Yet another shortest path problem. Given two words of equal length the task is to transpose the first into the second.

You are encouraged to solve this task according to the task description, using any language you may know.

Only one letter may be changed at a time and the change must result in a word in unixdict, the minimum number of intermediate words should be used.

Demonstrate the following:

A boy can be made into a man: boy -> bay -> ban -> man

With a little more difficulty a girl can be made into a lady: girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady

A john can be made into a jane: john -> cohn -> conn -> cone -> cane -> jane

A child can not be turned into an adult.

## 11l

Translation of: Nim
```F isOneAway(word1, word2)
V result = 0B
L(i) 0 .< word1.len
I word1[i] != word2[i]
I result
R 0B
E
result = 1B
R result

DefaultDict[Int, [String]] words

words[word.len] [+]= word

F find_path(start, target)
V lg = start.len
assert(target.len == lg, ‘Source and destination must have same length.’)
assert(start C :words[lg], ‘Source must exist in the dictionary.’)
assert(target C :words[lg], ‘Destination must exist in the dictionary.’)

V currPaths = [[start]]
V pool = copy(:words[lg])

L
[[String]] newPaths
L(candidate) pool
L(path) currPaths
I isOneAway(candidate, path.last)
V newPath = path [+] [candidate]
I candidate == target
R newPath
E
newPaths.append(newPath)
L.break

I newPaths.empty
L.break
currPaths = move(newPaths)
pool.remove(w)

R [String]()

L(start, target) [(‘boy’, ‘man’), (‘girl’, ‘lady’), (‘john’, ‘jane’), (‘child’, ‘adult’), (‘cat’, ‘dog’), (‘lead’, ‘gold’), (‘white’, ‘black’), (‘bubble’, ‘tickle’)]
V path = find_path(start, target)
I path.empty
print(‘No path from "’start‘" to "’target‘".’)
E
print(path.join(‘ -> ’))```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
No path from "child" to "adult".
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

Changed my solution to use Multiway_Trees.

```pragma Ada_2022;

DICT_FILENAME : constant String   := "unixdict.txt";
MAX_DEPTH     : constant Positive := 50;

subtype LC_Chars is Character range 'a' .. 'z';

type Word_Node_T is record
Level : Positive;
Word  : Unbounded_String;
end record;

package Word_Vectors is new Ada.Containers.Vectors (Positive, Unbounded_String);
package Dict_Vectors is new Ada.Containers.Vectors (Positive, Unbounded_String);

package Word_Trees is new Ada.Containers.Multiway_Trees (Word_Node_T);
use Word_Trees;
Word_Tree  : Tree;
Solved     : Boolean;
Solution   : Cursor;

function Load_Candidate_Words (Dict_Filename : String; Word_Len : Positive)
return Dict_Vectors.Vector is
Dict_File : File_Type;
Cands     : Dict_Vectors.Vector;
Valid     : Boolean;
C         : Character;
begin
Open (File => Dict_File, Mode => In_File, Name => Dict_Filename);
while not End_Of_File (Dict_File) loop
if Length (Read_Word) = Word_Len then
Valid := True;
for Ix in 1 .. Word_Len loop
Valid := C in LC_Chars;
exit when not Valid;
end loop;
if Valid then Cands.Append (Read_Word); end if;
end if;
end loop;
Close (Dict_File);
return Cands;

function Mutate (Word : Unbounded_String; Dict : in out Dict_Vectors.Vector)
return Word_Vectors.Vector is
Mutations : Word_Vectors.Vector;
Poss_Word : Unbounded_String;
begin
for Ix in 1 .. Length (Word) loop
for Letter in LC_Chars loop
if Letter /= Element (Word, Ix) then
Poss_Word := Word;
Replace_Element (Poss_Word, Ix, Letter);
if Dict.Contains (Poss_Word) then
Mutations.Append (Poss_Word);
Dict.Delete (Dict.Find_Index (Poss_Word));
end if;
end if;
end loop;
end loop;
return Mutations;
end Mutate;

procedure Recurse_Tree (Start_Pos : Cursor;
Level     : Positive;
Target    : Unbounded_String;
Dict      : in out Dict_Vectors.Vector) is
Pos        : Cursor := Start_Pos;
Mutations  : Word_Vectors.Vector;
New_Node   : Word_Node_T;
begin
while not Solved and then Pos /= No_Element loop
if Element (Pos).Level = Level then
Mutations := Mutate (Element (Pos).Word, Dict);
if not Word_Vectors.Is_Empty (Mutations) then
for Word of Mutations loop
New_Node.Level := Level + 1;
New_Node.Word  := Word;
Append_Child (Word_Tree, Pos, New_Node);
if Word = Target then
Solved := True;
Solution := Pos;
end if;
end loop;
end if;
end if;
if not Solved then
Recurse_Tree (First_Child (Pos), Level, Target, Dict);
end if;
Pos := Next_Sibling (Pos);
end loop;
end Recurse_Tree;

procedure Ladder (Start_S, Target_S : String) is
Dictionary    : Dict_Vectors.Vector;
Level         : Positive := 1;
Word_Node     : Word_Node_T;
Start, Target : Unbounded_String;
Start_Pos     : Cursor;
Output        : Unbounded_String;
begin
if Start_S'Length /= Target_S'Length then
Put_Line ("ERROR: Start and Target words must be same length.");
return;
end if;
Start      := To_Unbounded_String (Start_S);
Target     := To_Unbounded_String (Target_S);
Solved     := False;
Word_Node.Level := 1;
Word_Node.Word  := Start;
Word_Tree := Empty_Tree;
Word_Tree.Insert_Child (Word_Tree.Root, No_Element, Word_Node);
Start_Pos := Find (Word_Tree, Word_Node);
while Level <= MAX_DEPTH and then not Solved loop
Recurse_Tree (Start_Pos, Level, Target, Dictionary);
Level := @ + 1;
end loop;
if not Solved then
Put_Line (Start & " -> " & Target & " - No solution found at depth" & MAX_DEPTH'Image);
else
while not Is_Root (Solution) loop
Word_Node := Element (Solution);
Output := Word_Node.Word & " -> " & Output;
Solution := Parent (Solution);
end loop;
Put_Line (Output & Target);
end if;
begin
```
Output:

As expected "ada" can become a "god", and "rust" can go to "hell" :-)

```boy -> bay -> may -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
jane -> cane -> cone -> conn -> cohn -> john
child -> adult - No solution found at depth 50
rust -> bust -> best -> belt -> bell -> hell
```

## ALGOL 68

With a68g use option `--storage 2`, otherwise it runs out of memory.

```# quick implementation of a stack of INT.
real program starts after it.
#
MODE STACK = STRUCT (INT top, FLEX[1:0]INT data, INT increment);

PROC makestack = (INT increment)STACK: (1, (), increment);

PROC pop = (REF STACK s)INT: ( top OF s -:= 1; (data OF s)[top OF s] );

PROC push = (REF STACK s, INT n)VOID:
BEGIN
IF top OF s > UPB data OF s THEN
[ UPB data OF s + increment OF s ]INT tmp;
tmp[1 : UPB data OF s] := data OF s;
data OF s := tmp
FI;
(data OF s)[top OF s] := n;
top OF s +:= 1
END;

PROC empty = (REF STACK s)BOOL: top OF s <= 1;

PROC contents = (REF STACK s)[]INT: (data OF s)[:top OF s - 1];

# start solution #

[]STRING words = BEGIN     # load dictionary file into array #
FILE f;
BOOL eof := FALSE;
open(f, "unixdict.txt", stand in channel);
on logical file end(f, (REF FILE f)BOOL: eof := TRUE);
INT idx := 1;
FLEX [1:0] STRING words;
STRING word;
WHILE NOT eof DO
get(f, (word, newline));
IF idx > UPB words THEN
HEAP [1 : UPB words + 10000]STRING tmp;
tmp[1 : UPB words] := words;
words := tmp
FI;
words[idx] := word;
idx +:= 1
OD;
words[1:idx-1]
END;

INT nwords = UPB words;

INT max word length = (INT mwl := 0;
FOR i TO UPB words DO
IF mwl < UPB words[i] THEN mwl := UPB words[i] FI
OD;
mwl);

[nwords]FLEX[0]INT neighbors;

[max word length]BOOL precalculated by length;

FOR i TO UPB precalculated by length DO precalculated by length[i] := FALSE OD;

# precalculating neighbours takes time, but not doing it is even slower... #
PROC precalculate neighbors = (INT word length)VOID:
BEGIN
[nwords]REF STACK stacks;
FOR i TO UPB stacks DO stacks[i] := NIL OD;
FOR i TO UPB words DO
IF UPB words[i] = word length THEN
IF REF STACK(stacks[i]) :=: NIL THEN stacks[i] := HEAP STACK := makestack(10) FI;
FOR j FROM i + 1 TO UPB words DO
IF UPB words[j] = word length THEN
IF neighboring(words[i], words[j]) THEN
push(stacks[i], j);
IF REF STACK(stacks[j]) :=: NIL THEN stacks[j] := HEAP STACK := makestack(10) FI;
push(stacks[j], i)
FI
FI
OD
FI
OD;
FOR i TO UPB neighbors DO
IF REF STACK(stacks[i]) :/=: NIL THEN
neighbors[i] := contents(stacks[i])
FI
OD;
precalculated by length [word length] := TRUE
END;

PROC neighboring = (STRING a, b)BOOL:      # do a & b differ in just 1 char? #
BEGIN
INT diff := 0;
FOR i TO UPB a DO IF a[i] /= b[i] THEN diff +:= 1 FI OD;
diff = 1
END;

PROC word ladder = (STRING from, STRING to)[]STRING:
BEGIN
IF UPB from /= UPB to THEN fail FI;
INT word length = UPB from;
IF word length < 1 OR word length > max word length THEN fail FI;
IF from = to THEN fail FI;
INT start := 0;
INT destination := 0;
FOR i TO UPB words DO
IF UPB words[i] = word length THEN
IF words[i] = from THEN start := i
ELIF words[i] = to THEN destination := i
FI
FI
OD;
IF destination = 0 OR start = 0 THEN fail FI;
IF NOT precalculated by length [word length] THEN
precalculate neighbors(word length)
FI;
STACK stack := makestack(1000);
[nwords]INT distance;
[nwords]INT previous;
FOR i TO nwords DO distance[i] := nwords+1; previous[i] := 0 OD;
INT shortest := nwords+1;
distance[start] := 0;
push(stack, start);
WHILE NOT empty(stack)
DO
INT curr := pop(stack);
INT dist := distance[curr];
IF dist < shortest - 1 THEN
# find neighbors and add them to the stack #
FOR i FROM UPB neighbors[curr] BY -1 TO 1 DO
INT n = neighbors[curr][i];
IF distance[n] > dist + 1 THEN
distance[n] := dist + 1;
previous[n] := curr;
IF n = destination THEN
shortest := dist + 1
ELSE
push(stack, n)
FI
FI
OD;
IF curr = destination THEN shortest := dist FI
FI
OD;
INT length = distance[destination] + 1;
IF length > nwords THEN fail FI;
[length]STRING result;
INT curr := destination;
FOR i FROM length BY -1 TO 1
DO
result[i] := words[curr];
curr := previous[curr]
OD;
result EXIT
fail: LOC [0] STRING
END;

[][]STRING pairs = (("boy", "man"), ("bed", "cot"),
("old", "new"), ("dry", "wet"),

("lamb", "stew"), ("kick", "goal"),

("bride", "groom"), ("table", "chair"),

("bubble", "tickle"));

FOR i TO UPB pairs
DO
STRING from = pairs[i][1], to = pairs[i][2];
THEN print(("No solution for """ + from + """ -> """ + to + """", newline))
ELSE FOR j TO UPB ladder DO print(((j > 1 | "->" | ""), ladder[j])) OD;
print(newline)
FI
OD```
Output:
```boy->bay->ban->man
old->odd->ode->one->nne->nee->new
dry->dey->bey->bet->wet
john->cohn->conn->cone->cane->jane
poor->boor->book->bock->rock->rick->rich
lamb->lame->laue->laud->saud->spud->sped->spew->stew
kick->dick->dock->cock->cook->cool->coal->goal
cold->cord->card->ward->warm
No solution for "child" -> "adult"
lager->hager->hagen->haven->raven->ravel->navel->novel->hovel->hotel->motel->monel->money->honey->haney->handy->dandy->danny->denny->penny->peony->phony->phone->shone->shore->short->shout->stout
bride->brice->brick->brock->brook->broom->groom
No solution for "table" -> "chair"
bubble->babble->gabble->garble->gargle->gaggle->giggle->jiggle->jingle->tingle->tinkle->tickle```

## APL

Works with: Dyalog APL
```wordladder←{
from to←⍵
dict←((≢¨⍺)=≢to)/⍺

dict{
match←(⊂to)≡¨⊃∘⌽¨⍵
∨/match:⊃match/⍵
0∊≢¨⍺⍵:⍬
next←(1=⍺+.≠¨⊂word)/⍺
}⊂⊂from
}
dict←(~dict∊⎕TC)⊆dict←⊃⎕NGET'unixdict.txt'
⎕←↑↑{
hdr←⍺,' → ',⍵,': '
}/¨pairs
}
```
Output:
```boy → man: boy→bay→ban→man
john → jane: john→cohn→conn→cone→cane→jane

## C++

This borrows heavily from Wren and a bit from Raku.

```#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <string>
#include <vector>

using word_map = std::map<size_t, std::vector<std::string>>;

// Returns true if strings s1 and s2 differ by one character.
bool one_away(const std::string& s1, const std::string& s2) {
if (s1.size() != s2.size())
return false;
bool result = false;
for (size_t i = 0, n = s1.size(); i != n; ++i) {
if (s1[i] != s2[i]) {
if (result)
return false;
result = true;
}
}
return result;
}

// Join a sequence of strings into a single string using the given separator.
template <typename iterator_type, typename separator_type>
std::string join(iterator_type begin, iterator_type end,
separator_type separator) {
std::string result;
if (begin != end) {
result += *begin++;
for (; begin != end; ++begin) {
result += separator;
result += *begin;
}
}
return result;
}

// If possible, print the shortest chain of single-character modifications that
// leads from "from" to "to", with each intermediate step being a valid word.
// This is an application of breadth-first search.
bool word_ladder(const word_map& words, const std::string& from,
const std::string& to) {
auto w = words.find(from.size());
if (w != words.end()) {
auto poss = w->second;
std::vector<std::vector<std::string>> queue{{from}};
while (!queue.empty()) {
auto curr = queue.front();
queue.erase(queue.begin());
for (auto i = poss.begin(); i != poss.end();) {
if (!one_away(*i, curr.back())) {
++i;
continue;
}
if (to == *i) {
curr.push_back(to);
std::cout << join(curr.begin(), curr.end(), " -> ") << '\n';
return true;
}
std::vector<std::string> temp(curr);
temp.push_back(*i);
queue.push_back(std::move(temp));
i = poss.erase(i);
}
}
}
std::cout << from << " into " << to << " cannot be done.\n";
return false;
}

int main() {
word_map words;
std::ifstream in("unixdict.txt");
if (!in) {
std::cerr << "Cannot open file unixdict.txt.\n";
return EXIT_FAILURE;
}
std::string word;
while (getline(in, word))
words[word.size()].push_back(word);
return EXIT_SUCCESS;
}
```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## F#

```// Word ladder: Nigel Galloway. June 5th., 2021
let fG n g=n|>List.partition(fun n->2>Seq.fold2(fun z n g->z+if n=g then 0 else 1) 0 n g)
let wL n g=let dict=seq{use n=System.IO.File.OpenText("unixdict.txt") in while not n.EndOfStream do yield n.ReadLine()}|>Seq.filter(Seq.length>>(=)(Seq.length n))|>List.ofSeq|>List.except [n]
let (|Done|_|) n=n|>List.tryFind((=)g)
let rec wL n g l=match n with h::t->let i,e=fG l (List.head h) in match i with Done i->Some((i::h)|>List.rev) |_->wL t ((i|>List.map(fun i->i::h))@g) e
|_->match g with []->None |_->wL g [] l
let i,e=fG dict n in match i with Done i->Some([n;g]) |_->wL(i|>List.map(fun g->[g;n])) [] e
[("boy","man");("girl","lady");("john","jane");("child","adult")]|>List.iter(fun(n,g)->printfn "%s" (match wL n g with Some n->n|>String.concat " -> " |_->n+" into "+g+" can't be done"))
```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult can't be done
```

### Optional transpositions

The bad news is evil can not be turned into good, but the good news is god can become man.

```[("evil","good");("god","man")]|>List.iter(fun(n,g)->printfn "%s" (match wL n g with Some n->n|>String.concat " -> " |_->n+" into "+g+" can't be done"))
```
Output:
```evil into good can't be done done
```

## Go

Translation of: Wren
```package main

import (
"bytes"
"fmt"
"io/ioutil"
"log"
"strings"
)

func contains(a []string, s string) bool {
for _, e := range a {
if e == s {
return true
}
}
return false
}

func oneAway(a, b string) bool {
sum := 0
for i := 0; i < len(a); i++ {
if a[i] != b[i] {
sum++
}
}
return sum == 1
}

func wordLadder(words []string, a, b string) {
l := len(a)
var poss []string
for _, word := range words {
if len(word) == l {
poss = append(poss, word)
}
}
todo := [][]string{{a}}
for len(todo) > 0 {
curr := todo[0]
todo = todo[1:]
var next []string
for _, word := range poss {
if oneAway(word, curr[len(curr)-1]) {
next = append(next, word)
}
}
if contains(next, b) {
curr = append(curr, b)
fmt.Println(strings.Join(curr, " -> "))
return
}
for i := len(poss) - 1; i >= 0; i-- {
if contains(next, poss[i]) {
copy(poss[i:], poss[i+1:])
poss[len(poss)-1] = ""
poss = poss[:len(poss)-1]
}
}
for _, s := range next {
temp := make([]string, len(curr))
copy(temp, curr)
temp = append(temp, s)
todo = append(todo, temp)
}
}
fmt.Println(a, "into", b, "cannot be done.")
}

func main() {
if err != nil {
}
bwords := bytes.Fields(b)
words := make([]string, len(bwords))
for i, bword := range bwords {
words[i] = string(bword)
}
pairs := [][]string{
{"boy", "man"},
{"john", "jane"},
}
for _, pair := range pairs {
}
}
```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
```

The function first expands a ball around the starting word in the space of possible words, until the ball surface touches the goal (if ever). After that it performs depth-first path-finding from the goal back to the center.

```import System.IO (readFile)
import Data.List (intercalate)
import qualified Data.Set as S

distance :: String -> String -> Int
distance s1 s2 = length \$ filter not \$ zipWith (==) s1 s2

wordLadders :: [String] -> String -> String -> [[String]]
| length start /= length end = []
| otherwise = [wordSpace] >>= expandFrom start >>= shrinkFrom end
where

wordSpace = S.fromList \$ filter ((length start ==) . length) dict

expandFrom s = go [[s]]
where
go (h:t) d
| S.null d || S.null f = []
| end `S.member` f = [h:t]
| otherwise = go (S.elems f:h:t) (d S.\\ f)
where
f = foldr (\w -> S.union (S.filter (oneStepAway w) d)) mempty h

shrinkFrom = scanM (filter . oneStepAway)

oneStepAway x = (1 ==) . distance x

scanM f x = fmap snd . foldM g (x,[x])
where g (b, r) a = (\x -> (x, x:r)) <\$> f b a

wordLadder :: [String] -> String -> String -> [String]
[] -> []
h:_ -> h

showChain [] = putStrLn "No chain"
showChain ch = putStrLn \$ intercalate " -> " ch

main = do
dict <- lines <\$> readFile "unixdict.txt"
showChain \$ wordLadder dict "boy" "man"
showChain \$ wordLadder dict "john" "jane"
showChain \$ wordLadder dict "alien" "drool"
```
```λ> lines <\$> readFile "unixdict.txt" >>= print . wordLadders "boy" "man"
[["boy","bay","ban","man"],["boy","bon","ban","man"],["boy","bay","may","man"]]

[]

λ> main
boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
alien -> alden -> alder -> alter -> aster -> ester -> eater -> bater -> bator -> baton -> baron -> boron -> moron -> moran -> moral -> morel -> monel -> money -> monty -> month -> mouth -> south -> sooth -> sloth -> slosh -> slash -> flash -> flask -> flank -> blank -> bland -> blend -> bleed -> breed -> bread -> tread -> triad -> trial -> trill -> drill -> droll -> drool
No chain```

Performs searching from both ends. This solution is much faster for cases with no chains, and for for short chains. In case of long chains looses its' efficiency.

```wordLadders2 :: String -> String -> [String] -> [[String]]
| length start /= length end = []
| otherwise = pure wordSpace >>= expand start end >>= shrink end
where

wordSpace = S.fromList \$ filter ((length start ==) . length) dict

expand s e d = tail . map S.elems <\$> go [S.singleton s] [S.singleton e] d
where
go (hs:ts) (he:te) d
| S.null d || S.null fs || S.null fe = []
| not \$ S.null f1 = [reverse (f1:te) ++ hs:ts]
| not \$ S.null f2 = [reverse (he:te) ++ f2:ts]
| not \$ S.null f3 = [reverse (he:te) ++ f3:hs:ts]
| otherwise = go (fs:hs:ts) (fe:he:te) (d S.\\ hs S.\\ he)
where
fs = front hs
fe = front he
f1 = fs `S.intersection` he
f2 = fe `S.intersection` hs
f3 = fs `S.intersection` fe
front = S.foldr (\w -> S.union (S.filter (oneStepAway w) d)) mempty

shrink = scanM (findM . oneStepAway)

oneStepAway x = (1 ==) . distance x

scanM f x = fmap snd . foldM g (x,[x])
where g (b, r) a = (\x -> (x, x:r)) <\$> f b a

findM p = msum . map (\x -> if p x then pure x else mzero)
```

### Using A*-search

```import AStar (findPath, Graph(..))
import qualified Data.Map as M

distance :: String -> String -> Int
distance s1 s2 = length \$ filter not \$ zipWith (==) s1 s2

wordLadder :: [String] -> String -> String -> [String]
wordLadder dict start end = findPath g distance start end
where
short_dict = filter ((length start ==) . length) dict
g = Graph \$ \w -> M.fromList [ (x, 1)
| x <- short_dict
, distance w x == 1 ]
```
```λ> main
boy -> bay -> ban -> man
girl -> gird -> bird -> bard -> lard -> lark -> lack -> lacy -> lady
john -> cohn -> conn -> cone -> cane -> jane
alien -> alden -> alder -> alter -> aster -> ester -> eater -> bater -> bator -> baton -> baron -> boron -> moron -> moran -> moral -> morel -> monel -> money -> monty -> month -> mouth -> south -> sooth -> sloth -> slosh -> slash -> flash -> flask -> flank -> blank -> bland -> blend -> bleed -> breed -> bread -> tread -> triad -> trial -> trill -> drill -> droll -> drool
No chain```

Works much faster when compiled.

## J

Here we use a double ended breadth first search (starting from each end). This tends to give us several options where they meet in the middle, so we pick a shortest example from those.

```extend=: {{
j=. {:y
l=. <:{:\$m
<y,"1 0 I.l=m+/ .="1 j{m
}}

l=. #x assert. l=#y
words=. >(#~ l=#@>) cutLF fread 'unixdict.txt'
ix=. ,:words i.x assert. ix<#words
iy=. ,:words i.y assert. iy<#words
while. -. 1 e. ix e.&, iy do.
if. 0 e. ix,&# iy do. EMPTY return. end.
ix=. ; words extend"1 ix
if. -. 1 e. ix e.&, iy do.
iy=. ; words extend"1 iy
end.
end.
iy=. |."1 iy
r=. ix,&,iy
for_jk.(ix,&#iy)#:I.,ix +./@e."1/ iy do.
ixj=. ({.jk){ix
iyk=. ({:jk){iy
for_c. ixj ([-.-.) iyk do.
path=. (ixj{.~ixj i.c) , iyk}.~ iyk i.c
if. path <&# r do. r=. path end.
end.
end.
}.,' ',.r{words
}}
```

```   'boy' wlad 'man'
boy bay ban man
girl gill gall gale gaze laze lazy lady
john cohn conn cone cane jane
cat cot cog dog
bubble babble gabble garble gargle gaggle giggle jiggle jingle tingle tinkle tickle
```

## Java

```import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Set;
import java.util.stream.IntStream;

private static int distance(String s1, String s2) {
assert s1.length() == s2.length();
return (int) IntStream.range(0, s1.length())
.filter(i -> s1.charAt(i) != s2.charAt(i))
.count();
}

private static void wordLadder(Map<Integer, Set<String>> words, String fw, String tw) {
}

private static void wordLadder(Map<Integer, Set<String>> words, String fw, String tw, int limit) {
if (fw.length() != tw.length()) {
throw new IllegalArgumentException("From word and to word must have the same length");
}

Set<String> ws = words.get(fw.length());
if (ws.contains(fw)) {
List<String> primeList = new ArrayList<>();

PriorityQueue<List<String>> queue = new PriorityQueue<>((chain1, chain2) -> {
int cmp1 = Integer.compare(chain1.size(), chain2.size());
if (cmp1 == 0) {
String last1 = chain1.get(chain1.size() - 1);
int d1 = distance(last1, tw);

String last2 = chain2.get(chain2.size() - 1);
int d2 = distance(last2, tw);

return Integer.compare(d1, d2);
}
return cmp1;
});

while (queue.size() > 0) {
List<String> curr = queue.remove();
if (curr.size() > limit) {
continue;
}

String last = curr.get(curr.size() - 1);
for (String word : ws) {
if (distance(last, word) == 1) {
if (word.equals(tw)) {
System.out.println(String.join(" -> ", curr));
return;
}

if (!curr.contains(word)) {
List<String> cp = new ArrayList<>(curr);
}
}
}
}
}

System.err.printf("Cannot turn `%s` into `%s`%n", fw, tw);
}

public static void main(String[] args) throws IOException {
Map<Integer, Set<String>> words = new HashMap<>();
for (String line : Files.readAllLines(Path.of("unixdict.txt"))) {
Set<String> wl = words.computeIfAbsent(line.length(), HashSet::new);
}

}
}
```
Output:
```boy -> bay -> may -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
cat -> cot -> dot -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> waggle -> wangle -> tangle -> tingle -> tinkle -> tickle```

### Faster alternative

Translation of: C++
```import java.io.*;
import java.util.*;

public static void main(String[] args) {
try {
Map<Integer, List<String>> words = new HashMap<>();
String line;
}
} catch (Exception e)  {
e.printStackTrace();
}
}

// Returns true if strings s1 and s2 differ by one character.
private static boolean oneAway(String s1, String s2) {
if (s1.length() != s2.length())
return false;
boolean result = false;
for (int i = 0, n = s1.length(); i != n; ++i) {
if (s1.charAt(i) != s2.charAt(i)) {
if (result)
return false;
result = true;
}
}
return result;
}

// If possible, print the shortest chain of single-character modifications that
// leads from "from" to "to", with each intermediate step being a valid word.
// This is an application of breadth-first search.
private static void wordLadder(Map<Integer, List<String>> words, String from, String to) {
List<String> w = words.get(from.length());
if (w != null) {
Deque<String> poss = new ArrayDeque<>(w);
Deque<String> f = new ArrayDeque<String>();
Deque<Deque<String>> queue = new ArrayDeque<>();
while (!queue.isEmpty()) {
Deque<String> curr = queue.poll();
for (Iterator<String> i = poss.iterator(); i.hasNext(); ) {
String str = i.next();
if (!oneAway(str, curr.getLast()))
continue;
if (to.equals(str)) {
System.out.println(String.join(" -> ", curr));
return;
}
Deque<String> temp = new ArrayDeque<>(curr);
i.remove();
}
}
}
System.out.printf("%s into %s cannot be done.\n", from, to);
}
}
```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## jq

Translation of: Wren
Works with: jq

Works with gojq, the Go implementation of jq

```def count(stream): reduce stream as \$i (0; .+1);

def words: [inputs];  # one way to read the word list

def oneAway(\$a; \$b):
(\$a|explode) as \$ax
| (\$b|explode) as \$bx
| 1 == count(range(0; \$a|length) | select(\$ax[.] != \$bx[.]));

# input: the word list
(\$a|length) as \$len
| { poss: map(select(length == \$len)),      # the relevant words
todo:  [[\$a]]                           # possible chains
}
| until ( ((.todo|length) == 0) or .solution;
.curr = .todo[0]
| .todo |= .[1:]
| .curr[-1] as \$c
| (.poss | map(select( oneAway(.; \$c) ))) as \$next
| if (\$b | IN(\$next[]))
then .curr += [\$b]
| .solution = (.curr|join(" -> "))
else .poss = (.poss - \$next)
| .curr as \$curr
| .todo = (reduce range(0; \$next|length) as \$i (.todo;
. + [\$curr + [\$next[\$i] ]] ))
end )
| if .solution then .solution
else "There is no ladder from \(\$a) to \(\$b)."
end ;

def pairs:
["boy", "man"],
["john", "jane"],
["word", "play"]
;

words
| pairs as \$p
Output:

Invocation: jq -nr -R -f word-ladder.jq unixdict.txt

```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
word -> ford -> form -> foam -> flam -> clam -> clay -> play
```

## Julia

```const dict = Set(split(read("unixdict.txt", String), r"\s+"))

function targeted_mutations(str::AbstractString, target::AbstractString)
working, tried = [[str]], Set{String}()
while all(a -> a[end] != target, working)
newworking = Vector{Vector{String}}()
for arr in working
s = arr[end]
push!(tried, s)
for j in 1:length(s), c in 'a':'z'
w = s[1:j-1] * c * s[j+1:end]
if w in dict && !(w in tried)
push!(newworking, [arr; w])
end
end
end
isempty(newworking) && return [["This cannot be done."]]
working = newworking
end
return filter(a -> a[end] == target, working)
end

println("boy to man: ", targeted_mutations("boy", "man"))
println("john to jane: ", targeted_mutations("john", "jane"))
```
Output:
```boy to man: [["boy", "bay", "may", "man"], ["boy", "bay", "ban", "man"], ["boy", "bon", "ban", "man"]]
john to jane: [["john", "cohn", "conn", "cone", "cane", "jane"]]
child to adult: [["This cannot be done."]]
```

## Mathematica / Wolfram Language

 This example is incorrect. Please fix the code and remove this message.Details: The requirement is to find the shortest path other examples do John to Jane with 4 intermediate words. Also an impossible example is required: child to adult.
```db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[3]]]]];
sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];
g=Graph[db,UndirectedEdge@@@sel];
FindShortestPath[g,"boy","man"]

db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[4]]]]];
sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];
g=Graph[db,UndirectedEdge@@@sel];
FindShortestPath[g,"john","jane"]

db=DeleteDuplicates[RemoveDiacritics[ToLowerCase[Select[DictionaryLookup[],StringLength/*EqualTo[5]]]]];
sel=Select[Subsets[db,{2}],HammingDistance[#[[1]],#[[2]]]==1&];
g=Graph[db,UndirectedEdge@@@sel];
```
Output:
```{"boy", "bay", "ban", "man"}
{"john", "join", "jain", "main", "mann", "mane", "jane"}
{}```

## Nim

```import sets, strformat, strutils

func isOneAway(word1, word2: string): bool =
## Return true if "word1" and "word2" has only one letter of difference.
for i in 0..word1.high:
if word1[i] != word2[i]:
if result: return false   # More than one letter of difference.
else: result = true       # One letter of difference, for now.

var words: array[1..22, HashSet[string]]  # Set of words sorted by length.

for word in "unixdict.txt".lines:
words[word.len].incl word

proc path(start, target: string): seq[string] =
## Return a path from "start" to "target" or an empty list
## if there is no possible path.
let lg = start.len
doAssert target.len == lg, "Source and destination must have same length."
doAssert start in words[lg], "Source must exist in the dictionary."
doAssert target in words[lg], "Destination must exist in the dictionary."

var currPaths = @[@[start]]         # Current list of paths found.
var pool = words[lg]                # List of possible words to use.

while true:
var newPaths: seq[seq[string]]    # Next list of paths.
for candidate in pool:
for path in currPaths:
if candidate.isOneAway(path[^1]):
let newPath = path & candidate
if candidate == target:
# Found a path.
return newPath
else:
# Not the target. Add a new path.
break
if newPaths.len == 0: break       # No path.
currPaths = move(newPaths)        # Update list of paths.

when isMainModule:
for (start, target) in [("boy", "man"), ("girl", "lady"), ("john", "jane"),
("white", "black"), ("bubble", "tickle")]:
let path = path(start, target)
if path.len == 0:
echo &"No path from “{start}” to “{target}”."
else:
echo path.join(" → ")
```
Output:
```boy → bon → ban → man
girl → gill → gall → gale → gaze → laze → lazy → lady
john → cohn → conn → cone → cane → jane
No path from “child” to “adult”.
cat → cot → cog → dog
white → whine → chine → chink → clink → clank → blank → black
bubble → babble → gabble → garble → gargle → gaggle → waggle → wangle → tangle → tingle → tinkle → tickle```

## Perl

### Direct translation

Translation of: C++
```use strict;
use warnings;

my %dict;

open my \$handle, '<', 'unixdict.txt';
while (my \$word = <\$handle>) {
chomp(\$word);
my \$len = length \$word;
if (exists \$dict{\$len}) {
push @{ \$dict{ \$len } }, \$word;
} else {
my @words = ( \$word );
\$dict{\$len} = \@words;
}
}
close \$handle;

sub distance {
my \$w1 = shift;
my \$w2 = shift;

my \$dist = 0;
for my \$i (0 .. length(\$w1) - 1) {
my \$c1 = substr(\$w1, \$i, 1);
my \$c2 = substr(\$w2, \$i, 1);
if (not (\$c1 eq \$c2)) {
\$dist++;
}
}
return \$dist;
}

sub contains {
my \$aref = shift;
my \$needle = shift;

for my \$v (@\$aref) {
if (\$v eq \$needle) {
return 1;
}
}

return 0;
}

my \$fw = shift;
my \$tw = shift;

if (exists \$dict{length \$fw}) {
my @poss = @{ \$dict{length \$fw} };
my @queue = ([\$fw]);
while (scalar @queue > 0) {
my \$curr_ref = shift @queue;
my \$last = \$curr_ref->[-1];

my @next;
for my \$word (@poss) {
if (distance(\$last, \$word) == 1) {
push @next, \$word;
}
}

if (contains(\@next, \$tw)) {
push @\$curr_ref, \$tw;
print join (' -> ', @\$curr_ref), "\n";
return;
}

for my \$word (@next) {
for my \$i (0 .. scalar @poss - 1) {
if (\$word eq \$poss[\$i]) {
splice @poss, \$i, 1;
last;
}
}
}

for my \$word (@next) {
my @temp = @\$curr_ref;
push @temp, \$word;

push @queue, \@temp;
}
}
}

print STDERR "Cannot change \$fw into \$tw\n";
}

```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle```

### Idiomatic version

Exactly the same algorithm, written in a more Perl-ish style. Is this better, or worse? Maybe both. Interestingly, runs 1/3-rd faster.

```use strict;
use warnings;
use feature 'say';

my %dict;
open my \$handle, '<', 'ref/unixdict.txt';
while (my \$word = <\$handle>) {
chomp \$word;
my \$l = length \$word;
if (\$dict{\$l}) { push @{ \$dict{\$l} },    \$word   }
else           {         \$dict{\$l} = \@{[\$word]} }
}
close \$handle;

sub distance {
my(\$w1,\$w2) = @_;
my \$d;
substr(\$w1, \$_, 1) eq substr(\$w2, \$_, 1) or \$d++ for 0 .. length(\$w1) - 1;
return \$d // 0;
}

sub contains {
my(\$aref,\$needle) = @_;
\$needle eq \$_ and return 1 for @\$aref;
return 0;
}

my(\$fw,\$tw) = @_;
say 'Nothing like that in dictionary.' and return unless \$dict{length \$fw};

my @poss  = @{ \$dict{length \$fw} };
my @queue = [\$fw];
while (@queue) {
my \$curr_ref = shift @queue;
my \$last     = \$curr_ref->[-1];

my @next;
distance(\$last, \$_) == 1 and push @next, \$_ for @poss;
push(@\$curr_ref, \$tw) and say join ' -> ', @\$curr_ref and return if contains \@next, \$tw;

for my \$word (@next) {
\$word eq \$poss[\$_] and splice(@poss, \$_, 1) and last for 0 .. @poss - 1;
}
push @queue, \@{[@{\$curr_ref}, \$_]} for @next;
}

say "Cannot change \$fw into \$tw";
}

```

Same style output.

## Phix

```with javascript_semantics
sequence words = unix_dict()

function right_length(string word, integer l) return length(word)=l end function

function one_away(string a, b) return sum(sq_ne(a,b))=1 end function

function dca(sequence s, n) return append(deep_copy(s),n) end function

sequence poss = filter(words,right_length,length(a)),
todo = {{a}},
curr -- aka todo[1], word chain starting from a
while length(todo) do
{curr,todo} = {todo[1],todo[2..\$]}
sequence next = filter(poss,one_away,curr[\$])
if find(b,next) then
printf(1,"%s\n",{join(append(deep_copy(curr),b),"->")})
return
end if
poss = filter(poss,"out",next)
todo &= apply(true,dca,{{curr},next})
end while
printf(1,"%s into %s cannot be done\n",{a,b})
end procedure
```

Aside: an initial poss = filter(poss,"out",{a}) might be prudent, but would only prevent a single next:={} step, at about the same cost as the initial filter anyway.

Output:
```boy->bay->ban->man
john->cohn->conn->cone->cane->jane
child into adult cannot be done
```

## Python

The function cache is not part of the algorithm but avoid re-download and map re-computing at each re-run.

```import os,sys,zlib,urllib.request

def h ( str,x=9 ):
for c in str :
x = ( x*33 + ord( c )) & 0xffffffffff
return x

def cache ( func,*param ):
n = 'cache_%x.bin'%abs( h( repr( param )))
try    : return eval( zlib.decompress( open( n,'rb' ).read()))
except : pass
s = func( *param )
open( n,'wb' ).write( zlib.compress( bytes( repr( s ),'ascii' )))
return s

dico_url  = 'https://raw.githubusercontent.com/quinnj/Rosetta-Julia/master/unixdict.txt'
isnext    = lambda w1,w2 : len( w1 ) == len( w2 ) and len( list( filter( lambda l : l[0]!=l[1] , zip( w1,w2 )))) == 1

def build_map ( words ):
map = [(w.decode('ascii'),[]) for w in words]
for i1,(w1,n1) in enumerate( map ):
for i2,(w2,n2) in enumerate( map[i1+1:],i1+1 ):
if isnext( w1,w2 ):
n1.append( i2 )
n2.append( i1 )
return map

def find_path ( words,w1,w2 ):
i = [w[0] for w in words].index( w1 )
front,done,res  = [i],{i:-1},[]
while front :
i = front.pop(0)
word,next = words[i]
for n in next :
if n in done : continue
done[n] = i
if words[n][0] == w2 :
while n >= 0 :
res = [words[n][0]] + res
n = done[n]
return ' '.join( res )
front.append( n )
return '%s can not be turned into %s'%( w1,w2 )

print( find_path( cache( build_map,load_dico( dico_url )),*w.split()))
```
Output:
```boy bay ban man
girl gill gall gale gaze laze lazy lady
john cohn conn cone cane jane
alien alden alder alter aster ester eater bater bator baton baron boron moron moran moral morel monel money monty month mouth south sooth sloth slosh slash flash flask flank blank bland blend bleed breed bread tread triad trial trill drill droll drool
child can not be turned into adult
```

## Racket

```#lang racket

(define *unixdict* (delay (with-input-from-file "../../data/unixdict.txt"
(compose list->set port->lines))))

(define letters-as-strings (map string (string->list "abcdefghijklmnopqrstuvwxyz")))

(define ((replace-for-c-at-i w i) c)
(string-append (substring w 0 i) c (substring w (add1 i))))

(define (candidates w)
(for*/list (((i w_i) (in-parallel (string-length w) w))
(r (in-value (replace-for-c-at-i w i)))
(c letters-as-strings)
#:unless (char=? w_i (string-ref c 0)))
(r c)))

(define (generate-candidates word.path-hash)
(for*/hash (((w p) word.path-hash)
(w′ (candidates w)))
(values w′ (cons w p))))

(define (hash-filter-keys keep-key? h)
(for/hash (((k v) h) #:when (keep-key? k)) (values k v)))

(define (Word-ladder src dest (words (force *unixdict*)))
(let loop ((edge (hash src null)) (unused (set-remove words src)))
(let ((cands (generate-candidates edge)))
(if (hash-has-key? cands dest)
(reverse (cons dest (hash-ref cands dest)))
(let ((new-edge (hash-filter-keys (curry set-member? unused) cands)))
(if (hash-empty? new-edge)
`(no-path-between ,src ,dest)
(loop new-edge (set-subtract unused (list->set (hash-keys new-edge))))))))))

(module+ main
```
Output:
```'("boy" "bay" "may" "man")
'("girl" "gill" "gall" "gale" "gaze" "laze" "lazy" "lady")
'("john" "cohn" "conn" "cone" "cane" "jane")
'("alien"
"alden"
"alder"
"alter"
"aster"
"ester"
"eater"
"bater"
"bator"
"baton"
"baron"
"boron"
"moron"
"moran"
"moral"
"morel"
"monel"
"money"
"monty"
"month"
"mouth"
"south"
"sooth"
"sloth"
"slosh"
"slash"
"flash"
"flank"
"blank"
"bland"
"blend"
"bleed"
"breed"
"trial"
"trill"
"drill"
"droll"
"drool")

## Raku

```constant %dict = 'unixdict.txt'.IO.lines
.classify(*.chars)
.map({ .key => .value.Set });

sub word_ladder ( Str \$from, Str \$to ) {
die if \$from.chars != \$to.chars;

my \$sized_dict = %dict{\$from.chars};

my @workqueue = ((\$from,),);
my \$used = (\$from => True).SetHash;
while @workqueue {
my @new_q;
for @workqueue -> @words {
my \$last_word = @words.tail;
my @new_tails = gather for 'a' .. 'z' -> \$replacement_letter {
for ^\$last_word.chars -> \$i {
my \$new_word = \$last_word;
\$new_word.substr-rw(\$i, 1) = \$replacement_letter;

next unless \$new_word ∈ \$sized_dict
and not \$new_word ∈ \$used;
take \$new_word;
\$used{\$new_word} = True;

return |@words, \$new_word if \$new_word eq \$to;
}
}
push @new_q, ( |@words, \$_ ) for @new_tails;
}
@workqueue = @new_q;
}
}
for <boy man>, <girl lady>, <john jane>, <child adult> -> (\$from, \$to) {
// "\$from into \$to cannot be done";
}
```
Output:
```(boy bay may man)
(girl gill gall gale gaze laze lazy lady)
(john cohn conn cone cane jane)
child into adult cannot be done```

## Refal

This program needs to be run with refal -l48 to allocate enough memory for it to run.

```\$ENTRY Go {
};

(e.Dict) (e.From) (e.To),
e.From ' -> ' e.To ': ': e.Header,
Result e.Words = <Prout e.Header <Join ('->') e.Words>>;
};
};

Join {
(e.Join) = ;
(e.Join) (e.Word) = e.Word;
(e.Join) (e.Word) e.Words = e.Word e.Join <Join (e.Join) e.Words>;
};

s.Chan e.File =
<Open 'r' s.Chan e.File>
(s.Chan), <Get s.Chan>: {
0 = ;
};
};

Filter {
(e.Fn) = ;
(e.Fn) t.Item e.Items, <Mu e.Fn t.Item>: {
True = t.Item <Filter (e.Fn) e.Items>;
False = <Filter (e.Fn) e.Items>;
};
};

SameLen {
(e.Word1) (e.Word2),
<Lenw e.Word1>: s.Len e.Word1,
<Lenw e.Word2>: s.Len e.Word2 = True;
(e.Word1) (e.Word2) = False;
};

Diffs {
() () = 0;
(s.X e.Word1) (s.X e.Word2) = <Diffs (e.Word1) (e.Word2)>;
(s.X e.Word1) (s.Y e.Word2) = <+ 1 <Diffs (e.Word1) (e.Word2)>>;
};

OneDiff {
t.Word1 t.Word2, <Diffs t.Word1 t.Word2>: {
1 = True;
s.Diffs = False;
};
};

(e.Dict) t.From t.To,
<Filter (SameLen t.From) e.Dict>: e.Dict2 =
};

e.Ladders: e.X (e.Words t.To) e.Y = Result e.Words t.To;

() (e.Dict) t.To = Impossible;

<Filter (OneDiff t.Last) e.Dict>: e.NextWords,
<RemoveAll (e.NextWords) e.Dict>: e.NextDict,
};

RemoveAll {
(e.Remove) = ;
(e.Remove) t.Word e.Words, e.Remove: {
e.X t.Word e.Y = <RemoveAll (e.Remove) e.Words>;
e.Remove = t.Word <RemoveAll (e.Remove) e.Words>;
};
};

};```
Output:
```boy -> man: boy->bay->ban->man
john -> jane: john->cohn->conn->cone->cane->jane

## REXX

This REXX entry does a little more error checking.

It also assumes that the dictionary file is in mixed case as well as the words entered on the CL.

To treat the dictionary and input words as caseless,   all words are translated to lowercase.

Programming note:     this REXX program uses the   lower   BIF   which Regina has).
If your REXX doesn't support that BIF,   here is an equivalent function:

```lower: procedure;  parse arg a;   @= 'abcdefghijklmnopqrstuvwxyz';    @u= @;    upper @u
return translate(a, @, @u)
```
```/*REXX program finds words  (within an identified dict.)  to solve a word ladder puzzle.*/
parse arg base targ iFID .                       /*obtain optional arguments from the CL*/
if base=='' | base=="," then base= 'boy'         /*Not specified?  Then use the default.*/
if targ=='' | targ=="," then targ= 'man'         /* "      "         "   "   "     "    */
if iFID=='' | iFID=="," then iFID='unixdict.txt' /* "      "         "   "   "     "    */
abc=  'abcdefghijklmnopqrstuvwxyz'               /*the lowercase (Latin) alphabet.      */
abcU= abc;    upper abcU                         /* "  uppercase    "        "          */
base= lower(base);           targ= lower(targ)   /*lowercase the BASE and also the TARG.*/
L= length(base)                               /*length of the BASE  (in characters). */
if L<2  then call err 'base word is too small or missing'              /*oops, too small*/
if length(targ)\==L  then call msg , "target word isn't the same length as the base word"
call letters                                     /*assign letters,  faster than SUBSTR. */
#= 0                                             /*# of words whose length matches BASE.*/
@.=                                              /*default value of any dictionary word.*/
do recs=0  while lines(iFID)\==0        /*read each word in the file  (word=X).*/
x= lower(strip( linein( iFID) ) )       /*pick off a word from the input line. */
if length(x)\==L  then iterate          /*Word not correct length?  Then skip. */
#= # + 1;         @.x= 1                /*bump # words with length L; semaphore*/
end   /*recs*/                          /* [↑]   semaphore name is uppercased. */
!.= 0
say copies('─', 30)     recs       "words in the dictionary file: "       iFID
say copies('─', 30)       #        "words in the dictionary file of length: "  L
say copies('─', 30)   ' base  word is: '  base
say copies('─', 30)   'target word is: '  targ
rung= targ
\$= base
do f=1  for m;    call look;  if result\==''  then leave      /*Found?  Quit.*/
end   /*f*/
say
if f>m  then call msg  'no word ladder solution possible for '   base   " ──► "   targ

do f-2;       \$= base;    !.= 0   /*process all the rungs that were found*/
do forever; call look;  if result\==''  then leave      /*Found?  Quit.*/
end   /*forever*/
end     /*f-2*/
call show words(rung)
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
msg:  say;   if arg()==2  then say '***error*** ' arg(2);  else say arg(1);  say;  exit 13
show: say 'a solution: ' base; do j=1 to arg(1); say left('',12) word(rung,j); end; return
letters:     do m=1  for length(abc);         a.m= substr(abc, m, 1);         end;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
look: procedure expose @. !. a. \$ abc base L rung targ search;        rungs= word(rung, 1)
\$\$=;                                                            rung#= words(rungs)
do i=1  for words(\$);                  y= word(\$, i);     !.y= 1
do k=1  for L
do n=1  for 26;  z= overlay(a.n, y, k)             /*change a letter*/
if @.z==''  then iterate       /*Is this not a word?  Then skip it. */
if !.z      then iterate       /* "   "   a  repeat?    "    "   "  */
if z==rungs then rung= y rung  /*prepend a word to the rung list.   */
if z==rungs & rung#>1  then return z               /*short─circuit. */
if z==targ  then return z
\$\$= \$\$ z                       /*append a possible ladder word to \$\$*/
end   /*n*/
end      /*k*/
end         /*i*/
\$= \$\$;                         return ''
```
output   when using the default inputs:
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 796 words in the dictionary file of length:  3
──────────────────────────────  base  word is:  boy
────────────────────────────── target word is:  man

a solution:  boy
bay
may
man
```
output   when using the inputs of:     girl   lady
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 2187 words in the dictionary file of length:  4
──────────────────────────────  base  word is:  girl

a solution:  girl
gill
gall
gale
gaze
laze
lazy
```
output   when using the inputs of:     john   jane
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 2187 words in the dictionary file of length:  4
──────────────────────────────  base  word is:  john
────────────────────────────── target word is:  jane

a solution:  john
cohn
conn
cone
cane
jane
```
output   when using the inputs of:     child   adult
```────────────────────────────── 25104 words in the dictionary file:  unixdict.txt
────────────────────────────── 3161 words in the dictionary file of length:  5
──────────────────────────────  base  word is:  child

```

## Ruby

Translation of: Raku
```require "set"

group_by { |w| w.length }.map { |k, v| [k, Set.new(v)] }.
to_h

raise "Length mismatch" unless from.length == to.length
sized_words = Words[from.length]
work_queue = [[from]]
used = Set.new [from]
while work_queue.length > 0
new_q = []
work_queue.each do |words|
last_word = words[-1]
new_tails = Enumerator.new do |enum|
("a".."z").each do |replacement_letter|
last_word.length.times do |i|
new_word = last_word.clone
new_word[i] = replacement_letter
next unless sized_words.include? new_word and
not used.include? new_word
enum.yield new_word
return words + [new_word] if new_word == to
end
end
end
new_tails.each do |t|
new_q.push(words + [t])
end
end
work_queue = new_q
end
end

else
puts "#{from} into #{to} cannot be done"
end
end
```
Output:
```boy → bay → may → man
girl → gill → gall → gale → gaze → laze → lazy → lady
john → cohn → conn → cone → cane → jane
child into adult cannot be done```

## SETL

```program word_ladder;

loop for [fromWord, toWord] in testpairs do
if l = om then
print(fromWord, '->', toWord, 'impossible');
else
print(fromWord, '->', toWord, l);
end if;
end loop;

dict := {word : word in dict | #word = #fromWord};
dict less:= fromWord;
loop while ladders /= [] do
next := {word : word in onediff(dict, l(#l))};
dict -:= next;
nextls := [l + [word] : word in next];
if exists l in nextls | l(#l) = toWord then
return l;
end if;
end loop;
return om;
end proc;

proc onediff(rw dict, word);
return {other : other in dict | #other = #word and diffs(word, other) = 1};
end proc;

proc diffs(word1, word2);
return +/[if word1(i) = word2(i) then 0 else 1 end : i in [1..#word1]];
end proc;

dictfile := open(file, 'r');
dict := {getline(dictfile) : until eof(dictfile)};
close(dictfile);
return dict;
end proc;
end program;```
Output:
```boy -> man [boy bay ban man]
john -> jane [john cohn conn cone cane jane]

## Swift

Translation of: Wren
```import Foundation

func oneAway(string1: [Character], string2: [Character]) -> Bool {
if string1.count != string2.count {
return false
}
var result = false
var i = 0
while i < string1.count {
if string1[i] != string2[i] {
if result {
return false
}
result = true
}
i += 1
}
return result
}

func wordLadder(words: [[Character]], from: String, to: String) {
let fromCh = Array(from)
let toCh = Array(to)
var poss = words.filter{\$0.count == fromCh.count}
var queue: [[[Character]]] = [[fromCh]]
while !queue.isEmpty {
var curr = queue[0]
let last = curr[curr.count - 1]
queue.removeFirst()
let next = poss.filter{oneAway(string1: \$0, string2: last)}
if next.contains(toCh) {
curr.append(toCh)
print(curr.map{String(\$0)}.joined(separator: " -> "))
return
}
poss.removeAll(where: {next.contains(\$0)})
for str in next {
var temp = curr
temp.append(str)
queue.append(temp)
}
}
print("\(from) into \(to) cannot be done.")
}

do {
let words = try String(contentsOfFile: "unixdict.txt", encoding: String.Encoding.ascii)
.components(separatedBy: "\n")
.filter{!\$0.isEmpty}
.map{Array(\$0)}
wordLadder(words: words, from: "man", to: "boy")
wordLadder(words: words, from: "john", to: "jane")
wordLadder(words: words, from: "cat", to: "dog")
wordLadder(words: words, from: "white", to: "black")
wordLadder(words: words, from: "bubble", to: "tickle")
} catch {
print(error.localizedDescription)
}
```
Output:
```man -> ban -> bay -> boy
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
cat -> cot -> cog -> dog
white -> whine -> chine -> chink -> clink -> blink -> blank -> black
bubble -> babble -> gabble -> garble -> gargle -> gaggle -> giggle -> jiggle -> jingle -> tingle -> tinkle -> tickle
```

## Wren

Translation of: Phix
Library: Wren-sort
```import "io" for File
import "./sort" for Find

var oneAway = Fn.new { |a, b|
var sum = 0
for (i in 0...a.count) if (a[i] != b[i]) sum = sum + 1
return sum == 1
}

var wordLadder = Fn.new { |a, b|
var l = a.count
var poss = words.where { |w| w.count == l }.toList
var todo = [[a]]
while (todo.count > 0) {
var curr = todo[0]
todo = todo[1..-1]
var next = poss.where { |w| oneAway.call(w, curr[-1]) }.toList
if (Find.first(next, b) != -1) {
System.print(curr.join(" -> "))
return
}
poss = poss.where { |p| !next.contains(p) }.toList
for (i in 0...next.count) {
var temp = curr.toList
}
}
System.print("%(a) into %(b) cannot be done.")
}

var pairs = [
["boy", "man"],
["john", "jane"],
]
for (pair in pairs) wordLadder.call(pair[0], pair[1])
```
Output:
```boy -> bay -> ban -> man
girl -> gill -> gall -> gale -> gaze -> laze -> lazy -> lady
john -> cohn -> conn -> cone -> cane -> jane
child into adult cannot be done.
```