do;
word(wi)=s;
s='';
End;
Else Do;
word(wi)=left(s,p-1);
s=substr(s,p+1);
End;
end;
wn=wi-1;
result=word(1);
Do i=2 To wn-1;
result=result!!', '!!word(i);
End;
If wn>1 Then
result=result!!' and '!!word(wn);
End;
Return('{'!!result!!'}');
End;
End;
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
PL/M
100H:
/* COPY A STRING (MINUS TERMINATOR), RETURNS LENGTH (MINUS TERMINATOR) */
COPY$STR: PROCEDURE(SRC, DST) ADDRESS;
DECLARE (SRC, DST) ADDRESS;
DECLARE (SCH BASED SRC, DCH BASED DST) BYTE;
DECLARE L ADDRESS;
L = 0;
DO WHILE SCH <> '$';
DCH = SCH;
SRC = SRC + 1;
DST = DST + 1;
L = L + 1;
END;
RETURN L;
END COPY$STR;
/* QUIBBLE GIVEN ARRAY OF $-TERMINATED STRINGS, STORE RESULT IN BUFR */
QUIBBLE: PROCEDURE(WORDS, BUFR) ADDRESS;
DECLARE (WORDS, BUFR, ADR) ADDRESS;
DECLARE (WORD BASED WORDS, WPTR) ADDRESS;
DECLARE (WCHAR BASED WPTR, BCHAR BASED BUFR) BYTE;
/* BRACES AND LOWERCASE LETTERS ARE NOT WITHIN PL/M CHARSET */
DECLARE LBRACE LITERALLY '123', RBRACE LITERALLY '125';
DECLARE ANDSTR DATA (32,97,110,100,32,'$');
ADR = BUFR;
BCHAR = LBRACE;
BUFR = BUFR + 1;
DO WHILE WORD <> 0;
BUFR = BUFR + COPY$STR(WORD, BUFR);
WORDS = WORDS + 2;
IF WORD <> 0 THEN
IF WORD(1) <> 0 THEN
BUFR = BUFR + COPY$STR(.', $', BUFR);
ELSE
BUFR = BUFR + COPY$STR(.ANDSTR, BUFR);
END;
BCHAR = RBRACE;
BUFR = BUFR + 1;
BCHAR = '$';
RETURN ADR;
END QUIBBLE;
/* --- CP/M OUTPUT AND TESTING --- */
BDOS: PROCEDURE(FUNC, ARG); /* MAKE CP/M SYSTEM CALL */
DECLARE FUNC BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
DECLARE BDOS$EXIT LITERALLY '0', /* EXIT TO CP/M */
BDOS$PUTS LITERALLY '9'; /* PRINT STRING */
PUTS: PROCEDURE(S);
DECLARE S ADDRESS;
CALL BDOS(BDOS$PUTS, S);
CALL BDOS(BDOS$PUTS, .(13,10,'$'));
END PUTS;
/* ARRAY WITH INITIALLY NO CONTENTS */
DECLARE ARR (5) ADDRESS INITIAL (0,0,0,0,0);
CALL PUTS(QUIBBLE(.ARR, .MEMORY)); /* NO STRINGS */
ARR(0) = .'ABC$';
CALL PUTS(QUIBBLE(.ARR, .MEMORY)); /* ABC */
ARR(1) = .'DEF$';
CALL PUTS(QUIBBLE(.ARR, .MEMORY)); /* ABC AND DEF */
ARR(2) = .'G$';
ARR(3) = .'H$';
CALL PUTS(QUIBBLE(.ARR, .MEMORY)); /* ABC, DEF, G AND H */
CALL BDOS(BDOS$EXIT, 0);
EOF
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Plain English
To quibble four words:
Add "ABC" to some string things.
Add "DEF" to the string things.
Add "G" to the string things.
Add "H" to the string things.
Quibble the string things.
To quibble one word:
Add "ABC" to some string things.
Quibble the string things.
To quibble some string things:
Quibble the string things giving a string.
Destroy the string things.
Write the string on the console.
To quibble some string things giving a string:
Append "{" to the string.
Put the string things' count into a count.
If the count is 0, append "}" to the string; exit.
Get a string thing from the string things.
If the count is 1, append the string thing's string then "}" to the string; exit.
Loop.
If a counter is past the count minus 2, append the string thing's string then " and " then the string thing's next's string then "}" to the string; exit.
Append the string thing's string then ", " to the string.
Put the string thing's next into the string thing.
Repeat.
To quibble two words:
Add "ABC" to some string things.
Add "DEF" to the string things.
Quibble the string things.
To quibble zero words:
Quibble some string things.
To run:
Start up.
Quibble zero words.
Quibble one word.
Quibble two words.
Quibble four words.
Wait for the escape key.
Shut down.
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
PowerShell
function Out-Quibble
{
[OutputType([string])]
Param
(
# Zero or more strings.
[Parameter(Mandatory=$false, Position=0)]
[AllowEmptyString()]
[string[]]
$Text = ""
)
# If not null or empty...
if ($Text)
{
# Remove empty strings from the array.
$text = "$Text".Split(" ", [StringSplitOptions]::RemoveEmptyEntries)
}
else
{
return "{}"
}
# Build a format string.
$outStr = ""
for ($i = 0; $i -lt $text.Count; $i++)
{
$outStr += "{$i}, "
}
$outStr = $outStr.TrimEnd(", ")
# If more than one word, insert " and" at last comma position.
if ($text.Count -gt 1)
{
$cIndex = $outStr.LastIndexOf(",")
$outStr = $outStr.Remove($cIndex,1).Insert($cIndex," and")
}
# Output the formatted string.
"{" + $outStr -f $text + "}"
}
Out-Quibble
Out-Quibble "ABC"
Out-Quibble "ABC", "DEF"
Out-Quibble "ABC", "DEF", "G", "H"
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
What it might look like when working with a file:
$file = @'
ABC
ABC, DEF
ABC, DEF, G, H
'@ -split [Environment]::NewLine
foreach ($line in $file)
{
Out-Quibble -Text ($line -split ", ")
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Prolog
words_series(Words, Bracketed) :-
words_serialized(Words, Serialized),
atomics_to_string(["{",Serialized,"}"], Bracketed).
words_serialized([], "").
words_serialized([Word], Word) :- !.
words_serialized(Words, Serialized) :-
append(Rest, [Last], Words), %% Splits the list of *Words* into the *Last* word and the *Rest*
atomics_to_string(Rest, ", ", WithCommas),
atomics_to_string([WithCommas, " and ", Last], Serialized).
test :-
forall( member(Words, [[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]),
( words_series(Words, Series),
format('~w ~15|=> ~w~n', [Words, Series]))
).
- Output:
?- test.
[] => {}
[ABC] => {ABC}
[ABC,DEF] => {ABC and DEF}
[ABC,DEF,G,H] => {ABC, DEF, G and H}
true.
PureBasic
EnableExplicit
Procedure.s CommaQuibble(Input$)
Protected i, count
Protected result$, word$
Input$ = RemoveString(Input$, "[")
Input$ = RemoveString(Input$, "]")
Input$ = RemoveString(Input$, #DQUOTE$)
count = CountString(Input$, ",") + 1
result$ = "{"
For i = 1 To count
word$ = StringField(Input$, i, ",")
If i = 1
result$ + word$
ElseIf Count = i
result$ + " and " + word$
Else
result$ + ", " + word$
EndIf
Next
ProcedureReturn result$ + "}"
EndProcedure
If OpenConsole()
; As 3 of the strings contain embedded quotes these need to be escaped with '\' and the whole string preceded by '~'
PrintN(CommaQuibble("[]"))
PrintN(CommaQuibble(~"[\"ABC\"]"))
PrintN(CommaQuibble(~"[\"ABC\",\"DEF\"]"))
PrintN(CommaQuibble(~"[\"ABC\",\"DEF\",\"G\",\"H\"]"))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Python
Python: Replace() whilst reversed
replace(..) can only replace the first X occurrences not the last hence the replace is done on the reverse of the intermediate string then reversed back.
>>> def strcat(sequence):
return '{%s}' % ', '.join(sequence)[::-1].replace(',', 'dna ', 1)[::-1]
>>> for seq in ([], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]):
print('Input: %-24r -> Output: %r' % (seq, strcat(seq)))
Input: [] -> Output: '{}'
Input: ['ABC'] -> Output: '{ABC}'
Input: ['ABC', 'DEF'] -> Output: '{ABC and DEF}'
Input: ['ABC', 'DEF', 'G', 'H'] -> Output: '{ABC, DEF, G and H}'
>>>
Python: Counted replacement
(Possible)
replace() will replace nothing if the count of items to replace is zero, (and negative integer counts act to replace all occurrences). This combines with the length of the input sequence to allow this to work:
def commaQuibble(s):
return '{%s}' % ' and '.join(s).replace(' and ', ', ', len(s) - 2)
for seq in ([], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]):
print('Input: %-24r -> Output: %r' % (seq, commaQuibble(seq)))
- Output:
Input: [] -> Output: '{}' Input: ['ABC'] -> Output: '{ABC}' Input: ['ABC', 'DEF'] -> Output: '{ABC and DEF}' Input: ['ABC', 'DEF', 'G', 'H'] -> Output: '{ABC, DEF, G and H}'
Python: Functional
>>> def quibble(s):
return ('{' +
(', '.join(s[:-1]) + ' and ' if len(s) > 1 else '') +
(s[-1] if s else '') +
'}')
>>> for seq in ([], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]):
print('Input: %-24r -> Output: %r' % (seq, quibble(seq)))
Input: [] -> Output: '{}'
Input: ['ABC'] -> Output: '{ABC}'
Input: ['ABC', 'DEF'] -> Output: '{ABC and DEF}'
Input: ['ABC', 'DEF', 'G', 'H'] -> Output: '{ABC, DEF, G and H}'
>>>
Quackery
[ swap join join ] is glue ( [ [ [ --> [ )
[ [ dup size
dup 0 = iff
[ 2drop [] ] done
dup 1 = iff
[ drop unpack ] done
2 = iff
[ unpack $ ' and ' glue ] done
behead swap recurse $ ', ' glue ]
$ '{' swap join $ '}' join ] is quibble ( [ --> $ )
[] quibble echo$ cr
$ 'ABC' nest$ quibble echo$ cr
$ 'ABC DEF' nest$ quibble echo$ cr
$ 'ABC DEF G H' nest$ quibble echo$
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
R
quib <- function(vect)
{
#The task does not consider empty strings to be words, so we remove them immediately.
#We could also remove non-upper-case characters, but the tasks gives off the impression that the user will do that.
vect <- vect[nchar(vect) != 0]
len <- length(vect)
allButLastWord <- if(len >= 2) paste0(vect[seq_len(len - 1)], collapse = ", ") else ""
paste0("{", if(nchar(allButLastWord) == 0) vect else paste0(allButLastWord, " and ", vect[len]), "}")
}
quib(character(0)) #R has several types of empty string, e.g. character(0), "", and c("", "", "").
quib("")
quib(" ")
quib(c("", ""))
quib(rep("", 10))
quib("ABC")
quib(c("ABC", ""))
quib(c("ABC", "DEF"))
quib(c("ABC", "DEF", "G", "H"))
quib(c("ABC", "DEF", "G", "H", "I", "J", ""))
- Output:
> quib(character(0)) [1] "{}" > quib("") [1] "{}" > quib(" ") [1] "{ }" > quib(c("", "")) [1] "{}" > quib(rep("", 10)) [1] "{}" > quib("ABC") [1] "{ABC}" > quib(c("ABC", "")) [1] "{ABC}" > quib(c("ABC", "DEF")) [1] "{ABC and DEF}" > quib(c("ABC", "DEF", "G", "H")) [1] "{ABC, DEF, G and H}" > quib(c("ABC", "DEF", "G", "H", "I", "J", "")) [1] "{ABC, DEF, G, H, I and J}"
Racket
(define (quibbling words)
(define (sub-quibbling words)
(match words
['() ""]
[(list a) a]
[(list a b) (format "~a and ~a" a b)]
[(list a b ___) (format "~a, ~a" a (sub-quibbling b))]))
(format "{~a}" (sub-quibbling words)))
(for ((input '([] ["ABC"] ["ABC" "DEF"] ["ABC" "DEF" "G" "H"])))
(printf "~s\t->\t~a~%" input (quibbling input)))
- Output:
() -> {} ("ABC") -> {ABC} ("ABC" "DEF") -> {ABC and DEF} ("ABC" "DEF" "G" "H") -> {ABC, DEF, G and H}
Raku
(formerly Perl 6)
sub comma-quibbling(@A) {
<{ }>.join: @A < 2 ?? @A !! "@A[0..*-2].join(', ') and @A[*-1]";
}
say comma-quibbling($_) for
[], [<ABC>], [<ABC DEF>], [<ABC DEF G H>];
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
REBOL
Straightforward implementation
Rebol []
comma-quibbling: func [block] [
rejoin [
"^{"
to-string use [s] [
s: copy block
s: next s
forskip s 2 [insert s either tail? next s [" and "] [", "]]
s: head s
]
"^}"
]
]
foreach t [[] [ABC] [ABC DEF] [ABC DEF G H]] [print comma-quibbling t]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Alternative (more efficient) version with oxford comma switch
Rebol []
; builds string instead of using an intermediate block
comma-quibbling: func [block /oxford /local s length] [
length: length? block
rejoin [
"^{"
either length < 2 [to-string block] [
s: to-string block/1
for n 2 (length - 1) 1 [repend s [", " pick block n]]
if all [oxford (length > 2)] [append s ","]
repend s [" and " last block]
]
"^}"
]
]
test: [[] [ABC] [ABC DEF] [ABC DEF G H]]
foreach t test [print comma-quibbling t]
print "Now with Oxford comma"
foreach t test [print comma-quibbling/oxford t]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} Now with Oxford comma {} {ABC} {ABC and DEF} {ABC, DEF, G, and H}
Refal
$ENTRY Go {
= <Prout <Quibble>>
<Prout <Quibble ('ABC')>>
<Prout <Quibble ('ABC') ('DEF')>>
<Prout <Quibble ('ABC') ('DEF') ('G') ('H')>>;
};
Quibble {
e.X = '{' <Quibble1 e.X> '}';
};
Quibble1 {
= ;
(e.Word) = e.Word;
(e.Word1) (e.Word2) = e.Word1 ' and ' e.Word2;
(e.Word) e.Words = e.Word ', ' <Quibble1 e.Words>;
};
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
REXX
version 1:
say quibbling('')
say quibbling('ABC')
say quibbling('ABC DEF')
say quibbling('ABC DEF G H')
exit
quibbling: procedure
parse arg list
Select
When list='' Then result=''
When words(list)=1 then result=word(list,1)
Otherwise result=translate(strip(subword(list,1,words(list)-1)),',',' '),
'and' word(list,words(list))
End
Return '{'result'}'
- Output:
{} {ABC} {ABC and DEF} {ABC,DEF,G and H}
version 2:
say quibbling('')
say quibbling('ABC')
say quibbling('ABC DEF')
say quibbling('ABC DEF G H')
exit
quibbling:
parse arg list
If list='' Then result=''
Else Do
Do wi=1 By 1 while list<>''
Parse Var list word.wi ' ' list
End
wn=wi-1
result=word.1
Do wi=2 To wn-1
result=result', 'word.wi
End
If wn>1 Then
result=result 'and' word.wn
End
Return '{'result'}'
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
version 3:
/* Rexx */
i_ = 0
i_ = i_ + 1; lists.0 = i_; lists.i_ = '[]'
i_ = i_ + 1; lists.0 = i_; lists.i_ = '["ABC"]'
i_ = i_ + 1; lists.0 = i_; lists.i_ = '["ABC", ''DEF'']'
i_ = i_ + 1; lists.0 = i_; lists.i_ = '[ABC, DEF, G, H]'
say
do i_ = 1 to lists.0
list = lists.i_
say right(list, 30) ':' quibbling03(list)
end i_
exit
quibbling03:
procedure
parse arg '[' lst ']'
lst = changestr('"', changestr("'", lst, ''), '') /* remove double & single quotes */
lc = lastpos(',', lst)
if lc > 0 then
lst = overlay(' ', insert('and', lst, lc), lc)
lst = space(lst, 1) -- remove extra spaces
return '{'lst'}'
- Output:
[] : {} ["ABC"] : {ABC} ["ABC", 'DEF'] : {ABC and DEF} [ABC, DEF, G, H] : {ABC, DEF, G and H}
Ring
# Project : Comma Quibbling
text = list(4)
text[1] = "{}"
text[2] = "ABC"
text[3] = "ABC,DEF"
text[4] = "ABC,DEF,G,H"
comma(text)
func comma(text)
listtext = []
for n = 1 to 4
listtext = str2list(substr(text[n], ",", nl))
if n = 2
see "{" + list2str(listtext) + "}" + nl
loop
ok
if len(listtext) = 1
see "{}" + nl
loop
ok
str = "{"
for m = 1 to len(listtext)-1
if len(listtext) = 2
str = str + listtext[m] + " "
else
str = str + listtext[m] + ", "
ok
next
if len(listtext) = 2
str = left(str, len(str)-1)
else
str = left(str, len(str)-2)
ok
if len(listtext) = 2
str = str + " " + listtext[len(listtext)] + "}"
else
str = str + " and " + listtext[len(listtext)] + "}"
ok
see str + nl
next
Output:
{} {ABC} {ABC DEF} {ABC, DEF, G and H}
RPL
Whilst it is always important to ensure overall code clarity for maintenance by using explicit variable names and structured control flows, the spirit of reverse Polish notation programming is to optimize some key part of the algorithm in order to make it as compact - and possibly as fast - as possible, whatever the induced loss of readability. Here, two IFTE
low-level instructions are nested to deliver the appropriate liaison substring between two words or before the first word.
≪ DUP SIZE → words n ≪ "{" 1 WHILE DUP n ≤ REPEAT DUP 1 ≠ OVER n ≠ ", " " and " IFTE "" IFTE ROT SWAP + words 3 PICK GET + SWAP 1 + END DROP "}" + ≫ ≫ 'CMAQBL' STO
- Input:
{ } CMAQBL { "ABC" } CMAQBL { "ABC", "DEF" } CMAQBL { "ABC", "DEF", "G", "H" } CMAQBL
- Output:
4: "{}" 3: "{ABC}" 2: "{ABC and DEF}" 1: "{ABC, DEF, G and H}"
Ruby
def comma_quibbling(a)
%w<{ }>.join(a.length < 2 ? a.first :
"#{a[0..-2].join(', ')} and #{a[-1]}")
end
[[], %w<ABC>, %w<ABC DEF>, %w<ABC DEF G H>].each do |a|
puts comma_quibbling(a)
end
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Run BASIC
wrds$ = "[]
[""ABC""]
[""ABC"", ""DEF""]
[""ABC"", ""DEF"", ""G"", ""H""]
"
while word$(wrds$,j+1,chr$(13)) <> ""
a$ = word$(wrds$,j+1,chr$(13))
print a$;" ==> ";
a$ = "{"+mid$(a$,2,len(a$)-2)+"}"
j = j + 1
for i = len(a$) to 1 step -1
if mid$(a$,i,1) = "," then
a$ = left$(a$,i-1) + " and " + mid$(a$,i+2)
exit for
end if
next i
print a$
WEND
- Output:
[] ==> {} ["ABC"] ==> {"ABC"} ["ABC", "DEF"] ==> {"ABC" and "DEF"} ["ABC", "DEF", "G", "H"] ==> {"ABC", "DEF", "G" and "H"}
Rust
fn quibble(seq: &[&str]) -> String {
match seq.len() {
0 => "{}".to_string(),
1 => format!("{{{}}}", seq[0]),
_ => {
format!("{{{} and {}}}",
seq[..seq.len() - 1].join(", "),
seq.last().unwrap())
}
}
}
fn main() {
println!("{}", quibble(&[]));
println!("{}", quibble(&["ABC"]));
println!("{}", quibble(&["ABC", "DEF"]));
println!("{}", quibble(&["ABC", "DEF", "G", "H"]));
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Scala
def quibble( s:List[String] ) = s match {
case m if m.isEmpty => "{}"
case m if m.length < 3 => m.mkString("{", " and ", "}")
case m => "{" + m.init.mkString(", ") + " and " + m.last + "}"
}
// A little test...
{
println( quibble( List() ) )
println( quibble( List("ABC") ) )
println( quibble( List("ABC","DEF") ) )
println( quibble( List("ABC","DEF","G","H") ) )
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Scheme
(define (quibble . args)
(display "{")
(do ((rem args (cdr rem)))
((null? rem) (display "}\n"))
(display (car rem))
(cond ((= 1 (length rem)) )
((= 2 (length rem))
(display " and "))
(else
(display ", ")))))
(quibble)
(quibble "ABC")
(quibble "ABC" "DEF")
(quibble "ABC" "DEF" "G" "H")
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Sed
script-file:
s/#.*$//g
y/[/{/
y/]/}/
s/"//g
s/ [A-Z][A-Z]*}/ and&/g
s/, and/ and/
test.txt:
[] # (No input words).
["ABC"]
["ABC", "DEF"]
["ABC", "DEF", "G", "H"]
sed -f script-file test.txt
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Seed7
$ include "seed7_05.s7i";
const func string: quibble (in array string: input) is func
result
var string: quibble is "{";
begin
case length(input) of
when {0}: quibble &:= "}";
when {1}: quibble &:= input[1] & "}";
otherwise: quibble &:= join(input[.. pred(length(input))], ", ") &
" and " & input[length(input)] & "}";
end case;
end func;
const proc: main is func
begin
writeln(quibble(0 times ""));
writeln(quibble([] ("ABC")));
writeln(quibble([] ("ABC", "DEF")));
writeln(quibble([] ("ABC", "DEF", "G", "H")));
end func;
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
SenseTalk
Quibble [] // (No input words).
Quibble ["ABC"]
Quibble ["ABC", "DEF"]
Quibble ["ABC", "DEF", "G", "H"]
to Quibble with wordList
if the number of items in wordList is ...
... 0 then put "{}"
... 1 then put "{" & item 1 of wordList & "}"
... else put "{" & (items first to penultimate of wordList) joined by ", " & " and " & the last item of wordlist & "}"
end if
end Quibble
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
SETL
program comma_quibbling;
tests := [
[],
["ABC"],
["ABC","DEF"],
["ABC","DEF","G","H"]
];
loop for t in tests do
print(t, "=", quibble(t));
end loop;
proc quibble(words);
ret := '{';
loop while words /= [] do
word fromb words;
ret +:= word;
case of
(#words = 1):
ret +:= " and ";
(#words > 1):
ret +:= ", ";
end case;
end loop;
return ret + '}';
end proc;
end program;
- Output:
[] = {} [ABC] = {ABC} [ABC DEF] = {ABC and DEF} [ABC DEF G H] = {ABC, DEF, G and H}
Sidef
func comma_quibbling(words) {
'{' + ([words.first(-1).join(', ')]-[''] + [words.last] -> join(' and ')) + '}'
}
[<>, <ABC>, <ABC DEF>, <ABC DEF G H>].each { |w|
say comma_quibbling(w)
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Standard ML
local
fun quib [] = ""
| quib [x] = x
| quib [x0,x1] = x0 ^ " and " ^ x1
| quib (x::xs) = x ^ ", " ^ quib xs
in
fun quibble xs = "{" ^ quib xs ^ "}"
end
(* Tests: *)
val t_quibble_0 = quibble [] = "{}"
val t_quibble_1 = quibble ["ABC"] = "{ABC}"
val t_quibble_2 = quibble ["ABC", "DEF"] = "{ABC and DEF}"
val t_quibble_3 = quibble ["ABC", "DEF", "G", "H"] = "{ABC, DEF, G and H}"
Swift
let inputs = [[], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"]]
func quibbling(var words:[String]) {
if words.count == 0 {
println("{}")
} else if words.count == 1 {
println("{\(words[0])}")
} else if words.count == 2 {
println("{\(words[0]) and \(words[1])}")
} else {
var output = "{"
while words.count != 2 {
output += words.removeAtIndex(0) + ", "
}
output += "\(words.removeAtIndex(0)) and \(words.removeAtIndex(0))}"
println(output)
}
}
for word in inputs {
quibbling(word)
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Tcl
proc commaQuibble {lst} {
return \{[join [lreplace $lst end-1 end [join [lrange $lst end-1 end] " and "]] ", "]\}
}
foreach input { {} {"ABC"} {"ABC" "DEF"} {"ABC" "DEF" "G" "H"} } {
puts [commaQuibble $input]
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
TXR
(defun quib (list)
(tree-bind (: last . lead) (reverse list)
`{@{(nreverse lead) ", "}@(if lead " and ")@last}`))
Uiua
Tests ← {{}
{"ABC"}
{"ABC" "DEF"}
{"ABC" "DEF" "G" "H"}}
Jam ← ◇⊂◇⊂:□
Quibble ← |1 ⟨""◌|°□⊢|Jam" and "°⊟|Quibble⊂⊃(□Jam", "°⊟↙2)(↘2)⟩↧3⧻.
Wrap ← ⊂⊂"{" : "}" Quibble
⍚(&pWrap) Tests
UNIX Shell
quibble() {
printf '{'
while (( $# > 2 )); do
printf '%s, ' "$1"
shift
done
if (( $# )); then
printf '%s' "$1"
shift
fi
if (( $# )); then
printf ' and %s' "$1"
fi
printf '%s\n' '}'
}
With a slight modification, it will work in any POSIX shell, or even older Bourne-compatible shells as long as they have functions and printf:
quibble() {
printf '{'
while [ $# -gt 2 ]; do
printf '%s, ' "$1"
shift
done
if [ $# -gt 0 ]; then
printf '%s' "$1"
shift
fi
if [ $# -gt 0 ]; then
printf ' and %s' "$1"
fi
printf '%s\n' '}'
}
Going the other way, Zsh-specific code can be more compact:
quibble() {
printf '{'
if (( $# > 1 )) printf '%s and ' ${(j:, :)@[1,-2]}
printf '%s}\n' $@[-1]
}
The test code is the same either way:
quibble
quibble ABC
quibble ABC DEF
quibble ABC DEF G H
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
VBA
Option Explicit
Sub Main()
Debug.Print Quibbling("")
Debug.Print Quibbling("ABC")
Debug.Print Quibbling("ABC, DEF")
Debug.Print Quibbling("ABC, DEF, G, H")
Debug.Print Quibbling("ABC, DEF, G, H, IJKLM, NO, PQRSTUV")
End Sub
Private Function Quibbling(MyString As String) As String
Dim s As String, n As Integer
s = "{" & MyString & "}": n = InStrRev(s, ",")
If n > 0 Then s = Left(s, n - 1) & " and " & Right(s, Len(s) - (n + 1))
Quibbling = s
End Function
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H} {ABC, DEF, G, H, IJKLM, NO and PQRSTUV}
VBScript
Function Quibble(s)
arr = Split(s,",")
If s = "" Then
Quibble = "{}"
ElseIf UBound(arr) = 0 Then
Quibble = "{" & arr(0) & "}"
Else
Quibble = "{"
For i = 0 To UBound(arr)
If i = UBound(arr) - 1 Then
Quibble = Quibble & arr(i) & " and " & arr(i + 1) & "}"
Exit For
Else
Quibble = Quibble & arr(i) & ", "
End If
Next
End If
End Function
WScript.StdOut.Write Quibble("")
WScript.StdOut.WriteLine
WScript.StdOut.Write Quibble("ABC")
WScript.StdOut.WriteLine
WScript.StdOut.Write Quibble("ABC,DEF")
WScript.StdOut.WriteLine
WScript.StdOut.Write Quibble("ABC,DEF,G,H")
WScript.StdOut.WriteLine
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Visual Basic .NET
FormatEnumerable() accepts an IEnumerable(Of String), as per Lippert's original specification. FormatArray() contains an alternative implementation for String().
Option Explicit On
Option Infer On
Option Strict On
Module Program
Function FormatEnumerable(source As IEnumerable(Of String)) As String
Dim res As New Text.StringBuilder("{")
Using en = source.GetEnumerator()
Dim moreThanOne As Boolean = False
Dim nxt = If(en.MoveNext(), en.Current, String.Empty)
Do While en.MoveNext()
If moreThanOne Then res.Append(", ")
moreThanOne = True
res.Append(nxt)
nxt = en.Current
Loop
Dim lastItem = If(moreThanOne, " and ", "") & nxt
Return res.ToString() & lastItem & "}"
End Using
End Function
Function FormatArray(source As String()) As String
Select Case source.Length
Case 0 : Return "{}"
Case 1 : Return "{" & source(0) & "}"
Case Else : Return "{" & String.Join(", ", source.Take(source.Length - 1)) & " and " & source(source.Length - 1) & "}"
End Select
End Function
Sub Main()
Dim cases As String()() = {Array.Empty(Of String), New String() {"ABC"}, New String() {"ABC", "DEF"}, New String() {"ABC", "DEF", "G", "H"}}
For Each c In cases
Console.WriteLine(FormatArray(c))
Console.WriteLine(FormatEnumerable(c))
Next
End Sub
End Module
- Output:
{} {} {ABC} {ABC} {ABC and DEF} {ABC and DEF} {ABC, DEF, G and H} {ABC, DEF, G and H}
V (Vlang)
fn q(s []string) string {
match s.len {
0 {
return '{}'
}
1 {
return '{${s[0]}}'
}
2 {
return '{${s[0]} and ${s[1]}}'
}
else{
return '{${s[0..s.len-1].join(', ')} and ${s[s.len-1]}}'
}
}
}
fn main(){
println(q([]))
println(q(['ABC']))
println(q(['ABC','DEF']))
println(q(['ABC','DEF','G','H']))
}
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
Wren
var quibbling = Fn.new { |w|
var c = w.count
if (c == 0) return "{}"
if (c == 1) return "{%(w[0])}"
if (c == 2) return "{%(w[0]) and %(w[1])}"
return "{%(w[0..-2].join(", ")) and %(w[-1])}"
}
var words = [ [], ["ABC"], ["ABC", "DEF"], ["ABC", "DEF", "G", "H"] ]
for (w in words) System.print(quibbling.call(w))
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
XBS
func task(a:array){
set x:string="";
foreach(k,v as a){
set out:string="";
if ((k==(?a-2))&((?a)>1)){out=" and "}elif(k!=(?a-1)){out=", "}
x+=v+out;del out;
}
send "{"+x+"}";
}
log(task([]));
log(task(["ABC"]));
log(task(["ABC","DEF"]));
log(task(["ABC","DEF","GHI"]));
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF and GHI}
XLISP
I like the Oxford comma; but specifications are specifications. So this implementation produces the required output by default. It also, however, allows an optional OXFORD-COMMA parameter: pass a true value, and you won't find yourself saying things like "I want to thank my parents, Ayn Rand and God".
(defun quibble (inputs &optional oxford-comma)
(define final
(if (and (caddr inputs) oxford-comma)
", and "
" and " ) )
(defun comma-quibble (words)
(cond
((null words) "")
((null (cdr words)) (car words))
(t (begin
(string-append (car words)
(if (caddr words)
(string-append ", " (comma-quibble (cdr words)))
(string-append final (cadr words))) ) ) ) ) )
(string-append "{" (comma-quibble inputs) "}") )
; test cases:
(print (quibble '())) ; empty list
(print (quibble '("ABC")))
(print (quibble '("ABC" "DEF")))
(print (quibble '("ABC" "DEF" "G" "H")))
(newline)
; test cases using the Oxford comma:
(print (quibble '() t))
(print (quibble '("ABC") t))
(print (quibble '("ABC" "DEF") t))
(print (quibble '("ABC" "DEF" "G" "H") t))
- Output:
"{}" "{ABC}" "{ABC and DEF}" "{ABC, DEF, G and H}" "{}" "{ABC}" "{ABC and DEF}" "{ABC, DEF, G, and H}"
XPL0
include c:\cxpl\codes;
proc Quibble(N, S);
int N, S;
int I;
[ChOut(0, ^{);
for I:= 0 to N-1 do
[Text(0, S(I));
if I<N-2 then Text(0, ", ");
if I=N-2 then Text(0, " and ");
];
ChOut(0, ^});
];
int I;
for I:= 0 to 4 do
if I#3 then [Quibble(I, ["ABC", "DEF", "G", "H"]); CrLf(0)]
- Output:
{} {ABC} {ABC and DEF} {ABC, DEF, G and H}
zkl
This is a cheese ball solution that replies on no commas in the inputs
fcn quib(list){ text:=("{"+list.toString(*)[2,-1]+"}").replace("\"","");
if(list.len()<2) text;
else{
z:=(text=text.replace(",",", ")).rfind(",");
String(text[0,z]," and ",text[z+2,*])
}
}
List.toString("*") converts List(1,2,3) to "L(1,2,3)" with all elements; without the *, long lists are shortened to L(1,2,3,...)
- Output:
quib(List) //-->"{}" quib(L("ABC")) //-->"{ABC}" quib(L("ABC", "DEF")) //-->"{ABC and DEF}" quib(L("ABC", "DEF", "G", "H")) //-->"{ABC, DEF, G and H}"
ZX Spectrum Basic
10 DATA 0
20 DATA 1,"ABC"
30 DATA 2,"ABC","DEF"
40 DATA 4,"ABC","DEF","G","H"
50 FOR n=10 TO 40 STEP 10
60 RESTORE n: GO SUB 1000
70 NEXT n
80 STOP
1000 REM quibble
1010 LET s$=""
1020 READ j
1030 IF j=0 THEN GO TO 1100
1040 FOR i=1 TO j
1050 READ a$
1060 LET s$=s$+a$
1070 IF (i+1)=j THEN LET s$=s$+" and ": GO TO 1090
1080 IF (i+1)<j THEN LET s$=s$+", "
1090 NEXT i
1100 PRINT "{";s$;"}"
1110 RETURN
- Programming Tasks
- Solutions by Programming Task
- 11l
- 360 Assembly
- 8080 Assembly
- AArch64 Assembly
- ABC
- Acornsoft Lisp
- Action!
- Ada
- ALGOL 68
- ALGOL W
- APL
- AppleScript
- ARM Assembly
- Arturo
- Astro
- AutoHotkey
- AWK
- Batch File
- BCPL
- Bracmat
- C
- C sharp
- C++
- Clojure
- CLU
- COBOL
- CoffeeScript
- Commodore BASIC
- Common Lisp
- Cowgol
- D
- Dc
- DCL
- Delphi
- Déjà Vu
- EasyLang
- EchoLisp
- Ed
- Eiffel
- Elixir
- Erlang
- F Sharp
- Factor
- Forth
- Fortran
- FreeBASIC
- Frink
- FutureBasic
- Gambas
- Go
- Groovy
- Haskell
- Icon
- Unicon
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lang
- Lasso
- Liberty BASIC
- Logo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- MAXScript
- Miranda
- NetRexx
- Nim
- Nu
- Oberon-2
- Objeck
- OCaml
- Oforth
- Ol
- PARI/GP
- Pascal
- Perl
- Phix
- PHP
- PicoLisp
- PL/I
- PL/M
- Plain English
- PowerShell
- Prolog
- PureBasic
- Python
- Quackery
- R
- Racket
- Raku
- REBOL
- Refal
- REXX
- Ring
- RPL
- Ruby
- Run BASIC
- Rust
- Scala
- Scheme
- Sed
- Seed7
- SenseTalk
- SETL
- Sidef
- Standard ML
- Swift
- Tcl
- TXR
- Uiua
- UNIX Shell
- VBA
- VBScript
- Visual Basic .NET
- V (Vlang)
- Wren
- XBS
- XLISP
- XPL0
- Zkl
- ZX Spectrum Basic
- Pages with too many expensive parser function calls