Sorting algorithms/Quicksort
You are encouraged to solve this task according to the task description, using any language you may know.
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
Heap sort | Merge sort | Patience sort | Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
This page uses content from Wikipedia. The original article was at Quicksort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) |
- Task
Sort an array (or list) elements using the quicksort algorithm.
The elements must have a strict weak order and the index of the array can be of any discrete type.
For languages where this is not possible, sort an array of integers.
Quicksort, also known as partition-exchange sort, uses these steps.
- Choose any element of the array to be the pivot.
- Divide all other elements (except the pivot) into two partitions.
- All elements less than the pivot must be in the first partition.
- All elements greater than the pivot must be in the second partition.
- Use recursion to sort both partitions.
- Join the first sorted partition, the pivot, and the second sorted partition.
The best pivot creates partitions of equal length (or lengths differing by 1).
The worst pivot creates an empty partition (for example, if the pivot is the first or last element of a sorted array).
The run-time of Quicksort ranges from O(n log n) with the best pivots, to O(n2) with the worst pivots, where n is the number of elements in the array.
This is a simple quicksort algorithm, adapted from Wikipedia.
function quicksort(array) less, equal, greater := three empty arrays if length(array) > 1 pivot := select any element of array for each x in array if x < pivot then add x to less if x = pivot then add x to equal if x > pivot then add x to greater quicksort(less) quicksort(greater) array := concatenate(less, equal, greater)
A better quicksort algorithm works in place, by swapping elements within the array, to avoid the memory allocation of more arrays.
function quicksort(array) if length(array) > 1 pivot := select any element of array left := first index of array right := last index of array while left ≤ right while array[left] < pivot left := left + 1 while array[right] > pivot right := right - 1 if left ≤ right swap array[left] with array[right] left := left + 1 right := right - 1 quicksort(array from first index to right) quicksort(array from left to last index)
Quicksort has a reputation as the fastest sort. Optimized variants of quicksort are common features of many languages and libraries. One often contrasts quicksort with merge sort, because both sorts have an average time of O(n log n).
- "On average, mergesort does fewer comparisons than quicksort, so it may be better when complicated comparison routines are used. Mergesort also takes advantage of pre-existing order, so it would be favored for using sort() to merge several sorted arrays. On the other hand, quicksort is often faster for small arrays, and on arrays of a few distinct values, repeated many times." — http://perldoc.perl.org/sort.html
Quicksort is at one end of the spectrum of divide-and-conquer algorithms, with merge sort at the opposite end.
- Quicksort is a conquer-then-divide algorithm, which does most of the work during the partitioning and the recursive calls. The subsequent reassembly of the sorted partitions involves trivial effort.
- Merge sort is a divide-then-conquer algorithm. The partioning happens in a trivial way, by splitting the input array in half. Most of the work happens during the recursive calls and the merge phase.
With quicksort, every element in the first partition is less than or equal to every element in the second partition. Therefore, the merge phase of quicksort is so trivial that it needs no mention!
This task has not specified whether to allocate new arrays, or sort in place. This task also has not specified how to choose the pivot element. (Common ways to are to choose the first element, the middle element, or the median of three elements.) Thus there is a variety among the following implementations.
11l[edit]
F _quicksort(&array, start, stop) -> N
I stop - start > 0
V pivot = array[start]
V left = start
V right = stop
L left <= right
L array[left] < pivot
left++
L array[right] > pivot
right--
I left <= right
swap(&array[left], &array[right])
left++
right--
_quicksort(&array, start, right)
_quicksort(&array, left, stop)
F quicksort(&array)
_quicksort(&array, 0, array.len - 1)
V arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0]
quicksort(&arr)
print(arr)
- Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
360 Assembly[edit]
Structured version with ASM & ASSIST macros.
* Quicksort 14/09/2015 & 23/06/2016
QUICKSOR CSECT
USING QUICKSOR,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) "
ST R15,8(R13) "
LR R13,R15 "
MVC A,=A(1) a(1)=1
MVC B,=A(NN) b(1)=hbound(t)
L R6,=F'1' k=1
DO WHILE=(LTR,R6,NZ,R6) do while k<>0 ==================
LR R1,R6 k
SLA R1,2 ~
L R10,A-4(R1) l=a(k)
LR R1,R6 k
SLA R1,2 ~
L R11,B-4(R1) m=b(k)
BCTR R6,0 k=k-1
LR R4,R11 m
C R4,=F'2' if m<2
BL ITERATE then iterate
LR R2,R10 l
AR R2,R11 +m
BCTR R2,0 -1
ST R2,X x=l+m-1
LR R2,R11 m
SRA R2,1 m/2
AR R2,R10 +l
ST R2,Y y=l+m/2
L R1,X x
SLA R1,2 ~
L R4,T-4(R1) r4=t(x)
L R1,Y y
SLA R1,2 ~
L R5,T-4(R1) r5=t(y)
LR R1,R10 l
SLA R1,2 ~
L R3,T-4(R1) r3=t(l)
IF CR,R4,LT,R3 if t(x)<t(l) ---+
IF CR,R5,LT,R4 if t(y)<t(x) |
LR R7,R4 p=t(x) |
L R1,X x |
SLA R1,2 ~ |
ST R3,T-4(R1) t(x)=t(l) |
ELSEIF CR,R5,GT,R3 elseif t(y)>t(l) |
LR R7,R3 p=t(l) |
ELSE , else |
LR R7,R5 p=t(y) |
L R1,Y y |
SLA R1,2 ~ |
ST R3,T-4(R1) t(y)=t(l) |
ENDIF , end if |
ELSE , else |
IF CR,R5,LT,R3 if t(y)<t(l) |
LR R7,R3 p=t(l) |
ELSEIF CR,R5,GT,R4 elseif t(y)>t(x) |
LR R7,R4 p=t(x) |
L R1,X x |
SLA R1,2 ~ |
ST R3,T-4(R1) t(x)=t(l) |
ELSE , else |
LR R7,R5 p=t(y) |
L R1,Y y |
SLA R1,2 ~ |
ST R3,T-4(R1) t(y)=t(l) |
ENDIF , end if |
ENDIF , end if ---+
LA R8,1(R10) i=l+1
L R9,X j=x
FOREVER EQU * do forever --------------------+
LR R1,R8 i |
SLA R1,2 ~ |
LA R2,T-4(R1) @t(i) |
L R0,0(R2) t(i) |
DO WHILE=(CR,R8,LE,R9,AND, while i<=j and ---+ | X
CR,R0,LE,R7) t(i)<=p | |
AH R8,=H'1' i=i+1 | |
AH R2,=H'4' @t(i) | |
L R0,0(R2) t(i) | |
ENDDO , end while ---+ |
LR R1,R9 j |
SLA R1,2 ~ |
LA R2,T-4(R1) @t(j) |
L R0,0(R2) t(j) |
DO WHILE=(CR,R8,LT,R9,AND, while i<j and ---+ | X
CR,R0,GE,R7) t(j)>=p | |
SH R9,=H'1' j=j-1 | |
SH R2,=H'4' @t(j) | |
L R0,0(R2) t(j) | |
ENDDO , end while ---+ |
CR R8,R9 if i>=j |
BNL LEAVE then leave (segment finished) |
LR R1,R8 i |
SLA R1,2 ~ |
LA R2,T-4(R1) @t(i) |
LR R1,R9 j |
SLA R1,2 ~ |
LA R3,T-4(R1) @t(j) |
L R0,0(R2) w=t(i) + |
MVC 0(4,R2),0(R3) t(i)=t(j) |swap t(i),t(j) |
ST R0,0(R3) t(j)=w + |
B FOREVER end do forever ----------------+
LEAVE EQU *
LR R9,R8 j=i
BCTR R9,0 j=i-1
LR R1,R9 j
SLA R1,2 ~
LA R3,T-4(R1) @t(j)
L R2,0(R3) t(j)
LR R1,R10 l
SLA R1,2 ~
ST R2,T-4(R1) t(l)=t(j)
ST R7,0(R3) t(j)=p
LA R6,1(R6) k=k+1
LR R1,R6 k
SLA R1,2 ~
LA R4,A-4(R1) r4=@a(k)
LA R5,B-4(R1) r5=@b(k)
IF C,R8,LE,Y if i<=y ----+
ST R8,0(R4) a(k)=i |
L R2,X x |
SR R2,R8 -i |
LA R2,1(R2) +1 |
ST R2,0(R5) b(k)=x-i+1 |
LA R6,1(R6) k=k+1 |
ST R10,4(R4) a(k)=l |
LR R2,R9 j |
SR R2,R10 -l |
ST R2,4(R5) b(k)=j-l |
ELSE , else |
ST R10,4(R4) a(k)=l |
LR R2,R9 j |
SR R2,R10 -l |
ST R2,0(R5) b(k)=j-l |
LA R6,1(R6) k=k+1 |
ST R8,4(R4) a(k)=i |
L R2,X x |
SR R2,R8 -i |
LA R2,1(R2) +1 |
ST R2,4(R5) b(k)=x-i+1 |
ENDIF , end if ----+
ITERATE EQU *
ENDDO , end while =====================
* *** ********* print sorted table
LA R3,PG ibuffer
LA R4,T @t(i)
DO WHILE=(C,R4,LE,=A(TEND)) do i=1 to hbound(t)
L R2,0(R4) t(i)
XDECO R2,XD edit t(i)
MVC 0(4,R3),XD+8 put in buffer
LA R3,4(R3) ibuffer=ibuffer+1
LA R4,4(R4) i=i+1
ENDDO , end do
XPRNT PG,80 print buffer
L R13,4(0,R13) epilog
LM R14,R12,12(R13) "
XR R15,R15 "
BR R14 exit
T DC F'10',F'9',F'9',F'6',F'7',F'16',F'1',F'16',F'17',F'15'
DC F'1',F'9',F'18',F'16',F'8',F'20',F'18',F'2',F'19',F'8'
TEND DS 0F
NN EQU (TEND-T)/4)
A DS (NN)F same size as T
B DS (NN)F same size as T
X DS F
Y DS F
PG DS CL80
XD DS CL12
YREGS
END QUICKSOR
- Output:
1 1 2 6 7 8 8 9 9 9 10 15 16 16 16 17 18 18 19 20
AArch64 Assembly[edit]
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program quickSort64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeConstantesARM64.inc"
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessSortOk: .asciz "Table sorted.\n"
szMessSortNok: .asciz "Table not sorted !!!!!.\n"
sMessResult: .asciz "Value : @ \n"
szCarriageReturn: .asciz "\n"
.align 4
TableNumber: .quad 1,3,6,2,5,9,10,8,4,7,11
#TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1
.equ NBELEMENTS, (. - TableNumber) / 8
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
ldr x0,qAdrTableNumber // address number table
mov x1,0 // first element
mov x2,NBELEMENTS // number of élements
bl quickSort
ldr x0,qAdrTableNumber // address number table
bl displayTable
ldr x0,qAdrTableNumber // address number table
mov x1,NBELEMENTS // number of élements
bl isSorted // control sort
cmp x0,1 // sorted ?
beq 1f
ldr x0,qAdrszMessSortNok // no !! error sort
bl affichageMess
b 100f
1: // yes
ldr x0,qAdrszMessSortOk
bl affichageMess
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsZoneConv: .quad sZoneConv
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsMessResult: .quad sMessResult
qAdrTableNumber: .quad TableNumber
qAdrszMessSortOk: .quad szMessSortOk
qAdrszMessSortNok: .quad szMessSortNok
/******************************************************************/
/* control sorted table */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the number of elements > 0 */
/* x0 return 0 if not sorted 1 if sorted */
isSorted:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
mov x2,0
ldr x4,[x0,x2,lsl 3]
1:
add x2,x2,1
cmp x2,x1
bge 99f
ldr x3,[x0,x2, lsl 3]
cmp x3,x4
blt 98f
mov x4,x3
b 1b
98:
mov x0,0 // not sorted
b 100f
99:
mov x0,1 // sorted
100:
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/***************************************************/
/* Appel récursif Tri Rapide quicksort */
/***************************************************/
/* x0 contains the address of table */
/* x1 contains index of first item */
/* x2 contains the number of elements > 0 */
quickSort:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
str x5, [sp,-16]! // save registers
sub x2,x2,1 // last item index
cmp x1,x2 // first > last ?
bge 100f // yes -> end
mov x4,x0 // save x0
mov x5,x2 // save x2
bl partition1 // cutting into 2 parts
mov x2,x0 // index partition
mov x0,x4 // table address
bl quickSort // sort lower part
add x1,x2,1 // index begin = index partition + 1
add x2,x5,1 // number of elements
bl quickSort // sort higter part
100: // end function
ldr x5, [sp],16 // restaur 1 register
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* Partition table elements */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains index of first item */
/* x2 contains index of last item */
partition1:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
stp x6,x7,[sp,-16]! // save registers
ldr x3,[x0,x2,lsl 3] // load value last index
mov x4,x1 // init with first index
mov x5,x1 // init with first index
1: // begin loop
ldr x6,[x0,x5,lsl 3] // load value
cmp x6,x3 // compare value
bge 2f
ldr x7,[x0,x4,lsl 3] // if < swap value table
str x6,[x0,x4,lsl 3]
str x7,[x0,x5,lsl 3]
add x4,x4,1 // and increment index 1
2:
add x5,x5,1 // increment index 2
cmp x5,x2 // end ?
blt 1b // no loop
ldr x7,[x0,x4,lsl 3] // swap value
str x3,[x0,x4,lsl 3]
str x7,[x0,x2,lsl 3]
mov x0,x4 // return index partition
100:
ldp x6,x7,[sp],16 // restaur 2 registers
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* Display table elements */
/******************************************************************/
/* x0 contains the address of table */
displayTable:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x2,x0 // table address
mov x3,0
1: // loop display table
ldr x0,[x2,x3,lsl 3]
ldr x1,qAdrsZoneConv
bl conversion10S // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at // character
bl affichageMess // display message
add x3,x3,1
cmp x3,NBELEMENTS - 1
ble 1b
ldr x0,qAdrszCarriageReturn
bl affichageMess
mov x0,x2
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Value : +1 Value : +2 Value : +3 Value : +4 Value : +5 Value : +6 Value : +7 Value : +8 Value : +9 Value : +10 Value : +11 Table sorted.
ABAP[edit]
This works for ABAP Version 7.40 and above
report z_quicksort.
data(numbers) = value int4_table( ( 4 ) ( 65 ) ( 2 ) ( -31 ) ( 0 ) ( 99 ) ( 2 ) ( 83 ) ( 782 ) ( 1 ) ).
perform quicksort changing numbers.
write `[`.
loop at numbers assigning field-symbol(<numbers>).
write <numbers>.
endloop.
write `]`.
form quicksort changing numbers type int4_table.
data(less) = value int4_table( ).
data(equal) = value int4_table( ).
data(greater) = value int4_table( ).
if lines( numbers ) > 1.
data(pivot) = numbers[ lines( numbers ) / 2 ].
loop at numbers assigning field-symbol(<number>).
if <number> < pivot.
append <number> to less.
elseif <number> = pivot.
append <number> to equal.
elseif <number> > pivot.
append <number> to greater.
endif.
endloop.
perform quicksort changing less.
perform quicksort changing greater.
clear numbers.
append lines of less to numbers.
append lines of equal to numbers.
append lines of greater to numbers.
endif.
endform.
- Output:
[ 31- 0 1 2 2 4 65 83 99 782 ]
ACL2[edit]
(defun partition (p xs)
(if (endp xs)
(mv nil nil)
(mv-let (less more)
(partition p (rest xs))
(if (< (first xs) p)
(mv (cons (first xs) less) more)
(mv less (cons (first xs) more))))))
(defun qsort (xs)
(if (endp xs)
nil
(mv-let (less more)
(partition (first xs) (rest xs))
(append (qsort less)
(list (first xs))
(qsort more)))))
Usage:
> (qsort '(8 6 7 5 3 0 9))
(0 3 5 6 7 8 9)
Action![edit]
Action! language does not support recursion. Therefore an iterative approach with a stack has been proposed.
DEFINE MAX_COUNT="100"
INT ARRAY stack(MAX_COUNT)
INT stackSize
PROC PrintArray(INT ARRAY a INT size)
INT i
Put('[)
FOR i=0 TO size-1
DO
IF i>0 THEN Put(' ) FI
PrintI(a(i))
OD
Put(']) PutE()
RETURN
PROC InitStack()
stackSize=0
RETURN
BYTE FUNC IsEmpty()
IF stackSize=0 THEN
RETURN (1)
FI
RETURN (0)
PROC Push(INT low,high)
stack(stackSize)=low stackSize==+1
stack(stackSize)=high stackSize==+1
RETURN
PROC Pop(INT POINTER low,high)
stackSize==-1 high^=stack(stackSize)
stackSize==-1 low^=stack(stackSize)
RETURN
INT FUNC Partition(INT ARRAY a INT low,high)
INT part,v,i,tmp
v=a(high)
part=low-1
FOR i=low TO high-1
DO
IF a(i)<=v THEN
part==+1
tmp=a(part) a(part)=a(i) a(i)=tmp
FI
OD
part==+1
tmp=a(part) a(part)=a(high) a(high)=tmp
RETURN (part)
PROC QuickSort(INT ARRAY a INT size)
INT low,high,part
InitStack()
Push(0,size-1)
WHILE IsEmpty()=0
DO
Pop(@low,@high)
part=Partition(a,low,high)
IF part-1>low THEN
Push(low,part-1)
FI
IF part+1<high THEN
Push(part+1,high)
FI
OD
RETURN
PROC Test(INT ARRAY a INT size)
PrintE("Array before sort:")
PrintArray(a,size)
QuickSort(a,size)
PrintE("Array after sort:")
PrintArray(a,size)
PutE()
RETURN
PROC Main()
INT ARRAY
a(10)=[1 4 65535 0 3 7 4 8 20 65530],
b(21)=[10 9 8 7 6 5 4 3 2 1 0
65535 65534 65533 65532 65531
65530 65529 65528 65527 65526],
c(8)=[101 102 103 104 105 106 107 108],
d(12)=[1 65535 1 65535 1 65535 1
65535 1 65535 1 65535]
Test(a,10)
Test(b,21)
Test(c,8)
Test(d,12)
RETURN
- Output:
Screenshot from Atari 8-bit computer
Array before sort: [1 4 -1 0 3 7 4 8 20 -6] Array after sort: [-6 -1 0 1 3 4 4 7 8 20] Array before sort: [10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10] Array after sort: [-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10] Array before sort: [101 102 103 104 105 106 107 108] Array after sort: [101 102 103 104 105 106 107 108] Array before sort: [1 -1 1 -1 1 -1 1 -1 1 -1 1 -1] Array after sort: [-1 -1 -1 -1 -1 -1 1 1 1 1 1 1]
ActionScript[edit]
The functional programming way
function quickSort (array:Array):Array
{
if (array.length <= 1)
return array;
var pivot:Number = array[Math.round(array.length / 2)];
return quickSort(array.filter(function (x:Number, index:int, array:Array):Boolean { return x < pivot; })).concat(
array.filter(function (x:Number, index:int, array:Array):Boolean { return x == pivot; })).concat(
quickSort(array.filter(function (x:Number, index:int, array:Array):Boolean { return x > pivot; })));
}
The faster way
function quickSort (array:Array):Array
{
if (array.length <= 1)
return array;
var pivot:Number = array[Math.round(array.length / 2)];
var less:Array = [];
var equal:Array = [];
var greater:Array = [];
for each (var x:Number in array) {
if (x < pivot)
less.push(x);
if (x == pivot)
equal.push(x);
if (x > pivot)
greater.push(x);
}
return quickSort(less).concat(
equal).concat(
quickSort(greater));
}
Ada[edit]
This example is implemented as a generic procedure.
The procedure specification is:
-----------------------------------------------------------------------
-- Generic Quick_Sort procedure
-----------------------------------------------------------------------
generic
type Element is private;
type Index is (<>);
type Element_Array is array(Index range <>) of Element;
with function "<" (Left, Right : Element) return Boolean is <>;
procedure Quick_Sort(A : in out Element_Array);
The procedure body deals with any discrete index type, either an integer type or an enumerated type.
-----------------------------------------------------------------------
-- Generic Quick_Sort procedure
-----------------------------------------------------------------------
procedure Quick_Sort (A : in out Element_Array) is
procedure Swap(Left, Right : Index) is
Temp : Element := A (Left);
begin
A (Left) := A (Right);
A (Right) := Temp;
end Swap;
begin
if A'Length > 1 then
declare
Pivot_Value : Element := A (A'First);
Right : Index := A'Last;
Left : Index := A'First;
begin
loop
while Left < Right and not (Pivot_Value < A (Left)) loop
Left := Index'Succ (Left);
end loop;
while Pivot_Value < A (Right) loop
Right := Index'Pred (Right);
end loop;
exit when Right <= Left;
Swap (Left, Right);
Left := Index'Succ (Left);
Right := Index'Pred (Right);
end loop;
if Right = A'Last then
Right := Index'Pred (Right);
Swap (A'First, A'Last);
end if;
if Left = A'First then
Left := Index'Succ (Left);
end if;
Quick_Sort (A (A'First .. Right));
Quick_Sort (A (Left .. A'Last));
end;
end if;
end Quick_Sort;
An example of how this procedure may be used is:
with Ada.Text_Io;
with Ada.Float_Text_IO; use Ada.Float_Text_IO;
with Quick_Sort;
procedure Sort_Test is
type Days is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
type Sales is array (Days range <>) of Float;
procedure Sort_Days is new Quick_Sort(Float, Days, Sales);
procedure Print (Item : Sales) is
begin
for I in Item'range loop
Put(Item => Item(I), Fore => 5, Aft => 2, Exp => 0);
end loop;
end Print;
Weekly_Sales : Sales := (Mon => 300.0,
Tue => 700.0,
Wed => 800.0,
Thu => 500.0,
Fri => 200.0,
Sat => 100.0,
Sun => 900.0);
begin
Print(Weekly_Sales);
Ada.Text_Io.New_Line(2);
Sort_Days(Weekly_Sales);
Print(Weekly_Sales);
end Sort_Test;
ALGOL 68[edit]
#--- Swap function ---#
PROC swap = (REF []INT array, INT first, INT second) VOID:
(
INT temp := array[first];
array[first] := array[second];
array[second]:= temp
);
#--- Quick sort 3 arg function ---#
PROC quick = (REF [] INT array, INT first, INT last) VOID:
(
INT smaller := first + 1,
larger := last,
pivot := array[first];
WHILE smaller <= larger DO
WHILE array[smaller] < pivot AND smaller < last DO
smaller +:= 1
OD;
WHILE array[larger] > pivot AND larger > first DO
larger -:= 1
OD;
IF smaller < larger THEN
swap(array, smaller, larger);
smaller +:= 1;
larger -:= 1
ELSE
smaller +:= 1
FI
OD;
swap(array, first, larger);
IF first < larger-1 THEN
quick(array, first, larger-1)
FI;
IF last > larger +1 THEN
quick(array, larger+1, last)
FI
);
#--- Quick sort 1 arg function ---#
PROC quicksort = (REF []INT array) VOID:
(
IF UPB array > 1 THEN
quick(array, 1, UPB array)
FI
);
#***************************************************************#
main:
(
[10]INT a;
FOR i FROM 1 TO UPB a DO
a[i] := ROUND(random*1000)
OD;
print(("Before:", a));
quicksort(a);
print((newline, newline));
print(("After: ", a))
)
- Output:
Before: +73 +921 +179 +961 +50 +324 +82 +178 +243 +458 After: +50 +73 +82 +178 +179 +243 +324 +458 +921 +961
ALGOL W[edit]
% Quicksorts in-place the array of integers v, from lb to ub %
procedure quicksort ( integer array v( * )
; integer value lb, ub
) ;
if ub > lb then begin
% more than one element, so must sort %
integer left, right, pivot;
left := lb;
right := ub;
% choosing the middle element of the array as the pivot %
pivot := v( left + ( ( right + 1 ) - left ) div 2 );
while begin
while left <= ub and v( left ) < pivot do left := left + 1;
while right >= lb and v( right ) > pivot do right := right - 1;
left <= right
end do begin
integer swap;
swap := v( left );
v( left ) := v( right );
v( right ) := swap;
left := left + 1;
right := right - 1
end while_left_le_right ;
quicksort( v, lb, right );
quicksort( v, left, ub )
end quicksort ;
APL[edit]
qsort ← {1≥⍴⍵:⍵ ⋄ e←⍵[?⍴⍵] ⋄ (∇(⍵<e)/⍵) , ((⍵=e)/⍵) , (∇(⍵>e)/⍵)}
qsort 31 4 1 5 9 2 6 5 3 5 8
1 2 3 4 5 5 5 6 8 9 31
Of course, in real APL applications, one would use ⍋ (Grade Up) to sort (which will pick a sorting algorithm suited to the argument):
sort ← {⍵[⍋⍵]}
sort 31 4 1 5 9 2 6 5 3 5 8
1 2 3 4 5 5 5 6 8 9 31
AppleScript[edit]
Functional[edit]
Emphasising clarity and simplicity more than run-time performance. (Practical scripts will often delegate sorting to the OS X shell, or, since OS X Yosemite, to Foundation classes through the ObjC interface).
(Functional ES5 version)
-- quickSort :: (Ord a) => [a] -> [a]
on quickSort(xs)
if length of xs > 1 then
set {h, t} to uncons(xs)
-- lessOrEqual :: a -> Bool
script lessOrEqual
on |λ|(x)
x ≤ h
end |λ|
end script
set {less, more} to partition(lessOrEqual, t)
quickSort(less) & h & quickSort(more)
else
xs
end if
end quickSort
-- TEST -----------------------------------------------------------------------
on run
quickSort([11.8, 14.1, 21.3, 8.5, 16.7, 5.7])
--> {5.7, 8.5, 11.8, 14.1, 16.7, 21.3}
end run
-- GENERIC FUNCTIONS ----------------------------------------------------------
-- partition :: predicate -> List -> (Matches, nonMatches)
-- partition :: (a -> Bool) -> [a] -> ([a], [a])
on partition(f, xs)
tell mReturn(f)
set lst to {{}, {}}
repeat with x in xs
set v to contents of x
set end of item ((|λ|(v) as integer) + 1) of lst to v
end repeat
return {item 2 of lst, item 1 of lst}
end tell
end partition
-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
if length of xs > 0 then
{item 1 of xs, rest of xs}
else
missing value
end if
end uncons
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
- Output:
{5.7, 8.5, 11.8, 14.1, 16.7, 21.3}
Straightforward[edit]
Emphasising clarity, quick sorting, and correct AppleScript:
-- In-place Quicksort (basic algorithm).
-- Algorithm: S.A.R. (Tony) Hoare, 1960.
on quicksort(theList, l, r) -- Sort items l thru r of theList.
set listLength to (count theList)
if (listLength < 2) then return
-- Convert negative and/or transposed range indices.
if (l < 0) then set l to listLength + l + 1
if (r < 0) then set r to listLength + r + 1
if (l > r) then set {l, r} to {r, l}
-- Script object containing the list as a property (to allow faster references to its items)
-- and the recursive subhandler.
script o
property lst : theList
on qsrt(l, r)
set pivot to my lst's item ((l + r) div 2)
set i to l
set j to r
repeat until (i > j)
set lv to my lst's item i
repeat while (pivot > lv)
set i to i + 1
set lv to my lst's item i
end repeat
set rv to my lst's item j
repeat while (rv > pivot)
set j to j - 1
set rv to my lst's item j
end repeat
if (j > i) then
set my lst's item i to rv
set my lst's item j to lv
else if (i > j) then
exit repeat
end if
set i to i + 1
set j to j - 1
end repeat
if (j > l) then qsrt(l, j)
if (i < r) then qsrt(i, r)
end qsrt
end script
tell o to qsrt(l, r)
return -- nothing.
end quicksort
property sort : quicksort
-- Demo:
local aList
set aList to {28, 9, 95, 22, 67, 55, 20, 41, 60, 53, 100, 72, 19, 67, 14, 42, 29, 20, 74, 39}
sort(aList, 1, -1) -- Sort items 1 thru -1 of aList.
return aList
- Output:
{9, 14, 19, 20, 20, 22, 28, 29, 39, 41, 42, 53, 55, 60, 67, 67, 72, 74, 95, 100}
Arc[edit]
(def qs (seq)
(if (empty seq) nil
(let pivot (car seq)
(join (qs (keep [< _ pivot] (cdr seq)))
(list pivot)
(qs (keep [>= _ pivot] (cdr seq)))))))
ARM Assembly[edit]
/* ARM assembly Raspberry PI */
/* program quickSort.s */
/* look pseudo code in wikipedia quicksort */
/************************************/
/* Constantes */
/************************************/
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessSortOk: .asciz "Table sorted.\n"
szMessSortNok: .asciz "Table not sorted !!!!!.\n"
sMessResult: .ascii "Value : "
sMessValeur: .fill 11, 1, ' ' @ size => 11
szCarriageReturn: .asciz "\n"
.align 4
iGraine: .int 123456
.equ NBELEMENTS, 10
#TableNumber: .int 9,5,6,1,2,3,10,8,4,7
#TableNumber: .int 1,3,5,2,4,6,10,8,4,7
#TableNumber: .int 1,3,5,2,4,6,10,8,4,7
#TableNumber: .int 1,2,3,4,5,6,10,8,4,7
TableNumber: .int 10,9,8,7,6,5,4,3,2,1
#TableNumber: .int 13,12,11,10,9,8,7,6,5,4,3,2,1
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
1:
ldr r0,iAdrTableNumber @ address number table
mov r1,#0 @ indice first item
mov r2,#NBELEMENTS @ number of élements
bl triRapide @ call quicksort
ldr r0,iAdrTableNumber @ address number table
bl displayTable
ldr r0,iAdrTableNumber @ address number table
mov r1,#NBELEMENTS @ number of élements
bl isSorted @ control sort
cmp r0,#1 @ sorted ?
beq 2f
ldr r0,iAdrszMessSortNok @ no !! error sort
bl affichageMess
b 100f
2: @ yes
ldr r0,iAdrszMessSortOk
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrsMessValeur: .int sMessValeur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsMessResult: .int sMessResult
iAdrTableNumber: .int TableNumber
iAdrszMessSortOk: .int szMessSortOk
iAdrszMessSortNok: .int szMessSortNok
/******************************************************************/
/* control sorted table */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the number of elements > 0 */
/* r0 return 0 if not sorted 1 if sorted */
isSorted:
push {r2-r4,lr} @ save registers
mov r2,#0
ldr r4,[r0,r2,lsl #2]
1:
add r2,#1
cmp r2,r1
movge r0,#1
bge 100f
ldr r3,[r0,r2, lsl #2]
cmp r3,r4
movlt r0,#0
blt 100f
mov r4,r3
b 1b
100:
pop {r2-r4,lr}
bx lr @ return
/***************************************************/
/* Appel récursif Tri Rapide quicksort */
/***************************************************/
/* r0 contains the address of table */
/* r1 contains index of first item */
/* r2 contains the number of elements > 0 */
triRapide:
push {r2-r5,lr} @ save registers
sub r2,#1 @ last item index
cmp r1,r2 @ first > last ?
bge 100f @ yes -> end
mov r4,r0 @ save r0
mov r5,r2 @ save r2
bl partition1 @ cutting into 2 parts
mov r2,r0 @ index partition
mov r0,r4 @ table address
bl triRapide @ sort lower part
add r1,r2,#1 @ index begin = index partition + 1
add r2,r5,#1 @ number of elements
bl triRapide @ sort higter part
100: @ end function
pop {r2-r5,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* Partition table elements */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains index of first item */
/* r2 contains index of last item */
partition1:
push {r1-r7,lr} @ save registers
ldr r3,[r0,r2,lsl #2] @ load value last index
mov r4,r1 @ init with first index
mov r5,r1 @ init with first index
1: @ begin loop
ldr r6,[r0,r5,lsl #2] @ load value
cmp r6,r3 @ compare value
ldrlt r7,[r0,r4,lsl #2] @ if < swap value table
strlt r6,[r0,r4,lsl #2]
strlt r7,[r0,r5,lsl #2]
addlt r4,#1 @ and increment index 1
add r5,#1 @ increment index 2
cmp r5,r2 @ end ?
blt 1b @ no loop
ldr r7,[r0,r4,lsl #2] @ swap value
str r3,[r0,r4,lsl #2]
str r7,[r0,r2,lsl #2]
mov r0,r4 @ return index partition
100:
pop {r1-r7,lr}
bx lr
/******************************************************************/
/* Display table elements */
/******************************************************************/
/* r0 contains the address of table */
displayTable:
push {r0-r3,lr} @ save registers
mov r2,r0 @ table address
mov r3,#0
1: @ loop display table
ldr r0,[r2,r3,lsl #2]
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
ldr r0,iAdrsMessResult
bl affichageMess @ display message
add r3,#1
cmp r3,#NBELEMENTS - 1
ble 1b
ldr r0,iAdrszCarriageReturn
bl affichageMess
100:
pop {r0-r3,lr}
bx lr
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registres
mov r2,#0 @ counter length
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */
bx lr @ return
/******************************************************************/
/* Converting a register to a decimal unsigned */
/******************************************************************/
/* r0 contains value and r1 address area */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes */
.equ LGZONECAL, 10
conversion10:
push {r1-r4,lr} @ save registers
mov r3,r1
mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
cmp r0,#0 @ stop if quotient = 0
subne r2,#1 @ else previous position
bne 1b @ and loop
@ and move digit from left of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4]
add r2,#1
add r4,#1
cmp r2,#LGZONECAL
ble 2b
@ and move spaces in end on area
mov r0,r4 @ result length
mov r1,#' ' @ space
3:
strb r1,[r3,r4] @ store space in area
add r4,#1 @ next position
cmp r4,#LGZONECAL
ble 3b @ loop if r4 <= area size
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
//mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3
//movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
Arturo[edit]
quickSort: function [items][
if 2 > size items -> return items
pivot: first items
left: select slice items 1 (size items)-1 'x -> x < pivot
right: select slice items 1 (size items)-1 'x -> x >= pivot
((quickSort left) ++ pivot) ++ quickSort right
]
print quickSort [3 1 2 8 5 7 9 4 6]
- Output:
1 2 3 4 5 6 7 8 9
ATS[edit]
A quicksort working on non-linear linked lists[edit]
(*------------------------------------------------------------------*)
(* Quicksort in ATS2, for non-linear lists. *)
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
#define NIL list_nil ()
#define :: list_cons
(*------------------------------------------------------------------*)
(* A simple quicksort working on "garbage-collected" linked lists,
with first element as pivot. This is meant as a demonstration, not
as a superior sort algorithm.
It is based on the "not-in-place" task pseudocode. *)
datatype comparison_result =
| first_is_less_than_second of ()
| first_is_equal_to_second of ()
| first_is_greater_than_second of ()
extern fun {a : t@ype}
list_quicksort$comparison (x : a, y : a) :<> comparison_result
extern fun {a : t@ype}
list_quicksort {n : int}
(lst : list (a, n)) :<> list (a, n)
(* - - - - - - - - - - - - - - - - - - - - - - *)
implement {a}
list_quicksort {n} (lst) =
let
fun
partition {n : nat}
.<n>. (* Proof of termination. *)
(lst : list (a, n),
pivot : a)
:<> [n1, n2, n3 : int | n1 + n2 + n3 == n]
@(list (a, n1), list (a, n2), list (a, n3)) =
(* This implementation is *not* tail recursive. I may get a
scolding for using ATS to risk stack overflow! However, I
need more practice writing non-tail routines. :) Also, a lot
of programmers in other languages would do it this
way--especially if the lists are evaluated lazily. *)
case+ lst of
| NIL => @(NIL, NIL, NIL)
| head :: tail =>
let
val @(lt, eq, gt) = partition (tail, pivot)
prval () = lemma_list_param lt
prval () = lemma_list_param eq
prval () = lemma_list_param gt
in
case+ list_quicksort$comparison<a> (head, pivot) of
| first_is_less_than_second () => @(head :: lt, eq, gt)
| first_is_equal_to_second () => @(lt, head :: eq, gt)
| first_is_greater_than_second () => @(lt, eq, head :: gt)
end
fun
quicksort {n : nat}
.<n>. (* Proof of termination. *)
(lst : list (a, n))
:<> list (a, n) =
case+ lst of
| NIL => lst
| _ :: NIL => lst
| head :: tail =>
let
(* We are careful here to run "partition" on "tail" rather
than "lst", so the termination metric will be provably
decreasing. (Really the compiler *forces* us to take such
care, or else to change :<> to :<!ntm>) *)
val pivot = head
prval () = lemma_list_param tail
val @(lt, eq, gt) = partition {n - 1} (tail, pivot)
prval () = lemma_list_param lt
prval () = lemma_list_param eq
prval () = lemma_list_param gt
val eq = pivot :: eq
and lt = quicksort lt
and gt = quicksort gt
in
lt + (eq + gt)
end
prval () = lemma_list_param lst
in
quicksort {n} lst
end
(*------------------------------------------------------------------*)
val example_strings =
$list ("choose", "any", "element", "of", "the", "array",
"to", "be", "the", "pivot",
"divide", "all", "other", "elements", "except",
"the", "pivot", "into", "two", "partitions",
"all", "elements", "less", "than", "the", "pivot",
"must", "be", "in", "the", "first", "partition",
"all", "elements", "greater", "than", "the", "pivot",
"must", "be", "in", "the", "second", "partition",
"use", "recursion", "to", "sort", "both", "partitions",
"join", "the", "first", "sorted", "partition", "the",
"pivot", "and", "the", "second", "sorted", "partition")
implement
list_quicksort$comparison<string> (x, y) =
let
val i = strcmp (x, y)
in
if i < 0 then
first_is_less_than_second
else if i = 0 then
first_is_equal_to_second
else
first_is_greater_than_second
end
implement
main0 () =
let
val sorted_strings = list_quicksort<string> example_strings
fun
print_strings {n : nat} .<n>.
(strings : list (string, n),
i : int) : void =
case+ strings of
| NIL => if i <> 1 then println! () else ()
| head :: tail =>
begin
print! head;
if i = 8 then
begin
println! ();
print_strings (tail, 1)
end
else
begin
print! " ";
print_strings (tail, succ i)
end
end
in
println! (length example_strings);
println! (length sorted_strings);
print_strings (sorted_strings, 1)
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_GCBDW quicksort_task_for_lists.dats -lgc && ./a.out 62 62 all all all and any array be be be both choose divide element elements elements elements except first first greater in in into join less must must of other partition partition partition partition partitions partitions pivot pivot pivot pivot pivot recursion second second sort sorted sorted than than the the the the the the the the the the to to two use
A quicksort working on linear linked lists[edit]
This program was derived from the quicksort for non-linear linked lists.
(*------------------------------------------------------------------*)
(* Quicksort in ATS2, for linear lists. *)
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
#define NIL list_vt_nil ()
#define :: list_vt_cons
(*------------------------------------------------------------------*)
(* A simple quicksort working on linear linked lists, with first
element as pivot. This is meant as a demonstration, not as a
superior sort algorithm.
It is based on the "not-in-place" task pseudocode. *)
#define FIRST_IS_LESS_THAN_SECOND 1
#define FIRST_IS_EQUAL_TO_SECOND 2
#define FIRST_IS_GREATER_THAN_SECOND 3
typedef comparison_result =
[i : int | (i == FIRST_IS_LESS_THAN_SECOND ||
i == FIRST_IS_EQUAL_TO_SECOND ||
i == FIRST_IS_GREATER_THAN_SECOND)]
int i
extern fun {a : vt@ype}
list_vt_quicksort$comparison (x : !a, y : !a) :<> comparison_result
extern fun {a : vt@ype}
list_vt_quicksort {n : int}
(lst : list_vt (a, n)) :<!wrt> list_vt (a, n)
(* - - - - - - - - - - - - - - - - - - - - - - *)
implement {a}
list_vt_quicksort {n} (lst) =
let
fun
partition {n : nat}
.<n>. (* Proof of termination. *)
(lst : list_vt (a, n),
pivot : !a)
:<> [n1, n2, n3 : int | n1 + n2 + n3 == n]
@(list_vt (a, n1), list_vt (a, n2), list_vt (a, n3)) =
(* This implementation is *not* tail recursive. I may get a
scolding for using ATS to risk stack overflow! However, I
need more practice writing non-tail routines. :) Also, a lot
of programmers in other languages would do it this
way--especially if the lists are evaluated lazily. *)
case+ lst of
| ~ NIL => @(NIL, NIL, NIL)
| ~ head :: tail =>
let
val @(lt, eq, gt) = partition (tail, pivot)
prval () = lemma_list_vt_param lt
prval () = lemma_list_vt_param eq
prval () = lemma_list_vt_param gt
in
case+ list_vt_quicksort$comparison<a> (head, pivot) of
| FIRST_IS_LESS_THAN_SECOND => @(head :: lt, eq, gt)
| FIRST_IS_EQUAL_TO_SECOND => @(lt, head :: eq, gt)
| FIRST_IS_GREATER_THAN_SECOND => @(lt, eq, head :: gt)
end
fun
quicksort {n : nat}
.<n>. (* Proof of termination. *)
(lst : list_vt (a, n))
:<!wrt> list_vt (a, n) =
case+ lst of
| NIL => lst
| _ :: NIL => lst
| ~ head :: tail =>
let
(* We are careful here to run "partition" on "tail" rather
than "lst", so the termination metric will be provably
decreasing. (Really the compiler *forces* us to take such
care, or else to add !ntm to the effects.) *)
val pivot = head
prval () = lemma_list_vt_param tail
val @(lt, eq, gt) = partition {n - 1} (tail, pivot)
prval () = lemma_list_vt_param lt
prval () = lemma_list_vt_param eq
prval () = lemma_list_vt_param gt
val eq = pivot :: eq
and lt = quicksort lt
and gt = quicksort gt
in
list_vt_append (lt, list_vt_append (eq, gt))
end
prval () = lemma_list_vt_param lst
in
quicksort {n} lst
end
(*------------------------------------------------------------------*)
implement
list_vt_quicksort$comparison<Strptr1> (x, y) =
let
val i = compare (x, y)
in
if i < 0 then
FIRST_IS_LESS_THAN_SECOND
else if i = 0 then
FIRST_IS_EQUAL_TO_SECOND
else
FIRST_IS_GREATER_THAN_SECOND
end
implement
list_vt_map$fopr<string><Strptr1> (s) = string0_copy s
implement
list_vt_freelin$clear<Strptr1> (x) = strptr_free x
implement
main0 () =
let
val example_strings =
$list_vt
("choose", "any", "element", "of", "the", "array",
"to", "be", "the", "pivot",
"divide", "all", "other", "elements", "except",
"the", "pivot", "into", "two", "partitions",
"all", "elements", "less", "than", "the", "pivot",
"must", "be", "in", "the", "first", "partition",
"all", "elements", "greater", "than", "the", "pivot",
"must", "be", "in", "the", "second", "partition",
"use", "recursion", "to", "sort", "both", "partitions",
"join", "the", "first", "sorted", "partition", "the",
"pivot", "and", "the", "second", "sorted", "partition")
val example_strptrs =
list_vt_map<string><Strptr1> (example_strings)
val sorted_strptrs = list_vt_quicksort<Strptr1> example_strptrs
fun
print_strptrs {n : nat} .<n>.
(strptrs : !list_vt (Strptr1, n),
i : int) : void =
case+ strptrs of
| NIL => if i <> 1 then println! () else ()
| @ head :: tail =>
begin
print! head;
if i = 8 then
begin
println! ();
print_strptrs (tail, 1)
end
else
begin
print! " ";
print_strptrs (tail, succ i)
end;
fold@ strptrs
end
in
println! (length example_strings);
println! (length sorted_strptrs);
print_strptrs (sorted_strptrs, 1);
list_vt_freelin<Strptr1> sorted_strptrs;
list_vt_free<string> example_strings
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC quicksort_task_for_list_vt.dats && ./a.out 62 62 all all all and any array be be be both choose divide element elements elements elements except first first greater in in into join less must must of other partition partition partition partition partitions partitions pivot pivot pivot pivot pivot recursion second second sort sorted sorted than than the the the the the the the the the the to to two use
A quicksort working on arrays of non-linear elements[edit]
(*------------------------------------------------------------------*)
(* Quicksort in ATS2, for arrays of non-linear values. *)
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
#define NIL list_nil ()
#define :: list_cons
(*------------------------------------------------------------------*)
(* A simple quicksort working on arrays of non-linear values, using
a programmer-selectible pivot.
It is based on the "in-place" task pseudocode. *)
extern fun {a : t@ype} (* A "less-than" predicate. *)
array_quicksort$lt (x : a, y : a) : bool
extern fun {a : t@ype}
array_quicksort$select_pivot {n : int}
{i, j : nat | i < j; j < n}
(arr : &array (a, n) >> _,
first : size_t i,
last : size_t j) : a
extern fun {a : t@ype}
array_quicksort {n : int}
(arr : &array (a, n) >> _,
n : size_t n) : void
(* - - - - - - - - - - - - - - - - - - - - - - *)
fn {a : t@ype}
swap {n : int}
{i, j : nat | i < n; j < n}
(arr : &array(a, n) >> _,
i : size_t i,
j : size_t j) : void =
{
val x = arr[i] and y = arr[j]
val () = (arr[i] := y) and () = (arr[j] := x)
}
implement {a}
array_quicksort {n} (arr, n) =
let
sortdef index = {i : nat | i < n}
typedef index (i : int) = [0 <= i; i < n] size_t i
typedef index = [i : index] index i
macdef lt = array_quicksort$lt<a>
fun
quicksort {i, j : index}
(arr : &array(a, n) >> _,
first : index i,
last : index j) : void =
if first < last then
{
val pivot : a =
array_quicksort$select_pivot<a> (arr, first, last)
fun
search_rightwards (arr : &array (a, n),
left : index) : index =
if arr[left] \lt pivot then
let
val () = assertloc (succ left <> n)
in
search_rightwards (arr, succ left)
end
else
left
fun
search_leftwards (arr : &array (a, n),
left : index,
right : index) : index =
if right < left then
right
else if pivot \lt arr[right] then
let
val () = assertloc (right <> i2sz 0)
in
search_leftwards (arr, left, pred right)
end
else
right
fun
partition (arr : &array (a, n) >> _,
left0 : index,
right0 : index) : @(index, index) =
let
val left = search_rightwards (arr, left0)
val right = search_leftwards (arr, left, right0)
in
if left <= right then
let
val () = assertloc (succ left <> n)
and () = assertloc (right <> i2sz 0)
in
swap (arr, left, right);
partition (arr, succ left, pred right)
end
else
@(left, right)
end
val @(left, right) = partition (arr, first, last)
val () = quicksort (arr, first, right)
and () = quicksort (arr, left, last)
}
in
if i2sz 2 <= n then
quicksort {0, n - 1} (arr, i2sz 0, pred n)
end
(*------------------------------------------------------------------*)
val example_strings =
$list ("choose", "any", "element", "of", "the", "array",
"to", "be", "the", "pivot",
"divide", "all", "other", "elements", "except",
"the", "pivot", "into", "two", "partitions",
"all", "elements", "less", "than", "the", "pivot",
"must", "be", "in", "the", "first", "partition",
"all", "elements", "greater", "than", "the", "pivot",
"must", "be", "in", "the", "second", "partition",
"use", "recursion", "to", "sort", "both", "partitions",
"join", "the", "first", "sorted", "partition", "the",
"pivot", "and", "the", "second", "sorted", "partition")
implement
array_quicksort$lt<string> (x, y) =
strcmp (x, y) < 0
implement
array_quicksort$select_pivot<string> {n} (arr, first, last) =
(* Median of three, with swapping around of elements during pivot
selection. See https://archive.ph/oYENx *)
let
macdef lt = array_quicksort$lt<string>
val middle = first + ((last - first) / i2sz 2)
val xfirst = arr[first]
and xmiddle = arr[middle]
and xlast = arr[last]
in
if (xmiddle \lt xfirst) xor (xlast \lt xfirst) then
begin
swap (arr, first, middle);
if xlast \lt xmiddle then
swap (arr, first, last);
xfirst
end
else if (xmiddle \lt xfirst) xor (xmiddle \lt xlast) then
begin
if xlast \lt xfirst then
swap (arr, first, last);
xmiddle
end
else
begin
swap (arr, middle, last);
if xmiddle \lt xfirst then
swap (arr, first, last);
xlast
end
end
implement
main0 () =
let
prval () = lemma_list_param example_strings
val n = length example_strings
val @(pf, pfgc | p) = array_ptr_alloc<string> (i2sz n)
macdef arr = !p
val () = array_initize_list (arr, n, example_strings)
val () = array_quicksort<string> (arr, i2sz n)
val sorted_strings = list_vt2t (array2list (arr, i2sz n))
val () = array_ptr_free (pf, pfgc | p)
fun
print_strings {n : nat} .<n>.
(strings : list (string, n),
i : int) : void =
case+ strings of
| NIL => if i <> 1 then println! () else ()
| head :: tail =>
begin
print! head;
if i = 8 then
begin
println! ();
print_strings (tail, 1)
end
else
begin
print! " ";
print_strings (tail, succ i)
end
end
in
println! (length example_strings);
println! (length sorted_strings);
print_strings (sorted_strings, 1)
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_GCBDW quicksort_task_for_arrays.dats -lgc && ./a.out 62 62 all all all and any array be be be both choose divide element elements elements elements except first first greater in in into join less must must of other partition partition partition partition partitions partitions pivot pivot pivot pivot pivot recursion second second sort sorted sorted than than the the the the the the the the the the to to two use
A quicksort working on arrays of linear elements[edit]
The quicksort for arrays of non-linear elements makes a copy of the pivot value, and compares this copy with array elements by value. Here, however, the array elements are linear values. They cannot be copied, unless a special "copy" procedure is provided. We do not want to require such a procedure. So we must do something else.
What we do is move the pivot to the last element of the array, by safely swapping it with the original last element. We partition the array to the left of the last element, comparing array elements with the pivot (that is, the last element) by reference.
(*------------------------------------------------------------------*)
(* Quicksort in ATS2, for arrays of (possibly) linear values. *)
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
#define NIL list_vt_nil ()
#define :: list_vt_cons
(*------------------------------------------------------------------*)
(* A simple quicksort working on arrays of non-linear values, using
a programmer-selectible pivot.
It is based on the "in-place" task pseudocode. *)
extern fun {a : vt@ype} (* A "less-than" predicate. *)
array_quicksort$lt {px, py : addr}
(pfx : !(a @ px),
pfy : !(a @ py) |
px : ptr px,
py : ptr py) : bool
extern fun {a : vt@ype}
array_quicksort$select_pivot_index {n : int}
{i, j : nat | i < j; j < n}
(arr : &array (a, n),
first : size_t i,
last : size_t j)
: [k : int | i <= k; k <= j] size_t k
extern fun {a : vt@ype}
array_quicksort {n : int}
(arr : &array (a, n) >> _,
n : size_t n) : void
(* - - - - - - - - - - - - - - - - - - - - - - *)
prfn (* Subdivide an array view into three views. *)
array_v_subdivide3 {a : vt@ype} {p : addr} {n1, n2, n3 : nat}
(pf : @[a][n1 + n2 + n3] @ p)
:<prf> @(@[a][n1] @ p,
@[a][n2] @ (p + n1 * sizeof a),
@[a][n3] @ (p + (n1 + n2) * sizeof a)) =
let
prval (pf1, pf23) =
array_v_split {a} {p} {n1 + n2 + n3} {n1} pf
prval (pf2, pf3) =
array_v_split {a} {p + n1 * sizeof a} {n2 + n3} {n2} pf23
in
@(pf1, pf2, pf3)
end
prfn (* Join three contiguous array views into one view. *)
array_v_join3 {a : vt@ype} {p : addr} {n1, n2, n3 : nat}
(pf1 : @[a][n1] @ p,
pf2 : @[a][n2] @ (p + n1 * sizeof a),
pf3 : @[a][n3] @ (p + (n1 + n2) * sizeof a))
:<prf> @[a][n1 + n2 + n3] @ p =
let
prval pf23 =
array_v_unsplit {a} {p + n1 * sizeof a} {n2, n3} (pf2, pf3)
prval pf = array_v_unsplit {a} {p} {n1, n2 + n3} (pf1, pf23)
in
pf
end
fn {a : vt@ype} (* Safely swap two elements of an array. *)
swap_elems_1 {n : int}
{i, j : nat | i <= j; j < n}
{p : addr}
(pfarr : !array_v(a, p, n) >> _ |
p : ptr p,
i : size_t i,
j : size_t j) : void =
let
fn {a : vt@ype}
swap {n : int}
{i, j : nat | i < j; j < n}
{p : addr}
(pfarr : !array_v(a, p, n) >> _ |
p : ptr p,
i : size_t i,
j : size_t j) : void =
{
(* Safely swapping linear elements requires that views of
those elements be split off from the rest of the
array. Why? Because those elements will temporarily be in
an uninitialized state. (Actually they will be "?!", but
the difference is unimportant here.)
Remember, a linear value is consumed by using it.
The view for the whole array can be reassembled only after
new values have been stored, making the entire array once
again initialized. *)
prval @(pf1, pf2, pf3) =
array_v_subdivide3 {a} {p} {i, j - i, n - j} pfarr
prval @(pfi, pf2_) = array_v_uncons pf2
prval @(pfj, pf3_) = array_v_uncons pf3
val pi = ptr_add<a> (p, i)
and pj = ptr_add<a> (p, j)
val xi = ptr_get<a> (pfi | pi)
and xj = ptr_get<a> (pfj | pj)
val () = ptr_set<a> (pfi | pi, xj)
and () = ptr_set<a> (pfj | pj, xi)
prval pf2 = array_v_cons (pfi, pf2_)
prval pf3 = array_v_cons (pfj, pf3_)
prval () = pfarr := array_v_join3 (pf1, pf2, pf3)
}
in
if i < j then
swap {n} {i, j} {p} (pfarr | p, i, j)
else
() (* i = j must be handled specially, due to linear typing.*)
end
fn {a : vt@ype} (* Safely swap two elements of an array. *)
swap_elems_2 {n : int}
{i, j : nat | i <= j; j < n}
(arr : &array(a, n) >> _,
i : size_t i,
j : size_t j) : void =
swap_elems_1 (view@ arr | addr@ arr, i, j)
overload swap_elems with swap_elems_1
overload swap_elems with swap_elems_2
overload swap with swap_elems
fn {a : vt@ype} (* Safely compare two elements of an array. *)
lt_elems_1 {n : int}
{i, j : nat | i < n; j < n}
{p : addr}
(pfarr : !array_v(a, p, n) |
p : ptr p,
i : size_t i,
j : size_t j) : bool =
let
fn
compare {n : int}
{i, j : nat | i < j; j < n}
{p : addr}
(pfarr : !array_v(a, p, n) |
p : ptr p,
i : size_t i,
j : size_t j,
gt : bool) : bool =
let
prval @(pf1, pf2, pf3) =
array_v_subdivide3 {a} {p} {i, j - i, n - j} pfarr
prval @(pfi, pf2_) = array_v_uncons pf2
prval @(pfj, pf3_) = array_v_uncons pf3
val pi = ptr_add<a> (p, i)
and pj = ptr_add<a> (p, j)
val retval =
if gt then
array_quicksort$lt<a> (pfj, pfi | pj, pi)
else
array_quicksort$lt<a> (pfi, pfj | pi, pj)
prval pf2 = array_v_cons (pfi, pf2_)
prval pf3 = array_v_cons (pfj, pf3_)
prval () = pfarr := array_v_join3 (pf1, pf2, pf3)
in
retval
end
in
if i < j then
compare {n} {i, j} {p} (pfarr | p, i, j, false)
else if j < i then
compare {n} {j, i} {p} (pfarr | p, j, i, true)
else
false
end
fn {a : vt@ype} (* Safely compare two elements of an array. *)
lt_elems_2 {n : int}
{i, j : nat | i < n; j < n}
(arr : &array (a, n),
i : size_t i,
j : size_t j) : bool =
lt_elems_1 (view@ arr | addr@ arr, i, j)
overload lt_elems with lt_elems_1
overload lt_elems with lt_elems_2
implement {a}
array_quicksort {n} (arr, n) =
let
sortdef index = {i : nat | i < n}
typedef index (i : int) = [0 <= i; i < n] size_t i
typedef index = [i : index] index i
macdef lt = array_quicksort$lt<a>
fun
quicksort {i, j : index}
(arr : &array(a, n) >> _,
first : index i,
last : index j) : void =
if first < last then
{
val pivot =
array_quicksort$select_pivot_index<a> (arr, first, last)
(* Swap the pivot with the last element. *)
val () = swap (arr, pivot, last)
val pivot = last
fun
search_rightwards (arr : &array (a, n),
left : index) : index =
if lt_elems<a> (arr, left, pivot) then
let
val () = assertloc (succ left <> n)
in
search_rightwards (arr, succ left)
end
else
left
fun
search_leftwards (arr : &array (a, n),
left : index,
right : index) : index =
if right < left then
right
else if lt_elems<a> (arr, pivot, right) then
let
val () = assertloc (right <> i2sz 0)
in
search_leftwards (arr, left, pred right)
end
else
right
fun
partition (arr : &array (a, n) >> _,
left0 : index,
right0 : index) : @(index, index) =
let
val left = search_rightwards (arr, left0)
val right = search_leftwards (arr, left, right0)
in
if left <= right then
let
val () = assertloc (succ left <> n)
and () = assertloc (right <> i2sz 0)
in
swap (arr, left, right);
partition (arr, succ left, pred right)
end
else
@(left, right)
end
val @(left, right) = partition (arr, first, pred last)
val () = quicksort (arr, first, right)
and () = quicksort (arr, left, last)
}
in
if i2sz 2 <= n then
quicksort {0, n - 1} (arr, i2sz 0, pred n)
end
(*------------------------------------------------------------------*)
implement
array_quicksort$lt<Strptr1> (pfx, pfy | px, py) =
compare (!px, !py) < 0
implement
array_quicksort$select_pivot_index<Strptr1> {n} (arr, first, last) =
(* Median of three. *)
let
val middle = first + ((last - first) / i2sz 2)
in
if lt_elems<Strptr1> (arr, middle, first)
xor lt_elems<Strptr1> (arr, last, first) then
first
else if lt_elems<Strptr1> (arr, middle, first)
xor lt_elems<Strptr1> (arr, middle, last) then
middle
else
last
end
implement
list_vt_map$fopr<string><Strptr1> (s) = string0_copy s
implement
list_vt_freelin$clear<Strptr1> (x) = strptr_free x
implement
main0 () =
let
val example_strings =
$list_vt
("choose", "any", "element", "of", "the", "array",
"to", "be", "the", "pivot",
"divide", "all", "other", "elements", "except",
"the", "pivot", "into", "two", "partitions",
"all", "elements", "less", "than", "the", "pivot",
"must", "be", "in", "the", "first", "partition",
"all", "elements", "greater", "than", "the", "pivot",
"must", "be", "in", "the", "second", "partition",
"use", "recursion", "to", "sort", "both", "partitions",
"join", "the", "first", "sorted", "partition", "the",
"pivot", "and", "the", "second", "sorted", "partition")
val example_strptrs =
list_vt_map<string><Strptr1> (example_strings)
prval () = lemma_list_vt_param example_strptrs
val n = length example_strptrs
val @(pf, pfgc | p) = array_ptr_alloc<Strptr1> (i2sz n)
macdef arr = !p
val () = array_initize_list_vt<Strptr1> (arr, n, example_strptrs)
val () = array_quicksort<Strptr1> (arr, i2sz n)
val sorted_strptrs = array2list (arr, i2sz n)
fun
print_strptrs {n : nat} .<n>.
(strptrs : !list_vt (Strptr1, n),
i : int) : void =
case+ strptrs of
| NIL => if i <> 1 then println! () else ()
| @ head :: tail =>
begin
print! head;
if i = 8 then
begin
println! ();
print_strptrs (tail, 1)
end
else
begin
print! " ";
print_strptrs (tail, succ i)
end;
fold@ strptrs
end
in
println! (length example_strings);
println! (length sorted_strptrs);
print_strptrs (sorted_strptrs, 1);
list_vt_freelin<Strptr1> sorted_strptrs;
array_ptr_free (pf, pfgc | p);
list_vt_free<string> example_strings
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC quicksort_task_for_arrays_2.dats 62 62 all all all and any array be be be both choose divide element elements elements elements except first first greater in in into join less must must of other partition partition partition partition partitions partitions pivot pivot pivot pivot pivot recursion second second sort sorted sorted than than the the the the the the the the the the to to two use
A stable quicksort working on linear lists[edit]
See the code at the quickselect task.
- Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC quickselect_task_for_list_vt.dats && ./a.out quicksort stable sort by first character: duck, deer, dolphin, elephant, earwig, giraffe, pronghorn, wildebeest, woodlouse, whip-poor-will
AutoHotkey[edit]
Translated from the python example:
a := [4, 65, 2, -31, 0, 99, 83, 782, 7]
for k, v in QuickSort(a)
Out .= "," v
MsgBox, % SubStr(Out, 2)
return
QuickSort(a)
{
if (a.MaxIndex() <= 1)
return a
Less := [], Same := [], More := []
Pivot := a[1]
for k, v in a
{
if (v < Pivot)
less.Insert(v)
else if (v > Pivot)
more.Insert(v)
else
same.Insert(v)
}
Less := QuickSort(Less)
Out := QuickSort(More)
if (Same.MaxIndex())
Out.Insert(1, Same*) ; insert all values of same at index 1
if (Less.MaxIndex())
Out.Insert(1, Less*) ; insert all values of less at index 1
return Out
}
Old implementation for AutoHotkey 1.0:
MsgBox % quicksort("8,4,9,2,1")
quicksort(list)
{
StringSplit, list, list, `,
If (list0 <= 1)
Return list
pivot := list1
Loop, Parse, list, `,
{
If (A_LoopField < pivot)
less = %less%,%A_LoopField%
Else If (A_LoopField > pivot)
more = %more%,%A_LoopField%
Else
pivotlist = %pivotlist%,%A_LoopField%
}
StringTrimLeft, less, less, 1
StringTrimLeft, more, more, 1
StringTrimLeft, pivotList, pivotList, 1
less := quicksort(less)
more := quicksort(more)
Return less . pivotList . more
}
AWK[edit]
# the following qsort implementation extracted from:
#
# ftp://ftp.armory.com/pub/lib/awk/qsort
#
# Copyleft GPLv2 John DuBois
#
# @(#) qsort 1.2.1 2005-10-21
# 1990 john h. dubois iii (john@armory.com)
#
# qsortArbIndByValue(): Sort an array according to the values of its elements.
#
# Input variables:
#
# Arr[] is an array of values with arbitrary (associative) indices.
#
# Output variables:
#
# k[] is returned with numeric indices 1..n. The values assigned to these
# indices are the indices of Arr[], ordered so that if Arr[] is stepped
# through in the order Arr[k[1]] .. Arr[k[n]], it will be stepped through in
# order of the values of its elements.
#
# Return value: The number of elements in the arrays (n).
#
# NOTES:
#
# Full example for accessing results:
#
# foolist["second"] = 2;
# foolist["zero"] = 0;
# foolist["third"] = 3;
# foolist["first"] = 1;
#
# outlist[1] = 0;
# n = qsortArbIndByValue(foolist, outlist)
#
# for (i = 1; i <= n; i++) {
# printf("item at %s has value %d\n", outlist[i], foolist[outlist[i]]);
# }
# delete outlist;
#
function qsortArbIndByValue(Arr, k,
ArrInd, ElNum)
{
ElNum = 0;
for (ArrInd in Arr) {
k[++ElNum] = ArrInd;
}
qsortSegment(Arr, k, 1, ElNum);
return ElNum;
}
#
# qsortSegment(): Sort a segment of an array.
#
# Input variables:
#
# Arr[] contains data with arbitrary indices.
#
# k[] has indices 1..nelem, with the indices of Arr[] as values.
#
# Output variables:
#
# k[] is modified by this function. The elements of Arr[] that are pointed to
# by k[start..end] are sorted, with the values of elements of k[] swapped
# so that when this function returns, Arr[k[start..end]] will be in order.
#
# Return value: None.
#
function qsortSegment(Arr, k, start, end,
left, right, sepval, tmp, tmpe, tmps)
{
if ((end - start) < 1) { # 0 or 1 elements
return;
}
# handle two-element case explicitly for a tiny speedup
if ((end - start) == 1) {
if (Arr[tmps = k[start]] > Arr[tmpe = k[end]]) {
k[start] = tmpe;
k[end] = tmps;
}
return;
}
# Make sure comparisons act on these as numbers
left = start + 0;
right = end + 0;
sepval = Arr[k[int((left + right) / 2)]];
# Make every element <= sepval be to the left of every element > sepval
while (left < right) {
while (Arr[k[left]] < sepval) {
left++;
}
while (Arr[k[right]] > sepval) {
right--;
}
if (left < right) {
tmp = k[left];
k[left++] = k[right];
k[right--] = tmp;
}
}
if (left == right)
if (Arr[k[left]] < sepval) {
left++;
} else {
right--;
}
if (start < right) {
qsortSegment(Arr, k, start, right);
}
if (left < end) {
qsortSegment(Arr, k, left, end);
}
}
BASIC[edit]
This is specifically for INTEGER
s, but can be modified for any data type by changing arr()
's type.
DECLARE SUB quicksort (arr() AS INTEGER, leftN AS INTEGER, rightN AS INTEGER)
DIM q(99) AS INTEGER
DIM n AS INTEGER
RANDOMIZE TIMER
FOR n = 0 TO 99
q(n) = INT(RND * 9999)
NEXT
OPEN "output.txt" FOR OUTPUT AS 1
FOR n = 0 TO 99
PRINT #1, q(n),
NEXT
PRINT #1,
quicksort q(), 0, 99
FOR n = 0 TO 99
PRINT #1, q(n),
NEXT
CLOSE
SUB quicksort (arr() AS INTEGER, leftN AS INTEGER, rightN AS INTEGER)
DIM pivot AS INTEGER, leftNIdx AS INTEGER, rightNIdx AS INTEGER
leftNIdx = leftN
rightNIdx = rightN
IF (rightN - leftN) > 0 THEN
pivot = (leftN + rightN) / 2
WHILE (leftNIdx <= pivot) AND (rightNIdx >= pivot)
WHILE (arr(leftNIdx) < arr(pivot)) AND (leftNIdx <= pivot)
leftNIdx = leftNIdx + 1
WEND
WHILE (arr(rightNIdx) > arr(pivot)) AND (rightNIdx >= pivot)
rightNIdx = rightNIdx - 1
WEND
SWAP arr(leftNIdx), arr(rightNIdx)
leftNIdx = leftNIdx + 1
rightNIdx = rightNIdx - 1
IF (leftNIdx - 1) = pivot THEN
rightNIdx = rightNIdx + 1
pivot = rightNIdx
ELSEIF (rightNIdx + 1) = pivot THEN
leftNIdx = leftNIdx - 1
pivot = leftNIdx
END IF
WEND
quicksort arr(), leftN, pivot - 1
quicksort arr(), pivot + 1, rightN
END IF
END SUB
BBC BASIC[edit]
DIM test(9)
test() = 4, 65, 2, -31, 0, 99, 2, 83, 782, 1
PROCquicksort(test(), 0, 10)
FOR i% = 0 TO 9
PRINT test(i%) ;
NEXT
PRINT
END
DEF PROCquicksort(a(), s%, n%)
LOCAL l%, p, r%, t%
IF n% < 2 THEN ENDPROC
t% = s% + n% - 1
l% = s%
r% = t%
p = a((l% + r%) DIV 2)
REPEAT
WHILE a(l%) < p l% += 1 : ENDWHILE
WHILE a(r%) > p r% -= 1 : ENDWHILE
IF l% <= r% THEN
SWAP a(l%), a(r%)
l% += 1
r% -= 1
ENDIF
UNTIL l% > r%
IF s% < r% PROCquicksort(a(), s%, r% - s% + 1)
IF l% < t% PROCquicksort(a(), l%, t% - l% + 1 )
ENDPROC
- Output:
-31 0 1 2 2 4 65 83 99 782
IS-BASIC[edit]
100 PROGRAM "QuickSrt.bas"
110 RANDOMIZE
120 NUMERIC A(5 TO 19)
130 CALL INIT(A)
140 CALL WRITE(A)
150 CALL QSORT(LBOUND(A),UBOUND(A))
160 CALL WRITE(A)
170 DEF INIT(REF A)
180 FOR I=LBOUND(A) TO UBOUND(A)
190 LET A(I)=RND(98)+1
200 NEXT
210 END DEF
220 DEF WRITE(REF A)
230 FOR I=LBOUND(A) TO UBOUND(A)
240 PRINT A(I);
250 NEXT
260 PRINT
270 END DEF
280 DEF QSORT(AH,FH)
290 NUMERIC E
300 LET E=AH:LET U=FH:LET K=A(E)
310 DO UNTIL E=U
320 DO UNTIL E=U OR A(U)<K
330 LET U=U-1
340 LOOP
350 IF E<U THEN
360 LET A(E)=A(U):LET E=E+1
370 DO UNTIL E=U OR A(E)>K
380 LET E=E+1
390 LOOP
400 IF E<U THEN LET A(U)=A(E):LET U=U-1
410 END IF
420 LOOP
430 LET A(E)=K
440 IF AH<E-1 THEN CALL QSORT(AH,E-1)
450 IF E+1<FH THEN CALL QSORT(E+1,FH)
460 END DEF
QB64[edit]
' Written by Sanmayce, 2021-Oct-29
' The indexes are signed, but the elements are unsigned.
_Define A-Z As _INTEGER64
Sub Quicksort_QB64 (QWORDS~&&())
Left = LBound(QWORDS~&&)
Right = UBound(QWORDS~&&)
LeftMargin = Left
ReDim Stack&&(Left To Right)
StackPtr = 0
StackPtr = StackPtr + 1
Stack&&(StackPtr + LeftMargin) = Left
StackPtr = StackPtr + 1
Stack&&(StackPtr + LeftMargin) = Right
Do 'Until StackPtr = 0
Right = Stack&&(StackPtr + LeftMargin)
StackPtr = StackPtr - 1
Left = Stack&&(StackPtr + LeftMargin)
StackPtr = StackPtr - 1
Do 'Until Left >= Right
Pivot~&& = QWORDS~&&((Left + Right) \ 2)
Indx = Left
Jndx = Right
Do
Do While (QWORDS~&&(Indx) < Pivot~&&)
Indx = Indx + 1
Loop
Do While (QWORDS~&&(Jndx) > Pivot~&&)
Jndx = Jndx - 1
Loop
If Indx <= Jndx Then
If Indx < Jndx Then Swap QWORDS~&&(Indx), QWORDS~&&(Jndx)
Indx = Indx + 1
Jndx = Jndx - 1
End If
Loop While Indx <= Jndx
If Indx < Right Then
StackPtr = StackPtr + 1
Stack&&(StackPtr + LeftMargin) = Indx
StackPtr = StackPtr + 1
Stack&&(StackPtr + LeftMargin) = Right
End If
Right = Jndx
Loop Until Left >= Right
Loop Until StackPtr = 0
End Sub
BCPL[edit]
// This can be run using Cintcode BCPL freely available from www.cl.cam.ac.uk/users/mr10.
GET "libhdr.h"
LET quicksort(v, n) BE qsort(v+1, v+n)
AND qsort(l, r) BE
{ WHILE l+8<r DO
{ LET midpt = (l+r)/2
// Select a good(ish) median value.
LET val = middle(!l, !midpt, !r)
LET i = partition(val, l, r)
// Only use recursion on the smaller partition.
TEST i>midpt THEN { qsort(i, r); r := i-1 }
ELSE { qsort(l, i-1); l := i }
}
FOR p = l+1 TO r DO // Now perform insertion sort.
FOR q = p-1 TO l BY -1 TEST q!0<=q!1 THEN BREAK
ELSE { LET t = q!0
q!0 := q!1
q!1 := t
}
}
AND middle(a, b, c) = a<b -> b<c -> b,
a<c -> c,
a,
b<c -> a<c -> a,
c,
b
AND partition(median, p, q) = VALOF
{ LET t = ?
WHILE !p < median DO p := p+1
WHILE !q > median DO q := q-1
IF p>=q RESULTIS p
t := !p
!p := !q
!q := t
p, q := p+1, q-1
} REPEAT
LET start() = VALOF {
LET v = VEC 1000
FOR i = 1 TO 1000 DO v!i := randno(1_000_000)
quicksort(v, 1000)
FOR i = 1 TO 1000 DO
{ IF i MOD 10 = 0 DO newline()
writef(" %i6", v!i)
}
newline()
}
Beads[edit]
beads 1 program Quicksort
calc main_init
var arr = [1, 3, 5, 1, 7, 9, 8, 6, 4, 2]
var arr2 = arr
quicksort(arr, 1, tree_count(arr))
var tempStr : str
loop across:arr index:ix
tempStr = tempStr & ' ' & to_str(arr[ix])
log tempStr
calc quicksort(
arr:array of num
startIndex
highIndex
)
if (startIndex < highIndex)
var partitionIndex = partition(arr, startIndex, highIndex)
quicksort(arr, startIndex, partitionIndex - 1)
quicksort(arr, partitionIndex+1, highIndex)
calc partition(
arr:array of num
startIndex
highIndex
):num
var pivot = arr[highIndex]
var i = startIndex - 1
var j = startIndex
loop while:(j <= highIndex - 1)
if arr[j] < pivot
inc i
swap arr[i] <=> arr[j]
inc j
swap arr[i+1] <=> arr[highIndex]
return (i+1)
- Output:
1 1 2 3 4 5 6 7 8 9
Bracmat[edit]
Instead of comparing elements explicitly, this solution puts the two elements-to-compare in a sum. After evaluating the sum its terms are sorted. Numbers are sorted numerically, strings alphabetically and compound expressions by comparing nodes and leafs in a left-to right order. Now there are three cases: either the terms stayed put, or they were swapped, or they were equal and were combined into one term with a factor 2
in front. To not let the evaluator add numbers together, each term is constructed as a dotted list.
( ( Q
= Less Greater Equal pivot element
. !arg:%(?pivot:?Equal) %?arg
& :?Less:?Greater
& whl
' ( !arg:%?element ?arg
& (.!element)+(.!pivot) { BAD: 1900+90 adds to 1990, GOOD: (.1900)+(.90) is sorted to (.90)+(.1900) }
: ( (.!element)+(.!pivot)
& !element !Less:?Less
| (.!pivot)+(.!element)
& !element !Greater:?Greater
| ?&!element !Equal:?Equal
)
)
& Q$!Less !Equal Q$!Greater
| !arg
)
& out$Q$(1900 optimized variants of 4001/2 Quicksort (quick,sort) are (quick,sober) features of 90 languages)
);
- Output:
90 1900 4001/2 Quicksort are features languages of of optimized variants (quick,sober) (quick,sort)
C[edit]
#include <stdio.h>
void quicksort(int *A, int len);
int main (void) {
int a[] = {4, 65, 2, -31, 0, 99, 2, 83, 782, 1};
int n = sizeof a / sizeof a[0];
int i;
for (i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n");
quicksort(a, n);
for (i = 0; i < n; i++) {
printf("%d ", a[i]);
}
printf("\n");
return 0;
}
void quicksort(int *A, int len) {
if (len < 2) return;
int pivot = A[len / 2];
int i, j;
for (i = 0, j = len - 1; ; i++, j--) {
while (A[i] < pivot) i++;
while (A[j] > pivot) j--;
if (i >= j) break;
int temp = A[i];
A[i] = A[j];
A[j] = temp;
}
quicksort(A, i);
quicksort(A + i, len - i);
}
- Output:
4 65 2 -31 0 99 2 83 782 1 -31 0 1 2 2 4 65 83 99 782
Randomized sort with separated components.
#include <stdlib.h> // REQ: rand()
void swap(int *a, int *b) {
int c = *a;
*a = *b;
*b = c;
}
int partition(int A[], int p, int q) {
swap(&A[p + (rand() % (q - p + 1))], &A[q]); // PIVOT = A[q]
int i = p - 1;
for(int j = p; j <= q; j++) {
if(A[j] <= A[q]) {
swap(&A[++i], &A[j]);
}
}
return i;
}
void quicksort(int A[], int p, int q) {
if(p < q) {
int pivotIndx = partition(A, p, q);
quicksort(A, p, pivotIndx - 1);
quicksort(A, pivotIndx + 1, q);
}
}
C#[edit]
//
// The Tripartite conditional enables Bentley-McIlroy 3-way Partitioning.
// This performs additional compares to isolate islands of keys equal to
// the pivot value. Use unless key-equivalent classes are of small size.
//
#define Tripartite
namespace RosettaCode {
using System;
using System.Diagnostics;
public class QuickSort<T> where T : IComparable {
#region Constants
public const UInt32 INSERTION_LIMIT_DEFAULT = 12;
private const Int32 SAMPLES_MAX = 19;
#endregion
#region Properties
public UInt32 InsertionLimit { get; }
private T[] Samples { get; }
private Int32 Left { get; set; }
private Int32 Right { get; set; }
private Int32 LeftMedian { get; set; }
private Int32 RightMedian { get; set; }
#endregion
#region Constructors
public QuickSort(UInt32 insertionLimit = INSERTION_LIMIT_DEFAULT) {
this.InsertionLimit = insertionLimit;
this.Samples = new T[SAMPLES_MAX];
}
#endregion
#region Sort Methods
public void Sort(T[] entries) {
Sort(entries, 0, entries.Length - 1);
}
public void Sort(T[] entries, Int32 first, Int32 last) {
var length = last + 1 - first;
while (length > 1) {
if (length < InsertionLimit) {
InsertionSort<T>.Sort(entries, first, last);
return;
}
Left = first;
Right = last;
var median = pivot(entries);
partition(median, entries);
//[Note]Right < Left
var leftLength = Right + 1 - first;
var rightLength = last + 1 - Left;
//
// First recurse over shorter partition, then loop
// on the longer partition to elide tail recursion.
//
if (leftLength < rightLength) {
Sort(entries, first, Right);
first = Left;
length = rightLength;
}
else {
Sort(entries, Left, last);
last = Right;
length = leftLength;
}
}
}
/// <summary>Return an odd sample size proportional to the log of a large interval size.</summary>
private static Int32 sampleSize(Int32 length, Int32 max = SAMPLES_MAX) {
var logLen = (Int32)Math.Log10(length);
var samples = Math.Min(2 * logLen + 1, max);
return Math.Min(samples, length);
}
/// <summary>Estimate the median value of entries[Left:Right]</summary>
/// <remarks>A sample median is used as an estimate the true median.</remarks>
private T pivot(T[] entries) {
var length = Right + 1 - Left;
var samples = sampleSize(length);
// Sample Linearly:
for (var sample = 0; sample < samples; sample++) {
// Guard against Arithmetic Overflow:
var index = (Int64)length * sample / samples + Left;
Samples[sample] = entries[index];
}
InsertionSort<T>.Sort(Samples, 0, samples - 1);
return Samples[samples / 2];
}
private void partition(T median, T[] entries) {
var first = Left;
var last = Right;
#if Tripartite
LeftMedian = first;
RightMedian = last;
#endif
while (true) {
//[Assert]There exists some index >= Left where entries[index] >= median
//[Assert]There exists some index <= Right where entries[index] <= median
// So, there is no need for Left or Right bound checks
while (median.CompareTo(entries[Left]) > 0) Left++;
while (median.CompareTo(entries[Right]) < 0) Right--;
//[Assert]entries[Right] <= median <= entries[Left]
if (Right <= Left) break;
Swap(entries, Left, Right);
swapOut(median, entries);
Left++;
Right--;
//[Assert]entries[first:Left - 1] <= median <= entries[Right + 1:last]
}
if (Left == Right) {
Left++;
Right--;
}
//[Assert]Right < Left
swapIn(entries, first, last);
//[Assert]entries[first:Right] <= median <= entries[Left:last]
//[Assert]entries[Right + 1:Left - 1] == median when non-empty
}
#endregion
#region Swap Methods
[Conditional("Tripartite")]
private void swapOut(T median, T[] entries) {
if (median.CompareTo(entries[Left]) == 0) Swap(entries, LeftMedian++, Left);
if (median.CompareTo(entries[Right]) == 0) Swap(entries, Right, RightMedian--);
}
[Conditional("Tripartite")]
private void swapIn(T[] entries, Int32 first, Int32 last) {
// Restore Median entries
while (first < LeftMedian) Swap(entries, first++, Right--);
while (RightMedian < last) Swap(entries, Left++, last--);
}
/// <summary>Swap entries at the left and right indicies.</summary>
public void Swap(T[] entries, Int32 left, Int32 right) {
Swap(ref entries[left], ref entries[right]);
}
/// <summary>Swap two entities of type T.</summary>
public static void Swap(ref T e1, ref T e2) {
var e = e1;
e1 = e2;
e2 = e;
}
#endregion
}
#region Insertion Sort
static class InsertionSort<T> where T : IComparable {
public static void Sort(T[] entries, Int32 first, Int32 last) {
for (var next = first + 1; next <= last; next++)
insert(entries, first, next);
}
/// <summary>Bubble next entry up to its sorted location, assuming entries[first:next - 1] are already sorted.</summary>
private static void insert(T[] entries, Int32 first, Int32 next) {
var entry = entries[next];
while (next > first && entries[next - 1].CompareTo(entry) > 0)
entries[next] = entries[--next];
entries[next] = entry;
}
}
#endregion
}
Example:
using Sort;
using System;
class Program {
static void Main(String[] args) {
var entries = new Int32[] { 1, 3, 5, 7, 9, 8, 6, 4, 2 };
var sorter = new QuickSort<Int32>();
sorter.Sort(entries);
Console.WriteLine(String.Join(" ", entries));
}
}
- Output:
1 2 3 4 5 6 7 8 9
A very inefficient way to do qsort in C# to prove C# code can be just as compact and readable as any dynamic code
using System;
using System.Collections.Generic;
using System.Linq;
namespace QSort
{
class QSorter
{
private static IEnumerable<IComparable> empty = new List<IComparable>();
public static IEnumerable<IComparable> QSort(IEnumerable<IComparable> iEnumerable)
{
if(iEnumerable.Any())
{
var pivot = iEnumerable.First();
return QSort(iEnumerable.Where((anItem) => pivot.CompareTo(anItem) > 0)).
Concat(iEnumerable.Where((anItem) => pivot.CompareTo(anItem) == 0)).
Concat(QSort(iEnumerable.Where((anItem) => pivot.CompareTo(anItem) < 0)));
}
return empty;
}
}
}
CafeOBJ[edit]
There is no builtin list type in CafeOBJ, so a user written list module is included.
mod! SIMPLE-LIST(X :: TRIV){
[NeList < List ]
op [] : -> List
op [_] : Elt -> List
op (_:_) : Elt List -> NeList -- consr
op _++_ : List List -> List {assoc} -- concatenate
var E : Elt
vars L L' : List
eq [ E ] = E : [] .
eq [] ++ L = L .
eq (E : L) ++ L' = E : (L ++ L') .
}
mod! QUICKSORT{
pr(SIMPLE-LIST(NAT))
op qsort_ : List -> List
op smaller__ : List Nat -> List
op larger__ : List Nat -> List
vars x y : Nat
vars xs ys : List
eq qsort [] = [] .
eq qsort (x : xs) = (qsort (smaller xs x)) ++ [ x ] ++ (qsort (larger xs x)) .
eq smaller [] x = [] .
eq smaller (x : xs) y = if x <= y then (x : (smaller xs y)) else (smaller xs y) fi .
eq larger [] x = [] .
eq larger (x : xs) y = if x <= y then (larger xs y) else (x : (larger xs y)) fi .
}
open QUICKSORT .
red qsort(5 : 4 : 3 : 2 : 1 : 0 : []) .
red qsort(5 : 5 : 4 : 3 : 5 : 2 : 1 : 1 : 0 : []) .
eof
C++[edit]
The following implements quicksort with a median-of-three pivot. As idiomatic in C++, the argument last is a one-past-end iterator. Note that this code takes advantage of std::partition, which is O(n). Also note that it needs a random-access iterator for efficient calculation of the median-of-three pivot (more exactly, for O(1) calculation of the iterator mid).
#include <iterator>
#include <algorithm> // for std::partition
#include <functional> // for std::less
// helper function for median of three
template<typename T>
T median(T t1, T t2, T t3)
{
if (t1 < t2)
{
if (t2 < t3)
return t2;
else if (t1 < t3)
return t3;
else
return t1;
}
else
{
if (t1 < t3)
return t1;
else if (t2 < t3)
return t3;
else
return t2;
}
}
// helper object to get <= from <
template<typename Order> struct non_strict_op:
public std::binary_function<typename Order::second_argument_type,
typename Order::first_argument_type,
bool>
{
non_strict_op(Order o): order(o) {}
bool operator()(typename Order::second_argument_type arg1,
typename Order::first_argument_type arg2) const
{
return !order(arg2, arg1);
}
private:
Order order;
};
template<typename Order> non_strict_op<Order> non_strict(Order o)
{
return non_strict_op<Order>(o);
}
template<typename RandomAccessIterator,
typename Order>
void quicksort(RandomAccessIterator first, RandomAccessIterator last, Order order)
{
if (first != last && first+1 != last)
{
typedef typename std::iterator_traits<RandomAccessIterator>::value_type value_type;
RandomAccessIterator mid = first + (last - first)/2;
value_type pivot = median(*first, *mid, *(last-1));
RandomAccessIterator split1 = std::partition(first, last, std::bind2nd(order, pivot));
RandomAccessIterator split2 = std::partition(split1, last, std::bind2nd(non_strict(order), pivot));
quicksort(first, split1, order);
quicksort(split2, last, order);
}
}
template<typename RandomAccessIterator>
void quicksort(RandomAccessIterator first, RandomAccessIterator last)
{
quicksort(first, last, std::less<typename std::iterator_traits<RandomAccessIterator>::value_type>());
}
A simpler version of the above that just uses the first element as the pivot and only does one "partition".
#include <iterator>
#include <algorithm> // for std::partition
#include <functional> // for std::less
template<typename RandomAccessIterator,
typename Order>
void quicksort(RandomAccessIterator first, RandomAccessIterator last, Order order)
{
if (last - first > 1)
{
RandomAccessIterator split = std::partition(first+1, last, std::bind2nd(order, *first));
std::iter_swap(first, split-1);
quicksort(first, split-1, order);
quicksort(split, last, order);
}
}
template<typename RandomAccessIterator>
void quicksort(RandomAccessIterator first, RandomAccessIterator last)
{
quicksort(first, last, std::less<typename std::iterator_traits<RandomAccessIterator>::value_type>());
}
Clojure[edit]
A very Haskell-like solution using list comprehensions and lazy evaluation.
(defn qsort [L]
(if (empty? L)
'()
(let [[pivot & L2] L]
(lazy-cat (qsort (for [y L2 :when (< y pivot)] y))
(list pivot)
(qsort (for [y L2 :when (>= y pivot)] y))))))
Another short version (using quasiquote):
(defn qsort [[pvt & rs]]
(if pvt
`(~@(qsort (filter #(< % pvt) rs))
~pvt
~@(qsort (filter #(>= % pvt) rs)))))
Another, more readable version (no macros):
(defn qsort [[pivot & xs]]
(when pivot
(let [smaller #(< % pivot)]
(lazy-cat (qsort (filter smaller xs))
[pivot]
(qsort (remove smaller xs))))))
A 3-group quicksort (fast when many values are equal):
(defn qsort3 [[pvt :as coll]]
(when pvt
(let [{left -1 mid 0 right 1} (group-by #(compare % pvt) coll)]
(lazy-cat (qsort3 left) mid (qsort3 right)))))
A lazier version of above (unlike group-by, filter returns (and reads) a lazy sequence)
(defn qsort3 [[pivot :as coll]]
(when pivot
(lazy-cat (qsort (filter #(< % pivot) coll))
(filter #{pivot} coll)
(qsort (filter #(> % pivot) coll)))))
COBOL[edit]
IDENTIFICATION DIVISION.
PROGRAM-ID. quicksort RECURSIVE.
DATA DIVISION.
LOCAL-STORAGE SECTION.
01 temp PIC S9(8).
01 pivot PIC S9(8).
01 left-most-idx PIC 9(5).
01 right-most-idx PIC 9(5).
01 left-idx PIC 9(5).
01 right-idx PIC 9(5).
LINKAGE SECTION.
78 Arr-Length VALUE 50.
01 arr-area.
03 arr PIC S9(8) OCCURS Arr-Length TIMES.
01 left-val PIC 9(5).
01 right-val PIC 9(5).
PROCEDURE DIVISION USING REFERENCE arr-area, OPTIONAL left-val,
OPTIONAL right-val.
IF left-val IS OMITTED OR right-val IS OMITTED
MOVE 1 TO left-most-idx, left-idx
MOVE Arr-Length TO right-most-idx, right-idx
ELSE
MOVE left-val TO left-most-idx, left-idx
MOVE right-val TO right-most-idx, right-idx
END-IF
IF right-most-idx - left-most-idx < 1
GOBACK
END-IF
COMPUTE pivot = arr ((left-most-idx + right-most-idx) / 2)
PERFORM UNTIL left-idx > right-idx
PERFORM VARYING left-idx FROM left-idx BY 1
UNTIL arr (left-idx) >= pivot
END-PERFORM
PERFORM VARYING right-idx FROM right-idx BY -1
UNTIL arr (right-idx) <= pivot
END-PERFORM
IF left-idx <= right-idx
MOVE arr (left-idx) TO temp
MOVE arr (right-idx) TO arr (left-idx)
MOVE temp TO arr (right-idx)
ADD 1 TO left-idx
SUBTRACT 1 FROM right-idx
END-IF
END-PERFORM
CALL "quicksort" USING REFERENCE arr-area,
CONTENT left-most-idx, right-idx
CALL "quicksort" USING REFERENCE arr-area, CONTENT left-idx,
right-most-idx
GOBACK
.
CoffeeScript[edit]
quicksort = ([x, xs...]) ->
return [] unless x?
smallerOrEqual = (a for a in xs when a <= x)
larger = (a for a in xs when a > x)
(quicksort smallerOrEqual).concat(x).concat(quicksort larger)
Common Lisp[edit]
The functional programming way
(defun quicksort (list &aux (pivot (car list)) )
(if (cdr list)
(nconc (quicksort (remove-if-not #'(lambda (x) (< x pivot)) list))
(remove-if-not #'(lambda (x) (= x pivot)) list)
(quicksort (remove-if-not #'(lambda (x) (> x pivot)) list)))
list))
With flet
(defun qs (list)
(if (cdr list)
(flet ((pivot (test)
(remove (car list) list :test-not test)))
(nconc (qs (pivot #'>)) (pivot #'=) (qs (pivot #'<))))
list))
In-place non-functional
(defun quicksort (sequence)
(labels ((swap (a b) (rotatef (elt sequence a) (elt sequence b)))
(sub-sort (left right)
(when (< left right)
(let ((pivot (elt sequence right))
(index left))
(loop for i from left below right
when (<= (elt sequence i) pivot)
do (swap i (prog1 index (incf index))))
(swap right index)
(sub-sort left (1- index))
(sub-sort (1+ index) right)))))
(sub-sort 0 (1- (length sequence)))
sequence))
Functional with destructuring
(defun quicksort (list)
(when list
(destructuring-bind (x . xs) list
(nconc (quicksort (remove-if (lambda (a) (> a x)) xs))
`(,x)
(quicksort (remove-if (lambda (a) (<= a x)) xs))))))
Cowgol[edit]
include "cowgol.coh";
# Comparator interface, on the model of C, i.e:
# foo < bar => -1, foo == bar => 0, foo > bar => 1
typedef CompRslt is int(-1, 1);
interface Comparator(foo: intptr, bar: intptr): (rslt: CompRslt);
# Quicksort an array of pointer-sized integers given a comparator function
# (This is the closest you can get to polymorphism in Cowgol).
# Because Cowgol does not support recursion, a pointer to free memory
# for a stack must also be given.
sub qsort(A: [intptr], len: intptr, comp: Comparator, stack: [intptr]) is
# The partition function can be taken almost verbatim from Wikipedia
sub partition(lo: intptr, hi: intptr): (p: intptr) is
# This is not quite as bad as it looks: /2 compiles into a single shift
# and "@bytesof intptr" is always power of 2 so compiles into shift(s).
var pivot := [A + (hi/2 + lo/2) * @bytesof intptr];
var i := lo - 1;
var j := hi + 1;
loop
loop
i := i + 1;
if comp([A + i*@bytesof intptr], pivot) != -1 then
break;
end if;
end loop;
loop
j := j - 1;
if comp([A + j*@bytesof intptr], pivot) != 1 then
break;
end if;
end loop;
if i >= j then
p := j;
return;
end if;
var ii := i * @bytesof intptr;
var jj := j * @bytesof intptr;
var t := [A+ii];
[A+ii] := [A+jj];
[A+jj] := t;
end loop;
end sub;
# Cowgol lacks recursion, so we'll have to solve it by implementing
# the stack ourselves.
var sp: intptr := 0; # stack index
sub push(n: intptr) is
sp := sp + 1;
[stack] := n;
stack := @next stack;
end sub;
sub pop(): (n: intptr) is
sp := sp - 1;
stack := @prev stack;
n := [stack];
end sub;
# start by sorting [0..length-1]
push(len-1);
push(0);
while sp != 0 loop
var lo := pop();
var hi := pop();
if lo < hi then
var p := partition(lo, hi);
push(hi); # note the order - we need to push the high pair
push(p+1); # first for it to be done last
push(p);
push(lo);
end if;
end loop;
end sub;
# Test: sort a list of numbers
sub NumComp implements Comparator is
# Compare the inputs as numbers
if foo < bar then rslt := -1;
elseif foo > bar then rslt := 1;
else rslt := 0;
end if;
end sub;
# Numbers
var numbers: intptr[] := {
65,13,4,84,29,5,96,73,5,11,17,76,38,26,44,20,36,12,44,51,79,8,99,7,19,95,26
};
# Room for the stack
var stackbuf: intptr[256];
# Sort the numbers in place
qsort(&numbers as [intptr], @sizeof numbers, NumComp, &stackbuf as [intptr]);
# Print the numbers (hopefully in order)
var i: @indexof numbers := 0;
while i < @sizeof numbers loop
print_i32(numbers[i] as uint32);
print_char(' ');
i := i + 1;
end loop;
print_nl();
- Output:
4 5 5 7 8 11 12 13 17 19 20 26 26 29 36 38 44 44 51 65 73 76 79 84 95 96 99
Craft Basic[edit]
define size = 10, point = 0, top = 0
define high = 0, low = 0, pivot = 0
dim list[size]
dim stack[size]
gosub fill
gosub sort
gosub show
end
sub fill
for i = 0 to size - 1
let list[i] = int(rnd * 100)
next i
return
sub sort
let low = 0
let high = size - 1
let top = -1
let top = top + 1
let stack[top] = low
let top = top + 1
let stack[top] = high
do
if top < 0 then
break
endif
let high = stack[top]
let top = top - 1
let low = stack[top]
let top = top - 1
let i = low - 1
for j = low to high - 1
if list[j] <= list[high] then
let i = i + 1
let t = list[i]
let list[i] = list[j]
let list[j] = t
endif
next j
let point = i + 1
let t = list[point]
let list[point] = list[high]
let list[high] = t
let pivot = i + 1
if pivot - 1 > low then
let top = top + 1
let stack[top] = low
let top = top + 1
let stack[top] = pivot - 1
endif
if pivot + 1 < high then
let top = top + 1
let stack[top] = pivot + 1
let top = top + 1
let stack[top] = high
endif
wait
loop top >= 0
return
sub show
for i = 0 to size - 1
print i, ": ", list[i]
next i
return
Crystal[edit]
def quick_sort(a : Array(Int32)) : Array(Int32)
return a if a.size <= 1
p = a[0]
lt, rt = a[1 .. -1].partition { |x| x < p }
return quick_sort(lt) + [p] + quick_sort(rt)
end
a = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0]
puts quick_sort(a) # => [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Curry[edit]
Copied from Curry: Example Programs.
-- quicksort using higher-order functions:
qsort :: [Int] -> [Int]
qsort [] = []
qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>=x) l)
goal = qsort [2,3,1,0]
D[edit]
A Functional version
import std.stdio : writefln, writeln;
import std.algorithm: filter;
import std.array;
T[] quickSort(T)(T[] xs) =>
xs.length == 0 ? [] :
xs[1 .. $].filter!(x => x< xs[0]).array.quickSort ~
xs[0 .. 1] ~
xs[1 .. $].filter!(x => x>=xs[0]).array.quickSort;
void main() =>
[4, 65, 2, -31, 0, 99, 2, 83, 782, 1].quickSort.writeln;
- Output:
[-31, 0, 1, 2, 2, 4, 65, 83, 99, 782]
A simple high-level version (same output):
import std.stdio, std.array;
T[] quickSort(T)(T[] items) pure nothrow {
if (items.empty)
return items;
T[] less, notLess;
foreach (x; items[1 .. $])
(x < items[0] ? less : notLess) ~= x;
return less.quickSort ~ items[0] ~ notLess.quickSort;
}
void main() {
[4, 65, 2, -31, 0, 99, 2, 83, 782, 1].quickSort.writeln;
}
Often short functional sieves are not a true implementations of the Sieve of Eratosthenes: http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf
Similarly, one could argue that a true QuickSort is in-place, as this more efficient version (same output):
import std.stdio, std.algorithm;
void quickSort(T)(T[] items) pure nothrow @safe @nogc {
if (items.length >= 2) {
auto parts = partition3(items, items[$ / 2]);
parts[0].quickSort;
parts[2].quickSort;
}
}
void main() {
auto items = [4, 65, 2, -31, 0, 99, 2, 83, 782, 1];
items.quickSort;
items.writeln;
}
Delphi[edit]
This quick sort routine is infinitely versatile. It sorts an array of pointers. The advantage of this is that pointers can contain anything, ranging from integers, to strings, to floating point numbers to objects. The way each pointer is interpreted is through the compare routine, which is customized for the particular situation. The compare routine can interpret each pointer as a string, an integer, a float or an object and it can treat those items in different ways. For example, the order in which it compares strings controls whether the sort is alphabetical or reverse alphabetical. In this case, I show an integer sort, an alphabetic string sort, a reverse alphabetical string sort and a string sort by length.
{Dynamic array of pointers}
type TPointerArray = array of Pointer;
procedure QuickSort(SortList: TPointerArray; L, R: Integer; SCompare: TListSortCompare);
{Do quick sort on items held in TPointerArray}
{SCompare controls how the pointers are interpreted}
var I, J: Integer;
var P,T: Pointer;
begin
repeat
begin
I := L;
J := R;
P := SortList[(L + R) shr 1];
repeat
begin
while SCompare(SortList[I], P) < 0 do Inc(I);
while SCompare(SortList[J], P) > 0 do Dec(J);
if I <= J then
begin
{Exchange itesm}
T:=SortList[I];
SortList[I]:=SortList[J];
SortList[J]:=T;
if P = SortList[I] then P := SortList[J]
else if P = SortList[J] then P := SortList[I];
Inc(I);
Dec(J);
end;
end
until I > J;
if L < J then QuickSort(SortList, L, J, SCompare);
L := I;
end
until I >= R;
end;
procedure DisplayStrings(Memo: TMemo; PA: TPointerArray);
{Display pointers as strings}
var I: integer;
var S: string;
begin
S:='[';
for I:=0 to High(PA) do
begin
if I>0 then S:=S+' ';
S:=S+string(PA[I]^);
end;
S:=S+']';
Memo.Lines.Add(S);
end;
procedure DisplayIntegers(Memo: TMemo; PA: TPointerArray);
{Display pointer array as integers}
var I: integer;
var S: string;
begin
S:='[';
for I:=0 to High(PA) do
begin
if I>0 then S:=S+' ';
S:=S+IntToStr(Integer(PA[I]));
end;
S:=S+']';
Memo.Lines.Add(S);
end;
function IntCompare(Item1, Item2: Pointer): Integer;
{Compare for integer sort}
begin
Result:=Integer(Item1)-Integer(Item2);
end;
function StringCompare(Item1, Item2: Pointer): Integer;
{Compare for alphabetical string sort}
begin
Result:=AnsiCompareText(string(Item1^),string(Item2^));
end;
function StringRevCompare(Item1, Item2: Pointer): Integer;
{Compare for reverse alphabetical order}
begin
Result:=AnsiCompareText(string(Item2^),string(Item1^));
end;
function StringLenCompare(Item1, Item2: Pointer): Integer;
{Compare for string length sort}
begin
Result:=Length(string(Item1^))-Length(string(Item2^));
end;
{Arrays of strings and integers}
var IA: array [0..9] of integer = (23, 14, 62, 28, 56, 91, 33, 30, 75, 5);
var SA: array [0..15] of string = ('Now','is','the','time','for','all','good','men','to','come','to','the','aid','of','the','party.');
procedure ShowQuickSort(Memo: TMemo);
var L: TStringList;
var PA: TPointerArray;
var I: integer;
begin
Memo.Lines.Add('Integer Sort');
SetLength(PA,Length(IA));
for I:=0 to High(IA) do PA[I]:=Pointer(IA[I]);
Memo.Lines.Add('Before Sorting');
DisplayIntegers(Memo,PA);
QuickSort(PA,0,High(PA),IntCompare);
Memo.Lines.Add('After Sorting');
DisplayIntegers(Memo,PA);
Memo.Lines.Add('');
Memo.Lines.Add('String Sort - Alphabetical');
SetLength(PA,Length(SA));
for I:=0 to High(SA) do PA[I]:=Pointer(@SA[I]);
Memo.Lines.Add('Before Sorting');
DisplayStrings(Memo,PA);
QuickSort(PA,0,High(PA),StringCompare);
Memo.Lines.Add('After Sorting');
DisplayStrings(Memo,PA);
Memo.Lines.Add('');
Memo.Lines.Add('String Sort - Reverse Alphabetical');
QuickSort(PA,0,High(PA),StringRevCompare);
Memo.Lines.Add('After Sorting');
DisplayStrings(Memo,PA);
Memo.Lines.Add('');
Memo.Lines.Add('String Sort - By Length');
QuickSort(PA,0,High(PA),StringLenCompare);
Memo.Lines.Add('After Sorting');
DisplayStrings(Memo,PA);
end;
- Output:
Integer Sort Before Sorting [23 14 62 28 56 91 33 30 75 5] After Sorting [5 14 23 28 30 33 56 62 75 91] String Sort - Alphabetical Before Sorting [Now is the time for all good men to come to the aid of the party.] After Sorting [aid all come for good is men Now party. of the the the time to to] String Sort - Reverse Alphabetical After Sorting [to to time the the the party. of Now men is good for come all aid] String Sort - By Length After Sorting [of is to to men aid all for Now the the the time come good party.] Elapsed Time: 16.478 ms.
Dart[edit]
quickSort(List a) {
if (a.length <= 1) {
return a;
}
var pivot = a[0];
var less = [];
var more = [];
var pivotList = [];
// Partition
a.forEach((var i){
if (i.compareTo(pivot) < 0) {
less.add(i);
} else if (i.compareTo(pivot) > 0) {
more.add(i);
} else {
pivotList.add(i);
}
});
// Recursively sort sublists
less = quickSort(less);
more = quickSort(more);
// Concatenate results
less.addAll(pivotList);
less.addAll(more);
return less;
}
void main() {
var arr=[1,5,2,7,3,9,4,6,8];
print("Before sort");
arr.forEach((var i)=>print("$i"));
arr = quickSort(arr);
print("After sort");
arr.forEach((var i)=>print("$i"));
}
E[edit]
def quicksort := {
def swap(container, ixA, ixB) {
def temp := container[ixA]
container[ixA] := container[ixB]
container[ixB] := temp
}
def partition(array, var first :int, var last :int) {
if (last <= first) { return }
# Choose a pivot
def pivot := array[def pivotIndex := (first + last) // 2]
# Move pivot to end temporarily
swap(array, pivotIndex, last)
var swapWith := first
# Scan array except for pivot, and...
for i in first..!last {
if (array[i] <= pivot) { # items ≤ the pivot
swap(array, i, swapWith) # are moved to consecutive positions on the left
swapWith += 1
}
}
# Swap pivot into between-partition position.
# Because of the swapping we know that everything before swapWith is less
# than or equal to the pivot, and the item at swapWith (since it was not
# swapped) is greater than the pivot, so inserting the pivot at swapWith
# will preserve the partition.
swap(array, swapWith, last)
return swapWith
}
def quicksortR(array, first :int, last :int) {
if (last <= first) { return }
def pivot := partition(array, first, last)
quicksortR(array, first, pivot - 1)
quicksortR(array, pivot + 1, last)
}
def quicksort(array) { # returned from block
quicksortR(array, 0, array.size() - 1)
}
}
EasyLang[edit]
proc qsort left right . d[] .
while left < right
# partition
piv = d[left]
mid = left
for i = left + 1 to right
if d[i] < piv
mid += 1
swap d[i] d[mid]
.
.
swap d[left] d[mid]
#
if mid < (right + left) / 2
call qsort left mid - 1 d[]
left = mid + 1
else
call qsort mid + 1 right d[]
right = mid - 1
.
.
.
func sort . d[] .
call qsort 1 len d[] d[]
.
d[] = [ 29 4 72 44 55 26 27 77 92 5 ]
call sort d[]
print d[]
EchoLisp[edit]
(lib 'list) ;; list-partition
(define compare 0) ;; counter
(define (quicksort L compare-predicate: proc aux: (part null))
(if (<= (length L) 1) L
(begin
;; counting the number of comparisons
(set! compare (+ compare (length (rest L))))
;; pivot = first element of list
(set! part (list-partition (rest L) proc (first L)))
(append (quicksort (first part) proc )
(list (first L))
(quicksort (second part) proc)))))
- Output:
(shuffle (iota 15))
→ (10 0 14 11 13 9 2 5 4 8 1 7 12 3 6)
(quicksort (shuffle (iota 15)) <)
→ (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14)
;; random list of numbers in [0 .. n[
;; count number of comparisons
(define (qtest (n 10000))
(set! compare 0)
(quicksort (shuffle (iota n)) >)
(writeln 'n n 'compare# compare ))
(qtest 1000)
n 1000 compare# 12764
(qtest 10000)
n 10000 compare# 277868
(qtest 100000)
n 100000 compare# 6198601
Eero[edit]
Translated from Objective-C example on this page.
#import <Foundation/Foundation.h>
void quicksortInPlace(MutableArray array, const long first, const long last)
if first >= last
return
Value pivot = array[(first + last) / 2]
left := first
right := last
while left <= right
while array[left] < pivot
left++
while array[right] > pivot
right--
if left <= right
array.exchangeObjectAtIndex: left++, withObjectAtIndex: right--
quicksortInPlace(array, first, right)
quicksortInPlace(array, left, last)
Array quicksort(Array unsorted)
a := []
a.addObjectsFromArray: unsorted
quicksortInPlace(a, 0, a.count - 1)
return a
int main(int argc, const char * argv[])
autoreleasepool
a := [1, 3, 5, 7, 9, 8, 6, 4, 2]
Log( 'Unsorted: %@', a)
Log( 'Sorted: %@', quicksort(a) )
b := ['Emil', 'Peg', 'Helen', 'Juergen', 'David', 'Rick', 'Barb', 'Mike', 'Tom']
Log( 'Unsorted: %@', b)
Log( 'Sorted: %@', quicksort(b) )
return 0
Alternative implementation (not necessarily as efficient, but very readable)
#import <Foundation/Foundation.h>
implementation Array (Quicksort)
plus: Array array, return Array =
self.arrayByAddingObjectsFromArray: array
filter: BOOL (^)(id) predicate, return Array
array := []
for id item in self
if predicate(item)
array.addObject: item
return array.copy
quicksort, return Array = self
if self.count > 1
id x = self[self.count / 2]
lesser := self.filter: (id y | return y < x)
greater := self.filter: (id y | return y > x)
return lesser.quicksort + [x] + greater.quicksort
end
int main()
autoreleasepool
a := [1, 3, 5, 7, 9, 8, 6, 4, 2]
Log( 'Unsorted: %@', a)
Log( 'Sorted: %@', a.quicksort )
b := ['Emil', 'Peg', 'Helen', 'Juergen', 'David', 'Rick', 'Barb', 'Mike', 'Tom']
Log( 'Unsorted: %@', b)
Log( 'Sorted: %@', b.quicksort )
return 0
- Output:
2013-09-04 16:54:31.780 a.out[2201:507] Unsorted: ( 1, 3, 5, 7, 9, 8, 6, 4, 2 ) 2013-09-04 16:54:31.781 a.out[2201:507] Sorted: ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) 2013-09-04 16:54:31.781 a.out[2201:507] Unsorted: ( Emil, Peg, Helen, Juergen, David, Rick, Barb, Mike, Tom ) 2013-09-04 16:54:31.782 a.out[2201:507] Sorted: ( Barb, David, Emil, Helen, Juergen, Mike, Peg, Rick, Tom )
Eiffel[edit]
TheQUICKSORT
class
QUICKSORT [G -> COMPARABLE]
create
make
feature {NONE} --Implementation
is_sorted (list: ARRAY [G]): BOOLEAN
require
not_void: list /= Void
local
i: INTEGER
do
Result := True
from
i := list.lower + 1
invariant
i >= list.lower + 1 and i <= list.upper + 1
until
i > list.upper
loop
Result := Result and list [i - 1] <= list [i]
i := i + 1
variant
list.upper + 1 - i
end
end
concatenate_array (a: ARRAY [G] b: ARRAY [G]): ARRAY [G]
require
not_void: a /= Void and b /= Void
do
create Result.make_from_array (a)
across
b as t
loop
Result.force (t.item, Result.upper + 1)
end
ensure
same_size: a.count + b.count = Result.count
end
quicksort_array (list: ARRAY [G]): ARRAY [G]
require
not_void: list /= Void
local
less_a: ARRAY [G]
equal_a: ARRAY [G]
more_a: ARRAY [G]
pivot: G
do
create less_a.make_empty
create more_a.make_empty
create equal_a.make_empty
create Result.make_empty
if list.count <= 1 then
Result := list
else
pivot := list [list.lower]
across
list as li
invariant
less_a.count + equal_a.count + more_a.count <= list.count
loop
if li.item < pivot then
less_a.force (li.item, less_a.upper + 1)
elseif li.item = pivot then
equal_a.force (li.item, equal_a.upper + 1)
elseif li.item > pivot then
more_a.force (li.item, more_a.upper + 1)
end
end
Result := concatenate_array (Result, quicksort_array (less_a))
Result := concatenate_array (Result, equal_a)
Result := concatenate_array (Result, quicksort_array (more_a))
end
ensure
same_size: list.count = Result.count
sorted: is_sorted (Result)
end
feature -- Initialization
make
do
end
quicksort (a: ARRAY [G]): ARRAY [G]
do
Result := quicksort_array (a)
end
end
A test application:
class
APPLICATION
create
make
feature {NONE} -- Initialization
make
-- Run application.
local
test: ARRAY [INTEGER]
sorted: ARRAY [INTEGER]
sorter: QUICKSORT [INTEGER]
do
create sorter.make
test := <<1, 3, 2, 4, 5, 5, 7, -1>>
sorted := sorter.quicksort (test)
across
sorted as s
loop
print (s.item)
print (" ")
end
print ("%N")
end
end
Elena[edit]
ELENA 5.0 :
import extensions;
import system'routines;
import system'collections;
extension op
{
quickSort()
{
if (self.isEmpty()) { ^ self };
var pivot := self[0];
auto less := new ArrayList();
auto pivotList := new ArrayList();
auto more := new ArrayList();
self.forEach:(item)
{
if (item < pivot)
{
less.append(item)
}
else if (item > pivot)
{
more.append(item)
}
else
{
pivotList.append(item)
}
};
less := less.quickSort();
more := more.quickSort();
less.appendRange(pivotList);
less.appendRange(more);
^ less
}
}
public program()
{
var list := new int[]{3, 14, 1, 5, 9, 2, 6, 3};
console.printLine("before:", list.asEnumerable());
console.printLine("after :", list.quickSort().asEnumerable());
}
- Output:
before:3,14,1,5,9,2,6,3 after :1,2,3,3,5,6,9,14
Elixir[edit]
defmodule Sort do
def qsort([]), do: []
def qsort([h | t]) do
{lesser, greater} = Enum.split_with(t, &(&1 < h))
qsort(lesser) ++ [h] ++ qsort(greater)
end
end
Erlang[edit]
like haskell. Used by Measure_relative_performance_of_sorting_algorithms_implementations. If changed keep the interface or change Measure_relative_performance_of_sorting_algorithms_implementations
-module( quicksort ).
-export( [qsort/1] ).
qsort([]) -> [];
qsort([X|Xs]) ->
qsort([ Y || Y <- Xs, Y < X]) ++ [X] ++ qsort([ Y || Y <- Xs, Y >= X]).
multi-process implementation (number processes = number of processor cores):
quick_sort(L) -> qs(L, trunc(math:log2(erlang:system_info(schedulers)))).
qs([],_) -> [];
qs([H|T], N) when N > 0 ->
{Parent, Ref} = {self(), make_ref()},
spawn(fun()-> Parent ! {l1, Ref, qs([E||E<-T, E<H], N-1)} end),
spawn(fun()-> Parent ! {l2, Ref, qs([E||E<-T, H =< E], N-1)} end),
{L1, L2} = receive_results(Ref, undefined, undefined),
L1 ++ [H] ++ L2;
qs([H|T],_) ->
qs([E||E<-T, E<H],0) ++ [H] ++ qs([E||E<-T, H =< E],0).
receive_results(Ref, L1, L2) ->
receive
{l1, Ref, L1R} when L2 == undefined -> receive_results(Ref, L1R, L2);
{l2, Ref, L2R} when L1 == undefined -> receive_results(Ref, L1, L2R);
{l1, Ref, L1R} -> {L1R, L2};
{l2, Ref, L2R} -> {L1, L2R}
after 5000 -> receive_results(Ref, L1, L2)
end.
Emacs Lisp[edit]
Unoptimized
(require 'seq)
(defun quicksort (xs)
(if (null xs)
()
(let* ((head (car xs))
(tail (cdr xs))
(lower-part (quicksort (seq-filter (lambda (x) (<= x head)) tail)))
(higher-part (quicksort (seq-filter (lambda (x) (> x head)) tail))))
(append lower-part (list head) higher-part))))
ERRE[edit]
PROGRAM QUICKSORT_DEMO
DIM ARRAY[21]
!$DYNAMIC
DIM QSTACK[0]
!$INCLUDE="PC.LIB"
PROCEDURE QSORT(ARRAY[],START,NUM)
FIRST=START ! initialize work variables
LAST=START+NUM-1
LOOP
REPEAT
TEMP=ARRAY[(LAST+FIRST) DIV 2] ! seek midpoint
I=FIRST
J=LAST
REPEAT ! reverse both < and > below to sort descending
WHILE ARRAY[I]<TEMP DO
I=I+1
END WHILE
WHILE ARRAY[J]>TEMP DO
J=J-1
END WHILE
EXIT IF I>J
IF I<J THEN SWAP(ARRAY[I],ARRAY[J]) END IF
I=I+1
J=J-1
UNTIL NOT(I<=J)
IF I<LAST THEN ! Done
QSTACK[SP]=I ! Push I
QSTACK[SP+1]=LAST ! Push Last
SP=SP+2
END IF
LAST=J
UNTIL NOT(FIRST<LAST)
EXIT IF SP=0
SP=SP-2
FIRST=QSTACK[SP] ! Pop First
LAST=QSTACK[SP+1] ! Pop Last
END LOOP
END PROCEDURE
BEGIN
RANDOMIZE(TIMER) ! generate a new series each run
! create an array
FOR X=1 TO 21 DO ! fill with random numbers
ARRAY[X]=RND(1)*500 ! between 0 and 500
END FOR
PRIMO=6 ! sort starting here
NUM=10 ! sort this many elements
CLS
PRINT("Before Sorting:";TAB(31);"After sorting:")
PRINT("===============";TAB(31);"==============")
FOR X=1 TO 21 DO ! show them before sorting
IF X>=PRIMO AND X<=PRIMO+NUM-1 THEN
PRINT("==>";)
END IF
PRINT(TAB(5);)
WRITE("###.##";ARRAY[X])
END FOR
! create a stack
!$DIM QSTACK[INT(NUM/5)+10]
QSORT(ARRAY[],PRIMO,NUM)
!$ERASE QSTACK
LOCATE(2,1)
FOR X=1 TO 21 DO ! print them after sorting
LOCATE(2+X,30)
IF X>=PRIMO AND X<=PRIMO+NUM-1 THEN
PRINT("==>";) ! point to sorted items
END IF
LOCATE(2+X,35)
WRITE("###.##";ARRAY[X])
END FOR
END PROGRAM
F#[edit]
let rec qsort = function
hd :: tl ->
let less, greater = List.partition ((>=) hd) tl
List.concat [qsort less; [hd]; qsort greater]
| _ -> []
Factor[edit]
: qsort ( seq -- seq )
dup empty? [
unclip [ [ < ] curry partition [ qsort ] bi@ ] keep
prefix append
] unless ;
Fe[edit]
; utility for list joining
(= join (fn (a b)
(if (is a nil) b (is b nil) a (do
(let res a)
(while (cdr a) (= a (cdr a)))
(setcdr a b)
res))))
(= quicksort (fn (lst)
(if (not (cdr lst)) lst (do
(let pivot (car lst))
(let less nil)
(let equal nil)
(let greater nil)
; filter list for less than pivot, equal to pivot and greater than pivot
(while lst
(let x (car lst))
(if (< x pivot) (= less (cons x less))
(< pivot x) (= greater (cons x greater))
(= equal (cons x equal)))
(= lst (cdr lst)))
; sort 'less' and 'greater' partitions ('equal' partition is always sorted)
(= less (quicksort less))
(= greater (quicksort greater))
; join partitions to one
(join less (join equal greater))))))
(print '(4 65 0 2 -31 99 2 0 83 782 1))
(print (quicksort '(4 65 0 2 -31 99 2 0 83 782 1)))
Outputs:
(4 65 0 2 -31 99 2 0 83 782 1)
(-31 0 0 1 2 2 4 65 83 99 782)
Fexl[edit]
# (sort xs) is the ordered list of all elements in list xs.
# This version preserves duplicates.
\sort==
(\xs
xs [] \x\xs
append (sort; filter (gt x) xs); # all the items less than x
cons x; append (filter (eq x) xs); # all the items equal to x
sort; filter (lt x) xs # all the items greater than x
)
# (unique xs) is the ordered list of unique elements in list xs.
\unique==
(\xs
xs [] \x\xs
append (unique; filter (gt x) xs); # all the items less than x
cons x; # x itself
unique; filter (lt x) xs # all the items greater than x
)
Forth[edit]
: mid ( l r -- mid ) over - 2/ -cell and + ;
: exch ( addr1 addr2 -- ) dup @ >r over @ swap ! r> swap ! ;
: partition ( l r -- l r r2 l2 )
2dup mid @ >r ( r: pivot )
2dup begin
swap begin dup @ r@ < while cell+ repeat
swap begin r@ over @ < while cell- repeat
2dup <= if 2dup exch >r cell+ r> cell- then
2dup > until r> drop ;
: qsort ( l r -- )
partition swap rot
\ 2over 2over - + < if 2swap then
2dup < if recurse else 2drop then
2dup < if recurse else 2drop then ;
: sort ( array len -- )
dup 2 < if 2drop exit then
1- cells over + qsort ;
Fortran[edit]
MODULE qsort_mod
IMPLICIT NONE
TYPE group
INTEGER :: order ! original order of unsorted data
REAL :: VALUE ! values to be sorted by
END TYPE group
CONTAINS
RECURSIVE SUBROUTINE QSort(a,na)
! DUMMY ARGUMENTS
INTEGER, INTENT(in) :: nA
TYPE (group), DIMENSION(nA), INTENT(in out) :: A
! LOCAL VARIABLES
INTEGER :: left, right
REAL :: random
REAL :: pivot
TYPE (group) :: temp
INTEGER :: marker
IF (nA > 1) THEN
CALL random_NUMBER(random)
pivot = A(INT(random*REAL(nA-1))+1)%VALUE ! Choice a random pivot (not best performance, but avoids worst-case)
left = 1
right = nA
! Partition loop
DO
IF (left >= right) EXIT
DO
IF (A(right)%VALUE <= pivot) EXIT
right = right - 1
END DO
DO
IF (A(left)%VALUE >= pivot) EXIT
left = left + 1
END DO
IF (left < right) THEN
temp = A(left)
A(left) = A(right)
A(right) = temp
END IF
END DO
IF (left == right) THEN
marker = left + 1
ELSE
marker = left
END IF
CALL QSort(A(:marker-1),marker-1)
CALL QSort(A(marker:),nA-marker+1)
END IF
END SUBROUTINE QSort
END MODULE qsort_mod
! Test Qsort Module
PROGRAM qsort_test
USE qsort_mod
IMPLICIT NONE
INTEGER, PARAMETER :: nl = 10, nc = 5, l = nc*nl, ns=33
TYPE (group), DIMENSION(l) :: A
INTEGER, DIMENSION(ns) :: seed
INTEGER :: i
REAL :: random
CHARACTER(LEN=80) :: fmt1, fmt2
! Using the Fibonacci sequence to initialize seed:
seed(1) = 1 ; seed(2) = 1
DO i = 3,ns
seed(i) = seed(i-1)+seed(i-2)
END DO
! Formats of the outputs
WRITE(fmt1,'(A,I2,A)') '(', nc, '(I5,2X,F6.2))'
WRITE(fmt2,'(A,I2,A)') '(3x', nc, '("Ord. Num.",3x))'
PRINT *, "Unsorted Values:"
PRINT fmt2,
CALL random_SEED(put = seed)
DO i = 1, l
CALL random_NUMBER(random)
A(i)%VALUE = NINT(1000*random)/10.0
A(i)%order = i
IF (MOD(i,nc) == 0) WRITE (*,fmt1) A(i-nc+1:i)
END DO
PRINT *
CALL QSort(A,l)
PRINT *, "Sorted Values:"
PRINT fmt2,
DO i = nc, l, nc
IF (MOD(i,nc) == 0) WRITE (*,fmt1) A(i-nc+1:i)
END DO
STOP
END PROGRAM qsort_test
- Output:
Compiled with GNU Fortran 9.3.0 Unsorted Values: Ord. Num. Ord. Num. Ord. Num. Ord. Num. Ord. Num. 1 47.10 2 11.70 3 35.80 4 35.20 5 55.30 6 74.60 7 28.40 8 30.10 9 70.60 10 66.90 11 15.90 12 71.70 13 49.80 14 2.60 15 12.80 16 93.00 17 45.20 18 21.50 19 20.70 20 39.50 21 9.20 22 21.60 23 18.60 24 22.80 25 98.50 26 97.50 27 43.90 28 8.30 29 84.10 30 88.80 31 10.30 32 30.50 33 79.30 34 24.40 35 45.00 36 48.30 37 69.80 38 86.00 39 68.40 40 22.90 41 7.50 42 18.50 43 80.40 44 29.60 45 43.60 46 11.20 47 36.20 48 23.20 49 45.30 50 12.30 Sorted Values: Ord. Num. Ord. Num. Ord. Num. Ord. Num. Ord. Num. 14 2.60 41 7.50 28 8.30 21 9.20 31 10.30 46 11.20 2 11.70 50 12.30 15 12.80 11 15.90 42 18.50 23 18.60 19 20.70 18 21.50 22 21.60 24 22.80 40 22.90 48 23.20 34 24.40 7 28.40 44 29.60 8 30.10 32 30.50 4 35.20 3 35.80 47 36.20 20 39.50 45 43.60 27 43.90 35 45.00 17 45.20 49 45.30 1 47.10 36 48.30 13 49.80 5 55.30 10 66.90 39 68.40 37 69.80 9 70.60 12 71.70 6 74.60 33 79.30 43 80.40 29 84.10 38 86.00 30 88.80 16 93.00 26 97.50 25 98.50
A discussion about Quicksort pivot options, free source code for an optimized quicksort using insertion sort as a finisher, and an OpenMP multi-threaded quicksort is found at balfortran.org
FreeBASIC[edit]
' version 23-10-2016
' compile with: fbc -s console
' sort from lower bound to the highter bound
' array's can have subscript range from -2147483648 to +2147483647
Sub quicksort(qs() As Long, l As Long, r As Long)
Dim As ULong size = r - l +1
If size < 2 Then Exit Sub
Dim As Long i = l, j = r
Dim As Long pivot = qs(l + size \ 2)
Do
While qs(i) < pivot
i += 1
Wend
While pivot < qs(j)
j -= 1
Wend
If i <= j Then
Swap qs(i), qs(j)
i += 1
j -= 1
End If
Loop Until i > j
If l < j Then quicksort(qs(), l, j)
If i < r Then quicksort(qs(), i, r)
End Sub
' ------=< MAIN >=------
Dim As Long i, array(-7 To 7)
Dim As Long a = LBound(array), b = UBound(array)
Randomize Timer
For i = a To b : array(i) = i : Next
For i = a To b ' little shuffle
Swap array(i), array(Int(Rnd * (b - a +1)) + a)
Next
Print "unsorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
quicksort(array(), LBound(array), UBound(array))
Print " sorted ";
For i = a To b : Print Using "####"; array(i); : Next : Print
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
unsorted -5 -6 -1 0 2 -4 -7 6 -2 -3 4 7 5 1 3 sorted -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
FunL[edit]
def
qsort( [] ) = []
qsort( p:xs ) = qsort( xs.filter((< p)) ) + [p] + qsort( xs.filter((>= p)) )
Here is a more efficient version using the partition
function.
def
qsort( [] ) = []
qsort( x:xs ) =
val (ys, zs) = xs.partition( (< x) )
qsort( ys ) + (x : qsort( zs ))
println( qsort([4, 2, 1, 3, 0, 2]) )
println( qsort(["Juan", "Daniel", "Miguel", "William", "Liam", "Ethan", "Jacob"]) )
- Output:
[0, 1, 2, 2, 3, 4] [Daniel, Ethan, Jacob, Juan, Liam, Miguel, William]
FutureBasic[edit]
include "NSLog.incl"
local fn Quicksort( qs as CFMutableArrayRef, l as NSInteger, r as NSInteger )
UInt64 size = r - l + 1
if size < 2 then exit fn
NSinteger i = l, j = r
NSinteger pivot = fn NumberIntegerValue( qs[l+size / 2] )
do
while fn NumberIntegerValue( qs[i] ) < pivot
i++
wend
while pivot < fn NumberIntegerValue( qs[j] )
j--
wend
if ( i <= j )
MutableArrayExchangeObjects( qs, i, j )
i++
j--
end if
until i > j
if l < j then fn Quicksort( qs, l, j )
if i < r then fn Quicksort( qs, i, r )
end fn
CFMutableArrayRef qs
CFArrayRef unsorted
NSUInteger i, amount
qs = fn MutableArrayWithCapacity(0)
for i = 0 to 25
if i mod 2 == 0 then amount = 100 else amount = 10000
MutableArrayInsertObjectAtIndex( qs, fn NumberWithInteger( rnd(amount) ), i )
next
unsorted = fn ArrayWithArray( qs )
fn QuickSort( qs, 0, len(qs) - 1 )
NSLog( @"\n-----------------\nUnsorted : Sorted\n-----------------" )
for i = 0 to 25
NSLog( @"%8ld : %-8ld", fn NumberIntegerValue( unsorted[i] ), fn NumberIntegerValue( qs[i] ) )
next
randomize
HandleEvents
- Output:
----------------- Unsorted : Sorted ----------------- 97 : 5 6168 : 30 61 : 34 8847 : 40 55 : 46 2570 : 49 40 : 55 4676 : 61 94 : 62 693 : 67 62 : 79 3419 : 94 30 : 97 936 : 693 5 : 733 9910 : 936 67 : 1395 8460 : 1796 79 : 2570 9352 : 3419 49 : 4676 1395 : 6168 34 : 8460 733 : 8847 46 : 9352 1796 : 9910
Go[edit]
Note that Go's sort.Sort
function is a Quicksort so in practice it would be just be used.
It's actually a combination of quick sort, heap sort, and insertion sort.
It starts with a quick sort, after a depth of 2*ceil(lg(n+1)) it switches to heap sort, or once a partition becomes small (less than eight items) it switches to insertion sort.
Old school, following Hoare's 1962 paper.
As a nod to the task request to work for all types with weak strict ordering, code below uses the < operator when comparing key values. The three points are noted in the code below.
Actually supporting arbitrary types would then require at a minimum a user supplied less-than function, and values referenced from an array of interface{} types. More efficient and flexible though is the sort interface of the Go sort package. Replicating that here seemed beyond the scope of the task so code was left written to sort an array of ints.
Go has no language support for indexing with discrete types other than integer types, so this was not coded.
Finally, the choice of a recursive closure over passing slices to a recursive function is really just a very small optimization. Slices are cheap because they do not copy the underlying array, but there's still a tiny bit of overhead in constructing the slice object. Passing just the two numbers is in the interest of avoiding that overhead.
package main
import "fmt"
func main() {
list := []int{31, 41, 59, 26, 53, 58, 97, 93, 23, 84}
fmt.Println("unsorted:", list)
quicksort(list)
fmt.Println("sorted! ", list)
}
func quicksort(a []int) {
var pex func(int, int)
pex = func(lower, upper int) {
for {
switch upper - lower {
case -1, 0: // 0 or 1 item in segment. nothing to do here!
return
case 1: // 2 items in segment
// < operator respects strict weak order
if a[upper] < a[lower] {
// a quick exchange and we're done.
a[upper], a[lower] = a[lower], a[upper]
}
return
// Hoare suggests optimized sort-3 or sort-4 algorithms here,
// but does not provide an algorithm.
}
// Hoare stresses picking a bound in a way to avoid worst case
// behavior, but offers no suggestions other than picking a
// random element. A function call to get a random number is
// relatively expensive, so the method used here is to simply
// choose the middle element. This at least avoids worst case
// behavior for the obvious common case of an already sorted list.
bx := (upper + lower) / 2
b := a[bx] // b = Hoare's "bound" (aka "pivot")
lp := lower // lp = Hoare's "lower pointer"
up := upper // up = Hoare's "upper pointer"
outer:
for {
// use < operator to respect strict weak order
for lp < upper && !(b < a[lp]) {
lp++
}
for {
if lp > up {
// "pointers crossed!"
break outer
}
// < operator for strict weak order
if a[up] < b {
break // inner
}
up--
}
// exchange
a[lp], a[up] = a[up], a[lp]
lp++
up--
}
// segment boundary is between up and lp, but lp-up might be
// 1 or 2, so just call segment boundary between lp-1 and lp.
if bx < lp {
// bound was in lower segment
if bx < lp-1 {
// exchange bx with lp-1
a[bx], a[lp-1] = a[lp-1], b
}
up = lp - 2
} else {
// bound was in upper segment
if bx > lp {
// exchange
a[bx], a[lp] = a[lp], b
}
up = lp - 1
lp++
}
// "postpone the larger of the two segments" = recurse on
// the smaller segment, then iterate on the remaining one.
if up-lower < upper-lp {
pex(lower, up)
lower = lp
} else {
pex(lp, upper)
upper = up
}
}
}
pex(0, len(a)-1)
}
- Output:
unsorted: [31 41 59 26 53 58 97 93 23 84] sorted! [23 26 31 41 53 58 59 84 93 97]
More traditional version of quicksort. It work generically with any container that conforms to sort.Interface
.
package main
import (
"fmt"
"sort"
"math/rand"
)
func partition(a sort.Interface, first int, last int, pivotIndex int) int {
a.Swap(first, pivotIndex) // move it to beginning
left := first+1
right := last
for left <= right {
for left <= last && a.Less(left, first) {
left++
}
for right >= first && a.Less(first, right) {
right--
}
if left <= right {
a.Swap(left, right)
left++
right--
}
}
a.Swap(first, right) // swap into right place
return right
}
func quicksortHelper(a sort.Interface, first int, last int) {
if first >= last {
return
}
pivotIndex := partition(a, first, last, rand.Intn(last - first + 1) + first)
quicksortHelper(a, first, pivotIndex-1)
quicksortHelper(a, pivotIndex+1, last)
}
func quicksort(a sort.Interface) {
quicksortHelper(a, 0, a.Len()-1)
}
func main() {
a := []int{1, 3, 5, 7, 9, 8, 6, 4, 2}
fmt.Printf("Unsorted: %v\n", a)
quicksort(sort.IntSlice(a))
fmt.Printf("Sorted: %v\n", a)
b := []string{"Emil", "Peg", "Helen", "Juergen", "David", "Rick", "Barb", "Mike", "Tom"}
fmt.Printf("Unsorted: %v\n", b)
quicksort(sort.StringSlice(b))
fmt.Printf("Sorted: %v\n", b)
}
- Output:
Unsorted: [1 3 5 7 9 8 6 4 2] Sorted: [1 2 3 4 5 6 7 8 9] Unsorted: [Emil Peg Helen Juergen David Rick Barb Mike Tom] Sorted: [Barb David Emil Helen Juergen Mike Peg Rick Tom]
Haskell[edit]
The famous two-liner, reflecting the underlying algorithm directly:
qsort [] = []
qsort (x:xs) = qsort [y | y <- xs, y < x] ++ [x] ++ qsort [y | y <- xs, y >= x]
A more efficient version, doing only one comparison per element:
import Data.List (partition)
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort ys ++ [x] ++ qsort zs where
(ys, zs) = partition (< x) xs
Icon and Unicon[edit]
Implementation notes:
- Since this transparently sorts both string and list arguments the result must 'return' to bypass call by value (strings)
- The partition procedure must "return" two values - 'suspend' is used to accomplish this
Algorithm notes:
- The use of a type specific sorting operator meant that a general pivot choice need to be made. The median of the ends and random middle seemed reasonable. It turns out to have been suggested by Sedgewick.
- Sedgewick's suggestions for tail calling to recurse into the larger side and using insertion sort below a certain size were not implemented. (Q: does Icon/Unicon has tail calling optimizations?)
Note: This example relies on the supporting procedures 'sortop', and 'demosort' in Bubble Sort. The full demosort exercises the named sort of a list with op = "numeric", "string", ">>" (lexically gt, descending),">" (numerically gt, descending), a custom comparator, and also a string.
- Output:
Sorting Demo using procedure quicksort on list : [ 3 14 1 5 9 2 6 3 ] with op = &null: [ 1 2 3 3 5 6 9 14 ] (0 ms) ... on string : "qwerty" with op = &null: "eqrtwy" (0 ms)
IDL[edit]
IDL has a powerful optimized sort() built-in. The following is thus merely for demonstration.
function qs, arr
if (count = n_elements(arr)) lt 2 then return,arr
pivot = total(arr) / count ; use the average for want of a better choice
return,[qs(arr[where(arr le pivot)]),qs(arr[where(arr gt pivot)])]
end
Example:
IDL> print,qs([3,17,-5,12,99]) -5 3 12 17 99
Idris[edit]
quicksort : Ord elem => List elem -> List elem
quicksort [] = []
quicksort (x :: xs) =
let lesser = filter (< x) xs
greater = filter(>= x) xs in
(quicksort lesser) ++ [x] ++ (quicksort greater)
Example:
*quicksort> quicksort [1, 3, 7, 2, 5, 4, 9, 6, 8, 0] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] : List Integer
Io[edit]
List do(
quickSort := method(
if(size > 1) then(
pivot := at(size / 2 floor)
return select(x, x < pivot) quickSort appendSeq(
select(x, x == pivot) appendSeq(select(x, x > pivot) quickSort)
)
) else(return self)
)
quickSortInPlace := method(
copy(quickSort)
)
)
lst := list(5, -1, -4, 2, 9)
lst quickSort println # ==> list(-4, -1, 2, 5, 9)
lst quickSortInPlace println # ==> list(-4, -1, 2, 5, 9)
Another more low-level Quicksort implementation can be found in Io's [github ] repository.
Isabelle[edit]
theory Quicksort
imports Main
begin
fun quicksort :: "('a :: linorder) list ⇒ 'a list" where
"quicksort [] = []"
| "quicksort (x#xs) = (quicksort [y←xs. y<x]) @ [x] @ (quicksort [y←xs. y>x])"
lemma "quicksort [4::int, 2, 7, 1] = [1, 2, 4, 7]"
by(code_simp)
lemma set_first_second_partition:
fixes x :: "'a :: linorder"
shows "{y ∈ ys. y < x} ∪ {x} ∪ {y ∈ ys. x < y} =
insert x ys"
by fastforce
lemma set_quicksort: "set (quicksort xs) = set xs"
by(induction xs rule: quicksort.induct)
(simp add: set_first_second_partition[simplified])+
theorem "sorted (quicksort xs)"
proof(induction xs rule: quicksort.induct)
case 1
show "sorted (quicksort [])" by simp
next
case (2 x xs)
assume IH_less: "sorted (quicksort [y←xs. y<x])"
assume IH_greater: "sorted (quicksort [y←xs. y>x])"
have pivot_geq_first_partition:
"∀z∈set (quicksort [y←xs. y<x]). z ≤ x"
by (simp add: set_quicksort less_imp_le)
have pivot_leq_second_partition:
"∀z ∈ (set (quicksort [y←xs. y>x])). (x ≤ z)"
by (simp add: set_quicksort less_imp_le)
have first_partition_leq_second_partition:
"∀p∈set (quicksort [y←xs. y<x]).
∀z ∈ (set (quicksort [y←xs. y>x])). (p ≤ z)"
by (auto simp add: set_quicksort)
from IH_less IH_greater
pivot_geq_first_partition pivot_leq_second_partition
first_partition_leq_second_partition
show "sorted (quicksort (x # xs))" by(simp add: sorted_append)
qed
text‹
The specification on rosettacode says
▪ All elements less than the pivot must be in the first partition.
▪ All elements greater than the pivot must be in the second partition.
Since this specification neither says "less than or equal" nor
"greater or equal", this quicksort implementation removes duplicate elements.
›
lemma "quicksort [1::int, 1, 1, 2, 2, 3] = [1, 2, 3]"
by(code_simp)
text‹If we try the following, we automatically get a counterexample›
lemma "length (quicksort xs) = length xs"
(*
Auto Quickcheck found a counterexample:
xs = [a⇩1, a⇩1]
Evaluated terms:
length (quicksort xs) = 1
length xs = 2
*)
oops
end
J[edit]
sel=: 1 : 'u # ['
quicksort=: 3 : 0
if.
1 >: #y
do.
y
else.
e=. y{~?#y
(quicksort y <sel e),(y =sel e),quicksort y >sel e
end.
)
See the Quicksort essay in the J Wiki for additional explanations and examples.
Java[edit]
Imperative[edit]
public static <E extends Comparable<? super E>> List<E> quickSort(List<E> arr) {
if (arr.isEmpty())
return arr;
else {
E pivot = arr.get(0);
List<E> less = new LinkedList<E>();
List<E> pivotList = new LinkedList<E>();
List<E> more = new LinkedList<E>();
// Partition
for (E i: arr) {
if (i.compareTo(pivot) < 0)
less.add(i);
else if (i.compareTo(pivot) > 0)
more.add(i);
else
pivotList.add(i);
}
// Recursively sort sublists
less = quickSort(less);
more = quickSort(more);
// Concatenate results
less.addAll(pivotList);
less.addAll(more);
return less;
}
}
Functional[edit]
public static <E extends Comparable<E>> List<E> sort(List<E> col) {
if (col == null || col.isEmpty())
return Collections.emptyList();
else {
E pivot = col.get(0);
Map<Integer, List<E>> grouped = col.stream()
.collect(Collectors.groupingBy(pivot::compareTo));
return Stream.of(sort(grouped.get(1)), grouped.get(0), sort(grouped.get(-1)))
.flatMap(Collection::stream).collect(Collectors.toList());
}
}
JavaScript[edit]
Imperative[edit]
function sort(array, less) {
function swap(i, j) {
var t = array[i];
array[i] = array[j];
array[j] = t;
}
function quicksort(left, right) {
if (left < right) {
var pivot = array[left + Math.floor((right - left) / 2)],
left_new = left,
right_new = right;
do {
while (less(array[left_new], pivot)) {
left_new += 1;
}
while (less(pivot, array[right_new])) {
right_new -= 1;
}
if (left_new <= right_new) {
swap(left_new, right_new);
left_new += 1;
right_new -= 1;
}
} while (left_new <= right_new);
quicksort(left, right_new);
quicksort(left_new, right);
}
}
quicksort(0, array.length - 1);
return array;
}
var test_array = [10, 3, 11, 15, 19, 1];
var sorted_array = sort(test_array, function(a,b) { return a<b; });
- Output:
[ 1, 3, 10, 11, 15, 19 ]
Functional[edit]
ES6[edit]
Using destructuring and satisfying immutability we can propose a single expresion solution (from https://github.com/ddcovery/expressive_sort)
const qsort = ([pivot, ...others]) =>
pivot === void 0 ? [] : [
...qsort(others.filter(n => n < pivot)),
pivot,
...qsort(others.filter(n => n >= pivot))
];
qsort( [ 11.8, 14.1, 21.3, 8.5, 16.7, 5.7 ] )
- Output:
[ 5.7, 8.5, 11.8, 14.1, 16.7, 21.3 ]
ES5[edit]
Unlike what happens with ES6, there are no destructuring nor lambdas, but we can ensure immutability and propose a single expression solution with standard anonymous functions
function qsort( xs ){
return xs.length === 0 ? [] : [].concat(
qsort( xs.slice(1).filter(function(x){ return x< xs[0] })),
xs[0],
qsort( xs.slice(1).filter(function(x){ return x>= xs[0] }))
)
}
qsort( [ 11.8, 14.1, 21.3, 8.5, 16.7, 5.7 ] )
- Output:
[5.7, 8.5, 11.8, 14.1, 16.7, 21.3]
Joy[edit]
DEFINE qsort ==
[small] # termination condition: 0 or 1 element
[] # do nothing
[uncons [>] split] # pivot and two lists
[enconcat] # insert the pivot after the recursion
binrec. # recursion on the two lists
jq[edit]
jq's built-in sort currently (version 1.4) uses the standard C qsort, a quicksort. sort can be used on any valid JSON array.
Example:[1, 1.1, [1,2], true, false, null, {"a":1}, null] | sort
- Output:
[null,null,false,true,1,1.1,[1,2],{"a":1}]
def quicksort:
if length < 2 then . # it is already sorted
else .[0] as $pivot
| reduce .[] as $x
# state: [less, equal, greater]
( [ [], [], [] ]; # three empty arrays:
if $x < $pivot then .[0] += [$x] # add x to less
elif $x == $pivot then .[1] += [$x] # add x to equal
else .[2] += [$x] # add x to greater
end
)
| (.[0] | quicksort ) + .[1] + (.[2] | quicksort )
end ;
and so both are omitted here.
Julia[edit]
Built-in function for in-place sorting via quicksort (the code from the standard library is quite readable):
sort!(A, alg=QuickSort)
A simple polymorphic implementation of an in-place recursive quicksort (based on the pseudocode above):
function quicksort!(A,i=1,j=length(A))
if j > i
pivot = A[rand(i:j)] # random element of A
left, right = i, j
while left <= right
while A[left] < pivot
left += 1
end
while A[right] > pivot
right -= 1
end
if left <= right
A[left], A[right] = A[right], A[left]
left += 1
right -= 1
end
end
quicksort!(A,i,right)
quicksort!(A,left,j)
end
return A
end
A one-line (but rather inefficient) implementation based on the Haskell version, which operates out-of-place and allocates temporary arrays:
qsort(L) = isempty(L) ? L : vcat(qsort(filter(x -> x < L[1], L[2:end])), L[1:1], qsort(filter(x -> x >= L[1], L[2:end])))
- Output:
julia> A = [84,77,20,60,47,20,18,97,41,49,31,39,73,68,65,52,1,92,15,9] julia> qsort(A) [1,9,15,18,20,20,31,39,41,47,49,52,60,65,68,73,77,84,92,97] julia> quicksort!(copy(A)) [1,9,15,18,20,20,31,39,41,47,49,52,60,65,68,73,77,84,92,97] julia> qsort(A) == quicksort!(copy(A)) == sort(A) == sort(A, alg=QuickSort) true
K[edit]
quicksort:{f:*x@1?#x;:[0=#x;x;,/(_f x@&x<f;x@&x=f;_f x@&x>f)]}
Example:
quicksort 1 3 5 7 9 8 6 4 2
- Output:
1 2 3 4 5 6 7 8 9
Explanation:
_f()
is the current function called recursively.
:[....]
generally means :[condition1;then1;condition2;then2;....;else]. Though here it is used as :[if;then;else].
This construct
f:*x@1?#x
assigns a random element in x (the argument) to f, as the pivot value.
And here is the full if/then/else clause:
:[
0=#x; / if length of x is zero
x; / then return x
/ else
,/( / join the results of:
_f x@&x<f / sort (recursively) elements less than f (pivot)
x@&x=f / element equal to f
_f x@&x>f) / sort (recursively) elements greater than f
]
Though - as with APL and J - for larger arrays it's much faster to sort using "<" (grade up) which gives the indices of the list sorted ascending, i.e.
t@<t:1 3 5 7 9 8 6 4 2
Koka[edit]
Haskell-like solution
fun qsort( xs : list<int> ) : div list<int> {
match(xs) {
Cons(x,xx) -> {
val ys = xx.filter fn(el) { el < x }
val zs = xx.filter fn(el) { el >= x }
qsort(ys) + [x] + qsort(zs)
}
Nil -> Nil
}
}
or using standard partition
function
fun qsort( xs : list<int> ) : div list<int> {
match(xs) {
Cons(x,xx) -> {
val (ys, zs) = xx.partition fn(el) { el < x }
qsort(ys) + [x] + qsort(zs)
}
Nil -> Nil
}
}
Example:
fun main() {
val arr = [24,63,77,26,84,64,56,80,85,17]
println(arr.qsort.show)
}
- Output:
[17,24,26,56,63,64,77,80,84,85]
Kotlin[edit]
A version that reflects the algorithm directly:
fun <E : Comparable<E>> List<E>.qsort(): List<E> =
if (size < 2) this
else filter { it < first() }.qsort() +
filter { it == first() } +
filter { it > first() }.qsort()
A more efficient version that does only one comparison per element:
fun <E : Comparable<E>> List<E>.qsort(): List<E> =
if (size < 2) this
else {
val (less, high) = subList(1, size).partition { it < first() }
less.qsort() + first() + high.qsort()
}
Lambdatalk[edit]
We create a binary tree from a random array, then we walk the canopy.
1) three functions for readability:
{def BT.data {lambda {:t} {A.get 0 :t}}} -> BT.data
{def BT.left {lambda {:t} {A.get 1 :t}}} -> BT.left
{def BT.right {lambda {:t} {A.get 2 :t}}} -> BT.right
2) adding a leaf to the tree:
{def BT.add {lambda {:x :t}
{if {A.empty? :t}
then {A.new :x {A.new} {A.new}}
else {if {= :x {BT.data :t}}
then :t
else {if {< :x {BT.data :t}}
then {A.new {BT.data :t}
{BT.add :x {BT.left :t}}
{BT.right :t}}
else {A.new {BT.data :t}
{BT.left :t}
{BT.add :x {BT.right :t}} }}}}}}
-> BT.add
3) creating the tree from an array of numbers:
{def BT.create
{def BT.create.rec
{lambda {:l :t}
{if {A.empty? :l}
then :t
else {BT.create.rec {A.rest :l}
{BT.add {A.first :l} :t}} }}}
{lambda {:l}
{BT.create.rec :l {A.new}} }}
-> BT.create
4) walking the canopy -> sorting in increasing order:
{def BT.sort
{lambda {:t}
{if {A.empty? :t}
then else {BT.sort {BT.left :t}}
{BT.data :t}
{BT.sort {BT.right :t}} }}}
-> BT.sort
Testing
1) generating random numbers:
{def L {A.new
{S.map {lambda {:n} {floor {* {random} 100000}}} {S.serie 1 100}}}}
-> L = [1850,7963,50540,92667,72892,47361,19018,40640,10126,80235,48407,51623,63597,71675,27814,63478,18985,88032,46585,85209,
74053,95005,27592,9575,22162,35904,70467,38527,89715,36594,54309,39950,89345,72224,7772,65756,68766,43942,52422,85144,
66010,38961,21647,53194,72166,33545,49037,23218,27969,83566,19382,53120,55291,77374,27502,66648,99637,37322,9815,432,90565,
37831,26503,99232,87024,65625,75155,55382,30120,58117,70031,13011,81375,10490,39786,1926,71311,4213,55183,2583,22075,90411,
92928,61120,94259,433,93332,88423,64119,40850,94318,27816,84818,90632,5094,36696,94705,50602,45818,61365]
2) creating the tree is the main work:
{def T {BT.create {L}}}
-> T = [1850,[432,],[433,],]]],[7963,[7772,[1926,],[4213,[2583,],]],[5094,],]]]],]],[50540,[47361,[19018,[10126,[9575,],
[9815,],]]],[18985,[13011,[10490,],]],]],]]],[40640,[27814,[27592,[22162,[21647,[19382,],]],[22075,],]]],[23218,],
[27502,[26503,],]],]]]],]],[35904,[33545,[27969,[27816,],]],[30120,],]]],]],[38527,[36594,],[37322,[36696,],]],[37831,],]]]],
[39950,[38961,],[39786,],]]],]]]]],[46585,[43942,[40850,],]],[45818,],]]],]]]],[48407,],[49037,],]]]],[92667,[72892,
[51623,[50602,],]],[63597,[63478,[54309,[52422,],[53194,[53120,],]],]]],[55291,[55183,],]],[55382,],[58117,],[61120,],[61365,],]]]]]]],]],[71675,[70467,[65756,[65625,[64119,],]],]],[68766,[66010,],[66648,],]]],[70031,],]]]],[71311,],]]],
[72224,[72166,],]],]]]]],[80235,[74053,],[77374,[75155,],]],]]],[88032,[85209,[85144,[83566,[81375,],]],[84818,],]]],]],
[87024,],]]],[89715,[89345,[88423,],]],]],[90565,[90411,],]],[90632,],]]]]]]],[95005,[92928,],[94259,[93332,],]],[94318,],
[94705,],]]]]],[99637,[99232,],]],]]]]]]]
3) walking the canopy is fast:
{BT.sort {T}}
-> 432 433 1850 1926 2583 4213 5094 7772 7963 9575 9815 10126 10490 13011 18985 19018 19382 21647 22075 22162 23218 26503
27502 27592 27814 27816 27969 30120 33545 35904 36594 36696 37322 37831 38527 38961 39786 39950 40640 40850 43942 45818
46585 47361 48407 49037 50540 50602 51623 52422 53120 53194 54309 55183 55291 55382 58117 61120 61365 63478 63597 64119
65625 65756 66010 66648 68766 70031 70467 71311 71675 72166 72224 72892 74053 75155 77374 80235 81375 83566 84818 85144
85209 87024 88032 88423 89345 89715 90411 90565 90632 92667 92928 93332 94259 94318 94705 95005 99232 99637
4) walking with new leaves is fast:
{BT.sort {BT.add -1 {T}}}
-> -1 432 433 1850 1926 2583 4213 5094 7772 7963 9575 9815 10126 10490 13011 18985 19018 19382 21647 22075 22162 23218 26503
27502 27592 27814 27816 27969 30120 33545 35904 36594 36696 37322 37831 38527 38961 39786 39950 40640 40850 43942 45818 46585
47361 48407 49037 50540 50602 51623 52422 53120 53194 54309 55183 55291 55382 58117 61120 61365 63478 63597 64119 65625 65756
66010 66648 68766 70031 70467 71311 71675 72166 72224 72892 74053 75155 77374 80235 81375 83566 84818 85144 85209 87024 88032
88423 89345 89715 90411 90565 90632 92667 92928 93332 94259 94318 94705 95005 99232 99637
{BT.sort {BT.add 50000 {T}}}
-> 432 433 1850 1926 2583 4213 5094 7772 7963 9575 9815 10126 10490 13011 18985 19018 19382 21647 22075 22162 23218 26503
27502 27592 27814 27816 27969 30120 33545 35904 36594 36696 37322 37831 38527 38961 39786 39950 40640 40850 43942 45818 46585
47361 48407 49037 50000 50540 50602 51623 52422 53120 53194 54309 55183 55291 55382 58117 61120 61365 63478 63597 64119 65625
65756 66010 66648 68766 70031 70467 71311 71675 72166 72224 72892 74053 75155 77374 80235 81375 83566 84818 85144 85209 87024
88032 88423 89345 89715 90411 90565 90632 92667 92928 93332 94259 94318 94705 95005 99232 99637
{BT.sort {BT.add 100000 {T}}}
-> 432 433 1850 1926 2583 4213 5094 7772 7963 9575 9815 10126 10490 13011 18985 19018 19382 21647 22075 22162 23218 26503
27502 27592 27814 27816 27969 30120 33545 35904 36594 36696 37322 37831 38527 38961 39786 39950 40640 40850 43942 45818 46585
47361 48407 49037 50540 50602 51623 52422 53120 53194 54309 55183 55291 55382 58117 61120 61365 63478 63597 64119 65625 65756
66010 66648 68766 70031 70467 71311 71675 72166 72224 72892 74053 75155 77374 80235 81375 83566 84818 85144 85209 87024 88032
88423 89345 89715 90411 90565 90632 92667 92928 93332 94259 94318 94705 95005 99232 99637 100000
Lobster[edit]
include "std.lobster"
def quicksort(xs, lt):
if xs.length <= 1:
xs
else:
pivot := xs[0]
tail := xs.slice(1, -1)
f1 := filter tail: lt(_, pivot)
f2 := filter tail: !lt(_, pivot)
append(append(quicksort(f1, lt), [ pivot ]),
quicksort(f2, lt))
sorted := [ 3, 9, 5, 4, 1, 3, 9, 5, 4, 1 ].quicksort(): _a < _b
print sorted
Logo[edit]
; quicksort (lists, functional)
to small? :list
output or [empty? :list] [empty? butfirst :list]
end
to quicksort :list
if small? :list [output :list]
localmake "pivot first :list
output (sentence
quicksort filter [? < :pivot] butfirst :list
filter [? = :pivot] :list
quicksort filter [? > :pivot] butfirst :list
)
end
show quicksort [1 3 5 7 9 8 6 4 2]
; quicksort (arrays, in-place)
to incr :name
make :name (thing :name) + 1
end
to decr :name
make :name (thing :name) - 1
end
to swap :i :j :a
localmake "t item :i :a
setitem :i :a item :j :a
setitem :j :a :t
end
to quick :a :low :high
if :high <= :low [stop]
localmake "l :low
localmake "h :high
localmake "pivot item ashift (:l + :h) -1 :a
do.while [
while [(item :l :a) < :pivot] [incr "l]
while [(item :h :a) > :pivot] [decr "h]
if :l <= :h [swap :l :h :a incr "l decr "h]
] [:l <= :h]
quick :a :low :h
quick :a :l :high
end
to sort :a
quick :a first :a count :a
end
make "test {1 3 5 7 9 8 6 4 2}
sort :test
show :test
Logtalk[edit]
quicksort(List, Sorted) :-
quicksort(List, [], Sorted).
quicksort([], Sorted, Sorted).
quicksort([Pivot| Rest], Acc, Sorted) :-
partition(Rest, Pivot, Smaller0, Bigger0),
quicksort(Smaller0, [Pivot| Bigger], Sorted),
quicksort(Bigger0, Acc, Bigger).
partition([], _, [], []).
partition([X| Xs], Pivot, Smalls, Bigs) :-
( X @< Pivot ->
Smalls = [X| Rest],
partition(Xs, Pivot, Rest, Bigs)
; Bigs = [X| Rest],
partition(Xs, Pivot, Smalls, Rest)
).
Lua[edit]
NOTE: If you want to use quicksort in a Lua script, you don't need to implement it yourself. Just do:table.sort(tableName)
in-place[edit]
--in-place quicksort
function quicksort(t, start, endi)
start, endi = start or 1, endi or #t
--partition w.r.t. first element
if(endi - start < 1) then return t end
local pivot = start
for i = start + 1, endi do
if t[i] <= t[pivot] then
if i == pivot + 1 then
t[pivot],t[pivot+1] = t[pivot+1],t[pivot]
else
t[pivot],t[pivot+1],t[i] = t[i],t[pivot],t[pivot+1]
end
pivot = pivot + 1
end
end
t = quicksort(t, start, pivot - 1)
return quicksort(t, pivot + 1, endi)
end
--example
print(unpack(quicksort{5, 2, 7, 3, 4, 7, 1}))
non in-place[edit]
function quicksort(t)
if #t<2 then return t end
local pivot=t[1]
local a,b,c={},{},{}
for _,v in ipairs(t) do
if v<pivot then a[#a+1]=v
elseif v>pivot then c[#c+1]=v
else b[#b+1]=v
end
end
a=quicksort(a)
c=quicksort(c)
for _,v in ipairs(b) do a[#a+1]=v end
for _,v in ipairs(c) do a[#a+1]=v end
return a
end
Lucid[edit]
qsort(a) = if eof(first a) then a else follow(qsort(b0),qsort(b1)) fi
where
p = first a < a;
b0 = a whenever p;
b1 = a whenever not p;
follow(x,y) = if xdone then y upon xdone else x fi
where
xdone = iseod x fby xdone or iseod x;
end;
end
M2000 Interpreter[edit]
Recursive calling Functions[edit]
Module Checkit1 {
Group Quick {
Private:
Function partition {
Read &A(), p, r
x = A(r)
i = p-1
For j=p to r-1 {
If .LE(A(j), x) Then {
i++
Swap A(i),A(j)
}
}
Swap A(i+1),A(r)
= i+1
}
Public:
LE=Lambda->Number<=Number
Function quicksort {
Read &A(), p, r
If p < r Then {
q = .partition(&A(), p, r)
Call .quicksort(&A(), p, q - 1)
Call .quicksort(&A(), q + 1, r)
}
}
}
Dim A(10)<<Random(50, 100)
Print A()
Call Quick.quicksort(&A(), 0, Len(A())-1)
Print A()
}
Checkit1
Recursive calling Subs[edit]
Variables p, r, q removed from quicksort function. we use stack for values. Also Partition push to stack now. Works for string arrays too.
Module Checkit2 {
Class Quick {
Private:
partition=lambda-> {
Read &A(), p, r : i = p-1 : x=A(r)
For j=p to r-1 {If .LE(A(j), x) Then i++:Swap A(i),A(j)
} : Swap A(i+1), A(r) : Push i+1
}
Public:
LE=Lambda->Number<=Number
Module ForStrings {
.partition<=lambda-> {
Read &A$(), p, r : i = p-1 : x$=A$(r)
For j=p to r-1 {If A$(j)<= x$ Then i++:Swap A$(i),A$(j)
} : Swap A$(i+1), A$(r) : Push i+1
}
}
Function quicksort (ref$) {
myQuick()
sub myQuick()
If Stackitem() >= stackitem(2) Then drop 2 : Exit Sub
Over 2, 2 : Call .partition(ref$) : Over : Shiftback 3, 2
myQuick(number, number - 1)
myQuick( number + 1, number)
End Sub
}
}
Quick=Quick()
Dim A(10)
A(0):=57, 83, 74, 98, 51, 73, 85, 76, 65, 92
Print A()
Call Quick.quicksort(&A(), 0, Len(A())-1)
Print A()
Quick=Quick()
Quick.ForStrings
Dim A$()
A$()=("one","two", "three","four", "five")
Print A$()
Call Quick.quicksort(&A$(), 0, Len(A$())-1)
Print A$()
}
Checkit2
Non Recursive[edit]
Partition function return two values (where we want q, and use it as q-1 an q+1 now Partition() return final q-1 and q+1_ Example include numeric array, array of arrays (we provide a lambda for comparison) and string array.
Module Checkit3 {
Class Quick {
Private:
partition=lambda-> {
Read &A(), p, r : i = p-1 : x=A(r)
For j=p to r-1 {If .LE(A(j), x) Then i++:Swap A(i),A(j)
} : Swap A(i+1), A(r) : Push i+2, i
}
Public:
LE=Lambda->Number<=Number
Module ForStrings {
.partition<=lambda-> {
Read &A$(), p, r : i = p-1 : x$=A$(r)
For j=p to r-1 {If A$(j)<= x$ Then i++:Swap A$(i),A$(j)
} : Swap A$(i+1), A$(r) : Push i+2, i
}
}
Function quicksort {
Read ref$
{
loop : If Stackitem() >= Stackitem(2) Then Drop 2 : if empty then {Break} else continue
over 2,2 : call .partition(ref$) :shift 3
}
}
}
Quick=Quick()
Dim A(10)<<Random(50, 100)
Print A()
Call Quick.quicksort(&A(), 0, Len(A())-1)
Print A()
Quick=Quick()
Function join$(a$()) {
n=each(a$(), 1, -2)
k$=""
while n {
overwrite k$, ".", n^:=array$(n)
}
=k$
}
Stack New {
Data "1.3.6.1.4.1.11.2.17.19.3.4.0.4" , "1.3.6.1.4.1.11.2.17.19.3.4.0.1", "1.3.6.1.4.1.11150.3.4.0.1"
Data "1.3.6.1.4.1.11.2.17.19.3.4.0.10", "1.3.6.1.4.1.11.2.17.5.2.0.79", "1.3.6.1.4.1.11150.3.4.0"
Dim Base 0, arr(Stack.Size)
Link arr() to arr$()
i=0 : While not Empty {arr$(i)=piece$(letter$+".", ".") : i++ }
}
\\ change comparison function
Quick.LE=lambda (a, b)->{
Link a, b to a$(), b$()
def i=-1
do {
i++
} until a$(i)="" or b$(i)="" or a$(i)<>b$(i)
if b$(i)="" then =a$(i)="":exit
if a$(i)="" then =true:exit
=val(a$(i))<=val(b$(i))
}
Call Quick.quicksort(&arr(), 0, Len(arr())-1)
For i=0 to len(arr())-1 {
Print join$(arr(i))
}
\\ Fresh load
Quick=Quick()
Quick.ForStrings
Dim A$()
A$()=("one","two", "three","four", "five")
Print A$()
Call Quick.quicksort(&A$(), 0, Len(A$())-1)
Print A$()
}
Checkit3
M4[edit]
dnl return the first element of a list when called in the funny way seen below
define(`arg1', `$1')dnl
dnl
dnl append lists 1 and 2
define(`append',
`ifelse(`$1',`()',
`$2',
`ifelse(`$2',`()',
`$1',
`substr($1,0,decr(len($1))),substr($2,1)')')')dnl
dnl
dnl separate list 2 based on pivot 1, appending to left 3 and right 4,
dnl until 2 is empty, and then combine the sort of left with pivot with
dnl sort of right
define(`sep',
`ifelse(`$2', `()',
`append(append(quicksort($3),($1)),quicksort($4))',
`ifelse(eval(arg1$2<=$1),1,
`sep($1,(shift$2),append($3,(arg1$2)),$4)',
`sep($1,(shift$2),$3,append($4,(arg1$2)))')')')dnl
dnl
dnl pick first element of list 1 as pivot and separate based on that
define(`quicksort',
`ifelse(`$1', `()',
`()',
`sep(arg1$1,(shift$1),`()',`()')')')dnl
dnl
quicksort((3,1,4,1,5,9))
- Output:
(1,1,3,4,5,9)
Maclisp[edit]
;; While not strictly required, it simplifies the
;; implementation considerably to use filter. MACLisp
;; Doesn't have one out of the box, so we bring our own
(DEFUN FILTER (F LIST)
(COND
((EQ LIST NIL) NIL)
((FUNCALL F (CAR LIST))
(CONS (CAR LIST) (FILTER F (CDR LIST))))
(T
(FILTER F (CDR LIST)))))
;; And then, quicksort.
(DEFUN QUICKSORT (LIST)
(COND
((OR (EQ LIST ())
(EQ (CDR LIST) ()))
LIST)
(T
(LET
((PIVOT (CAR LIST))
(REST (CDR LIST)))
(APPEND
(QUICKSORT (FILTER #'(LAMBDA (X) (<= X PIVOT)) REST))
(LIST PIVOT)
(QUICKSORT (FILTER #'(LAMBDA (X) (> X PIVOT)) REST)))))))
Maple[edit]
swap := proc(arr, a, b)
local temp := arr[a]:
arr[a] := arr[b]:
arr[b] := temp:
end proc:
quicksort := proc(arr, low, high)
local pi:
if (low < high) then
pi := qpart(arr,low,high):
quicksort(arr, low, pi-1):
quicksort(arr, pi+1, high):
end if:
end proc:
qpart := proc(arr, low, high)
local i,j,pivot;
pivot := arr[high]:
i := low-1:
for j from low to high-1 by 1 do
if (arr[j] <= pivot) then
i++:
swap(arr, i, j):
end if;
end do;
swap(arr, i+1, high):
return (i+1):
end proc:
a:=Array([12,4,2,1,0]);
quicksort(a,1,5);
a;
- Output:
[0, 1, 2, 4, 12]
Mathematica/Wolfram Language[edit]
QuickSort[x_List] := Module[{pivot},
If[Length@x <= 1, Return[x]];
pivot = RandomChoice@x;
Flatten@{QuickSort[Cases[x, j_ /; j < pivot]], Cases[x, j_ /; j == pivot], QuickSort[Cases[x, j_ /; j > pivot]]}
]
qsort[{}] = {};
qsort[{x_, xs___}] := Join[qsort@Select[{xs}, # <= x &], {x}, qsort@Select[{xs}, # > x &]];
QuickSort[{}] := {}
QuickSort[list: {__}] := With[{pivot=RandomChoice[list]},
Join[ <|1->{}, -1->{}|>, GroupBy[list,Order[#,pivot]&] ] // Catenate[ {QuickSort@#[1], #[0], QuickSort@#[-1]} ]&
]
MATLAB[edit]
This implements the pseudo-code in the specification. The input can be either a row or column vector, but the returned vector will always be a row vector. This can be modified to operate on any built-in primitive or user defined class by replacing the "<=" and ">" comparisons with "le" and "gt" functions respectively. This is because operators can not be overloaded, but the functions that are equivalent to the operators can be overloaded in class definitions.
This should be placed in a file named quickSort.m.
function sortedArray = quickSort(array)
if numel(array) <= 1 %If the array has 1 element then it can't be sorted
sortedArray = array;
return
end
pivot = array(end);
array(end) = [];
%Create two new arrays which contain the elements that are less than or
%equal to the pivot called "less" and greater than the pivot called
%"greater"
less = array( array <= pivot );
greater = array( array > pivot );
%The sorted array is the concatenation of the sorted "less" array, the
%pivot and the sorted "greater" array in that order
sortedArray = [quickSort(less) pivot quickSort(greater)];
end
A slightly more vectorized version of the above code that removes the need for the less and greater arrays:
function sortedArray = quickSort(array)
if numel(array) <= 1 %If the array has 1 element then it can't be sorted
sortedArray = array;
return
end
pivot = array(end);
array(end) = [];
sortedArray = [quickSort( array(array <= pivot) ) pivot quickSort( array(array > pivot) )];
end
Sample usage:
quickSort([4,3,7,-2,9,1])
ans =
-2 1 3 4 7 9
MAXScript[edit]
fn quickSort arr =
(
less = #()
pivotList = #()
more = #()
if arr.count <= 1 then
(
arr
)
else
(
pivot = arr[arr.count/2]
for i in arr do
(
case of
(
(i < pivot): (append less i)
(i == pivot): (append pivotList i)
(i > pivot): (append more i)
)
)
less = quickSort less
more = quickSort more
less + pivotList + more
)
)
a = #(4, 89, -3, 42, 5, 0, 2, 889)
a = quickSort a
Mercury[edit]
A quicksort that works on linked lists[edit]
%%%-------------------------------------------------------------------
:- module quicksort_task_for_lists.
:- interface.
:- import_module io.
:- pred main(io, io).
:- mode main(di, uo) is det.
:- implementation.
:- import_module int.
:- import_module list.
%%%-------------------------------------------------------------------
%%%
%%% Partitioning a list into three:
%%%
%%% Left elements less than the pivot
%%% Middle elements equal to the pivot
%%% Right elements greater than the pivot
%%%
%%% The implementation is tail-recursive.
%%%
:- pred partition(comparison_func(T), T, list(T),
list(T), list(T), list(T)).
:- mode partition(in, in, in, out, out, out) is det.
partition(Compare, Pivot, Lst, Left, Middle, Right) :-
partition(Compare, Pivot, Lst, [], Left, [], Middle, [], Right).
:- pred partition(comparison_func(T), T, list(T),
list(T), list(T),
list(T), list(T),
list(T), list(T)).
:- mode partition(in, in, in,
in, out,
in, out,
in, out) is det.
partition(_, _, [], Left0, Left, Middle0, Middle, Right0, Right) :-
Left = Left0,
Middle = Middle0,
Right = Right0.
partition(Compare, Pivot, [Head | Tail], Left0, Left,
Middle0, Middle, Right0, Right) :-
Compare(Head, Pivot) = Cmp,
(if (Cmp = (<))
then partition(Compare, Pivot, Tail,
[Head | Left0], Left,
Middle0, Middle,
Right0, Right)
else if (Cmp = (=))
then partition(Compare, Pivot, Tail,
Left0, Left,
[Head | Middle0], Middle,
Right0, Right)
else partition(Compare, Pivot, Tail,
Left0, Left,
Middle0, Middle,
[Head | Right0], Right)).
%%%-------------------------------------------------------------------
%%%
%%% Quicksort using the first element as pivot.
%%%
%%% This is not the world's best choice of pivot, but it is the
%%% easiest one to get from a linked list.
%%%
%%% This implementation is *not* tail-recursive--as most quicksort
%%% implementations also are not. (However, do an online search on
%%% "quicksort fortran 77" and you will find some "tail-recursive"
%%% implementations, with the tail recursions expressed as gotos.)
%%%
:- func quicksort(comparison_func(T), list(T)) = list(T).
quicksort(_, []) = [].
quicksort(Compare, [Pivot | Tail]) = Sorted_Lst :-
partition(Compare, Pivot, Tail, Left, Middle, Right),
quicksort(Compare, Left) = Sorted_Left,
quicksort(Compare, Right) = Sorted_Right,
Sorted_Left ++ [Pivot | Middle] ++ Sorted_Right = Sorted_Lst.
%%%-------------------------------------------------------------------
:- func example_numbers = list(int).
example_numbers = [1, 3, 9, 5, 8, 6, 5, 1, 7, 9, 8, 6, 4, 2].
:- func int_compare(int, int) = comparison_result.
int_compare(I, J) = Cmp :-
if (I < J) then (Cmp = (<))
else if (I = J) then (Cmp = (=))
else (Cmp = (>)).
main(!IO) :-
quicksort(int_compare, example_numbers) = Sorted_Numbers,
print("unsorted: ", !IO),
print_line(example_numbers, !IO),
print("sorted: ", !IO),
print_line(Sorted_Numbers, !IO).
%%%-------------------------------------------------------------------
%%% local variables:
%%% mode: mercury
%%% prolog-indent-width: 2
%%% end:
- Output:
$ mmc quicksort_task_for_lists.m && ./quicksort_task_for_lists unsorted: [1, 3, 9, 5, 8, 6, 5, 1, 7, 9, 8, 6, 4, 2] sorted: [1, 1, 2, 3, 4, 5, 5, 6, 6, 7, 8, 8, 9, 9]
A quicksort that works on arrays[edit]
The in-place partitioning algorithm here is similar to but not quite the same as that of the task pseudocode. I wrote it by referring to some Fortran code I wrote several months ago for a quickselect. (That quickselect had a random pivot, however.)
%%%-------------------------------------------------------------------
:- module quicksort_task_for_arrays.
:- interface.
:- import_module io.
:- pred main(io, io).
:- mode main(di, uo) is det.
:- implementation.
:- import_module array.
:- import_module int.
:- import_module list.
%%%-------------------------------------------------------------------
%%%
%%% Partitioning a subarray into two halves: one with elements less
%%% than or equal to a pivot, the other with elements greater than or
%%% equal to a pivot.
%%%
%%% The implementation is tail-recursive.
%%%
:- pred partition(pred(T, T), T, int, int, array(T), array(T), int).
:- mode partition(pred(in, in) is semidet, in, in, in,
array_di, array_uo, out).
partition(Less_than, Pivot, I_first, I_last, Arr0, Arr, I_pivot) :-
I = I_first - 1,
J = I_last + 1,
partition_loop(Less_than, Pivot, I, J, Arr0, Arr, I_pivot).
:- pred partition_loop(pred(T, T), T, int, int,
array(T), array(T), int).
:- mode partition_loop(pred(in, in) is semidet, in, in, in,
array_di, array_uo, out).
partition_loop(Less_than, Pivot, I, J, Arr0, Arr, Pivot_index) :-
if (I = J) then (Arr = Arr0,
Pivot_index = I)
else (I1 = I + 1,
I2 = search_right(Less_than, Pivot, I1, J, Arr0),
(if (I2 = J) then (Arr = Arr0,
Pivot_index = J)
else (J1 = J - 1,
J2 = search_left(Less_than, Pivot, I2, J1, Arr0),
swap(I2, J2, Arr0, Arr1),
partition_loop(Less_than, Pivot, I2, J2, Arr1, Arr,
Pivot_index)))).
:- func search_right(pred(T, T), T, int, int, array(T)) = int.
:- mode search_right(pred(in, in) is semidet,
in, in, in, in) = out is det.
search_right(Less_than, Pivot, I, J, Arr0) = K :-
if (I = J) then (I = K)
else if Less_than(Pivot, Arr0^elem(I)) then (I = K)
else (search_right(Less_than, Pivot, I + 1, J, Arr0) = K).
:- func search_left(pred(T, T), T, int, int, array(T)) = int.
:- mode search_left(pred(in, in) is semidet,
in, in, in, in) = out is det.
search_left(Less_than, Pivot, I, J, Arr0) = K :-
if (I = J) then (J = K)
else if Less_than(Arr0^elem(J), Pivot) then (J = K)
else (search_left(Less_than, Pivot, I, J - 1, Arr0) = K).
%%%-------------------------------------------------------------------
%%%
%%% Quicksort with median of three as pivot.
%%%
%%% Like most quicksort implementations, this one is *not*
%%% tail-recursive.
%%%
%% quicksort/3 sorts an entire array.
:- pred quicksort(pred(T, T), array(T), array(T)).
:- mode quicksort(pred(in, in) is semidet, array_di, array_uo) is det.
quicksort(Less_than, Arr0, Arr) :-
bounds(Arr0, I_first, I_last),
quicksort(Less_than, I_first, I_last, Arr0, Arr).
%% quicksort/5 sorts a subarray.
:- pred quicksort(pred(T, T), int, int, array(T), array(T)).
:- mode quicksort(pred(in, in) is semidet, in, in,
array_di, array_uo) is det.
quicksort(Less_than, I_first, I_last, Arr0, Arr) :-
if (I_last - I_first >= 2)
then (median_of_three(Less_than, I_first, I_last,
Arr0, Arr1, Pivot),
%% Partition only from I_first to I_last - 1.
partition(Less_than, Pivot, I_first, I_last - 1,
Arr1, Arr2, K),
%% Now everything that is less than the pivot is to the
%% left of K.
%% Put the pivot at K, moving the element that had been there
%% to the end. If K = I_last, then this element is actually
%% garbage and will be overwritten with the pivot, which turns
%% out to be the greatest element. Otherwise, the moved
%% element is not less than the pivot and so the partitioning
%% is preserved.
Arr2^elem(K) = Elem_to_move,
(Arr2^elem(I_last) := Elem_to_move) = Arr3,
(Arr3^elem(K) := Pivot) = Arr4,
%% Sort the subarray on either side of the pivot.
quicksort(Less_than, I_first, K - 1, Arr4, Arr5),
quicksort(Less_than, K + 1, I_last, Arr5, Arr))
else if (I_last - I_first = 1) % Two elements.
then (Elem_first = Arr0^elem(I_first),
Elem_last = Arr0^elem(I_last),
(if Less_than(Elem_first, Elem_last)
then (Arr = Arr0)
else ((Arr0^elem(I_first) := Elem_last) = Arr1,
(Arr1^elem(I_last) := Elem_first) = Arr)))
else (Arr = Arr0). % Zero or one element.
%% median_of_three/6 both chooses a pivot and rearranges the array
%% elements so one may partition them from I_first to I_last - 1,
%% leaving the pivot element out of the array.
:- pred median_of_three(pred(T, T), int, int, array(T), array(T), T).
:- mode median_of_three(pred(in, in) is semidet, in, in,
array_di, array_uo, out) is det.
median_of_three(Less_than, I_first, I_last, Arr0, Arr, Pivot) :-
I_middle = I_first + ((I_last - I_first) // 2),
Elem_first = Arr0^elem(I_first),
Elem_middle = Arr0^elem(I_middle),
Elem_last = Arr0^elem(I_last),
(if pred_xor(Less_than, Less_than,
Elem_middle, Elem_first,
Elem_last, Elem_first)
then (Pivot = Elem_first,
(if Less_than(Elem_middle, Elem_last)
then (Arr1 = (Arr0^elem(I_first) := Elem_middle),
Arr = (Arr1^elem(I_middle) := Elem_last))
else (Arr = (Arr0^elem(I_first) := Elem_last))))
else if pred_xor(Less_than, Less_than,
Elem_middle, Elem_first,
Elem_middle, Elem_last)
then (Pivot = Elem_middle,
(if Less_than(Elem_first, Elem_last)
then (Arr = (Arr0^elem(I_middle) := Elem_last))
else (Arr1 = (Arr0^elem(I_first) := Elem_last),
Arr = (Arr1^elem(I_middle) := Elem_first))))
else (Pivot = Elem_last,
(if Less_than(Elem_first, Elem_middle)
then (Arr = Arr0)
else (Arr1 = (Arr0^elem(I_first) := Elem_middle),
Arr = (Arr1^elem(I_middle) := Elem_first))))).
:- pred pred_xor(pred(T, T), pred(T, T), T, T, T, T).
:- mode pred_xor(pred(in, in) is semidet,
pred(in, in) is semidet,
in, in, in, in) is semidet.
pred_xor(P, Q, W, X, Y, Z) :-
if P(W, X) then (not Q(Y, Z)) else Q(Y, Z).
%%%-------------------------------------------------------------------
:- func example_numbers = list(int).
example_numbers = [1, 3, 9, 5, 8, 6, 5, 0, 1, 7, 9, 8, 6, 4, 2, -28,
30, 31, 1, 3, 9, 5, 8, 6, 5, 1, 6, 4, 2, -28, 30,
-50, 500, -1234, 1234, 12].
main(!IO) :-
(array.from_list(example_numbers, Arr0)),
print_line("", !IO),
print_line(Arr0, !IO),
print_line("", !IO),
print_line(" |", !IO),
print_line(" V", !IO),
print_line("", !IO),
quicksort(<, Arr0, Arr1),
print_line(Arr1, !IO),
print_line("", !IO).
%%%-------------------------------------------------------------------
%%% local variables:
%%% mode: mercury
%%% prolog-indent-width: 2
%%% end:
- Output:
$ mmc quicksort_task_for_arrays.m && ./quicksort_task_for_arrays array([1, 3, 9, 5, 8, 6, 5, 0, 1, 7, 9, 8, 6, 4, 2, -28, 30, 31, 1, 3, 9, 5, 8, 6, 5, 1, 6, 4, 2, -28, 30, -50, 500, -1234, 1234, 12]) | V array([-1234, -50, -28, -28, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9, 12, 30, 30, 31, 500, 1234])
MiniScript[edit]
Quick implementation for Miniscript, simply goes through the list reference and swaps the positions
Partition = function(a, low, high)
pivot = a[low]
leftwall = low
for i in range(low + 1, high)
if a[i] < pivot then
leftwall = leftwall + 1
temp = a[leftwall]
a[leftwall] = a[i]
a[i] = temp
end if
end for
temp = a[leftwall]
a[leftwall] = pivot
a[low] = temp
return leftwall
end function
QuickSort = function(a, low=null, high=null)
if not low then low = 0
if not high then high = a.len - 1
if low < high then
pivot_location = Partition(a, low, high)
QuickSort a, low, pivot_location - 1
QuickSort a, pivot_location + 1, high
end if
return a
end function
print QuickSort([3, 5, 2, 4, 1])
- Output:
[1, 2, 3, 4, 5]
Miranda[edit]
main :: [sys_message]
main = [Stdout ("Before: " ++ show testlist ++ "\n"),
Stdout ("After: " ++ show (quicksort testlist) ++ "\n")]
where testlist = [4,65,2,-31,0,99,2,83,782,1]
quicksort [] = []
quicksort [x] = [x]
quicksort xs = (quicksort less) ++ equal ++ (quicksort more)
where pivot = hd xs
less = [x | x<-xs; x<pivot]
equal = [x | x<-xs; x=pivot]
more = [x | x<-xs; x>pivot]
- Output:
Before: [4,65,2,-31,0,99,2,83,782,1] After: [-31,0,1,2,2,4,65,83,99,782]
Modula-2[edit]
The definition module exposes the interface. This one uses the procedure variable feature to pass a caller defined compare callback function so that it can sort various simple and structured record types.
This Quicksort assumes that you are working with an an array of pointers to an arbitrary type and are not moving the record data itself but only the pointers. The M2 type "ADDRESS" is considered compatible with any pointer type.
The use of type ADDRESS here to achieve genericity is something of a chink the the normal strongly typed flavor of Modula-2. Unlike the other language types, "system" types such as ADDRESS or WORD must be imported explicity from the SYSTEM MODULE. The ISO standard for the "Generic Modula-2" language extension provides genericity without the chink, but most compilers have not implemented this extension.
(*#####################*)
DEFINITION MODULE QSORT;
(*#####################*)
FROM SYSTEM IMPORT ADDRESS;
TYPE CmpFuncPtrs = PROCEDURE(ADDRESS, ADDRESS):INTEGER;
PROCEDURE QuickSortPtrs(VAR Array:ARRAY OF ADDRESS; N:CARDINAL;
Compare:CmpFuncPtrs);
END QSORT.
The implementation module is not visible to clients, so it may be changed without worry so long as it still implements the definition.
Sedgewick suggests that faster sorting will be achieved if you drop back to an insertion sort once the partitions get small.
(*##########################*)
IMPLEMENTATION MODULE QSORT;
(*##########################*)
FROM SYSTEM IMPORT ADDRESS;
CONST SmallPartition = 9;
(*
NOTE
1.Reference on QuickSort: "Implementing Quicksort Programs", Robert
Sedgewick, Communications of the ACM, Oct 78, v21 #10.
*)
(*==============================================================*)
PROCEDURE QuickSortPtrs(VAR Array:ARRAY OF ADDRESS; N:CARDINAL;
Compare:CmpFuncPtrs);
(*==============================================================*)
(*-----------------------------*)
PROCEDURE Swap(VAR A,B:ADDRESS);
(*-----------------------------*)
VAR temp :ADDRESS;
BEGIN
temp := A; A := B; B := temp;
END Swap;
(*-------------------------------*)
PROCEDURE TstSwap(VAR A,B:ADDRESS);
(*-------------------------------*)
VAR temp :ADDRESS;
BEGIN
IF Compare(A,B) > 0 THEN
temp := A; A := B; B := temp;
END;
END TstSwap;
(*--------------*)
PROCEDURE Isort;
(*--------------*)
(*
Insertion sort.
*)
VAR i,j :CARDINAL;
temp :ADDRESS;
BEGIN
IF N < 2 THEN RETURN END;
FOR i := N-2 TO 0 BY -1 DO
IF Compare(Array[i],Array[i+1]) > 0 THEN
temp := Array[i];
j := i+1;
REPEAT
Array[j-1] := Array[j];
INC(j);
UNTIL (j = N) OR (Compare(Array[j],temp) >= 0);
Array[j-1] := temp;
END;
END;
END Isort;
(*----------------------------------*)
PROCEDURE Quick(left,right:CARDINAL);
(*----------------------------------*)
VAR
i,j,
second :CARDINAL;
Partition :ADDRESS;
BEGIN
IF right > left THEN
i := left; j := right;
Swap(Array[left],Array[(left+right) DIV 2]);
second := left+1; (* insure 2nd element is in *)
TstSwap(Array[second], Array[right]); (* the lower part, last elem *)
TstSwap(Array[left], Array[right]); (* in the upper part *)
TstSwap(Array[second], Array[left]); (* THUS, only one test is *)
(* needed in repeat loops *)
Partition := Array[left];
LOOP
REPEAT INC(i) UNTIL Compare(Array[i],Partition) >= 0;
REPEAT DEC(j) UNTIL Compare(Array[j],Partition) <= 0;
IF j < i THEN
EXIT
END;
Swap(Array[i],Array[j]);
END; (*loop*)
Swap(Array[left],Array[j]);
IF (j > 0) AND (j-1-left >= SmallPartition) THEN
Quick(left,j-1);
END;
IF right-i >= SmallPartition THEN
Quick(i,right);
END;
END;
END Quick;
BEGIN (* QuickSortPtrs --------------------------------------------------*)
IF N > SmallPartition THEN (* won't work for 2 elements *)
Quick(0,N-1);
END;
Isort;
END QuickSortPtrs;
END QSORT.
Modula-3[edit]
This code is taken from libm3, which is basically Modula-3's "standard library". Note that this code uses Insertion sort when the array is less than 9 elements long.
GENERIC INTERFACE ArraySort(Elem);
PROCEDURE Sort(VAR a: ARRAY OF Elem.T; cmp := Elem.Compare);
END ArraySort.
GENERIC MODULE ArraySort (Elem);
PROCEDURE Sort (VAR a: ARRAY OF Elem.T; cmp := Elem.Compare) =
BEGIN
QuickSort (a, 0, NUMBER (a), cmp);
InsertionSort (a, 0, NUMBER (a), cmp);
END Sort;
PROCEDURE QuickSort (VAR a: ARRAY OF Elem.T; lo, hi: INTEGER;
cmp := Elem.Compare) =
CONST CutOff = 9;
VAR i, j: INTEGER; key, tmp: Elem.T;
BEGIN
WHILE (hi - lo > CutOff) DO (* sort a[lo..hi) *)
(* use median-of-3 to select a key *)
i := (hi + lo) DIV 2;
IF cmp (a[lo], a[i]) < 0 THEN
IF cmp (a[i], a[hi-1]) < 0 THEN
key := a[i];
ELSIF cmp (a[lo], a[hi-1]) < 0 THEN
key := a[hi-1]; a[hi-1] := a[i]; a[i] := key;
ELSE
key := a[lo]; a[lo] := a[hi-1]; a[hi-1] := a[i]; a[i] := key;
END;
ELSE (* a[lo] >= a[i] *)
IF cmp (a[hi-1], a[i]) < 0 THEN
key := a[i]; tmp := a[hi-1]; a[hi-1] := a[lo]; a[lo] := tmp;
ELSIF cmp (a[lo], a[hi-1]) < 0 THEN
key := a[lo]; a[lo] := a[i]; a[i] := key;
ELSE
key := a[hi-1]; a[hi-1] := a[lo]; a[lo] := a[i]; a[i] := key;
END;
END;
(* partition the array *)
i := lo+1; j := hi-2;
(* find the first hole *)
WHILE cmp (a[j], key) > 0 DO DEC (j) END;
tmp := a[j];
DEC (j);
LOOP
IF (i > j) THEN EXIT END;
WHILE i < hi AND cmp (a[i], key) < 0 DO INC (i) END;
IF (i > j) THEN EXIT END;
a[j+1] := a[i];
INC (i);
WHILE j > lo AND cmp (a[j], key) > 0 DO DEC (j) END;
IF (i > j) THEN IF (j = i-1) THEN DEC (j) END; EXIT END;
a[i-1] := a[j];
DEC (j);
END;
(* fill in the last hole *)
a[j+1] := tmp;
i := j+2;
(* then, recursively sort the smaller subfile *)
IF (i - lo < hi - i)
THEN QuickSort (a, lo, i-1, cmp); lo := i;
ELSE QuickSort (a, i, hi, cmp); hi := i-1;
END;
END; (* WHILE (hi-lo > CutOff) *)
END QuickSort;
PROCEDURE InsertionSort (VAR a: ARRAY OF Elem.T; lo, hi: INTEGER;
cmp := Elem.Compare) =
VAR j: INTEGER; key: Elem.T;
BEGIN
FOR i := lo+1 TO hi-1 DO
key := a[i];
j := i-1;
WHILE (j >= lo) AND cmp (key, a[j]) < 0 DO
a[j+1] := a[j];
DEC (j);
END;
a[j+1] := key;
END;
END InsertionSort;
BEGIN
END ArraySort.
To use this generic code to sort an array of text, we create two files called TextSort.i3 and TextSort.m3, respectively.
INTERFACE TextSort = ArraySort(Text) END TextSort.
MODULE TextSort = ArraySort(Text) END TextSort.
Then, as an example:
MODULE Main;
IMPORT IO, TextSort;
VAR arr := ARRAY [1..10] OF TEXT {"Foo", "bar", "!ooF", "Modula-3", "hickup",
"baz", "quuz", "Zeepf", "woo", "Rosetta Code"};
BEGIN
TextSort.Sort(arr);
FOR i := FIRST(arr) TO LAST(arr) DO
IO.Put(arr[i] & "\n");
END;
END Main.
Mond[edit]
Implements the simple quicksort algorithm.
fun quicksort( arr, cmp )
{
if( arr.length() < 2 )
return arr;
if( !cmp )
cmp = ( a, b ) -> a - b;
var a = [ ], b = [ ];
var pivot = arr[0];
var len = arr.length();
for( var i = 1; i < len; ++i )
{
var item = arr[i];
if( cmp( item, pivot ) < cmp( pivot, item ) )
a.add( item );
else
b.add( item );
}
a = quicksort( a, cmp );
b = quicksort( b, cmp );
a.add( pivot );
foreach( var item in b )
a.add( item );
return a;
}
- Usage
var array = [ 532, 16, 153, 3, 63.60, 925, 0.214 ];
var sorted = quicksort( array );
printLn( sorted );
- Output:
[ 0.214, 3, 16, 63.6, 153, 532, 925 ]
MUMPS[edit]
Shows quicksort on a 16-element array.
main
new collection,size
set size=16
set collection=size for i=0:1:size-1 set collection(i)=$random(size)
write "Collection to sort:",!!
zwrite collection ; This will only work on Intersystem's flavor of MUMPS
do quicksort(.collection,0,collection-1)
write:$$isSorted(.collection) !,"Collection is sorted:",!!
zwrite collection ; This will only work on Intersystem's flavor of MUMPS
q
quicksort(array,low,high)
if low<high do
. set pivot=$$partition(.array,low,high)
. do quicksort(.array,low,pivot-1)
. do quicksort(.array,pivot+1,high)
q
partition(A,p,r)
set pivot=A(r)
set i=p-1
for j=p:1:r-1 do
. i A(j)<=pivot do
. . set i=i+1
. . set helper=A(j)
. . set A(j)=A(i)
. . set A(i)=helper
set helper=A(r)
set A(r)=A(i+1)
set A(i+1)=helper
quit i+1
isSorted(array)
set sorted=1
for i=0:1:array-2 do quit:sorted=0
. for j=i+1:1:array-1 do quit:sorted=0
. . set:array(i)>array(j) sorted=0
quit sorted
- Usage
do main()
- Output:
Collection to sort: collection=16 collection(0)=4 collection(1)=0 collection(2)=6 collection(3)=14 collection(4)=4 collection(5)=0 collection(6)=10 collection(7)=5 collection(8)=11 collection(9)=4 collection(10)=12 collection(11)=9 collection(12)=13 collection(13)=4 collection(14)=14 collection(15)=0 Collection is sorted: collection=16 collection(0)=0 collection(1)=0 collection(2)=0 collection(3)=4 collection(4)=4 collection(5)=4 collection(6)=4 collection(7)=5 collection(8)=6 collection(9)=9 collection(10)=10 collection(11)=11 collection(12)=12 collection(13)=13 collection(14)=14 collection(15)=14
Nanoquery[edit]
def quickSort(arr)
less = {}
pivotList = {}
more = {}
if len(arr) <= 1
return arr
else
pivot = arr[0]
for i in arr
if i < pivot
less.append(i)
else if i > pivot
more.append(i)
else
pivotList.append(i)
end
end
less = quickSort(less)
more = quickSort(more)
return less + pivotList + more
end
end
Nemerle[edit]
A little less clean and concise than Haskell, but essentially the same.
using System;
using System.Console;
using Nemerle.Collections.NList;
module Quicksort
{
Qsort[T] (x : list[T]) : list[T]
where T : IComparable
{
|[] => []
|x::xs => Qsort($[y|y in xs, (y.CompareTo(x) < 0)]) + [x] + Qsort($[y|y in xs, (y.CompareTo(x) > 0)])
}
Main() : void
{
def empty = [];
def single = [2];
def several = [2, 6, 1, 7, 3, 9, 4];
WriteLine(Qsort(empty));
WriteLine(Qsort(single));
WriteLine(Qsort(several));
}
}
NetRexx[edit]
This sample implements both the simple and in place algorithms as described in the task's description:
/* NetRexx */
options replace format comments java crossref savelog symbols binary
import java.util.List
placesList = [String -
"UK London", "US New York", "US Boston", "US Washington" -
, "UK Washington", "US Birmingham", "UK Birmingham", "UK Boston" -
]
lists = [ -
placesList -
, quickSortSimple(String[] Arrays.copyOf(placesList, placesList.length)) -
, quickSortInplace(String[] Arrays.copyOf(placesList, placesList.length)) -
]
loop ln = 0 to lists.length - 1
cl = lists[ln]
loop ct = 0 to cl.length - 1
say cl[ct]
end ct
say
end ln
return
method quickSortSimple(array = String[]) public constant binary returns String[]
rl = String[array.length]
al = List quickSortSimple(Arrays.asList(array))
al.toArray(rl)
return rl
method quickSortSimple(array = List) public constant binary returns ArrayList
if array.size > 1 then do
less = ArrayList()
equal = ArrayList()
greater = ArrayList()
pivot = array.get(Random().nextInt(array.size - 1))
loop x_ = 0 to array.size - 1
if (Comparable array.get(x_)).compareTo(Comparable pivot) < 0 then less.add(array.get(x_))
if (Comparable array.get(x_)).compareTo(Comparable pivot) = 0 then equal.add(array.get(x_))
if (Comparable array.get(x_)).compareTo(Comparable pivot) > 0 then greater.add(array.get(x_))
end x_
less = quickSortSimple(less)
greater = quickSortSimple(greater)
out = ArrayList(array.size)
out.addAll(less)
out.addAll(equal)
out.addAll(greater)
array = out
end
return ArrayList array
method quickSortInplace(array = String[]) public constant binary returns String[]
rl = String[array.length]
al = List quickSortInplace(Arrays.asList(array))
al.toArray(rl)
return rl
method quickSortInplace(array = List, ixL = int 0, ixR = int array.size - 1) public constant binary returns ArrayList
if ixL < ixR then do
ixP = int ixL + (ixR - ixL) % 2
ixP = quickSortInplacePartition(array, ixL, ixR, ixP)
quickSortInplace(array, ixL, ixP - 1)
quickSortInplace(array, ixP + 1, ixR)
end
array = ArrayList(array)
return ArrayList array
method quickSortInplacePartition(array = List, ixL = int, ixR = int, ixP = int) public constant binary returns int
pivotValue = array.get(ixP)
rValue = array.get(ixR)
array.set(ixP, rValue)
array.set(ixR, pivotValue)
ixStore = ixL
loop i_ = ixL to ixR - 1
iValue = array.get(i_)
if (Comparable iValue).compareTo(Comparable pivotValue) < 0 then do
storeValue = array.get(ixStore)
array.set(i_, storeValue)
array.set(ixStore, iValue)
ixStore = ixStore + 1
end
end i_
storeValue = array.get(ixStore)
rValue = array.get(ixR)
array.set(ixStore, rValue)
array.set(ixR, storeValue)
return ixStore
- Output:
UK London US New York US Boston US Washington UK Washington US Birmingham UK Birmingham UK Boston UK Birmingham UK Boston UK London UK Washington US Birmingham US Boston US New York US Washington UK Birmingham UK Boston UK London UK Washington US Birmingham US Boston US New York US Washington
Nial[edit]
quicksort is fork [ >= [1 first,tally],
pass,
link [
quicksort sublist [ < [pass, first], pass ],
sublist [ match [pass,first],pass ],
quicksort sublist [ > [pass,first], pass ]
]
]
Using it.
|quicksort [5, 8, 7, 4, 3]
=3 4 5 7 8
Nim[edit]
Procedural (in place) algorithm [edit]
proc quickSortImpl[T](a: var openarray[T], start, stop: int) =
if stop - start > 0:
let pivot = a[start]
var left = start
var right = stop
while left <= right:
while cmp(a[left], pivot) < 0:
inc(left)
while cmp(a[right], pivot) > 0:
dec(right)
if left <= right:
swap(a[left], a[right])
inc(left)
dec(right)
quickSortImpl(a, start, right)
quickSortImpl(a, left, stop)
proc quickSort[T](a: var openarray[T]) =
quickSortImpl(a, 0, a.len - 1)
var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782]
a.quickSort()
echo a
Functional (inmmutability) algorithm [edit]
import sequtils,sugar
func sorted[T](xs:seq[T]): seq[T] =
if xs.len==0: @[] else: concat(
xs[1..^1].filter(x=>x<xs[0]).sorted,
@[xs[0]],
xs[1..^1].filter(x=>x>=xs[0]).sorted
)
@[4, 65, 2, -31, 0, 99, 2, 83, 782].sorted.echo
- Output:
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]
Nix[edit]
let
qs = l:
if l == [] then []
else
with builtins;
let x = head l;
xs = tail l;
low = filter (a: a < x) xs;
high = filter (a: a >= x) xs;
in qs low ++ [x] ++ qs high;
in
qs [4 65 2 (-31) 0 99 83 782]
- Output:
[ -31 0 2 4 65 83 99 782 ]
Oberon-2[edit]
MODULE QS;
IMPORT Out;
TYPE
TItem = INTEGER;
CONST
N = 10;
VAR
I:LONGINT;
A:ARRAY N OF INTEGER;
PROCEDURE Init(VAR A:ARRAY OF TItem);
BEGIN
A[0] := 4; A[1] := 65; A[2] := 2; A[3] := -31; A[4] := 0;
A[5] := 99; A[6] := 2; A[7] := 83; A[8] := 782; A[9] := 1;
END Init;
PROCEDURE QuickSort(VAR A:ARRAY OF TItem; Left,Right:LONGINT);
VAR
I,J:LONGINT;
Pivot,Temp:TItem;
BEGIN
I := Left;
J := Right;
Pivot := A[(Left + Right) DIV 2];
REPEAT
WHILE Pivot > A[I] DO INC(I) END;
WHILE Pivot < A[J] DO DEC(J) END;
IF I <= J THEN
Temp := A[I];
A[I] := A[J];
A[J] := Temp;
INC(I);
DEC(J);
END;
UNTIL I > J;
IF Left < J THEN QuickSort(A, Left, J) END;
IF I < Right THEN QuickSort(A, I, Right) END;
END QuickSort;
BEGIN
Init(A);
FOR I := 0 TO LEN(A)-1 DO
Out.Int(A[I], 0); Out.Char(' ');
END;
Out.Ln;
QuickSort(A, 0, LEN(A)-1);
FOR I := 0 TO LEN(A)-1 DO
Out.Int(A[I], 0); Out.Char(' ');
END;
Out.Ln;
END QS.
Objeck[edit]
class QuickSort {
function : Main(args : String[]) ~ Nil {
array := [1, 3, 5, 7, 9, 8, 6, 4, 2];
Sort(array);
each(i : array) {
array[i]->PrintLine();
};
}
function : Sort(array : Int[]) ~ Nil {
size := array->Size();
if(size <= 1) {
return;
};
Sort(array, 0, size - 1);
}
function : native : Sort(array : Int[], low : Int, high : Int) ~ Nil {
i := low; j := high;
pivot := array[low + (high-low)/2];
while(i <= j) {
while(array[i] < pivot) {
i+=1;
};
while(array[j] > pivot) {
j-=1;
};
if (i <= j) {
temp := array[i];
array[i] := array[j];
array[j] := temp;
i+=1; j-=1;
};
};
if(low < j) {
Sort(array, low, j);
};
if(i < high) {
Sort(array, i, high);
};
}
}
Objective-C[edit]
The latest XCode compiler is assumed with ARC enabled.
void quicksortInPlace(NSMutableArray *array, NSInteger first, NSInteger last, NSComparator comparator) {
if (first >= last) return;
id pivot = array[(first + last) / 2];
NSInteger left = first;
NSInteger right = last;
while (left <= right) {
while (comparator(array[left], pivot) == NSOrderedAscending)
left++;
while (comparator(array[right], pivot) == NSOrderedDescending)
right--;
if (left <= right)
[array exchangeObjectAtIndex:left++ withObjectAtIndex:right--];
}
quicksortInPlace(array, first, right, comparator);
quicksortInPlace(array, left, last, comparator);
}
NSArray* quicksort(NSArray *unsorted, NSComparator comparator) {
NSMutableArray *a = [NSMutableArray arrayWithArray:unsorted];
quicksortInPlace(a, 0, a.count - 1, comparator);
return a;
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSArray *a = @[ @1, @3, @5, @7, @9, @8, @6, @4, @2 ];
NSLog(@"Unsorted: %@", a);
NSLog(@"Sorted: %@", quicksort(a, ^(id x, id y) { return [x compare:y]; }));
NSArray *b = @[ @"Emil", @"Peg", @"Helen", @"Juergen", @"David", @"Rick", @"Barb", @"Mike", @"Tom" ];
NSLog(@"Unsorted: %@", b);
NSLog(@"Sorted: %@", quicksort(b, ^(id x, id y) { return [x compare:y]; }));
}
return 0;
}
- Output:
Unsorted: ( 1, 3, 5, 7, 9, 8, 6, 4, 2 ) Sorted: ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) Unsorted: ( Emil, Peg, Helen, Juergen, David, Rick, Barb, Mike, Tom ) Sorted: ( Barb, David, Emil, Helen, Juergen, Mike, Peg, Rick, Tom )
OCaml[edit]
Declarative and purely functional[edit]
let rec quicksort gt = function
| [] -> []
| x::xs ->
let ys, zs = List.partition (gt x) xs in
(quicksort gt ys) @ (x :: (quicksort gt zs))
let _ =
quicksort (>) [4; 65; 2; -31; 0; 99; 83; 782; 1]
The list based implementation is elegant and perspicuous, but inefficient in time (because partition
and @
are linear) and in space (since it creates numerous new lists along the way).
Imperative and in place[edit]
Using aliased array slices from the Containers library.
module Slice = CCArray_slice
let quicksort : int Array.t -> unit = fun arr ->
let rec quicksort' : int Slice.t -> unit = fun slice ->
let len = Slice.length slice in
if len > 1 then begin
let pivot = Slice.get slice (len / 2)
and i = ref 0
and j = ref (len - 1)
in
while !i < !j do
while Slice.get slice !i < pivot do incr i done;
while Slice.get slice !j > pivot do decr j done;
if !i < !j then begin
let i_val = Slice.get slice !i in
Slice.set slice !i (Slice.get slice !j);
Slice.set slice !j i_val;
incr i;
decr j;
end
done;
quicksort' (Slice.sub slice 0 !i);
quicksort' (Slice.sub slice !i (len - !i));
end
in
(* Take the array into an aliased array slice *)
Slice.full arr |> quicksort'
Octave[edit]
(The MATLAB version works as is in Octave, provided that the code is put in a file named quicksort.m, and everything below the return must be typed in the prompt of course)function f=quicksort(v) % v must be a column vector
f = v; n=length(v);
if(n > 1)
vl = min(f); vh = max(f); % min, max
p = (vl+vh)*0.5; % pivot
ia = find(f < p); ib = find(f == p); ic=find(f > p);
f = [quicksort(f(ia)); f(ib); quicksort(f(ic))];
end
endfunction
N=30; v=rand(N,1); tic,u=quicksort(v); toc
u
Oforth[edit]
Oforth built-in sort uses quick sort algorithm (see lang/collect/ListBuffer.of for implementation) :
[ 5, 8, 2, 3, 4, 1 ] sort
Ol[edit]
(define (quicksort l ??)
(if (null? l)
'()
(append (quicksort (filter (lambda (x) (?? (car l) x)) (cdr l)) ??)
(list (car l))
(quicksort (filter (lambda (x) (not (?? (car l) x))) (cdr l)) ??))))
(print
(quicksort (list 1 3 5 9 8 6 4 3 2) >))
(print
(quicksort (iota 100) >))
(print
(quicksort (iota 100) <))
- Output:
(1 2 3 3 4 5 6 8 9) (0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99) (99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)
ooRexx[edit]
a = .array~Of(4, 65, 2, -31, 0, 99, 83, 782, 1)
say 'before:' a~toString( ,', ')
a = quickSort(a)
say ' after:' a~toString( ,', ')
exit
::routine quickSort
use arg arr -- the array to be sorted
less = .array~new
pivotList = .array~new
more = .array~new
if arr~items <= 1 then
return arr
else do
pivot = arr[1]
do i over arr
if i < pivot then
less~append(i)
else if i > pivot then
more~append(i)
else
pivotList~append(i)
end
less = quickSort(less)
more = quickSort(more)
return less~~appendAll(pivotList)~~appendAll(more)
end
- Output:
before: 4, 65, 2, -31, 0, 99, 83, 782, 1 after: -31, 0, 1, 2, 4, 65, 83, 99, 782
Oz[edit]
declare
fun {QuickSort Xs}
case Xs of nil then nil
[] Pivot|Xr then
fun {IsSmaller X} X < Pivot end
Smaller Larger
in
{List.partition Xr IsSmaller ?Smaller ?Larger}
{Append {QuickSort Smaller} Pivot|{QuickSort Larger}}
end
end
in
{Show {QuickSort [3 1 4 1 5 9 2 6 5]}}
PARI/GP[edit]
quickSort(v)={
if(#v<2, return(v));
my(less=List(),more=List(),same=List(),pivot);
pivot=median([v[random(#v)+1],v[random(#v)+1],v[random(#v)+1]]); \\ Middle-of-three
for(i=1,#v,
if(v[i]<pivot,
listput(less, v[i]),
if(v[i]==pivot, listput(same, v[i]), listput(more, v[i]))
)
);
concat(quickSort(Vec(less)), concat(Vec(same), quickSort(Vec(more))))
};
median(v)={
vecsort(v)[#v>>1]
};
Pascal[edit]
program QSortDemo;
{$mode objfpc}{$h+}{$b-}
procedure QuickSort(var A: array of Integer);
procedure QSort(L, R: Integer);
var
I, J, Tmp, Pivot: Integer;
begin
if R - L < 1 then exit;
I := L; J := R;
{$push}{$q-}{$r-}Pivot := A[(L + R) shr 1];{$pop}
repeat
while A[I] < Pivot do Inc(I);
while A[J] > Pivot do Dec(J);
if I <= J then begin
Tmp := A[I];
A[I] := A[J];
A[J] := Tmp;
Inc(I); Dec(J);
end;
until I > J;
QSort(L, J);
QSort(I, R);
end;
begin
QSort(0, High(A));
end;
procedure PrintArray(const A: array of Integer);
var
I: Integer;
begin
Write('[');
for I := 0 to High(A) - 1 do
Write(A[I], ', ');
WriteLn(A[High(A)], ']');
end;
var
a: array[-7..6] of Integer = (-34, -20, 30, 13, 36, -10, 5, -25, 9, 19, 35, -50, 29, 11);
begin
QuickSort(a);
PrintArray(a);
end.
- Output:
[-50, -34, -25, -20, -10, 5, 9, 11, 13, 19, 29, 30, 35, 36]
Perl[edit]
sub quick_sort {
return @_ if @_ < 2;
my $p = splice @_, int rand @_, 1;
quick_sort(grep $_ < $p, @_), $p, quick_sort(grep $_ >= $p, @_);
}
my @a = (4, 65, 2, -31, 0, 99, 83, 782, 1);
@a = quick_sort @a;
print "@a\n";
Phix[edit]
with javascript_semantics function quick_sort(sequence x) -- -- put x into ascending order using recursive quick sort -- integer n = length(x) if n<2 then return x -- already sorted (trivial case) end if integer mid = floor((n+1)/2), last = 1 object midval = x[mid] x[mid] = x[1] for i=2 to n do object xi = x[i] if xi<midval then last += 1 x[i] = x[last] x[last] = xi end if end for return quick_sort(x[2..last]) & {midval} & quick_sort(x[last+1..n]) end function ?quick_sort({5,"oranges","and",3,"apples"})
- Output:
{3,5,"and","apples","oranges"}
PHP[edit]
function quicksort($arr){
$lte = $gt = array();
if(count($arr) < 2){
return $arr;
}
$pivot_key = key($arr);
$pivot = array_shift($arr);
foreach($arr as $val){
if($val <= $pivot){
$lte[] = $val;
} else {
$gt[] = $val;
}
}
return array_merge(quicksort($lte),array($pivot_key=>$pivot),quicksort($gt));
}
$arr = array(1, 3, 5, 7, 9, 8, 6, 4, 2);
$arr = quicksort($arr);
echo implode(',',$arr);
1,2,3,4,5,6,7,8,9
function quickSort(array $array) {
// base case
if (empty($array)) {
return $array;
}
$head = array_shift($array);
$tail = $array;
$lesser = array_filter($tail, function ($item) use ($head) {
return $item <= $head;
});
$bigger = array_filter($tail, function ($item) use ($head) {
return $item > $head;
});
return array_merge(quickSort($lesser), [$head], quickSort($bigger));
}
$testCase = [1, 4, 8, 2, 8, 0, 2, 8];
$result = quickSort($testCase);
echo sprintf("[%s] ==> [%s]\n", implode(', ', $testCase), implode(', ', $result));
[1, 4, 8, 2, 8, 0, 2, 8] ==> [0, 1, 2, 2, 4, 8, 8, 8]
Picat[edit]
Function[edit]
qsort([]) = [].
qsort([H|T]) = qsort([E : E in T, E =< H])
++ [H] ++
qsort([E : E in T, E > H]).
Recursion[edit]
qsort( [], [] ).
qsort( [H|U], S ) :-
splitBy(H, U, L, R),
qsort(L, SL),
qsort(R, SR),
append(SL, [H|SR], S).
% splitBy( H, U, LS, RS )
% True if LS = { L in U | L <= H }; RS = { R in U | R > H }
splitBy( _, [], [], []).
splitBy( H, [U|T], [U|LS], RS ) :- U =< H, splitBy(H, T, LS, RS).
splitBy( H, [U|T], LS, [U|RS] ) :- U > H, splitBy(H, T, LS, RS).
PicoLisp[edit]
(de quicksort (L)
(if (cdr L)
(let Pivot (car L)
(append (quicksort (filter '((A) (< A Pivot)) (cdr L)))
(filter '((A) (= A Pivot)) L )
(quicksort (filter '((A) (> A Pivot)) (cdr L)))) )
L) )
PL/I[edit]
DCL (T(20)) FIXED BIN(31); /* scratch space of length N */
QUICKSORT: PROCEDURE (A,AMIN,AMAX,N) RECURSIVE ;
DECLARE (A(*)) FIXED BIN(31);
DECLARE (N,AMIN,AMAX) FIXED BIN(31) NONASGN;
DECLARE (I,J,IA,IB,IC,PIV) FIXED BIN(31);
DECLARE (P,Q) POINTER;
DECLARE (AP(1)) FIXED BIN(31) BASED(P);
IF(N <= 1)THEN RETURN;
IA=0; IB=0; IC=N+1;
PIV=(AMIN+AMAX)/2;
DO I=1 TO N;
IF(A(I) < PIV)THEN DO;
IA+=1; A(IA)=A(I);
END; ELSE IF(A(I) > PIV) THEN DO;
IC-=1; T(IC)=A(I);
END; ELSE DO;
IB+=1; T(IB)=A(I);
END;
END;
DO I=1 TO IB; A(I+IA)=T(I); END;
DO I=IC TO N; A(I)=T(N+IC-I); END;
P=ADDR(A(IC));
IC=N+1-IC;
IF(IA > 1) THEN CALL QUICKSORT(A, AMIN, PIV-1,IA);
IF(IC > 1) THEN CALL QUICKSORT(AP,PIV+1,AMAX, IC);
RETURN;
END QUICKSORT;
MINMAX: PROC(A,AMIN,AMAX,N);
DCL (AMIN,AMAX) FIXED BIN(31),
(N,A(*)) FIXED BIN(31) NONASGN ;
DCL (I,X,Y) FIXED BIN(31);
AMIN=A(N); AMAX=AMIN;
DO I=1 TO N-1;
X=A(I); Y=A(I+1);
IF (X < Y)THEN DO;
IF (X < AMIN) THEN AMIN=X;
IF (Y > AMAX) THEN AMAX=Y;
END; ELSE DO;
IF (X > AMAX) THEN AMAX=X;
IF (Y < AMIN) THEN AMIN=Y;
END;
END;
RETURN;
END MINMAX;
CALL MINMAX(A,AMIN,AMAX,N);
CALL QUICKSORT(A,AMIN,AMAX,N);
PowerShell[edit]
First solution[edit]
Function SortThree( [Array] $data )
{
if( $data[ 0 ] -gt $data[ 1 ] )
{
if( $data[ 0 ] -lt $data[ 2 ] )
{
$data = $data[ 1, 0, 2 ]
} elseif ( $data[ 1 ] -lt $data[ 2 ] ){
$data = $data[ 1, 2, 0 ]
} else {
$data = $data[ 2, 1, 0 ]
}
} else {
if( $data[ 0 ] -gt $data[ 2 ] )
{
$data = $data[ 2, 0, 1 ]
} elseif( $data[ 1 ] -gt $data[ 2 ] ) {
$data = $data[ 0, 2, 1 ]
}
}
$data
}
Function QuickSort( [Array] $data, $rand = ( New-Object Random ) )
{
$datal = $data.length
if( $datal -gt 3 )
{
[void] $datal--
$median = ( SortThree $data[ 0, ( $rand.Next( 1, $datal - 1 ) ), -1 ] )[ 1 ]
$lt = @()
$eq = @()
$gt = @()
$data | ForEach-Object { if( $_ -lt $median ) { $lt += $_ } elseif( $_ -eq $median ) { $eq += $_ } else { $gt += $_ } }
$lt = ( QuickSort $lt $rand )
$gt = ( QuickSort $gt $rand )
$data = @($lt) + $eq + $gt
} elseif( $datal -eq 3 ) {
$data = SortThree( $data )
} elseif( $datal -eq 2 ) {
if( $data[ 0 ] -gt $data[ 1 ] )
{
$data = $data[ 1, 0 ]
}
}
$data
}
QuickSort 5,3,1,2,4
QuickSort 'e','c','a','b','d'
QuickSort 0.5,0.3,0.1,0.2,0.4
$l = 100; QuickSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } )
Another solution[edit]
function quicksort($array) {
$less, $equal, $greater = @(), @(), @()
if( $array.Count -gt 1 ) {
$pivot = $array[0]
foreach( $x in $array) {
if($x -lt $pivot) { $less += @($x) }
elseif ($x -eq $pivot) { $equal += @($x)}
else { $greater += @($x) }
}
$array = (@(quicksort $less) + @($equal) + @(quicksort $greater))
}
$array
}
$array = @(60, 21, 19, 36, 63, 8, 100, 80, 3, 87, 11)
"$(quicksort $array)"
The output is: 3 8 11 19 21 36 60 63 80 87 100
Yet another solution[edit]
function quicksort($in) {
$n = $in.count
switch ($n) {
0 {}
1 { $in[0] }
2 { if ($in[0] -lt $in[1]) {$in[0], $in[1]} else {$in[1], $in[0]} }
default {
$pivot = $in | get-random
$lt = $in | ? {$_ -lt $pivot}
$eq = $in | ? {$_ -eq $pivot}
$gt = $in | ? {$_ -gt $pivot}
@(quicksort $lt) + @($eq) + @(quicksort $gt)
}
}
}
Prolog[edit]
qsort( [], [] ).
qsort( [H|U], S ) :- splitBy(H, U, L, R), qsort(L, SL), qsort(R, SR), append(SL, [H|SR], S).
% splitBy( H, U, LS, RS )
% True if LS = { L in U | L <= H }; RS = { R in U | R > H }
splitBy( _, [], [], []).
splitBy( H, [U|T], [U|LS], RS ) :- U =< H, splitBy(H, T, LS, RS).
splitBy( H, [U|T], LS, [U|RS] ) :- U > H, splitBy(H, T, LS, RS).
PureBasic[edit]
Procedure qSort(Array a(1), firstIndex, lastIndex)
Protected low, high, pivotValue
low = firstIndex
high = lastIndex
pivotValue = a((firstIndex + lastIndex) / 2)
Repeat
While a(low) < pivotValue
low + 1
Wend
While a(high) > pivotValue
high - 1
Wend
If low <= high
Swap a(low), a(high)
low + 1
high - 1
EndIf
Until low > high
If firstIndex < high
qSort(a(), firstIndex, high)
EndIf
If low < lastIndex
qSort(a(), low, lastIndex)
EndIf
EndProcedure
Procedure quickSort(Array a(1))
qSort(a(),0,ArraySize(a()))
EndProcedure
Python[edit]
def quickSort(arr):
less = []
pivotList = []
more = []
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
for i in arr:
if i < pivot:
less.append(i)
elif i > pivot:
more.append(i)
else:
pivotList.append(i)
less = quickSort(less)
more = quickSort(more)
return less + pivotList + more
a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
a = quickSort(a)
In a Haskell fashion --
def qsort(L):
return (qsort([y for y in L[1:] if y < L[0]]) +
[L[0]] +
qsort([y for y in L[1:] if y >= L[0]])) if len(L) > 1 else L
More readable, but still using list comprehensions:
def qsort(list):
if not list:
return []
else:
pivot = list[0]
less = [x for x in list[1:] if x < pivot]
more = [x for x in list[1:] if x >= pivot]
return qsort(less) + [pivot] + qsort(more)
More correctly in some tests:
from random import *
def qSort(a):
if len(a) <= 1:
return a
else:
q = choice(a)
return qSort([elem for elem in a if elem < q]) + [q] * a.count(q) + qSort([elem for elem in a if elem > q])
def quickSort(a):
if len(a) <= 1:
return a
else:
less = []
more = []
pivot = choice(a)
for i in a:
if i < pivot:
less.append(i)
if i > pivot:
more.append(i)
less = quickSort(less)
more = quickSort(more)
return less + [pivot] * a.count(pivot) + more
Returning a new list:
def qsort(array):
if len(array) < 2:
return array
head, *tail = array
less = qsort([i for i in tail if i < head])
more = qsort([i for i in tail if i >= head])
return less + [head] + more
Sorting a list in place:
def quicksort(array):
_quicksort(array, 0, len(array) - 1)
def _quicksort(array, start, stop):
if stop - start > 0:
pivot, left, right = array[start], start, stop
while left <= right:
while array[left] < pivot:
left += 1
while array[right] > pivot:
right -= 1
if left <= right:
array[left], array[right] = array[right], array[left]
left += 1
right -= 1
_quicksort(array, start, right)
_quicksort(array, left, stop)
Qi[edit]
(define keep
_ [] -> []
Pred [A|Rest] -> [A | (keep Pred Rest)] where (Pred A)
Pred [_|Rest] -> (keep Pred Rest))
(define quicksort
[] -> []
[A|R] -> (append (quicksort (keep (>= A) R))
[A]
(quicksort (keep (< A) R))))
(quicksort [6 8 5 9 3 2 2 1 4 7])
Quackery[edit]
Sort a nest of numbers.
[ stack ] is less ( --> s )
[ stack ] is same ( --> s )
[ stack ] is more ( --> s )
[ - -1 1 clamp 1+ ] is <=> ( n n --> n )
[ tuck take join swap put ] is append ( x s --> )
[ dup size 2 < if done
[] less put
[] same put
[] more put
behead swap witheach
[ 2dup swap <=>
[ table less same more ]
append ]
same append
less take recurse
same take join
more take recurse join ] is quicksort ( [ --> [ )
[] 10 times [ i^ join ] 3 of
dup echo cr
quicksort echo cr
Output:
[ 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 ] [ 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 ]
R[edit]
qsort <- function(v) {
if ( length(v) > 1 )
{
pivot <- (min(v) + max(v))/2.0 # Could also use pivot <- median(v)
c(qsort(v[v < pivot]), v[v == pivot], qsort(v[v > pivot]))
} else v
}
N <- 100
vs <- runif(N)
system.time(u <- qsort(vs))
print(u)
Racket[edit]
#lang racket
(define (quicksort < l)
(match l
['() '()]
[(cons x xs)
(let-values ([(xs-gte xs-lt) (partition (curry < x) xs)])
(append (quicksort < xs-lt)
(list x)
(quicksort < xs-gte)))]))
Examples
(quicksort < '(8 7 3 6 4 5 2))
;returns '(2 3 4 5 6 7 8)
(quicksort string<? '("Mergesort" "Quicksort" "Bubblesort"))
;returns '("Bubblesort" "Mergesort" "Quicksort")
Raku[edit]
(formerly Perl 6)
# Empty list sorts to the empty list
multi quicksort([]) { () }
# Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
# Partition.
my $before := @rest.grep(* before $pivot);
my $after := @rest.grep(* !before $pivot);
# Sort the partitions.
flat quicksort($before), $pivot, quicksort($after)
}
Note that $before
and $after
are bound to lazy lists, so the partitions can (at least in theory) be sorted in parallel.
Red[edit]
Red []
;;-------------------------------
;; we have to use function not func here, otherwise we'd have to define all "vars" as local...
qsort: function [list][
;;-------------------------------
if 1 >= length? list [ return list ]
left: copy []
right: copy []
eq: copy [] ;; "equal"
pivot: list/2 ;; simply choose second element as pivot element
foreach ele list [
case [
ele < pivot [ append left ele ]
ele > pivot [ append right ele ]
true [append eq ele ]
]
]
;; this is the last expression of the function, so coding "return" here is not necessary
reduce [qsort left eq qsort right]
]
;; lets test the function with an array of 100k integers, range 1..1000
list: []
loop 100000 [append list random 1000]
t0: now/time/precise ;; start timestamp
qsort list ;; the return value (block) contains the sorted list, original list has not changed
print ["time1: " now/time/precise - t0] ;; about 1.1 sec on my machine
t0: now/time/precise
sort list ;; just for fun time the builtin function also ( also implementation of quicksort )
print ["time2: " now/time/precise - t0]
REXX[edit]
version 1[edit]
This REXX version doesn't use or modify the program stack.
It is over 400% times faster then the 2nd REXX version (using the exact same random numbers).
/*REXX program sorts a stemmed array using the quicksort algorithm. */
call gen@ /*generate the elements for the array. */
call show@ 'before sort' /*show the before array elements. */
call qSort # /*invoke the quicksort subroutine. */
call show@ ' after sort' /*show the after array elements. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
inOrder: parse arg n; do j=1 for n-1; k= j+1; if @.j>@.k then return 0