Jump to content

External sort

From Rosetta Code
External sort is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Sort a huge file too large to fit into memory.


The algorithm consists in reading a large file to be sorted in chunks of data small enough to fit in main memory, sort each of the chunks, write them out to a temporary file, and finally combined the smaller subfiles into a single larger file.

For more info see: https://en.wikipedia.org/wiki/External_sorting

The sorting algorithm can be any popular sort, like quicksort.

For simplicity one can assume that the file consists of fixed length integers and that the sort function is less-than (<).

AppleScript

This effort uses an in-place Quicksort, which tends to move things around less than a merge sort and so hopefully means fewer writes to the file and a less long wait for the task to finish. It suits the characteristics of AppleScript's File Read/Write commands and the fact that stable sorting isn't required with integers.

A "half chunk" of integers at a time is read to each of two buffer lists covering different sections of the file range being partitioned. Only those integers needing to be swapped are written back to the file and each list is replaced as it's used up. When the converging sections eventually overlap, a single list is used instead which is updated in parallel with the file to ensure that the partitioning repeat stops in the right place. Partitions less than a "chunk" in length are sorted in memory with a heap sort. (The Foundation framework has a built-in NSMutableArray sort which is faster than a vanilla heap sort — even with the necessary derivation of NSMutableArrays from the lists and lists from the sorted arrays — but I don't know how well this fits the task's "low memory" conceit.)

(*
Quicksort algorithm: S.A.R. (Tony) Hoare, 1960.
Optimisations by Robert Sedgewick and others at various times.
Heap sort algorithm: J.W.J. Williams, 1964.
*)

use AppleScript version "2.3.1" -- MacOS 10.9 (Mavericks) or later — for these 'use' commands!
use internalSorter : script "Heap sort" -- <https://www.rosettacode.org/wiki/Sorting_algorithms/Heapsort#AppleScript>.
use scripting additions

-- Configuration.
property maxChunkSize : 256000 -- 256 KBytes (64000 AppleScript integers). The larger this figure can be, the less slow the sort.
property integerSize : 4
property maxInternalSortSize : maxChunkSize

on externalSort(theFile) -- Param: file, alias, or HFS path.
    (* Properties and handlers for the sort. *)
    script o
        -- Precalculated values.
        property twiceIntegerSize : integerSize + integerSize
        property maxHalfChunkSize : maxChunkSize div twiceIntegerSize * integerSize
        -- Reference number of the system file handle for the open file.
        property fRef : missing value
        -- Start byte indices of integers in the file.
        property i : missing value
        property j : missing value
        -- Start byte indices of the most recent additions to pivot stores in the file.
        property pLeft : missing value
        property pRight : missing value
        -- Two buffer lists and assocatiated info.
        property leftList : missing value
        property leftEndByte : missing value -- End byte index of equivalent range in file.
        property a : missing value -- Left list index.
        property leftListLength : missing value
        property rightList : missing value
        property rightStartByte : missing value -- Start byte index of equivalent range in file.
        property b : missing value -- Right list index.        
        -- Whether or not down to single-list working.
        property singleList : missing value
        
        (* Quicksort handler. Sorts a file of integers in place. *)
        on qsrt(l, r) -- Params: start-byte indices in the file of the first and last integers in a range to be partitioned.    
            repeat -- Tail call elimination repeat.
                -- Prime the properties for this range.
                set {i, j, pLeft, pRight, leftEndByte, a, leftListLength, rightStartByte, b, singleList} to ¬
                    {l, r, l - integerSize, r + integerSize, l - 1, 0, 0, r + integerSize, 0, false}
                -- Get the first and last integers in the range, setting up the first two buffer lists in the process.
                set leftValue to nextLeftInteger(l, r)
                set rightValue to nextRightInteger(l, r)
                -- Read a third integer directly from the middle of the range in the file.
                set pivot to (read fRef from ((l + r - 2) div twiceIntegerSize * integerSize + 1) for integerSize as integer)
                -- Choose one of the three as the pivot (median-of-3 pivot selection).
                set leftGreaterThanRight to (leftValue > rightValue)
                if (leftValue > pivot) then
                    if (leftGreaterThanRight) then
                        if (rightValue > pivot) then set pivot to rightValue
                    else
                        set pivot to leftValue
                    end if
                else if (pivot > rightValue) then
                    if (leftGreaterThanRight) then
                        set pivot to leftValue
                    else
                        set pivot to rightValue
                    end if
                end if
                -- Whichever's now the pivot, swap the outermost two if the left's greater than the right.
                -- If either of them *is* the pivot, advance the pivot store boundary on the relevant side.
                if (leftGreaterThanRight) then
                    write leftValue to fRef as integer starting at r
                    write rightValue to fRef as integer starting at l
                    if (leftValue = pivot) then
                        set pRight to r
                    else if (rightValue = pivot) then
                        set pLeft to l
                    end if
                else
                    if (leftValue = pivot) then set pLeft to l
                    if (rightValue = pivot) then set pRight to r
                end if
                
                -- Continue partitioning the range.
                set i to l + integerSize
                set j to r - integerSize
                repeat until (i > j) -- Partitioning repeat.
                    set leftValue to nextLeftInteger(l, r)
                    repeat while (leftValue < pivot)
                        set i to i + integerSize
                        set leftValue to nextLeftInteger(l, r)
                    end repeat
                    
                    set rightValue to nextRightInteger(l, r)
                    repeat while (rightValue > pivot)
                        set j to j - integerSize
                        set rightValue to nextRightInteger(l, r)
                    end repeat
                    
                    if (j > i) then
                        -- Three-way partitioning: if either value to be swapped is a pivot instance, extend the pivot store
                        -- on the destination side and, if the appropriated slot isn't already the pivot destination, swap its
                        -- current content for (a copy of) the pivot and use the retrieved value instead in the main swap.
                        if (leftValue = pivot) then
                            set pRight to pRight - integerSize
                            if (pRight > j) then
                                set leftValue to (read fRef from pRight for integerSize as integer)
                                write pivot as integer to fRef starting at pRight
                            end if
                        end if
                        if (rightValue = pivot) then
                            set pLeft to pLeft + integerSize
                            if (pLeft < i) then
                                set rightValue to (read fRef from pLeft for integerSize as integer)
                                write pivot as integer to fRef starting at pLeft
                            end if
                        end if
                        -- Write the values to be swapped to the appropriate places in the file.
                        write rightValue to fRef as integer starting at i
                        write leftValue to fRef as integer starting at j
                        -- If down to a single buffer list, update this too so that the repeat will know when to stop.
                        if (singleList) then
                            set item a of my leftList to rightValue
                            set item b of my leftList to leftValue
                        end if
                    else if (i > j) then
                        exit repeat
                    end if
                    
                    set i to i + integerSize
                    set j to j - integerSize
                end repeat -- Partitioning.
                
                -- Swap any stored pivot instances into the slots next to the crossed indices
                -- and advance the indices to exclude the pivots from the rest of the sort. 
                repeat with p from l to pLeft by integerSize
                    if (j > pLeft) then
                        write (read fRef from j for integerSize as integer) to fRef as integer starting at p
                        write pivot to fRef as integer starting at j
                        set j to j - integerSize
                    else
                        -- Don't bother swapping where store and target slots overlap.
                        set j to p - integerSize
                        exit repeat
                    end if
                end repeat
                repeat with p from r to pRight by -integerSize
                    if (i < pRight) then
                        write (read fRef from i for integerSize as integer) to fRef as integer starting at p
                        write pivot to fRef as integer starting at i
                        set i to i + integerSize
                    else
                        set i to p + integerSize
                        exit repeat
                    end if
                end repeat
                
                -- Where the new partitions are short enough, sort them in memory with a non-recursive sort.
                -- Otherwise subpartition the shorter one recursively, then the longer iteratively.
                set leftDiff to j - l
                set rightDiff to r - i
                if (leftDiff < rightDiff) then
                    set {shorterDiff, ls, rs, longerDiff, l} to {leftDiff, l, j, rightDiff, i}
                else
                    set {shorterDiff, ls, rs, longerDiff, r} to {rightDiff, i, r, leftDiff, j}
                end if
                if (shorterDiff < maxInternalSortSize) then
                    if (rs > ls) then sortInMemory(ls, rs)
                else
                    qsrt(ls, rs)
                end if
                if (longerDiff < maxInternalSortSize) then
                    if (r > l) then sortInMemory(l, r)
                    exit repeat -- … and return from the handler.
                end if
                -- Otherwise go round again to handle the longer partition.
            end repeat -- Tail call elimination.
        end qsrt
        
        (* Return the next integer from the left buffer list, setting up or replacing the list as necessary. *)
        on nextLeftInteger(l, r)
            set a to a + 1
            if (a > leftListLength) then
                -- The existing left list has been used up or doesn't yet exist.
                set leftEndByte to leftEndByte + maxHalfChunkSize
                -- Derive a new left list from the next half-chunk of data — unless any of this is already
                -- covered by the other list, in which case replace both lists with a single one.
                if (leftEndByte < rightStartByte) then
                    set leftList to (read fRef from i for maxHalfChunkSize as integer) as list
                    set a to 1
                    set leftListLength to (count leftList)
                else
                    goToSingleList(l, r)
                    set b to b + 1
                end if
            end if
            
            return item a of my leftList
        end nextLeftInteger
        
        (* Return the next integer from the right buffer list, simile. *)
        on nextRightInteger(l, r)
            set b to b - 1
            if (b < 1) then
                set rightStartByte to rightStartByte - maxHalfChunkSize
                if (rightStartByte > leftEndByte) then
                    set rightList to (read fRef from rightStartByte for maxHalfChunkSize as integer) as list
                    set b to (count rightList)
                else
                    goToSingleList(l, r)
                end if
            end if
            
            return item b of my rightList
        end nextRightInteger
        
        (* Set up a single buffer list for use in the closing stage of a partitioning repeat. *)
        on goToSingleList(l, r)
            -- The range to read from the file is from bytes i to (j + integerSize - 1)
            -- PLUS an integer either side, if these are within the range being partitioned,
            -- to help ensure that the partitioning repeat stops in the right place.
            if (i > l) then
                set readStart to i - integerSize
                set a to 2
            else
                set readStart to i
                set a to 1
            end if
            if (j < r) then
                set readEnd to j + twiceIntegerSize - 1
            else
                set readEnd to j + integerSize - 1
            end if
            -- Ditch the existing right list.
            set rightList to missing value
            -- Read the integers from the calculated range and set both list properties to the same result instance.
            set leftList to (read fRef from readStart to readEnd as integer) as list
            set rightList to leftList
            -- Set the other relevant properties.
            set b to (count rightList)
            if (j < r) then set b to b - 1
            set leftListLength to b
            set singleList to true
        end goToSingleList
        
        (* Read integers from a given range in the file, sort them in memory, and write them back to the same range. *)
        on sortInMemory(l, r)
            set rightList to missing value
            set leftList to (read fRef from l to (r + integerSize - 1) as integer) as list
            tell internalSorter to sort(leftList, 1, -1)
            read fRef from l for 0 -- Set the file handle's position pointer.
            repeat with x from 1 to (count leftList)
                write (item x of my leftList) as integer to fRef
            end repeat
        end sortInMemory
    end script
    
    (* Main handler code. Sets up and starts the sort. *)
    
    -- Check the input.
    try
        set theFile to theFile as alias
    on error
        display dialog "The specified file doesn't exist." buttons {"Stop"} default button 1 cancel button 1 with icon stop
    end try
    set fileSize to (get eof theFile)
    if (fileSize is 0) then
        display dialog "The file is empty." buttons {"Stop"} default button 1 cancel button 1 with icon stop
    else if (fileSize mod integerSize > 0) then
        display dialog ¬
            "The file size isn't an exact number of integers." buttons {"Stop"} default button 1 cancel button 1 with icon stop
    end if
    
    -- Get the user to specify the destination file. Can be the original.
    set oldPath to theFile as text
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to ":"
    tell oldPath to set {rootPath, oldName} to {text 1 thru text item -2, text item -1}
    set AppleScript's text item delimiters to "."
    tell oldName to set newName to text 1 thru text item -2 & " (sorted copy)." & text item -1
    set AppleScript's text item delimiters to astid
    set newFile to ¬
        (choose file name with prompt "Save the sorted result as…" default name newName default location (rootPath as alias))
    -- If the original wasn't chosen, copy the data to the new location.
    -- There are simpler ways to copy a file, but this still practically instantaneous
    -- and definitely only involves maxChunkSize bytes at a time.
    if (newFile as text is not oldPath) then
        set readRef to (open for access theFile)
        set writeRef to (open for access newFile with write permission)
        try
            set eof writeRef to 0
            repeat with i from 1 to fileSize by maxChunkSize
                set d to (read readRef for maxChunkSize as data)
                write d as data to writeRef
            end repeat
            close access writeRef
            close access readRef
        on error errMsg
            close access writeRef
            close access readRef
            display dialog errMsg buttons {"Stop"} default button 1 cancel button 1 with icon stop
        end try
        set theFile to newFile
    end if
    
    -- Open the target file with write permission and perform the sort.
    set o's fRef to (open for access theFile with write permission)
    try
        -- Handler parameters: first-byte indices of the first and last integers in the file.
        if (fileSize > maxChunkSize) then
            tell o to qsrt(1, fileSize + 1 - integerSize)
        else
            tell o to sortInMemory(1, fileSize + 1 - integerSize)
        end if
        
        close access o's fRef
    on error errMsg
        close access o's fRef
        display dialog errMsg buttons {"Stop"} default button 1 cancel button 1 with icon stop
    end try
    
    -- Return the specifier for the sorted file.
    return theFile
end externalSort

set theFile to (path to desktop as text) & "Test.dat"
set sortedFile to externalSort(theFile)

C++

Sort a file of integers using external merge sort.

The input file is read into a single 32 byte buffer (8 ints) and the 8 ints are sorted and then written to a temp file on disk as strings.

This continues until all the numbers from the input file are read and distributed into files of 8 integer strings.

The last file may be less than 8 integers.

All the temp files are opened as ifstreams in a dynamic pointer array.

A minheap reads ints from each file stream in turn, and outputs its contents to the output file.

(The heap generally only fills to 6 items before it writes its contents to the output file.)

All sorted streams are merged in this way out to an external output file merged.txt.

/* ExternalSort.cpp */

 
#include <iostream>
#include <fstream>
#include <queue>
#include <string>
#include <algorithm>
#include <cstdio>


/* function signatures */

int main(int argc, char* argv[]);
void write_vals(int* const, const size_t, const size_t);
std::string mergeFiles(size_t); 


/* Comparison object 

   compares first item of 2 std::pairs of ints
   true if first item is larger or the same.

   MinHeap sorts with this. 
   It gets called a lot, so the simpler the better.

   STL api stipulates boolean predicate

   A "functor" object defines a function call operator () that returns a value. 

*/

struct Compare
{
  // compare 2 pairs by first element 
  bool operator() ( std::pair<int, int>& p1,  std::pair<int, int>& p2 )
  {
    return p1.first >= p2.first; // Ascending order
  }
};


 

/* aliases */
 
using ipair = std::pair<int,int>;

using pairvector = std::vector<ipair>;

using MinHeap = std::priority_queue< ipair, pairvector, Compare >;




/* constants */

const size_t memsize = 32;                        // 32 bytes

const size_t chunksize = memsize / sizeof(int);   // 8 int 

const std::string tmp_prefix{"tmp_out_"};  // tmpfile prefix

const std::string tmp_suffix{".txt"};      // tmpfile suffix

const std::string merged_file{"merged.txt"}; // output file



/* functions  */

// write  int array to file
void write_vals( int* const values, const size_t size, const size_t chunk )
{
 
  // tmp_out_1.txt,  tmp_out_2.txt ... 
  std::string output_file = (tmp_prefix + std::to_string(chunk) + tmp_suffix);
    
  std::ofstream ofs(output_file.c_str()); //output file

  for (int i=0; i<size; i++)  
    ofs << values[i] << '\t';
  
    ofs << '\n';

  ofs.close();
}



/* merge all external sorted files into one
   output file (same size as original input file) */

std::string mergeFiles(size_t chunks, const std::string& merge_file ) 
{

  std::ofstream ofs( merge_file.c_str() );
    
  MinHeap  minHeap;

  // array of ifstreams 
  std::ifstream* ifs_tempfiles = new std::ifstream[chunks];
 
  for (size_t i = 1; i<=chunks; i++) 
    {
      int topval = 0;	

      // generate a unique name for temp file (temp_out_1.txt , temp_out_2.txt ..) 
      std::string sorted_file = (tmp_prefix + std::to_string(i) + tmp_suffix);
       
      // open an input file stream object for each name
      ifs_tempfiles[i-1].open( sorted_file.c_str() ); // bind to tmp_out_{i}.txt

      // get val from temp file
      if (ifs_tempfiles[i-1].is_open()) 
	{
	  ifs_tempfiles[i-1] >> topval; // first value in the file (min)

	  ipair top(topval, (i-1)); // 2nd value is tempfile number   
			      
	  minHeap.push( top );   //  minHeap autosorts
	}
    }
  

  while (minHeap.size() > 0) 
    {
      int next_val = 0;

      ipair min_pair = minHeap.top(); // get min

      minHeap.pop();

      ofs << min_pair.first << ' ';  // write value to file
  
      std::flush(ofs);

      if ( ifs_tempfiles[min_pair.second] >> next_val) 
	{

	  ipair np( next_val, min_pair.second );

	  minHeap.push( np );
	}

    }
 

  // close open files
  for (int i = 1; i <= chunks; i++) 
    {
      ifs_tempfiles[i-1].close();
    }

  ofs << '\n';
  ofs.close();
    
  delete[] ifs_tempfiles; // free memory
 
  return merged_file;  // string
}
 



int main(int argc, char* argv[] ) 
{

  if (argc < 2)
    {
      std::cerr << "usage:  ExternalSort <filename> \n";
      return 1;
    }

  // open input file for reading

  std::ifstream ifs( argv[1] );  
  
  if ( ifs.fail() )
    {
      std::cerr << "error opening " << argv[1] << "\n";
      return 2;
    }


  // temp array for input (small)  (32 bytes -- 8 ints)
  int* inputValues = new int[chunksize];
 
  int chunk = 1;    // counter (which chunk)

  int val = 0;      // int  for reading

  int count = 0;    // count reads

  bool done = false; 

  std::cout << "internal buffer is " << memsize << " bytes" << "\n"; 

  // read chunksize values from input file 
  while (ifs >> val) 
    {
      done = false;

      inputValues[count] = val;
	
      count++;

      if (count == chunksize) 
	{

	  std::sort(inputValues, inputValues + count);

	  write_vals(inputValues, count, chunk); // output vals to 

	  chunk ++;

	  count = 0;

	  done = true;
	}

    } // while 


  if (! done)  // one more file
    {
      std::sort(inputValues, inputValues + count);
    
      write_vals(inputValues, count, chunk); // output vals to 
    }
  else 
    {
      chunk --;  // fix overshoot
    }

 

  ifs.close();   // done with original input file
    

  delete[] inputValues; // free dynamically allocated memory
    

  // perform external mergesort on sorted temp files, if any.
  if ( chunk == 0 ) 
    std::cout << "no data found\n";
  else
    std::cout << "Sorted output is in file: " << mergeFiles(chunk, merged_file ) << "\n";
     

  return EXIT_SUCCESS;
}

/* compile:  clang++ -std=c++11 -Wall -pedantic -o ExternalSort ExternalSort.cpp */

/* inputfile  integers --  one per line for simplicity */
Output:

input:

2 65 76 88 55 22 35 11 76 99 7 111 4 55 34 63 22 13 45 9 0 112 123 345 456 8 654 678 999 888 10 3 555 534 236 143 860 648 1 627 711 223 332 5 443 445

tmp_out_1.txt

 2	11	22	35	55	65	76	88 

tmp_out_2.txt

 4	7	34	55	63	76	99	111 

tmp_out_3.txt

 0	9	13	22	45	112	123	345 

tmp_out_4.txt

 3	8	10	456	654	678	888	999 

tmp_out_5.txt

 1	143	236	534	555	627	648	860 

tmp_out_6.txt

 5	223	332	443	445	711 

merged.txt:

0 1 2 3 4 5 7 8 9 10 11 13 22 22 34 35 45 55 55 63 65 76 76 88 99 111 112 123 143 223 236 332 345 443 445 456 534 555 627 648 654 678 711 860 888 999

DuckDB

Works with: DuckDB version V1.1

This entry illustrates how to use DuckDB's COPY command to sort the records of a CSV file much larger than will fit into memory. As is generally the case, DuckDB will "spill" data to a disk file in a specific location provided there is enough disk space available at that location.

The CSV file used for this task is a well-known file of Japanese trade statistics from 1988 to 2019. The file, which is about 4.5GB in size, is available at https://www.kaggle.com/datasets/zanjibar/100-million-data-csv DuckDB can read files over the Internet directly, but here we'll suppose it is available in the pwd as custom_1988_2020.csv

The CSV file has 113,607,322 records, each with 8 columns. For this exercise, we'll sort it by the values in the last column, which is an amount in Yen.

To force the spilling of data, we'll set the `memory_limit` option to '1GB', and we'll set `temp_directory` so as to ensure there is enough disk space and so that during execution of the program, the presence of the temporary files can be verified.

To verify the limit has not been exceeded, we'll use /usr/bin/time -lp

SET memory_limit='1GB'; 
SET temp_directory='/tmp/duckdb/tmp/';
COPY (FROM 'custom_1988_2020.csv' order by column7)
TO '/tmp/custom_1988_2020.sorted.csv';"

The peak memory footprint was 975,155,200; to verify the output file has been sorted, I ran:

cut -d, -f8 <  /tmp/custom_1988_2020.sorted.csv | sort -nc


FreeBASIC

Translation of: Go
Type MinHeapNode
    element As Integer
    index As Integer
End Type

Type MinHeap
    nodes(Any) As MinHeapNode
End Type

Sub minHeapify(heap() As MinHeapNode, Byval i As Integer)
    Dim As Integer l, r, smallest, heapSize = Ubound(heap) +1
    Dim As MinHeapNode tmp
    
    Do
        l = (2 * i + 1)
        r = (2 * i + 2)
        smallest = i
        
        If l < heapSize Andalso heap(l).element < heap(i).element Then smallest = l
        If r < heapSize Andalso heap(r).element < heap(smallest).element Then smallest = r
        
        If smallest = i Then Exit Do
        
        tmp = heap(i)
        heap(i) = heap(smallest)
        heap(smallest) = tmp
        i = smallest
    Loop
End Sub

Sub buildMinHeap(heap() As MinHeapNode)
    For i As Integer = (Ubound(heap) -1) \ 2 To 0 Step -1
        minHeapify(heap(), i)
    Next
End Sub

Sub merge(arr() As Integer, Byval l As Integer, Byval m As Integer, Byval r As Integer)
    Static As Integer tl(1023), tr(1023)  'Static for better performance
    Dim As Integer n1 = m - l + 1
    Dim As Integer n2 = r - m
    Dim As Integer i, j, k
    
    For i = 0 To n1-1: tl(i) = arr(l + i): Next
    For j = 0 To n2-1: tr(j) = arr(m + 1 + j): Next
    
    i = 0: j = 0: k = l
    While i < n1 Andalso j < n2
        If tl(i) <= tr(j) Then
            arr(k) = tl(i): i += 1
        Else
            arr(k) = tr(j): j += 1
        End If
        k += 1
    Wend
    
    While i < n1: arr(k) = tl(i): i += 1: k += 1: Wend
    While j < n2: arr(k) = tr(j): j += 1: k += 1: Wend
End Sub

Sub mergeSort(arr() As Integer, Byval l As Integer, Byval r As Integer)
    If l < r Then
        Dim As Integer m = l + (r -l) \ 2
        mergeSort(arr(), l, m)
        mergeSort(arr(), m +1, r)
        merge(arr(), l, m, r)
    End If
End Sub

Sub mergeFiles(outputFile As String, Byval n As Integer, Byval k As Integer)
    Static As Integer inFiles(15)  'Assuming max k=16
    Dim As MinHeapNode nodes(k-1)
    Dim As Integer outFile, cnt, i
    
    For i = 0 To k-1
        inFiles(i) = Freefile
        Open "es" & i For Input As #inFiles(i)
        Input #inFiles(i), nodes(i).element
        nodes(i).index = i
    Next
    
    For i = (k-2)\2 To 0 Step -1: minHeapify(nodes(), i): Next
    
    outFile = Freefile
    Open outputFile For Output As #outFile
    
    Do
        Print #outFile, nodes(0).element;
        If Eof(inFiles(nodes(0).index)) Then
            nodes(0).element = &h7FFFFFFF
            cnt += 1
            If cnt = k Then Exit Do
        Else
            Input #inFiles(nodes(0).index), nodes(0).element
        End If
        minHeapify(nodes(), 0)
    Loop
    
    For i = 0 To k-1: Close #inFiles(i): Next
    Close #outFile
End Sub

Sub createInitialRuns(inputFile As String, Byval runSize As Integer, Byval numWays As Integer)
    Static As Integer arr(1023)  'Static for better performance
    Dim As Integer inFile = Freefile
    Dim As Integer outFiles(numWays-1)
    Dim As Integer i, j, nextOutputFile
    
    Open inputFile For Input As #inFile
    For i = 0 To numWays-1
        outFiles(i) = Freefile
        Open "es" & i For Output As #outFiles(i)
    Next
    
    Do While Not Eof(inFile)
        For i = 0 To runSize-1
            If Eof(inFile) Then Exit For
            Input #inFile, arr(i)
        Next
        
        If i > 0 Then
            mergeSort(arr(), 0, i-1)
            For j = 0 To i-1
                Print #outFiles(nextOutputFile), arr(j);
            Next
            nextOutputFile += 1
        End If
    Loop
    
    Close #inFile
    For i = 0 To numWays-1: Close #outFiles(i): Next
End Sub

Sub externalSort(inputFile As String, outputFile As String, numWays As Integer, runSize As Integer)
    createInitialRuns(inputFile, runSize, numWays)
    mergeFiles(outputFile, runSize, numWays)
End Sub

'Main program
Randomize Timer

Dim As Integer numWays = 4
Dim As Integer runSize = 10
Dim As String inputFile = "i:\external_sort_input.txt"
Dim As String outputFile = "i:\external_sort_output.txt"

'Create input file with random numbers
Dim As Integer ff = Freefile
Open inputFile For Output As #ff
For i As Integer = 1 To numWays * runSize
    Print #ff, Int(Rnd * &h7FFFFFFF);
Next
Close #ff

'Sort
externalSort(inputFile, outputFile, numWays, runSize)

'Clean up temporary files
For i As Integer = 0 To numWays-1: Kill "es" & i: Next

Sleep
Output:

Sample run:

Contents of external_sort_input.txt:
 771153728 440569039 1143474915 640249120 2085499789 443596200 105984682 1927843875 263537832 976541783 1608099832 1814237183 1505334772 877843328 1826156632 280344412 662866168 1154720301 385337647 712228972 437466640 344847458 992007931 1831227913 1129470434 702714149 1794352639 1306396046 187118382 1460500964 624660213 198693642 308483284 575723384 314802427 127277568 234618966 2085409103 572022291 771492143

Contents of external_sort_output.txt:
 105984682 127277568 187118382 198693642 234618966 263537832 280344412 308483284 314802427 344847458 385337647 437466640 440569039 443596200 572022291 575723384 624660213 640249120 662866168 702714149 712228972 771153728 771492143 877843328 976541783 992007931 1129470434 1143474915 1154720301 1306396046 1460500964 1505334772 1608099832 1794352639 1814237183 1826156632 1831227913 1927843875 2085409103 2085499789

Go

This is a translation of the C++ code here which implements external sorting using a merge sort. In the interests of brevity, the extensive comments in the C++ version have been largely omitted.

A small test file consisting of random integers has been generated and sorted to demonstrate that the approach works.

package main

import (
    "fmt"
    "io"
    "log"
    "math"
    "math/rand"
    "os"
    "time"
)

type MinHeapNode struct{ element, index int }

type MinHeap struct{ nodes []MinHeapNode }

func left(i int) int {
    return (2*i + 1)
}

func right(i int) int {
    return (2*i + 2)
}

func newMinHeap(nodes []MinHeapNode) *MinHeap {
    mh := new(MinHeap)
    mh.nodes = nodes
    for i := (len(nodes) - 1) / 2; i >= 0; i-- {
        mh.minHeapify(i)
    }
    return mh
}

func (mh *MinHeap) getMin() MinHeapNode {
    return mh.nodes[0]
}

func (mh *MinHeap) replaceMin(x MinHeapNode) {
    mh.nodes[0] = x
    mh.minHeapify(0)
}

func (mh *MinHeap) minHeapify(i int) {
    l, r := left(i), right(i)
    smallest := i
    heapSize := len(mh.nodes)
    if l < heapSize && mh.nodes[l].element < mh.nodes[i].element {
        smallest = l
    }
    if r < heapSize && mh.nodes[r].element < mh.nodes[smallest].element {
        smallest = r
    }
    if smallest != i {
        mh.nodes[i], mh.nodes[smallest] = mh.nodes[smallest], mh.nodes[i]
        mh.minHeapify(smallest)
    }
}

func merge(arr []int, l, m, r int) {
    n1, n2 := m-l+1, r-m
    tl := make([]int, n1)
    tr := make([]int, n2)
    copy(tl, arr[l:])
    copy(tr, arr[m+1:])
    i, j, k := 0, 0, l
    for i < n1 && j < n2 {
        if tl[i] <= tr[j] {
            arr[k] = tl[i]
            k++
            i++
        } else {
            arr[k] = tr[j]
            k++
            j++
        }
    }
    for i < n1 {
        arr[k] = tl[i]
        k++
        i++
    }
    for j < n2 {
        arr[k] = tr[j]
        k++
        j++
    }
}

func mergeSort(arr []int, l, r int) {
    if l < r {
        m := l + (r-l)/2
        mergeSort(arr, l, m)
        mergeSort(arr, m+1, r)
        merge(arr, l, m, r)
    }
}

// Merge k sorted files: es0,es1 etc.
func mergeFiles(outputFile string, n, k int) {
    in := make([]*os.File, k)
    var err error
    for i := 0; i < k; i++ {
        fileName := fmt.Sprintf("es%d", i)
        in[i], err = os.Open(fileName)
        check(err)
    }
    out, err := os.Create(outputFile)
    check(err)
    nodes := make([]MinHeapNode, k)
    i := 0
    for ; i < k; i++ {
        _, err = fmt.Fscanf(in[i], "%d", &nodes[i].element)
        if err == io.EOF {
            break
        }
        check(err)
        nodes[i].index = i
    }
    hp := newMinHeap(nodes[:i])
    count := 0
    for count != i {
        root := hp.getMin()
        fmt.Fprintf(out, "%d ", root.element)
        _, err = fmt.Fscanf(in[root.index], "%d", &root.element)
        if err == io.EOF {
            root.element = math.MaxInt32
            count++
        } else {
            check(err)
        }
        hp.replaceMin(root)
    }
    for j := 0; j < k; j++ {
        in[j].Close()
    }
    out.Close()
}

func check(err error) {
    if err != nil {
        log.Fatal(err)
    }
}

// Create initial runs, divide them evenly amongst the output files
// and then merge-sort them.
func createInitialRuns(inputFile string, runSize, numWays int) {
    in, err := os.Open(inputFile)
    out := make([]*os.File, numWays)
    for i := 0; i < numWays; i++ {
        fileName := fmt.Sprintf("es%d", i) // es0, es1 etc.
        out[i], err = os.Create(fileName)
        check(err)
    }
    arr := make([]int, runSize)
    moreInput := true
    nextOutputFile := 0
    var i int
    for moreInput {
        for i = 0; i < runSize; i++ {
            _, err := fmt.Fscanf(in, "%d", &arr[i])
            if err == io.EOF {
                moreInput = false
                break
            }
            check(err)
        }
        mergeSort(arr, 0, i-1)
        for j := 0; j < i; j++ {
            fmt.Fprintf(out[nextOutputFile], "%d ", arr[j])
        }
        nextOutputFile++
    }
    for j := 0; j < numWays; j++ {
        out[j].Close()
    }
    in.Close()
}

func externalSort(inputFile, outputFile string, numWays, runSize int) {
    createInitialRuns(inputFile, runSize, numWays)
    mergeFiles(outputFile, runSize, numWays)
}

func main() {
    // Create a small test file of 40 random ints and split it into 4 files
    // of 10 integers each.
    numWays := 4
    runSize := 10
    inputFile := "input.txt"
    outputFile := "output.txt"
    in, err := os.Create(inputFile)
    check(err)
    rand.Seed(time.Now().UnixNano())
    for i := 0; i < numWays*runSize; i++ {
        fmt.Fprintf(in, "%d ", rand.Intn(math.MaxInt32))
    }
    in.Close()
    externalSort(inputFile, outputFile, numWays, runSize)
    // remove temporary files
    for i := 0; i < numWays; i++ {
        fileName := fmt.Sprintf("es%d", i)
        err = os.Remove(fileName)
        check(err)
    }
}
Output:

Contents of input.txt:

921996447 760852351 223421434 1245608832 745990119 1414811249 1947335121 762344474 588429291 993452626 2592794 491133923 1275871423 1152039534 649892156 278215570 595760601 1878223040 1267371451 2097209826 1409628494 1147072290 309824251 108477605 1705270413 1821354697 1703557665 473708588 110138202 1292465428 946557804 148800949 1471244316 1508853596 1306802817 1016358698 1661284048 527644251 546155704 337874167

Contents of output.txt:

2592794 108477605 110138202 148800949 223421434 278215570 309824251 337874167 473708588 491133923 527644251 546155704 588429291 595760601 649892156 745990119 760852351 762344474 921996447 946557804 993452626 1016358698 1147072290 1152039534 1245608832 1267371451 1275871423 1292465428 1306802817 1409628494 1414811249 1471244316 1508853596 1661284048 1703557665 1705270413 1821354697 1878223040 1947335121 2097209826

J

Untested on a memory mapped file.

NB. Apply an in-place sorting algorithm to a memory mapped file
NB. in-place sort is translation of in-place python quicksort.

require 'jmf'
JCHAR map_jmf_ 'DATA'; 'file.huge'
NB. The noun DATA now refers to the memory mapped file.
NB. Use: quicksort DATA


NB. use: quicksort DATA
quicksort=: 3 :'qsinternal 0 , <:@:# ARRAY=: y'  NB. ARRAY is global

qsinternal=: 3 :0
 'start stop'=. y
 if. 0 < stop - start do.
  'left right pivot'=. start, stop, start{ARRAY   NB. pivot, left, right = array[start], start, stop
  while. left <: right do.           NB. while left <= right:
   while. pivot > left { ARRAY do.   NB. while array[left] < pivot:
    left=. >: left
   end.
   while. pivot < right { ARRAY do.  NB. while array[right] > pivot:
    right=. <: right                 NB. right -= 1
   end.
   if. left <: right do.             NB. if left <= right:

    NB. mapped files work by reference, assignment not required, but for testing.
    ARRAY=: (left, right) {`(|.@:[)`]} ARRAY NB. array[left], array[right] = array[right], array[left]

    left=. >: left                   NB. left += 1
    right=. <: right                 NB. right -= 1
   end.
  end.
  qsinternal start , right    NB. _quicksort(array, start, right)
  qsinternal left , stop      NB. _quicksort(array, left, stop)
 end.
 i. 0 0  NB. verbs return the final noun
)

Demonstration the sorting works:

   quicksort ?~10
   ARRAY
0 1 2 3 4 5 6 7 8 9
   

Java

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.PriorityQueue;
import java.util.concurrent.ThreadLocalRandom;

public final class ExternalSort {
	
	 public static void main(String[] args) throws IOException {
		 Path inputPath = Path.of("./input.txt");
	     Path outputPath = Path.of("./output.txt");
	     
		 // Create a "large" input file of a bounded random size
	     ThreadLocalRandom random = ThreadLocalRandom.current();
	     try ( BufferedWriter writer = Files.newBufferedWriter(inputPath, StandardCharsets.UTF_8) ) {
             for ( int i = 0; i < random.nextInt(80, 100); i++ ) {            	 
                 writer.write(random.nextInt(0, 100) + "\n");
             }
         }
	     
	     final int inMemoryFileSize = 20;
	     final long tempFileCount = Files.lines(inputPath).count() / inMemoryFileSize + 1;   
	     
	     createTemporaryFiles(inputPath, inMemoryFileSize);
	     mergeFiles(outputPath, inMemoryFileSize, tempFileCount);         
    }
	
    private static void createTemporaryFiles(Path inputPath, int inMemoryFileSize) throws IOException {
        try ( BufferedReader inputFileReader = Files.newBufferedReader(inputPath) ) {
	        List<BufferedWriter> outputFileWriters = new ArrayList<BufferedWriter>();
	
	        int tempFileIndex = 0;
	        boolean inputAvailable = true;
	
	        while ( inputAvailable ) {
	            List<Integer> data = new ArrayList<Integer>();
	            for ( int i = 0; i < inMemoryFileSize && inputAvailable; i++ ) {
	                String line = inputFileReader.readLine();
	                if ( line != null ) {
	                    data.add(Integer.parseInt(line));
	                } else {
	                    inputAvailable = false;
	                }
	            }
	            
	            Collections.sort(data);
	
	            // Write the elements to the appropriate temporary output file
	            Path tempPath = Path.of(String.valueOf(tempFileIndex));
	            outputFileWriters.addLast( Files.newBufferedWriter(tempPath, StandardCharsets.UTF_8) );
	            for ( int element : data ) {
	                outputFileWriters.get(tempFileIndex).write(element + "\n");
	            }       
	            outputFileWriters.get(tempFileIndex).close();
	
	            tempFileIndex += 1;
	        }
        }
    }
	
    private static void mergeFiles(
    		Path outputPath, int inMemoryFileSize, long tempFileCount) throws IOException {    
        try ( BufferedWriter writer = Files.newBufferedWriter(outputPath, StandardCharsets.UTF_8) ) {
	        List<BufferedReader> readers = new ArrayList<BufferedReader>();
	        Comparator<Node> custom = Comparator.comparingInt( a -> a.element );
	        PriorityQueue<Node> priorityQueue = new PriorityQueue<Node>(custom);
	
	        // Read the output files and place an element from each file into the priority queue
	        for ( int i = 0; i < tempFileCount; i++ ) {
	            readers.addLast( Files.newBufferedReader(Path.of(String.valueOf(i))) );
	            String element = readers.get(i).readLine();
	            if ( element != null ) {
	                priorityQueue.add( new Node(Integer.parseInt(element), i) );
	            }	           
	        }
	
	        while ( ! priorityQueue.isEmpty() ) {
	            // Remove the minimum node from the priority queue and store it in the output file
	            Node node = priorityQueue.poll();
	            writer.write(node.element + "\n");
	
	            // Replace the node removed from the priority queue
	            String element = readers.get(node.fileIndex).readLine();
	            if ( element != null ) {
	                priorityQueue.add( new Node(Integer.parseInt(element), node.fileIndex) );
	            }
	        }
	        
	        // Delete temporary files
	        for ( int i = 0; i < tempFileCount; i++ ) {
	        	Files.delete(Path.of(String.valueOf(i)));
	        }        
        }
    }   
    
    private static record Node(int element, int fileIndex) {}
    
}

Julia

intfile = open("/tmp/mmap.bin", "r+")

arr = Mmap.mmap(intfile, Vector{Int64}, (div(stat(intfile).size, 8))) # Int64 is 8 bytes

sort!(arr)

Nim

Translation of: Phix
import algorithm, heapqueue, os, random, sequtils, strformat, strutils


proc sortFiles(filenames: seq[string]) =
  for filename in filenames:
    var lines = filename.readFile()
    lines.stripLineEnd()  # Ignore last line feed, if any.
    var sortedLines = sorted(lines.splitLines())
    echo &"""{filename} => {sortedLines.join(", ")}"""
    filename.writeFile(sortedLines.join("\n"))


proc mergeFiles(outfile: File; filenames: seq[string]) =
  var queue: HeapQueue[(string, File)]
  for filename in filenames:
    let f = open(fileName)
    queue.push (f.readLine(), f)
  while queue.len > 0:
    let (s, infile) = queue.pop()
    outfile.write s & '\n'
    if infile.endOfFile:
      infile.close()
    else:
      queue.push((infile.readLine(), infile))


when isMainModule:
  const WriteToFile = false   # Compile time switch.

  randomize()
  let nf = rand(2..4)   # Number of files.
  let lp = 3            # Lines per file.
  var filenames: seq[string]
  var lines = toSeq(1..nf*lp)
  lines.shuffle()

  for i in 1..nf:
    let filename = &"file{i}.txt"
    filenames.add filename
    let f = open(filename, fmWrite)
    for l in 1..lp:
      f.write &"Line {lines[^l]:2}\n"
    lines.setLen(lines.len - lp)
    f.close()

  echo &"sorting {nf * lp} lines split over {nf} files"
  sortFiles(filenames)

  when WriteToFile:
    let f = open("results.txt", fmWrite)
    mergeFiles(f, filenames)
    f.close()
  else:
    mergeFiles(stdout, filenames)

  for filename in filenames:
    removeFile(filename)
Output:
sorting 12 lines split over 4 files
file1.txt => Line  3, Line  4, Line 10
file2.txt => Line  1, Line  6, Line 12
file3.txt => Line  2, Line  5, Line  8
file4.txt => Line  7, Line  9, Line 11
Line  1
Line  2
Line  3
Line  4
Line  5
Line  6
Line  7
Line  8
Line  9
Line 10
Line 11
Line 12

Perl

Simulate task by reading from 'DATA' handle and using tiny record limit. As written, works for any numeric input, but could define any kind of customized sorting.

use strict;
use warnings;

my $max = 4; # records per merge file
my(@chunk,@tempf);

sub mysort ($$) { return $_[0] <=> $_[1] }

sub store {
    my($a) = @_;
    my $f = IO::File->new_tmpfile; # self-deleting after program exit
    print $f sort mysort @$a;
    seek $f, 0, 0 or warn "Oops: $!";
    push(@tempf, { fh => $f, queued => scalar <$f> } );
}

# read input and create sorted temporary files
while (<DATA>) {
    push @chunk, $_;
    store(\@chunk), @chunk = () if @chunk == $max;
}
store(\@chunk) if @chunk;

# merge everything
while (1) {
    my($lowest) = (sort { mysort($a->{queued}, $b->{queued}); } grep(defined $_->{queued}, @tempf) )[0];
    last unless $lowest->{queued};
    print $lowest->{queued};
    $lowest->{queued} = $lowest->{fh}->getline();
}

__DATA__
432
345
321
543
987
456
678
123
765
567
876
654
789
234
Output:
123
234
321
345
432
456
543
567
654
678
765
789
876
987

Phix

Slight variation on Stream_Merge

without js -- file i/o
include builtins/pqueue.e
include builtins/pfile.e  -- write_lines() - not [yet] documented
 
procedure add(integer fn, pq)
    object line = gets(fn)
    if line=-1 then
        close(fn)
    else
        pq_add({fn,line}, pq)
    end if
end procedure
 
procedure sort_files(sequence filenames) 
    for i=1 to length(filenames) do
        sequence lines = get_text(filenames[i],GT_LF_STRIPPED),
                 sorted = sort(lines)
        printf(1,"%s:%v => %v\n",{filenames[i],lines,sorted})
        if write_lines(filenames[i],sorted)!=1 then ?9/0 end if
    end for
end procedure 
 
procedure merge_files(integer outfn, sequence filenames) 
    integer pq = pq_new()
    for i=1 to length(filenames) do
        add(open(filenames[i], "r"),pq)
    end for
    while not pq_empty(pq) do
        {integer fn, string line} = pq_pop(pq)
        puts(outfn,line)
        add(fn, pq)
    end while
    pq_destroy(pq)
end procedure 
 
procedure test()
    integer nf = rand(5),   -- number of files
            lp = 3          -- lines per file
    sequence filenames = {},
             lines = shuffle(tagset(nf*lp))
    for i=1 to nf do
        string filename = sprintf("file%d.txt",i)
        filenames = append(filenames,filename)
        integer fn = open(filename,"w")
        for l=1 to lp do
            printf(fn,"Line %02d\n",lines[l])
        end for
        lines = lines[lp+1..$]
        close(fn)
    end for
    printf(1,"sorting %d lines split over %d files\n",{nf*lp,nf})
    sort_files(filenames)
    integer outfn = 1 -- or open("results.txt","w")
    merge_files(outfn,filenames)
--  close(outfn)
    for i=1 to nf do
        {} = delete_file(filenames[i])
    end for
end procedure
test()
Output:
sorting 9 lines split over 3 files
file1.txt:{"Line 04","Line 01","Line 09"} => {"Line 01","Line 04","Line 09"}
file2.txt:{"Line 06","Line 07","Line 02"} => {"Line 02","Line 06","Line 07"}
file3.txt:{"Line 08","Line 03","Line 05"} => {"Line 03","Line 05","Line 08"}
Line 01
Line 02
Line 03
Line 04
Line 05
Line 06
Line 07
Line 08
Line 09

Python

A technique demonstrated with a short string character data.

#! /usr/bin/python3

'''
    $ # example session in bash
    $ python3 external_sort.py 
    expect 123456789
    memory size 1 passed
    memory size 2 passed
    memory size 3 passed
    memory size 4 passed
    memory size 5 passed
    memory size 6 passed
    memory size 7 passed
    memory size 8 passed
    memory size 9 passed
    memory size 10 passed
    memory size 11 passed
'''

import io

def sort_large_file(n: int, source: open, sink: open, file_opener = open)->None:

    '''
        approach:
            break the source into files of size n
            sort each of these files
            merge these onto the sink
    '''

    # store sorted chunks into files of size n
    mergers = []
    while True:
        text = list(source.read(n))
        if not len(text):
            break;
        text.sort()
        merge_me = file_opener()
        merge_me.write(''.join(text))
        mergers.append(merge_me)
        merge_me.seek(0)

    # merge onto sink
    stack_tops = [f.read(1) for f in mergers]
    while stack_tops:
        c = min(stack_tops)
        sink.write(c)
        i = stack_tops.index(c)
        t = mergers[i].read(1)
        if t:
            stack_tops[i] = t
        else:
            del stack_tops[i]
            mergers[i].close()
            del mergers[i]  # __del__ method of file_opener should delete the file

def main():
    '''
        test case
        sort 6,7,8,9,2,5,3,4,1 with several memory sizes
    '''

    # load test case into a file like object
    input_file_too_large_for_memory = io.StringIO('678925341')

    # generate the expected output
    t = list(input_file_too_large_for_memory.read())
    t.sort()
    expect = ''.join(t)
    print('expect', expect)

    # attempt to sort with several memory sizes
    for memory_size in range(1,12):
        input_file_too_large_for_memory.seek(0)
        output_file_too_large_for_memory = io.StringIO()
        sort_large_file(memory_size, input_file_too_large_for_memory, output_file_too_large_for_memory, io.StringIO)
        output_file_too_large_for_memory.seek(0)
        assert(output_file_too_large_for_memory.read() == expect)
        print('memory size {} passed'.format(memory_size))

if __name__ == '__main__':
   example = main
   example()

Raku

(formerly Perl 6) Borrowing from Stream_Merge here. Temporary files are automatically deleted when program is done, so no explicit clean-up required.

use File::Temp;

sub merge_streams ( @streams ) {
    my @s = @streams.map({ hash( STREAM => $_, HEAD => .get ) }).grep({ .<HEAD>.defined });

    return gather while @s {
        my $h = @s.min: +*.<HEAD>;
        take $h<HEAD>;
        $h<HEAD> := $h<STREAM>.get
            orelse @s .= grep( { $_ !=== $h } );
    }
}

sub store (@values) {
    my ($filename,$filehandle) = tempfile(:prefix('external-sort.'));
    $filehandle.say: join "\n", @values.sort: +*;
    $filename
}

# we're going to pretend that this is a long stream of input from stdin...
my (@chunk,@files);
for (<43 2 45 32 15 4 3 -9 45 66 0 42 78 123 -11 76 55 87 -2 64 92 34>) {
    @chunk.push: $_;
    @files.push: store(@chunk) and @chunk = () if @chunk.elems == 4; # limit of records per merge file
}
@files.push: store(@chunk) if @chunk;

say join ' ', merge_streams @files».&open;
Output:
-11 -9 -2 0 2 3 4 15 32 34 42 43 45 45 55 64 66 76 78 87 92 123

REXX

Programming note:   the method used to generate the input file is to create the file with   N   records,
breaking up the records into sort work files of no more than   10   records   (limit).
The sort work files are then sorted with an external sort, and then merged into one big file.

This particular example uses the DOS   SORT   and   ERASE   commands.

/*REXX pgm reads a file, splits into smaller files, sorts 'em, combines into sorted file*/
parse arg FID n lim seed .                       /*obtain optional arguments from the CL*/
if  FID=='' | FID==","  then FID= 'SORT_EXT.OUT' /*name of the  output  (sorted)  file. */
if    n=='' |   n==","  then   n=   500          /*number of records (rand #s) to gen.  */
if  lim=='' | lim==","  then lim=    10          /*number of records per SORTWORK file. */
if datatype(seed, 'W')  then call random ,,seed  /*Numeric?  Then use it as a rand seed.*/
sWork = 'SORTWORK.'                              /*the filename of the  SORTWORK  files.*/
call gen n,lim                                   /*generate   SORTWORK.nnn  files.      */
call srt #                                       /*sort records in all  SORTWORK  files.*/
call mrg                                         /*merge records in the SORTWORK  files.*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
mrg: procedure expose FID sWork;   parse arg #   /*#:   the number of  SORTWORK  files. */
     @.= copies('ff'x, 1e5)                      /*no value should be larger than this. */
     call lineout FID, , 1                       /*position the output file at rec # 1. */

        do j=1  until @.j==@.;     call rdr j    /*read any number of  SORTWORK  files, */
        end   /*j*/                              /*but initially just 1 record per file.*/

     j= j - 1                                    /*adj. J; read from a non─existent file*/

        do forever;                y= @.         /*find the lowest value for  N  values.*/
        z= 0
             do k=1  for j                       /*traipse through the stemmed  @ array.*/
             if @.k==@.  then call rdr k         /*Not defined?  Then read a file record*/
             if @.k<<y  then do;   y= @.k        /*Lowest so far? Then mark this as min.*/
                                   z= k
                             end
             end   /*k*/                         /* [↑]  note use of << exact comparison*/

        if z==0  then leave                      /*Any more records?   No, close file.  */
        call lineout FID, @.z                    /*write the value to the output file.  */
        call rdr z                               /*re-populate a value from the # file. */
        end   /*forever*/                        /*keep reading/merging until exhausted.*/

     call lineout FID                            /*close the output file (just in case).*/
     'ERASE'  sWORK"*"                           /*delete all the  SORTWORK  files.     */
     return
/*──────────────────────────────────────────────────────────────────────────────────────*/
gen: procedure expose #;          parse arg m,siz;       d= digits()  /*used for justify*/
     # = 0                                       /*number of  SORTWORK.nnn  files so far*/
           do j=1  for m;           #= 1   +   j % siz                /*create workfile#*/
           call lineout  'SORTWORK.'#, right(random(, 1e5), d)        /*write rand #.   */
           end   /*j*/
                         do k=1  for #;  call lineout 'SORTWORK.'#    /*close a workfile*/
                         end   /*k*/
           return
/*──────────────────────────────────────────────────────────────────────────────────────*/
rdr: parse arg a;  @.a=@.;  f= sWork || a;  if lines(f)\==0  then @.a= linein(f);   return
/*──────────────────────────────────────────────────────────────────────────────────────*/
srt: procedure expose sWork;  parse arg #
           do j=1  for #;   fn= sWORK || j;  'SORT'  fn  "/O" fn;  end  /*j*/;      return



Wren

Translation of: Go
Library: Wren-dynamic
Library: Wren-sort
Library: Wren-str

A bit simpler than the Go version as we use fixed length integers which (together with a following space) can be sorted as strings.

import "io" for File
import "random" for Random
import "./dynamic" for Struct
import "./sort" for Sort
import "./str" for Str

var MinHeapNode = Struct.create("MinHeapNode", ["element", "index"])

class MinHeap {
    construct new(nodes) {
        _nodes = nodes
        var start = ((_nodes.count-1)/2).floor
        for (i in start..0) minHeapify(i)
    }

    left(i)  { 2*i + 1 }
    right(i) { 2*i + 2 }

    nodes { _nodes }

    min { _nodes[0] }

    replaceMin(x) {
        _nodes[0] = x
        minHeapify(0)
    }

    minHeapify(i) {
        var l = left(i)
        var r = right(i)
        var smallest = i
        var heapSize = _nodes.count
        if (l < heapSize && Str.lt(_nodes[l].element, _nodes[i].element)) smallest = l
        if (r < heapSize && Str.lt(_nodes[r].element, _nodes[smallest].element)) smallest = r
        if (smallest != i) {
            _nodes.swap(i, smallest)
            minHeapify(smallest)
        }
    }
}

// Merge k sorted files: es0,es1 etc.
var mergeFiles = Fn.new { |outputFile, k, e|
    var inp = List.filled(k, null)
    var offset = List.filled(k, 0) // current offset for each input file
    for (i in 0...k) {
        var fileName = "es%(i)"
        inp[i] = File.open(fileName)
    }
    var out = File.create(outputFile)
    var nodes = List.filled(k, null)
    for (i in 0...k) nodes[i] = MinHeapNode.new(0, 0)
    var i = 0
    while (i < k) {
        var bytes = inp[i].readBytes(e)
        if (bytes.count < e) break  // end of file reached
        nodes[i].element = bytes
        nodes[i].index = i
        offset[i] = offset[i] + e
        i = i + 1
    }
    var hp = MinHeap.new(nodes[0...i])
    var count = 0
    while (count != i) {
        var root = hp.min
        out.writeBytes(root.element)
        var bytes = inp[root.index].readBytes(e, offset[root.index])
        if (bytes.count < e) {  // end of file reached
            root.element = "999999 "
            count = count + 1
        } else {
            root.element = bytes
            offset[root.index] = offset[root.index] + e
        }
        hp.replaceMin(root)
    }
    for (j in 0...k) inp[j].close()
    out.close()
}

// Create initial runs, divide them evenly amongst the output files
// and then merge-sort them.
var createInitialRuns = Fn.new { |inputFile, numWays, runSize, elementSize|
    var inp = File.open(inputFile)
    var offset = 0
    for (i in 0...numWays) {
        var fileName = "es%(i)"  // es0, es1 etc.
        var bytes = inp.readBytes(runSize * elementSize, offset)
        offset = offset + runSize * elementSize
        var numbers = Str.chunks(bytes, elementSize)
        numbers = Sort.merge(numbers)
        File.create(fileName) { |f| f.writeBytes(numbers.join("")) }
    }
    inp.close()
}

var externalSort = Fn.new { |inputFile, outputFile, numWays, runSize, elementSize|
    createInitialRuns.call(inputFile, numWays, runSize, elementSize)
    mergeFiles.call(outputFile, numWays, elementSize)
}

// Create a small test file of 40 random 6 digit integers and split it into 4 files
// of 10 such integers each.
var numWays = 4
var runSize = 10
var elementSize = 7  // 6 digits + a following space
var inputFile = "external_sort_input.txt"
var outputFile = "external_sort_output.txt"
var inp = File.create(inputFile)
var rand = Random.new()
var min = 100000
var max = 999999
for (i in 0...numWays*runSize) inp.writeBytes("%(rand.int(min, max).toString) ")
inp.close()
externalSort.call(inputFile, outputFile, numWays, runSize, elementSize)
// remove temporary files
for (i in 0...numWays) {
    var fileName = "es%(i)"
    File.delete(fileName)
}
Output:

Sample run:

Contents of external_sort_input.txt:
195387 279593 270645 457221 187563 459521 984067 443317 890630 986820 357072 302605 354825 295908 541221 273855 318978 913819 961359 776939 337617 640070 100140 266938 597987 305187 731698 449166 388165 121283 516001 256453 197931 660491 785453 544828 346520 532447 688793 194774 

Contents of external_sort_output.txt:
100140 121283 187563 194774 195387 197931 256453 266938 270645 273855 279593 295908 302605 305187 318978 337617 346520 354825 357072 388165 443317 449166 457221 459521 516001 532447 541221 544828 597987 640070 660491 688793 731698 776939 785453 890630 913819 961359 984067 986820
Cookies help us deliver our services. By using our services, you agree to our use of cookies.