The prime decomposition of a number is defined as a list of prime numbers which when all multiplied together, are equal to that number.

Task
Prime decomposition
You are encouraged to solve this task according to the task description, using any language you may know.


Example
 12 = 2 × 2 × 3,  so its prime decomposition is  {2, 2, 3}


Task

Write a function which returns an array or collection which contains the prime decomposition of a given number     greater than   1.

If your language does not have an isPrime-like function available, you may assume that you have a function which determines whether a number is prime (note its name before your code).

If you would like to test code from this task, you may use code from trial division or the Sieve of Eratosthenes.

Note: The program must not be limited by the word size of your computer or some other artificial limit; it should work for any number regardless of size (ignoring the physical limits of RAM etc).


Related tasks



11l

Translation of: D
F decompose(BigInt number)
   [BigInt] result
   V n = number
   BigInt i = 2
   L n % i == 0
      result.append(i)
      n I/= i
   i = 3
   L n >= i * i
      L n % i == 0
         result.append(i)
         n I/= i
      i += 2
   I n != 1
      result.append(n)
   R result

L(i) 2..9
   print(decompose(i))
print(decompose(1023 * 1024))
print(decompose(2 * 3 * 5 * 7 * 11 * 11 * 13 * 17))
print(decompose(BigInt(16860167264933) * 179951))
Output:
[2]
[3]
[2, 2]
[5]
[2, 3]
[7]
[2, 2, 2]
[3, 3]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 11, 31]
[2, 3, 5, 7, 11, 11, 13, 17]
[179951, 16860167264933]

360 Assembly

For maximum compatibility, this program uses only the basic instruction set.

PRIMEDE  CSECT  
         USING  PRIMEDE,R13
         B      80(R15)            skip savearea
         DC     17F'0'             savearea
         DC     CL8'PRIMEDE'
         STM    R14,R12,12(R13)
         ST     R13,4(R15)
         ST     R15,8(R13)
         LR     R13,R15            end prolog
         LA     R2,0
         LA     R3,1023
         LA     R4,1024
         MR     R2,R4
         ST     R3,N               n=1023*1024
         LA     R5,WBUFFER
         LA     R6,0
         L      R1,N               n
         XDECO  R1,0(R5)
         LA     R5,12(R5)
         MVC    0(3,R5),=C' : '
         LA     R5,3(R5)
         LA     R0,2
         ST     R0,I               i=2
WHILE1   EQU    *                  do while(i<=n/2)
         L      R2,N
         SRA    R2,1
         L      R4,I
         CR     R4,R2              i<=n/2
         BH     EWHILE1
WHILE2   EQU    *                  do while(n//i=0)
         L      R3,N
         LA     R2,0
         D      R2,I
         LTR    R2,R2              n//i=0
         BNZ    EWHILE2
         ST     R3,N               n=n/i
         ST     R3,M               m=n
         L      R1,I               i
         XDECO  R1,WDECO
         MVC    0(5,R5),WDECO+7
         LA     R5,5(R5)
         MVI    OK,X'01'           ok
         B      WHILE2
EWHILE2  EQU    *
         L      R4,I
         CH     R4,=H'2'           if i=2 then
         BNE    NE2
         LA     R0,3
         ST     R0,I               i=3
         B      EIFNE2
NE2      L      R2,I               else
         LA     R2,2(R2)
         ST     R2,I               i=i+2
EIFNE2   B      WHILE1        
EWHILE1  EQU    *
         CLI    OK,X'01'           if ^ok then
         BE     NOTPRIME
         MVC    0(7,R5),=C'[prime]'
         LA     R5,7(R5)
         B      EPRIME
NOTPRIME L      R1,M               m
         XDECO  R1,WDECO
         MVC    0(5,R5),WDECO+7
EPRIME   XPRNT  WBUFFER,80         put 
         L      R13,4(0,R13)       epilog
         LM     R14,R12,12(R13)
         XR     R15,R15
         BR     R14
N        DS     F
I        DS     F
M        DS     F
OK       DC     X'00'
WBUFFER  DC     CL80' '
WDECO    DS     CL16
         YREGS  
         END    PRIMEDE
Output:
     1047552 :     2    2    2    2    2    2    2    2    2    2    3   11   31

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program primeDecomp64.s   */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ NBFACT,            100

/*******************************************/
/* Structures                               */
/********************************************/
/* structurea area factors  */
    .struct  0
fac_value:                     // factor
    .struct  fac_value + 8
fac_number:                    // number of identical factors
    .struct  fac_number + 8
fac_end:
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessStartPgm:            .asciz "Program start \n"
szMessEndPgm:              .asciz "Program normal end.\n"
szMessNotPrime:            .asciz "Not prime.\n"
szMessPrime:               .asciz "Prime\n"
szCarriageReturn:          .asciz "\n"
szSpaces:                  .asciz "  "
szMessNumber:              .asciz " The factors of @ are :\n"
/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss 
sZoneConv:           .skip 32
.align 4
tbZoneDecom:         .skip fac_end * NBFACT 
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main 
main:                                    // program start
    ldr x0,qAdrszMessStartPgm            // display start message
    bl affichageMess
    ldr x20,qVal
    //mov x20,17
    mov x0,x20
    ldr x1,qAdrtbZoneDecom
    bl decompFact                        // decomposition
    cmp x0,#0
    beq 1f
    mov x2,x0
    mov x0,x20
    ldr x1,qAdrtbZoneDecom
    bl displayFactors                    // display factors
    b 2f
1:
    ldr x0,qAdrszMessPrime              // prime
    bl affichageMess
    
2:

    ldr x0,qAdrszMessEndPgm            // display end message
    bl affichageMess

100:                                   // standard end of the program
    mov x0,0                           // return code
    mov x8,EXIT                        // request to exit program
    svc 0                              // perform system call
qAdrszMessStartPgm:        .quad szMessStartPgm
qAdrszMessEndPgm:          .quad szMessEndPgm
qAdrszCarriageReturn:      .quad szCarriageReturn
qAdrszMessNotPrime:        .quad szMessNotPrime
qAdrszMessPrime:           .quad szMessPrime
qAdrtbZoneDecom:           .quad tbZoneDecom
//qVal:                      .quad 2 <<31
qVal:                      .quad 1047552       // test not prime
//qVal:                      .quad 1429671721    // test not prime (37811 * 37811)

/******************************************************************/
/*     prime decomposition                                               */ 
/******************************************************************/
/* x0 contains the number */
/* x1 contains address factors array */
/* REMARK no save register x9-x19   */
decompFact:
    stp x1,lr,[sp,-16]!       // save  registers
    mov x12,x0                // save number
    bl isPrime                // prime ?
    cbnz x0,12f               // yes -> no decomposition 
    mov x19,fac_end           // element area size
    mov x18,0                 // raz indice
    mov x16,0                 // prev divisor
    mov x17,0                 // number of identical divisors
    mov x13,2                 // first divisor
2:
    cmp x12,1
    beq 10f
    udiv x14,x12,x13          // division
    msub x15,x14,x13,x12      // remainder = x12 -(x13*x14)
    cbnz x15,5f               // if remainder <> zero  x13 not divisor
    mov x12,x14               // quotient -> new dividende
    cmp x13,x16               // same divisor ?
    beq 4f                    // yes
    cbz x16,3f                // yes it is first divisor ?
    madd x11,x18,x19,x1       // no -> store prev divisor in the area
    str x16,[x11,fac_value]
    str x17,[x11,fac_number]  // and store number of same factor
    add x18,x18,1             // increment indice
    mov x17,0                 // raz number of same factor
3:
    mov x16,x13               // save new divisor
4:
    add x17,x17,1             // increment number of same factor
    mov x0,x12                // the new dividende is prime ?
    bl isPrime
    cbnz x0,10f               // yes
    b 2b                      // else loop
5:                            // divisor is not a factor
    cmp x13,2                 // begin ?
    cinc x13,x13,ne           // if divisor <> 2 add 1
    add x13,x13,1
    b 2b                      // and loop

10:                           // new dividende is prime
    cmp x16,x12               // divisor = dividende ?
    cinc x17,x17,eq           //add 1 if last dividende = diviseur
    madd x11,x18,x19,x1
    str x16,[x11,fac_value]   // store divisor in area
    str x17,[x11,fac_number]  // and store number
    add x18,x18,1             // increment indice
    cmp x16,x12               //store last dividende if <> diviseur
    beq 11f
    madd x11,x18,x19,x1
    str x12,[x11,fac_value]   // sinon stockage dans la table
    mov x17,1
    str x17,[x11,fac_number]  // store 1 in number
    add x18,x18,1
11:
    mov x0,x18                // return nb factors
    b 100f
12:
    mov x0,#0                 // number is prime 
    b 100f

100:
    ldp x1,lr,[sp],16         // restaur des  2 registres
    ret                       // retour adresse lr x30
/******************************************************************/
/*     prime decomposition                                               */ 
/******************************************************************/
/* x0 contains the number */
/* x1 contains address factors array */
/* x2 number of factors */
displayFactors:
    stp x1,lr,[sp,-16]!        // save  registres
    mov x19,fac_end            // element area size
    mov x13,x1                 // save area address
    ldr x1,qAdrsZoneConv       // load zone conversion address
    bl conversion10
    ldr x0,qAdrszMessNumber
    bl strInsertAtCharInc                   // insert result at Second @ character
    bl affichageMess
    mov x9,0                   // indice
1:
    madd x10,x9,x19,x13        // compute address area element
    ldr x0,[x10,fac_value]
    ldr x12,[x10,fac_number]
    bl conversion10            // decimal conversion
2:
    mov x0,x1
    bl affichageMess
    ldr x0,qAdrszSpaces
    bl affichageMess
    subs x12,x12,#1
    bgt 2b
    add x9,x9,1
    cmp x9,x2
    blt 1b
    ldr x0,qAdrszCarriageReturn
    bl affichageMess
100:
    ldp x1,lr,[sp],16          // restaur des  2 registres
    ret                        // retour adresse lr x30
qAdrsZoneConv:          .quad sZoneConv
qAdrszSpaces:           .quad szSpaces
qAdrszMessNumber:       .quad szMessNumber
/******************************************************************/
/*     test if number is prime                                    */ 
/******************************************************************/
/* x0 contains the number  */
/* x0 return 1 if prime else return 0 */
isPrime:
    stp x1,lr,[sp,-16]!       // save  registers
    cmp x0,1                  // <= 1 ?
    ble 98f
    cmp x0,3                  // 2 and 3 prime
    ble 97f 
    tst x0,1                  //  even ?
    beq 98f 
    mov x9,3                  // first divisor
1:
    udiv x11,x0,x9
    msub x10,x11,x9,x0        // compute remainder
    cbz x10,98f               // end if zero
    add x9,x9,#2              // increment divisor
    cmp x9,x11                // divisors<=quotient ?
    ble 1b                    // loop
97:
    mov x0,1                  // return prime
    b 100f
98:
    mov x0,0                  // not prime
    b 100f
100:
    ldp x1,lr,[sp],16         // restaur  2 registers
    ret                       // return to address lr x30
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Output:
Program start
 The factors of 1047552 are :
2  2  2  2  2  2  2  2  2  2  3  11  31
Program normal end.

ABAP

class ZMLA_ROSETTA definition
  public
  create public .

  public section.

    types:
      enumber         TYPE          N  LENGTH 60,
      listof_enumber  TYPE TABLE OF enumber .

    class-methods FACTORS
      importing
        value(N) type ENUMBER
      exporting
        value(ORET) type LISTOF_ENUMBER .
  protected section.
  private section.
ENDCLASS.



CLASS ZMLA_ROSETTA IMPLEMENTATION.


* <SIGNATURE>---------------------------------------------------------------------------------------+
* | Static Public Method ZMLA_ROSETTA=>FACTORS
* +-------------------------------------------------------------------------------------------------+
* | [--->] N                              TYPE        ENUMBER
* | [<---] ORET                           TYPE        LISTOF_ENUMBER
* +--------------------------------------------------------------------------------------</SIGNATURE>
  method FACTORS.
    CLEAR oret.
    WHILE n mod 2 = 0.
      n = n / 2.
      APPEND 2 to oret.
    ENDWHILE.
    DATA: lim type enumber,
          i   type enumber.
    lim = sqrt( n ).
    i   = 3.
    WHILE i <= lim.
      WHILE n mod i = 0.
        APPEND i to oret.
        n = n / i.
        lim = sqrt( n ).
      ENDWHILE.
      i = i + 2.
    ENDWHILE.
    IF n > 1.
      APPEND n to oret.
    ENDIF.
  endmethod.
ENDCLASS.

ACL2

(include-book "arithmetic-3/top" :dir :system)

(defun prime-factors-r (n i)
   (declare (xargs :mode :program))
   (cond ((or (zp n) (zp (- n i)) (zp i) (< i 2) (< n 2))
          (list n))
         ((= (mod n i) 0)
          (cons i (prime-factors-r (floor n i) 2)))
         (t (prime-factors-r n (1+ i)))))

(defun prime-factors (n)
   (declare (xargs :mode :program))
   (prime-factors-r n 2))

Ada

The solution is generic.

The package Prime_Numbers is instantiated by a type that supports necessary operations +, *, /, mod, >. The constants 0, 1, 2 are parameters too, because the type might have no literals. The same package is used for Almost prime#Ada, Semiprime#Ada, Count in factors#Ada, Primality by Trial Division#Ada, Sequence of primes by Trial Division#Ada, and Ulam_spiral_(for_primes)#Ada.

This is the specification of the generic package Prime_Numbers:

generic
   type Number is private;
   Zero : Number;
   One  : Number;
   Two  : Number;
   with function "+"   (X, Y : Number) return Number is <>;
   with function "*"   (X, Y : Number) return Number is <>;
   with function "/"   (X, Y : Number) return Number is <>;
   with function "mod" (X, Y : Number) return Number is <>;
   with function ">"   (X, Y : Number) return Boolean is <>;
package Prime_Numbers is
   type Number_List is array (Positive range <>) of Number;
   function Decompose (N : Number) return Number_List;
   function Is_Prime (N : Number) return Boolean;
end Prime_Numbers;

The function Decompose first estimates the maximal result length as log2 of the argument. Then it allocates the result and starts to enumerate divisors. It does not care to check if the divisors are prime, because non-prime divisors will be automatically excluded.

This is the implementation of the generic package Prime_Numbers:

package body Prime_Numbers is
 -- auxiliary (internal) functions
   function First_Factor (N : Number; Start : Number) return Number is
      K    : Number  := Start;
   begin
      while ((N mod K) /= Zero) and then (N > (K*K))  loop 
         K := K + One;
      end loop;
      if (N mod K) = Zero then
         return K;
      else
         return N;
      end if;
   end First_Factor;
   
   function Decompose (N : Number; Start : Number) return Number_List is
      F: Number := First_Factor(N, Start);
      M: Number := N / F;
   begin
      if M = One then -- F is the last factor
         return (1 => F);
      else
         return F & Decompose(M, Start);
      end if;
   end Decompose;
   
 -- functions visible from the outside
   function Decompose (N : Number) return Number_List is (Decompose(N, Two));
   function Is_Prime (N : Number) return Boolean is
      (N > One and then First_Factor(N, Two)=N);
end Prime_Numbers;

In the example provided, the package Prime_Numbers is instantiated with plain integer type:

with Prime_Numbers, Ada.Text_IO; 
 
procedure Test_Prime is

   package Integer_Numbers is new 
     Prime_Numbers (Natural, 0, 1, 2); 
   use Integer_Numbers;
     
   procedure Put (List : Number_List) is
   begin
      for Index in List'Range loop
         Ada.Text_IO.Put (Positive'Image (List (Index)));
      end loop;
   end Put;
     
begin
   Put (Decompose (12));
end Test_Prime;
Output:

(decomposition of 12)

 2 2 3

ALGOL 68

Translation of: Python

- note: This specimen retains the original Python coding style.

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d
#IF long int possible THEN #

MODE LINT = LONG INT;
LINT lmax int = long max int;
OP LLENG = (INT i)LINT: LENG i,
   LSHORTEN = (LINT i)INT: SHORTEN i;

#ELSE

MODE LINT = INT;
LINT lmax int = max int;
OP LLENG = (INT i)LINT: i,
   LSHORTEN = (LINT i)INT: i;

FI#

OP LLONG = (INT i)LINT: LLENG i;

MODE YIELDLINT = PROC(LINT)VOID;

PROC (LINT, YIELDLINT)VOID gen decompose;

INT upb cache = bits width;

BITS cache := 2r0;
BITS cached := 2r0;

PROC is prime = (LINT n)BOOL: (
    BOOL
        has factor := FALSE,
        out := TRUE;
  # FOR LINT factor IN # gen decompose(n, # ) DO ( #
  ##   (LINT factor)VOID:(
      IF has factor THEN out := FALSE; GO TO done FI;
      has factor := TRUE
  # OD # ));
    done: out
);

PROC is prime cached := (LINT n)BOOL: (
    LINT l half n = n OVER LLONG 2 - LLONG 1;
    IF l half n <= LLENG upb cache THEN
        INT half n = LSHORTEN l half n;
        IF half n ELEM cached THEN
            BOOL(half n ELEM cache)
        ELSE
            BOOL out = is prime(n);
            BITS mask = 2r1 SHL (upb cache - half n);
            cached := cached OR mask;
            IF out THEN cache := cache OR mask FI;
            out
        FI
    ELSE
        is prime(n) # above useful cache limit #
    FI
);


PROC gen primes := (YIELDLINT yield)VOID:(
    yield(LLONG 2);
    LINT n := LLONG 3;
    WHILE n < l maxint - LLONG 2 DO
        yield(n);
        n +:= LLONG 2;
        WHILE n < l maxint - LLONG 2 AND NOT is prime cached(n) DO
            n +:= LLONG 2
        OD
    OD
);

# PROC # gen decompose := (LINT in n, YIELDLINT yield)VOID: (
    LINT n := in n;
  # FOR LINT p IN # gen primes( # ) DO ( #
  ##   (LINT p)VOID:
        IF p*p > n THEN
            GO TO done
        ELSE
            WHILE n MOD p = LLONG 0 DO
                yield(p);
                n := n OVER p
            OD
        FI
  # OD #  );
    done:
    IF n > LLONG 1 THEN
        yield(n)
    FI
);

main:(
# FOR LINT m IN # gen primes( # ) DO ( #
##   (LINT m)VOID:(
      LINT p = LLONG 2 ** LSHORTEN m - LLONG 1;
      print(("2**",whole(m,0),"-1 = ",whole(p,0),", with factors:"));
    # FOR LINT factor IN # gen decompose(p, # ) DO ( #
    ##   (LINT factor)VOID:
          print((" ",whole(factor,0)))
    # OD # );
      print(new line);
      IF m >= LLONG 59 THEN GO TO done FI
# OD #  ));
  done: EMPTY
)
Output:
2**2-1 = 3, with factors: 3
2**3-1 = 7, with factors: 7
2**5-1 = 31, with factors: 31
2**7-1 = 127, with factors: 127
2**11-1 = 2047, with factors: 23 89
2**13-1 = 8191, with factors: 8191
2**17-1 = 131071, with factors: 131071
2**19-1 = 524287, with factors: 524287
2**23-1 = 8388607, with factors: 47 178481
2**29-1 = 536870911, with factors: 233 1103 2089
2**31-1 = 2147483647, with factors: 2147483647
2**37-1 = 137438953471, with factors: 223 616318177
2**41-1 = 2199023255551, with factors: 13367 164511353
2**43-1 = 8796093022207, with factors: 431 9719 2099863
2**47-1 = 140737488355327, with factors: 2351 4513 13264529
2**53-1 = 9007199254740991, with factors: 6361 69431 20394401
2**59-1 = 576460752303423487, with factors: 179951 3203431780337

Note: ALGOL 68G took 49,109,599 BogoMI and ELLA ALGOL 68RS took 1,127,634 BogoMI to complete the example.

ALGOL-M

Sadly, ALGOL-M does not allow arrays to be passed as parameters to procedures or functions, so the routine must store its results in (and know the name of) the external array used for that purpose.

BEGIN

INTEGER I, K, NFOUND;
INTEGER ARRAY FACTORS[1:16];

COMMENT - RETURN P MOD Q; 
INTEGER FUNCTION MOD (P, Q);
INTEGER P, Q;
BEGIN
    MOD := P - Q * (P / Q);
END;

COMMENT
  FIND THE PRIME FACTORS OF N AND STORE IN THE EXTERNAL
  ARRAY "FACTORS", RETURNING THE NUMBER FOUND. IF N IS
  PRIME, IT WILL BE STORED AS THE FIRST AND ONLY FACTOR;

INTEGER FUNCTION PRIMEFACTORS(N);
INTEGER N;
BEGIN
  INTEGER P, COUNT;
  P := 2;
  COUNT := 1;
  WHILE N >= P * P DO
    BEGIN
      IF MOD(N, P) = 0 THEN
        BEGIN
          FACTORS[COUNT] := P;
          COUNT := COUNT + 1;
          N := N / P;
        END
      ELSE
        P := P + 1;
    END;
  FACTORS[COUNT] := N;
  PRIMEFACTORS := COUNT;
END;

COMMENT -- EXERCISE THE ROUTINE;

FOR I := 77 STEP 2 UNTIL 99 DO
  BEGIN
    WRITE(I,":");
    NFOUND := PRIMEFACTORS(I);
    COMMENT - PRINT OUT THE FACTORS THAT WERE FOUND;
    FOR K := 1 STEP 1 UNTIL NFOUND DO
      BEGIN
        WRITEON(FACTORS[K]);
      END;
  END;

END
Output:
   77:     7    11
   79:    79
   81:     3     3     3     3
   83:    83
   85:     5    17
   87:     3    29
   89:    89
   91:     7    13
   93:     3    31
   95:     5    19
   97:    97
   99:     3     3    11

ALGOL W

Algol W procedures can't return arrays, so an array to store the factors in must be passed as a parameter.

begin % find the prime decompositionmtion of some integers                  %
    % increments n and returns the new value                                %
    integer procedure inc ( integer value result n ) ; begin n := n + 1; n end;
    % divides n by d and returns the result                                 %
    integer procedure over ( integer value result n
                           ; integer value d
                           ) ; begin n := n div d; n end;
    % sets the elements of f to the prime factors of n                      %
    %      the bounds of f should be 0 :: x where x is large enough to hold %
    %      all the factors, f( 0 ) will contain 6he number of factors       %
    procedure decompose ( integer value n; integer array f ( * ) ) ;
    begin
        integer d, v;
        f( 0 ) := 0;
        v      := abs n;
        if v > 0 and v rem 2 = 0 then begin
            f( inc( f( 0 ) ) ) := 2;
            while over( v, 2 ) > 0 and v rem 2 = 0 do f( inc( f( 0 ) ) ) := 2;
        end if_2_divides_v ;
        d := 3;
        while d * d <= v do begin
            if v rem d = 0 then begin
                f( inc( f( 0 ) ) ) := d;
                while over( v, d ) > 0 and v rem d = 0 do f( inc( f( 0 ) ) ) := d;
            end if_d_divides_v ;
            d := d + 2
        end while_d_squared_le_v ;
        if v > 1 then f( inc( f( 0 ) ) ) := v
    end factorise ;

    % some test cases                                                        %
    for n := 0, 1, 7, 31, 127, 2047, 8191, 131071, 524287, 2520, 32767, 8855, 441421750 do begin
       integer array f( 0 :: 20 );
       decompose( n, f );
       write( s_w := 0, n, ": " );
       for fPos := 1 until f( 0 ) do writeon( i_w := 1, s_w := 0, " ", f( fPos ) );
    end for_n ;
end.
Output:
             0:
             1:
             7:  7
            31:  31
           127:  127
          2047:  23 89
          8191:  8191
        131071:  131071
        524287:  524287
          2520:  2 2 2 3 3 5 7
         32767:  7 31 151
          8855:  5 7 11 23
     441421750:  2 5 5 5 7 11 23 997

Arturo

decompose: function [num][
    facts: to [:string] factors.prime num
    print [
        pad.right (to :string num) ++ " = " ++  join.with:" x " facts 30 
        "{"++ (join.with:", " unique facts) ++ "}"
    ]
]

loop 2..40 => decompose
Output:
2 = 2                          {2} 
3 = 3                          {3} 
4 = 2 x 2                      {2} 
5 = 5                          {5} 
6 = 2 x 3                      {2, 3} 
7 = 7                          {7} 
8 = 2 x 2 x 2                  {2} 
9 = 3 x 3                      {3} 
10 = 2 x 5                     {2, 5} 
11 = 11                        {11} 
12 = 2 x 2 x 3                 {2, 3} 
13 = 13                        {13} 
14 = 2 x 7                     {2, 7} 
15 = 3 x 5                     {3, 5} 
16 = 2 x 2 x 2 x 2             {2} 
17 = 17                        {17} 
18 = 2 x 3 x 3                 {2, 3} 
19 = 19                        {19} 
20 = 2 x 2 x 5                 {2, 5} 
21 = 3 x 7                     {3, 7} 
22 = 2 x 11                    {2, 11} 
23 = 23                        {23} 
24 = 2 x 2 x 2 x 3             {2, 3} 
25 = 5 x 5                     {5} 
26 = 2 x 13                    {2, 13} 
27 = 3 x 3 x 3                 {3} 
28 = 2 x 2 x 7                 {2, 7} 
29 = 29                        {29} 
30 = 2 x 3 x 5                 {2, 3, 5} 
31 = 31                        {31} 
32 = 2 x 2 x 2 x 2 x 2         {2} 
33 = 3 x 11                    {3, 11} 
34 = 2 x 17                    {2, 17} 
35 = 5 x 7                     {5, 7} 
36 = 2 x 2 x 3 x 3             {2, 3} 
37 = 37                        {37} 
38 = 2 x 19                    {2, 19} 
39 = 3 x 13                    {3, 13} 
40 = 2 x 2 x 2 x 5             {2, 5}

AutoHotkey

MsgBox % factor(8388607)   ; 47 * 178481
 
factor(n)
{
    if (n = 1)
        return
    f = 2
    while (f <= n)
    {
        if (Mod(n, f) = 0)
        {
            next := factor(n / f)
            return, % f "`n" next
        }
        f++
    }
}

Optimized Version

Translation of: JavaScript
prime_numbers(n) {
    if (n <= 3)
        return [n]
    ans := []
    done := false
    while !done 
    {
        if !Mod(n,2){
            ans.push(2)
            n /= 2
            continue
        }
        if !Mod(n,3) {
            ans.push(3)
            n /= 3
            continue
        }
        if (n = 1)
            return ans
        
        sr := sqrt(n)
        done := true
        ; try to divide the checked number by all numbers till its square root.
        i := 6
        while (i <= sr+6){
            if !Mod(n, i-1) { ; is n divisible by i-1?
                ans.push(i-1)
                n /= i-1
                done := false
                break
            }
            if !Mod(n, i+1) { ; is n divisible by i+1?
                ans.push(i+1)
                n /= i+1
                done := false
                break
            }
            i += 6
        }
    }
    ans.push(n)
    return ans
}

Examples:

num := 8388607, output := ""
for i, p in prime_numbers(num)
    output .= p " * "
MsgBox % num " = " Trim(output, " * ")
return
Output:
8388607 = 47 * 178481

AWK

As the examples show, pretty large numbers can be factored in tolerable time:

# Usage:  awk -f primefac.awk
function pfac(n,    r, f){
    r = ""; f = 2
    while (f <= n) {
        while(!(n % f)) {
            n = n / f
            r = r " " f
        }
        f = f + 2 - (f == 2)
    }
    return r
}

# For each line of input, print the prime factors.
{ print pfac($1) }
Output:

entering input on stdin

$
36
 2 2 3 3
77
 7 11
536870911
 233 1103 2089
8796093022207
 431 9719 2099863

BASIC

ANSI BASIC

Translation of: XPL0
Works with: Decimal BASIC
100 PROGRAM PrimeDecomposition
110 REM -(2^31) has most prime factors (31 twos) than other 32-bit signed integer.
120 DIM Facs(0 TO 30)
130 INPUT PROMPT "Enter a number: ": N 
140 CALL CalcFacs(N, Facs, FacsCnt)
150 REM There is at least one factor
160 FOR I = 0 TO FacsCnt - 1 
170    PRINT Facs(I);
180 NEXT I
190 PRINT
200 END
210 REM **
220 EXTERNAL SUB CalcFacs(N, Facs(), FacsCnt)
230 LET N = ABS(N)
240 LET FacsCnt = 0
250 IF N >= 2 THEN    
260    LET I = 2
270    DO WHILE I * I <= N      
280       IF MOD(N, I) = 0 THEN         
290          LET N = INT(N / I)
300          LET Facs(FacsCnt) = I 
310          LET FacsCnt = FacsCnt + 1
320          LET I = 2      
330       ELSE
340          LET I = I + 1
350       END IF
360    LOOP
370    LET Facs(FacsCnt) = N
380    LET FacsCnt = FacsCnt + 1
390 END IF
400 END SUB
Output:

3 runs.

Enter a number: 32
 2  2  2  2  2 
Enter a number: 2520
 2  2  2  3  3  5  7 
Enter a number: 13
 13 

Applesoft BASIC

9040 PF(0) = 0 : SC = 0
9050 FOR CA = 2 TO INT( SQR(I))
9060     IF I = 1 THEN RETURN
9070     IF INT(I / CA) * CA = I THEN GOSUB 9200 : GOTO 9060
9080     CA = CA + SC : SC = 1
9090 NEXT CA
9100 IF I = 1 THEN RETURN
9110 CA = I

9200 PF(0) = PF(0) + 1
9210 PF(PF(0)) = CA
9220 I = I / CA
9230 RETURN

ASIC

Translation of: XPL0
REM Prime decomposition
DIM Facs(14)
REM -(2^15) has most prime factors (15 twos) than other 16-bit signed integer.
PRINT "Enter a number";
INPUT N
GOSUB CalcFacs:
FacsCntM1 = FacsCnt - 1
FOR I = 0 TO FacsCntM1
  PRINT Facs(I);
NEXT I
PRINT
END

CalcFacs:
  N = ABS(N)
  FacsCnt = 0
  IF N >= 2 THEN
    I = 2
    SqrI = I * I
    WHILE SqrI <= N
      NModI = N MOD I
      IF NModI = 0 THEN
        N = N / I
        Facs(FacsCnt) = I
        FacsCnt = FacsCnt + 1
        I = 2
      ELSE
        I = I + 1
      ENDIF
      SqrI = I * I
    WEND
    Facs(FacsCnt) = N
    FacsCnt = FacsCnt + 1
  ENDIF
RETURN
Output:

3 runs.

Enter a number?32
     2     2     2     2     2
Enter a number?2520
     2     2     2     3     3     5     7
Enter a number?13
    13

Commodore BASIC

Works with: Commodore BASIC version 2.0

It's not easily possible to have arbitrary precision integers in PET basic, so here is at least a version using built-in data types (reals). On return from the subroutine starting at 9000 the global array pf contains the number of factors followed by the factors themselves:

9000 REM ----- function generate
9010 REM in ... i ... number
9020 REM out ... pf() ... factors
9030 REM mod ... ca ... pf candidate
9040 pf(0)=0 : ca=2 : REM special case
9050 IF i=1 THEN RETURN
9060 IF INT(i/ca)*ca=i THEN GOSUB 9200 : GOTO 9050
9070 FOR ca=3 TO INT( SQR(i)) STEP 2
9080 IF i=1 THEN RETURN
9090 IF INT(i/ca)*ca=i THEN GOSUB 9200 : GOTO 9080
9100 NEXT 
9110 IF i>1 THEN ca=i : GOSUB 9200
9120 RETURN
9200 pf(0)=pf(0)+1
9210 pf(pf(0))=ca
9220 i=i/ca
9230 RETURN

Craft Basic

define limit = 20, loops = 0

dim list[limit]

input "loops?", loops

for x = 1 to loops

	let n = x
	print n, " : ",
	gosub collectprimefactors

	for y = 0 to c

		if list[y] then

			print list[y], " ",
			let list[y] = 0

		endif

	next y

	print ""

next x

end

sub collectprimefactors

	let c = 0

	do

		if int(n mod 2) = 0 then

			let n = int(n / 2)
			let list[c] = 2
			let c = c + 1

		endif

		wait

	loop int(n mod 2) = 0

	for i = 3 to sqrt(n) step 2

		do

			if int(n mod i) = 0 then

				let n = int(n / i)
				let list[c] = i
				let c = c + 1

			endif

			wait

		loop int(n mod i) = 0

	next i

	if n > 2 then

		let list[c] = n
		let c = c + 1

	endif

return
Output:

loops? 20 1 : 2 : 2 3 : 3 4 : 2 2 5 : 5 6 : 2 3 7 : 7 8 : 2 2 2 9 : 3 3 10 : 2 5 11 : 11 12 : 2 2 3 13 : 13 14 : 2 7 15 : 3 5 16 : 2 2 2 2 17 : 17 18 : 2 3 3 19 : 19 20 : 2 2 5

FreeBASIC

' FB 1.05.0 Win64

Function isPrime(n As Integer) As Boolean
  If n Mod 2 = 0 Then Return n = 2
  If n Mod 3 = 0 Then Return n = 3
  Dim d As Integer = 5
  While d * d <= n
    If n Mod d = 0 Then Return False
    d += 2
    If n Mod d = 0 Then Return False
    d += 4
  Wend
  Return True
End Function

Sub getPrimeFactors(factors() As UInteger, n As UInteger)
  If n < 2 Then Return
  If isPrime(n) Then
    Redim factors(0 To 0)
    factors(0) = n
    Return
  End If
  Dim factor As UInteger = 2
  Do
    If n Mod factor = 0 Then
      Redim Preserve factors(0 To UBound(factors) + 1)
      factors(UBound(factors)) = factor
      n \= factor     
      If n = 1 Then Return
      If isPrime(n) Then factor = n
    Else
      factor += 1  
    End If    
  Loop
End Sub 

Dim factors() As UInteger
Dim primes(1 To 17) As UInteger = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59}
Dim n As UInteger 
For i As UInteger = 1 To 17
  Erase factors
  n = 1 Shl primes(i) - 1
  getPrimeFactors factors(), n
  Print "2^";Str(primes(i)); Tab(5); " - 1 = "; Str(n); Tab(30);" => ";
  For j As UInteger = LBound(factors) To UBound(factors)
     Print factors(j);
     If j < UBound(factors) Then Print " x ";
  Next j
  Print
Next i
Print
Print "Press any key to quit"
Sleep
Output:
2^2  - 1 = 3                  => 3
2^3  - 1 = 7                  => 7
2^5  - 1 = 31                 => 31
2^7  - 1 = 127                => 127
2^11 - 1 = 2047               => 23 x 89
2^13 - 1 = 8191               => 8191
2^17 - 1 = 131071             => 131071
2^19 - 1 = 524287             => 524287
2^23 - 1 = 8388607            => 47 x 178481
2^29 - 1 = 536870911          => 233 x 1103 x 2089
2^31 - 1 = 2147483647         => 2147483647
2^37 - 1 = 137438953471       => 223 x 616318177
2^41 - 1 = 2199023255551      => 13367 x 164511353
2^43 - 1 = 8796093022207      => 431 x 9719 x 2099863
2^47 - 1 = 140737488355327    => 2351 x 4513 x 13264529
2^53 - 1 = 9007199254740991   => 6361 x 69431 x 20394401
2^59 - 1 = 576460752303423487 => 179951 x 3203431780337

Palo Alto Tiny BASIC

Translation of: Tiny BASIC – More structured composition is used (though created with GOTOs).
10 REM PRIME DECOMPOSITION
20 INPUT "ENTER A NUMBER"N
30 PRINT "--------------"
40 LET N=ABS(N)
50 IF N<2 STOP
60 LET I=2
70 IF I*I>N GOTO 150
80 LET M=N-(N/I)*I
90 IF M#0 GOTO 130
100 LET N=N/I
110 PRINT I
120 LET I=2
130 IF M#0 LET I=I+1
140 GOTO 70
150 PRINT N
160 STOP
Output:

3 runs.

ENTER A NUMBER:2520
--------------
      2
      2
      2
      3
      3
      5
      7
ENTER A NUMBER:16384
--------------
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
      2
ENTER A NUMBER:13
--------------
     13

PureBasic

Works with: PureBasic version 4.41
CompilerIf #PB_Compiler_Debugger
  CompilerError "Turn off the debugger if you want reasonable speed in this example."
CompilerEndIf

Define.q

Procedure Factor(Number, List Factors())
  Protected I = 3
  While Number % 2 = 0
    AddElement(Factors())
    Factors() = 2
    Number / 2
  Wend
  Protected Max = Number
  While I <= Max And Number > 1
    While Number % I = 0
      AddElement(Factors())
      Factors() = I
      Number/I
    Wend
    I + 2
  Wend
EndProcedure

Number = 9007199254740991
NewList Factors()
time = ElapsedMilliseconds()
Factor(Number, Factors())
time = ElapsedMilliseconds()-time
S.s = "Factored " + Str(Number) + " in " + StrD(time/1000, 2) + " seconds."
ForEach Factors()
  S + #CRLF$ + Str(Factors())
Next
MessageRequester("", S)
Output:
Factored 9007199254740991 in 0.27 seconds.
6361
69431
20394401

S-BASIC

rem - return p mod q 
function mod(p, q = integer) = integer
end = p - q * (p/q)

dim integer factors(16)  rem log2(maxint) is sufficiently large

comment
  Find the prime factors of n and store in global array factors
  (arrays cannot be passed as parameters) and return the number
  found. If n is prime, it will be stored as the only factor.
end
function primefactors(n = integer) = integer
  var p, count = integer
  p = 2
  count = 1
  while n >= (p * p) do
     begin
       if mod(n, p) = 0 then
         begin
           factors(count) = p
           count = count + 1
           n = n / p
         end
       else
         p = p + 1
     end
   factors(count) = n
end = count

rem -- exercise the routine by checking odd numbers from 77 to 99

var i, k, nfound = integer

for i = 77 to 99 step 2
  nfound = primefactors(i)
  print i;"; ";
  for k = 1 to nfound
    print factors(k);
  next k
  print
next i
    
end
Output:
77: 7 11
79: 79
81: 3 3 3 3
83: 83
85: 5 17
87: 3 29
89: 89
91: 7 13
93: 3 31
95: 5 19
97: 97
99: 3 3 11

TI-83 BASIC

::prgmPREMIER
Disp "FACTEURS PREMIER"
Prompt N
If N<1:Stop
ClrList L1 ,L2
0→K
iPart(√(N))→L
N→M
For(I,2,L)
0→J
While fPart(M/I)=0
J+1→J
M/I→M
End
If J≠0
Then
K+1→K
I→L 1(K)
J→L2(K)
I→Z:prgmVSTR
"   "+Str0→Str1
If J≠1
Then
J→Z:prgmVSTR
Str1+"^"+Str0→Str1
End
Disp Str1
End
If M=1:Stop
End
If M≠1
Then
If M≠N
Then
M→Z:prgmVSTR
"   "+Str0→Str1
Disp Str1
Else
Disp "PREMIER"
End
End
::prgmVSTR
{Z,Z}→L5
{1,2}→L6
LinReg(ax+b)L6,L5,Y ₀
Equ►String(Y₀,Str0)
length(Str0)→O
sub(Str0,4,O-3)→Str0
ClrList L5,L6
DelVar Y
Output:
FACTEURS PREMIER
N=?1047552
   2^10
      3
     11
     31

Tiny BASIC

Works with: TinyBasic
10 PRINT "Enter a number."
20 INPUT N
25 PRINT "------"
30 IF N<0 THEN LET N = -N
40 IF N<2 THEN END
50 LET I = 2
60 IF I*I > N THEN GOTO 200
70 IF (N/I)*I = N THEN GOTO 300
80 LET I = I + 1
90 GOTO 60
200 PRINT N
210 END
300 LET N = N / I
310 PRINT I
320 GOTO 50
Output:
Enter a number.
32
------
2
2
2
2
2

Enter a number.
2520
------
2
2
2
3
3
5
7

Enter a number.
13
------
13

VBScript

Function PrimeFactors(n)
    arrP = Split(ListPrimes(n)," ")
    divnum = n
    Do Until divnum = 1
        'The -1 is to account for the null element of arrP
        For i = 0 To UBound(arrP)-1
            If divnum = 1 Then
                Exit For
            ElseIf divnum Mod arrP(i) = 0 Then
                divnum = divnum/arrP(i)
                PrimeFactors = PrimeFactors & arrP(i) & " "
            End If
        Next
    Loop
End Function

Function IsPrime(n)
    If n = 2 Then
        IsPrime = True
    ElseIf n <= 1 Or n Mod 2 = 0 Then
        IsPrime = False
    Else
        IsPrime = True
        For i = 3 To Int(Sqr(n)) Step 2
            If n Mod i = 0 Then
                IsPrime = False
                Exit For
            End If
        Next
    End If
End Function

Function ListPrimes(n)
    ListPrimes = ""
    For i = 1 To n
        If IsPrime(i) Then
            ListPrimes = ListPrimes & i & " "
        End If
    Next
End Function

WScript.StdOut.Write PrimeFactors(CInt(WScript.Arguments(0)))
WScript.StdOut.WriteLine
Output:
C:\>cscript /nologo primefactors.vbs 12
2 3 2

C:\>cscript /nologo primefactors.vbs 50
2 5 5

Batch file

Unfortunately Batch does'nt have a BigNum library so the maximum number that can be decomposed is 2^31-1

@echo off
::usage: cmd /k primefactor.cmd number 
setlocal enabledelayedexpansion

set /a compo=%1
if "%compo%"=="" goto:eof
set list=%compo%= (

set /a div=2 & call :loopdiv
set /a div=3 & call :loopdiv
set /a div=5,inc=2

:looptest
call :loopdiv
set /a div+=inc,inc=6-inc,div2=div*div
if %div2% lss %compo% goto looptest
if %compo% neq 1 set list= %list% %compo%
echo %list%)   & goto:eof

:loopdiv
set /a "res=compo%%div
if %res% neq 0 goto:eof
set list=%list% %div%,
set/a compo/=div
goto:loopdiv

Befunge

Works with: befungee

Handles safely integers only up to 250 (or ones which don't have prime divisors greater than 250).

& 211p > : 1 - #v_ 25*, @ > 11g:. /    v
                > : 11g %!|
                          > 11g 1+ 11p v
       ^                               <

BQN

An efficient Factor function using trial division and Pollard's rho algorithm is given in bqn-libs primes.bqn. The following standalone version is based on the trial division there, and builds in the sieve from Extensible prime generator.

Factor  { 𝕊n:
  # Prime sieve
  primes  0
  Sieve  { p 𝕊 ab:
    p(⍋↑⊣)b  lb-a
    E  {(((𝕩|-a)+𝕩×⊢))l}        # Indices of multiples of 𝕩
    a + / (1˜l) E{0¨(𝕨)𝕩}´ p     # Primes in segment [a,b)
  }
  # Factor by trial division
  r  0                              # Result list
  Try  {
    m  (1+⌊√n)  2×𝕩                 # Upper bound for factors this round
    𝕩<m ?                             # Stop if no factors
    primes  np  primes Sieve 𝕩m   # New primes
    {0=𝕩|n? r𝕩  n÷𝕩  𝕊𝕩 ;@}¨ np  # Try each one
    𝕊 m                               # Next segment
  ;@}
  Try 2
  r  1<n
}
Output:
   > Factor¨ 1232123+↕4  # Some factored numbers
┌─                           
 1232123  29 42487        
  1232124  2 2 3 102677    
  1232125  5 5 5 9857      
  1232126  2 7 17 31 167   
                            

Bruijn

Translation of: Haskell
:import std/Combinator .
:import std/List .
:import std/Math .

factors \divs primes
	divs y [[&[[&[[3 ⋅ 3 >? 4 case-1 (=?0 case-2 case-3)]] (quot-rem 2 1)]]]]
		case-1 4 >? (+1) {}4 empty
		case-2 3 : (5 1 (3 : 2))
		case-3 5 4 2

main [factors <$> ({ (+42) → (+50) })]
Output:

?> {{2t, 3t, 7t}, {43t}, {2t, 2t, 11t}, {3t, 3t, 5t}, {2t, 23t}, {47t}, {2t, 2t, 2t, 2t, 3t}, {7t, 7t}, {2t, 5t, 5t}}

Burlesque

blsq ) 12fC
{2 2 3}

C

Version 1

Relatively sophiscated sieve method based on size 30 prime wheel. The code does not pretend to handle prime factors larger than 64 bits. All 32-bit primes are cached with 137MB data. Cache data takes about a minute to compute the first time the program is run, which is also saved to the current directory, and will be loaded in a second if needed again.

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

typedef uint32_t pint;
typedef uint64_t xint;
typedef unsigned int uint;
#define PRIuPINT PRIu32     /* printf macro for pint */
#define PRIuXINT PRIu64     /* printf macro for xint */
#define MAX_FACTORS 63      /* because 2^64 is too large for xint */

uint8_t *pbits;

#define MAX_PRIME (~(pint)0)
#define MAX_PRIME_SQ 65535U
#define PBITS (MAX_PRIME / 30 + 1)

pint next_prime(pint);
int is_prime(xint);
void sieve(pint);

uint8_t bit_pos[30] = {
    0, 1<<0, 0, 0, 0,    0,
    0, 1<<1, 0, 0, 0, 1<<2,
    0, 1<<3, 0, 0, 0, 1<<4,
    0, 1<<5, 0, 0, 0, 1<<6,
    0,    0, 0, 0, 0, 1<<7,
};

uint8_t rem_num[] = { 1, 7, 11, 13, 17, 19, 23, 29 };

void init_primes()
{
    FILE *fp;
    pint s, tgt = 4;

    if (!(pbits = malloc(PBITS))) {
        perror("malloc");
        exit(1);
    }

    if ((fp = fopen("primebits", "r"))) {
        fread(pbits, 1, PBITS, fp);
        fclose(fp);
        return;
    }

    memset(pbits, 255, PBITS);
    for (s = 7; s <= MAX_PRIME_SQ; s = next_prime(s)) {
        if (s > tgt) {
            tgt *= 2;
            fprintf(stderr, "sieve %"PRIuPINT"\n", s);
        }
        sieve(s);
    }
    fp = fopen("primebits", "w");
    fwrite(pbits, 1, PBITS, fp);
    fclose(fp);
}

int is_prime(xint x)
{
    pint p;
    if (x > 5) {
        if (x < MAX_PRIME)
            return pbits[x/30] & bit_pos[x % 30];

        for (p = 2; p && (xint)p * p <= x; p = next_prime(p))
            if (x % p == 0) return 0;

        return 1;
    }
    return x == 2 || x == 3 || x == 5;
}

void sieve(pint p)
{
    unsigned char b[8];
    off_t ofs[8];
    int i, q;

    for (i = 0; i < 8; i++) {
        q = rem_num[i] * p;
        b[i] = ~bit_pos[q % 30];
        ofs[i] = q / 30;
    }

    for (q = ofs[1], i = 7; i; i--)
        ofs[i] -= ofs[i-1];

    for (ofs[0] = p, i = 1; i < 8; i++)
        ofs[0] -= ofs[i];

    for (i = 1; q < PBITS; q += ofs[i = (i + 1) & 7])
        pbits[q] &= b[i];
}

pint next_prime(pint p)
{
    off_t addr;
    uint8_t bits, rem;

    if (p > 5) {
        addr = p / 30;
        bits = bit_pos[ p % 30 ] << 1;
        for (rem = 0; (1 << rem) < bits; rem++);
        while (pbits[addr] < bits || !bits) {
            if (++addr >= PBITS) return 0;
            bits = 1;
            rem = 0;
        }
        if (addr >= PBITS) return 0;
        while (!(pbits[addr] & bits)) {
            rem++;
            bits <<= 1;
        }
        return p = addr * 30 + rem_num[rem];
    }

    switch(p) {
        case 2: return 3;
        case 3: return 5;
        case 5: return 7;
    }
    return 2;
}

int decompose(xint n, xint *f)
{
    pint p = 0;
    int i = 0;

    /* check small primes: not strictly necessary */
    if (n <= MAX_PRIME && is_prime(n)) {
        f[0] = n;
        return 1;
    }

    while (n >= (xint)p * p) {
        if (!(p = next_prime(p))) break;
        while (n % p == 0) {
            n /= p;
            f[i++] = p;
        }
    }
    if (n > 1) f[i++] = n;
    return i;
}

int main()
{
    int i, len;
    pint p = 0;
    xint f[MAX_FACTORS], po;

    init_primes();

    for (p = 1; p < 64; p++) {
        po = (1LLU << p) - 1;
        printf("2^%"PRIuPINT" - 1 = %"PRIuXINT, p, po);
        fflush(stdout);
        if ((len = decompose(po, f)) > 1)
            for (i = 0; i < len; i++)
                printf(" %c %"PRIuXINT, i?'x':'=', f[i]);
        putchar('\n');
    }

    return 0;
}

Using GNU Compiler Collection gcc extensions

Translation of: ALGOL 68
Works with: gcc version 4.3.0 20080428 (Red Hat 4.3.0-8)

Note: The following code sample is experimental as it implements python style iterators for (potentially) infinite sequences. C is not normally written this way, and in the case of this sample it requires the GCC "nested procedure" extension to the C language.

#include <limits.h>
#include <stdio.h>
#include <math.h>

typedef enum{false=0, true=1}bool;
const int max_lint = LONG_MAX;

typedef long long int lint;
#assert sizeof_long_long_int (LONG_MAX>=8) /* XXX */

/* the following line is the only time I have ever required "auto" */
#define FOR(i,iterator) auto bool lambda(i); yield_init = (void *)&lambda; iterator; bool lambda(i)
#define DO {
#define     YIELD(x) if(!yield(x))return
#define     BREAK return false
#define     CONTINUE return true
#define OD CONTINUE; }
/* Warning: _Most_ FOR(,){ } loops _must_ have a CONTINUE as the last statement. 
 *   Otherwise the lambda will return random value from stack, and may terminate early */

typedef void iterator, lint_iterator; /* hint at procedure purpose */
static volatile void *yield_init; /* not thread safe */
#define YIELDS(type) bool (*yield)(type) = yield_init

typedef unsigned int bits;
#define ELEM(shift, bits) ( (bits >> shift) & 0b1 )

bits cache = 0b0, cached = 0b0;
const lint upb_cache = 8 * sizeof(cache);

lint_iterator decompose(lint); /* forward declaration */

bool is_prime(lint n){
   bool has_factor = false, out = true;
/* for factor in decompose(n) do */
   FOR(lint factor, decompose(n)){
       if( has_factor ){ out = false; BREAK; }
       has_factor = true;
       CONTINUE;
   }
   return out;
}

bool is_prime_cached (lint n){
    lint half_n = n / 2 - 2;
    if( half_n <= upb_cache){
        /* dont cache the initial four, nor the even numbers */
        if (ELEM(half_n,cached)){
            return ELEM(half_n,cache);
        } else {
            bool out = is_prime(n);
            cache = cache | out << half_n;
            cached = cached | 0b1 << half_n;
            return out;
        }
    } else {
        return is_prime(n);
    }
}

lint_iterator primes (){ 
    YIELDS(lint);
    YIELD(2);
    lint n = 3;
    while( n < max_lint - 2 ){
        YIELD(n);
        n += 2;
        while( n < max_lint - 2 && ! is_prime_cached(n) ){
            n += 2;
        }
    }
}

lint_iterator decompose (lint in_n){
    YIELDS(lint);
    lint n = in_n;
 /* for p in primes do */
    FOR(lint p, primes()){
        if( p*p > n ){
            BREAK;
        } else {
            while( n % p == 0 ){
                YIELD(p);
                n = n / p;
            }
        }
        CONTINUE;
    }
    if( n > 1 ){
        YIELD(n);
    }
}

main(){
    FOR(lint m, primes()){
        lint p = powl(2, m) - 1;
        printf("2**%lld-1 = %lld, with factors:",m,p);
        FOR(lint factor, decompose(p)){
            printf(" %lld",factor);
            fflush(stdout);
            CONTINUE;
        }
        printf("\n",m);
        if( m >= 59 )BREAK;
        CONTINUE;
    }
}
Output:
2**2-1 = 3, with factors: 3
2**3-1 = 7, with factors: 7
2**5-1 = 31, with factors: 31
2**7-1 = 127, with factors: 127
2**11-1 = 2047, with factors: 23 89
2**13-1 = 8191, with factors: 8191
2**17-1 = 131071, with factors: 131071
2**19-1 = 524287, with factors: 524287
2**23-1 = 8388607, with factors: 47 178481
2**29-1 = 536870911, with factors: 233 1103 2089
2**31-1 = 2147483647, with factors: 2147483647
2**37-1 = 137438953471, with factors: 223 616318177
2**41-1 = 2199023255551, with factors: 13367 164511353
2**43-1 = 8796093022207, with factors: 431 9719 2099863
2**47-1 = 140737488355327, with factors: 2351 4513 13264529
2**53-1 = 9007199254740991, with factors: 6361 69431 20394401
2**59-1 = 576460752303423487, with factors: 179951 3203431780337

Note: gcc took 487,719 BogoMI to complete the example.

To understand what was going on with the above code, pass it through cpp and read the outcome. Translated into normal C code sans the function call overhead, it's really this (the following uses a adjustable cache, although setting it beyond a few thousands doesn't gain further benefit):

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
 
typedef uint32_t pint;
typedef uint64_t xint;
typedef unsigned int uint;
 
int is_prime(xint);
 
inline int next_prime(pint p)
{
    if (p == 2) return 3;
    for (p += 2; p > 1 && !is_prime(p); p += 2);
    if (p == 1) return 0;
    return p;
}
 
int is_prime(xint n)
{
#   define NCACHE 256
#   define S (sizeof(uint) * 2)
    static uint cache[NCACHE] = {0};
 
    pint p = 2;
    int ofs, bit = -1;
 
    if (n < NCACHE * S) {
        ofs = n / S;
        bit = 1 << ((n & (S - 1)) >> 1);
        if (cache[ofs] & bit) return 1;
    }
 
    do {
        if (n % p == 0) return 0;
        if (p * p > n) break;
    } while ((p = next_prime(p)));
 
    if (bit != -1) cache[ofs] |= bit;
    return 1;
}
 
int decompose(xint n, pint *out)
{
    int i = 0;
    pint p = 2;
    while (n > p * p) {
        while (n % p == 0) {
            out[i++] = p;
            n /= p;
        }
        if (!(p = next_prime(p))) break;
    }
    if (n > 1) out[i++] = n;
    return i;
}
 
int main()
{
    int i, j, len;
    xint z;
    pint out[100];
    for (i = 2; i < 64; i = next_prime(i)) {
        z = (1ULL << i) - 1;
        printf("2^%d - 1 = %llu = ", i, z);
        fflush(stdout);
        len = decompose(z, out);
        for (j = 0; j < len; j++)
            printf("%u%s", out[j], j < len - 1 ? " x " : "\n");
    }
 
    return 0;
}


Version 2

typedef unsigned long long int ulong; // define a type that represent the limit (64-bit)

ulong mod_mul(ulong a, ulong b, const ulong mod) {
	ulong res = 0, c; // return (a * b) % mod, avoiding overflow errors while doing modular multiplication.
	for (b %= mod; a; a & 1 ? b >= mod - res ? res -= mod : 0, res += b : 0, a >>= 1, (c = b) >= mod - b ? c -= mod : 0, b += c);
	return res % mod;
}

ulong mod_pow(ulong n, ulong exp, const ulong mod) {
	ulong res = 1; // return (n ^ exp) % mod
	for (n %= mod; exp; exp & 1 ? res = mod_mul(res, n, mod) : 0, n = mod_mul(n, n, mod), exp >>= 1);
	return res;
}

ulong square_root(const ulong N) {
	ulong res = 0, rem = N, c, d;
	for (c = 1 << 62; c; c >>= 2) {
		d = res + c;
		res >>= 1;
		if (rem >= d)
			rem -= d, res += c;
	} // returns the square root of N.
	return res;
}

int is_prime(const ulong N) {
	ulong i = 1; // return a truthy value about the primality of N.
	if (N > 1) for (; i < 64 && mod_pow(i, N - 1, N) <= 1; ++i);
	return i == 64;
}

ulong pollard_rho(const ulong N) {
	// Require : N is a composite number, not a square.
	// Ensure : res is a non-trivial factor of N.
	// Option : change the timeout, change the rand function.
	static const int timeout = 18;
	static unsigned long long rand_val = 2994439072U;
	rand_val = (rand_val * 1025416097U + 286824428U) % 4294967291LLU;
	ulong res = 1, a, b, c, i = 0, j = 1, x = 1, y = 1 + rand_val % (N - 1);
	for (; res == 1; ++i) {
		if (i == j) {
			if (j >> timeout)
				break;
			j <<= 1;
			x = y;
		}
		a = y, b = y; // performs y = (y * y) % N
		for (y = 0; a; a & 1 ? b >= N - y ? y -= N : 0, y += b : 0, a >>= 1, (c = b) >= N - b ? c -= N : 0, b += c);
		y = (1 + y) % N;
		for (a = y > x ? y - x : x - y, b = N; (a %= b) && (b %= a);); // compute the gcd(abs(y - x), N);
		res = a | b;
	}
	return res;
}

void factor(const ulong N, ulong *array) {
	// very basic manager that fill the given array (the size of the result is the first array element)	
	// it does not perform initial trial divisions, which is generally highly recommended.
	if (N < 4 || is_prime(N)) {
		if (N > 1 || !*array) array[++*array] = N;
		return;
	}
	ulong x = square_root(N);
	if (x * x != N) x = pollard_rho(N);
	factor(x, array);
	factor(N / x, array);
}

#include <stdio.h>

int main(void) {
	// simple test.
	unsigned long long n = 18446744073709551615U;
	ulong fac[65] = {0};
	factor(n, fac);
	for (ulong i = 1; i <= *fac; ++i)
		printf("* %llu\n", fac[i]);
}

C#

using System;
using System.Collections.Generic;

namespace PrimeDecomposition
{
    class Program
    {
        static void Main(string[] args)
        {
            GetPrimes(12);
        }

        static List<int> GetPrimes(decimal n)
        {
            List<int> storage = new List<int>();
            while (n > 1)
            {
                int i = 1;
                while (true)
                {
                    if (IsPrime(i))
                    {                        
                        if (((decimal)n / i) == Math.Round((decimal) n / i))
                        {
                            n /= i;
                            storage.Add(i);                            
                            break;
                        }
                    }
                    i++;
                }
            }
            return storage;
        }

        static bool IsPrime(int n)
        {
            if (n <= 1) return false;
            for (int i = 2; i <= Math.Sqrt(n); i++)
                if (n % i == 0) return false;
            return true;
        }
    }
}

Simple trial division

This version a translation from Java of the sample presented by Robert C. Martin during a TDD talk at NDC 2011. Although this three-line algorithm does not mention anything about primes, the fact that factors are taken out of the number n in ascending order garantees the list will only contain primes.

using System.Collections.Generic;

namespace PrimeDecomposition
{
    public class Primes
    {
        public List<int> FactorsOf(int n)
        {
            var factors = new List<int>();

            for (var divisor = 2; n > 1; divisor++)
                for (; n % divisor == 0; n /= divisor)
                    factors.Add(divisor);

            return factors;
        }
}

C++

Works with: g++ version 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)
Library: GMP
#include <iostream>
#include <gmpxx.h>

// This function template works for any type representing integers or
// nonnegative integers, and has the standard operator overloads for
// arithmetic and comparison operators, as well as explicit conversion
// from int.
//
// OutputIterator must be an output iterator with value_type Integer. 
// It receives the prime factors.
template<typename Integer, typename OutputIterator>
 void decompose(Integer n, OutputIterator out)
{
  Integer i(2);

  while (n != 1)
  {
    while (n % i == Integer(0))
    {
      *out++ = i;
      n /= i;
    }
    ++i;
  }
}

// this is an output iterator similar to std::ostream_iterator, except
// that it outputs the separation string *before* the value, but not
// before the first value (i.e. it produces an infix notation).
template<typename T> class infix_ostream_iterator:
  public std::iterator<T, std::output_iterator_tag>
{
  class Proxy;
  friend class Proxy;
  class Proxy
  {
  public:
    Proxy(infix_ostream_iterator& iter): iterator(iter) {}
    Proxy& operator=(T const& value)
    {
      if (!iterator.first)
      {
        iterator.stream << iterator.infix;
      }
      iterator.stream << value;
    }
  private:
    infix_ostream_iterator& iterator;
  };
public:
  infix_ostream_iterator(std::ostream& os, char const* inf):
    stream(os),
    first(true),
    infix(inf)
  {
  }
  infix_ostream_iterator& operator++() { first = false; return *this; }
  infix_ostream_iterator operator++(int)
  {
    infix_ostream_iterator prev(*this);
    ++*this;
    return prev;
  }
  Proxy operator*() { return Proxy(*this); }
private:
  std::ostream& stream;
  bool first;
  char const* infix;
};

int main()
{
  std::cout << "please enter a positive number: ";
  mpz_class number;
  std::cin >> number;
  
  if (number <= 0)
    std::cout << "this number is not positive!\n;";
  else
  {
    std::cout << "decomposition: ";
    decompose(number, infix_ostream_iterator<mpz_class>(std::cout, " * "));
    std::cout << "\n";
  }
}

Simple trial division

// Factorization by trial division in C++11

#include <iostream>
#include <vector>

using long_pair = std::pair<long,long>;
using lp_vec = std::vector<long_pair>;

lp_vec factorize(long n)
{
    lp_vec fs;
    int cnt = 0;
    for (;n%2==0; n/=2) cnt++;    // optimized by compiler
    if (cnt > 0)
        fs.push_back({2, cnt});
    for (long i=3; i*i<=n; i+=2) {
        cnt = 0;
        for (;n%i==0; n/=i) cnt++;
        if (cnt>0)
            fs.push_back({i, cnt});
    }
    if (n>1)
        fs.push_back({n, 1});
    return fs;
}

int main() {
    long n;
    std::cin >> n;
    auto fs = factorize(n);
    for (auto fp : fs) {
        std::cout << fp.first << "^" << fp.second << "\n";
    }
    return 0;
}

Clojure

;;; No stack consuming algorithm
(defn factors
  "Return a list of factors of N."
  ([n]
    (factors n 2 ()))
  ([n k acc]
    (if (= 1 n)      
      acc
      (if (= 0 (rem n k))        
        (recur (quot n k) k (cons k acc))
        (recur n (inc k) acc)))))

Common Lisp

;;; Recursive algorithm
(defun factor (n)
  "Return a list of factors of N."
  (when (> n 1)
    (loop with max-d = (isqrt n)
      for d = 2 then (if (evenp d) (+ d 1) (+ d 2)) do
      (cond ((> d max-d) (return (list n))) ; n is prime
        ((zerop (rem n d)) (return (cons d (factor (truncate n d)))))))))
;;; Tail-recursive version
(defun factor (n &optional (acc '()))
  (when (> n 1) (loop with max-d = (isqrt n)
           for d = 2 then (if (evenp d) (1+ d) (+ d 2)) do
             (cond ((> d max-d) (return (cons (list n 1) acc)))
               ((zerop (rem n d)) 
                (return (factor (truncate n d) (if (eq d (caar acc))
                                   (cons 
                                (list (caar acc) (1+ (cadar acc)))
                                (cdr acc))
                                   (cons (list d 1) acc)))))))))

D

import std.stdio, std.bigint, std.algorithm, std.traits, std.range;

Unqual!T[] decompose(T)(in T number) pure nothrow
in {
    assert(number > 1);
} body {
    typeof(return) result;
    Unqual!T n = number;

    for (Unqual!T i = 2; n % i == 0; n /= i)
        result ~= i;
    for (Unqual!T i = 3; n >= i * i; i += 2)
        for (; n % i == 0; n /= i)
            result ~= i;

    if (n != 1)
        result ~= n;
    return result;
}

void main() {
    writefln("%(%s\n%)", iota(2, 10).map!decompose);
    decompose(1023 * 1024).writeln;
    BigInt(2 * 3 * 5 * 7 * 11 * 11 * 13 * 17).decompose.writeln;
    decompose(16860167264933UL.BigInt * 179951).writeln;
    decompose(2.BigInt ^^ 100_000).group.writeln;
}
Output:
[2]
[3]
[2, 2]
[5]
[2, 3]
[7]
[2, 2, 2]
[3, 3]
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 11, 31]
[2, 3, 5, 7, 11, 11, 13, 17]
[179951, 16860167264933]
[Tuple!(BigInt, uint)(2, 100000)]

Delphi

Translation of: C#
program Prime_decomposition;

{$APPTYPE CONSOLE}

uses
  System.SysUtils;

function IsPrime(n: UInt64): Boolean;
var
  i: Integer;
begin
  if n <= 1 then
    exit(False);

  i := 2;
  while i < Sqrt(n) do
  begin
    if n mod i = 0 then
      exit(False);
    inc(i);
  end;

  Result := True;
end;

function GetPrimes(n: UInt64): TArray<UInt64>;
var
  i: Integer;
begin
  while n > 1 do
  begin
    i := 1;
    while True do
    begin
      if IsPrime(i) then
      begin
        if n / i = (round(n / i)) then
        begin
          n := n div i;
          SetLength(Result, Length(Result) + 1);
          Result[High(Result)] := i;
          Break;
        end;
      end;
      inc(i);
    end;
  end;
end;

begin
  for var v in GetPrimes(12) do
    write(v, ' ');
  readln;
end.

E

This example assumes a function isPrime and was tested with this one. It could use a self-referential implementation such as the Python task, but the original author of this example did not like the ordering dependency involved.

def primes := {
    var primesCache := [2]
    /** A collection of all prime numbers. */
    def primes {
        to iterate(f) {
            primesCache.iterate(f)
            for x in (int > primesCache.last()) {
                if (isPrime(x)) {
                    f(primesCache.size(), x)
                    primesCache with= x
                }
            }
        }
    }
}

def primeDecomposition(var x :(int > 0)) {
    var factors := []
    for p in primes {
        while (x % p <=> 0) {
            factors with= p
            x //= p
        }
        if (x <=> 1) {
            break
        }
    }
    return factors
}

EasyLang

func[] decompose num .
   t = 2
   while t * t <= num
      if num mod t = 0
         primes[] &= t
         num = num / t
      else
         t += 1
      .
   .
   primes[] &= num
   return primes[]
.
for v in [ 27 1232125 9007199254740991 ]
   print decompose v
.
Output:
[ 3 3 3 ]
[ 5 5 5 9857 ]
[ 6361 69431 20394401 ]

EchoLisp

The built-in prime-factors function performs the task.

(prime-factors 1024)
    (2 2 2 2 2 2 2 2 2 2)

(lib 'bigint)
;; 2^59 - 1
(prime-factors (1- (expt 2 59)))
     (179951 3203431780337)

(prime-factors 100000000000000000037)
     (31 821 66590107 59004541)

Eiffel

Uses the feature prime from the Task Primality by Trial Devision in the contract to check if the Result contains only prime numbers.

class
    PRIME_DECOMPOSITION

feature

    factor (p: INTEGER): ARRAY [INTEGER]
            -- Prime decomposition of 'p'.
        require
            p_positive: p > 0
        local
            div, i, next, rest: INTEGER
        do
            create Result.make_empty
            if p = 1 then
                Result.force (1, 1)
            end
            div := 2
            next := 3
            rest := p
            from
                i := 1
            until
                rest = 1
            loop
                from
                until
                    rest \\ div /= 0
                loop
                    Result.force (div, i)
                    rest := (rest / div).floor
                    i := i + 1
                end
                div := next
                next := next + 2
            end
        ensure
            is_divisor: across Result as r all p \\ r.item = 0 end
            is_prime: across Result as r all prime (r.item) end
        end

The test was done in an application class. (Similar as in other Eiffel examples (ex. Selectionsort).)

factor(5000)

Output:
2x2x2x5x5x5x5

Ela

Translation of: F#
open integer //arbitrary sized integers

decompose_prime n = loop n 2I
  where 
    loop c p | c < (p * p) = [c]
             | c % p == 0I = p :: (loop (c / p) p)
             | else = loop c (p + 1I)

decompose_prime 600851475143I
Output:
[71,839,1471,6857]

Elm

module Main exposing (main)

import Html exposing (Html, div, h1, text)
import Html.Attributes exposing (style)

-- See live:
-- <nowiki>https://ellie-app.com/pMYxVPQ4fvca1</nowiki>

accumulator : List Int
accumulator =
    []

compositeNr = 84894624407

ts =
    showFactors compositeNr 2 accumulator


main =
        div
            [ style "margin" "5%"
            , style "font-size" "1.5em"
            , style "color" "blue"
            ]
            [ h1 [] [ text "Prime Factorizer" ]
            , text
                ("Prime factors: "
                    ++ listAsString ts
                    ++ " from number "
                    ++ String.fromInt (List.product ts)
                )
            ]


showFactors : Int -> Int -> List Int -> List Int
showFactors number factor acc =
    if number < 2 then
        acc
        -- returns the final result if number < 2
    else if
        modBy factor number == 0
        -- modulo used to get prime factors
    then let
            v2 : List Int
            v2 =
                factor :: acc
            number2 : Int
            number2 =
                number // factor
        in
        showFactors number2 factor v2
        -- recursive call
        -- this modulus function is used
        -- in order to output factor !=2
    else
        let
            factor2 : Int
            factor2 =
                factor + 1
        in
        showFactors number factor2 acc

listAsString : List Int -> String
listAsString myList =
    List.map String.fromInt myList
        |> List.map (\el -> " " ++ el)
        |> List.foldl (++) " "
Output:
 Prime factors: 3067 4357 6353 from number 84894624407
 Prime factors: 2^30 3 from number 3221225472

Elixir

defmodule Prime do
  def decomposition(n), do: decomposition(n, 2, [])
  
  defp decomposition(n, k, acc) when n < k*k, do: Enum.reverse(acc, [n])
  defp decomposition(n, k, acc) when rem(n, k) == 0, do: decomposition(div(n, k), k, [k | acc])
  defp decomposition(n, k, acc), do: decomposition(n, k+1, acc)
end

prime = Stream.iterate(2, &(&1+1)) |> 
        Stream.filter(fn n-> length(Prime.decomposition(n)) == 1 end) |>
        Enum.take(17)
mersenne = Enum.map(prime, fn n -> {n, round(:math.pow(2,n)) - 1} end)
Enum.each(mersenne, fn {n,m} ->
  :io.format "~3s :~20w = ~s~n", ["M#{n}", m, Prime.decomposition(m) |> Enum.join(" x ")]
end)
Output:
 M2 :                   3 = 3
 M3 :                   7 = 7
 M5 :                  31 = 31
 M7 :                 127 = 127
M11 :                2047 = 23 x 89
M13 :                8191 = 8191
M17 :              131071 = 131071
M19 :              524287 = 524287
M23 :             8388607 = 47 x 178481
M29 :           536870911 = 233 x 1103 x 2089
M31 :          2147483647 = 2147483647
M37 :        137438953471 = 223 x 616318177
M41 :       2199023255551 = 13367 x 164511353
M43 :       8796093022207 = 431 x 9719 x 2099863
M47 :     140737488355327 = 2351 x 4513 x 13264529
M53 :    9007199254740991 = 6361 x 69431 x 20394401
M59 :  576460752303423487 = 179951 x 3203431780337

Erlang

% no stack consuming version

factors(N) ->
     factors(N,2,[]).

factors(1,_,Acc) -> Acc;
factors(N,K,Acc) when N < K*K -> [N|Acc];
factors(N,K,Acc) when N rem K == 0 ->
    factors(N div K,K, [K|Acc]);
factors(N,K,Acc) ->
    factors(N,K+1,Acc).

ERRE

Translation of: Commodore BASIC
PROGRAM DECOMPOSE


!
! for rosettacode.org
!

!VAR NUM,J

DIM PF[100]

PROCEDURE STORE_FACTOR
   PF[0]=PF[0]+1
   PF[PF[0]]=CA
   I=I/CA
END PROCEDURE

PROCEDURE DECOMP(I)
  PF[0]=0  CA=2 ! special case
  LOOP
     IF I=1 THEN EXIT PROCEDURE END IF
     EXIT IF INT(I/CA)*CA<>I
     STORE_FACTOR
  END LOOP
  FOR CA=3 TO INT(SQR(I)) STEP 2 DO
     LOOP
        IF I=1 THEN EXIT PROCEDURE END IF
        EXIT IF INT(I/CA)*CA<>I
        STORE_FACTOR
     END LOOP
  END FOR
  IF I>1 THEN CA=I STORE_FACTOR END IF
END PROCEDURE

BEGIN
 ! ----- function generate
 ! in ...  I     ... number
 ! out ... PF[]  ... factors
 !         PF[0] ... # of factors
 ! mod ... CA    ... pr.fact. candidate
 PRINT(CHR$(12);) !CLS
 INPUT("Numero ",NUM)
 DECOMP(NUM)
 PRINT(NUM;"=";)
 FOR J=1 TO PF[0] DO
    PRINT(PF[J];)
 END FOR
 PRINT
END PROGRAM

Ezhil

## இந்த நிரல் தரப்பட்ட எண்ணின் பகாஎண் கூறுகளைக் கண்டறியும்

நிரல்பாகம் பகாஎண்ணா(எண்1)

  ## இந்த நிரல்பாகம் தரப்பட்ட எண் பகு எண்ணா அல்லது பகா எண்ணா என்று கண்டறிந்து சொல்லும்
  ## பகுஎண் என்றால் 0 திரும்பத் தரப்படும்
  ## பகாஎண் என்றால் 1 திரும்பத் தரப்படும்

  @(எண்1 < 0) ஆனால்

   ## எதிர்மறை எண்களை நேராக்குதல்

    எண்1 = எண்1 * (-1)

  முடி

  @(எண்1 < 2) ஆனால்

   ## பூஜ்ஜியம், ஒன்று ஆகியவை பகா எண்கள் அல்ல

    பின்கொடு 0

  முடி

  @(எண்1 == 2) ஆனால்

    ## இரண்டு என்ற எண் ஒரு பகா எண்

    பின்கொடு 1

  முடி

  மீதம் = எண்1%2

  @(மீதம் == 0) ஆனால்

    ## இரட்டைப்படை எண், ஆகவே, இது பகா எண் அல்ல

    பின்கொடு 0

  முடி

    எண்1வர்க்கமூலம் = எண்1^0.5

    @(எண்2 = 3, எண்2 <= எண்1வர்க்கமூலம், எண்2 = எண்2 + 2) ஆக

      மீதம்1 = எண்1%எண்2

      @(மீதம்1 == 0) ஆனால்

        ## ஏதேனும் ஓர் எண்ணால் முழுமையாக வகுபட்டுவிட்டது, ஆகவே அது பகா எண் அல்ல

        பின்கொடு 0

      முடி

    முடி

    பின்கொடு 1

முடி

நிரல்பாகம் பகுத்தெடு(எண்1)

  ## இந்த எண் தரப்பட்ட எண்ணின் பகா எண் கூறுகளைக் கண்டறிந்து பட்டியல் இடும்

  கூறுகள் = பட்டியல்()

  @(எண்1 < 0) ஆனால்

    ## எதிர்மறை எண்களை நேராக்குதல்

    எண்1 = எண்1 * (-1)

  முடி

  @(எண்1 <= 1) ஆனால்

    ## ஒன்று அல்லது அதற்குக் குறைவான எண்களுக்குப் பகா எண் விகிதம் கண்டறியமுடியாது

    பின்கொடு கூறுகள்

  முடி
  
  @(பகாஎண்ணா(எண்1) == 1) ஆனால்

    ## தரப்பட்ட எண்ணே பகா எண்ணாக அமைந்துவிட்டால், அதற்கு அதுவே பகாஎண் கூறு ஆகும்

    பின்இணை(கூறுகள், எண்1)
    பின்கொடு கூறுகள்

  முடி

  தாற்காலிகஎண் = எண்1

  எண்2 = 2

  @(எண்2 <= தாற்காலிகஎண்) வரை

    விடை1 = பகாஎண்ணா(எண்2)
    மீண்டும்தொடங்கு = 0

    @(விடை1 == 1) ஆனால்

      விடை2 = தாற்காலிகஎண்%எண்2
      
      @(விடை2 == 0) ஆனால்

        ## பகா எண்ணால் முழுமையாக வகுபட்டுள்ளது, அதனைப் பட்டியலில் இணைக்கிறோம்

        பின்இணை(கூறுகள், எண்2)
        தாற்காலிகஎண் = தாற்காலிகஎண்/எண்2

        ## மீண்டும் இரண்டில் தொடங்கி இதே கணக்கிடுதலைத் தொடரவேண்டும்

        எண்2 = 2
        மீண்டும்தொடங்கு = 1

      முடி
      
    முடி

    @(மீண்டும்தொடங்கு == 0) ஆனால்

      ## அடுத்த எண்ணைத் தேர்ந்தெடுத்துக் கணக்கிடுதலைத் தொடரவேண்டும்

      எண்2 = எண்2 + 1

    முடி

  முடி

  பின்கொடு கூறுகள்

முடி

 = int(உள்ளீடு("உங்களுக்குப் பிடித்த ஓர் எண்ணைத் தாருங்கள்: "))

பகாஎண்கூறுகள் = பட்டியல்()

பகாஎண்கூறுகள் = பகுத்தெடு()

பதிப்பி "நீங்கள் தந்த எண்ணின் பகா எண் கூறுகள் இவை: ", பகாஎண்கூறுகள்

F#

let decompose_prime n = 
  let rec loop c p =
    if c < (p * p) then [c]
    elif c % p = 0I then p :: (loop (c/p) p)
    else loop c (p + 1I)
 
  loop n 2I
  
printfn "%A" (decompose_prime 600851475143I)
Output:
[71; 839; 1471; 6857]

Factor

factors from the math.primes.factors vocabulary converts a number into a sequence of its prime divisors; the rest of the code prints this sequence.

USING: io kernel math math.parser math.primes.factors sequences ;

27720 factors 
[ number>string ] map
" " join print ;

FALSE

[2[\$@$$*@>~][\$@$@$@$@\/*=$[%$." "$@\/\0~]?~[1+1|]?]#%.]d:
27720d;!   {2 2 2 3 3 5 7 11}

Forth

: decomp ( n -- )
  2
  begin  2dup dup * >=
  while  2dup /mod swap
         if   drop  1+ 1 or    \ next odd number
         else -rot nip  dup .
         then
  repeat
  drop . ;

Fortran

Works with: Fortran version 90 and later
module PrimeDecompose
  implicit none

  integer, parameter :: huge = selected_int_kind(18)
  ! => integer(8) ... more fails on my 32 bit machine with gfortran(gcc) 4.3.2

contains

  subroutine find_factors(n, d)
    integer(huge), intent(in) :: n
    integer, dimension(:), intent(out) :: d

    integer(huge) :: div, next, rest
    integer :: i

    i = 1
    div = 2; next = 3; rest = n
    
    do while ( rest /= 1 )
       do while ( mod(rest, div) == 0 ) 
          d(i) = div
          i = i + 1
          rest = rest / div
       end do
       div = next
       next = next + 2
    end do

  end subroutine find_factors

end module PrimeDecompose
program Primes
  use PrimeDecompose
  implicit none

  integer, dimension(100) :: outprimes
  integer i

  outprimes = 0

  call find_factors(12345649494449_huge, outprimes)

  do i = 1, 100
     if ( outprimes(i) == 0 ) exit
     print *, outprimes(i)
  end do

end program Primes


Frink

Frink has a built-in factoring function which uses wheel factoring, trial division, Pollard p-1 factoring, and Pollard rho factoring. It also recognizes some special forms (e.g. Mersenne numbers) and handles them efficiently.

println[factor[2^508-1]]
Output:

(total process time including JVM startup = 1.515 s)

[[3, 1], [5, 1], [509, 1], [18797, 1], [26417, 1], [72118729, 1], [140385293, 1], [2792688414613, 1], [8988357880501, 1], [90133566917913517709497, 1], [56713727820156410577229101238628035243, 1], [170141183460469231731687303715884105727, 1]]

Note that this means 31 * 51 * ...

GAP

Built-in function :

FactorsInt(2^67-1); 
# [ 193707721, 761838257287 ]

Or using the FactInt package :

FactInt(2^67-1);    
# [ [ 193707721, 761838257287 ], [  ] ]

Go

package main

import (
    "fmt"
    "math/big"
)

var (
    ZERO = big.NewInt(0)
    ONE  = big.NewInt(1)
)

func Primes(n *big.Int) []*big.Int {
    res := []*big.Int{}
    mod, div := new(big.Int), new(big.Int)
    for i := big.NewInt(2); i.Cmp(n) != 1; {
        div.DivMod(n, i, mod)
        for mod.Cmp(ZERO) == 0 {
            res = append(res, new(big.Int).Set(i))
            n.Set(div)
            div.DivMod(n, i, mod)
        }
        i.Add(i, ONE)
    }
    return res
}

func main() {
    vals := []int64{
        1 << 31,
        1234567,
        333333,
        987653,
        2 * 3 * 5 * 7 * 11 * 13 * 17,
    }
    for _, v := range vals {
        fmt.Println(v, "->", Primes(big.NewInt(v)))
    }
}
Output:
2147483648 -> [2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
1234567 -> [127 9721]
333333 -> [3 3 7 11 13 37]
987653 -> [29 34057]
510510 -> [2 3 5 7 11 13 17]

Groovy

This solution uses the fact that a given factor must be prime if no smaller factor divides it evenly, so it does not require an "isPrime-like function", assumed or otherwise.

def factorize = { long target -> 
 
    if (target == 1) return [1L]
 
    if (target < 4) return [1L, target]
 
    def targetSqrt = Math.sqrt(target)
    def lowfactors = (2L..targetSqrt).findAll { (target % it) == 0 }
    if (lowfactors == []) return [1L, target]
    def nhalf = lowfactors.size() - ((lowfactors[-1]**2 == target) ? 1 : 0)
 
    [1] + lowfactors + (0..<nhalf).collect { target.intdiv(lowfactors[it]) }.reverse() + [target]
}

def decomposePrimes = { target ->
    def factors = factorize(target) - [1]
    def primeFactors = []
    factors.eachWithIndex { f, i ->
        if (i==0 || factors[0..<i].every {f % it != 0}) {
            primeFactors << f
            def pfPower = f*f
            while (target % pfPower == 0) {
                primeFactors << f
                pfPower *= f
            }
        }
    }
    primeFactors
}
Test #1:
((1..30) + [97*4, 1000, 1024, 333333]).each { println ([number:it, primes:decomposePrimes(it)]) }
Output #1:
[number:1, primes:[]]
[number:2, primes:[2]]
[number:3, primes:[3]]
[number:4, primes:[2, 2]]
[number:5, primes:[5]]
[number:6, primes:[2, 3]]
[number:7, primes:[7]]
[number:8, primes:[2, 2, 2]]
[number:9, primes:[3, 3]]
[number:10, primes:[2, 5]]
[number:11, primes:[11]]
[number:12, primes:[2, 2, 3]]
[number:13, primes:[13]]
[number:14, primes:[2, 7]]
[number:15, primes:[3, 5]]
[number:16, primes:[2, 2, 2, 2]]
[number:17, primes:[17]]
[number:18, primes:[2, 3, 3]]
[number:19, primes:[19]]
[number:20, primes:[2, 2, 5]]
[number:21, primes:[3, 7]]
[number:22, primes:[2, 11]]
[number:23, primes:[23]]
[number:24, primes:[2, 2, 2, 3]]
[number:25, primes:[5, 5]]
[number:26, primes:[2, 13]]
[number:27, primes:[3, 3, 3]]
[number:28, primes:[2, 2, 7]]
[number:29, primes:[29]]
[number:30, primes:[2, 3, 5]]
[number:388, primes:[2, 2, 97]]
[number:1000, primes:[2, 2, 2, 5, 5, 5]]
[number:1024, primes:[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]]
[number:333333, primes:[3, 3, 7, 11, 13, 37]]
Test #2:
def isPrime = {factorize(it).size() == 2}
(1..60).step(2).findAll(isPrime).each { println ([number:"2**${it}-1", value:2**it-1, primes:decomposePrimes(2**it-1)]) }
Output #2:
[number:2**3-1, value:7, primes:[7]]
[number:2**5-1, value:31, primes:[31]]
[number:2**7-1, value:127, primes:[127]]
[number:2**11-1, value:2047, primes:[23, 89]]
[number:2**13-1, value:8191, primes:[8191]]
[number:2**17-1, value:131071, primes:[131071]]
[number:2**19-1, value:524287, primes:[524287]]
[number:2**23-1, value:8388607, primes:[47, 178481]]
[number:2**29-1, value:536870911, primes:[233, 1103, 2089]]
[number:2**31-1, value:2147483647, primes:[2147483647]]
[number:2**37-1, value:137438953471, primes:[223, 616318177]]
[number:2**41-1, value:2199023255551, primes:[13367, 164511353]]
[number:2**43-1, value:8796093022207, primes:[431, 9719, 2099863]]
[number:2**47-1, value:140737488355327, primes:[2351, 4513, 13264529]]
[number:2**53-1, value:9007199254740991, primes:[6361, 69431, 20394401]]
[number:2**59-1, value:576460752303423487, primes:[179951, 3203431780337]]

Perhaps a more sophisticated algorithm is in order. It took well over 1 hour to calculate the last three decompositions using this solution.

Haskell

The task description hints at using the isPrime function from the trial division task:

factorize n = [ d | p <- [2..n], isPrime p, d <- divs n p ]
           -- [2..n] >>= (\p-> [p|isPrime p]) >>= divs n
    where
    divs n p | rem n p == 0 = p : divs (quot n p) p 
             | otherwise    = []

but it is not very efficient, to put it mildly. Inlining and fusing gets us the progressively more optimized

import Data.Maybe (listToMaybe)
import Data.List (unfoldr)

factorize :: Integer -> [Integer]
factorize n 
  = unfoldr (\n     -> listToMaybe [(x, div n x)      | x <- [2..n], mod n x==0]) n
  = unfoldr (\(d,n) -> listToMaybe [(x, (x, div n x)) | x <- [d..n], mod n x==0]) (2,n)
  = unfoldr (\(d,n) -> listToMaybe [(x, (x, div n x)) | x <- 
                    takeWhile ((<=n).(^2)) [d..] ++ [n|n>1], mod n x==0]) (2,n)
  = unfoldr (\(ds,n) -> listToMaybe [(x, (dropWhile (< x) ds, div n x)) | n>1, x <-
                    takeWhile ((<=n).(^2)) ds ++ [n|n>1], mod n x==0]) (primesList,n)

The library function listToMaybe gets at most one element from its list argument. The last variant can be written as the optimal

factorize n = divs n primesList
     where
     divs n ds@(d:t) | d*d > n    = [n | n > 1]
                     | r == 0     =  d : divs q ds
                     | otherwise  =      divs n t
            where  (q,r) = quotRem n d

See Sieve of Eratosthenes or Primality by trial division for a source of primes to use with this function. Actually as some other entries notice, with any ascending order list containing all primes (e.g. 2:[3,5..]) used in place of primesList, the factors found by this function are guaranteed to be prime, so no separate testing for primality is strictly needed; however using just primes is more efficient, if we already have them.

Output:
λ> mapM_ (print . factorize) $ take 11 [123123451..]
[11,41,273001]
[2,2,17,53,127,269]
[3,229,277,647]
[2,61561727]
[5,7,13,270601]
[2,2,2,2,2,2,2,2,3,3,3,47,379]
[37,109,30529]
[2,19,97,33403]
[3,3167,12959]
[2,2,5,6156173]
[123123461]

Icon and Unicon

procedure main()
factors := primedecomp(2^43-1)   # a big int
end

procedure primedecomp(n)         #: return a list of factors
local F,o,x
F := []

every writes(o,n|(x := genfactors(n))) do {
   \o := "*"
   /o := "="
   put(F,x)   # build a list of factors to satisfy the task
   }
write()
return F
end

link factors

Uses genfactors and prime from factors

Sample Output showing factors of a large integer:

8796093022207=431*9719*2099863

J

q:
Example use:
   q: 3684
2 2 3 307

and, more elaborately:

   _1+2^128x
340282366920938463463374607431768211455
   q: _1+2^128x
3 5 17 257 641 65537 274177 6700417 67280421310721
   */ q: _1+2^128x
340282366920938463463374607431768211455

Java

Works with: Java version 1.5+

This is a version for arbitrary-precision integers which assumes the existence of a function with the signature:

public boolean prime(BigInteger i);

You will need to import java.util.List, java.util.LinkedList, and java.math.BigInteger.

public static List<BigInteger> primeFactorBig(BigInteger a){
    List<BigInteger> ans = new LinkedList<BigInteger>();
    //loop until we test the number itself or the number is 1
    for (BigInteger i = BigInteger.valueOf(2); i.compareTo(a) <= 0 && !a.equals(BigInteger.ONE);
         i = i.add(BigInteger.ONE)){
        while (a.remainder(i).equals(BigInteger.ZERO) && prime(i)) { //if we have a prime factor
            ans.add(i); //put it in the list
            a = a.divide(i); //factor it out of the number
        }
    }
    return ans;
}

Alternate version, optimised to be faster.

private static final BigInteger two = BigInteger.valueOf(2);

public List<BigInteger> primeDecomp(BigInteger a) {
    // impossible for values lower than 2
    if (a.compareTo(two) < 0) {
        return null; 
    }

    //quickly handle even values
    List<BigInteger> result = new ArrayList<BigInteger>();
    while (a.and(BigInteger.ONE).equals(BigInteger.ZERO)) {
        a = a.shiftRight(1);
        result.add(two);
    }

    //left with odd values
    if (!a.equals(BigInteger.ONE)) {
        BigInteger b = BigInteger.valueOf(3);
        while (b.compareTo(a) < 0) {
            if (b.isProbablePrime(10)) {
                BigInteger[] dr = a.divideAndRemainder(b);
                if (dr[1].equals(BigInteger.ZERO)) {
                    result.add(b);
                    a = dr[0];
                }
            }
            b = b.add(two);
        }
        result.add(b); //b will always be prime here...
    }
    return result;
}

Another alternate version designed to make fewer modular calculations:

private static final BigInteger TWO = BigInteger.valueOf(2);
private static final BigInteger THREE = BigInteger.valueOf(3);
private static final BigInteger FIVE = BigInteger.valueOf(5);

public static ArrayList<BigInteger> primeDecomp(BigInteger n){
    if(n.compareTo(TWO) < 0) return null;
    ArrayList<BigInteger> factors = new ArrayList<BigInteger>();
    
    // handle even values
    while(n.and(BigInteger.ONE).equals(BigInteger.ZERO)){
        n = n.shiftRight(1);
        factors.add(TWO);
    }
    
    // handle values divisible by three
    while(n.mod(THREE).equals(BigInteger.ZERO)){
        factors.add(THREE);
        n = n.divide(THREE);
    }
    
    // handle values divisible by five
    while(n.mod(FIVE).equals(BigInteger.ZERO)){
        factors.add(FIVE);
        n = n.divide(FIVE);
    }
    
    // much like how we can skip multiples of two, we can also skip
    // multiples of three and multiples of five. This increment array
    // helps us to accomplish that
    int[] pattern = {4,2,4,2,4,6,2,6};
    int pattern_index = 0;
    BigInteger current_test = BigInteger.valueOf(7);
    while(!n.equals(BigInteger.ONE)){
        while(n.mod(current_test).equals(BigInteger.ZERO)){
            factors.add(current_test);
            n = n.divide(current_test);
        }
        current_test = current_test.add(BigInteger.valueOf(pattern[pattern_index]));
        pattern_index = (pattern_index + 1) & 7;
    }
    
    return factors;
}
Translation of: C#

Simple but very inefficient method, because it will test divisibility of all numbers from 2 to max prime factor. When decomposing a large prime number this will take O(n) trial divisions instead of more common O(log n).

public static List<BigInteger> primeFactorBig(BigInteger a){
    List<BigInteger> ans = new LinkedList<BigInteger>();

    for(BigInteger divisor = BigInteger.valueOf(2);
        a.compareTo(ONE) > 0; divisor = divisor.add(ONE))
        while(a.mod(divisor).equals(ZERO)){
             ans.add(divisor);
             a = a.divide(divisor);
        }
    return ans;
}

JavaScript

This code uses the BigInteger Library jsbn and jsbn2

function run_factorize(input, output) {
    var n = new BigInteger(input.value, 10);
    var TWO = new BigInteger("2", 10);
    var divisor = new BigInteger("3", 10);
    var prod = false;

    if (n.compareTo(TWO) < 0) 
        return; 

    output.value = "";

    while (true) {
        var qr = n.divideAndRemainder(TWO);
        if (qr[1].equals(BigInteger.ZERO)) {
            if (prod) 
                output.value += "*"; 
            else 
                prod = true; 
            output.value += "2";
            n = qr[0];
        }
        else 
            break; 
    }

    while (!n.equals(BigInteger.ONE)) {
        var qr = n.divideAndRemainder(divisor);
        if (qr[1].equals(BigInteger.ZERO)) {
            if (prod) 
                output.value += "*"; 
            else 
                prod = true; 
            output.value += divisor;
            n = qr[0];
        }
        else 
            divisor = divisor.add(TWO); 
    }
}

Without any library.

function run_factorize(n) {
    if (n <= 3)
        return [n];

    var ans = [];
    var done = false;
    while (!done) {
        if (n % 2 === 0) {
            ans.push(2);
            n /= 2;
            continue;
        }
        if (n % 3 === 0) {
            ans.push(3);
            n /= 3;
            continue;
        }
        if (n === 1)
            return ans;
        var sr = Math.sqrt(n);
        done = true;
        // try to divide the checked number by all numbers till its square root.
        for (var i = 6; i <= (sr + 6); i += 6) {
            if (n % (i - 1) === 0) { // is n divisible by i-1?
                ans.push((i - 1));
                n /= (i - 1);
                done = false;
                break;
            }
            if (n % (i + 1) === 0) { // is n divisible by i+1?
                ans.push((i + 1));
                n /= (i + 1);
                done = false;
                break;
            }
        }
    }
    ans.push(n);
    return ans;
}

TDD using Jasmine

PrimeFactors.js

function factors(n) {
  if (!n || n < 2)
    return [];

  var f = [];
  for (var i = 2; i <= n; i++){
    while (n % i === 0){
      f.push(i);
      n /= i;
    }
  }

  return f;
};

SpecPrimeFactors.js (with tag for Chutzpah)

/// <reference path="PrimeFactors.js" />

describe("Prime Factors", function() {
  it("Given nothing, empty is returned", function() {
    expect(factors()).toEqual([]);
  });

  it("Given 1, empty is returned", function() {
    expect(factors(1)).toEqual([]);
  });

  it("Given 2, 2 is returned", function() {
    expect(factors(2)).toEqual([2]);
  });

  it("Given 3, 3 is returned", function() {
    expect(factors(3)).toEqual([3]);
  });

  it("Given 4, 2 and 2 is returned", function() {
    expect(factors(4)).toEqual([2, 2]);
  });

  it("Given 5, 5 is returned", function() {
    expect(factors(5)).toEqual([5]);
  });

  it("Given 6, 2 and 3 is returned", function() {
    expect(factors(6)).toEqual([2, 3]);
  });

  it("Given 7, 7 is returned", function() {
    expect(factors(7)).toEqual([7]);
  });

  it("Given 8; 2, 2, and 2 is returned", function() {
    expect(factors(8)).toEqual([2, 2, 2]);
  });

  it("Given a large number, many primes factors are returned", function() {
    expect(factors(2*2*2*3*3*7*11*17))
      .toEqual([2, 2, 2, 3, 3, 7, 11, 17]);
  });

  it("Given a large prime number, that number is returned", function() {
    expect(factors(997)).toEqual([997]);
  });
});

jq

Works with: jq version 1.5

Works with gojq, the Go implementation of jq

`factors` as defined below emits a stream of all the prime factors of the input integer. The implementation is compact, fast and space-efficient: no space is required to store the primes or factors already computed, there is no reliance on an "is_prime" function, and square roots are only computed if needed.

The economy comes about through the use of the builtin filter recurse/1, and the use of the state vector: [p, n, valid, sqrt], where p is the candidate factor, n is the number still to be factored, valid is a flag, and sqrt is either null or the square root of n.

gojq supports unlimited-precision integer arithmetic, but the C implementation of jq currently uses IEEE 754 64-bit numbers, so using the latter, the following program will only be reliable for integers up to and including 9,007,199,254,740,992 (2^53). However, "factors" could be easily modified to work with a "BigInt" library for jq, such as BigInt.jq.

def factors:
  . as $in 
  | [2, $in, false]
  | recurse(
      . as [$p, $q, $valid, $s]
      | if $q == 1        then empty
        elif $q % $p == 0 then [$p, $q/$p, true]
        elif $p == 2      then [3, $q, false, $s]
        else ($s // ($q | sqrt)) as $s
        | if $p + 2 <= $s then [$p + 2, $q, false, $s]
          else [$q, 1, true]
          end
        end )
   | if .[2] then .[0] else empty end ;

Examples:

24 | factors
#=> 2 2 2 3

[9007199254740992 | factors] | length
#=> 53

# 2**29-1 is 536870911
[ 536870911 | factors ]
#=> [233,1103,2089]

Julia

using package Primes.jl:

julia> Pkg.add("Primes")
julia> factor(8796093022207)
[9719=>1,431=>1,2099863=>1]

(The factor function returns a dictionary whose keys are the factors and whose values are the multiplicity of each factor.)

Kotlin

// version 1.0.6

import java.math.BigInteger

val bigTwo   = BigInteger.valueOf(2L)
val bigThree = BigInteger.valueOf(3L)

fun getPrimeFactors(n: BigInteger): MutableList<BigInteger> {
    val factors = mutableListOf<BigInteger>()
    if (n < bigTwo) return factors
    if (n.isProbablePrime(20)) {
        factors.add(n)
        return factors
    }
    var factor = bigTwo
    var nn = n
    while (true) {
        if (nn % factor == BigInteger.ZERO) {
            factors.add(factor)
            nn /= factor
            if (nn == BigInteger.ONE) return factors
            if (nn.isProbablePrime(20)) factor = nn
        }
        else if (factor >= bigThree) factor += bigTwo 
        else factor = bigThree
    }
}

fun main(args: Array<String>) {
    val primes = intArrayOf(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97)
    for (prime in primes) {
        val bigPow2 = bigTwo.pow(prime) - BigInteger.ONE
        println("2^${"%2d".format(prime)} - 1 = ${bigPow2.toString().padEnd(30)} => ${getPrimeFactors(bigPow2)}")
    }
}
Output:
2^ 2 - 1 = 3                              => [3]
2^ 3 - 1 = 7                              => [7]
2^ 5 - 1 = 31                             => [31]
2^ 7 - 1 = 127                            => [127]
2^11 - 1 = 2047                           => [23, 89]
2^13 - 1 = 8191                           => [8191]
2^17 - 1 = 131071                         => [131071]
2^19 - 1 = 524287                         => [524287]
2^23 - 1 = 8388607                        => [47, 178481]
2^29 - 1 = 536870911                      => [233, 1103, 2089]
2^31 - 1 = 2147483647                     => [2147483647]
2^37 - 1 = 137438953471                   => [223, 616318177]
2^41 - 1 = 2199023255551                  => [13367, 164511353]
2^43 - 1 = 8796093022207                  => [431, 9719, 2099863]
2^47 - 1 = 140737488355327                => [2351, 4513, 13264529]
2^53 - 1 = 9007199254740991               => [6361, 69431, 20394401]
2^59 - 1 = 576460752303423487             => [179951, 3203431780337]
2^61 - 1 = 2305843009213693951            => [2305843009213693951]
2^67 - 1 = 147573952589676412927          => [193707721, 761838257287]
2^71 - 1 = 2361183241434822606847         => [228479, 48544121, 212885833]
2^73 - 1 = 9444732965739290427391         => [439, 2298041, 9361973132609]
2^79 - 1 = 604462909807314587353087       => [2687, 202029703, 1113491139767]
2^83 - 1 = 9671406556917033397649407      => [167, 57912614113275649087721]
2^89 - 1 = 618970019642690137449562111    => [618970019642690137449562111]
2^97 - 1 = 158456325028528675187087900671 => [11447, 13842607235828485645766393]

Lambdatalk

{def prime_fact.smallest
  {def prime_fact.smallest.r
  {lambda {:q :r :i}
   {if {and {> :r 0} {< :i :q}}
    then {prime_fact.smallest.r :q {% :q {+ :i 1}} {+ :i 1}}
    else :i}}}
  {lambda {:q} {prime_fact.smallest.r :q {% :q 2} 2}}}

{def prime_fact
 {def prime_fact.r
  {lambda {:q :d}
   {if {> :q 1}
    then {let { {:q :q} {:d :d} 
                {:i {prime_fact.smallest :q}}}
              {prime_fact.r {floor {/ :q :i}} {#.push! :d :i}} }
    else {if {= {#.length :d} 1} then {b :d} else :d}}}}
 {lambda {:n} :n:{prime_fact.r :n {#.new}}}}

{prime_fact {* 2 3 3 3 31 47 173}}
-> 13611294:[2,3,3,3,31,47,173]

{map prime_fact {serie 2 101}}
-> 2:[2] 3:[3] 4:[2,2] 5:[5] 6:[2,3] 7:[7] 8:[2,2,2] 9:[3,3] 10:[2,5] 11:[11] 12:[2,2,3] 13:[13] 14:[2,7] 15:[3,5] 
16:[2,2,2,2] 17:[17] 18:[2,3,3] 19:[19] 20:[2,2,5] 21:[3,7] 22:[2,11] 23:[23] 24:[2,2,2,3] 25:[5,5] 26:[2,13] 27:[3,3,3] 
28:[2,2,7] 29:[29] 30:[2,3,5] 31:[31] 32:[2,2,2,2,2] 33:[3,11] 34:[2,17] 35:[5,7] 36:[2,2,3,3] 37:[37] 38:[2,19] 39:[3,13] 
40:[2,2,2,5] 41:[41] 42:[2,3,7] 43:[43] 44:[2,2,11] 45:[3,3,5] 46:[2,23] 47:[47] 48:[2,2,2,2,3] 49:[7,7] 50:[2,5,5] 51:[3,17] 
52:[2,2,13] 53:[53] 54:[2,3,3,3] 55:[5,11] 56:[2,2,2,7] 57:[3,19] 58:[2,29] 59:[59] 60:[2,2,3,5] 61:[61] 62:[2,31] 63:[3,3,7] 
64:[2,2,2,2,2,2] 65:[5,13] 66:[2,3,11] 67:[67] 68:[2,2,17] 69:[3,23] 70:[2,5,7] 71:[71] 72:[2,2,2,3,3] 73:[73] 74:[2,37] 
75:[3,5,5] 76:[2,2,19] 77:[7,11] 78:[2,3,13] 79:[79] 80:[2,2,2,2,5] 81:[3,3,3,3] 82:[2,41] 83:[83] 84:[2,2,3,7] 85:[5,17] 
86:[2,43] 87:[3,29] 88:[2,2,2,11] 89:[89] 90:[2,3,3,5] 91:[7,13] 92:[2,2,23] 93:[3,31] 94:[2,47] 95:[5,19] 96:[2,2,2,2,2,3] 
97:[97] 98:[2,7,7] 99:[3,3,11] 100:[2,2,5,5] 101:[101]

LFE

(defun factors (n)
  (factors n 2 '()))

(defun factors
  ((1 _ acc)
    acc)
  ((n k acc) (when (== 0 (rem n k)))
    (factors (div n k) k (cons k acc)))
  ((n k acc)
    (factors n (+ k 1) acc)))

Lingo

-- Returns list of prime factors for given number.
-- To overcome the limits of integers (signed 32-bit in Lingo),
-- the number can be specified as float (which works up to 2^53).
-- For the same reason, values in returned list are floats, not integers.
on getPrimeFactors (n)
  f = []
  f.sort()
  c = sqrt(n)
  i = 1.0
  repeat while TRUE
    i=i+1
    if i>c then exit repeat
    check = n/i
    if bitOr(check,0)=check then
      f.add(i)
      n = check
      c = sqrt(n)
      i = 1.0
    end if
  end repeat
  f.add(n)
  return f
end
put getPrimeFactors(12)
-- [2.0000, 2.0000, 3.0000]

-- print floats without fractional digits
the floatPrecision=0

put getPrimeFactors(12)
-- [2, 2, 3]

put getPrimeFactors(1125899906842623.0)
-- [3, 251, 601, 4051, 614141]

to decompose :n [:p 2]
  if :p*:p > :n [output (list :n)]
  if less? 0 modulo :n :p [output (decompose :n bitor 1 :p+1)]
  output fput :p (decompose :n/:p :p)
end

Lua

The code of the used auxiliary function "IsPrime(n)" is located at Primality by trial division#Lua

function PrimeDecomposition( n )
    local f = {}
    
    if IsPrime( n ) then
        f[1] = n
        return f
    end

    local i = 2
    repeat
        while n % i == 0 do
            f[#f+1] = i
            n = n / i
        end
        
        repeat
            i = i + 1
        until IsPrime( i )       
    until n == 1
    
    return f
end

M2000 Interpreter

Module  Prime_decomposition    {
      Inventory Known1=2@, 3@
      IsPrime=lambda  Known1 (x as decimal) -> {
                  =0=1
                  if exist(Known1, x) then =1=1 : exit
                  if x<=5 OR frac(x) then {if x == 2 OR x == 3 OR x == 5 then Append Known1, x  : =1=1
                  Break}
                  if frac(x/2) else exit
                  if frac(x/3) else exit
                  x1=sqrt(x):d = 5@
                  {if frac(x/d ) else exit
                        d += 2: if d>x1 then Append Known1, x : =1=1 : exit
                        if frac(x/d) else exit
                        d += 4: if d<= x1 else Append Known1, x :  =1=1: exit
                   loop}
            }
      decompose=lambda IsPrime (n as decimal) -> {
            Inventory queue Factors
            {
                 k=2@
                 While frac(n/k)=0 {
                 n/=k
                      Append Factors, k
                 }
                 if n=1 then exit
                 k++ 
                 While frac(n/k)=0 {
                 n/=k
                        Append Factors, k
                 }   
                 if n=1 then exit
                 {
                 k+=2
                 while not isprime(k) {k+=2}
                 While frac(n/k)=0 {
                 n/=k
                        Append Factors, k
                 }
                      if n=1 then exit
                      loop
                 }             
            }
            =Factors
      }
      Data 10, 100, 12, 144, 496, 1212454
      while not empty {
        Print Decompose(Number)
      }
}
Prime_decomposition

Maple

Maple has two commands for integer factorization: ifactor, which returns results in a form resembling textbook presentation and ifactors, which returns a list of two-element lists of prime factors and their multiplicities:

> ifactor(1337);
                                   (7)  (191)
> ifactors(1337);
                            [1, [[7, 1], [191, 1]]]

Mathematica /Wolfram Language

Bare built-in function does:

 FactorInteger[2016] => {{2, 5}, {3, 2}, {7, 1}}

Read as: 2 to the power 5 times 3 squared times 7 (to the power 1). To show them nicely we could use the following functions:

supscript[x_,y_]:=If[y==1,x,Superscript[x,y]]
ShowPrimeDecomposition[input_Integer]:=Print@@{input," = ",Sequence@@Riffle[supscript@@@FactorInteger[input]," "]}

Example for small prime:

 ShowPrimeDecomposition[1337]

gives:

 1337 = 7 191

Examples for large primes:

 Table[AbsoluteTiming[ShowPrimeDecomposition[2^a-1]]//Print[#[[1]]," sec"]&,{a,50,150,10}];

gives back:

1125899906842623 = 3 11 31 251 601 1801 4051
0.000231 sec
1152921504606846975 = 3^2 5^2 7 11 13 31 41 61 151 331 1321
0.000146 sec
1180591620717411303423 = 3 11 31 43 71 127 281 86171 122921
0.001008 sec
1208925819614629174706175 = 3 5^2 11 17 31 41 257 61681 4278255361
0.000340 sec
1237940039285380274899124223 = 3^3 7 11 19 31 73 151 331 631 23311 18837001
0.000192 sec
1267650600228229401496703205375 = 3 5^3 11 31 41 101 251 601 1801 4051 8101 268501
0.000156 sec
1298074214633706907132624082305023 = 3 11^2 23 31 89 683 881 2971 3191 201961 48912491
0.001389 sec
1329227995784915872903807060280344575 = 3^2 5^2 7 11 13 17 31 41 61 151 241 331 1321 61681 4562284561
0.000374 sec
1361129467683753853853498429727072845823 = 3 11 31 131 2731 8191 409891 7623851 145295143558111
0.024249 sec
1393796574908163946345982392040522594123775 = 3 5^2 11 29 31 41 43 71 113 127 281 86171 122921 7416361 47392381
0.009419 sec
1427247692705959881058285969449495136382746623 = 3^2 7 11 31 151 251 331 601 1801 4051 100801 10567201 1133836730401
0.007705 sec

MATLAB

function [outputPrimeDecomposition] = primedecomposition(inputValue)
   outputPrimeDecomposition = factor(inputValue);

Maxima

Using the built-in function:

(%i1) display2d: false$ /* disable rendering exponents as superscripts */
(%i2) factor(2016);
(%o2) 2^5*3^2*7

Using the underlying language:

prime_dec(n) := flatten(create_list(makelist(first(a), second(a)), a, ifactors(n)))$

/* or, slighlty more "functional" */
prime_dec(n) := flatten(map(lambda([a], apply(makelist, a)), ifactors(n)))$

prime_dec(2^4*3^5*5*7^2);
/* [2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 7, 7] */

Modula-2

Translation of: XPL0 – CARDINAL (unsigned integer) used instead of signed integer.
Works with: ADW Modula-2 version any (Compile with the linker option Console Application).
MODULE PrimeDecomposition;

FROM STextIO IMPORT
  SkipLine, WriteLn, WriteString;
FROM SWholeIO IMPORT
  ReadCard, WriteInt;

CONST 
  MaxFacIndex = 31;
(*  2^31 has most prime factors (31 twos) than other 32-bit unsigned integer. *)

TYPE
  TFacs = ARRAY [0 .. MaxFacIndex] OF CARDINAL;

VAR
  Facs: TFacs;
  I, N, FacsCnt: CARDINAL;
  
PROCEDURE CalcFacs(N: CARDINAL; VAR Facs: TFacs; VAR FacsCnt: CARDINAL);
VAR
  I: CARDINAL;
BEGIN
  FacsCnt := 0;
  IF N >= 2 THEN    
    I := 2;
    WHILE I * I <= N DO      
      IF N MOD I = 0 THEN         
        N := N DIV I;
        Facs[FacsCnt] := I; 
        FacsCnt := FacsCnt + 1;
        I := 2      
      ELSE
        I := I + 1
      END
    END;
    Facs[FacsCnt] := N;
    FacsCnt := FacsCnt + 1
  END;
END CalcFacs;

BEGIN
  WriteString("Enter a number: "); 
  ReadCard(N);
  SkipLine;
  CalcFacs(N, Facs, FacsCnt);
  (* There is at least one factor *)
  IF FacsCnt > 1 THEN 
    FOR I := 0 TO FacsCnt - 2 DO 
      WriteInt(Facs[I], 1); 
      WriteString(" ")
    END;
  END;
  WriteInt(Facs[FacsCnt - 1], 1);
  WriteLn
END PrimeDecomposition.
Output:

3 runs.

Enter a number: 32
2 2 2 2 2
Enter a number: 2520
2 2 2 3 3 5 7
Enter a number: 13
13

MUMPS

ERATO1(HI)
 SET HI=HI\1
 KILL ERATO1 ;Don't make it new - we want it to remain after the quit
 NEW I,J,P
 FOR I=2:1:(HI**.5)\1 DO
 .FOR J=I*I:I:HI DO
 ..SET P(J)=1 ;$SELECT($DATA(P(J))#10:P(J)+1,1:1)
 ;WRITE !,"Prime numbers between 2 and ",HI,": "
 FOR I=2:1:HI DO
 .S:'$DATA(P(I)) ERATO1(I)=I ;WRITE $SELECT((I<3):"",1:", "),I
 KILL I,J,P
 QUIT
PRIMDECO(N)
 ;Returns its results in the string PRIMDECO
 ;Kill that before the first call to this recursive function
 QUIT:N<=1
 IF $D(PRIMDECO)=1 SET PRIMDECO="" D ERATO1(N)
 SET N=N\1,I=0
 FOR  SET I=$O(ERATO1(I)) Q:+I<1  Q:'(N#I)
 IF I>1 SET PRIMDECO=$S($L(PRIMDECO)>0:PRIMDECO_"^",1:"")_I D PRIMDECO(N/I)
 ;that is, if I is a factor of N, add it to the string
 QUIT
Usage:
USER>K ERATO1,PRIMDECO D PRIMDECO^ROSETTA(31415) W PRIMDECO
5^61^103
USER>K ERATO,PRIMDECO D PRIMDECO^ROSETTA(31318) W PRIMDECO
2^7^2237
USER>K ERATO,PRIMDECO D PRIMDECO^ROSETTA(34) W PRIMDECO
2^17
USER>K ERATO,PRIMDECO D PRIMDECO^ROSETTA(68) W PRIMDECO
2^2^17
USER>K ERATO,PRIMDECO D PRIMDECO^ROSETTA(7) W PRIMDECO
7
USER>K ERATO,PRIMDECO D PRIMDECO^ROSETTA(777) W PRIMDECO
3^7^37

Nim

Based on python floating point solution, but using integers rather than floats.

import math, sequtils, strformat, strutils, times

proc getStep(n: int64): int64 {.inline.} =
  result = 1 + n shl 2 - n shr 1 shl 1

proc primeFac(n: int64): seq[int64] =
  var maxq = int64(sqrt(float(n)))
  var d = 1
  var q: int64 = 2 + (n and 1)   # Start with 2 or 3 according to oddity.
  while q <= maxq and n %% q != 0:
    q = getStep(d)
    inc d
  if q <= maxq:
    let q1 = primeFac(n /% q)
    let q2 = primeFac(q)
    result = concat(q2, q1, result)
  else:
    result.add(n)

iterator primes(limit: int): int =
  var isPrime = newSeq[bool](limit + 1)
  for n in 2..limit: isPrime[n] = true
  for n in 2..limit:
    if isPrime[n]:
      yield n
      for i in countup(n *% n, limit, n):
        isPrime[i] = false

when isMainModule:

  # Example: calculate factors of Mersenne numbers from M2 to M59.
  for m in primes(59):
    let p = 2i64^m - 1
    let s = &"2^{m}-1"
    stdout.write &"{s:<6} = {p} with factors: "
    let start = cpuTime()
    stdout.write primeFac(p).join(", ")
    echo &" => {(1000 * (cpuTime() - start)).toInt} ms"
Output:

Compiled with option -d:release

2^2-1  = 3 with factors: 3 => 0 ms
2^3-1  = 7 with factors: 7 => 0 ms
2^5-1  = 31 with factors: 31 => 0 ms
2^7-1  = 127 with factors: 127 => 0 ms
2^11-1 = 2047 with factors: 23, 89 => 0 ms
2^13-1 = 8191 with factors: 8191 => 0 ms
2^17-1 = 131071 with factors: 131071 => 0 ms
2^19-1 = 524287 with factors: 524287 => 0 ms
2^23-1 = 8388607 with factors: 47, 178481 => 0 ms
2^29-1 = 536870911 with factors: 233, 1103, 2089 => 0 ms
2^31-1 = 2147483647 with factors: 2147483647 => 1 ms
2^37-1 = 137438953471 with factors: 223, 616318177 => 0 ms
2^41-1 = 2199023255551 with factors: 13367, 164511353 => 0 ms
2^43-1 = 8796093022207 with factors: 431, 9719, 2099863 => 0 ms
2^47-1 = 140737488355327 with factors: 2351, 4513, 13264529 => 0 ms
2^53-1 = 9007199254740991 with factors: 6361, 69431, 20394401 => 1 ms
2^59-1 = 576460752303423487 with factors: 179951, 3203431780337 => 6 ms

OCaml

open Big_int;;

let prime_decomposition x =
  let rec inner c p =
    if lt_big_int p (square_big_int c) then
      [p]
    else if eq_big_int (mod_big_int p c) zero_big_int then
      c :: inner c (div_big_int p c)
    else
      inner (succ_big_int c) p
  in
  inner (succ_big_int (succ_big_int zero_big_int)) x;;

Octave

r = factor(120202039393)

Oforth

Oforth handles aribitrary precision integers.

: factors(n)   // ( aInteger -- aList )
| k p |
   ListBuffer new
   2 ->k
   n nsqrt ->p
   while( k p <= ) [
      n k /mod swap ifZero: [ 
         dup ->n nsqrt ->p 
         k over add continue
         ]
      drop k 1+ ->k
      ]
   n 1 > ifTrue: [ n over add ] 
   dup freeze ;
Output:
>2 128 pow 1 - dup println factors println
340282366920938463463374607431768211455
[3, 5, 17, 257, 641, 65537, 274177, 6700417, 67280421310721]
ok

PARI/GP

GP normally returns factored integers as a matrix with the first column representing the primes and the second their exponents. Thus factor(12)==[2,2;3,1] is true. But it's simple enough to convert this to a vector with repetition:

pd(n)={
  my(f=factor(n),v=f[,1]~);
  for(i=1,#v,
    while(f[i,2]--,
      v=concat(v,f[i,1])
    )
  );
  vecsort(v)
};

Pascal

Program PrimeDecomposition(output);

type
  DynArray = array of integer;

procedure findFactors(n: Int64; var d: DynArray);
  var
    divisor, next, rest: Int64;
    i: integer;
 begin
    i := 0;
    divisor := 2;
    next := 3;
    rest := n;
    while (rest <> 1) do
    begin
      while (rest mod divisor = 0) do
      begin
        setlength(d, i+1);
        d[i] := divisor;
        inc(i);
        rest := rest div divisor;
      end;
      divisor := next;
      next := next + 2;
    end;
  end;

var
  factors: DynArray;
  j: integer;

begin
  setlength(factors, 1);
  findFactors(1023*1024, factors);
  for j := low(factors) to high(factors) do
    writeln (factors[j]);
end.
Output:
% ./PrimeDecomposition
2
2
2
2
2
2
2
2
2
2
3
11
31

Optimization:

Program PrimeDecomposition(output);

type
  DynArray = array of integer;

procedure findFactors(n: Int64; var d: DynArray);
  var
    divisor, next, rest: Int64;
    i: integer;
 begin
    i := 0;
    divisor := 2;
    next := 3;
    rest := n;
    while (rest <> 1) do
    begin
      while (rest mod divisor = 0) do
      begin
        setlength(d, i+1);
        d[i] := divisor;
        inc(i);
        rest := rest div divisor;
      end;
      divisor := next;
      next := next + 2;  // try only odd numbers
      // cut condition: avoid many useless iterations
      if (rest < divisor * divisor) then
        begin
          setlength(d, i+1);
          d[i] := rest;
          rest := 1;
        end;
    end;
  end;

var
  factors: DynArray;
  j: integer;

begin
  setlength(factors, 1);
  findFactors(1023*1024, factors);
  for j := low(factors) to high(factors) do
    writeln (factors[j]);
  readln;
end.

PascalABC.NET

function Factors(N: BigInteger): List<BigInteger>;
begin
  var lst := new List<BigInteger>;
  if N = 1 then
    lst.Add(N);
  var i := 2bi;
  while i * i <= N do
  begin
    while N mod i = 0 do
    begin
      lst.Add(i);
      N := N div i;
    end;
    i += 1;
  end;
  if N >= 2 then
    lst.Add(N);
  Result := lst;
end;
Output:
[71,839,1471,6857] 


Perl

These will work for large integers by adding the use bigint; clause.

Trivial trial division (very slow)

sub prime_factors {
    my ($n, $d, @out) = (shift, 1);
    while ($n > 1 && $d++) {
        $n /= $d, push @out, $d until $n % $d;
    }
    @out
}

print "@{[prime_factors(1001)]}\n";

Better trial division

This is much faster than the trivial version above.

sub prime_factors {
  my($n, $p, @out) = (shift, 3);
  return if $n < 1;
  while (!($n&1)) { $n >>= 1; push @out, 2; }
  while ($n > 1 && $p*$p <= $n) {
    while ( ($n % $p) == 0) {
      $n /= $p;
      push @out, $p;
    }
    $p += 2;
  }
  push @out, $n if $n > 1;
  @out;
}

Modules

As usual, there are CPAN modules for this that will be much faster. These both take about 1 second to factor all Mersenne numbers from M_1 to M_150.

Library: ntheory
use ntheory qw/factor forprimes/;
use bigint;

forprimes {
  my $p = 2 ** $_ - 1;
  print "2**$_-1: ", join(" ", factor($p)), "\n";
} 100, 150;
Output:
2^101-1: 7432339208719 341117531003194129
2^103-1: 2550183799 3976656429941438590393
2^107-1: 162259276829213363391578010288127
2^109-1: 745988807 870035986098720987332873
2^113-1: 3391 23279 65993 1868569 1066818132868207
2^127-1: 170141183460469231731687303715884105727
2^131-1: 263 10350794431055162386718619237468234569
2^137-1: 32032215596496435569 5439042183600204290159
2^139-1: 5625767248687 123876132205208335762278423601
2^149-1: 86656268566282183151 8235109336690846723986161
use Math::Pari qw/:int factorint isprime/;

# Convert Math::Pari's format into simple vector
sub factor {
  my ($pn,$pc) = @{Math::Pari::factorint(shift)};
  map { ($pn->[$_]) x $pc->[$_] } 0 .. $#$pn;
}

for (100 .. 150) {
  next unless isprime($_);
  my $p = 2 ** $_ - 1;
  print "2^$_-1: ", join(" ", factor($p)), "\n";
}

With the same output.

Phix

For small numbers less than 253 on 32bit and 264 on 64bit just use prime_factors().

Library: Phix/mpfr
with javascript_semantics
requires("1.0.0")
include mpfr.e
atom t0 = time()
mpz z = mpz_init()
for i=1 to 25 do
    integer pi = get_prime(i)
    mpz_ui_pow_ui(z,2,pi)
    mpz_sub_ui(z,z,1)
    string zs = mpz_get_str(z),
           fs = mpz_factorstring(mpz_pollard_rho(z))
    if fs!=zs then zs &= " = "&fs end if
    printf(1,"2^%d-1 = %s\n",{pi,zs})
end for
for s in {"600851475143","100000000000000000037"} do
    mpz_set_str(z,s)
    printf(1,"%s = %s\n",{s,mpz_factorstring(mpz_pollard_rho(z))})
end for
?elapsed(time()-t0)
Output:
2^2-1 = 3
2^3-1 = 7
2^5-1 = 31
2^7-1 = 127
2^11-1 = 2047 = 23*89
2^13-1 = 8191
2^17-1 = 131071
2^19-1 = 524287
2^23-1 = 8388607 = 47*178481
2^29-1 = 536870911 = 233*1103*2089
2^31-1 = 2147483647
2^37-1 = 137438953471 = 223*616318177
2^41-1 = 2199023255551 = 13367*164511353
2^43-1 = 8796093022207 = 431*9719*2099863
2^47-1 = 140737488355327 = 2351*4513*13264529
2^53-1 = 9007199254740991 = 6361*69431*20394401
2^59-1 = 576460752303423487 = 179951*3203431780337
2^61-1 = 2305843009213693951
2^67-1 = 147573952589676412927 = 193707721*761838257287
2^71-1 = 2361183241434822606847 = 228479*48544121*212885833
2^73-1 = 9444732965739290427391 = 439*2298041*9361973132609
2^79-1 = 604462909807314587353087 = 2687*202029703*1113491139767
2^83-1 = 9671406556917033397649407 = 167*57912614113275649087721
2^89-1 = 618970019642690137449562111
2^97-1 = 158456325028528675187087900671 = 11447*13842607235828485645766393
600851475143 = 71*839*1471*6857
100000000000000000037 = 31*821*59004541*66590107
"0.9s"

Picat

go =>
  % Checking 2**prime-1
  foreach(P in primes(60))
     Factors = factors(2**P-1),
     println([n=2**P-1,factors=Factors])
  end,
  nl,
  % Testing a larger number
  println(factors(1361129467683753853853498429727072845823)),
  nl.

%
% factors of N
%
factors(N) = Factors =>
   Factors = [],
   M = N,    
   while (M mod 2 == 0) 
      Factors := Factors ++ [2],  
      M := M div 2 
   end,
   T = 3,
   while (M > 1, T < 1+(sqrt(M)))
      if M mod T == 0 then
         [Divisors, NewM] = alldivisorsM(M, T),
         Factors := Factors ++ Divisors,
         M := NewM
      end,
      T := T + 2
   end,
   if M > 1 then Factors := Factors ++ [M] end.

alldivisorsM(N,Div) = [Divisors,M] =>
   M = N,
   Divisors = [],
   while (M mod Div == 0) 
      Divisors := Divisors ++ [Div],
      M := M div Div
   end.
Output:
[n = 3,factors = [3]]
[n = 7,factors = [7]]
[n = 31,factors = [31]]
[n = 127,factors = [127]]
[n = 2047,factors = [23,89]]
[n = 8191,factors = [8191]]
[n = 131071,factors = [131071]]
[n = 524287,factors = [524287]]
[n = 8388607,factors = [47,178481]]
[n = 536870911,factors = [233,1103,2089]]
[n = 2147483647,factors = [2147483647]]
[n = 137438953471,factors = [223,616318177]]
[n = 2199023255551,factors = [13367,164511353]]
[n = 8796093022207,factors = [431,9719,2099863]]
[n = 140737488355327,factors = [2351,4513,13264529]]
[n = 9007199254740991,factors = [6361,69431,20394401]]
[n = 576460752303423487,factors = [179951,3203431780337]]

[3,11,31,131,2731,8191,409891,7623851,145295143558111]

PicoLisp

The following solution generates a sequence of "trial divisors" (2 3 5 7 11 13 17 19 23 29 31 37 ..), as described by Donald E. Knuth, "The Art of Computer Programming", Vol.2, p.365.

(de factor (N)
   (make
      (let (D 2  L (1 2 2 . (4 2 4 2 4 6 2 6 .))  M (sqrt N))
         (while (>= M D)
            (if (=0 (% N D))
               (setq M (sqrt (setq N (/ N (link D)))))
               (inc 'D (pop 'L)) ) )
         (link N) ) ) )

(factor 1361129467683753853853498429727072845823)
Output:
-> (3 11 31 131 2731 8191 409891 7623851 145295143558111)

PL/0

Translation of: Tiny BASIC

The overlapping loops, created with GOTOs in the original version, have been replaced with structures with single entries and single exits (like in structured programming).

The program waits for a number, and then displays the prime factors of the number.

var i, n, nmodi;
begin
  ? n;
  if n < 0 then n := -n;
  if n >= 2 then
  begin
    i := 2;
    while i * i <= n do
    begin      
      nmodi := n - (n / i) * i;  
      if nmodi = 0 then
      begin
        n := n / i;
        ! i;
        i := 2
      end; 
      if nmodi <> 0 then
        i := i + 1
    end;
    ! n
  end;
end.

3 runs.

Input:
2520
Output:
       2
       2
       2
       3
       3
       5
       7
Input:
16384
Output:
       2
       2
       2
       2
       2
       2
       2
       2
       2
       2
       2
       2
       2
       2
Input:
13
Output:
      13

PL/I

test: procedure options (main, reorder);
   declare (n, i) fixed binary (31);

   get list (n);
   put edit ( n, '[' ) (x(1), a);
restart:
   if is_prime(n) then
      do;
         put edit (trim(n), ']' ) (x(1), a);
         stop;
      end;
   do i = n/2 to 2 by -1;
      if is_prime(i) then
         if (mod(n, i) = 0) then
            do;
               put edit ( trim(i) ) (x(1), a);
               n = n / i;
               go to restart;
            end;
   end;
   put edit ( ' ]' ) (a);

is_prime: procedure (n) options (reorder) returns (bit(1));
   declare n fixed binary (31);
   declare i fixed binary (31);

   if n < 2 then return ('0'b);
   if n = 2 then return ('1'b);
   if mod(n, 2) = 0 then return ('0'b);

   do i = 3 to sqrt(n) by 2;
      if mod(n, i) = 0 then return ('0'b);
   end;
   return ('1'b);
end is_prime;

end test;
Results from various runs:
        1234567 [ 9721 127 ]
          32768 [ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ]
             99 [ 11 3 3 ]
        9876543 [ 14503 227 3 ]
            100 [ 5 5 2 2 ]
        9999999 [ 4649 239 3 3 ]
           5040 [ 7 5 3 3 2 2 2 2 ]

PowerShell

function eratosthenes ($n) {
    if($n -gt 1){
        $prime = @(1..($n+1) | foreach{$true})
        $prime[1] = $false
        $m = [Math]::Floor([Math]::Sqrt($n))
        function multiple($i) {
            for($j = $i*$i; $j -le $n; $j += $i) {
                $prime[$j] = $false
            }
        }
        multiple 2
        for($i = 3; $i -le $m; $i += 2) {
            if($prime[$i]) {multiple $i}
        }
        1..$n | where{$prime[$_]}
    } else {
        Write-Error "$n is not greater than 1"
    }
}
function prime-decomposition ($n) {
    $array = eratosthenes $n
    $prime = @()
    foreach($p in $array) {
        while($n%$p -eq 0) {
            $n /= $p
            $prime += @($p)
        }
    }
    $prime
}
"$(prime-decomposition 12)"
"$(prime-decomposition 100)"

Output:

2 2 3
2 2 5 5

Alternative version, significantly faster with big numbers

function prime-decomposition ($n) {
    $values = [System.Collections.Generic.List[string]]::new()
    while ((($n % 2) -eq 0) -and ($n -gt 2)) {
        $values.Add(2)
        $n /= 2
    }
    for ($i = 3; $n -ge ($i * $i); $i += 2) {
        if (($n % $i) -eq 0){
            $values.Add($i)
            $n /= $i
            $i -= 2
        }
    }
    $values.Add($n)
    return $values
}
"$(prime-decomposition 1000000)"

Prolog

prime_decomp(N, L) :-
    SN is sqrt(N),
    prime_decomp_1(N, SN, 2, [], L).


prime_decomp_1(1, _, _, L, L) :- !.

% Special case for 2, increment 1
prime_decomp_1(N, SN, D, L, LF) :-
    (   0 is N mod D ->
        Q is N / D,
        SQ is sqrt(Q),
        prime_decomp_1(Q, SQ, D, [D |L], LF)
    ;
        D1 is D+1,
        (   D1 > SN ->
            LF = [N |L]
        ;
            prime_decomp_2(N, SN, D1, L, LF)
        )
    ).

% General case, increment 2
prime_decomp_2(1, _, _, L, L) :- !.

prime_decomp_2(N, SN, D, L, LF) :-
    (   0 is N mod D ->
        Q is N / D,
        SQ is sqrt(Q),
        prime_decomp_2(Q, SQ, D, [D |L], LF);
        D1 is D+2,
        (   D1 > SN ->
            LF = [N |L]
        ;
            prime_decomp_2(N, SN, D1, L, LF)
        )
    ).
Output:
 ?- time(prime_decomp(9007199254740991, L)).
% 138,882 inferences, 0.344 CPU in 0.357 seconds (96% CPU, 404020 Lips)
L = [20394401,69431,6361].

 ?- time(prime_decomp(576460752303423487, L)).
% 2,684,734 inferences, 0.672 CPU in 0.671 seconds (100% CPU, 3995883 Lips)
L = [3203431780337,179951].

 ?- time(prime_decomp(1361129467683753853853498429727072845823, L)).
% 18,080,807 inferences, 7.953 CPU in 7.973 seconds (100% CPU, 2273422 Lips)
L = [145295143558111,7623851,409891,8191,2731,131,31,11,3].

Simple version

Translation of: Erlang

Optimized to stop on square root, and count by +2 on odds, above 2.

factors( N, FS):- 
    factors2( N, FS).
 
factors2( N, FS):-
    ( N < 2        -> FS = [] 
    ; 4 > N        -> FS = [N] 
    ; 0 is N rem 2 -> FS = [K|FS2], N2 is N div 2, factors2( N2, FS2)
    ;                 factors( N, 3, FS)
    ).
 
factors( N, K, FS):-
    ( N < 2        -> FS = [] 
    ; K*K > N      -> FS = [N] 
    ; 0 is N rem K -> FS = [K|FS2], N2 is N div K, factors( N2, K, FS2)
    ;                 K2 is K+2, factors( N, K2, FS)
    ).

Expression Tree version

Uses a 2*3*5*7 factor wheel, but the main feature is that it returns the decomposition as a fully simplified expression tree.

wheel2357(L) :-
    W = [2,  4,  2,  4,  6,  2,  6,  4,
         2,  4,  6,  6,  2,  6,  4,  2,
         6,  4,  6,  8,  4,  2,  4,  2,
         4,  8,  6,  4,  6,  2,  4,  6,
         2,  6,  6,  4,  2,  4,  6,  2,
         6,  4,  2,  4,  2, 10,  2, 10 | W],
    L = [1, 2, 2, 4 | W].

factor(1, 1) :- !.
factor(N, Fac) :-
    N > 1,
    wheel2357(W),
    factor(N, 2, W, 1, Fac0),
    reverse_factors(Fac0, Fac).

factor(N, F, _, Fac1, Fac2) :- F*F > N, !, add_factor(N, Fac1, Fac2).
factor(N, F, W, Fac1, Fac) :-
    divmod(N, F, Q, 0), !,
    add_factor(F, Fac1, Fac2),
    factor(Q, F, W, Fac2, Fac).
factor(N, F1, [A|As], Fac1, Fac) :-
    F2 is F1 + A,
    factor(N, F2, As, Fac1, Fac).

add_factor(F, 1, F) :- !.
add_factor(F, F, F**2) :- !.
add_factor(F, F**Ex1, F**Ex2) :- succ(Ex1, Ex2), !.

add_factor(F, F*A, F**2*A) :- !.
add_factor(F, F**Ex1*Rest, F**Ex2*Rest) :- succ(Ex1, Ex2), !.
add_factor(F, Fac, F*Fac).

reverse_factors(A*B, C*A) :- reverse_factors(B, C), !.
reverse_factors(A, A).
Output:
?- factor(277,X).
X = 277.

?- factor(1003,X).
X = 17*59.

?- factor(1024,X).
X = 2**10.

?- factor(768,X).
X = 2**8*3.

?- factor(1361129467683753853853498429727072845823,X).
X = 3*11*31*131*2731*8191*409891*7623851*145295143558111.

?- factor(360,X).
X = 2**3*3**2*5.

Pure

factor n = factor 2 n with
  factor k n = k : factor k (n div k) if n mod k == 0;
         = if n>1 then [n] else [] if k*k>n;
         = factor (k+1) n if k==2;
         = factor (k+2) n otherwise;
end;

Python

Python: Using Croft Spiral sieve

Note: the program below is saved to file prime_decomposition.py and imported as a library here, here, here, here and here.

from __future__ import print_function

import sys
from itertools import cycle

def is_prime(n):
    return list(zip((True, False), decompose(n)))[-1][0]

class IsPrimeCached(dict):
    def __missing__(self, n):
        r = is_prime(n)
        self[n] = r
        return r

is_prime_cached = IsPrimeCached()

def croft():
    """Yield prime integers using the Croft Spiral sieve.

    This is a variant of wheel factorisation modulo 30.
    """
    # Copied from:
    #   https://code.google.com/p/pyprimes/source/browse/src/pyprimes.py
    # Implementation is based on erat3 from here:
    #   http://stackoverflow.com/q/2211990
    # and this website:
    #   http://www.primesdemystified.com/
    # Memory usage increases roughly linearly with the number of primes seen.
    # dict ``roots`` stores an entry x:p for every prime p.
    for p in (2, 3, 5):
        yield p
    roots = {}  # Map x*d -> 2*d.
    not_primeroot = tuple(x not in {1,7,11,13,17,19,23,29} for x in range(30))
    q = 1
    for x in cycle((6, 4, 2, 4, 2, 4, 6, 2)):
        # Iterate over prime candidates 7, 11, 13, 17, ...
        q += x
        # Using dict membership testing instead of pop gives a
        # 5-10% speedup over the first three million primes.
        if q in roots:
            p = roots.pop(q)
            x = q + p
            while not_primeroot[x % 30] or x in roots:
                x += p
            roots[x] = p
        else:
            roots[q * q] = q + q
            yield q
primes = croft

def decompose(n):
    for p in primes():
        if p*p > n: break
        while n % p == 0:
            yield p
            n //=p
    if n > 1:
        yield n


if __name__ == '__main__':
    # Example: calculate factors of Mersenne numbers to M59 #

    import time

    for m in primes():
        p = 2 ** m - 1
        print( "2**{0:d}-1 = {1:d}, with factors:".format(m, p) )
        start = time.time()
        for factor in decompose(p):
            print(factor, end=' ')
            sys.stdout.flush()

        print( "=> {0:.2f}s".format( time.time()-start ) )
        if m >= 59:
            break
Output:
2**2-1 = 3, with factors:
3 => 0.00s
2**3-1 = 7, with factors:
7 => 0.01s
2**5-1 = 31, with factors:
31 => 0.00s
2**7-1 = 127, with factors:
127 => 0.00s
2**11-1 = 2047, with factors:
23 89 => 0.00s
2**13-1 = 8191, with factors:
8191 => 0.00s
2**17-1 = 131071, with factors:
131071 => 0.00s
2**19-1 = 524287, with factors:
524287 => 0.00s
2**23-1 = 8388607, with factors:
47 178481 => 0.01s
2**29-1 = 536870911, with factors:
233 1103 2089 => 0.01s
2**31-1 = 2147483647, with factors:
2147483647 => 0.03s
2**37-1 = 137438953471, with factors:
223 616318177 => 0.02s
2**41-1 = 2199023255551, with factors:
13367 164511353 => 0.01s
2**43-1 = 8796093022207, with factors:
431 9719 2099863 => 0.01s
2**47-1 = 140737488355327, with factors:
2351 4513 13264529 => 0.01s
2**53-1 = 9007199254740991, with factors:
6361 69431 20394401 => 0.04s
2**59-1 = 576460752303423487, with factors:
179951 3203431780337 => 1.22s

Python: Using floating point

Here a shorter and marginally faster algorithm:

from math import floor, sqrt
try: 
    long
except NameError: 
    long = int

def fac(n):
    step = lambda x: 1 + (x<<2) - ((x>>1)<<1)
    maxq = long(floor(sqrt(n)))
    d = 1
    q = 2 if n % 2 == 0 else 3 
    while q <= maxq and n % q != 0:
        q = step(d)
        d += 1
    return [q] + fac(n // q) if q <= maxq else [n]

if __name__ == '__main__':
    import time
    start = time.time()
    tocalc =  2**59-1
    print("%s = %s" % (tocalc, fac(tocalc)))
    print("Needed %ss" % (time.time() - start))
Output:
576460752303423487 = [3203431780337, 179951]
Needed 0.9240529537200928s

Quackery

prime is defined at Miller-Rabin primality test#Quackery.

  [ dup prime iff 
      nested done
    [] swap
    dup times
    [ i^ 2 + prime 
      not if done
      [ dup i^ 2 + /mod
        0 = while
        nip dip 
          [ i^ 2 + join ]
        again ]
      drop
      dup 1 = if conclude ] 
    drop ]                  is primefactors ( n --> [ )
Output:
[ 2 2 2 2 2 2 2 2 2 2 3 11 31 ]

R

findfactors <- function(num) {
  x <- NULL
  firstprime<- 2; secondprime <- 3; everyprime <- num
  while( everyprime != 1 ) {
    while( everyprime%%firstprime == 0 ) {
      x <- c(x, firstprime)
      everyprime <- floor(everyprime/ firstprime)
    }
    firstprime <- secondprime
    secondprime <- secondprime + 2
  }
  x
}

print(findfactors(1027*4))

Or a more explicit (but less efficient) recursive approach:

Recursive Approach (Less efficient for large numbers)

primes <- as.integer(c())

max_prime_checker <- function(n){
  divisor <<- NULL

  primes <- primes[primes <= n]

  for(i in 1:length(primes)){
    if((n/primes[i]) %% 1 == 0){
      divisor[i]<<-1
    } else {
      divisor[i]<<-0
    } 
  }
  num_find <<- primes*as.integer(divisor)
  
  return(max(num_find))
}

#recursive prime finder
prime_factors <- function(n){
  
  factors <- NULL
  
  large <- max_prime_checker(n)
  n1 <- n/large 
  
  if(max_prime_checker(n1) == n1){
    factors <- c(large,n1)
    return(factors)
  } else {
    factors <- c(large, prime_factors(n1))
    return(factors)
  }
}

Alternate solution

findfactors <- function(n) {
  a <- NULL
  if (n > 1) {
    while (n %% 2 == 0) {
      a <- c(a, 2)
      n <- n %/% 2
    }
    k <- 3
    while (k * k <= n) {
      while (n %% k == 0) {
        a <- c(a, k)
        n <- n %/% k
      }
      k <- k + 2
    }
    if (n > 1) a <- c(a, n)
  }
  a
}

Racket

#lang racket
(require math)
(define (factors n)
  (append-map (λ (x) (make-list (cadr x) (car x))) (factorize n)))

Or, an explicit (and less efficient) computation:

#lang racket
(define (factors number)
  (let loop ([n number] [i 2])
    (if (= n 1)
      '()
      (let-values ([(q r) (quotient/remainder n i)])
        (if (zero? r) (cons i (loop q i)) (loop n (add1 i)))))))

Raku

(formerly Perl 6)

Pure Raku

This is a pure Raku version that uses no outside libraries. It uses a variant of Pollard's rho factoring algorithm and is fairly performent when factoring numbers < 2⁸⁰; typically taking well under a second on an i7. It starts to slow down with larger numbers, but really bogs down factoring numbers that have more than 1 factor larger than about 2⁴⁰.

sub prime-factors ( Int $n where * > 0 ) {
    return $n if $n.is-prime;
    return () if $n == 1;
    my $factor = find-factor( $n );
    sort flat ( $factor, $n div $factor ).map: &prime-factors;
}

sub find-factor ( Int $n, $constant = 1 ) {
    return 2 unless $n +& 1;
    if (my $gcd = $n gcd 6541380665835015) > 1 { # magic number: [*] primes 3 .. 43
        return $gcd if $gcd != $n
    }
    my $x      = 2;
    my $rho    = 1;
    my $factor = 1;
    while $factor == 1 {
        $rho = $rho +< 1;
        my $fixed = $x;
        my int $i = 0;
        while $i < $rho {
            $x = ( $x * $x + $constant ) % $n;
            $factor = ( $x - $fixed ) gcd $n;
            last if 1 < $factor;
            $i = $i + 1;
        }
    }
    $factor = find-factor( $n, $constant + 1 ) if $n == $factor;
    $factor;
}

.put for (2²⁹-1, 2⁴¹-1, 2⁵⁹-1, 2⁷¹-1, 2⁷⁹-1, 2⁹⁷-1, 2¹¹⁷-1, 2²⁴¹-1,
5465610891074107968111136514192945634873647594456118359804135903459867604844945580205745718497)\
.hyper(:1batch).map: -> $n {
    my $start = now;
   "factors of $n: ",
    prime-factors($n).join(' × '), " \t in ", (now - $start).fmt("%0.3f"), " sec."
}
Output:
factors of 536870911:  233 × 1103 × 2089    in  0.004  sec.
factors of 2199023255551:  13367 × 164511353     in  0.011  sec.
factors of 576460752303423487:  179951 × 3203431780337       in  0.023  sec.
factors of 2361183241434822606847:  228479 × 48544121 × 212885833    in  0.190  sec.
factors of 604462909807314587353087:  2687 × 202029703 × 1113491139767       in  0.294  sec.
factors of 158456325028528675187087900671:  11447 × 13842607235828485645766393       in  0.005  sec.
factors of 166153499473114484112975882535043071:  7 × 73 × 79 × 937 × 6553 × 8191 × 86113 × 121369 × 7830118297      in  0.022  sec.
factors of 3533694129556768659166595001485837031654967793751237916243212402585239551:  22000409 × 160619474372352289412737508720216839225805656328990879953332340439     in  0.085  sec.
factors of 5465610891074107968111136514192945634873647594456118359804135903459867604844945580205745718497:  165901 × 10424087 × 18830281 × 53204737 × 56402249 × 59663291 × 91931221 × 95174413 × 305293727939 × 444161842339 × 790130065009     in  28.427  sec.

There is a Raku module available: Prime::Factor, that uses essentially this algorithm with some minor performance tweaks.

External library

If you really need a speed boost, load the highly optimized Perl 5 ntheory module. It needs a little extra plumbing to deal with the lack of built-in big integer support, but for large number factoring the interface overhead is worth it.

use Inline::Perl5;
my $p5 = Inline::Perl5.new();
$p5.use( 'ntheory' );

sub prime-factors ($i) {
    my &primes = $p5.run('sub { map { ntheory::todigitstring $_ } sort {$a <=> $b} ntheory::factor $_[0] }');
    primes("$i");
}

for 2²⁹-1, 2⁴¹-1, 2⁵⁹-1, 2⁷¹-1, 2⁷⁹-1, 2⁹⁷-1, 2¹¹⁷-1,
5465610891074107968111136514192945634873647594456118359804135903459867604844945580205745718497
 ->  $n {
    my $start = now;
    say "factors of $n: ",
    prime-factors($n).join(' × '), " \t in ", (now - $start).fmt("%0.3f"), " sec."
}
Output:
factors of 536870911: 233 × 1103 × 2089     in 0.001 sec.
factors of 2199023255551: 13367 × 164511353      in 0.001 sec.
factors of 576460752303423487: 179951 × 3203431780337    in 0.001 sec.
factors of 2361183241434822606847: 228479 × 48544121 × 212885833     in 0.012 sec.
factors of 604462909807314587353087: 2687 × 202029703 × 1113491139767    in 0.003 sec.
factors of 158456325028528675187087900671: 11447 × 13842607235828485645766393    in 0.001 sec.
factors of 166153499473114484112975882535043071: 7 × 73 × 79 × 937 × 6553 × 8191 × 86113 × 121369 × 7830118297   in 0.001 sec.
factors of 5465610891074107968111136514192945634873647594456118359804135903459867604844945580205745718497: 165901 × 10424087 × 18830281 × 53204737 × 56402249 × 59663291 × 91931221 × 95174413 × 305293727939 × 444161842339 × 790130065009      in 0.064 sec.

REXX

Version 1

No (error) checking was done for the input arguments to test their validity.

The number of decimal digits is adjusted to match the size of the top-of-the-range (top).

Also, a count of primes found is shown.

If the   top   number is negative, only the number of primes up to   abs(top)   is shown.

A method exists in this REXX program to also test Mersenne-type numbers   (2n - 1).

Since the majority of computing time is spent looking for primes, that part of the program was
optimized somewhat (but could be extended if more optimization is wanted).

/*REXX pgm does prime decomposition of a range of positive integers (with a prime count)*/
Numeric Digits 1000                   /*handle thousand digits For the powers*/
Parse Arg  bot  top  step   base  add /*get optional arguments from the C.L. */
If bot='?' Then Do
  Say 'rexx pfoo bot  top  step   base  add'
  Exit
  End
If bot=='' Then                       /* no arguments given                  */
  Parse Value 1 100 With bot top      /* set default range                  .*/
If top=='' Then top=bot               /* process one number                  */
If step=='' Then step=1               /* step=2 to process only odd numbers  */
If add =='' Then add=-1               /* for Mersenne tests                  */
tell=top>0                            /*If TOP is negative, suppress displays*/
top=abs(top)
w=length(top)                         /*get maximum width For aligned display*/
If base\=='' Then
  w=length(base**top)                 /*will be testing powers of two later? */
tag.=left('', 7)                      /*some literals:  pad;  prime (or not).*/
tag.0='{unity}'
tag.1='[prime]'
Numeric Digits max(9,w+1)             /*maybe increase the digits precision. */
np=0                                  /*np:    is the number of primes found.*/
Do n=bot To top by step               /*process a single number or a range.  */
  ?=n
  If base\=='' Then                   /*should we perform a 'Mersenne' test? */
    ?=base**n+add
  pf=factr(?)                         /* get prime factors                   */
  f=words(pf)                         /* number of prime factors             */
  If f=1 Then                         /* If the number is prime              */
    np=np+1                           /* Then bump prime counter             */
  If tell Then
    Say right(?,w) right('('f')',9) 'prime factors: ' tag.f pf
  End   /*n*/
Say ''
ps='prime'
If f>1 Then ps=ps's'                  /*setup For proper English in sentence.*/
Say right(np, w+9+1) ps 'found.'      /*display the number of primes found.  */
Exit                                  /*stick a fork in it,  we're all done. */
/*---------------------------------------------------------------------------*/
factr: Procedure
  Parse Arg x 1 d,pl                  /*set X, D  to argument 1, pl to null  */
  If x==1 Then Return ''              /*handle the special case of   X=1.    */
  primes=2 3 5 7
  Do While primes>''                  /* first check the small primes        */
    Parse Var primes prime primes
    Do While x//prime==0
      pl=pl prime
      x=x%prime
      End
    End
  r=isqrt(x)
  Do j=11 by 6 To r                   /*insure that J isn't divisible by 3.  */
    Parse var j '' -1 _               /*obtain the last decimal digit of  J. */
    If _\==5 Then Do
      Do While x//j==0
        pl=pl j
        x=x%j
        End                           /*maybe reduce by J.                   */
      End
    If _ ==3 Then Iterate             /*If next Y is divisible by 5?  Skip. */
    y=j+2
    Do While x//y==0
      pl=pl y
      x=x%y
      End                             /*maybe reduce by y.                   */
    End   /*j*/

  If x==1 Then Return pl              /*Is residual=unity? Then don't append.*/
               Return pl x            /*return   pl   with appended residual.*/

isqrt: Procedure
  Parse Arg x
  x=abs(x)
  Parse Value 0 x with lo hi
  Do While lo<=hi
    t=(lo+hi)%2
    If t**2>x Then
      hi=t-1
    Else
      lo=t+1
    End
  Return t

output   when using the default input of:   1   100 All timings were done using ooRexx. (Shown at three-quarter size.)


  1       (0) prime factors:  {unity}
  2       (1) prime factors:  [prime]  2
  3       (1) prime factors:  [prime]  3
  4       (2) prime factors:           2 2
  5       (1) prime factors:  [prime]  5
  6       (2) prime factors:           2 3
  7       (1) prime factors:  [prime]  7
  8       (3) prime factors:           2 2 2
  9       (2) prime factors:           3 3
 10       (2) prime factors:           2 5
 11       (1) prime factors:  [prime]  11
 12       (3) prime factors:           2 2 3
 13       (1) prime factors:  [prime]  13
 14       (2) prime factors:           2 7
 15       (2) prime factors:           3 5
 16       (4) prime factors:           2 2 2 2
 17       (1) prime factors:  [prime]  17
 18       (3) prime factors:           2 3 3
 19       (1) prime factors:  [prime]  19
 20       (3) prime factors:           2 2 5
 21       (2) prime factors:           3 7
 22       (2) prime factors:           2 11
 23       (1) prime factors:  [prime]  23
 24       (4) prime factors:           2 2 2 3
 25       (2) prime factors:           5 5
 26       (2) prime factors:           2 13
 27       (3) prime factors:           3 3 3
 28       (3) prime factors:           2 2 7
 29       (1) prime factors:  [prime]  29
 30       (3) prime factors:           2 3 5
 31       (1) prime factors:  [prime]  31
 32       (5) prime factors:           2 2 2 2 2
 33       (2) prime factors:           3 11
 34       (2) prime factors:           2 17
 35       (2) prime factors:           5 7
 36       (4) prime factors:           2 2 3 3
 37       (1) prime factors:  [prime]  37
 38       (2) prime factors:           2 19
 39       (2) prime factors:           3 13
 40       (4) prime factors:           2 2 2 5
 41       (1) prime factors:  [prime]  41
 42       (3) prime factors:           2 3 7
 43       (1) prime factors:  [prime]  43
 44       (3) prime factors:           2 2 11
 45       (3) prime factors:           3 3 5
 46       (2) prime factors:           2 23
 47       (1) prime factors:  [prime]  47
 48       (5) prime factors:           2 2 2 2 3
 49       (2) prime factors:           7 7
 50       (3) prime factors:           2 5 5
 51       (2) prime factors:           3 17
 52       (3) prime factors:           2 2 13
 53       (1) prime factors:  [prime]  53
 54       (4) prime factors:           2 3 3 3
 55       (2) prime factors:           5 11
 56       (4) prime factors:           2 2 2 7
 57       (2) prime factors:           3 19
 58       (2) prime factors:           2 29
 59       (1) prime factors:  [prime]  59
 60       (4) prime factors:           2 2 3 5
 61       (1) prime factors:  [prime]  61
 62       (2) prime factors:           2 31
 63       (3) prime factors:           3 3 7
 64       (6) prime factors:           2 2 2 2 2 2
 65       (2) prime factors:           5 13
 66       (3) prime factors:           2 3 11
 67       (1) prime factors:  [prime]  67
 68       (3) prime factors:           2 2 17
 69       (2) prime factors:           3 23
 70       (3) prime factors:           2 5 7
 71       (1) prime factors:  [prime]  71
 72       (5) prime factors:           2 2 2 3 3
 73       (1) prime factors:  [prime]  73
 74       (2) prime factors:           2 37
 75       (3) prime factors:           3 5 5
 76       (3) prime factors:           2 2 19
 77       (2) prime factors:           7 11
 78       (3) prime factors:           2 3 13
 79       (1) prime factors:  [prime]  79
 80       (5) prime factors:           2 2 2 2 5
 81       (4) prime factors:           3 3 3 3
 82       (2) prime factors:           2 41
 83       (1) prime factors:  [prime]  83
 84       (4) prime factors:           2 2 3 7
 85       (2) prime factors:           5 17
 86       (2) prime factors:           2 43
 87       (2) prime factors:           3 29
 88       (4) prime factors:           2 2 2 11
 89       (1) prime factors:  [prime]  89
 90       (4) prime factors:           2 3 3 5
 91       (2) prime factors:           7 13
 92       (3) prime factors:           2 2 23
 93       (2) prime factors:           3 31
 94       (2) prime factors:           2 47
 95       (2) prime factors:           5 19
 96       (6) prime factors:           2 2 2 2 2 3
 97       (1) prime factors:  [prime]  97
 98       (3) prime factors:           2 7 7
 99       (3) prime factors:           3 3 11
100       (4) prime factors:           2 2 5 5

           25 primes found.<br>
0.046 seconds

output   when using the input of:   9007199254740991

9007199254740991       (3) prime factors:           6361 69431 20394401

              0 primes found.
5.201 seconds

output   when using the input of:   2543821448263974486045199

2543821448263974486045199       (6) prime factors:           701 1123 1123 2411 1092461 1092461

              0 primes found.<br>
> 1000 seconds

output   when using the input of:   1   -1000000

            78498 primes found.
32.251 seconds

output   when using the input of:   2   50   1   2   -1

(essentially testing for Mersenne primes:   2n -1)

(Shown at three-quarter size.)


               3       (1) prime factors:  [prime]  3
               7       (1) prime factors:  [prime]  7
              15       (2) prime factors:           3 5
              31       (1) prime factors:  [prime]  31
              63       (3) prime factors:           3 3 7
             127       (1) prime factors:  [prime]  127
             255       (3) prime factors:           3 5 17
             511       (2) prime factors:           7 73
            1023       (3) prime factors:           3 11 31
            2047       (2) prime factors:           23 89
            4095       (5) prime factors:           3 3 5 7 13
            8191       (1) prime factors:  [prime]  8191
           16383       (3) prime factors:           3 43 127
           32767       (3) prime factors:           7 31 151
           65535       (4) prime factors:           3 5 17 257
          131071       (1) prime factors:  [prime]  131071
          262143       (6) prime factors:           3 3 3 7 19 73
          524287       (1) prime factors:  [prime]  524287
         1048575       (6) prime factors:           3 5 5 11 31 41
         2097151       (4) prime factors:           7 7 127 337
         4194303       (4) prime factors:           3 23 89 683
         8388607       (2) prime factors:           47 178481
        16777215       (7) prime factors:           3 3 5 7 13 17 241
        33554431       (3) prime factors:           31 601 1801
        67108863       (3) prime factors:           3 2731 8191
       134217727       (3) prime factors:           7 73 262657
       268435455       (6) prime factors:           3 5 29 43 113 127
       536870911       (3) prime factors:           233 1103 2089
      1073741823       (7) prime factors:           3 3 7 11 31 151 331
      2147483647       (1) prime factors:  [prime]  2147483647
      4294967295       (5) prime factors:           3 5 17 257 65537
      8589934591       (4) prime factors:           7 23 89 599479
     17179869183       (3) prime factors:           3 43691 131071
     34359738367       (4) prime factors:           31 71 127 122921
     68719476735      (10) prime factors:           3 3 3 5 7 13 19 37 73 109
    137438953471       (2) prime factors:           223 616318177
    274877906943       (3) prime factors:           3 174763 524287
    549755813887       (4) prime factors:           7 79 8191 121369
   1099511627775       (8) prime factors:           3 5 5 11 17 31 41 61681
   2199023255551       (2) prime factors:           13367 164511353
   4398046511103       (8) prime factors:           3 3 7 7 43 127 337 5419
   8796093022207       (3) prime factors:           431 9719 2099863
  17592186044415       (7) prime factors:           3 5 23 89 397 683 2113
  35184372088831       (6) prime factors:           7 31 73 151 631 23311
  70368744177663       (4) prime factors:           3 47 178481 2796203
 140737488355327       (3) prime factors:           2351 4513 13264529
 281474976710655      (10) prime factors:           3 3 5 7 13 17 97 241 257 673
 562949953421311       (2) prime factors:           127 4432676798593
1125899906842623       (7) prime factors:           3 11 31 251 601 1801 4051

                         8 primes found.
3.942 seconds

output   when using the input of:   1   50   1   2   +1

(essentially testing for   2n +1)

(Shown at three-quarter size.)

               3       (1) prime factors:  [prime]  3
               5       (1) prime factors:  [prime]  5
               9       (2) prime factors:           3 3
              17       (1) prime factors:  [prime]  17
              33       (2) prime factors:           3 11
              65       (2) prime factors:           5 13
             129       (2) prime factors:           3 43
             257       (1) prime factors:  [prime]  257
             513       (4) prime factors:           3 3 3 19
            1025       (3) prime factors:           5 5 41
            2049       (2) prime factors:           3 683
            4097       (2) prime factors:           17 241
            8193       (2) prime factors:           3 2731
           16385       (3) prime factors:           5 29 113
           32769       (4) prime factors:           3 3 11 331
           65537       (1) prime factors:  [prime]  65537
          131073       (2) prime factors:           3 43691
          262145       (4) prime factors:           5 13 37 109
          524289       (2) prime factors:           3 174763
         1048577       (2) prime factors:           17 61681
         2097153       (4) prime factors:           3 3 43 5419
         4194305       (3) prime factors:           5 397 2113
         8388609       (2) prime factors:           3 2796203
        16777217       (3) prime factors:           97 257 673
        33554433       (4) prime factors:           3 11 251 4051
        67108865       (4) prime factors:           5 53 157 1613
       134217729       (6) prime factors:           3 3 3 3 19 87211
       268435457       (2) prime factors:           17 15790321
       536870913       (3) prime factors:           3 59 3033169
      1073741825       (6) prime factors:           5 5 13 41 61 1321
      2147483649       (2) prime factors:           3 715827883
      4294967297       (2) prime factors:           641 6700417
      8589934593       (5) prime factors:           3 3 67 683 20857
     17179869185       (4) prime factors:           5 137 953 26317
     34359738369       (5) prime factors:           3 11 43 281 86171
     68719476737       (4) prime factors:           17 241 433 38737
    137438953473       (3) prime factors:           3 1777 25781083
    274877906945       (4) prime factors:           5 229 457 525313
    549755813889       (4) prime factors:           3 3 2731 22366891
   1099511627777       (2) prime factors:           257 4278255361
   2199023255553       (3) prime factors:           3 83 8831418697
   4398046511105       (6) prime factors:           5 13 29 113 1429 14449
   8796093022209       (2) prime factors:           3 2932031007403
  17592186044417       (3) prime factors:           17 353 2931542417
  35184372088833       (7) prime factors:           3 3 3 11 19 331 18837001
  70368744177665       (5) prime factors:           5 277 1013 1657 30269
 140737488355329       (3) prime factors:           3 283 165768537521
 281474976710657       (3) prime factors:           193 65537 22253377
 562949953421313       (3) prime factors:           3 43 4363953127297
1125899906842625       (7) prime factors:           5 5 5 41 101 8101 268501

                         5 primes found.
3.164 seconds

Version 2

This REXX version is about   20%   faster than the 1st REXX version when factoring one million numbers.

/*REXX pgm does prime decomposition of a range of positive integers (with a prime count)*/
Numeric Digits 1000                   /*handle thousand digits For the powers*/
Parse Arg  bot  top  step   base  add /*get optional arguments from the C.L. */
If bot='?' Then Do
  Say 'rexx pfoo bot  top  step   base  add'
  Exit
  End
If bot=='' Then                       /* no arguments given                  */
  Parse Value 1 100 With bot top      /* set default range                  .*/
If top=='' Then top=bot               /* process one number                  */
If step=='' Then step=1               /* step=2 to process only odd numbers  */
If add =='' Then add=-1               /* for Mersenne tests                  */
tell=top>0                            /*If TOP is negative, suppress displays*/
top=abs(top)
w=length(top)                         /*get maximum width For aligned display*/
If base\=='' Then
  w=length(base**top)                 /*will be testing powers of two later? */
tag.=left('', 7)                      /*some literals:  pad;  prime (or not).*/
tag.0='{unity}'
tag.1='[prime]'
Numeric Digits max(9,w+1)             /*maybe increase the digits precision. */
np=0                                  /*np:    is the number of primes found.*/
Do n=bot To top by step               /*process a single number or a range.  */
  ?=n
  If base\=='' Then                   /*should we perform a 'Mersenne' test? */
    ?=base**n+add
  pf=factr(?)                         /* get prime factors                   */
  f=words(pf)                         /* number of prime factors             */
  If f=1 Then                         /* If the number is prime              */
    np=np+1                           /* Then bump prime counter             */
  If tell Then
    Say right(?,w) right('('f')',9) 'prime factors: ' tag.f pf
  End   /*n*/
Say ''
ps='prime'
If f>1 Then ps=ps's'                  /*setup For proper English in sentence.*/
Say right(np, w+9+1) ps 'found.'      /*display the number of primes found.  */
Exit                                  /*stick a fork in it,  we're all done. */
/*---------------------------------------------------------------------------*/
factr: Procedure
  Parse Arg x 1 d,pl                  /*set X, D  to argument 1, pl to null  */
  If x==1 Then Return ''              /*handle the special case of   X=1.    */
  primes=2 3 5 7 11 13 17 19 23
  Do While primes>''                  /* first check the small primes        */
    Parse Var primes prime primes
    Do While x//prime==0
      pl=pl prime
      x=x%prime
      End
    End
  r=isqrt(x)
  Do j=29 by 6 To r                   /*insure that  J  isn't divisible by 3.*/
    Parse var j '' -1 _               /*obtain the last decimal digit of  J. */
    If _\==5 Then Do
      Do While x//j==0
        pl=pl j
        x=x%j
        End                           /*maybe reduce by J.                  */
      End
    If _ ==3 Then Iterate             /*If next Y is divisible by 5?  Skip. */
    y=j+2
    Do While x//y==0
      pl=pl y
      x=x%y
      End                             /*maybe reduce by y.                   */
    End   /*j*/
  If x==1 Then Return pl              /*Is residual=unity? Then don't append.*/
               Return pl x            /*return   pl   with appended residual.*/

isqrt: Procedure
  Parse Arg x
  x=abs(x)
  Parse Value 0 x with lo hi
  Do While lo<=hi
    t=(lo+hi)%2
    If t**2>x Then
      hi=t-1
    Else
      lo=t+1
    End
  Return t

output   is identical to the 1st REXX version Timings slightly faster.

Version 3

In this version

r=isqrt(x)

Do j=29 by 6 To r

is replaced by

do j = 29 by 6 while j*j <= x

together with some other minor improvements.

/*REXX pgm does prime decomposition of a range of positive integers (with a prime count)*/
call time('r')
Numeric Digits 1000                   /*handle thousand digits For the powers*/
Parse Arg  bot  top  step   base  add /*get optional arguments from the C.L. */
If bot='?' Then Do
  Say 'rexx pfoo bot  top  step   base  add'
  Exit
  End
If bot=='' Then                       /* no arguments given                  */
  Parse Value 1 100 With bot top      /* set default range                  .*/
If top=='' Then top=bot               /* process one number                  */
If step=='' Then step=1               /* step=2 to process only odd numbers  */
If add =='' Then add=-1               /* for Mersenne tests                  */
tell=top>0                            /*If TOP is negative, suppress displays*/
top=abs(top)
w=length(top)                         /*get maximum width For aligned display*/
If base\=='' Then
  w=length(base**top)                 /*will be testing powers of two later? */
tag.=left('', 7)                      /*some literals:  pad;  prime (or not).*/
tag.0='{unity}'
tag.1='[prime]'
Numeric Digits max(9,w+1)             /*maybe increase the digits precision. */
np=0                                  /*np:    is the number of primes found.*/
Do n=bot To top by step               /*process a single number or a range.  */
  ?=n
  If base\=='' Then                   /*should we perform a 'Mersenne' test? */
    ?=base**n+add
  pf=factr(?)                         /* get prime factors                   */
  f=words(pf)                         /* number of prime factors             */
  If f=1 Then                         /* If the number is prime              */
    np=np+1                           /* Then bump prime counter             */
  If tell Then
    Say right(?,w) right('('f')',9) 'prime factors: ' tag.f pf
  End   /*n*/
Say ''
ps='prime'
If f>1 Then ps=ps's'                  /*setup For proper English in sentence.*/
Say right(np, w+9+1) ps 'found.'      /*display the number of primes found.  */
say format(time('e'),,3) 'seconds'
Exit                                  /*stick a fork in it,  we're all done. */
/*---------------------------------------------------------------------------*/
Factr:
procedure expose glob.
arg x
primes = '2 3 5 7 11 13 17 19 23'; pl = ''
do n = 1 to words(primes)
   prime = word(primes,n)
   do while x//prime = 0
      pl = pl prime; x = x%prime
   end
end
do j = 29 by 6 while j*j <= x
   d = right(j,1)
   if d <> 5 then do
      do while x//j = 0
         pl = pl j; x = x%j
      end
   end
   if d = 3 then
      iterate
   y = j+2
   do while x//y = 0
      pl = pl y; x = x%y
   end
end
if x = 1 then
   return pl
else
   return pl x

The output is identical to Version 1, except for the timings. Version 3 is much, much faster on big numbers!

Input 9007199254740991
0.011 seconds

Input 2543821448263974486045199
0.082 seconds

Input 340282366920938463463374607431768211455
340282366920938463463374607431768211455 (9) prime factors: 3 5 17 257 641 65537 274177 6700417 67280421310721
2.093 seconds
This big number only succeeded because it has some small factors first. Dividing by these factors quickly reduces the size of the number. Looks like a 'lucky shot'. If a big number is the product of 2 not so small primes (i.e. semiprimes), then also Version 3 will not find the factors within a reasonable time.

Input 1 -1000000
19.369 seconds

Input 2 50 1 2 -1
0.238 seconds

Input 2 50 1 2 +1
0.370 seconds

Version 4

Libraries: How to use
Library: Numbers
Library: Functions
The factorization routine in below version is almost the same as the one in Version 3, but is also finds (number of) factors and stores all results in global variables. Thus it has some overhead for this specific task.

/*REXX pgm does prime decomposition of a range of positive integers (with a prime count)*/
call time('r')
Numeric Digits 1000                   /*handle thousand digits For the powers*/
Parse Arg  bot  top  step   base  add /*get optional arguments from the C.L. */
If bot='qq' Then Do
  Say 'rexx pfoo bot  top  step   base  add'
  Exit
  End
If bot=='' Then                       /* no arguments given                  */
  Parse Value 1 100 With bot top      /* set default range                  .*/
If top=='' Then top=bot               /* process one number                  */
If step=='' Then step=1               /* step=2 to process only odd numbers  */
If add =='' Then add=-1               /* for Mersenne tests                  */
tell=top>0                            /*If TOP is negative, suppress displays*/
top=abs(top)
w=length(top)                         /*get maximum width For aligned display*/
If base\=='' Then
  w=length(base**top)                 /*will be testing powers of two laterqq */
tag.=left('', 7)                      /*some literals:  pad;  prime (or not).*/
tag.0='{unity}'
tag.1='[prime]'
Numeric Digits max(9,w+1)             /*maybe increase the digits precision. */
np=0                                  /*np:    is the number of primes found.*/
Do n=bot To top by step               /*process a single number or a range.  */
  qq=n
  If base\=='' Then                   /*should we perform a 'Mersenne' testqq */
    qq=base**n+add
  f=factors(qq)                       /* number of prime factors             */
  If f=1 Then                         /* If the number is prime              */
    np=np+1                           /* Then bump prime counter             */
  If tell Then do
     pf = ''
     do i = 1 to f
        pf = pf glob.factor.i
     end
    Say right(qq,w) right('('f')',9) 'prime factors: ' tag.f pf
  end
  End   /*n*/
Say ''
ps='prime'
If f>1 Then ps=ps's'                  /*setup For proper English in sentence.*/
Say right(np, w+9+1) ps 'found.'      /*display the number of primes found.  */
say format(time('e'),,3) 'seconds'
Exit                                  /*stick a fork in it,  we're all done. */

Factors:
/* Prime factors of an integer */
procedure expose glob.
arg x
/* Validity */
if \ Whole(x) then
   return 'X'
if x < 1 then
   return 'X'
/* Fast values */
if x = 1 then do
   glob.factor.0 = 0
   return 0
end
if x < 4 then do
   glob.factor.1 = x; glob.factor.0 = 1
   return 1
end
if Prime(x) then do
   glob.factor.1 = x; glob.factor.0 = 1
   return 1
end
/* Check low factors */
n = 0
pr = '2 3 5 7 11 13 17 19 23'
do i = 1 to Words(pr)
   p = Word(pr,i)
   do while x//p = 0
      n = n+1; glob.factor.n = p
      x = x%p
   end
end
/* Check higher factors */
do j = 29 by 6 while j*j <= x
   p = Right(j,1)
   if p <> 5 then do
      do while x//j = 0
         n = n+1; glob.factor.n = j
         x = x%j
      end
   end
   if p = 3 then
      iterate
   y = j+2
   do while x//y = 0
      n = n+1; glob.factor.n = y
      x = x%y
   end
end
/* Last factor */
if x > 1 then  do
   n = n+1; glob.factor.n = x
end
glob.factor.0 = n
/* Return number of factors */
return n

include Functions
include Numbers

The same run as given for Version 3 give:

Output:
Input 9007199254740991
0.015 seconds

Input 2543821448263974486045199
0.078 seconds

Input 340282366920938463463374607431768211455
340282366920938463463374607431768211455 (9) prime factors: 3 5 17 257 641 65537 274177 6700417 67280421310721
2.077 seconds

Input 1 -1000000
21.391 seconds

Input 2 50 1 2 -1
0.203 seconds

Input 2 50 1 2 +1
0.359 seconds

More or less the same performance.

Ring

prime = 18705
decomp(prime)

func decomp nr
x = ""
for i = 1 to nr
    if isPrime(i) and nr % i = 0
       x = x + string(i) + " * " ok
    if i = nr
       x2 = substr(x,1,(len(x)-2))
       see string(nr) + " = " + x2 + nl ok
next 

func isPrime num
     if (num <= 1) return 0 ok
     if (num % 2 = 0) and num != 2 return 0 ok
     for i = 3 to floor(num / 2) -1 step 2
         if (num % i = 0) return 0 ok
     next
     return 1

RPL

≪ { } SWAP DUP √ CEIL → lim 
  ≪ 2 
     WHILE OVER 1 > OVER lim ≤ AND REPEAT 
        DUP2 / 
        IF DUP FP 
        THEN DROP DUP 2 ≠ + 1 + 
        ELSE SWAP ROT DROP ROT OVER + ROT ROT END 
     END DROP 
     IF DUP 1 ≠ THEN + ELSE DROP END 
≫ ≫ ‘PDIV’ STO
1048 PDIV
Output:
1: { 2 2 2 131 }

Version for binary integers

Translation of: Forth
 ≪ { } → pdiv
   ≪ #2
      WHILE DUP2 DUP * ≥ REPEAT
        IF DUP2 / LAST 3 PICK * - 
        THEN DROP 1 + #1 OR
        ELSE ROT DROP SWAP pdiv OVER + 'pdiv' STO END
      END DROP pdiv SWAP +
≫ ≫ ‘PDIVB’ STO
#1048 PDIVB
Output:
1: { #2d #2d #2d #131d }

Ruby

Built in

irb(main):001:0> require 'prime'
=> true
irb(main):003:0> 2543821448263974486045199.prime_division
=> [[701, 1], [1123, 2], [2411, 1], [1092461, 2]]

Simple algorithm

# Get prime decomposition of integer _i_.
# This routine is terribly inefficient, but elegance rules.
def prime_factors(i)
  v = (2..i-1).detect{|j| i % j == 0} 
  v ? ([v] + prime_factors(i/v)) : [i]
end

# Example: Decompose all possible Mersenne primes up to 2**31-1.
# This may take several minutes to show that 2**31-1 is prime.
(2..31).each do |i|
  factors = prime_factors(2**i-1)
  puts "2**#{i}-1 = #{2**i-1} = #{factors.join(' * ')}"
end
Output:
...
2**28-1 = 268435455 = 3 * 5 * 29 * 43 * 113 * 127
2**29-1 = 536870911 = 233 * 1103 * 2089
2**30-1 = 1073741823 = 3 * 3 * 7 * 11 * 31 * 151 * 331
2**31-1 = 2147483647 = 2147483647

Faster algorithm

# Get prime decomposition of integer _i_.
# This routine is more efficient than prime_factors,
# and quite similar to Integer#prime_division of MRI 1.9.
def prime_factors_faster(i)
  factors = []
  check = proc do |p|
    while(q, r = i.divmod(p)
          r.zero?)
      factors << p
      i = q
    end
  end
  check[2]
  check[3]
  p = 5
  while p * p <= i
    check[p]
    p += 2
    check[p]
    p += 4    # skip multiples of 2 and 3
  end
  factors << i if i > 1
  factors
end

# Example: Decompose all possible Mersenne primes up to 2**70-1.
# This may take several minutes to show that 2**61-1 is prime,
# but 2**62-1 and 2**67-1 are not prime.
(2..70).each do |i|
  factors = prime_factors_faster(2**i-1)
  puts "2**#{i}-1 = #{2**i-1} = #{factors.join(' * ')}"
end
Output:
...
2**67-1 = 147573952589676412927 = 193707721 * 761838257287
2**68-1 = 295147905179352825855 = 3 * 5 * 137 * 953 * 26317 * 43691 * 131071
2**69-1 = 590295810358705651711 = 7 * 47 * 178481 * 10052678938039
2**70-1 = 1180591620717411303423 = 3 * 11 * 31 * 43 * 71 * 127 * 281 * 86171 * 122921

This benchmark compares the different implementations.

require 'benchmark'
require 'mathn'
Benchmark.bm(24) do |x|
  [2**25 - 6, 2**35 - 7].each do |i|
    puts "#{i} = #{prime_factors_faster(i).join(' * ')}"
    x.report("  prime_factors") { prime_factors(i) }
    x.report("  prime_factors_faster") { prime_factors_faster(i) }
    x.report("  Integer#prime_division") { i.prime_division }
  end
end

With MRI 1.8, prime_factors is slow, Integer#prime_division is fast, and prime_factors_faster is very fast. With MRI 1.9, Integer#prime_division is also very fast.

Rust

Rust's largest built-in integer type is u128 (128-bit unsigned integer) which is pretty large, but not unlimited. The solution therefore uses external crates for big integers. Add the dependencies in Cargo.toml:

[package]
name = "prime_decomposition"
version = "0.1.1"
edition = "2018"

[dependencies]
num-bigint = "0.3.0"
num-traits = "0.2.12"

The implementation:

use num_bigint::BigUint;
use num_traits::{One, Zero};
use std::fmt::{Display, Formatter};

#[derive(Clone, Debug)]
pub struct Factors {
    pub number: BigUint,
    pub result: Vec<BigUint>,
}

impl Factors {
    pub fn of(number: BigUint) -> Factors {
        let mut factors = Self {
            number: number.clone(),
            result: Vec::new(),
        };

        let big_2 = BigUint::from(2u8);
        let big_4 = BigUint::from(4u8);

        factors.check(&big_2);
        factors.check(&BigUint::from(3u8));

        let mut divisor = BigUint::from(5u8);
        while &divisor * &divisor <= factors.number {
            factors.check(&divisor);
            divisor += &big_2;
            factors.check(&divisor);
            divisor += &big_4;
        }

        if factors.number > BigUint::one() {
            factors.result.push(factors.number);
        }

        factors.number = number; // Restore the number
        factors
    }

    pub fn is_prime(&self) -> bool {
        self.result.len() == 1
    }

    fn check(&mut self, divisor: &BigUint) {
        while (&self.number % divisor).is_zero() {
            self.result.push(divisor.clone());
            self.number /= divisor;
        }
    }
}

impl Display for Factors {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        let mut iter = self.result.iter();

        match iter.next() {
            None => write!(f, "[]"),

            Some(first) => {
                write!(f, "[{}", first)?;
                for next in iter {
                    write!(f, ", {}", next)?;
                }

                write!(f, "]")
            }
        }
    }
}

fn print_factors(number: BigUint) {
    let factors = Factors::of(number);

    if factors.is_prime() {
        println!("{} -> {} (prime)", factors.number, factors);
    } else {
        println!("{} -> {}", factors.number, factors);
    }
}

fn main() {
    print_factors(24u32.into());
    print_factors(32u32.into());
    print_factors(37u32.into());

    // Find Mersenne primes

    for n in 2..70 {
        print!("2**{} - 1: ", n);
        print_factors((BigUint::from(2u8) << n) - BigUint::one());
    }
}

Scala

Library: Scala
import annotation.tailrec
import collection.parallel.mutable.ParSeq

object PrimeFactors extends App {
  def factorize(n: Long): List[Long] = {
    @tailrec
    def factors(tuple: (Long, Long, List[Long], Int)): List[Long] = {
      tuple match {
        case (1, _, acc, _)                 => acc
        case (n, k, acc, _) if (n % k == 0) => factors((n / k, k, acc ++ ParSeq(k), Math.sqrt(n / k).toInt))
        case (n, k, acc, sqr) if (k < sqr)  => factors(n, k + 1, acc, sqr)
        case (n, k, acc, sqr) if (k >= sqr) => factors((1, k, acc ++ ParSeq(n), 0))
      }
    }
    factors((n, 2, List[Long](), Math.sqrt(n).toInt))
  }

  def mersenne(p: Int): BigInt = (BigInt(2) pow p) - 1

  def sieve(nums: Stream[Int]): Stream[Int] =
    Stream.cons(nums.head, sieve((nums.tail) filter (_ % nums.head != 0)))
  // An infinite stream of primes, lazy evaluation and memo-ized
  val oddPrimes = sieve(Stream.from(3, 2))
  def primes = sieve(2 #:: oddPrimes)

  oddPrimes takeWhile (_ <= 59) foreach { p =>
    { // Needs some intermediate results for nice formatting
      val numM = s"M${p}"
      val nMersenne = mersenne(p).toLong
      val lit = f"${nMersenne}%30d"

      val datum = System.nanoTime
      val result = factorize(nMersenne)
      val mSec = ((System.nanoTime - datum) / 1.0e+6).round

      def decStr = { if (lit.length > 30) f"(M has ${lit.length}%3d dec)" else "" }
      def sPrime = { if (result.isEmpty) " is a prime number." else "" }

      println(
        f"$numM%4s = 2^$p%03d - 1 = ${lit}%s${sPrime} ($mSec%,4d msec) composed of ${result.mkString(" × ")}")
    }
  }
}
Output:
  M3 = 2^003 - 1 =                              7 (  23 msec) composed of 7
  M5 = 2^005 - 1 =                             31 (   0 msec) composed of 31
  M7 = 2^007 - 1 =                            127 (   0 msec) composed of 127
 M11 = 2^011 - 1 =                           2047 (   0 msec) composed of 23 × 89
 M13 = 2^013 - 1 =                           8191 (   0 msec) composed of 8191
 M17 = 2^017 - 1 =                         131071 (   1 msec) composed of 131071
 M19 = 2^019 - 1 =                         524287 (   1 msec) composed of 524287
 M23 = 2^023 - 1 =                        8388607 (   1 msec) composed of 47 × 178481
 M29 = 2^029 - 1 =                      536870911 (   2 msec) composed of 233 × 1103 × 2089
 M31 = 2^031 - 1 =                     2147483647 (  39 msec) composed of 2147483647
 M37 = 2^037 - 1 =                   137438953471 (   8 msec) composed of 223 × 616318177
 M41 = 2^041 - 1 =                  2199023255551 (   2 msec) composed of 13367 × 164511353
 M43 = 2^043 - 1 =                  8796093022207 (   2 msec) composed of 431 × 9719 × 2099863
 M47 = 2^047 - 1 =                140737488355327 (   2 msec) composed of 2351 × 4513 × 13264529
 M53 = 2^053 - 1 =               9007199254740991 (   7 msec) composed of 6361 × 69431 × 20394401
 M59 = 2^059 - 1 =             576460752303423487 ( 152 msec) composed of 179951 × 3203431780337

Getting the prime factors does not require identifying prime numbers. Since the problems seems to ask for it, here is one version that does it:

class PrimeFactors(n: BigInt) extends Iterator[BigInt] {
  val zero = BigInt(0)
  val one = BigInt(1)
  val two = BigInt(2)
  def isPrime(n: BigInt) = n.isProbablePrime(10)
  var currentN = n
  var prime = two

  def nextPrime =
    if (prime == two) {
      prime += one
    } else {
      prime += two
      while (!isPrime(prime)) {
        prime += two
        if (prime * prime > currentN)
          prime = currentN
      }
    }

  def next = {
    if (!hasNext)
      throw new NoSuchElementException("next on empty iterator")
      
    while(currentN % prime != zero) {
      nextPrime
    }
    currentN /= prime
    prime
  }

  def hasNext = currentN != one && currentN > zero
}

The method isProbablePrime(n) has a chance of 1 - 1/(2^n) of correctly identifying a prime. Next is a version that does not depend on identifying primes, and works with arbitrary integral numbers:

class PrimeFactors[N](n: N)(implicit num: Integral[N]) extends Iterator[N] {
  import num._
  val two = one + one
  var currentN = n
  var divisor = two

  def next = {
    if (!hasNext)
      throw new NoSuchElementException("next on empty iterator")
      
    while(currentN % divisor != zero) {
      if (divisor == two)
        divisor += one
      else
        divisor += two
        
      if (divisor * divisor > currentN)
        divisor = currentN
    }
    currentN /= divisor
    divisor
  }

  def hasNext = currentN != one && currentN > zero
}
Output:

Both versions can be rather slow, as they accept arbitrarily big numbers, as requested.

Test:
scala> BigInt(2) to BigInt(30) filter (_ isProbablePrime 10) map (p => (p, BigInt(2).pow(p.toInt) - 1)) foreach {
     |   case (prime, n) => println("2**"+prime+"-1 = "+n+", with factors: "+new PrimeFactors(n).mkString(", "))
     | }
2**2-1 = 3, with factors: 3
2**3-1 = 7, with factors: 7
2**5-1 = 31, with factors: 31
2**7-1 = 127, with factors: 127
2**11-1 = 2047, with factors: 23, 89
2**13-1 = 8191, with factors: 8191
2**17-1 = 131071, with factors: 131071
2**19-1 = 524287, with factors: 524287
2**23-1 = 8388607, with factors: 47, 178481
2**29-1 = 536870911, with factors: 233, 1103, 2089
2**31-1 = 2147483647, with factors: 2147483647
2**37-1 = 137438953471, with factors: 223, 616318177
2**41-1 = 2199023255551, with factors: 13367, 164511353
2**43-1 = 8796093022207, with factors: 431, 9719, 2099863
2**47-1 = 140737488355327, with factors: 2351, 4513, 13264529
2**53-1 = 9007199254740991, with factors: 6361, 69431, 20394401
2**59-1 = 576460752303423487, with factors: 179951, 3203431780337

Alternatively, Scala LazyLists and Iterators support quite elegant one-line encodings of iterative/recursive algorithms, allowing us to to define the prime factorization like so:

import spire.math.SafeLong
import spire.implicits._
def pFactors(num: SafeLong): Vector[SafeLong] = Iterator.iterate((Vector[SafeLong](), num, SafeLong(2))){case (ac, n, f) => if(n%f == 0) (ac :+ f, n/f, f) else (ac, n, f + 1)}.dropWhile(_._2 != 1).next._1

Scheme

(define (factor number)
  (define (*factor divisor number)
    (if (> (* divisor divisor) number)
        (list number)
        (if (= (modulo number divisor) 0)
            (cons divisor (*factor divisor (/ number divisor)))
            (*factor (+ divisor 1) number))))
  (*factor 2 number))

(display (factor 111111111111))
(newline)
Output:
(3 7 11 13 37 101 9901)

Seed7

const func array integer: factorise (in var integer: number) is func
  result
    var array integer: result is 0 times 0;
  local
    var integer: checker is 2;
  begin
    while checker * checker <= number do
      if number rem checker = 0 then
        result &:= [](checker);
        number := number div checker;
      else
        incr(checker);
      end if;
    end while;
    if number <> 1 then
      result &:= [](number);
    end if;
  end func;

Original source: [1]

SequenceL

Recursive Using isPrime

isPrime(n) := n = 2 or (n > 1 and none(n mod ([2]++((1...floor(sqrt(n)/2))*2+1)) = 0));

primeFactorization(num) := primeFactorizationHelp(num, []);

primeFactorizationHelp(num, current(1)) := 
     let
        primeFactors[i] := i when num mod i = 0 and isPrime(i) foreach i within 2 ... num;
     in
            current when size(primeFactors) = 0
        else
            primeFactorizationHelp(num / product(primeFactors), current ++ primeFactors);

Using isPrime Based On: [2]

Recursive Trial Division

primeFactorization(num) := primeFactorizationHelp(num, 2, []);

primeFactorizationHelp(num, divisor, factors(1)) :=
        factors when num <= 1
    else
        primeFactorizationHelp(num, divisor + 1, factors) when num mod divisor /= 0
    else
        primeFactorizationHelp(num / divisor, divisor, factors ++ [divisor]);

Sidef

Built-in:

say factor(536870911)      #=> [233, 1103, 2089]
say factor_exp(536870911)  #=> [[233, 1], [1103, 1], [2089, 1]]

Trial division:

func prime_factors(n) {
    return [] if (n < 1)
    gather {
        while (!(n & 1)) {
            n >>= 1
            take(2)
        }
        var p = 3
        while ((n > 1) && (p*p <= n)) {
            while (n %% p) {
                n //= p
                take(p)
            }
            p += 2
        }
        take(n) if (n > 1)
    }
}

Calling the function:

say prime_factors(536870911)   #=> [233, 1103, 2089]

Simula

Simula has no built-in function to test for prime numbers.
Code for class bignum can be found here: https://rosettacode.org/wiki/Pi#Simula

EXTERNAL CLASS BIGNUM;
BIGNUM
BEGIN

    CLASS TEXTLIST;
    BEGIN
        CLASS TEXTARRAY(N); INTEGER N;
        BEGIN
            TEXT ARRAY DATA(1:N);
        END TEXTARRAY;
        PROCEDURE EXPAND(N); INTEGER N;
        BEGIN
            REF(TEXTARRAY) NEWARR;
            INTEGER I;
            NEWARR :- NEW TEXTARRAY(N);
            FOR I := 1 STEP 1 UNTIL SIZE DO BEGIN
                NEWARR.DATA(I) :- ARR.DATA(I);
            END;
            ARR :- NEWARR;
        END EXPAND;
        PROCEDURE APPEND(T); TEXT T;
        BEGIN
            IF SIZE = ARR.N THEN
                EXPAND(2*ARR.N);
            SIZE := SIZE+1;
            ARR.DATA(SIZE) :- T;
        END EXPAND;
        TEXT PROCEDURE GET(I); INTEGER I;
            GET :- ARR.DATA(I);
        REF(TEXTARRAY) ARR;
        INTEGER SIZE;
        EXPAND(20);
    END TEXTLIST;

    REF(TEXTLIST) PROCEDURE PRIME_FACTORS(N); TEXT N;
    BEGIN
        REF(TEXTLIST) FACTORS;
        REF(DIVMOD) DM;
        TEXT P;
        FACTORS :- NEW TEXTLIST;
        IF TCMP(N, "1") < 0 THEN
            GOTO RETURN;
        P :- "2";
        FOR DM :- TDIVMOD(N,P) WHILE TISZERO(DM.MOD) DO BEGIN
            N :- DM.DIV;
            FACTORS.APPEND(P);
        END;
        P :- "3";
        WHILE TCMP(N,"1") > 0 AND THEN TCMP(TMUL(P,P),N) <= 0 DO BEGIN
            FOR DM :- TDIVMOD(N, P) WHILE TISZERO(DM.MOD) DO BEGIN
                N :- DM.DIV;
                FACTORS.APPEND(P);
            END;
            P :- TADD(P,"2");
        END;
        IF TCMP(N,"1") > 0 THEN
            FACTORS.APPEND(N);
    RETURN:
        PRIME_FACTORS :- FACTORS;
    END PRIME_FACTORS;

    REF(TEXTLIST) FACTORS;
    TEXT INP;
    INTEGER I;

    FOR INP :- "536870911", "6768768", "1957", "64865899369365843" DO BEGIN
        FACTORS :- PRIME_FACTORS(INP);
        OUTTEXT("PRIME FACTORS OF ");
        OUTTEXT(INP);
        OUTTEXT(" => [");
        FOR I := 1 STEP 1 UNTIL FACTORS.SIZE DO BEGIN
            IF I > 1 THEN
                OUTTEXT(", ");
            OUTTEXT(FACTORS.GET(I));
        END;
        OUTTEXT("]");
        OUTIMAGE;
    END;

END;
Output:
PRIME FACTORS OF 536870911 => [233, 1103, 2089]
PRIME FACTORS OF 6768768 => [2, 2, 2, 2, 2, 2, 2, 3, 17627]
PRIME FACTORS OF 1957 => [19, 103]
PRIME FACTORS OF 64865899369365843 => [3, 7, 397, 276229, 28166791]

5320 garbage collection(s) in 1.9 seconds.

Slate

Admittedly, this is just based on the Smalltalk entry below:

n@(Integer traits) primesDo: block
"Decomposes the Integer into primes, applying the block to each (in increasing
order)."
[| div next remaining |
  div: 2.
  next: 3.
  remaining: n.
  [[(remaining \\ div) isZero]
     whileTrue:
       [block applyTo: {div}.
    remaining: remaining // div].
   remaining = 1] whileFalse:
     [div: next.
      next: next + 2] "Just look at the next odd integer."
].

Smalltalk

Integer extend [
    primesDo: aBlock [
        | div next rest |
        div := 2. next := 3.
        rest := self.
        [ [ rest \\ div == 0 ]
              whileTrue: [
                  aBlock value: div.
                  rest := rest // div ].
          rest = 1] whileFalse: [
              div := next. next := next + 2 ]
    ]
]
123456 primesDo: [ :each | each printNl ]

SPAD

(1) -> factor 102400

         12 2
   (1)  2  5
                                                      Type: Factored(Integer)
(2) -> factor 23193931893819371

   (2)  83 3469 71341 1129153
                                                      Type: Factored(Integer)

Domain:Factored(R)

Standard ML

Trial division

val factor = fn n :IntInf.int  =>
let
 val unfactored  = fn (u,_,_)   => u
 val factors     = fn (_,f,_)   => f
 val try         = fn (_,_,i)   => i
 fun getresult t = unfactored t::(factors t)
 
 fun until done change x =
    if done x
      then    getresult x
      else    until done change (change x);       (* iteration *)

 fun lastprime t = unfactored t  <  (try t)*(try t)
 fun trymore t   = if unfactored t mod (try t) = 0
           then (unfactored t div (try t) , try t::(factors t) , try t    )
       else (unfactored t             ,         factors t  , try t + 1)
in

 until lastprime trymore (n,[],2)

end;
- Array.fromList(factor 122489234920000001278234798233);;
val it = fromList[658601127263, 41259943, 34942753, 43, 3]: IntInf.int array

Stata

The following Mata function will factor any representable positive integer (that is, between 1 and 2^53).

function factor(n_) {
    n = n_
    a = J(0,2,.)
    if (n<2) {
        return(a)
    }
    else if (n<4) {
        return((n,1))
    }
    else {
        if (mod(n,2)==0) {
            for (i=0; mod(n,2)==0; i++) n = floor(n/2)
            a = a\(2,i)
        }
            
        for (k=3; k*k<=n; k=k+2) {
            if (mod(n,k)==0) {
                for (i=0; mod(n,k)==0; i++) n = floor(n/k)
                a = a\(k,i)
            }
        }
        
        if (n>1) a = a\(n,1)
        return(a)
    }
}

Swift

Translation of: Python

Uses the sieve of Eratosthenes. This is generic on any type that conforms to BinaryInteger. So in theory any BigInteger library should work with it.

func primeDecomposition<T: BinaryInteger>(of n: T) -> [T] {
  guard n > 2 else { return [] }

  func step(_ x: T) -> T {
    return 1 + (x << 2) - ((x >> 1) << 1)
  }

  let maxQ = T(Double(n).squareRoot())
  var d: T = 1
  var q: T = n % 2 == 0 ? 2 : 3

  while q <= maxQ && n % q != 0 {
    q = step(d)
    d += 1
  }

  return q <= maxQ ? [q] + primeDecomposition(of: n / q) : [n]
}

for prime in Eratosthenes(upTo: 60) {
  let m = Int(pow(2, Double(prime))) - 1
  let decom = primeDecomposition(of: m)

  print("2^\(prime) - 1 = \(m) => \(decom)")
}
Output:
2^2 - 1 = 3 => [3]
2^3 - 1 = 7 => [7]
2^5 - 1 = 31 => [31]
2^7 - 1 = 127 => [127]
2^11 - 1 = 2047 => [23, 89]
2^13 - 1 = 8191 => [8191]
2^17 - 1 = 131071 => [131071]
2^19 - 1 = 524287 => [524287]
2^23 - 1 = 8388607 => [47, 178481]
2^29 - 1 = 536870911 => [233, 1103, 2089]
2^31 - 1 = 2147483647 => [2147483647]
2^37 - 1 = 137438953471 => [223, 616318177]
2^41 - 1 = 2199023255551 => [13367, 164511353]
2^43 - 1 = 8796093022207 => [431, 9719, 2099863]
2^47 - 1 = 140737488355327 => [2351, 4513, 13264529]
2^53 - 1 = 9007199254740991 => [6361, 69431, 20394401]
2^59 - 1 = 576460752303423487 => [179951, 3203431780337]

Tcl

proc factors {x} {
    # list the prime factors of x in ascending order
    set result [list]
    while {$x % 2 == 0} {
        lappend result 2
        set x [expr {$x / 2}]
    }
    for {set i 3} {$i*$i <= $x} {incr i 2} {
        while {$x % $i == 0} {
            lappend result $i
            set x [expr {$x / $i}]
        }
    }
    if {$x != 1} {lappend result $x}
    return $result
}

Testing

foreach m {2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59} {
    set n [expr {2**$m - 1}]
    catch {time {set primes [factors $n]} 1} tm
    puts [format "2**%02d-1 = %-18s = %-22s => %s" $m $n [join $primes *] $tm]
}
Output:
2**02-1 = 3                  = 3                      => 184 microseconds per iteration
2**03-1 = 7                  = 7                      => 8 microseconds per iteration
2**05-1 = 31                 = 31                     => 8 microseconds per iteration
2**07-1 = 127                = 127                    => 23 microseconds per iteration
2**11-1 = 2047               = 23*89                  => 12 microseconds per iteration
2**13-1 = 8191               = 8191                   => 22 microseconds per iteration
2**17-1 = 131071             = 131071                 => 69 microseconds per iteration
2**19-1 = 524287             = 524287                 => 131 microseconds per iteration
2**23-1 = 8388607            = 47*178481              => 81 microseconds per iteration
2**29-1 = 536870911          = 233*1103*2089          => 199 microseconds per iteration
2**31-1 = 2147483647         = 2147483647             => 9509 microseconds per iteration
2**37-1 = 137438953471       = 223*616318177          => 4377 microseconds per iteration
2**41-1 = 2199023255551      = 13367*164511353        => 2389 microseconds per iteration
2**43-1 = 8796093022207      = 431*9719*2099863       => 1711 microseconds per iteration
2**47-1 = 140737488355327    = 2351*4513*13264529     => 802 microseconds per iteration
2**53-1 = 9007199254740991   = 6361*69431*20394401    => 13109 microseconds per iteration
2**59-1 = 576460752303423487 = 179951*3203431780337   => 316009 microseconds per iteration


TXR

Translation of: Common Lisp
@(next :args)
@(do 
  (defun factor (n)
    (if (> n 1)
      (for ((max-d (isqrt n))
            (d 2))
           ()
           ((inc d (if (evenp d) 1 2)))
        (cond ((> d max-d) (return (list n)))
              ((zerop (mod n d)) 
               (return (cons d (factor (trunc n d))))))))))
@{num /[0-9]+/}
@(bind factors @(factor (int-str num 10)))
@(output)
@num -> {@(rep)@factors, @(last)@factors@(end)}
@(end)
Output:
$ txr factor.txr 1139423842450982345
1139423842450982345 -> {5, 19, 37, 12782467, 25359769}
$ txr factor.txr 1
1 -> {}
$ txr factor.txr 2
2 -> {2}
$ txr factor.txr 3
3 -> {3}
$ txr factor.txr 2
2 -> {2}
$ txr factor.txr 3
3 -> {3}
$ txr factor.txr 4
4 -> {2, 2}
$ txr factor.txr 5
5 -> {5}
$ txr factor.txr 6
6 -> {2, 3}

V

like in scheme (using variables)

[prime-decomposition
   [inner [c p] let
       [c c * p >]
           [p unit]
           [ [p c % zero?]
                   [c c p c / inner cons]
                   [c 1 + p inner]
             ifte]
       ifte].
   2 swap inner].

(mostly) the same thing using stack (with out variables)

[prime-decomposition
   [inner
       [dup * <]
           [pop unit]
           [ [% zero?]
                   [ [p c : [c p c / c]] view i inner cons]
                   [succ inner]
             ifte]
       ifte].
   2 inner].

Using it

|1221 prime-decomposition puts
=[3 11 37]

Wren

Library: Wren-big
Library: Wren-fmt

The examples are borrowed from the Go solution.

import "./big" for BigInt
import "./fmt" for Fmt

var vals = [1 << 31, 1234567, 333333, 987653, 2 * 3 * 5 * 7 * 11 * 13 * 17]
for (val in vals) {
    Fmt.print("$10d -> $n", val, BigInt.primeFactors(val))
}
Output:
2147483648 -> [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
   1234567 -> [127, 9721]
    333333 -> [3, 3, 7, 11, 13, 37]
    987653 -> [29, 34057]
    510510 -> [2, 3, 5, 7, 11, 13, 17]

XPL0

Translation of: PL/0 – The algorithm itself is translated, but procedure which calculates factors and fills the result array is added.
Works with: EXPL-32
\ Prime decomposition
code Abs=0, Rem=2, CrLf=9, IntIn=10, IntOut=11, Text=12;
define MaxFacIndex = 30;
\ -(2^31) has most prime factors (31 twos) than other 32-bit signed integer.
integer I, N, Facs(MaxFacIndex), FacsCnt;
  
  procedure CalcFacs(N, Facs, FacsCnt);
  integer N, Facs, FacsCnt;
  integer I, Cnt;
  begin
  N:= Abs(N);
  Cnt:=0;
  if N >= 2 then
    begin
    I:= 2;
    while I * I <= N do
      begin
      if Rem(N / I) = 0 then 
        begin
        N:= N / I;
        Facs(Cnt):= I; Cnt:= Cnt + 1;
        I:= 2
        end   
      else
        I:= I + 1
      end;
    Facs(Cnt):= N; Cnt:= Cnt + 1
    end;
  FacsCnt(0):= Cnt
  end;

begin
Text(0, "Enter a number: "); N:= IntIn(0);
CalcFacs(N, Facs, addr FacsCnt);
for I:= 0 to FacsCnt - 2 do 
  begin
  IntOut(0, Facs(I)); Text(0, " ")
  end;
IntOut(0, Facs(FacsCnt - 1)); CrLf(0)
end
Output:

3 runs.

Enter a number: 32
2 2 2 2 2
Enter a number: 2520
2 2 2 3 3 5 7
Enter a number: 13
13

XSLT

Let's assume that in XSLT the application of a template is similar to the invocation of a function. So when the following template

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

    <xsl:template match="/numbers">
        <html>
            <body>
                <ul>
                    <xsl:apply-templates />
                </ul>
            </body>
        </html>
    </xsl:template>

    <xsl:template match="number">
        <li>
            Number:
            <xsl:apply-templates mode="value" />
            Factors:
            <xsl:apply-templates mode="factors" />
        </li>
    </xsl:template>

    <xsl:template match="value" mode="value">
        <xsl:apply-templates />
    </xsl:template>

    <xsl:template match="value" mode="factors">
        <xsl:call-template name="generate">
            <xsl:with-param name="number" select="number(current())" />
            <xsl:with-param name="candidate" select="number(2)" />
        </xsl:call-template>
    </xsl:template>

    <xsl:template name="generate">
        <xsl:param name="number" />
        <xsl:param name="candidate" />
        <xsl:choose>
            <!-- 1 is no prime and does not have any factors -->
            <xsl:when test="$number = 1"></xsl:when>
            <!-- if the candidate is larger than the sqrt of the number, it's prime and the last factor -->
            <xsl:when test="$candidate * $candidate &gt; $number"> 
                <xsl:value-of select="$number" />
            </xsl:when>
            <!-- if the number is factored by the candidate, add the factor and try again with the same factor -->
            <xsl:when test="$number mod $candidate = 0">
                <xsl:value-of select="$candidate" />
                <xsl:text> </xsl:text>
                <xsl:call-template name="generate">
                    <xsl:with-param name="number" select="$number div $candidate" />
                    <xsl:with-param name="candidate" select="$candidate" />
                </xsl:call-template>
            </xsl:when>
            <!-- else try again with the next factor -->
            <xsl:otherwise>
                <!-- increment by 2 to save stack depth -->
                <xsl:choose>
                    <xsl:when test="$candidate = 2">
                        <xsl:call-template name="generate">
                            <xsl:with-param name="number" select="$number" />
                            <xsl:with-param name="candidate" select="$candidate + 1" />
                        </xsl:call-template>
                    </xsl:when>
                    <xsl:otherwise>
                        <xsl:call-template name="generate">
                            <xsl:with-param name="number" select="$number" />
                            <xsl:with-param name="candidate" select="$candidate + 2" />
                        </xsl:call-template>
                    </xsl:otherwise>
                </xsl:choose>
            </xsl:otherwise>
        </xsl:choose>
    </xsl:template>

</xsl:stylesheet>

is applied against the document

<numbers>
    <number><value>1</value></number>
    <number><value>2</value></number>
    <number><value>4</value></number>
    <number><value>8</value></number>
    <number><value>9</value></number>
    <number><value>255</value></number>
</numbers>

then the output contains the prime decomposition of each number:

<html>
<body>
<ul>
    
<li>
            Number:
            1
            Factors:
            </li>
    
<li>
            Number:
            2
            Factors:
            2</li>
    
<li>
            Number:
            4
            Factors:
            2 2</li>
    
<li>
            Number:
            8
            Factors:
            2 2 2</li>
    
<li>
            Number:
            9
            Factors:
            3 3</li>
    
<li>
            Number:
            255
            Factors:
            3 5 17</li>
    
</ul>
</body>
</html>

zkl

With 64 bit ints:

fcn primeFactors(n){  // Return a list of factors of n
   acc:=fcn(n,k,acc,maxD){  // k is 2,3,5,7,9,... not optimum
      if(n==1 or k>maxD) acc.close();
      else{
     q,r:=n.divr(k);   // divr-->(quotient,remainder)
     if(r==0) return(self.fcn(q,k,acc.write(k),q.toFloat().sqrt()));
     return(self.fcn(n,k+1+k.isOdd,acc,maxD))
      }
   }(n,2,Sink(List),n.toFloat().sqrt());
   m:=acc.reduce('*,1);      // mulitply factors
   if(n!=m) acc.append(n/m); // opps, missed last factor
   else acc;
}
foreach n in (T(5,12, 2147483648, 2199023255551, 8796093022207,
    9007199254740991, 576460752303423487)){
   println(n,": ",primeFactors(n).concat(", ")) 
}
Output:
5: 5
12: 2, 2, 3
2147483648: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
2199023255551: 13367, 164511353
8796093022207: 431, 9719, 2099863
9007199254740991: 6361, 69431, 20394401
576460752303423487: 179951, 3203431780337

Unfortunately, big ints (GMP) don't have (quite) the same interface as ints (since there is no big float, BI.toFloat() truncates to a double so BI.toFloat().sqrt() is wrong). So mostly duplicate code is needed:

fcn factorsBI(n){  // Return a list of factors of n
   acc:=fcn(n,k,acc,maxD){  // k is 2,3,5,7,9,... not optimum
      if(n==1 or k>maxD) acc.close();
      else{
     q,r:=n.div2(k);   // divr-->(quotient,remainder)
     if(r==0) return(self.fcn(q,k,acc.write(k),q.root(2)));
     return(self.fcn(n,k+1+k.isOdd,acc,maxD))
      }
   }(n,2,Sink(List),n.root(2));
   m:=acc.reduce('*,BN(1));  // mulitply factors
   if(n!=m) acc.append(n/m); // opps, missed last factor
   else acc;
}
var BN=Import("zklBigNum");
foreach n in (T(BN("12"),
    BN("340282366920938463463374607431768211455"))){
   println(n,": ",factorsBI(n).concat(", ")) 
}
Output:
12: 2, 2, 3
340282366920938463463374607431768211455: 3, 5, 17, 257, 641, 65537, 274177, 6700417, 67280421310721