Sorting algorithms/Patience sort
You are encouraged to solve this task according to the task description, using any language you may know.
Sorting Algorithm
This is a sorting algorithm. It may be applied to a set of data in order to sort it.
For comparing various sorts, see compare sorts.
For other sorting algorithms, see sorting algorithms, or:
Heap sort | Merge sort | Patience sort | Quick sort
O(n log2n) sorts
Shell Sort
O(n2) sorts
Bubble sort |
Cocktail sort |
Cocktail sort with shifting bounds |
Comb sort |
Cycle sort |
Gnome sort |
Insertion sort |
Selection sort |
Strand sort
other sorts
Bead sort |
Bogo sort |
Common sorted list |
Composite structures sort |
Custom comparator sort |
Counting sort |
Disjoint sublist sort |
External sort |
Jort sort |
Lexicographical sort |
Natural sorting |
Order by pair comparisons |
Order disjoint list items |
Order two numerical lists |
Object identifier (OID) sort |
Pancake sort |
Quickselect |
Permutation sort |
Radix sort |
Ranking methods |
Remove duplicate elements |
Sleep sort |
Stooge sort |
[Sort letters of a string] |
Three variable sort |
Topological sort |
Tree sort
Sort an array of numbers (of any convenient size) into ascending order using Patience sorting.
- Related task
11l
F patience_sort(&arr)
I arr.len < 2 {R}
[[T(arr[0])]] piles
L(el) arr
L(&pile) piles
I pile.last > el
pile.append(el)
L.break
L.was_no_break
piles.append([el])
L(i) 0 .< arr.len
V min = piles[0].last
V minPileIndex = 0
L(j) 1 .< piles.len
I piles[j].last < min
min = piles[j].last
minPileIndex = j
arr[i] = min
V& minPile = piles[minPileIndex]
minPile.pop()
I minPile.empty
piles.pop(minPileIndex)
V iArr = [4, 65, 2, -31, 0, 99, 83, 782, 1]
patience_sort(&iArr)
print(iArr)
V cArr = [‘n’, ‘o’, ‘n’, ‘z’, ‘e’, ‘r’, ‘o’, ‘s’, ‘u’, ‘m’]
patience_sort(&cArr)
print(cArr)
V sArr = [‘dog’, ‘cow’, ‘cat’, ‘ape’, ‘ant’, ‘man’, ‘pig’, ‘ass’, ‘gnu’]
patience_sort(&sArr)
print(sArr)
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782] [e, m, n, n, o, o, r, s, u, z] [ant, ape, ass, cat, cow, dog, gnu, man, pig]
AArch64 Assembly
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program patienceSort64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeConstantesARM64.inc"
/*******************************************/
/* Structures */
/********************************************/
/* structure Doublylinkedlist*/
.struct 0
dllist_head: // head node
.struct dllist_head + 8
dllist_tail: // tail node
.struct dllist_tail + 8
dllist_fin:
/* structure Node Doublylinked List*/
.struct 0
NDlist_next: // next element
.struct NDlist_next + 8
NDlist_prev: // previous element
.struct NDlist_prev + 8
NDlist_value: // element value or key
.struct NDlist_value + 8
NDlist_fin:
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessSortOk: .asciz "Table sorted.\n"
szMessSortNok: .asciz "Table not sorted !!!!!.\n"
sMessResult: .asciz "Value : @ \n"
szCarriageReturn: .asciz "\n"
.align 4
TableNumber: .quad 1,3,11,6,2,-5,9,10,8,4,7
#TableNumber: .quad 10,9,8,7,6,-5,4,3,2,1
.equ NBELEMENTS, (. - TableNumber) / 8
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
ldr x0,qAdrTableNumber // address number table
mov x1,0 // first element
mov x2,NBELEMENTS // number of élements
bl patienceSort
ldr x0,qAdrTableNumber // address number table
bl displayTable
ldr x0,qAdrTableNumber // address number table
mov x1,NBELEMENTS // number of élements
bl isSorted // control sort
cmp x0,1 // sorted ?
beq 1f
ldr x0,qAdrszMessSortNok // no !! error sort
bl affichageMess
b 100f
1: // yes
ldr x0,qAdrszMessSortOk
bl affichageMess
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsZoneConv: .quad sZoneConv
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsMessResult: .quad sMessResult
qAdrTableNumber: .quad TableNumber
qAdrszMessSortOk: .quad szMessSortOk
qAdrszMessSortNok: .quad szMessSortNok
/******************************************************************/
/* control sorted table */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the number of elements > 0 */
/* x0 return 0 if not sorted 1 if sorted */
isSorted:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
mov x2,0
ldr x4,[x0,x2,lsl 3]
1:
add x2,x2,1
cmp x2,x1
bge 99f
ldr x3,[x0,x2, lsl 3]
cmp x3,x4
blt 98f
mov x4,x3
b 1b
98:
mov x0,0 // not sorted
b 100f
99:
mov x0,1 // sorted
100:
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* patience sort */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains first start index
/* x2 contains the number of elements */
patienceSort:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
stp x6,x7,[sp,-16]! // save registers
stp x8,x9,[sp,-16]! // save registers
lsl x9,x2,1 // compute total size of piles (2 list pointer by pile )
lsl x10,x9,3 // 8 bytes by number
sub sp,sp,x10 // reserve place to stack
mov fp,sp // frame pointer = stack
mov x3,0 // index
mov x4,0
1:
str x4,[fp,x3,lsl 3] // init piles area
add x3,x3,1 // increment index
cmp x3,x9
blt 1b
mov x3,0 // index value
mov x4,0 // counter first pile
mov x8,x0 // save table address
2:
ldr x1,[x8,x3,lsl 3] // load value
add x0,fp,x4,lsl 4 // pile address
bl isEmpty
cmp x0,0 // pile empty ?
bne 3f
add x0,fp,x4,lsl 4 // pile address
bl insertHead // insert value x1
b 5f
3:
add x0,fp,x4,lsl 4 // pile address
ldr x5,[x0,dllist_head]
ldr x5,[x5,NDlist_value] // load first list value
cmp x1,x5 // compare value and last value on the pile
blt 4f
add x0,fp,x4,lsl 4 // pile address
bl insertHead // insert value x1
b 5f
4: // value is smaller créate a new pile
add x4,x4,1
add x0,fp,x4,lsl 4 // pile address
bl insertHead // insert value x1
5:
add x3,x3,1 // increment index value
cmp x3,x2 // end
blt 2b // and loop
/* step 2 */
mov x6,0 // index value table
6:
mov x3,0 // index pile
mov x5, 1<<62 // min
7: // search minimum
add x0,fp,x3,lsl 4
bl isEmpty
cmp x0,0
beq 8f
add x0,fp,x3,lsl 4
bl searchMinList
cmp x0,x5 // compare min global
bge 8f
mov x5,x0 // smaller -> store new min
mov x7,x1 // and pointer to min
add x9,fp,x3,lsl 4 // and head list
8:
add x3,x3,1 // next pile
cmp x3,x4 // end ?
ble 7b
str x5,[x8,x6,lsl 3] // store min to table value
mov x0,x9 // and suppress the value in the pile
mov x1,x7
bl suppressNode
add x6,x6,1 // increment index value
cmp x6,x2 // end ?
blt 6b
add sp,sp,x10 // stack alignement
100:
ldp x8,x9,[sp],16 // restaur 2 registers
ldp x6,x7,[sp],16 // restaur 2 registers
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* Display table elements */
/******************************************************************/
/* x0 contains the address of table */
displayTable:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
mov x2,x0 // table address
mov x3,0
1: // loop display table
ldr x0,[x2,x3,lsl 3]
ldr x1,qAdrsZoneConv
bl conversion10S // décimal conversion
ldr x0,qAdrsMessResult
ldr x1,qAdrsZoneConv
bl strInsertAtCharInc // insert result at // character
bl affichageMess // display message
add x3,x3,1
cmp x3,NBELEMENTS - 1
ble 1b
ldr x0,qAdrszCarriageReturn
bl affichageMess
mov x0,x2
100:
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* list is empty ? */
/******************************************************************/
/* x0 contains the address of the list structure */
/* x0 return 0 if empty else return 1 */
isEmpty:
ldr x0,[x0,#dllist_head]
cmp x0,0
cset x0,ne
ret // return
/******************************************************************/
/* insert value at list head */
/******************************************************************/
/* x0 contains the address of the list structure */
/* x1 contains value */
insertHead:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
mov x4,x0 // save address
mov x0,x1 // value
bl createNode
cmp x0,#-1 // allocation error ?
beq 100f
ldr x2,[x4,#dllist_head] // load address first node
str x2,[x0,#NDlist_next] // store in next pointer on new node
mov x1,#0
str x1,[x0,#NDlist_prev] // store zero in previous pointer on new node
str x0,[x4,#dllist_head] // store address new node in address head list
cmp x2,#0 // address first node is null ?
beq 1f
str x0,[x2,#NDlist_prev] // no store adresse new node in previous pointer
b 100f
1:
str x0,[x4,#dllist_tail] // else store new node in tail address
100:
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* search value minimum */
/******************************************************************/
/* x0 contains the address of the list structure */
/* x0 return min */
/* x1 return address of node */
searchMinList:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
ldr x0,[x0,#dllist_head] // load first node
mov x3,1<<62
mov x1,0
1:
cmp x0,0 // null -> end
beq 99f
ldr x2,[x0,#NDlist_value] // load node value
cmp x2,x3 // min ?
bge 2f
mov x3,x2 // value -> min
mov x1,x0 // store pointer
2:
ldr x0,[x0,#NDlist_next] // load addresse next node
b 1b // and loop
99:
mov x0,x3 // return minimum
100:
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* suppress node */
/******************************************************************/
/* x0 contains the address of the list structure */
/* x1 contains the address to node to suppress */
suppressNode:
stp x2,lr,[sp,-16]! // save registers
stp x3,x4,[sp,-16]! // save registers
ldr x2,[x1,#NDlist_next] // load addresse next node
ldr x3,[x1,#NDlist_prev] // load addresse prev node
cmp x3,#0
beq 1f
str x2,[x3,#NDlist_next]
b 2f
1:
str x3,[x0,#NDlist_next]
2:
cmp x2,#0
beq 3f
str x3,[x2,#NDlist_prev]
b 100f
3:
str x2,[x0,#NDlist_prev]
100:
ldp x3,x4,[sp],16 // restaur 2 registers
ldp x2,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/******************************************************************/
/* Create new node */
/******************************************************************/
/* x0 contains the value */
/* x0 return node address or -1 if allocation error*/
createNode:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x8,[sp,-16]! // save registers
mov x4,x0 // save value
// allocation place on the heap
mov x0,0 // allocation place heap
mov x8,BRK // call system 'brk'
svc 0
mov x3,x0 // save address heap for output string
add x0,x0,NDlist_fin // reservation place one element
mov x8,BRK // call system 'brk'
svc #0
cmp x0,-1 // allocation error
beq 100f
mov x0,x3
str x4,[x0,#NDlist_value] // store value
mov x2,0
str x2,[x0,#NDlist_next] // store zero to pointer next
str x2,[x0,#NDlist_prev] // store zero to pointer previous
100:
ldp x4,x8,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Ada
The program implements a generic sort that produces a sorted array of indices. The original array is left untouched. The main program demonstrates an instantiation for arrays of integers.
----------------------------------------------------------------------
with Ada.Text_IO;
procedure patience_sort_task is
use Ada.Text_IO;
function next_power_of_two
(n : in Natural)
return Positive is
-- This need not be a fast implementation.
pow2 : Positive;
begin
pow2 := 1;
while pow2 < n loop
pow2 := pow2 + pow2;
end loop;
return pow2;
end next_power_of_two;
generic
type t is private;
type t_array is array (Integer range <>) of t;
type sorted_t_indices is array (Integer range <>) of Integer;
procedure patience_sort
(less : access function
(x, y : t)
return Boolean;
ifirst : in Integer;
ilast : in Integer;
arr : in t_array;
sorted : out sorted_t_indices);
procedure patience_sort
(less : access function
(x, y : t)
return Boolean;
ifirst : in Integer;
ilast : in Integer;
arr : in t_array;
sorted : out sorted_t_indices) is
num_piles : Integer;
piles : array (1 .. ilast - ifirst + 1) of Integer :=
(others => 0);
links : array (1 .. ilast - ifirst + 1) of Integer :=
(others => 0);
function find_pile
(q : in Positive)
return Positive is
--
-- Bottenbruch search for the leftmost pile whose top is greater
-- than or equal to some element x. Return an index such that:
--
-- * if x is greater than the top element at the far right, then
-- the index returned will be num-piles.
--
-- * otherwise, x is greater than every top element to the left
-- of index, and less than or equal to the top elements at
-- index and to the right of index.
--
-- References:
--
-- * H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
-- the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
-- https://doi.org/10.1145/321119.321120
--
-- The general algorithm is described on pages 214 and 215.
--
-- * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
--
index : Positive;
i, j, k : Natural;
begin
if num_piles = 0 then
index := 1;
else
j := 0;
k := num_piles - 1;
while j /= k loop
i := (j + k) / 2;
if less
(arr (piles (j + 1) + ifirst - 1), arr (q + ifirst - 1))
then
j := i + 1;
else
k := i;
end if;
end loop;
if j = num_piles - 1 then
if less
(arr (piles (j + 1) + ifirst - 1), arr (q + ifirst - 1))
then
-- A new pile is needed.
j := j + 1;
end if;
end if;
index := j + 1;
end if;
return index;
end find_pile;
procedure deal is
i : Positive;
begin
for q in links'range loop
i := find_pile (q);
links (q) := piles (i);
piles (i) := q;
num_piles := Integer'max (num_piles, i);
end loop;
end deal;
procedure k_way_merge is
--
-- k-way merge by tournament tree.
--
-- See Knuth, volume 3, and also
-- https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
--
-- However, I store a winners tree instead of the recommended
-- losers tree. If the tree were stored as linked nodes, it
-- would probably be more efficient to store a losers
-- tree. However, I am storing the tree as an array, and one
-- can find an opponent quickly by simply toggling the least
-- significant bit of a competitor's array index.
--
total_external_nodes : Positive;
total_nodes : Positive;
begin
total_external_nodes := next_power_of_two (num_piles);
total_nodes := (2 * total_external_nodes) - 1;
declare
-- In Fortran I had the length-2 dimension come first, to
-- take some small advantage of column-major order. The
-- recommendation for Ada compilers, however, is to use
-- row-major order. So I have reversed the order.
winners : array (1 .. total_nodes, 1 .. 2) of Integer :=
(others => (0, 0));
function find_opponent
(i : Natural)
return Natural is
begin
return (if i rem 2 = 0 then i + 1 else i - 1);
end find_opponent;
function play_game
(i : Positive)
return Positive is
j, iwinner : Positive;
begin
j := find_opponent (i);
if winners (i, 1) = 0 then
iwinner := j;
elsif winners (j, 1) = 0 then
iwinner := i;
elsif less
(arr (winners (j, 1) + ifirst - 1),
arr (winners (i, 1) + ifirst - 1))
then
iwinner := j;
else
iwinner := i;
end if;
return iwinner;
end play_game;
procedure replay_games
(i : Positive) is
j, iwinner : Positive;
begin
j := i;
while j /= 1 loop
iwinner := play_game (j);
j := j / 2;
winners (j, 1) := winners (iwinner, 1);
winners (j, 2) := winners (iwinner, 2);
end loop;
end replay_games;
procedure build_tree is
istart, i, iwinner : Positive;
begin
for i in 1 .. total_external_nodes loop
-- Record which pile a winner will have come from.
winners (total_external_nodes - 1 + i, 2) := i;
end loop;
for i in 1 .. num_piles loop
-- The top of each pile becomes a starting competitor.
winners (total_external_nodes + i - 1, 1) := piles (i);
end loop;
for i in 1 .. num_piles loop
-- Discard the top of each pile
piles (i) := links (piles (i));
end loop;
istart := total_external_nodes;
while istart /= 1 loop
i := istart;
while i <= (2 * istart) - 1 loop
iwinner := play_game (i);
winners (i / 2, 1) := winners (iwinner, 1);
winners (i / 2, 2) := winners (iwinner, 2);
i := i + 2;
end loop;
istart := istart / 2;
end loop;
end build_tree;
isorted, i, next : Integer;
begin
build_tree;
isorted := 0;
while winners (1, 1) /= 0 loop
sorted (sorted'first + isorted) :=
winners (1, 1) + ifirst - 1;
isorted := isorted + 1;
i := winners (1, 2);
next := piles (i); -- The next top of pile i.
if next /= 0 then
piles (i) := links (next); -- Drop that top.
end if;
i := (total_nodes / 2) + i;
winners (i, 1) := next;
replay_games (i);
end loop;
end;
end k_way_merge;
begin
deal;
k_way_merge;
end patience_sort;
begin
-- A demonstration.
declare
type integer_array is array (Integer range <>) of Integer;
procedure integer_patience_sort is new patience_sort
(Integer, integer_array, integer_array);
subtype int25_array is integer_array (1 .. 25);
example_numbers : constant int25_array :=
(22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54, 93, 8,
54, 2, 72, 84, 86, 76, 53, 37, 90);
sorted_numbers : int25_array := (others => 0);
function less
(x, y : Integer)
return Boolean is
begin
return (x < y);
end less;
begin
integer_patience_sort
(less'access, example_numbers'first, example_numbers'last,
example_numbers, sorted_numbers);
Put ("unsorted ");
for i of example_numbers loop
Put (Integer'image (i));
end loop;
Put_Line ("");
Put ("sorted ");
for i of sorted_numbers loop
Put (Integer'image (example_numbers (i)));
end loop;
Put_Line ("");
end;
end patience_sort_task;
----------------------------------------------------------------------
- Output:
$ gnatmake -Wall -Wextra -q patience_sort_task.adb && ./patience_sort_task unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
AppleScript
-- In-place patience sort.
on patienceSort(theList, l, r) -- Sort items l thru r of theList.
set listLen to (count theList)
if (listLen < 2) then return
-- Convert any negative and/or transposed range indices.
if (l < 0) then set l to listLen + l + 1
if (r < 0) then set r to listLen + r + 1
if (l > r) then set {l, r} to {r, l}
script o
property lst : theList
property piles : {}
end script
-- Build piles.
repeat with i from l to r
set v to o's lst's item i
set unplaced to true
repeat with thisPile in o's piles
if (v > thisPile's end) then
else
set thisPile's end to v
set unplaced to false
exit repeat
end if
end repeat
if (unplaced) then set o's piles's end to {v}
end repeat
-- Remove successive lowest end values to the original list.
set pileCount to (count o's piles)
repeat with i from l to r
set min to o's piles's beginning's end
set minPile to 1
repeat with j from 2 to pileCount
set v to o's piles's item j's end
if (v < min) then
set min to v
set minPile to j
end if
end repeat
set o's lst's item i to min
if ((count o's piles's item minPile) > 1) then
set o's piles's item minPile to o's piles's item minPile's items 1 thru -2
else
set o's piles's item minPile to missing value
set o's piles to o's piles's lists
set pileCount to pileCount - 1
end if
end repeat
return -- nothing
end patienceSort
property sort : patienceSort
local aList
set aList to {62, 86, 59, 65, 92, 85, 71, 71, 27, -52, 67, 59, 65, 80, 3, 65, 2, 46, 83, 72, 47, 5, 26, 18, 63}
sort(aList, 1, -1)
return aList
- Output:
{-52, 2, 3, 5, 18, 26, 27, 46, 47, 59, 59, 62, 63, 65, 65, 65, 67, 71, 71, 72, 80, 83, 85, 86, 92}
ARM Assembly
/* ARM assembly Raspberry PI */
/* program patienceSort.s */
/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes */
/************************************/
.include "../constantes.inc"
.include "../../ficmacros.s"
/*******************************************/
/* Structures */
/********************************************/
/* structure Doublylinkedlist*/
.struct 0
dllist_head: @ head node
.struct dllist_head + 4
dllist_tail: @ tail node
.struct dllist_tail + 4
dllist_fin:
/* structure Node Doublylinked List*/
.struct 0
NDlist_next: @ next element
.struct NDlist_next + 4
NDlist_prev: @ previous element
.struct NDlist_prev + 4
NDlist_value: @ element value or key
.struct NDlist_value + 4
NDlist_fin:
/*********************************/
/* Initialized data */
/*********************************/
.data
szMessSortOk: .asciz "Table sorted.\n"
szMessSortNok: .asciz "Table not sorted !!!!!.\n"
sMessResult: .asciz "Value : @ \n"
szCarriageReturn: .asciz "\n"
.align 4
TableNumber: .int 1,11,3,6,2,5,9,10,8,4,7
#TableNumber: .int 10,9,8,7,6,5,4,3,2,1
.equ NBELEMENTS, (. - TableNumber) / 4
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
sZoneConv: .skip 24
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
ldr r0,iAdrTableNumber @ address number table
mov r1,#0 @ first element
mov r2,#NBELEMENTS @ number of élements
bl patienceSort
ldr r0,iAdrTableNumber @ address number table
bl displayTable
ldr r0,iAdrTableNumber @ address number table
mov r1,#NBELEMENTS @ number of élements
bl isSorted @ control sort
cmp r0,#1 @ sorted ?
beq 1f
ldr r0,iAdrszMessSortNok @ no !! error sort
bl affichageMess
b 100f
1: @ yes
ldr r0,iAdrszMessSortOk
bl affichageMess
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsMessResult: .int sMessResult
iAdrTableNumber: .int TableNumber
iAdrszMessSortOk: .int szMessSortOk
iAdrszMessSortNok: .int szMessSortNok
/******************************************************************/
/* control sorted table */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the number of elements > 0 */
/* r0 return 0 if not sorted 1 if sorted */
isSorted:
push {r2-r4,lr} @ save registers
mov r2,#0
ldr r4,[r0,r2,lsl #2]
1:
add r2,#1
cmp r2,r1
movge r0,#1
bge 100f
ldr r3,[r0,r2, lsl #2]
cmp r3,r4
movlt r0,#0
blt 100f
mov r4,r3
b 1b
100:
pop {r2-r4,lr}
bx lr @ return
/******************************************************************/
/* patience sort */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains first start index
/* r2 contains the number of elements */
patienceSort:
push {r1-r9,lr} @ save registers
lsl r9,r2,#1 @ compute total size of piles (2 list pointer by pile )
lsl r10,r9,#2 @ 4 bytes by number
sub sp,sp,r10 @ reserve place to stack
mov fp,sp @ frame pointer = stack
mov r3,#0 @ index
mov r4,#0
1:
str r4,[fp,r3,lsl #2] @ init piles area
add r3,r3,#1 @ increment index
cmp r3,r9
blt 1b
mov r3,#0 @ index value
mov r4,#0 @ counter first pile
mov r8,r0 @ save table address
2:
ldr r1,[r8,r3,lsl #2] @ load value
add r0,fp,r4,lsl #3 @ pile address
bl isEmpty
cmp r0,#0 @ pile empty ?
bne 3f
add r0,fp,r4,lsl #3 @ pile address
bl insertHead @ insert value r1
b 5f
3:
add r0,fp,r4,lsl #3 @ pile address
ldr r5,[r0,#dllist_head]
ldr r5,[r5,#NDlist_value] @ load first list value
cmp r1,r5 @ compare value and last value on the pile
blt 4f
add r0,fp,r4,lsl #3 @ pile address
bl insertHead @ insert value r1
b 5f
4: @ value is smaller créate a new pile
add r4,r4,#1
add r0,fp,r4,lsl #3 @ pile address
bl insertHead @ insert value r1
5:
add r3,r3,#1 @ increment index value
cmp r3,r2 @ end
blt 2b @ and loop
/* step 2 */
mov r6,#0 @ index value table
6:
mov r3,#0 @ index pile
mov r5,# 1<<30 @ min
7: @ search minimum
add r0,fp,r3,lsl #3
bl isEmpty
cmp r0,#0
beq 8f
add r0,fp,r3,lsl #3
bl searchMinList
cmp r0,r5 @ compare min global
movlt r5,r0 @ smaller -> store new min
movlt r7,r1 @ and pointer to min
addlt r9,fp,r3,lsl #3 @ and head list
8:
add r3,r3,#1 @ next pile
cmp r3,r4 @ end ?
ble 7b
str r5,[r8,r6,lsl #2] @ store min to table value
mov r0,r9 @ and suppress the value in the pile
mov r1,r7
bl suppressNode
add r6,r6,#1 @ increment index value
cmp r6,r2 @ end ?
blt 6b
add sp,sp,r10 @ stack alignement
100:
pop {r1-r9,lr}
bx lr @ return
/******************************************************************/
/* Display table elements */
/******************************************************************/
/* r0 contains the address of table */
displayTable:
push {r0-r3,lr} @ save registers
mov r2,r0 @ table address
mov r3,#0
1: @ loop display table
ldr r0,[r2,r3,lsl #2]
ldr r1,iAdrsZoneConv @
bl conversion10S @ décimal conversion
ldr r0,iAdrsMessResult
ldr r1,iAdrsZoneConv @ insert conversion
bl strInsertAtCharInc
bl affichageMess @ display message
add r3,#1
cmp r3,#NBELEMENTS - 1
ble 1b
ldr r0,iAdrszCarriageReturn
bl affichageMess
mov r0,r2
100:
pop {r0-r3,lr}
bx lr
iAdrsZoneConv: .int sZoneConv
/******************************************************************/
/* list is empty ? */
/******************************************************************/
/* r0 contains the address of the list structure */
/* r0 return 0 if empty else return 1 */
isEmpty:
ldr r0,[r0,#dllist_head]
cmp r0,#0
movne r0,#1
bx lr @ return
/******************************************************************/
/* insert value at list head */
/******************************************************************/
/* r0 contains the address of the list structure */
/* r1 contains value */
insertHead:
push {r1-r4,lr} @ save registers
mov r4,r0 @ save address
mov r0,r1 @ value
bl createNode
cmp r0,#-1 @ allocation error ?
beq 100f
ldr r2,[r4,#dllist_head] @ load address first node
str r2,[r0,#NDlist_next] @ store in next pointer on new node
mov r1,#0
str r1,[r0,#NDlist_prev] @ store zero in previous pointer on new node
str r0,[r4,#dllist_head] @ store address new node in address head list
cmp r2,#0 @ address first node is null ?
strne r0,[r2,#NDlist_prev] @ no store adresse new node in previous pointer
streq r0,[r4,#dllist_tail] @ else store new node in tail address
100:
pop {r1-r4,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* search value minimum */
/******************************************************************/
/* r0 contains the address of the list structure */
/* r0 return min */
/* r1 return address of node */
searchMinList:
push {r2,r3,lr} @ save registers
ldr r0,[r0,#dllist_head] @ load first node
mov r3,#1<<30
mov r1,#0
1:
cmp r0,#0 @ null -> end
moveq r0,r3
beq 100f
ldr r2,[r0,#NDlist_value] @ load node value
cmp r2,r3 @ min ?
movlt r3,r2 @ value -> min
movlt r1,r0 @ store pointer
ldr r0,[r0,#NDlist_next] @ load addresse next node
b 1b @ and loop
100:
pop {r2,r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* suppress node */
/******************************************************************/
/* r0 contains the address of the list structure */
/* r1 contains the address to node to suppress */
suppressNode:
push {r2,r3,lr} @ save registers
ldr r2,[r1,#NDlist_next] @ load addresse next node
ldr r3,[r1,#NDlist_prev] @ load addresse prev node
cmp r3,#0
strne r2,[r3,#NDlist_next]
streq r3,[r0,#NDlist_next]
cmp r2,#0
strne r3,[r2,#NDlist_prev]
streq r2,[r0,#NDlist_prev]
100:
pop {r2,r3,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* Create new node */
/******************************************************************/
/* r0 contains the value */
/* r0 return node address or -1 if allocation error*/
createNode:
push {r1-r7,lr} @ save registers
mov r4,r0 @ save value
@ allocation place on the heap
mov r0,#0 @ allocation place heap
mov r7,#0x2D @ call system 'brk'
svc #0
mov r5,r0 @ save address heap for output string
add r0,#NDlist_fin @ reservation place one element
mov r7,#0x2D @ call system 'brk'
svc #0
cmp r0,#-1 @ allocation error
beq 100f
mov r0,r5
str r4,[r0,#NDlist_value] @ store value
mov r2,#0
str r2,[r0,#NDlist_next] @ store zero to pointer next
str r2,[r0,#NDlist_prev] @ store zero to pointer previous
100:
pop {r1-r7,lr} @ restaur registers
bx lr @ return
/***************************************************/
/* ROUTINES INCLUDE */
/***************************************************/
.include "../affichage.inc"
Arturo
patienceSort: function [arr][
result: new arr
if 2 > size result -> return result
piles: []
loop result 'elem ->
'piles ++ @[@[elem]]
loop 0..dec size result 'i [
minP: last piles\0
minPileIndex: 0
if 2 =< size piles ->
loop 1..dec size piles 'j [
if minP > last piles\[j] [
minP: last piles\[j]
minPileIndex: j
]
]
result\[i]: minP
piles\[minPileIndex]: slice piles\[minPileIndex] 0 dec dec size piles\[minPileIndex]
if zero? size piles\[minPileIndex] ->
piles: remove.index piles minPileIndex
]
return result
]
print patienceSort [3 1 2 8 5 7 9 4 6]
- Output:
1 2 3 4 5 6 7 8 9
ATS
A patience sort for arrays of non-linear elements
The sort routine returns an array of indices into the original array, which is left unmodified.
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
vtypedef array_tup_vt (a : vt@ype+, p : addr, n : int) =
(* An array, without size information attached. *)
@(array_v (a, p, n),
mfree_gc_v p |
ptr p)
extern fn {a : t@ype}
patience_sort
{ifirst, len : int | 0 <= ifirst}
{n : int | ifirst + len <= n}
(arr : &RD(array (a, n)),
ifirst : size_t ifirst,
len : size_t len)
:<!wrt> (* Return an array of indices into arr. *)
[p : addr]
array_tup_vt
([i : int | len == 0 ||
(ifirst <= i && i < ifirst + len)] size_t i,
p, len)
(* patience_sort$lt : the order predicate. *)
extern fn {a : t@ype}
patience_sort$lt (x : a, y : a) :<> bool
(*------------------------------------------------------------------*)
(*
In the following implementation of next_power_of_two:
* I implement it as a template for all types of kind g1uint. This
includes dependent forms of uint, usint, ulint, ullint, size_t,
and yet more types in the prelude; also whatever others one may
create.
* I prove the result is not less than the input.
* I prove the result is less than twice the input.
* I prove the result is a power of two. This last proof is
provided in the form of an EXP2 prop.
* I do NOT return what number two is raised to (though I easily
could have). I leave that number "existentially defined". In
other words, I prove only that some such non-negative number
exists.
*)
fn {tk : tkind}
next_power_of_two
{i : pos}
(i : g1uint (tk, i))
:<> [k : int | i <= k; k < 2 * i]
[n : nat]
@(EXP2 (n, k) | g1uint (tk, k)) =
let
(* This need not be a fast implementation. *)
val one : g1uint (tk, 1) = g1u2u 1u
fun
loop {j : pos | j < i} .<i + i - j>.
(pf : [n : nat] EXP2 (n, j) |
j : g1uint (tk, j))
:<> [k : int | i <= k; k < 2 * i]
[n : nat]
@(EXP2 (n, k) | g1uint (tk, k)) =
let
val j2 = j + j
in
if i <= j2 then
@(EXP2ind pf | j2)
else
loop (EXP2ind pf | j2)
end
in
if i = one then
@(EXP2bas () | one)
else
loop (EXP2bas () | one)
end
(*------------------------------------------------------------------*)
stadef link (ifirst : int, ilast : int, i : int) : bool =
0 <= i && i <= ilast - ifirst + 1
typedef link_t (ifirst : int, ilast : int, i : int) =
(* A size_t within legal range for a normalized link, including the
"nil" link 0. *)
[link (ifirst, ilast, i)]
size_t i
typedef link_t (ifirst : int, ilast : int) =
[i : int]
link_t (ifirst, ilast, i)
fn {a : t@ype}
find_pile {ifirst, ilast : int | ifirst <= ilast}
{n : int | ilast < n}
{num_piles : nat | num_piles <= ilast - ifirst + 1}
{n_piles : int | ilast - ifirst + 1 <= n_piles}
{q : pos | q <= ilast - ifirst + 1}
(ifirst : size_t ifirst,
arr : &RD(array (a, n)),
num_piles : size_t num_piles,
piles : &RD(array (link_t (ifirst, ilast),
n_piles)),
q : size_t q)
:<> [i : pos | i <= num_piles + 1]
size_t i =
(*
Bottenbruch search for the leftmost pile whose top is greater than
or equal to the next value dealt by "deal".
References:
* H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
https://doi.org/10.1145/321119.321120
The general algorithm is described on pages 214 and 215.
* https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
*)
if num_piles = i2sz 0 then
i2sz 1
else
let
macdef lt = patience_sort$lt<a>
prval () = lemma_g1uint_param ifirst
prval () = prop_verify {0 <= ifirst} ()
fun
loop {j, k : nat | j <= k; k < num_piles}
.<k - j>.
(arr : &RD(array (a, n)),
piles : &array (link_t (ifirst, ilast), n_piles),
j : size_t j,
k : size_t k)
:<> [i : pos | i <= num_piles + 1]
size_t i =
if j = k then
begin
if succ j <> num_piles then
succ j
else
let
val piles_j = piles[j]
val () = $effmask_exn assertloc (piles_j <> g1u2u 0u)
val x1 = arr[pred q + ifirst]
and x2 = arr[pred piles_j + ifirst]
in
if x2 \lt x1 then
succ (succ j)
else
succ j
end
end
else
let
typedef index (i : int) = [0 <= i; i < n] size_t i
typedef index = [i : int] index i
stadef i = j + ((k - j) / 2)
val i : size_t i = j + ((k - j) / g1u2u 2u)
val piles_j = piles[j]
val () = $effmask_exn assertloc (piles_j <> g1u2u 0u)
val x1 = arr[pred q + ifirst]
and x2 = arr[pred piles_j + ifirst]
in
if x2 \lt x1 then
loop (arr, piles, i + 1, k)
else
loop (arr, piles, j, i)
end
in
loop (arr, piles, g1u2u 0u, pred num_piles)
end
fn {a : t@ype}
deal {ifirst, ilast : int | ifirst <= ilast}
{n : int | ilast < n}
(ifirst : size_t ifirst,
ilast : size_t ilast,
arr : &RD(array (a, n)))
:<!wrt> [num_piles : int | num_piles <= ilast - ifirst + 1]
[n_piles : int | ilast - ifirst + 1 <= n_piles]
[n_links : int | ilast - ifirst + 1 <= n_links]
[p_piles : addr]
[p_links : addr]
@(size_t num_piles,
array_tup_vt (link_t (ifirst, ilast),
p_piles, n_piles),
array_tup_vt (link_t (ifirst, ilast),
p_links, n_links)) =
let
prval () = prop_verify {0 < ilast - ifirst + 1} ()
stadef num_elems = ilast - ifirst + 1
val num_elems : size_t num_elems = succ (ilast - ifirst)
typedef link_t (i : int) = link_t (ifirst, ilast, i)
typedef link_t = link_t (ifirst, ilast)
val zero : size_t 0 = g1u2u 0u
val one : size_t 1 = g1u2u 1u
val link_nil : link_t 0 = g1u2u 0u
fun
loop {q : pos | q <= num_elems + 1}
{m : nat | m <= num_elems}
.<num_elems + 1 - q>.
(arr : &RD(array (a, n)),
q : size_t q,
piles : &array (link_t, num_elems),
links : &array (link_t, num_elems),
m : size_t m)
:<!wrt> [num_piles : nat | num_piles <= num_elems]
size_t num_piles =
if q = succ (num_elems) then
m
else
let
val i = find_pile {ifirst, ilast} (ifirst, arr, m, piles, q)
(* We have no proof the number of elements will not exceed
storage. However, we know it will not, because the number
of piles cannot exceed the size of the input. Let us get
a "proof" by runtime check. *)
val () = $effmask_exn assertloc (i <= num_elems)
in
links[pred q] := piles[pred i];
piles[pred i] := q;
if i = succ m then
loop {q + 1} (arr, succ q, piles, links, succ m)
else
loop {q + 1} (arr, succ q, piles, links, m)
end
val piles_tup = array_ptr_alloc<link_t> num_elems
macdef piles = !(piles_tup.2)
val () = array_initize_elt<link_t> (piles, num_elems, link_nil)
val links_tup = array_ptr_alloc<link_t> num_elems
macdef links = !(links_tup.2)
val () = array_initize_elt<link_t> (links, num_elems, link_nil)
val num_piles = loop (arr, one, piles, links, zero)
in
@(num_piles, piles_tup, links_tup)
end
fn {a : t@ype}
k_way_merge {ifirst, ilast : int | ifirst <= ilast}
{n : int | ilast < n}
{n_piles : int | ilast - ifirst + 1 <= n_piles}
{num_piles : pos | num_piles <= ilast - ifirst + 1}
{n_links : int | ilast - ifirst + 1 <= n_links}
(ifirst : size_t ifirst,
ilast : size_t ilast,
arr : &RD(array (a, n)),
num_piles : size_t num_piles,
piles : &array (link_t (ifirst, ilast), n_piles),
links : &array (link_t (ifirst, ilast), n_links))
:<!wrt> (* Return an array of indices into arr. *)
[p : addr]
array_tup_vt
([i : int | ifirst <= i; i <= ilast] size_t i,
p, ilast - ifirst + 1) =
(*
k-way merge by tournament tree.
See Knuth, volume 3, and also
https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
However, I store a winners tree instead of the recommended losers
tree. If the tree were stored as linked nodes, it would probably
be more efficient to store a losers tree. However, I am storing
the tree as an array, and one can find an opponent quickly by
simply toggling the least significant bit of a competitor's array
index.
*)
let
typedef link_t (i : int) = link_t (ifirst, ilast, i)
typedef link_t = [i : int] link_t i
val link_nil : link_t 0 = g1u2u 0u
typedef index_t (i : int) = [ifirst <= i; i <= ilast] size_t i
typedef index_t = [i : int] index_t i
val [total_external_nodes : int]
@(_ | total_external_nodes) = next_power_of_two num_piles
prval () = prop_verify {num_piles <= total_external_nodes} ()
stadef total_nodes = (2 * total_external_nodes) - 1
val total_nodes : size_t total_nodes =
pred (g1u2u 2u * total_external_nodes)
(* We will ignore index 0 of the winners tree arrays. *)
stadef winners_size = total_nodes + 1
val winners_size : size_t winners_size = succ total_nodes
val winners_values_tup = array_ptr_alloc<link_t> winners_size
macdef winners_values = !(winners_values_tup.2)
val () = array_initize_elt<link_t> (winners_values, winners_size,
link_nil)
val winners_links_tup = array_ptr_alloc<link_t> winners_size
macdef winners_links = !(winners_links_tup.2)
val () = array_initize_elt<link_t> (winners_links, winners_size,
link_nil)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* Record which pile a winner will have come from. *)
fun
init_pile_links
{i : nat | i <= num_piles}
.<num_piles - i>.
(winners_links : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
begin
winners_links[total_external_nodes + i] := succ i;
init_pile_links (winners_links, succ i)
end
val () = init_pile_links (winners_links, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* The top of each pile becomes a starting competitor. *)
fun
init_competitors
{i : nat | i <= num_piles}
.<num_piles - i>.
(winners_values : &array (link_t, winners_size),
piles : &array (link_t, n_piles),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
begin
winners_values[total_external_nodes + i] := piles[i];
init_competitors (winners_values, piles, succ i)
end
val () = init_competitors (winners_values, piles, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* Discard the top of each pile. *)
fun
discard_tops {i : nat | i <= num_piles}
.<num_piles - i>.
(piles : &array (link_t, n_piles),
links : &array (link_t, n_links),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
let
val link = piles[i]
(* None of the piles should have been empty. *)
val () = $effmask_exn assertloc (link <> g1u2u 0u)
in
piles[i] := links[pred link];
discard_tops (piles, links, succ i)
end
val () = discard_tops (piles, links, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* How to play a game. *)
fn
play_game {i : int | 2 <= i; i <= total_nodes}
(arr : &RD(array (a, n)),
winners_values : &array (link_t, winners_size),
i : size_t i)
:<> [iwinner : pos | iwinner <= total_nodes]
size_t iwinner =
let
macdef lt = patience_sort$lt<a>
fn
find_opponent {i : int | 2 <= i; i <= total_nodes}
(i : size_t i)
:<> [j : int | 2 <= j; j <= total_nodes]
size_t j =
let
(* The prelude contains bitwise operations only for
non-dependent unsigned integer. We will not bother to
add them ourselves, but instead go back and forth
between dependent and non-dependent. *)
val i0 = g0ofg1 i
val j0 = g0uint_lxor<size_kind> (i0, g0u2u 1u)
val j = g1ofg0 j0
(* We have no proof the opponent is in the proper
range. Create a "proof" by runtime checks. *)
val () = $effmask_exn assertloc (g1u2u 2u <= j)
val () = $effmask_exn assertloc (j <= total_nodes)
in
j
end
val j = find_opponent i
val winner_i = winners_values[i]
and winner_j = winners_values[j]
in
if winner_i = link_nil then
j
else if winner_j = link_nil then
i
else
let
val i1 = pred winner_i + ifirst
and i2 = pred winner_j + ifirst
prval () = lemma_g1uint_param i1
prval () = lemma_g1uint_param i2
in
if arr[i2] \lt arr[i1] then j else i
end
end
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
fun
build_tree {istart : pos | istart <= total_external_nodes}
.<istart>.
(arr : &RD(array (a, n)),
winners_values : &array (link_t, winners_size),
winners_links : &array (link_t, winners_size),
istart : size_t istart)
:<!wrt> void =
if istart <> 1 then
let
fun
play_initial_games
{i : int | istart <= i; i <= (2 * istart) + 1}
.<(2 * istart) + 1 - i>.
(arr : &RD(array (a, n)),
winners_values : &array (link_t, winners_size),
winners_links : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <= pred (istart + istart) then
let
val iwinner = play_game (arr, winners_values, i)
and i2 = i / g1u2u 2u
in
winners_values[i2] := winners_values[iwinner];
winners_links[i2] := winners_links[iwinner];
play_initial_games (arr, winners_values,
winners_links, succ (succ i))
end
in
play_initial_games (arr, winners_values, winners_links,
istart);
build_tree (arr, winners_values, winners_links,
istart / g1u2u 2u)
end
val () = build_tree (arr, winners_values, winners_links,
total_external_nodes)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
fun
replay_games {i : pos | i <= total_nodes}
.<i>.
(arr : &RD(array (a, n)),
winners_values : &array (link_t, winners_size),
winners_links : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <> g1u2u 1u then
let
val iwinner = play_game (arr, winners_values, i)
and i2 = i / g1u2u 2u
in
winners_values[i2] := winners_values[iwinner];
winners_links[i2] := winners_links[iwinner];
replay_games (arr, winners_values, winners_links, i2)
end
stadef num_elems = ilast - ifirst + 1
val num_elems : size_t num_elems = succ (ilast - ifirst)
val sorted_tup = array_ptr_alloc<index_t> num_elems
fun
merge {isorted : nat | isorted <= num_elems}
{p_sorted : addr}
.<num_elems - isorted>.
(pf_sorted : !array_v (index_t?, p_sorted,
num_elems - isorted)
>> array_v (index_t, p_sorted,
num_elems - isorted) |
arr : &RD(array (a, n)),
piles : &array (link_t, n_piles),
links : &array (link_t, n_links),
winners_values : &array (link_t, winners_size),
winners_links : &array (link_t, winners_size),
p_sorted : ptr p_sorted,
isorted : size_t isorted)
:<!wrt> void =
(* This function not only fills in the "sorted_tup" array, but
transforms it from "uninitialized" to "initialized". *)
if isorted <> num_elems then
let
prval @(pf_elem, pf_rest) = array_v_uncons pf_sorted
val winner = winners_values[1]
val () = $effmask_exn assertloc (winner <> link_nil)
val () = !p_sorted := pred winner + ifirst
(* Move to the next element in the winner's pile. *)
val ilink = winners_links[1]
val () = $effmask_exn assertloc (ilink <> link_nil)
val inext = piles[pred ilink]
val () = (if inext <> link_nil then
piles[pred ilink] := links[pred inext])
(* Replay games, with the new element as a competitor. *)
val i = (total_nodes / g1u2u 2u) + ilink
val () = $effmask_exn assertloc (i <= total_nodes)
val () = winners_values[i] := inext
val () =
replay_games (arr, winners_values, winners_links, i)
val () = merge (pf_rest | arr, piles, links,
winners_values, winners_links,
ptr_succ<index_t> p_sorted,
succ isorted)
prval () = pf_sorted := array_v_cons (pf_elem, pf_rest)
in
end
else
let
prval () = pf_sorted :=
array_v_unnil_nil{index_t?, index_t} pf_sorted
in
end
val () = merge (sorted_tup.0 | arr, piles, links,
winners_values, winners_links,
sorted_tup.2, i2sz 0)
val () = array_ptr_free (winners_values_tup.0,
winners_values_tup.1 |
winners_values_tup.2)
val () = array_ptr_free (winners_links_tup.0,
winners_links_tup.1 |
winners_links_tup.2)
in
sorted_tup
end
implement {a}
patience_sort (arr, ifirst, len) =
let
prval () = lemma_g1uint_param ifirst
prval () = lemma_g1uint_param len
in
if len = i2sz 0 then
let
val sorted_tup = array_ptr_alloc<size_t 0> len
prval () = sorted_tup.0 :=
array_v_unnil_nil{Size_t?, Size_t} sorted_tup.0
in
sorted_tup
end
else
let
val ilast = ifirst + pred len
val @(num_piles, piles_tup, links_tup) =
deal<a> (ifirst, ilast, arr)
macdef piles = !(piles_tup.2)
macdef links = !(links_tup.2)
prval () = lemma_g1uint_param num_piles
val () = $effmask_exn assertloc (num_piles <> i2sz 0)
val sorted_tup = k_way_merge<a> (ifirst, ilast, arr,
num_piles, piles, links)
in
array_ptr_free (piles_tup.0, piles_tup.1 | piles_tup.2);
array_ptr_free (links_tup.0, links_tup.1 | links_tup.2);
sorted_tup
end
end
(*------------------------------------------------------------------*)
fn
int_patience_sort_ascending
{ifirst, len : int | 0 <= ifirst}
{n : int | ifirst + len <= n}
(arr : &RD(array (int, n)),
ifirst : size_t ifirst,
len : size_t len)
:<!wrt> [p : addr]
array_tup_vt
([i : int | len == 0 ||
(ifirst <= i && i < ifirst + len)] size_t i,
p, len) =
let
implement
patience_sort$lt<int> (x, y) =
x < y
in
patience_sort<int> (arr, ifirst, len)
end
fn {a : t@ype}
find_length {n : int}
(lst : list (a, n))
:<> [m : int | m == n] size_t m =
let
prval () = lemma_list_param lst
in
g1i2u (length lst)
end
implement
main0 () =
let
val example_list =
$list (22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54,
93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90)
val ifirst = i2sz 10
val [len : int] len = find_length example_list
#define ARRSZ 100
val () = assertloc (i2sz 10 + len <= ARRSZ)
var arr : array (int, ARRSZ)
val () = array_initize_elt<int> (arr, i2sz ARRSZ, 0)
prval @(pf_left, pf_right) =
array_v_split {int} {..} {ARRSZ} {10} (view@ arr)
prval @(pf_middle, pf_right) =
array_v_split {int} {..} {90} {len} pf_right
val p = ptr_add<int> (addr@ arr, 10)
val () = array_copy_from_list<int> (!p, example_list)
prval pf_right = array_v_unsplit (pf_middle, pf_right)
prval () = view@ arr := array_v_unsplit (pf_left, pf_right)
val @(pf_sorted, pfgc_sorted | p_sorted) =
int_patience_sort_ascending (arr, i2sz 10, len)
macdef sorted = !p_sorted
var i : [i : nat | i <= len] size_t i
in
print! ("unsorted ");
for (i := i2sz 0; i <> len; i := succ i)
print! (" ", arr[i2sz 10 + i]);
println! ();
print! ("sorted ");
for (i := i2sz 0; i <> len; i := succ i)
print! (" ", arr[sorted[i]]);
println! ();
array_ptr_free (pf_sorted, pfgc_sorted | p_sorted)
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC patience_sort_task.dats && ./a.out unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
A patience sort for arrays of non-linear elements (second version)
This version of the sort (which I derived from the first) has a more primitive "core" implementation, and a wrapper around that. The "core" requires that the user pass workspace to it (much as Fortran 77 procedures often do). The wrapper uses stack storage for the workspaces, if the sorted subarray is small; otherwise it uses malloc. One may be interested in contrasting the branch that uses stack storage with the branch that uses malloc.
(* A version of the patience sort that uses arrays passed to it as its
workspace, and returns the results in an array passed to it.
This way, the arrays could be reused between calls, or easily put
on the stack if they are not too large, yet still allocated if they
are larger than that.
Notice that the work arrays both start *and finish* as
uninitialized storage. *)
(*------------------------------------------------------------------*)
#include "share/atspre_staload.hats"
(* ================================================================ *)
(* Interface declarations that really should be moved to a .sats *)
(* file. *)
stadef patience_sort_index (ifirst : int, len : int, i : int) =
len == 0 || (ifirst <= i && i < ifirst + len)
typedef patience_sort_index (ifirst : int, len : int, i : int) =
[patience_sort_index (ifirst, len, i)] size_t i
typedef patience_sort_index (ifirst : int, len : int) =
[i : int] patience_sort_index (ifirst, len, i)
stadef patience_sort_link (ifirst : int, len : int, i : int) =
0 <= i && i <= len
typedef patience_sort_link (ifirst : int, len : int, i : int) =
[patience_sort_link (ifirst, len, i)] size_t i
typedef patience_sort_link (ifirst : int, len : int) =
[i : int] patience_sort_link (ifirst, len, i)
(* patience_sort$lt : the order predicate for patience sort. *)
extern fn {a : t@ype}
patience_sort$lt (x : a, y : a) :<> bool
local
typedef index_t (ifirst : int, len : int) =
patience_sort_index (ifirst, len)
typedef link_t (ifirst : int, len : int) =
patience_sort_link (ifirst, len)
in
extern fn {a : t@ype}
patience_sort_given_workspaces
{ifirst, len : int | 0 <= ifirst}
{n : int | ifirst + len <= n}
{power : int | len <= power}
{n_piles : int | len <= n_piles}
{n_links : int | len <= n_links}
{n_winv : int | 2 * power <= n_winv}
{n_winl : int | 2 * power <= n_winl}
(pf_exp2 : [exponent : nat] EXP2 (exponent, power) |
arr : &RD(array (a, n)),
ifirst : size_t ifirst,
len : size_t len,
power : size_t power,
piles : &array (link_t (ifirst, len)?, n_piles) >> _,
links : &array (link_t (ifirst, len)?, n_links) >> _,
winvals : &array (link_t (ifirst, len)?, n_winv) >> _,
winlinks : &array (link_t (ifirst, len)?, n_winl) >> _,
sorted : &array (index_t (ifirst, len)?, len)
>> array (index_t (ifirst, len), len))
:<!wrt> void
extern fn {a : t@ype}
patience_sort_with_its_own_workspaces
{ifirst, len : int | 0 <= ifirst}
{n : int | ifirst + len <= n}
(arr : &RD(array (a, n)),
ifirst : size_t ifirst,
len : size_t len,
sorted : &array (index_t (ifirst, len)?, len)
>> array (index_t (ifirst, len), len))
:<!wrt> void
end
overload patience_sort with patience_sort_given_workspaces
overload patience_sort with patience_sort_with_its_own_workspaces
extern fn {tk : tkind}
next_power_of_two
{i : pos}
(i : g1uint (tk, i))
:<> [k : int | i <= k; k < 2 * i]
[n : nat]
@(EXP2 (n, k) | g1uint (tk, k))
(* ================================================================ *)
(* What follows is implementation and belongs in .dats files. *)
(*------------------------------------------------------------------*)
(*
In the following implementation of next_power_of_two:
* I implement it as a template for all types of kind g1uint. This
includes dependent forms of uint, usint, ulint, ullint, size_t,
and yet more types in the prelude; also whatever others one may
create.
* I prove the result is not less than the input.
* I prove the result is less than twice the input.
* I prove the result is a power of two. This last proof is
provided in the form of an EXP2 prop.
* I do NOT return what number two is raised to (though I easily
could have). I leave that number "existentially defined". In
other words, I prove only that some such non-negative number
exists.
*)
implement {tk}
next_power_of_two {i} (i) =
let
(* This is not the fastest implementation, although it does verify
its own correctness. *)
val one : g1uint (tk, 1) = g1u2u 1u
fun
loop {j : pos | j < i} .<i + i - j>.
(pf : [n : nat] EXP2 (n, j) |
j : g1uint (tk, j))
:<> [k : int | i <= k; k < 2 * i]
[n : nat]
@(EXP2 (n, k) | g1uint (tk, k)) =
let
val j2 = j + j
in
if i <= j2 then
@(EXP2ind pf | j2)
else
loop (EXP2ind pf | j2)
end
in
if i = one then
@(EXP2bas () | one)
else
loop (EXP2bas () | one)
end
(*------------------------------------------------------------------*)
extern praxi {a : vt@ype}
array_uninitize_without_doing_anything
{n : int}
(arr : &array (INV(a), n) >> array (a?, n),
asz : size_t n)
:<prf> void
(*------------------------------------------------------------------*)
stadef index_t (ifirst : int, len : int, i : int) =
patience_sort_index (ifirst, len, i)
typedef index_t (ifirst : int, len : int, i : int) =
patience_sort_index (ifirst, len, i)
typedef index_t (ifirst : int, len : int) =
patience_sort_index (ifirst, len)
stadef link_t (ifirst : int, len : int, i : int) =
patience_sort_link (ifirst, len, i)
typedef link_t (ifirst : int, len : int, i : int) =
patience_sort_link (ifirst, len, i)
typedef link_t (ifirst : int, len : int) =
patience_sort_link (ifirst, len)
fn {a : t@ype}
find_pile {ifirst, len : int}
{n : int | ifirst + len <= n}
{num_piles : nat | num_piles <= len}
{n_piles : int | len <= n_piles}
{q : pos | q <= len}
(ifirst : size_t ifirst,
arr : &RD(array (a, n)),
num_piles : size_t num_piles,
piles : &RD(array (link_t (ifirst, len), n_piles)),
q : size_t q)
:<> [i : pos | i <= num_piles + 1]
size_t i =
(*
Bottenbruch search for the leftmost pile whose top is greater than
or equal to the next value dealt by "deal".
References:
* H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
https://doi.org/10.1145/321119.321120
The general algorithm is described on pages 214 and 215.
* https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
*)
if num_piles = i2sz 0 then
i2sz 1
else
let
macdef lt = patience_sort$lt<a>
prval () = lemma_g1uint_param ifirst
prval () = prop_verify {0 <= ifirst} ()
fun
loop {j, k : nat | j <= k; k < num_piles}
.<k - j>.
(arr : &RD(array (a, n)),
piles : &array (link_t (ifirst, len), n_piles),
j : size_t j,
k : size_t k)
:<> [i : pos | i <= num_piles + 1]
size_t i =
if j = k then
begin
if succ j <> num_piles then
succ j
else
let
val piles_j = piles[j]
val () = $effmask_exn assertloc (piles_j <> g1u2u 0u)
val x1 = arr[pred q + ifirst]
and x2 = arr[pred piles_j + ifirst]
in
if x2 \lt x1 then
succ (succ j)
else
succ j
end
end
else
let
typedef index (i : int) = [0 <= i; i < n] size_t i
typedef index = [i : int] index i
stadef i = j + ((k - j) / 2)
val i : size_t i = j + ((k - j) / g1u2u 2u)
val piles_j = piles[j]
val () = $effmask_exn assertloc (piles_j <> g1u2u 0u)
val x1 = arr[pred q + ifirst]
and x2 = arr[pred piles_j + ifirst]
in
if x2 \lt x1 then
loop (arr, piles, i + 1, k)
else
loop (arr, piles, j, i)
end
in
loop (arr, piles, g1u2u 0u, pred num_piles)
end
fn {a : t@ype}
deal {ifirst, len : int}
{n : int | ifirst + len <= n}
(ifirst : size_t ifirst,
len : size_t len,
arr : &RD(array (a, n)),
piles : &array (link_t (ifirst, len)?, len)
>> array (link_t (ifirst, len), len),
links : &array (link_t (ifirst, len)?, len)
>> array (link_t (ifirst, len), len))
:<!wrt> [num_piles : int | num_piles <= len]
size_t num_piles =
let
prval () = lemma_g1uint_param ifirst
prval () = lemma_g1uint_param len
typedef link_t (i : int) = link_t (ifirst, len, i)
typedef link_t = link_t (ifirst, len)
val zero : size_t 0 = g1u2u 0u
val one : size_t 1 = g1u2u 1u
val link_nil : link_t 0 = g1u2u 0u
fun
loop {q : pos | q <= len + 1}
{m : nat | m <= len}
.<len + 1 - q>.
(arr : &RD(array (a, n)),
q : size_t q,
piles : &array (link_t, len) >> _,
links : &array (link_t, len) >> _,
m : size_t m)
:<!wrt> [num_piles : nat | num_piles <= len]
size_t num_piles =
if q = succ (len) then
m
else
let
val i = find_pile {ifirst, len} (ifirst, arr, m, piles, q)
(* We have no proof the number of elements will not exceed
storage. However, we know it will not, because the number
of piles cannot exceed the size of the input. Let us get
a "proof" by runtime check. *)
val () = $effmask_exn assertloc (i <= len)
in
links[pred q] := piles[pred i];
piles[pred i] := q;
if i = succ m then
loop {q + 1} (arr, succ q, piles, links, succ m)
else
loop {q + 1} (arr, succ q, piles, links, m)
end
in
array_initize_elt<link_t> (piles, len, link_nil);
array_initize_elt<link_t> (links, len, link_nil);
loop (arr, one, piles, links, zero)
end
fn {a : t@ype}
k_way_merge {ifirst, len : int}
{n : int | ifirst + len <= n}
{num_piles : pos | num_piles <= len}
{power : int | len <= power}
(pf_exp2 : [exponent : nat] EXP2 (exponent, power) |
arr : &RD(array (a, n)),
ifirst : size_t ifirst,
len : size_t len,
num_piles : size_t num_piles,
power : size_t power,
piles : &array (link_t (ifirst, len), len) >> _,
links : &RD(array (link_t (ifirst, len), len)),
winvals : &array (link_t (ifirst, len)?, 2 * power)
>> _,
winlinks : &array (link_t (ifirst, len)?, 2 * power)
>> _,
sorted : &array (index_t (ifirst, len)?, len)
>> array (index_t (ifirst, len), len))
:<!wrt> void =
(*
k-way merge by tournament tree.
See Knuth, volume 3, and also
https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
However, I store a winners tree instead of the recommended losers
tree. If the tree were stored as linked nodes, it would probably
be more efficient to store a losers tree. However, I am storing
the tree as an array, and one can find an opponent quickly by
simply toggling the least significant bit of a competitor's array
index.
*)
let
prval () = lemma_g1uint_param ifirst
prval () = lemma_g1uint_param len
typedef link_t (i : int) = link_t (ifirst, len, i)
typedef link_t = link_t (ifirst, len)
val link_nil : link_t 0 = g1u2u 0u
typedef index_t (i : int) = index_t (ifirst, len, i)
typedef index_t = index_t (ifirst, len)
val [total_external_nodes : int]
@(_ | total_external_nodes) = next_power_of_two num_piles
prval () = prop_verify {num_piles <= total_external_nodes} ()
stadef total_nodes = (2 * total_external_nodes) - 1
val total_nodes : size_t total_nodes =
pred (g1u2u 2u * total_external_nodes)
(* We will ignore index 0 of the winners tree arrays. *)
stadef winners_size = total_nodes + 1
val winners_size : size_t winners_size = succ total_nodes
(* An exercise for the reader is to write a proof that
winners_size <= 2 * power, so one can get rid of the
runtime assertion here: *)
val () = $effmask_exn assertloc (winners_size <= 2 * power)
prval @(winvals_left, winvals_right) =
array_v_split {link_t?} {..} {2 * power} {winners_size}
(view@ winvals)
prval () = view@ winvals := winvals_left
prval @(winlinks_left, winlinks_right) =
array_v_split {link_t?} {..} {2 * power} {winners_size}
(view@ winlinks)
prval () = view@ winlinks := winlinks_left
val () = array_initize_elt<link_t> (winvals, winners_size,
link_nil)
val () = array_initize_elt<link_t> (winlinks, winners_size,
link_nil)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* Record which pile a winner will have come from. *)
fun
init_pile_links
{i : nat | i <= num_piles}
.<num_piles - i>.
(winlinks : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
begin
winlinks[total_external_nodes + i] := succ i;
init_pile_links (winlinks, succ i)
end
val () = init_pile_links (winlinks, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* The top of each pile becomes a starting competitor. *)
fun
init_competitors
{i : nat | i <= num_piles}
.<num_piles - i>.
(winvals : &array (link_t, winners_size),
piles : &array (link_t, len),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
begin
winvals[total_external_nodes + i] := piles[i];
init_competitors (winvals, piles, succ i)
end
val () = init_competitors (winvals, piles, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* Discard the top of each pile. *)
fun
discard_tops {i : nat | i <= num_piles}
.<num_piles - i>.
(piles : &array (link_t, len),
links : &array (link_t, len),
i : size_t i)
:<!wrt> void =
if i <> num_piles then
let
val link = piles[i]
(* None of the piles should have been empty. *)
val () = $effmask_exn assertloc (link <> g1u2u 0u)
in
piles[i] := links[pred link];
discard_tops (piles, links, succ i)
end
val () = discard_tops (piles, links, g1u2u 0u)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
(* How to play a game. *)
fn
play_game {i : int | 2 <= i; i <= total_nodes}
(arr : &RD(array (a, n)),
winvals : &array (link_t, winners_size),
i : size_t i)
:<> [iwinner : pos | iwinner <= total_nodes]
size_t iwinner =
let
macdef lt = patience_sort$lt<a>
fn
find_opponent {i : int | 2 <= i; i <= total_nodes}
(i : size_t i)
:<> [j : int | 2 <= j; j <= total_nodes]
size_t j =
let
(* The prelude contains bitwise operations only for
non-dependent unsigned integer. We will not bother to
add them ourselves, but instead go back and forth
between dependent and non-dependent. *)
val i0 = g0ofg1 i
val j0 = g0uint_lxor<size_kind> (i0, g0u2u 1u)
val j = g1ofg0 j0
(* We have no proof the opponent is in the proper
range. Create a "proof" by runtime checks. *)
val () = $effmask_exn assertloc (g1u2u 2u <= j)
val () = $effmask_exn assertloc (j <= total_nodes)
in
j
end
val j = find_opponent i
val winner_i = winvals[i]
and winner_j = winvals[j]
in
if winner_i = link_nil then
j
else if winner_j = link_nil then
i
else
let
val i1 = pred winner_i + ifirst
and i2 = pred winner_j + ifirst
prval () = lemma_g1uint_param i1
prval () = lemma_g1uint_param i2
in
if arr[i2] \lt arr[i1] then j else i
end
end
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
fun
build_tree {istart : pos | istart <= total_external_nodes}
.<istart>.
(arr : &RD(array (a, n)),
winvals : &array (link_t, winners_size),
winlinks : &array (link_t, winners_size),
istart : size_t istart)
:<!wrt> void =
if istart <> 1 then
let
fun
play_initial_games
{i : int | istart <= i; i <= (2 * istart) + 1}
.<(2 * istart) + 1 - i>.
(arr : &RD(array (a, n)),
winvals : &array (link_t, winners_size),
winlinks : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <= pred (istart + istart) then
let
val iwinner = play_game (arr, winvals, i)
and i2 = i / g1u2u 2u
in
winvals[i2] := winvals[iwinner];
winlinks[i2] := winlinks[iwinner];
play_initial_games (arr, winvals, winlinks,
succ (succ i))
end
in
play_initial_games (arr, winvals, winlinks, istart);
build_tree (arr, winvals, winlinks, istart / g1u2u 2u)
end
val () = build_tree (arr, winvals, winlinks, total_external_nodes)
(* - - - - - - - - - - - - - - - - - - - - - - - - - - *)
fun
replay_games {i : pos | i <= total_nodes}
.<i>.
(arr : &RD(array (a, n)),
winvals : &array (link_t, winners_size),
winlinks : &array (link_t, winners_size),
i : size_t i)
:<!wrt> void =
if i <> g1u2u 1u then
let
val iwinner = play_game (arr, winvals, i)
and i2 = i / g1u2u 2u
in
winvals[i2] := winvals[iwinner];
winlinks[i2] := winlinks[iwinner];
replay_games (arr, winvals, winlinks, i2)
end
fun
merge {isorted : nat | isorted <= len}
{p_sorted : addr}
.<len - isorted>.
(pf_sorted : !array_v (index_t?, p_sorted,
len - isorted)
>> array_v (index_t, p_sorted,
len - isorted) |
arr : &RD(array (a, n)),
piles : &array (link_t, len),
links : &array (link_t, len),
winvals : &array (link_t, winners_size),
winlinks : &array (link_t, winners_size),
p_sorted : ptr p_sorted,
isorted : size_t isorted)
:<!wrt> void =
(* This function not only fills in the "sorted" array, but
transforms it from "uninitialized" to "initialized". *)
if isorted <> len then
let
prval @(pf_elem, pf_rest) = array_v_uncons pf_sorted
val winner = winvals[1]
val () = $effmask_exn assertloc (winner <> link_nil)
val () = !p_sorted := pred winner + ifirst
(* Move to the next element in the winner's pile. *)
val ilink = winlinks[1]
val () = $effmask_exn assertloc (ilink <> link_nil)
val inext = piles[pred ilink]
val () = (if inext <> link_nil then
piles[pred ilink] := links[pred inext])
(* Replay games, with the new element as a competitor. *)
val i = (total_nodes / g1u2u 2u) + ilink
val () = $effmask_exn assertloc (i <= total_nodes)
val () = winvals[i] := inext
val () = replay_games (arr, winvals, winlinks, i)
val () = merge (pf_rest |
arr, piles, links, winvals, winlinks,
ptr_succ<index_t> p_sorted, succ isorted)
prval () = pf_sorted := array_v_cons (pf_elem, pf_rest)
in
end
else
let
prval () = pf_sorted :=
array_v_unnil_nil{index_t?, index_t} pf_sorted
in
end
val () = merge (view@ sorted |
arr, piles, links, winvals, winlinks,
addr@ sorted, i2sz 0)
prval () =
array_uninitize_without_doing_anything<link_t>
(winvals, winners_size)
prval () =
array_uninitize_without_doing_anything<link_t>
(winlinks, winners_size)
prval () = view@ winvals :=
array_v_unsplit (view@ winvals, winvals_right)
prval () = view@ winlinks :=
array_v_unsplit (view@ winlinks, winlinks_right)
in
end
implement {a}
patience_sort_given_workspaces
{ifirst, len} {n} {power}
{n_piles} {n_links} {n_winv} {n_winl}
(pf_exp2 | arr, ifirst, len, power,
piles, links, winvals, winlinks,
sorted) =
let
prval () = lemma_g1uint_param ifirst
prval () = lemma_g1uint_param len
typedef index_t = index_t (ifirst, len)
typedef link_t = link_t (ifirst, len)
in
if len = i2sz 0 then
let
prval () = view@ sorted :=
array_v_unnil_nil{index_t?, index_t} (view@ sorted)
in
end
else
let
prval @(piles_left, piles_right) =
array_v_split {link_t?} {..} {n_piles} {len} (view@ piles)
prval () = view@ piles := piles_left
prval @(links_left, links_right) =
array_v_split {link_t?} {..} {n_links} {len} (view@ links)
prval () = view@ links := links_left
prval @(winvals_left, winvals_right) =
array_v_split {link_t?} {..} {n_winv} {2 * power}
(view@ winvals)
prval () = view@ winvals := winvals_left
prval @(winlinks_left, winlinks_right) =
array_v_split {link_t?} {..} {n_winl} {2 * power}
(view@ winlinks)
prval () = view@ winlinks := winlinks_left
val num_piles =
deal {ifirst, len} {n} (ifirst, len, arr, piles, links)
prval () = lemma_g1uint_param num_piles
val () = $effmask_exn assertloc (num_piles <> i2sz 0)
val () =
k_way_merge {ifirst, len} {n} {..} {power}
(pf_exp2 | arr, ifirst, len, num_piles, power,
piles, links, winvals, winlinks,
sorted)
prval () =
array_uninitize_without_doing_anything<link_t>
(piles, len)
prval () =
array_uninitize_without_doing_anything<link_t>
(links, len)
prval () = view@ piles :=
array_v_unsplit (view@ piles, piles_right)
prval () = view@ links :=
array_v_unsplit (view@ links, links_right)
prval () = view@ winvals :=
array_v_unsplit (view@ winvals, winvals_right)
prval () = view@ winlinks :=
array_v_unsplit (view@ winlinks, winlinks_right)
in
end
end
(* ================================================================ *)
(* An interface that provides the workspaces. If the subarray to *)
(* be sorted is small enough, stack storage will be used. *)
#define LEN_THRESHOLD 128
#define WINNERS_SIZE 256
prval () = prop_verify {WINNERS_SIZE == 2 * LEN_THRESHOLD} ()
local
prval pf_exp2 = EXP2bas () (* 1*)
prval pf_exp2 = EXP2ind pf_exp2 (* 2 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 4 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 8 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 16 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 32 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 64 *)
prval pf_exp2 = EXP2ind pf_exp2 (* 128 *)
in
prval pf_exp2_for_stack_storage = pf_exp2
end
implement {a}
patience_sort_with_its_own_workspaces
{ifirst, len} {n} (arr, ifirst, len, sorted) =
let
prval () = lemma_g1uint_param ifirst
prval () = lemma_g1uint_param len
typedef link_t = link_t (ifirst, len)
fn
sort {ifirst, len : int | 0 <= ifirst}
{n : int | ifirst + len <= n}
{power : int | len <= power}
{n_piles : int | len <= n_piles}
{n_links : int | len <= n_links}
{n_winv : int | 2 * power <= n_winv}
{n_winl : int | 2 * power <= n_winl}
(pf_exp2 : [exponent : nat] EXP2 (exponent, power) |
arr : &RD(array (a, n)),
ifirst : size_t ifirst,
len : size_t len,
power : size_t power,
piles : &array (link_t (ifirst, len)?, n_piles) >> _,
links : &array (link_t (ifirst, len)?, n_links) >> _,
winvals : &array (link_t (ifirst, len)?, n_winv) >> _,
winlinks : &array (link_t (ifirst, len)?, n_winl) >> _,
sorted : &array (index_t (ifirst, len)?, len)
>> array (index_t (ifirst, len), len))
:<!wrt> void =
patience_sort_given_workspaces<a>
{ifirst, len} {n} {power}
{n_piles} {n_links} {n_winv} {n_winl}
(pf_exp2 | arr, ifirst, len, power, piles, links,
winvals, winlinks, sorted)
in
if len <= i2sz LEN_THRESHOLD then
let
var piles : array (link_t?, LEN_THRESHOLD)
var links : array (link_t?, LEN_THRESHOLD)
var winvals : array (link_t?, WINNERS_SIZE)
var winlinks : array (link_t?, WINNERS_SIZE)
in
sort (pf_exp2_for_stack_storage |
arr, ifirst, len, i2sz LEN_THRESHOLD,
piles, links, winvals, winlinks, sorted)
end
else
let
val @(pf_piles, pfgc_piles | p_piles) =
array_ptr_alloc<link_t> len
val @(pf_links, pfgc_links | p_links) =
array_ptr_alloc<link_t> len
val @(pf_exp2 | power) = next_power_of_two<size_kind> len
val @(pf_winvals, pfgc_winvals | p_winvals) =
array_ptr_alloc<link_t> (power + power)
val @(pf_winlinks, pfgc_winlinks | p_winlinks) =
array_ptr_alloc<link_t> (power + power)
macdef piles = !p_piles
macdef links = !p_links
macdef winvals = !p_winvals
macdef winlinks = !p_winlinks
in
sort (pf_exp2 |
arr, ifirst, len, power, piles, links,
winvals, winlinks, sorted);
array_ptr_free (pf_piles, pfgc_piles | p_piles);
array_ptr_free (pf_links, pfgc_links | p_links);
array_ptr_free (pf_winvals, pfgc_winvals | p_winvals);
array_ptr_free (pf_winlinks, pfgc_winlinks | p_winlinks)
end
end
(* ================================================================ *)
(* A demonstration program. *)
fn {a : t@ype}
find_length {n : int}
(lst : list (a, n))
:<> [m : int | m == n] size_t m =
let
prval () = lemma_list_param lst
in
g1i2u (length lst)
end
implement
main0 () =
let
implement
patience_sort$lt<int> (x, y) =
x < y
val example_list =
$list (22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54,
93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90)
val ifirst = i2sz 10
val [len : int] len = find_length example_list
#define ARRSZ 100
val () = assertloc (i2sz 10 + len <= ARRSZ)
var arr : array (int, ARRSZ)
val () = array_initize_elt<int> (arr, i2sz ARRSZ, 0)
prval @(pf_left, pf_right) =
array_v_split {int} {..} {ARRSZ} {10} (view@ arr)
prval @(pf_middle, pf_right) =
array_v_split {int} {..} {90} {len} pf_right
val p = ptr_add<int> (addr@ arr, 10)
val () = array_copy_from_list<int> (!p, example_list)
prval pf_right = array_v_unsplit (pf_middle, pf_right)
prval () = view@ arr := array_v_unsplit (pf_left, pf_right)
typedef index_t = patience_sort_index (10, len)
var sorted : array (index_t, ARRSZ)
val () = array_initize_elt<index_t> (sorted, i2sz ARRSZ,
g1u2u 10u)
prval @(sorted_left, sorted_right) =
array_v_split {index_t} {..} {ARRSZ} {len} (view@ sorted)
prval () = view@ sorted := sorted_left
val () = patience_sort<int> (arr, i2sz 10, len, sorted)
prval () = view@ sorted :=
array_v_unsplit (view@ sorted, sorted_right)
var i : [i : nat | i <= len] size_t i
in
print! ("unsorted ");
for (i := i2sz 0; i <> len; i := succ i)
print! (" ", arr[i2sz 10 + i]);
println! ();
print! ("sorted ");
for (i := i2sz 0; i <> len; i := succ i)
print! (" ", arr[sorted[i]]);
println! ()
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_LIBC patience_sort_task_provided_storage.dats && ./a.out unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
A patience sort for non-linear lists of integers, guaranteeing a sorted result
This implementation borrows code from a mergesort that also guarantees a sorted result.
The mergesort proves the result has the same length as the original, but this patience sort does not.
//--------------------------------------------------------------------
//
// A patience sort for 32-bit signed integers.
//
// This implementation proves that result is sorted, though it
// does not prove that the result is of the same length as the
// original.
//
//--------------------------------------------------------------------
#include "share/atspre_staload.hats"
(*------------------------------------------------------------------*)
#define ENTIER_MAX 2147483647
(* We do not include the most negative two's-complement number. *)
stadef entier (i : int) = ~ENTIER_MAX <= i && i <= ENTIER_MAX
sortdef entier = {i : int | entier i}
typedef entier (i : int) = [entier i] int i
typedef entier = [i : entier] entier i
datatype sorted_entier_list (int, int) =
| sorted_entier_list_nil (0, ENTIER_MAX)
| {n : nat}
{i, j : entier | ~(j < i)}
sorted_entier_list_cons (n + 1, i) of
(entier i, sorted_entier_list (n, j))
typedef sorted_entier_list (n : int) =
[i : entier] sorted_entier_list (n, i)
typedef sorted_entier_list =
[n : int] sorted_entier_list n
infixr ( :: ) :::
#define NIL list_nil ()
#define :: list_cons
#define SNIL sorted_entier_list_nil ()
#define ::: sorted_entier_list_cons
(*------------------------------------------------------------------*)
extern prfn
lemma_sorted_entier_list_param
{n : int}
(lst : sorted_entier_list n)
:<prf> [0 <= n] void
extern fn
sorted_entier_list_merge
{m, n : int}
{i, j : entier}
(lst1 : sorted_entier_list (m, i),
lst2 : sorted_entier_list (n, j))
:<> sorted_entier_list (m + n, min (i, j))
extern fn
entier_list_patience_sort
{n : int}
(lst : list (entier, n)) (* An ordinary list. *)
:<!wrt> sorted_entier_list (* No proof of the length. *)
extern fn
sorted_entier_list2list
{n : int}
(lst : sorted_entier_list n)
:<> list (entier, n)
overload merge with sorted_entier_list_merge
overload patience_sort with entier_list_patience_sort
overload to_list with sorted_entier_list2list
(*------------------------------------------------------------------*)
primplement
lemma_sorted_entier_list_param {n} lst =
case+ lst of
| SNIL => ()
| _ ::: _ => ()
implement
sorted_entier_list_merge (lst1, lst2) =
(* This implementation is *NOT* tail recursive. It will use O(m+n)
stack space. *)
let
fun
recurs {m, n : nat}
{i, j : entier} .<m + n>.
(lst1 : sorted_entier_list (m, i),
lst2 : sorted_entier_list (n, j))
:<> sorted_entier_list (m + n, min (i, j)) =
case+ lst1 of
| SNIL => lst2
| i ::: tail1 =>
begin
case+ lst2 of
| SNIL => lst1
| j ::: tail2 =>
if ~(j < i) then
i ::: recurs (tail1, lst2)
else
j ::: recurs (lst1, tail2)
end
prval () = lemma_sorted_entier_list_param lst1
prval () = lemma_sorted_entier_list_param lst2
in
recurs (lst1, lst2)
end
implement
entier_list_patience_sort {n} lst =
let
prval () = lemma_list_param lst
val n : int n = length lst
in
if n = 0 then
SNIL
else if n = 1 then
let
val+ head :: NIL = lst
in
head ::: SNIL
end
else
let
val @(pf, pfgc | p) =
array_ptr_alloc<sorted_entier_list> (i2sz n)
macdef piles = !p
val () = array_initize_elt (piles, i2sz n, SNIL)
fn
find_pile {m : nat | m <= n}
{x : entier}
(num_piles : int m,
piles : &array (sorted_entier_list, n),
x : entier x)
:<> [i : nat | i < n]
[len : int]
[y : entier | ~(y < x)]
@(int i, sorted_entier_list (len, y)) =
//
// Bottenbruch search for the leftmost pile whose top is
// greater than or equal to some element x.
//
// References:
//
// * H. Bottenbruch, "Structure and use of ALGOL 60",
// Journal of the ACM, Volume 9, Issue 2, April 1962,
// pp.161-221. https://doi.org/10.1145/321119.321120
//
// The general algorithm is described on pages 214
// and 215.
//
// * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
//
let
fun
loop {j, k : nat | j < k; k < m}
{x : entier} .<k - j>.
(piles : &array (sorted_entier_list, n),
j : int j,
k : int k,
x : entier x)
:<> [i : nat | i < n]
[len : int]
[y : entier | ~(y < x)]
@(int i, sorted_entier_list (len, y)) =
let
val i = j + g1int_ndiv (k - j, 2)
val pile = piles[i]
val- head ::: _ = pile
in
if head < x then
begin
if succ i <> k then
loop (piles, succ i, k, x)
else
let
val pile1 = piles[k]
in
case- pile1 of
| head1 ::: _ =>
if head1 < x then
let
(* Runtime check for buffer overrun. *)
val () =
$effmask_exn assertloc (k + 1 < n)
in
(* No pile satisfies the binary search.
Start a new pile. *)
@(k + 1, SNIL)
end
else
@(k, pile1)
end
end
else
begin
if j <> i then
loop (piles, j, i, x)
else
@(j, pile)
end
end
in
if 1 < num_piles then
let
prval () = prop_verify {m >= 1} ()
in
loop (piles, 0, pred num_piles, x)
end
else if num_piles = 1 then
let
prval () = prop_verify {m == 1} ()
val pile = piles[0]
in
case- pile of
| head ::: _ =>
if head < x then
@(1, SNIL)
else
@(0, pile)
end
else
let
prval () = prop_verify {m == 0} ()
in
@(0, SNIL)
end
end
fun
deal {m : nat | m <= n}
{j : nat | j <= n} .<m>.
(num_piles : &int j >> int k,
piles : &array (sorted_entier_list, n) >> _,
lst : list (entier, m))
:<!wrt> #[k : nat | j <= k; k <= n] void =
(* This implementation verifies at compile time that the
piles are sorted. *)
case+ lst of
| NIL => ()
| head :: tail =>
let
val @(i, pile) = find_pile (num_piles, piles, head)
prval () = lemma_sorted_entier_list_param pile
in
piles[i] := head ::: pile;
num_piles := max (num_piles, succ i);
deal (num_piles, piles, tail);
end
fun
make_list_of_piles
{num_piles, i : nat | num_piles <= n;
i <= num_piles}
.<num_piles - i>.
(num_piles : int num_piles,
piles : &array (sorted_entier_list, n),
i : int i)
:<> [m : nat] @(list (sorted_entier_list, m), int m) =
(* I do NOT bother to make this implementation tail
recursive. *)
if i = num_piles then
@(NIL, 0)
else
let
val @(lst, m) =
make_list_of_piles (num_piles, piles, succ i)
in
@(piles[i] :: lst, succ m)
end
var num_piles : Int = 0
val () = deal (num_piles, piles, lst)
val @(list_of_piles, m) =
make_list_of_piles (num_piles, piles, 0)
val () = array_ptr_free (pf, pfgc | p)
fun
merge_piles {m : nat} .<m>.
(list_of_piles : list (sorted_entier_list, m),
m : int m)
:<!wrt> sorted_entier_list =
(* This is essentially the same algorithm as a
NON-tail-recursive mergesort. *)
if m = 1 then
let
val+ sorted_lst :: NIL = list_of_piles
in
sorted_lst
end
else if m = 0 then
SNIL
else
let
val m_left = m \g1int_ndiv 2
val m_right = m - m_left
val @(left, right) =
list_split_at (list_of_piles, m_left)
val left = merge_piles (list_vt2t left, m_left)
and right = merge_piles (right, m_right)
in
left \merge right
end
in
merge_piles (list_of_piles, m)
end
end
implement
sorted_entier_list2list lst =
(* This implementation is *NOT* tail recursive. It will use O(n)
stack space. *)
let
fun
recurs {n : nat} .<n>.
(lst : sorted_entier_list n)
:<> list (entier, n) =
case+ lst of
| SNIL => NIL
| head ::: tail => head :: recurs tail
prval () = lemma_sorted_entier_list_param lst
in
recurs lst
end
(*------------------------------------------------------------------*)
fn
print_Int_list
{n : int}
(lst : list (Int, n))
: void =
let
fun
loop {n : nat} .<n>.
(lst : list (Int, n))
: void =
case+ lst of
| NIL => ()
| head :: tail =>
begin
print! (" ");
print! (head);
loop tail
end
prval () = lemma_list_param lst
in
loop lst
end
implement
main0 () =
let
val example_list =
$list (22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46, 54,
93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90)
val sorted_list = patience_sort example_list
in
print! ("unsorted ");
print_Int_list example_list;
println! ();
print! ("sorted ");
print_Int_list (to_list sorted_list);
println! ()
end
(*------------------------------------------------------------------*)
- Output:
$ patscc -O3 -DATS_MEMALLOC_GCBDW patience_sort_task_verified.dats -lgc && ./a.out unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
AutoHotkey
PatienceSort(A){
P:=0, Pile:=[], Result:=[]
for k, v in A
{
Pushed := 0
loop % P
{
i := A_Index
if Pile[i].Count() && (Pile[i, 1] >= v)
{
Pile[i].InsertAt(1, v)
pushed := true
break
}
}
if Pushed
continue
P++
Pile[p] := []
Pile[p].InsertAt(1, v)
}
; optional to show steps ;;;;;;;;;;;;;;;;;;;;;;;
loop % P
{
i := A_Index, step := ""
for k, v in Pile[i]
step .= v ", "
step := "Pile" i " = " Trim(step, ", ")
steps .= step "`n"
}
MsgBox % steps
; end optional ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
loop % A.Count()
{
Collect:=[]
loop % P
if Pile[A_index].Count()
Collect.Push(Pile[A_index, 1])
for k, v in Collect
if k=1
m := v
else if (v < m)
{
m := v
break
}
Result.push(m)
loop % P
if (m = Pile[A_index, 1])
{
Pile[A_index].RemoveAt(1)
break
}
}
return Result
}
Examples:
Test := [[4, 65, 2, -31, 0, 99, 83, 782, 1]
,["n", "o", "n", "z", "e", "r", "o", "s", "u", "m"]
,["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"]]
for i, v in Test{
X := PatienceSort(V)
output := ""
for k, v in X
output .= v ", "
MsgBox % "[" Trim(output, ", ") "]"
}
return
- Output:
Pile1 = [-31, 2, 4] Pile2 = [0, 65] Pile3 = [1, 83, 99] Pile4 = [782] Result = [-31, 0, 1, 2, 4, 65, 83, 99, 782] ---------------------------------- Pile1 = [e, n, n] Pile2 = [m, o, o] Pile3 = [r, z] Pile4 = [s] Pile5 = [u] Result = [e, m, n, n, o, o, r, s, u, z] ---------------------------------- Pile1 = [ant, ape, cat, cow, dog] Pile2 = [ass, man] Pile3 = [gnu, pig] Result = [ant, ape, ass, cat, cow, dog, gnu, man, pig]
C
Takes integers as input, prints out usage on incorrect invocation
#include<stdlib.h>
#include<stdio.h>
int* patienceSort(int* arr,int size){
int decks[size][size],i,j,min,pickedRow;
int *count = (int*)calloc(sizeof(int),size),*sortedArr = (int*)malloc(size*sizeof(int));
for(i=0;i<size;i++){
for(j=0;j<size;j++){
if(count[j]==0 || (count[j]>0 && decks[j][count[j]-1]>=arr[i])){
decks[j][count[j]] = arr[i];
count[j]++;
break;
}
}
}
min = decks[0][count[0]-1];
pickedRow = 0;
for(i=0;i<size;i++){
for(j=0;j<size;j++){
if(count[j]>0 && decks[j][count[j]-1]<min){
min = decks[j][count[j]-1];
pickedRow = j;
}
}
sortedArr[i] = min;
count[pickedRow]--;
for(j=0;j<size;j++)
if(count[j]>0){
min = decks[j][count[j]-1];
pickedRow = j;
break;
}
}
free(count);
free(decks);
return sortedArr;
}
int main(int argC,char* argV[])
{
int *arr, *sortedArr, i;
if(argC==0)
printf("Usage : %s <integers to be sorted separated by space>");
else{
arr = (int*)malloc((argC-1)*sizeof(int));
for(i=1;i<=argC;i++)
arr[i-1] = atoi(argV[i]);
sortedArr = patienceSort(arr,argC-1);
for(i=0;i<argC-1;i++)
printf("%d ",sortedArr[i]);
}
return 0;
}
Invocation and output :
C:\rosettaCode>patienceSort.exe 4 65 2 -31 0 99 83 781 1 -31 0 1 2 4 65 83 99 781
C++
#include <iostream>
#include <vector>
#include <stack>
#include <iterator>
#include <algorithm>
#include <cassert>
template <class E>
struct pile_less {
bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
return pile1.top() < pile2.top();
}
};
template <class E>
struct pile_greater {
bool operator()(const std::stack<E> &pile1, const std::stack<E> &pile2) const {
return pile1.top() > pile2.top();
}
};
template <class Iterator>
void patience_sort(Iterator first, Iterator last) {
typedef typename std::iterator_traits<Iterator>::value_type E;
typedef std::stack<E> Pile;
std::vector<Pile> piles;
// sort into piles
for (Iterator it = first; it != last; it++) {
E& x = *it;
Pile newPile;
newPile.push(x);
typename std::vector<Pile>::iterator i =
std::lower_bound(piles.begin(), piles.end(), newPile, pile_less<E>());
if (i != piles.end())
i->push(x);
else
piles.push_back(newPile);
}
// priority queue allows us to merge piles efficiently
// we use greater-than comparator for min-heap
std::make_heap(piles.begin(), piles.end(), pile_greater<E>());
for (Iterator it = first; it != last; it++) {
std::pop_heap(piles.begin(), piles.end(), pile_greater<E>());
Pile &smallPile = piles.back();
*it = smallPile.top();
smallPile.pop();
if (smallPile.empty())
piles.pop_back();
else
std::push_heap(piles.begin(), piles.end(), pile_greater<E>());
}
assert(piles.empty());
}
int main() {
int a[] = {4, 65, 2, -31, 0, 99, 83, 782, 1};
patience_sort(a, a+sizeof(a)/sizeof(*a));
std::copy(a, a+sizeof(a)/sizeof(*a), std::ostream_iterator<int>(std::cout, ", "));
std::cout << std::endl;
return 0;
}
- Output:
-31, 0, 1, 2, 4, 65, 83, 99, 782,
Clojure
(defn patience-insert
"Inserts a value into the sequence where each element is a stack.
Comparison replaces the definition of less than.
Uses the greedy strategy."
[comparison sequence value]
(lazy-seq
(if (empty? sequence) `((~value)) ;; If there are no places to put the "card", make a new stack
(let [stack (first sequence)
top (peek stack)]
(if (comparison value top)
(cons (conj stack value) ;; Either put the card in a stack or recurse to the next stack
(rest sequence))
(cons stack
(patience-insert comparison
(rest sequence)
value)))))))
(defn patience-remove
"Removes the value from the top of the first stack it shows up in.
Leaves the stacks otherwise intact."
[sequence value]
(lazy-seq
(if (empty? sequence) nil ;; If there are no stacks, we have no work to do
(let [stack (first sequence)
top (peek stack)]
(if (= top value) ;; Are we there yet?
(let [left-overs (pop stack)]
(if (empty? left-overs) ;; Handle the case that the stack is empty and needs to be removed
(rest sequence)
(cons left-overs
(rest sequence))))
(cons stack
(patience-remove (rest sequence)
value)))))))
(defn patience-recover
"Builds a sorted sequence from a list of patience stacks.
The given comparison takes the place of 'less than'"
[comparison sequence]
(loop [sequence sequence
sorted []]
(if (empty? sequence) sorted
(let [smallest (reduce #(if (comparison %1 %2) %1 %2) ;; Gets the smallest element in the list
(map peek sequence))
remaining (patience-remove sequence smallest)]
(recur remaining
(conj sorted smallest)))))) ;; Recurse over the remaining values and add the new smallest to the end of the sorted list
(defn patience-sort
"Sorts the sequence by comparison.
First builds the list of valid patience stacks.
Then recovers the sorted list from those.
If you don't supply a comparison, assumes less than."
([comparison sequence]
(->> (reduce (comp doall ;; This is prevent a stack overflow by making sure all work is done when it needs to be
(partial patience-insert comparison)) ;; Insert all the values into the list of stacks
nil
sequence)
(patience-recover comparison))) ;; After we have the stacks, send it off to recover the sorted list
([sequence]
;; In the case we don't have an operator, defer to ourselves with less than
(patience-sort < sequence)))
;; Sort the test sequence and print it
(println (patience-sort [4 65 2 -31 0 99 83 782 1]))
- Output:
[-31 0 1 2 4 65 83 99 782]
D
import std.stdio, std.array, std.range, std.algorithm;
void patienceSort(T)(T[] items) /*pure nothrow @safe*/
if (__traits(compiles, T.init < T.init)) {
//SortedRange!(int[][], q{ a.back < b.back }) piles;
T[][] piles;
foreach (x; items) {
auto p = [x];
immutable i = piles.length -
piles
.assumeSorted!q{ a.back < b.back }
.upperBound(p)
.length;
if (i != piles.length)
piles[i] ~= x;
else
piles ~= p;
}
piles.nWayUnion!q{ a > b }.copy(items.retro);
}
void main() {
auto data = [4, 65, 2, -31, 0, 99, 83, 782, 1];
data.patienceSort;
assert(data.isSorted);
data.writeln;
}
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Elixir
defmodule Sort do
def patience_sort(list) do
piles = deal_pile(list, [])
merge_pile(piles, [])
end
defp deal_pile([], piles), do: piles
defp deal_pile([h|t], piles) do
index = Enum.find_index(piles, fn pile -> hd(pile) <= h end)
new_piles = if index, do: add_element(piles, index, h, []),
else: piles ++ [[h]]
deal_pile(t, new_piles)
end
defp add_element([h|t], 0, elm, work), do: Enum.reverse(work, [[elm | h] | t])
defp add_element([h|t], index, elm, work), do: add_element(t, index-1, elm, [h | work])
defp merge_pile([], list), do: list
defp merge_pile(piles, list) do
{max, index} = max_index(piles)
merge_pile(delete_element(piles, index, []), [max | list])
end
defp max_index([h|t]), do: max_index(t, hd(h), 1, 0)
defp max_index([], max, _, max_i), do: {max, max_i}
defp max_index([h|t], max, index, _) when hd(h)>max, do: max_index(t, hd(h), index+1, index)
defp max_index([_|t], max, index, max_i) , do: max_index(t, max, index+1, max_i)
defp delete_element([h|t], 0, work) when length(h)==1, do: Enum.reverse(work, t)
defp delete_element([h|t], 0, work) , do: Enum.reverse(work, [tl(h) | t])
defp delete_element([h|t], index, work), do: delete_element(t, index-1, [h | work])
end
IO.inspect Sort.patience_sort [4, 65, 2, -31, 0, 99, 83, 782, 1]
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Fortran
Patience sort on unlimited polymorphic arrays, with a demonstration on an array of integers.
I actually exaggerate in calling this implementation a translation of the Icon. This Fortran introduces significant improvements. It neither moves nor copies input elements, but instead works on integer indices. The return value itself is an array of indices.
Beware: if you compile the program in gfortran without the optimizer, you may see a warning such as
Warning: trampoline generated for nested function "less" [-Wtrampolines]
The generated code is perfectly alright and should run right away, except on some hardened platforms. Turn on the optimizer and the trampoline should go away.
module rosetta_code_patience_sort
implicit none
private
public :: patience_sort
interface
function binary_predicate (x, y) result (truth)
class(*), intent(in) :: x, y
logical :: truth
end function binary_predicate
end interface
contains
function patience_sort (less, ifirst, ilast, array) result (sorted)
procedure(binary_predicate) :: less
integer, intent(in) :: ifirst, ilast
class(*), intent(in) :: array(*)
integer, allocatable :: sorted(:)
!
! Returns a sorted list of indices.
!
integer :: num_piles
integer, allocatable :: piles(:)
integer, allocatable :: links(:)
! We shall build the piles as linked lists stored as arrays of
! element indices. The indices are normalized to run from 1 to
! ifirst-ilast+1. The "piles" array stores the heads, and the
! "links" array stores the rest of each list. A null link is
! represented by zero.
allocate (piles(1 : ilast - ifirst + 1), source = 0)
allocate (links(1 : ilast - ifirst + 1), source = 0)
num_piles = 0
call deal (less, ifirst, ilast, array, num_piles, piles, links)
allocate (sorted(1 : ilast - ifirst + 1))
call k_way_merge (less, ifirst, ilast, array, num_piles, piles, &
& links, sorted)
end function patience_sort
subroutine deal (less, ifirst, ilast, array, &
& num_piles, piles, links)
procedure(binary_predicate) :: less
integer, intent(in) :: ifirst, ilast
class(*), intent(in) :: array(*)
integer, intent(inout) :: num_piles
integer, intent(inout) :: piles(1 : ilast - ifirst + 1)
integer, intent(inout) :: links(1 : ilast - ifirst + 1)
integer :: i, q
do q = 1, ilast - ifirst + 1
i = find_pile (q)
links(q) = piles(i)
piles(i) = q
num_piles = max (num_piles, i)
end do
contains
function find_pile (q) result (index)
integer, value :: q
integer :: index
!
! Bottenbruch search for the leftmost pile whose top is greater
! than or equal to x. Return an index such that:
!
! * if x is greater than the top element at the far right,
! then the index returned will be num-piles.
!
! * otherwise, x is greater than every top element to the left
! of index, and less than or equal to the top elements at
! index and to the right of index.
!
! References:
!
! * H. Bottenbruch, "Structure and use of ALGOL 60", Journal
! of the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
! https://doi.org/10.1145/321119.321120
!
! The general algorithm is described on pages 214 and 215.
!
! * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
!
integer :: i, j, k
if (num_piles == 0) then
index = 1
else
j = 0
k = num_piles - 1
do while (j /= k)
i = (j + k) / 2
if (less (array(piles(j + 1) + ifirst - 1), &
& array(q + ifirst - 1))) then
j = i + 1
else
k = i
end if
end do
if (j == num_piles - 1) then
if (less (array(piles(j + 1) + ifirst - 1), &
& array(q + ifirst - 1))) then
! A new pile is needed.
j = j + 1
end if
end if
index = j + 1
end if
end function find_pile
end subroutine deal
subroutine k_way_merge (less, ifirst, ilast, array, num_piles, &
& piles, links, sorted)
procedure(binary_predicate) :: less
integer, intent(in) :: ifirst, ilast
class(*), intent(in) :: array(*)
integer, intent(in) :: num_piles
integer, intent(inout) :: piles(1 : ilast - ifirst + 1)
integer, intent(inout) :: links(1 : ilast - ifirst + 1)
integer, intent(inout) :: sorted(1 : ilast - ifirst + 1)
!
! k-way merge by tournament tree.
!
! See Knuth, volume 3, and also
! https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
!
! However, I store a winners tree instead of the recommended
! losers tree. If the tree were stored as linked nodes, it would
! probably be more efficient to store a losers tree. However, I am
! storing the tree as an array, and one can find an opponent
! quickly by simply toggling the least significant bit of a
! competitor's array index.
!
integer :: total_external_nodes
integer :: total_nodes
integer :: winners(1:2, 1:(2 * next_power_of_two (num_piles)) - 1)
integer :: isorted, i, next
total_external_nodes = next_power_of_two (num_piles)
total_nodes = (2 * total_external_nodes) - 1
call build_tree
isorted = 0
do while (winners(1, 1) /= 0)
isorted = isorted + 1
sorted(isorted) = winners(1, 1) + ifirst - 1
i = winners(2, 1)
next = piles(i) ! The next top of pile i.
if (next /= 0) piles(i) = links(next) ! Drop that top.
i = (total_nodes / 2) + i
winners(1, i) = next
call replay_games (i)
end do
contains
subroutine build_tree
integer :: i
integer :: istart
integer :: iwinner
winners = 0
do i = 1, total_external_nodes
! Record which pile a winner will have come from.
winners(2, total_external_nodes - 1 + i) = i
end do
! The top of each pile becomes a starting competitor.
winners(1, total_external_nodes : &
& total_external_nodes + num_piles - 1) = &
& piles(1:num_piles)
do i = 1, num_piles
! Discard the top of each pile
piles(i) = links(piles(i))
end do
istart = total_external_nodes
do while (istart /= 1)
do i = istart, (2 * istart) - 1, 2
iwinner = play_game (i)
winners(:, i / 2) = winners(:, iwinner)
end do
istart = istart / 2
end do
end subroutine build_tree
subroutine replay_games (i)
integer, value :: i
integer :: iwinner
do while (i /= 1)
iwinner = play_game (i)
i = i / 2
winners(:, i) = winners(:, iwinner)
end do
end subroutine replay_games
function play_game (i) result (iwinner)
integer, value :: i
integer :: iwinner
integer :: j
j = ieor (i, 1)
if (winners(1, i) == 0) then
iwinner = j
else if (winners(1, j) == 0) then
iwinner = i
else if (less (array(winners(1, j) + ifirst - 1), &
& array(winners(1, i) + ifirst - 1))) then
iwinner = j
else
iwinner = i
end if
end function play_game
end subroutine k_way_merge
elemental function next_power_of_two (n) result (pow2)
integer, value :: n
integer :: pow2
! This need not be a fast implementation.
pow2 = 1
do while (pow2 < n)
pow2 = pow2 + pow2
end do
end function next_power_of_two
end module rosetta_code_patience_sort
program patience_sort_task
use, non_intrinsic :: rosetta_code_patience_sort
implicit none
integer, parameter :: example_numbers(*) = &
& (/ 22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, &
& 46, 54, 93, 8, 54, 2, 72, 84, 86, 76, 53, 37, &
& 90 /)
integer :: i
integer, allocatable :: sorted(:)
sorted = patience_sort (less, &
& lbound (example_numbers, 1), &
& ubound (example_numbers, 1), &
& example_numbers)
write (*, '("unsorted ")', advance = 'no')
do i = lbound (example_numbers, 1), ubound (example_numbers, 1)
write (*, '(1X, I0)', advance = 'no') example_numbers(i)
end do
write (*, '()')
write (*, '("sorted ")', advance = 'no')
do i = lbound (sorted, 1), ubound (sorted, 1)
write (*, '(1X, I0)', advance = 'no') example_numbers(sorted(i))
end do
write (*, '()')
contains
function less (x, y) result (truth)
class(*), intent(in) :: x, y
logical :: truth
select type (x)
type is (integer)
select type (y)
type is (integer)
truth = (x < y)
class default
error stop
end select
class default
error stop
end select
end function less
end program patience_sort_task
- Output:
$ gfortran -Wall -Wextra -std=f2018 -fcheck=all -O patience_sort_task.f90 && ./a.out unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
FreeBASIC
Sub patienceSort(bs() As Long)
Dim As Long i, j, min, pickedRow
Dim As Long lb = Lbound(bs), ub = Ubound(bs)
Dim As Long decks(ub, ub)
Dim As Long count(ub)
Dim As Long sortedArr(ub)
For i = lb To ub
For j = lb To ub
If count(j) = 0 Or (count(j) > 0 And decks(j, count(j) - 1) >= bs(i)) Then
decks(j, count(j)) = bs(i)
count(j) += 1
Exit For
End If
Next
Next
min = decks(0, count(0) - 1)
pickedRow = 0
For i = lb To ub
For j = lb To ub
If count(j) > 0 And decks(j, count(j) - 1) < min Then
min = decks(j, count(j) - 1)
pickedRow = j
End If
Next
sortedArr(i) = min
count(pickedRow) -= 1
For j = lb To ub
If count(j) > 0 Then
min = decks(j, count(j) - 1)
pickedRow = j
Exit For
End If
Next
Next
For i = 0 To ub
bs(i) = sortedArr(i)
Next
End Sub
'--- Programa Principal ---
Dim As Long i
Dim As Long array(14) = {-5,-3, 0,-7, 5, 2, 3, 6,-6,-1, 1,-2, 4, 7,-4}
Dim As Long a = Lbound(array), b = Ubound(array)
Print "unsort ";
For i = a To b : Print Using "####"; array(i); : Next i
patienceSort(array())
Print !"\n sort ";
For i = a To b : Print Using "####"; array(i); : Next i
Sleep
- Output:
unsort -5 -3 0 -7 5 2 3 6 -6 -1 1 -2 4 7 -4 sort -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Go
This version is written for int slices, but can be easily modified to sort other types.
package main
import (
"fmt"
"container/heap"
"sort"
)
type IntPile []int
func (self IntPile) Top() int { return self[len(self)-1] }
func (self *IntPile) Pop() int {
x := (*self)[len(*self)-1]
*self = (*self)[:len(*self)-1]
return x
}
type IntPilesHeap []IntPile
func (self IntPilesHeap) Len() int { return len(self) }
func (self IntPilesHeap) Less(i, j int) bool { return self[i].Top() < self[j].Top() }
func (self IntPilesHeap) Swap(i, j int) { self[i], self[j] = self[j], self[i] }
func (self *IntPilesHeap) Push(x interface{}) { *self = append(*self, x.(IntPile)) }
func (self *IntPilesHeap) Pop() interface{} {
x := (*self)[len(*self)-1]
*self = (*self)[:len(*self)-1]
return x
}
func patience_sort (n []int) {
var piles []IntPile
// sort into piles
for _, x := range n {
j := sort.Search(len(piles), func (i int) bool { return piles[i].Top() >= x })
if j != len(piles) {
piles[j] = append(piles[j], x)
} else {
piles = append(piles, IntPile{ x })
}
}
// priority queue allows us to merge piles efficiently
hp := IntPilesHeap(piles)
heap.Init(&hp)
for i, _ := range n {
smallPile := heap.Pop(&hp).(IntPile)
n[i] = smallPile.Pop()
if len(smallPile) != 0 {
heap.Push(&hp, smallPile)
}
}
if len(hp) != 0 {
panic("something went wrong")
}
}
func main() {
a := []int{4, 65, 2, -31, 0, 99, 83, 782, 1}
patience_sort(a)
fmt.Println(a)
}
- Output:
[-31 0 1 2 4 65 83 99 782]
Haskell
import Control.Monad.ST
import Control.Monad
import Data.Array.ST
import Data.List
import qualified Data.Set as S
newtype Pile a = Pile [a]
instance Eq a => Eq (Pile a) where
Pile (x:_) == Pile (y:_) = x == y
instance Ord a => Ord (Pile a) where
Pile (x:_) `compare` Pile (y:_) = x `compare` y
patienceSort :: Ord a => [a] -> [a]
patienceSort = mergePiles . sortIntoPiles where
sortIntoPiles :: Ord a => [a] -> [[a]]
sortIntoPiles lst = runST $ do
piles <- newSTArray (1, length lst) []
let bsearchPiles x len = aux 1 len where
aux lo hi | lo > hi = return lo
| otherwise = do
let mid = (lo + hi) `div` 2
m <- readArray piles mid
if head m < x then
aux (mid+1) hi
else
aux lo (mid-1)
f len x = do
i <- bsearchPiles x len
writeArray piles i . (x:) =<< readArray piles i
return $ if i == len+1 then len+1 else len
len <- foldM f 0 lst
e <- getElems piles
return $ take len e
where newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
newSTArray = newArray
mergePiles :: Ord a => [[a]] -> [a]
mergePiles = unfoldr f . S.fromList . map Pile where
f pq = case S.minView pq of
Nothing -> Nothing
Just (Pile [x], pq') -> Just (x, pq')
Just (Pile (x:xs), pq') -> Just (x, S.insert (Pile xs) pq')
main :: IO ()
main = print $ patienceSort [4, 65, 2, -31, 0, 99, 83, 782, 1]
- Output:
[-31,0,1,2,4,65,83,99,782]
Icon
- Output:
$ icont -s -u patience_sort_task.icn && ./patience_sort_task unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
J
The data structure for append and transfer are as x argument a list with cdr as the stacks and car as the data to sort or growing sorted list; and the y argument being the index of pile to operate on. New piles are created by using the new value, accomplished by selecting the entire x argument as a result. Filtering removes empty stacks during unpiling.
Until =: 2 :'u^:(0=v)^:_'
Filter =: (#~`)(`:6)
locate_for_append =: 1 i.~ (<&> {:S:0) NB. returns an index
append =: (<@:(({::~ >:) , 0 {:: [)`]`(}.@:[)}) :: [
pile =: (, append locate_for_append)/@:(;/) NB. pile DATA
smallest =: ((>:@:i. , ]) <./)@:({:S:0@:}.) NB. index of pile with smallest value , that value
transfer =: (}:&.>@:({~ {.) , <@:((0{::[),{:@:]))`(1 0 * ])`[}
unpile =: >@:{.@:((0<#S:0)Filter@:(transfer smallest)Until(1=#))@:(a:&,)
patience_sort =: unpile@:pile
assert (/:~ -: patience_sort) ?@$~30 NB. test with 30 randomly chosen integers
Show =: 1 : 0
smoutput y
u y
:
smoutput A=:x ,&:< y
x u y
)
pile_demo =: (, append Show locate_for_append)/@:(;/) NB. pile DATA
unpile_demo =: >@:{.@:((0<#S:0)Filter@:(transfer Show smallest)Until(1=#))@:(a:&,)
patience_sort_demo =: unpile_demo@:pile_demo
JVERSION Engine: j701/2011-01-10/11:25 Library: 8.02.12 Platform: Linux 64 Installer: unknown InstallPath: /usr/share/j/8.0.2 patience_sort_demo Show ?.@$~10 4 6 8 6 5 8 6 6 6 9 ┌─────┬─┐ │┌─┬─┐│0│ ││6│9││ │ │└─┴─┘│ │ └─────┴─┘ ┌───────┬─┐ │┌─┬───┐│1│ ││6│9 6││ │ │└─┴───┘│ │ └───────┴─┘ ┌─────────┬─┐ │┌─┬─┬───┐│2│ ││6│6│9 6││ │ │└─┴─┴───┘│ │ └─────────┴─┘ ┌───────────┬─┐ │┌─┬─┬─┬───┐│3│ ││8│6│6│9 6││ │ │└─┴─┴─┴───┘│ │ └───────────┴─┘ ┌─────────────┬─┐ │┌─┬─┬─┬─┬───┐│0│ ││5│8│6│6│9 6││ │ │└─┴─┴─┴─┴───┘│ │ └─────────────┴─┘ ┌───────────────┬─┐ │┌─┬───┬─┬─┬───┐│4│ ││6│8 5│6│6│9 6││ │ │└─┴───┴─┴─┴───┘│ │ └───────────────┴─┘ ┌─────────────────┬─┐ │┌─┬─┬───┬─┬─┬───┐│5│ ││8│6│8 5│6│6│9 6││ │ │└─┴─┴───┴─┴─┴───┘│ │ └─────────────────┴─┘ ┌───────────────────┬─┐ │┌─┬─┬─┬───┬─┬─┬───┐│0│ ││6│8│6│8 5│6│6│9 6││ │ │└─┴─┴─┴───┴─┴─┴───┘│ │ └───────────────────┴─┘ ┌─────────────────────┬─┐ │┌─┬───┬─┬───┬─┬─┬───┐│0│ ││4│8 6│6│8 5│6│6│9 6││ │ │└─┴───┴─┴───┴─┴─┴───┘│ │ └─────────────────────┴─┘ ┌──────────────────────┬───┐ │┌┬─────┬─┬───┬─┬─┬───┐│1 4│ │││8 6 4│6│8 5│6│6│9 6││ │ │└┴─────┴─┴───┴─┴─┴───┘│ │ └──────────────────────┴───┘ ┌─────────────────────┬───┐ │┌─┬───┬─┬───┬─┬─┬───┐│3 5│ ││4│8 6│6│8 5│6│6│9 6││ │ │└─┴───┴─┴───┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌───┬───┬─┬─┬─┬─┬───┐│1 6│ ││4 5│8 6│6│8│6│6│9 6││ │ │└───┴───┴─┴─┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌─────┬─┬─┬─┬─┬─┬───┐│2 6│ ││4 5 6│8│6│8│6│6│9 6││ │ │└─────┴─┴─┴─┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌───────┬─┬─┬─┬─┬───┐│3 6│ ││4 5 6 6│8│8│6│6│9 6││ │ │└───────┴─┴─┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌─────────┬─┬─┬─┬───┐│3 6│ ││4 5 6 6 6│8│8│6│9 6││ │ │└─────────┴─┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌───────────┬─┬─┬───┐│3 6│ ││4 5 6 6 6 6│8│8│9 6││ │ │└───────────┴─┴─┴───┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌─────────────┬─┬─┬─┐│1 8│ ││4 5 6 6 6 6 6│8│8│9││ │ │└─────────────┴─┴─┴─┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌───────────────┬─┬─┐│1 8│ ││4 5 6 6 6 6 6 8│8│9││ │ │└───────────────┴─┴─┘│ │ └─────────────────────┴───┘ ┌─────────────────────┬───┐ │┌─────────────────┬─┐│1 9│ ││4 5 6 6 6 6 6 8 8│9││ │ │└─────────────────┴─┘│ │ └─────────────────────┴───┘ 4 5 6 6 6 6 6 8 8 9
Java
import java.util.*;
public class PatienceSort {
public static <E extends Comparable<? super E>> void sort (E[] n) {
List<Pile<E>> piles = new ArrayList<Pile<E>>();
// sort into piles
for (E x : n) {
Pile<E> newPile = new Pile<E>();
newPile.push(x);
int i = Collections.binarySearch(piles, newPile);
if (i < 0) i = ~i;
if (i != piles.size())
piles.get(i).push(x);
else
piles.add(newPile);
}
// priority queue allows us to retrieve least pile efficiently
PriorityQueue<Pile<E>> heap = new PriorityQueue<Pile<E>>(piles);
for (int c = 0; c < n.length; c++) {
Pile<E> smallPile = heap.poll();
n[c] = smallPile.pop();
if (!smallPile.isEmpty())
heap.offer(smallPile);
}
assert(heap.isEmpty());
}
private static class Pile<E extends Comparable<? super E>> extends Stack<E> implements Comparable<Pile<E>> {
public int compareTo(Pile<E> y) { return peek().compareTo(y.peek()); }
}
public static void main(String[] args) {
Integer[] a = {4, 65, 2, -31, 0, 99, 83, 782, 1};
sort(a);
System.out.println(Arrays.toString(a));
}
}
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
JavaScript
const patienceSort = (nums) => {
const piles = []
for (let i = 0; i < nums.length; i++) {
const num = nums[i]
const destinationPileIndex = piles.findIndex(
(pile) => num >= pile[pile.length - 1]
)
if (destinationPileIndex === -1) {
piles.push([num])
} else {
piles[destinationPileIndex].push(num)
}
}
for (let i = 0; i < nums.length; i++) {
let destinationPileIndex = 0
for (let p = 1; p < piles.length; p++) {
const pile = piles[p]
if (pile[0] < piles[destinationPileIndex][0]) {
destinationPileIndex = p
}
}
const distPile = piles[destinationPileIndex]
nums[i] = distPile.shift()
if (distPile.length === 0) {
piles.splice(destinationPileIndex, 1)
}
}
return nums
}
console.log(patienceSort([10,6,-30,9,18,1,-20]));
- Output:
[-30, -20, 1, 6, 9, 10, 18]
jq
Adapted from Wren
Works with gojq, the Go implementation of jq
def patienceSort:
length as $size
| if $size < 2 then .
else
reduce .[] as $e ( {piles: []};
.outer = false
| first( range(0; .piles|length) as $ipile
| if .piles[$ipile][-1] < $e
then .piles[$ipile] += [$e]
| .outer = true
else empty
end ) // .
| if (.outer|not) then .piles += [[$e]] else . end )
| reduce range(0; $size) as $i (.;
.min = .piles[0][0]
| .minPileIndex = 0
| reduce range(1; .piles|length) as $j (.;
if .piles[$j][0] < .min
then .min = .piles[$j][0]
| .minPileIndex = $j
else .
end )
| .a += [.min]
| .minPileIndex as $mpx
| .piles[$mpx] |= .[1:]
| if (.piles[$mpx] == []) then .piles |= .[:$mpx] + .[$mpx + 1:]
else .
end)
end
| .a ;
[4, 65, 2, -31, 0, 99, 83, 782, 1],
["n", "o", "n", "z", "e", "r", "o", "s", "u", "m"],
["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"]
| patienceSort
- Output:
[-31,0,1,2,4,65,83,99,782] ["e","m","n","n","o","o","r","s","u","z"] ["ant","ape","ass","cat","cow","dog","gnu","man","pig"]
Julia
function patiencesort(list::Vector{T}) where T
piles = Vector{Vector{T}}()
for n in list
if isempty(piles) ||
(i = findfirst(pile -> n <= pile[end], piles)) == nothing
push!(piles, [n])
else
push!(piles[i], n)
end
end
mergesorted(piles)
end
function mergesorted(vecvec)
lengths = map(length, vecvec)
allsum = sum(lengths)
sorted = similar(vecvec[1], allsum)
for i in 1:allsum
(val, idx) = findmin(map(x -> x[end], vecvec))
sorted[i] = pop!(vecvec[idx])
if isempty(vecvec[idx])
deleteat!(vecvec, idx)
end
end
sorted
end
println(patiencesort(rand(collect(1:1000), 12)))
- Output:
[186, 243, 255, 257, 427, 486, 513, 613, 657, 734, 866, 907]
Kotlin
// version 1.1.2
fun <T : Comparable<T>> patienceSort(arr: Array<T>) {
if (arr.size < 2) return
val piles = mutableListOf<MutableList<T>>()
outer@ for (el in arr) {
for (pile in piles) {
if (pile.last() > el) {
pile.add(el)
continue@outer
}
}
piles.add(mutableListOf(el))
}
for (i in 0 until arr.size) {
var min = piles[0].last()
var minPileIndex = 0
for (j in 1 until piles.size) {
if (piles[j].last() < min) {
min = piles[j].last()
minPileIndex = j
}
}
arr[i] = min
val minPile = piles[minPileIndex]
minPile.removeAt(minPile.lastIndex)
if (minPile.size == 0) piles.removeAt(minPileIndex)
}
}
fun main(args: Array<String>) {
val iArr = arrayOf(4, 65, 2, -31, 0, 99, 83, 782, 1)
patienceSort(iArr)
println(iArr.contentToString())
val cArr = arrayOf('n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m')
patienceSort(cArr)
println(cArr.contentToString())
val sArr = arrayOf("dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu")
patienceSort(sArr)
println(sArr.contentToString())
}
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782] [e, m, n, n, o, o, r, s, u, z] [ant, ape, ass, cat, cow, dog, gnu, man, pig]
Mercury
The Mercury standard library has binary search on arrays, and also a priority queue module, but I did not use these. Instead I translated the Fortran implementation entirely. The binary search and k-way merge for Fortran were known to work, and also are known to work in Ada. Also they are specialized for the patience sort task.
:- module patience_sort_task.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
:- import_module array.
:- import_module int.
:- import_module list.
:- import_module string.
%%%-------------------------------------------------------------------
%%%
%%% patience_sort/5 -- sorts Array[Ifirst..Ilast] out of place,
%%% returning indices in Sorted[0..Ilast-Ifirst].
%%%
:- pred patience_sort(pred(T, T), int, int, array(T), array(int)).
:- mode patience_sort(pred(in, in) is semidet,
in, in, in, out) is det.
patience_sort(Less, Ifirst, Ilast, Array, Sorted) :-
deal(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links),
k_way_merge(Less, Ifirst, Ilast, Array,
Num_piles, Piles, Links, Sorted).
%%%-------------------------------------------------------------------
%%%
%%% deal/7 -- deals array elements into piles.
%%%
:- pred deal(pred(T, T), int, int, array(T),
int, array(int), array(int)).
:- mode deal(pred(in, in) is semidet, in, in, in,
out, array_uo, array_uo).
deal(Less, Ifirst, Ilast, Array, Num_piles, Piles, Links) :-
Piles_last = Ilast - Ifirst + 1,
%% I do not use index zero of arrays, so must allocate one extra
%% entry per array.
init(Piles_last + 1, 0, Piles0),
init(Piles_last + 1, 0, Links0),
deal_loop(Less, Ifirst, Ilast, Array, 1,
0, Num_piles,
Piles0, Piles,
Links0, Links).
:- pred deal_loop(pred(T, T), int, int, array(T),
int, int, int,
array(int), array(int),
array(int), array(int)).
:- mode deal_loop(pred(in, in) is semidet, in, in, in,
in, in, out,
array_di, array_uo,
array_di, array_uo) is det.
deal_loop(Less, Ifirst, Ilast, Array, Q,
!Num_piles, !Piles, !Links) :-
Piles_last = Ilast - Ifirst + 1,
(if (Q =< Piles_last)
then (find_pile(Less, Ifirst, Array, !.Num_piles, !.Piles, Q) = I,
(!.Piles^elem(I)) = L1,
(!.Piles^elem(I) := Q) = !:Piles,
(!.Links^elem(Q) := L1) = !:Links,
max(!.Num_piles, I) = !:Num_piles,
deal_loop(Less, Ifirst, Ilast, Array, Q + 1,
!Num_piles, !Piles, !Links))
else true).
:- func find_pile(pred(T, T), int, array(T),
int, array(int), int) = int.
:- mode find_pile(pred(in, in) is semidet,
in, in, in, in, in) = out is det.
find_pile(Less, Ifirst, Array, Num_piles, Piles, Q) = Index :-
%%
%% Bottenbruch search for the leftmost pile whose top is greater
%% than or equal to x. Return an index such that:
%%
%% * if x is greater than the top element at the far right, then
%% the index returned will be num-piles.
%%
%% * otherwise, x is greater than every top element to the left of
%% index, and less than or equal to the top elements at index
%% and to the right of index.
%%
%% References:
%%
%% * H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
%% the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
%% https://doi.org/10.1145/321119.321120
%%
%% The general algorithm is described on pages 214 and 215.
%%
%% * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
%%
%% Note:
%%
%% * There is a binary search in the array module of the standard
%% library, but our search algorithm is known to work in other
%% programming languages and is written specifically for the
%% situation.
%%
(if (Num_piles = 0) then (Index = 1)
else (find_pile_loop(Less, Ifirst, Array, Piles, Q,
0, Num_piles - 1, J),
(if (J = Num_piles - 1)
then (I1 = Piles^elem(J + 1) + Ifirst - 1,
I2 = Q + Ifirst - 1,
(if Less(Array^elem(I1), Array^elem(I2))
then (Index = J + 2)
else (Index = J + 1)))
else (Index = J + 1)))).
:- pred find_pile_loop(pred(T, T), int, array(T), array(int),
int, int, int, int).
:- mode find_pile_loop(pred(in, in) is semidet,
in, in, in, in, in, in, out) is det.
find_pile_loop(Less, Ifirst, Array, Piles, Q, J, K, J1) :-
(if (J = K) then (J1 = J)
else ((J + K) // 2 = I,
I1 = Piles^elem(J + 1) + Ifirst - 1,
I2 = Q + Ifirst - 1,
(if Less(Array^elem(I1), Array^elem(I2))
then find_pile_loop(Less, Ifirst, Array, Piles, Q,
I + 1, K, J1)
else find_pile_loop(Less, Ifirst, Array, Piles, Q,
J, I, J1)))).
%%%-------------------------------------------------------------------
%%%
%%% k_way_merge/8 --
%%%
%%% k-way merge by tournament tree (specific to this patience sort).
%%%
%%% See Knuth, volume 3, and also
%%% https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
%%%
%%% However, I store a winners tree instead of the recommended losers
%%% tree. If the tree were stored as linked nodes, it would probably
%%% be more efficient to store a losers tree. However, I am storing
%%% the tree as an array, and one can find an opponent quickly by
%%% simply toggling the least significant bit of a competitor's array
%%% index.
%%%
:- pred k_way_merge(pred(T, T), int, int, array(T), int,
array(int), array(int), array(int)).
:- mode k_way_merge(pred(in, in) is semidet,
in, in, in, in, array_di, in, out) is det.
%% Contrary to the arrays used internally, the Sorted array is indexed
%% starting at zero.
k_way_merge(Less, Ifirst, Ilast, Array,
Num_piles, Piles, Links, Sorted) :-
init(Ilast - Ifirst + 1, 0, Sorted0),
build_tree(Less, Ifirst, Array, Num_piles, Links, Piles, Piles1,
Total_external_nodes, Winners_values, Winners_indices),
k_way_merge_(Less, Ifirst, Array, Piles1, Links,
Total_external_nodes, Winners_values, Winners_indices,
0, Sorted0, Sorted).
:- pred k_way_merge_(pred(T, T), int, array(T),
array(int), array(int), int,
array(int), array(int), int,
array(int), array(int)).
:- mode k_way_merge_(pred(in, in) is semidet, in, in, array_di,
in, in, array_di, array_di,
in, array_di, array_uo) is det.
%% Contrary to the arrays used internally, the Sorted array is indexed
%% starting at zero.
k_way_merge_(Less, Ifirst, Array, Piles, Links, Total_external_nodes,
Winners_values, Winners_indices, Isorted, !Sorted) :-
Total_nodes = (2 * Total_external_nodes) - 1,
(Winners_values^elem(1)) = Value,
(if (Value = 0) then true
else (set(Isorted, Value + Ifirst - 1, !Sorted),
(Winners_indices^elem(1)) = Index,
(Piles^elem(Index)) = Next, % The next top of pile Index.
(if (Next \= 0) % Drop that top of pile.
then (Links^elem(Next) = Link,
set(Index, Link, Piles, Piles1))
else (Piles = Piles1)),
(Total_nodes // 2) + Index = I,
(Winners_values^elem(I) := Next) = Winners_values1,
replay_games(Less, Ifirst, Array, I,
Winners_values1, Winners_values2,
Winners_indices, Winners_indices1),
k_way_merge_(Less, Ifirst, Array, Piles1, Links,
Total_external_nodes, Winners_values2,
Winners_indices1, Isorted + 1, !Sorted))).
:- pred build_tree(pred(T, T), int, array(T), int, array(int),
array(int), array(int), int, array(int),
array(int)).
:- mode build_tree(pred(in, in) is semidet, in, in, in, in,
array_di, array_uo, out, out, out) is det.
build_tree(Less, Ifirst, Array, Num_piles, Links, !Piles,
Total_external_nodes, Winners_values, Winners_indices) :-
Total_external_nodes = next_power_of_two(Num_piles),
Total_nodes = (2 * Total_external_nodes) - 1,
%% I do not use index zero of arrays, so must allocate one extra
%% entry per array.
init(Total_nodes + 1, 0, Winners_values0),
init(Total_nodes + 1, 0, Winners_indices0),
init_winners_pile_indices(Total_external_nodes, 1,
Winners_indices0, Winners_indices1),
init_starting_competitors(Total_external_nodes, Num_piles,
(!.Piles), 1, Winners_values0,
Winners_values1),
discard_initial_tops_of_piles(Num_piles, Links, 1, !Piles),
play_initial_games(Less, Ifirst, Array,
Total_external_nodes,
Winners_values1, Winners_values,
Winners_indices1, Winners_indices).
:- pred init_winners_pile_indices(int::in, int::in,
array(int)::array_di,
array(int)::array_uo) is det.
init_winners_pile_indices(Total_external_nodes, I,
!Winners_indices) :-
(if (I = Total_external_nodes + 1) then true
else (set(Total_external_nodes - 1 + I, I, !Winners_indices),
init_winners_pile_indices(Total_external_nodes, I + 1,
!Winners_indices))).
:- pred init_starting_competitors(int::in, int::in,
array(int)::in, int::in,
array(int)::array_di,
array(int)::array_uo) is det.
init_starting_competitors(Total_external_nodes, Num_piles,
Piles, I, !Winners_values) :-
(if (I = Num_piles + 1) then true
else (Piles^elem(I) = Value,
set(Total_external_nodes - 1 + I, Value, !Winners_values),
init_starting_competitors(Total_external_nodes, Num_piles,
Piles, I + 1, !Winners_values))).
:- pred discard_initial_tops_of_piles(int::in, array(int)::in,
int::in, array(int)::array_di,
array(int)::array_uo) is det.
discard_initial_tops_of_piles(Num_piles, Links, I, !Piles) :-
(if (I = Num_piles + 1) then true
else ((!.Piles^elem(I)) = Old_value,
Links^elem(Old_value) = New_value,
set(I, New_value, !Piles),
discard_initial_tops_of_piles(Num_piles, Links, I + 1,
!Piles))).
:- pred play_initial_games(pred(T, T), int, array(T), int,
array(int), array(int),
array(int), array(int)).
:- mode play_initial_games(pred(in, in) is semidet,
in, in, in,
array_di, array_uo,
array_di, array_uo) is det.
play_initial_games(Less, Ifirst, Array, Istart,
!Winners_values, !Winners_indices) :-
(if (Istart = 1) then true
else (play_an_initial_round(Less, Ifirst, Array, Istart, Istart,
!Winners_values, !Winners_indices),
play_initial_games(Less, Ifirst, Array, Istart // 2,
!Winners_values, !Winners_indices))).
:- pred play_an_initial_round(pred(T, T), int, array(T), int, int,
array(int), array(int),
array(int), array(int)).
:- mode play_an_initial_round(pred(in, in) is semidet,
in, in, in, in,
array_di, array_uo,
array_di, array_uo) is det.
play_an_initial_round(Less, Ifirst, Array, Istart, I,
!Winners_values, !Winners_indices) :-
(if ((2 * Istart) - 1 < I) then true
else (play_game(Less, Ifirst, Array,
!.Winners_values, I) = Iwinner,
(!.Winners_values^elem(Iwinner)) = Value,
(!.Winners_indices^elem(Iwinner)) = Index,
I // 2 = Iparent,
set(Iparent, Value, !Winners_values),
set(Iparent, Index, !Winners_indices),
play_an_initial_round(Less, Ifirst, Array, Istart, I + 2,
!Winners_values, !Winners_indices))).
:- pred replay_games(pred(T, T), int, array(T), int,
array(int), array(int),
array(int), array(int)).
:- mode replay_games(pred(in, in) is semidet, in, in, in,
array_di, array_uo,
array_di, array_uo) is det.
replay_games(Less, Ifirst, Array, I,
!Winners_values, !Winners_indices) :-
(if (I = 1) then true
else (Iwinner = play_game(Less, Ifirst, Array,
!.Winners_values, I),
(!.Winners_values^elem(Iwinner)) = Value,
(!.Winners_indices^elem(Iwinner)) = Index,
I // 2 = Iparent,
set(Iparent, Value, !Winners_values),
set(Iparent, Index, !Winners_indices),
replay_games(Less, Ifirst, Array, Iparent,
!Winners_values, !Winners_indices))).
:- func play_game(pred(T, T), int, array(T), array(int), int) = int.
:- mode play_game(pred(in, in) is semidet,
in, in, in, in) = out is det.
play_game(Less, Ifirst, Array, Winners_values, I) = Iwinner :-
J = xor(I, 1), % Find an opponent.
Winners_values^elem(I) = Value_I,
(if (Value_I = 0) then (Iwinner = J)
else (Winners_values^elem(J) = Value_J,
(if (Value_J = 0) then (Iwinner = I)
else (AJ = Array^elem(Value_J + Ifirst - 1),
AI = Array^elem(Value_I + Ifirst - 1),
(if Less(AJ, AI) then (Iwinner = J)
else (Iwinner = I)))))).
%%%-------------------------------------------------------------------
:- func next_power_of_two(int) = int.
%% This need not be a fast implemention.
next_power_of_two(N) = next_power_of_two_(N, 1).
:- func next_power_of_two_(int, int) = int.
next_power_of_two_(N, I) = Pow2 :-
if (I < N) then (Pow2 = next_power_of_two_(N, I + I))
else (Pow2 = I).
%%%-------------------------------------------------------------------
:- func example_numbers = list(int).
example_numbers = [22, 15, 98, 82, 22, 4, 58, 70, 80, 38, 49, 48, 46,
54, 93, 8, 54, 2, 72, 84, 86, 76, 53, 37, 90].
main(!IO) :-
from_list(example_numbers, Array),
bounds(Array, Ifirst, Ilast),
patience_sort(<, Ifirst, Ilast, Array, Sorted),
print("unsorted ", !IO),
print_int_array(Array, Ifirst, !IO),
print_line("", !IO),
print("sorted ", !IO),
print_indirect_array(Sorted, Array, 0, !IO),
print_line("", !IO).
:- pred print_int_array(array(int)::in, int::in,
io::di, io::uo) is det.
print_int_array(Array, I, !IO) :-
bounds(Array, _, Ilast),
(if (I = Ilast + 1) then true
else (print(" ", !IO),
print(from_int(Array^elem(I)), !IO),
print_int_array(Array, I + 1, !IO))).
:- pred print_indirect_array(array(int)::in, array(int)::in,
int::in, io::di, io::uo) is det.
print_indirect_array(Sorted, Array, I, !IO) :-
bounds(Sorted, _, Ilast),
(if (I = Ilast + 1) then true
else (print(" ", !IO),
print(from_int(Array^elem(Sorted^elem(I))), !IO),
print_indirect_array(Sorted, Array, I + 1, !IO))).
%%%-------------------------------------------------------------------
%%% local variables:
%%% mode: mercury
%%% prolog-indent-width: 2
%%% end:
- Output:
I thought to put the code through a bit of a stress test by running the optimizer on it.
$ mmc -O6 --intermod-opt --warn-non-tail-recursion=self-and-mutual --use-subdirs patience_sort_task.m && ./patience_sort_task unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
Modula-2
Patience sort for ISO Modula-2. I tested it with the GNU Modula-2 that is in a development branch of GCC 12.
Unlike the Ada upon which it is based, this implementation of patience sort is specific to arrays of integers, rather than generic.
MODULE PatienceSortTask;
FROM STextIO IMPORT WriteString;
FROM STextIO IMPORT WriteLn;
FROM WholeStr IMPORT IntToStr;
CONST MaxSortSize = 1024; (* A power of two. *)
MaxWinnersSize = (2 * MaxSortSize) - 1;
TYPE PilesArrayType = ARRAY [1 .. MaxSortSize] OF INTEGER;
WinnersArrayType = ARRAY [1 .. MaxWinnersSize],
[1 .. 2] OF INTEGER;
VAR ExampleNumbers : ARRAY [0 .. 35] OF INTEGER;
SortedIndices : ARRAY [0 .. 25] OF INTEGER;
i : INTEGER;
NumStr : ARRAY [0 .. 2] OF CHAR;
PROCEDURE NextPowerOfTwo (n : INTEGER) : INTEGER;
VAR Pow2 : INTEGER;
BEGIN
(* This need not be a fast implementation. *)
Pow2 := 1;
WHILE Pow2 < n DO
Pow2 := Pow2 + Pow2;
END;
RETURN Pow2;
END NextPowerOfTwo;
PROCEDURE InitPilesArray (VAR Arr : PilesArrayType);
VAR i : INTEGER;
BEGIN
FOR i := 1 TO MaxSortSize DO
Arr[i] := 0;
END;
END InitPilesArray;
PROCEDURE InitWinnersArray (VAR Arr : WinnersArrayType);
VAR i : INTEGER;
BEGIN
FOR i := 1 TO MaxWinnersSize DO
Arr[i, 1] := 0;
Arr[i, 2] := 0;
END;
END InitWinnersArray;
PROCEDURE IntegerPatienceSort (iFirst, iLast : INTEGER;
Arr : ARRAY OF INTEGER;
VAR Sorted : ARRAY OF INTEGER);
VAR NumPiles : INTEGER;
Piles, Links : PilesArrayType;
Winners : WinnersArrayType;
PROCEDURE FindPile (q : INTEGER) : INTEGER;
(*
Bottenbruch search for the leftmost pile whose top is greater
than or equal to some element x. Return an index such that:
* if x is greater than the top element at the far right, then
the index returned will be num-piles.
* otherwise, x is greater than every top element to the left of
index, and less than or equal to the top elements at index
and to the right of index.
References:
* H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
https://doi.org/10.1145/321119.321120
The general algorithm is described on pages 214 and 215.
* https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
*)
VAR i, j, k, Index : INTEGER;
BEGIN
IF NumPiles = 0 THEN
Index := 1;
ELSE
j := 0;
k := NumPiles - 1;
WHILE j <> k DO
i := (j + k) DIV 2;
IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN
j := i + 1;
ELSE
k := i;
END;
END;
IF j = NumPiles - 1 THEN
IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN
(* A new pile is needed. *)
j := j + 1;
END;
END;
Index := j + 1;
END;
RETURN Index;
END FindPile;
PROCEDURE Deal;
VAR i, q : INTEGER;
BEGIN
FOR q := 1 TO iLast - iFirst + 1 DO
i := FindPile (q);
Links[q] := Piles[i];
Piles[i] := q;
IF i = NumPiles + 1 THEN
NumPiles := i;
END;
END;
END Deal;
PROCEDURE KWayMerge;
(*
k-way merge by tournament tree.
See Knuth, volume 3, and also
https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
However, I store a winners tree instead of the recommended
losers tree. If the tree were stored as linked nodes, it would
probably be more efficient to store a losers tree. However, I
am storing the tree as an array, and one can find an opponent
quickly by simply toggling the least significant bit of a
competitor's array index.
*)
VAR TotalExternalNodes : INTEGER;
TotalNodes : INTEGER;
iSorted, i, Next : INTEGER;
PROCEDURE FindOpponent (i : INTEGER) : INTEGER;
VAR Opponent : INTEGER;
BEGIN
IF ODD (i) THEN
Opponent := i - 1;
ELSE
Opponent := i + 1;
END;
RETURN Opponent;
END FindOpponent;
PROCEDURE PlayGame (i : INTEGER) : INTEGER;
VAR j, iWinner : INTEGER;
BEGIN
j := FindOpponent (i);
IF Winners[i, 1] = 0 THEN
iWinner := j;
ELSIF Winners[j, 1] = 0 THEN
iWinner := i;
ELSIF Arr[Winners[j, 1] + iFirst - 1]
< Arr[Winners[i, 1] + iFirst - 1] THEN
iWinner := j;
ELSE
iWinner := i;
END;
RETURN iWinner;
END PlayGame;
PROCEDURE ReplayGames (i : INTEGER);
VAR j, iWinner : INTEGER;
BEGIN
j := i;
WHILE j <> 1 DO
iWinner := PlayGame (j);
j := j DIV 2;
Winners[j, 1] := Winners[iWinner, 1];
Winners[j, 2] := Winners[iWinner, 2];
END;
END ReplayGames;
PROCEDURE BuildTree;
VAR iStart, i, iWinner : INTEGER;
BEGIN
FOR i := 1 TO TotalExternalNodes DO
(* Record which pile a winner will have come from. *)
Winners[TotalExternalNodes - 1 + i, 2] := i;
END;
FOR i := 1 TO NumPiles DO
(* The top of each pile becomes a starting competitor. *)
Winners[TotalExternalNodes + i - 1, 1] := Piles[i];
END;
FOR i := 1 TO NumPiles DO
(* Discard the top of each pile. *)
Piles[i] := Links[Piles[i]];
END;
iStart := TotalExternalNodes;
WHILE iStart <> 1 DO
FOR i := iStart TO (2 * iStart) - 1 BY 2 DO
iWinner := PlayGame (i);
Winners[i DIV 2, 1] := Winners[iWinner, 1];
Winners[i DIV 2, 2] := Winners[iWinner, 2];
END;
iStart := iStart DIV 2;
END;
END BuildTree;
BEGIN
TotalExternalNodes := NextPowerOfTwo (NumPiles);
TotalNodes := (2 * TotalExternalNodes) - 1;
BuildTree;
iSorted := 0;
WHILE Winners[1, 1] <> 0 DO
Sorted[iSorted] := Winners[1, 1] + iFirst - 1;
iSorted := iSorted + 1;
i := Winners[1, 2];
Next := Piles[i]; (* The next top of pile i. *)
IF Next <> 0 THEN
Piles[i] := Links[Next]; (* Drop that top. *)
END;
i := (TotalNodes DIV 2) + i;
Winners[i, 1] := Next;
ReplayGames (i);
END;
END KWayMerge;
BEGIN
NumPiles := 0;
InitPilesArray (Piles);
InitPilesArray (Links);
InitWinnersArray (Winners);
IF MaxSortSize < iLast - iFirst + 1 THEN
WriteString ('This subarray is too large for the program.');
WriteLn;
HALT;
ELSE
Deal;
KWayMerge;
END;
END IntegerPatienceSort;
BEGIN
ExampleNumbers[10] := 22;
ExampleNumbers[11] := 15;
ExampleNumbers[12] := 98;
ExampleNumbers[13] := 82;
ExampleNumbers[14] := 22;
ExampleNumbers[15] := 4;
ExampleNumbers[16] := 58;
ExampleNumbers[17] := 70;
ExampleNumbers[18] := 80;
ExampleNumbers[19] := 38;
ExampleNumbers[20] := 49;
ExampleNumbers[21] := 48;
ExampleNumbers[22] := 46;
ExampleNumbers[23] := 54;
ExampleNumbers[24] := 93;
ExampleNumbers[25] := 8;
ExampleNumbers[26] := 54;
ExampleNumbers[27] := 2;
ExampleNumbers[28] := 72;
ExampleNumbers[29] := 84;
ExampleNumbers[30] := 86;
ExampleNumbers[31] := 76;
ExampleNumbers[32] := 53;
ExampleNumbers[33] := 37;
ExampleNumbers[34] := 90;
IntegerPatienceSort (10, 34, ExampleNumbers, SortedIndices);
WriteString ("unsorted ");
FOR i := 10 TO 34 DO
WriteString (" ");
IntToStr (ExampleNumbers[i], NumStr);
WriteString (NumStr);
END;
WriteLn;
WriteString ("sorted ");
FOR i := 0 TO 24 DO
WriteString (" ");
IntToStr (ExampleNumbers[SortedIndices[i]], NumStr);
WriteString (NumStr);
END;
WriteLn;
END PatienceSortTask.
- Output:
$ gm2 -fiso PatienceSortTask.mod && ./a.out unsorted +22 +15 +98 +82 +22 +4 +58 +70 +80 +38 +49 +48 +46 +54 +93 +8 +54 +2 +72 +84 +86 +76 +53 +37 +90 sorted +2 +4 +8 +15 +22 +22 +37 +38 +46 +48 +49 +53 +54 +54 +58 +70 +72 +76 +80 +82 +84 +86 +90 +93 +98
Nim
import std/decls
func patienceSort[T](a: var openArray[T]) =
if a.len < 2: return
var piles: seq[seq[T]]
for elem in a:
block processElem:
for pile in piles.mitems:
if pile[^1] > elem:
pile.add(elem)
break processElem
piles.add(@[elem])
for i in 0..a.high:
var min = piles[0][^1]
var minPileIndex = 0
for j in 1..piles.high:
if piles[j][^1] < min:
min = piles[j][^1]
minPileIndex = j
a[i] = min
var minPile {.byAddr.} = piles[minPileIndex]
minPile.setLen(minpile.len - 1)
if minPile.len == 0: piles.delete(minPileIndex)
when isMainModule:
var iArray = [4, 65, 2, -31, 0, 99, 83, 782, 1]
iArray.patienceSort()
echo iArray
var cArray = ['n', 'o', 'n', 'z', 'e', 'r', 'o', 's', 'u','m']
cArray.patienceSort()
echo cArray
var sArray = ["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"]
sArray.patienceSort()
echo sArray
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782] ['e', 'm', 'n', 'n', 'o', 'o', 'r', 's', 'u', 'z'] ["ant", "ape", "ass", "cat", "cow", "dog", "gnu", "man", "pig"]
OCaml
module PatienceSortFn (Ord : Set.OrderedType) : sig
val patience_sort : Ord.t list -> Ord.t list
end = struct
module PilesSet = Set.Make
(struct
type t = Ord.t list
let compare x y = Ord.compare (List.hd x) (List.hd y)
end);;
let sort_into_piles list =
let piles = Array.make (List.length list) [] in
let bsearch_piles x len =
let rec aux lo hi =
if lo > hi then
lo
else
let mid = (lo + hi) / 2 in
if Ord.compare (List.hd piles.(mid)) x < 0 then
aux (mid+1) hi
else
aux lo (mid-1)
in
aux 0 (len-1)
in
let f len x =
let i = bsearch_piles x len in
piles.(i) <- x :: piles.(i);
if i = len then len+1 else len
in
let len = List.fold_left f 0 list in
Array.sub piles 0 len
let merge_piles piles =
let pq = Array.fold_right PilesSet.add piles PilesSet.empty in
let rec f pq acc =
if PilesSet.is_empty pq then
acc
else
let elt = PilesSet.min_elt pq in
match elt with
[] -> failwith "Impossible"
| x::xs ->
let pq' = PilesSet.remove elt pq in
f (if xs = [] then pq' else PilesSet.add xs pq') (x::acc)
in
List.rev (f pq [])
let patience_sort n =
merge_piles (sort_into_piles n)
end
Usage:
# module IntPatienceSort = PatienceSortFn (struct type t = int let compare = compare end);; module IntPatienceSort : sig val patience_sort : int list -> int list end # IntPatienceSort.patience_sort [4; 65; 2; -31; 0; 99; 83; 782; 1];; - : int list = [-31; 0; 1; 2; 4; 65; 83; 99; 782]
Pascal
PatienceSortTask (Output);
CONST MaxSortSize = 1024; { A power of two. }
MaxWinnersSize = (2 * MaxSortSize) - 1;
TYPE PilesArrayType = ARRAY [1 .. MaxSortSize] OF INTEGER;
WinnersArrayType = ARRAY [1 .. MaxWinnersSize,
1 .. 2] OF INTEGER;
VAR ExampleNumbers : ARRAY [0 .. 35] OF INTEGER;
SortedIndices : ARRAY [0 .. 25] OF INTEGER;
i : INTEGER;
FUNCTION NextPowerOfTwo (n : INTEGER) : INTEGER;
VAR Pow2 : INTEGER;
BEGIN
{ This need not be a fast implementation. }
Pow2 := 1;
WHILE Pow2 < n DO
Pow2 := Pow2 + Pow2;
NextPowerOfTwo := Pow2;
END;
PROCEDURE InitPilesArray (VAR Arr : PilesArrayType);
VAR i : INTEGER;
BEGIN
FOR i := 1 TO MaxSortSize DO
Arr[i] := 0;
END;
PROCEDURE InitWinnersArray (VAR Arr : WinnersArrayType);
VAR i : INTEGER;
BEGIN
FOR i := 1 TO MaxWinnersSize DO
BEGIN
Arr[i, 1] := 0;
Arr[i, 2] := 0;
END;
END;
PROCEDURE IntegerPatienceSort (iFirst, iLast : INTEGER;
Arr : ARRAY OF INTEGER;
VAR Sorted : ARRAY OF INTEGER);
VAR NumPiles : INTEGER;
Piles, Links : PilesArrayType;
Winners : WinnersArrayType;
FUNCTION FindPile (q : INTEGER) : INTEGER;
{
Bottenbruch search for the leftmost pile whose top is greater
than or equal to some element x. Return an index such that:
* if x is greater than the top element at the far right, then
the index returned will be num-piles.
* otherwise, x is greater than every top element to the left of
index, and less than or equal to the top elements at index
and to the right of index.
References:
* H. Bottenbruch, "Structure and use of ALGOL 60", Journal of
the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
https://doi.org/10.1145/321119.321120
The general algorithm is described on pages 214 and 215.
* https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
}
VAR i, j, k, Index : INTEGER;
BEGIN
IF NumPiles = 0 THEN
Index := 1
ELSE
BEGIN
j := 0;
k := NumPiles - 1;
WHILE j <> k DO
BEGIN
i := (j + k) DIV 2;
IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN
j := i + 1
ELSE
k := i
END;
IF j = NumPiles - 1 THEN
BEGIN
IF Arr[Piles[j + 1] + iFirst - 1] < Arr[q + iFirst - 1] THEN
{ A new pile is needed. }
j := j + 1
END;
Index := j + 1
END;
FindPile := Index
END;
PROCEDURE Deal;
VAR i, q : INTEGER;
BEGIN
FOR q := 1 TO iLast - iFirst + 1 DO
BEGIN
i := FindPile (q);
Links[q] := Piles[i];
Piles[i] := q;
IF i = NumPiles + 1 THEN
NumPiles := i
END
END;
PROCEDURE KWayMerge;
{
k-way merge by tournament tree.
See Knuth, volume 3, and also
https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
However, I store a winners tree instead of the recommended
losers tree. If the tree were stored as linked nodes, it would
probably be more efficient to store a losers tree. However, I
am storing the tree as an array, and one can find an opponent
quickly by simply toggling the least significant bit of a
competitor's array index.
}
VAR TotalExternalNodes : INTEGER;
TotalNodes : INTEGER;
iSorted, i, Next : INTEGER;
FUNCTION FindOpponent (i : INTEGER) : INTEGER;
VAR Opponent : INTEGER;
BEGIN
IF ODD (i) THEN
Opponent := i - 1
ELSE
Opponent := i + 1;
FindOpponent := Opponent
END;
FUNCTION PlayGame (i : INTEGER) : INTEGER;
VAR j, iWinner : INTEGER;
BEGIN
j := FindOpponent (i);
IF Winners[i, 1] = 0 THEN
iWinner := j
ELSE IF Winners[j, 1] = 0 THEN
iWinner := i
ELSE IF (Arr[Winners[j, 1] + iFirst - 1]
< Arr[Winners[i, 1] + iFirst - 1]) THEN
iWinner := j
ELSE
iWinner := i;
PlayGame := iWinner
END;
PROCEDURE ReplayGames (i : INTEGER);
VAR j, iWinner : INTEGER;
BEGIN
j := i;
WHILE j <> 1 DO
BEGIN
iWinner := PlayGame (j);
j := j DIV 2;
Winners[j, 1] := Winners[iWinner, 1];
Winners[j, 2] := Winners[iWinner, 2];
END
END;
PROCEDURE BuildTree;
VAR iStart, i, iWinner : INTEGER;
BEGIN
FOR i := 1 TO TotalExternalNodes DO
{ Record which pile a winner will have come from. }
Winners[TotalExternalNodes - 1 + i, 2] := i;
FOR i := 1 TO NumPiles DO
{ The top of each pile becomes a starting competitor. }
Winners[TotalExternalNodes + i - 1, 1] := Piles[i];
FOR i := 1 TO NumPiles DO
{ Discard the top of each pile. }
Piles[i] := Links[Piles[i]];
iStart := TotalExternalNodes;
WHILE iStart <> 1 DO
BEGIN
i := iStart;
WHILE i <= (2 * iStart) - 1 DO
BEGIN
iWinner := PlayGame (i);
Winners[i DIV 2, 1] := Winners[iWinner, 1];
Winners[i DIV 2, 2] := Winners[iWinner, 2];
i := i + 2
END;
iStart := iStart DIV 2
END
END;
BEGIN
TotalExternalNodes := NextPowerOfTwo (NumPiles);
TotalNodes := (2 * TotalExternalNodes) - 1;
BuildTree;
iSorted := 0;
WHILE Winners[1, 1] <> 0 DO
BEGIN
Sorted[iSorted] := Winners[1, 1] + iFirst - 1;
iSorted := iSorted + 1;
i := Winners[1, 2];
Next := Piles[i]; { The next top of pile i. }
IF Next <> 0 THEN
Piles[i] := Links[Next]; { Drop that top. }
i := (TotalNodes DIV 2) + i;
Winners[i, 1] := Next;
ReplayGames (i)
END
END;
BEGIN
NumPiles := 0;
InitPilesArray (Piles);
InitPilesArray (Links);
InitWinnersArray (Winners);
IF MaxSortSize < iLast - iFirst + 1 THEN
BEGIN
Write ('This subarray is too large for the program.');
WriteLn;
HALT
END
ELSE
BEGIN
Deal;
KWayMerge
END
END;
BEGIN
ExampleNumbers[10] := 22;
ExampleNumbers[11] := 15;
ExampleNumbers[12] := 98;
ExampleNumbers[13] := 82;
ExampleNumbers[14] := 22;
ExampleNumbers[15] := 4;
ExampleNumbers[16] := 58;
ExampleNumbers[17] := 70;
ExampleNumbers[18] := 80;
ExampleNumbers[19] := 38;
ExampleNumbers[20] := 49;
ExampleNumbers[21] := 48;
ExampleNumbers[22] := 46;
ExampleNumbers[23] := 54;
ExampleNumbers[24] := 93;
ExampleNumbers[25] := 8;
ExampleNumbers[26] := 54;
ExampleNumbers[27] := 2;
ExampleNumbers[28] := 72;
ExampleNumbers[29] := 84;
ExampleNumbers[30] := 86;
ExampleNumbers[31] := 76;
ExampleNumbers[32] := 53;
ExampleNumbers[33] := 37;
ExampleNumbers[34] := 90;
IntegerPatienceSort (10, 34, ExampleNumbers, SortedIndices);
Write ('unsorted ');
FOR i := 10 TO 34 DO
BEGIN
Write (' ');
Write (ExampleNumbers[i])
END;
WriteLn;
Write ('sorted ');
FOR i := 0 TO 24 DO
BEGIN
Write (' ');
Write (ExampleNumbers[SortedIndices[i]]);
END;
WriteLn
END.
- Output:
$ fpc PatienceSortTask.pas && ./PatienceSortTask Free Pascal Compiler version 3.2.2 [2021/06/27] for x86_64 Copyright (c) 1993-2021 by Florian Klaempfl and others Target OS: Linux for x86-64 Compiling PatienceSortTask.pas Linking PatienceSortTask 278 lines compiled, 0.1 sec unsorted 22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90 sorted 2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98
Perl
sub patience_sort {
my @s = [shift];
for my $card (@_) {
my @t = grep { $_->[-1] > $card } @s;
if (@t) { push @{shift(@t)}, $card }
else { push @s, [$card] }
}
my @u;
while (my @v = grep @$_, @s) {
my $value = (my $min = shift @v)->[-1];
for (@v) {
($min, $value) =
($_, $_->[-1]) if $_->[-1] < $value
}
push @u, pop @$min;
}
return @u
}
print join ' ', patience_sort qw(4 3 6 2 -1 13 12 9);
- Output:
-1 2 3 4 6 9 12 13
Phix
with javascript_semantics function patience_sort(sequence s) -- create list of sorted lists sequence piles = {} for i=1 to length(s) do object n = s[i] for p=1 to length(piles)+1 do if p>length(piles) then piles = append(piles,{n}) elsif n>=piles[p][$] then piles[p] = append(deep_copy(piles[p]),n) exit end if end for end for -- merge sort the piles sequence res = "" while length(piles) do integer idx = smallest(piles,return_index:=true) res = append(res,piles[idx][1]) if length(piles[idx])=1 then piles[idx..idx] = {} else piles[idx] = piles[idx][2..$] end if end while return res end function constant tests = {{4,65,2,-31,0,99,83,782,1}, {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15}, "nonzerosum", {"dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"}} for i=1 to length(tests) do pp(patience_sort(tests[i]),{pp_IntCh,false}) end for
- Output:
{-31,0,1,2,4,65,83,99,782} {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15} `emnnoorsuz` {`ant`, `ape`, `ass`, `cat`, `cow`, `dog`, `gnu`, `man`, `pig`}
PHP
<?php
class PilesHeap extends SplMinHeap {
public function compare($pile1, $pile2) {
return parent::compare($pile1->top(), $pile2->top());
}
}
function patience_sort(&$n) {
$piles = array();
// sort into piles
foreach ($n as $x) {
// binary search
$low = 0; $high = count($piles)-1;
while ($low <= $high) {
$mid = (int)(($low + $high) / 2);
if ($piles[$mid]->top() >= $x)
$high = $mid - 1;
else
$low = $mid + 1;
}
$i = $low;
if ($i == count($piles))
$piles[] = new SplStack();
$piles[$i]->push($x);
}
// priority queue allows us to merge piles efficiently
$heap = new PilesHeap();
foreach ($piles as $pile)
$heap->insert($pile);
for ($c = 0; $c < count($n); $c++) {
$smallPile = $heap->extract();
$n[$c] = $smallPile->pop();
if (!$smallPile->isEmpty())
$heap->insert($smallPile);
}
assert($heap->isEmpty());
}
$a = array(4, 65, 2, -31, 0, 99, 83, 782, 1);
patience_sort($a);
print_r($a);
?>
- Output:
Array ( [0] => -31 [1] => 0 [2] => 1 [3] => 2 [4] => 4 [5] => 65 [6] => 83 [7] => 99 [8] => 782 )
PicoLisp
(de leftmost (Lst N H)
(let L 1
(while (<= L H)
(use (X)
(setq X (/ (+ L H) 2))
(if (>= (caar (nth Lst X)) N)
(setq H (dec X))
(setq L (inc X)) ) ) )
L ) )
(de patience (Lst)
(let (L (cons (cons (car Lst))) C 1 M NIL)
(for N (cdr Lst)
(let I (leftmost L N C)
(and
(> I C)
(conc L (cons NIL))
(inc 'C) )
(push (nth L I) N) ) )
(make
(loop
(setq M (cons 0 T))
(for (I . Y) L
(let? S (car Y)
(and
(< S (cdr M))
(setq M (cons I S)) ) ) )
(T (=T (cdr M)))
(link (pop (nth L (car M)))) ) ) ) )
(println
(patience (4 65 2 -31 0 99 83 782 1)) )
(bye)
Prolog
patience_sort(UnSorted,Sorted) :-
make_piles(UnSorted,[],Piled),
merge_piles(Piled,[],Sorted).
make_piles([],P,P).
make_piles([N|T],[],R) :-
make_piles(T,[[N]],R).
make_piles([N|T],[[P|Pnt]|Tp],R) :-
N =< P,
make_piles(T,[[N,P|Pnt]|Tp],R).
make_piles([N|T],[[P|Pnt]|Tp],R) :-
N > P,
make_piles(T,[[N],[P|Pnt]|Tp], R).
merge_piles([],M,M).
merge_piles([P|T],L,R) :-
merge_pile(P,L,Pl),
merge_piles(T,Pl,R).
merge_pile([],M,M).
merge_pile(M,[],M).
merge_pile([N|T1],[N|T2],[N,N|R]) :-
merge_pile(T1,T2,R).
merge_pile([N|T1],[P|T2],[P|R]) :-
N > P,
merge_pile([N|T1],T2,R).
merge_pile([N|T1],[P|T2],[N|R]) :-
N < P,
merge_pile(T1,[P|T2],R).
- Output:
?- patience_sort([4, 65, 2, -31, 0, 99, 83, 782, 1],Sorted). Sorted = [-31, 0, 1, 2, 4, 65, 83, 99, 782] .
Python
(for functools.total_ordering)
from functools import total_ordering
from bisect import bisect_left
from heapq import merge
@total_ordering
class Pile(list):
def __lt__(self, other): return self[-1] < other[-1]
def __eq__(self, other): return self[-1] == other[-1]
def patience_sort(n):
piles = []
# sort into piles
for x in n:
new_pile = Pile([x])
i = bisect_left(piles, new_pile)
if i != len(piles):
piles[i].append(x)
else:
piles.append(new_pile)
# use a heap-based merge to merge piles efficiently
n[:] = merge(*[reversed(pile) for pile in piles])
if __name__ == "__main__":
a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
patience_sort(a)
print a
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Quackery
uses bsearchwith
from Binary search#Quackery and merge
from Merge sort#Quackery.
[ dip [ 0 over size rot ]
nested bsearchwith
[ -1 peek
dip [ -1 peek ] > ]
drop ] is searchpiles ( [ n --> n )
[ dup size dup 1 = iff
[ drop 0 peek ] done
2 / split
recurse swap recurse
merge ] is k-merge ( [ --> [ )
[ 1 split dip nested
witheach
[ 2dup dip dup
searchpiles
over size over = iff
[ 2drop
nested nested join ]
else
[ dup dip
[ peek swap join
swap ]
poke ] ]
k-merge ] is patience-sort ( [ --> [ )
' [ 0 1 2 3 4 5 6 7 8 9 ]
shuffle dup echo cr
patience-sort echo
- Output:
[ 6 9 2 3 1 7 8 4 0 5 ] [ 0 1 2 3 4 5 6 7 8 9 ]
Racket
#lang racket/base
(require racket/match racket/list)
;; the car of a pile is the "bottom", i.e. where we place a card
(define (place-greedily ps-in c <?)
(let inr ((vr null) (ps ps-in))
(match ps
[(list) (reverse (cons (list c) vr))]
[(list (and psh (list ph _ ...)) pst ...)
#:when (<? c ph) (append (reverse (cons (cons c psh) vr)) pst)]
[(list psh pst ...) (inr (cons psh vr) pst)])))
(define (patience-sort cs-in <?)
;; Scatter
(define piles
(let scatter ((cs cs-in) (ps null))
(match cs [(list) ps] [(cons a d) (scatter d (place-greedily ps a <?))])))
;; Gather
(let gather ((rv null) (ps piles))
(match ps
[(list) (reverse rv)]
[(list psh pst ...)
(let scan ((least psh) (seens null) (unseens pst))
(define least-card (car least))
(match* (unseens least)
[((list) (list l)) (gather (cons l rv) seens)]
[((list) (cons l lt)) (gather (cons l rv) (cons lt seens))]
[((cons (and ush (cons u _)) ust) (cons l _))
#:when (<? l u) (scan least (cons ush seens) ust)]
[((cons ush ust) least) (scan ush (cons least seens) ust)]))])))
(patience-sort (shuffle (for/list ((_ 10)) (random 7))) <)
- Output:
'(1 1 2 2 2 3 4 4 4 5)
Raku
(formerly Perl 6)
multi patience(*@deck) {
my @stacks;
for @deck -> $card {
with @stacks.first: $card before *[*-1] -> $stack {
$stack.push: $card;
}
else {
@stacks.push: [$card];
}
}
gather while @stacks {
take .pop given min :by(*[*-1]), @stacks;
@stacks .= grep: +*;
}
}
say ~patience ^10 . pick(*);
- Output:
0 1 2 3 4 5 6 7 8 9
REXX
The items to be sorted can be any form of REXX number, not just integers; the items may also be character strings.
Duplicates are also sorted correctly.
/*REXX program sorts a list of things (or items) using the patience sort algorithm. */
parse arg xxx; say ' input: ' xxx /*obtain a list of things from the C.L.*/
n= words(xxx); #= 0; !.= 1 /*N: # of things; #: number of piles*/
@.= /* [↓] append or create a pile (@.j) */
do i=1 for n; q= word(xxx, i) /* [↓] construct the piles of things. */
do j=1 for # /*add the Q thing (item) to a pile.*/
if q>word(@.j,1) then iterate /*Is this item greater? Then skip it.*/
@.j= q @.j; iterate i /*add this item to the top of the pile.*/
end /*j*/ /* [↑] find a pile, or make a new pile*/
#= # + 1 /*increase the pile count. */
@.#= q /*define a new pile. */
end /*i*/ /*we are done with creating the piles. */
$= /* [↓] build a thingy list from piles*/
do k=1 until words($)==n /*pick off the smallest from the piles.*/
_= /*this is the smallest thingy so far···*/
do m=1 for #; z= word(@.m, !.m) /*traipse through many piles of items. */
if z=='' then iterate /*Is this pile null? Then skip pile.*/
if _=='' then _= z /*assume this one is the low pile value*/
if _>=z then do; _= z; p= m; end /*found a low value in a pile of items.*/
end /*m*/ /*the traipsing is done, we found a low*/
$= $ _ /*add to the output thingy ($) list. */
!.p= !.p + 1 /*bump the thingy pointer in pile P. */
end /*k*/ /* [↑] each iteration finds a low item*/
/* [↓] string $ has a leading blank.*/
say 'output: ' strip($) /*stick a fork in it, we're all done. */
- output when using the input of: 4 65 2 -31 0 99 83 782 7.88 1e1 1
input: 4 65 2 -31 0 99 83 782 7.88 1e1 1 output: -31 0 1 2 4 7.88 1e1 65 83 99 782
- output when using the input of: dog cow cat ape ant man pterodactyl
input: dog cow cat ape ant man pterodactyl output: ant ape cat cow dog man pterodactyl
Ruby
class Array
def patience_sort
piles = []
each do |i|
if (idx = piles.index{|pile| pile.last <= i})
piles[idx] << i
else
piles << [i] #create a new pile
end
end
# merge piles
result = []
until piles.empty?
first = piles.map(&:first)
idx = first.index(first.min)
result << piles[idx].shift
piles.delete_at(idx) if piles[idx].empty?
end
result
end
end
a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
p a.patience_sort
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Scala
import scala.collection.mutable
object PatienceSort extends App {
def sort[A](source: Iterable[A])(implicit bound: A => Ordered[A]): Iterable[A] = {
val piles = mutable.ListBuffer[mutable.Stack[A]]()
def PileOrdering: Ordering[mutable.Stack[A]] =
(a: mutable.Stack[A], b: mutable.Stack[A]) => b.head.compare(a.head)
// Use a priority queue, to simplify extracting minimum elements.
val pq = new mutable.PriorityQueue[mutable.Stack[A]]()(PileOrdering)
// Create ordered piles of elements
for (elem <- source) {
// Find leftmost "possible" pile
// If there isn't a pile available, add a new one.
piles.find(p => p.head >= elem) match {
case Some(p) => p.push(elem)
case _ => piles += mutable.Stack(elem)
}
}
pq ++= piles
// Return a new list, by taking the smallest stack head
// until all stacks are empty.
for (_ <- source) yield {
val smallestList = pq.dequeue
val smallestVal = smallestList.pop
if (smallestList.nonEmpty) pq.enqueue(smallestList)
smallestVal
}
}
println(sort(List(4, 65, 2, -31, 0, 99, 83, 782, 1)))
}
Scheme
The program is in R7RS Small Scheme plus some SRFIs. You can run the program also under CHICKEN Scheme 5.3.0 if you have the necessary eggs installed. For CHICKEN you will have to compile with the "-R r7rs" option.
For the k-way merge, I implemented the tournament tree algorithm.
(define-library (rosetta-code k-way-merge)
(export k-way-merge)
(import (scheme base))
(import (scheme case-lambda))
(import (only (srfi 1) car+cdr))
(import (only (srfi 1) reverse!))
(import (only (srfi 132) list-merge))
(import (only (srfi 151) bitwise-xor))
(begin
;;
;; The algorithm employed here is "tournament tree" as in the
;; following article, which is based on Knuth, volume 3.
;;
;; https://en.wikipedia.org/w/index.php?title=K-way_merge_algorithm&oldid=1047851465#Tournament_Tree
;;
;; However, I store a winners tree instead of the recommended
;; losers tree. If the tree were stored as linked nodes, it would
;; probably be more efficient to store a losers tree. However, I
;; am storing the tree as a Scheme vector, and one can find an
;; opponent quickly by simply toggling the least significant bit
;; of a competitor's array index.
;;
(define // truncate-quotient)
(define-record-type <infinity>
(make-infinity)
infinity?)
(define infinity (make-infinity))
(define (next-power-of-two n)
;; This need not be a fast implementation. It can assume n >= 3,
;; because one can use an ordinary 2-way merge for n = 2.
(let loop ((pow2 4))
(if (<= n pow2)
pow2
(loop (+ pow2 pow2)))))
(define (play-game <? x y)
(cond ((infinity? x) #f)
((infinity? y) #t)
(else (not (<? y x)))))
(define (build-tree <? heads)
;; We do not use vector indices of zero. Thus our indexing is
;; 1-based.
(let* ((total-external-nodes (next-power-of-two
(vector-length heads)))
(total-nodes (- (* 2 total-external-nodes) 1))
(winners (make-vector (+ total-nodes 1))))
(do ((i 0 (+ i 1)))
((= i total-external-nodes))
(let ((j (+ total-external-nodes i)))
(if (< i (vector-length heads))
(let ((entry (cons (vector-ref heads i) i)))
(vector-set! winners j entry))
(let ((entry (cons infinity i)))
(vector-set! winners j entry)))))
(let loop ((istart total-external-nodes))
(do ((i istart (+ i 2)))
((= i (+ istart istart)))
(let* ((i1 i)
(i2 (bitwise-xor i 1))
(elem1 (car (vector-ref winners i1)))
(elem2 (car (vector-ref winners i2)))
(wins1? (play-game <? elem1 elem2))
(iwinner (if wins1? i1 i2))
(winner (vector-ref winners iwinner))
(iparent (// i 2)))
(vector-set! winners iparent winner)))
(if (= istart 2)
winners
(loop (// istart 2))))))
(define (replay-games <? winners i)
(let loop ((i i))
(unless (= i 1)
(let* ((i1 i)
(i2 (bitwise-xor i 1))
(elem1 (car (vector-ref winners i1)))
(elem2 (car (vector-ref winners i2)))
(wins1? (play-game <? elem1 elem2))
(iwinner (if wins1? i1 i2))
(winner (vector-ref winners iwinner))
(iparent (// i 2)))
(vector-set! winners iparent winner)
(loop iparent)))))
(define (get-next lst)
(if (null? lst)
(values infinity lst) ; End of list. Return a sentinel.
(car+cdr lst)))
(define (merge-lists <? lists)
(let* ((heads (list->vector (map car lists)))
(tails (list->vector (map cdr lists))))
(let ((winners (build-tree <? heads)))
(let loop ((outputs '()))
(let-values (((winner-value winner-index)
(car+cdr (vector-ref winners 1))))
(if (infinity? winner-value)
(reverse! outputs)
(let-values
(((hd tl)
(get-next (vector-ref tails winner-index))))
(vector-set! tails winner-index tl)
(let ((entry (cons hd winner-index))
(i (+ (// (vector-length winners) 2)
winner-index)))
(vector-set! winners i entry)
(replay-games <? winners i)
(loop (cons winner-value outputs))))))))))
(define k-way-merge
(case-lambda
((<? lst1) lst1)
((<? lst1 lst2) (list-merge <? lst1 lst2))
((<? . lists) (merge-lists <? lists))))
)) ;; library (rosetta-code k-way-merge)
(define-library (rosetta-code patience-sort)
(export patience-sort)
(import (scheme base))
(import (rosetta-code k-way-merge))
(begin
(define (find-pile <? x num-piles piles)
;;
;; Do a Bottenbruch search for the leftmost pile whose top is
;; greater than or equal to x. The search starts at 0 and ends
;; at (- num-piles 1). Return an index such that:
;;
;; * if x is greater than the top element at the far right,
;; then the index returned will be num-piles.
;;
;; * otherwise, x is greater than every top element to the
;; left of index, and less than or equal to the top elements
;; at index and to the right of index.
;;
;; References:
;;
;; * H. Bottenbruch, "Structure and use of ALGOL 60", Journal
;; of the ACM, Volume 9, Issue 2, April 1962, pp.161-221.
;; https://doi.org/10.1145/321119.321120
;;
;; The general algorithm is described on pages 214 and 215.
;;
;; * https://en.wikipedia.org/w/index.php?title=Binary_search_algorithm&oldid=1062988272#Alternative_procedure
;;
(let loop ((j 0)
(k (- num-piles 1)))
(if (= j k)
(if (or (not (= j (- num-piles 1)))
(not (<? (car (vector-ref piles j)) x)))
j ; x fits onto one of the piles.
(+ j 1)) ; x needs a new pile.
(let ((i (floor-quotient (+ j k) 2)))
(if (<? (car (vector-ref piles i)) x)
;; x is greater than the element at i.
(loop (+ i 1) k)
(loop j i))))))
(define (resize-table table-size num-piles piles)
;; If necessary, allocate a new table of larger size.
(if (not (= num-piles table-size))
(values table-size piles)
(let* ((new-size (* table-size 2))
(new-piles (make-vector new-size)))
(vector-copy! new-piles 0 piles)
(values new-size new-piles))))
(define initial-table-size 64)
(define (deal <? lst)
(let loop ((lst lst)
(table-size initial-table-size)
(num-piles 0)
(piles (make-vector initial-table-size)))
(cond ((null? lst) (values num-piles piles))
((zero? num-piles)
(vector-set! piles 0 (list (car lst)))
(loop (cdr lst) table-size 1 piles))
(else
(let* ((x (car lst))
(i (find-pile <? x num-piles piles)))
(if (= i num-piles)
(let-values (((table-size piles)
(resize-table table-size num-piles
piles)))
;; Start a new pile at the far right.
(vector-set! piles num-piles (list x))
(loop (cdr lst) table-size (+ num-piles 1)
piles))
(begin
(vector-set! piles i
(cons x (vector-ref piles i)))
(loop (cdr lst) table-size num-piles
piles))))))))
(define (patience-sort <? lst)
(let-values (((num-piles piles) (deal <? lst)))
(apply k-way-merge
(cons <? (vector->list piles 0 num-piles)))))
)) ;; library (rosetta-code patience-sort)
;;--------------------------------------------------------------------
;;
;; A little demonstration.
;;
(import (scheme base))
(import (scheme write))
(import (rosetta-code patience-sort))
(define example-numbers '(22 15 98 82 22 4 58 70 80 38 49 48 46 54 93
8 54 2 72 84 86 76 53 37 90))
(display "unsorted ")
(write example-numbers)
(newline)
(display "sorted ")
(write (patience-sort < example-numbers))
(newline)
;;--------------------------------------------------------------------
- Output:
$ gosh patience_sort_task.scm unsorted (22 15 98 82 22 4 58 70 80 38 49 48 46 54 93 8 54 2 72 84 86 76 53 37 90) sorted (2 4 8 15 22 22 37 38 46 48 49 53 54 54 58 70 72 76 80 82 84 86 90 93 98)
Sidef
func patience(deck) {
var stacks = [];
deck.each { |card|
given (stacks.first { card < .last }) { |stack|
case (defined stack) {
stack << card
}
default {
stacks << [card]
}
}
}
gather {
while (stacks) {
take stacks.min_by { .last }.pop
stacks.grep!{ !.is_empty }
}
}
}
var a = [4, 65, 2, -31, 0, 99, 83, 782, 1]
say patience(a)
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782]
Standard ML
structure PilePriority = struct
type priority = int
fun compare (x, y) = Int.compare (y, x) (* we want min-heap *)
type item = int list
val priority = hd
end
structure PQ = LeftPriorityQFn (PilePriority)
fun sort_into_piles n =
let
val piles = DynamicArray.array (length n, [])
fun bsearch_piles x =
let
fun aux (lo, hi) =
if lo > hi then
lo
else
let
val mid = (lo + hi) div 2
in
if hd (DynamicArray.sub (piles, mid)) < x then
aux (mid+1, hi)
else
aux (lo, mid-1)
end
in
aux (0, DynamicArray.bound piles)
end
fun f x =
let
val i = bsearch_piles x
in
DynamicArray.update (piles, i, x :: DynamicArray.sub (piles, i))
end
in
app f n;
piles
end
fun merge_piles piles =
let
val heap = DynamicArray.foldl PQ.insert PQ.empty piles
fun f (heap, acc) =
case PQ.next heap of
NONE => acc
| SOME (x::xs, heap') =>
f ((if null xs then heap' else PQ.insert (xs, heap')),
x::acc)
in
rev (f (heap, []))
end
fun patience_sort n =
merge_piles (sort_into_piles n)
Usage:
- patience_sort [4, 65, 2, ~31, 0, 99, 83, 782, 1]; val it = [~31,0,1,2,4,65,83,99,782] : int list
Tcl
This uses the -bisect
option to lsearch
in order to do an efficient binary search (in combination with -index end
, which means that the search is indexed by the end of the sublist).
package require Tcl 8.6
proc patienceSort {items} {
# Make the piles
set piles {}
foreach item $items {
set p [lsearch -bisect -index end $piles $item]
if {$p == -1} {
lappend piles [list $item]
} else {
lset piles $p end+1 $item
}
}
# Merge the piles; no suitable builtin, alas
set indices [lrepeat [llength $piles] 0]
set result {}
while 1 {
set j 0
foreach pile $piles i $indices {
set val [lindex $pile $i]
if {$i < [llength $pile] && (![info exist min] || $min > $val)} {
set k $j
set next [incr i]
set min $val
}
incr j
}
if {![info exist min]} break
lappend result $min
unset min
lset indices $k $next
}
return $result
}
Demonstrating:
puts [patienceSort {4 65 2 -31 0 99 83 782 1}]
- Output:
-31 0 1 2 4 65 83 99 782
Wren
import "./sort" for Cmp
var patienceSort = Fn.new { |a|
var size = a.count
if (size < 2) return
var cmp = Cmp.default(a[0])
var piles = []
for (e in a) {
var outer = false
for (pile in piles) {
if (cmp.call(pile[-1], e) > 0) {
pile.add(e)
outer = true
break
}
}
if (!outer) piles.add([e])
}
for (i in 0...size) {
var min = piles[0][-1]
var minPileIndex = 0
for (j in 1...piles.count) {
if (cmp.call(piles[j][-1], min) < 0) {
min = piles[j][-1]
minPileIndex = j
}
}
a[i] = min
var minPile = piles[minPileIndex]
minPile.removeAt(-1)
if (minPile.count == 0) piles.removeAt(minPileIndex)
}
}
var ia = [4, 65, 2, -31, 0, 99, 83, 782, 1]
patienceSort.call(ia)
System.print(ia)
var ca = ["n", "o", "n", "z", "e", "r", "o", "s", "u", "m"]
patienceSort.call(ca)
System.print(ca)
var sa = ["dog", "cow", "cat", "ape", "ant", "man", "pig", "ass", "gnu"]
patienceSort.call(sa)
System.print(sa)
- Output:
[-31, 0, 1, 2, 4, 65, 83, 99, 782] [e, m, n, n, o, o, r, s, u, z] [ant, ape, ass, cat, cow, dog, gnu, man, pig]
XPL0
def N = 10, Inf = -1>>1; \number of cards/items in Array
int Array, Pile(N, N+1); \N piles with maximum size of N+1
int Inx(N+1); \index into each Pile to topmost card/item
int I, J, Card, Min, IMin;
[Array:= [4, 65, 2, -31, 0, 99, 83, 782, 1, 0];
for I:= 0 to N-1 do Pile(I, 0):= Inf;
for I:= 0 to N-1 do Inx(I):= 0;
\Step 1: Put cards into piles
for I:= 0 to N-1 do \for each card in array
[Card:= Array(I);
J:= 0; \for each pile
loop [if Pile(J, Inx(J)) >= Card then
[Inx(J):= Inx(J)+1; \put card onto pile
Pile(J, Inx(J)):= Card;
quit; \next card
];
J:= J+1; \next pile
];
];
\Step 2: N-way merge sort
loop [Min:= Inf; \search piles for smallest card
for I:= 0 to N-1 do \for each pile
[Card:= Pile(I, Inx(I)); \get top card from pile
if Card <= Min then
[Min:= Card; IMin:= I];
];
if Min = Inf then quit;
Card:= Pile(IMin, Inx(IMin));
IntOut(0, Card); Text(0, " "); \show smallest card
Inx(IMin):= Inx(IMin)-1; \remove smallest card
];
CrLf(0);
]
- Output:
-31 0 0 1 2 4 65 83 99 782
zkl
fcn patienceSort(ns){
piles:=L();
foreach n in (ns){ newPile:=True; // create list of sorted lists
foreach p in (piles){
if(n>=p[-1]) { p.append(n); newPile=False; break; }
}
if(newPile)piles.append(L(n));
}
// merge sort the piles
r:=Sink(List); while(piles){
mins:=piles.apply("get",0).enumerate();
min :=mins.reduce(fcn(a,b){ (a[1]<b[1]) and a or b },mins[0])[0];
r.write(piles[min].pop(0));
if(not piles[min]) piles.del(min);
}
r.close();
}
T(T(3,2,6,4,3,5,1),
T(4,65,2,-31,0,99,83,782,1),
T(0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15),
"foobar")
.pump(Console.println,patienceSort);
- Output:
L(1,2,3,3,4,5,6) L(-31,0,1,2,4,65,83,99,782) L(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) L("a","b","f","o","o","r")
- Programming Tasks
- Sorting Algorithms
- Sorting
- 11l
- AArch64 Assembly
- Ada
- AppleScript
- ARM Assembly
- Arturo
- ATS
- AutoHotkey
- C
- C++
- Clojure
- D
- Elixir
- Fortran
- FreeBASIC
- Go
- Haskell
- Icon
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Mercury
- Modula-2
- Nim
- OCaml
- Pascal
- Perl
- Phix
- PHP
- PicoLisp
- Prolog
- Python
- Quackery
- Racket
- Raku
- REXX
- Ruby
- Scala
- Scala Concise
- Scala Time complexity O(n log n)
- Scheme
- Sidef
- Standard ML
- Tcl
- Wren
- Wren-sort
- XPL0
- Zkl