Factors of an integer

From Rosetta Code
Task
Factors of an integer
You are encouraged to solve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Comparison | Matching

Memory Operations
Pointers & references | Addresses

Task

Compute the   factors   of a positive integer.

These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.

(Though the concepts function correctly for zero and negative integers, the set of factors of zero has countably infinite members, and the factors of negative integers can be obtained from the factors of related positive numbers without difficulty;   this task does not require handling of either of these cases).

Note that every prime number has two factors:   1   and itself.


Related tasks



0815

<:1:~>|~#:end:>~x}:str:/={^:wei:~%x<:a:x=$~
=}:wei:x<:1:+{>~>x=-#:fin:^:str:}:fin:{{~%

11l

Translation of: Python
F factor(n)
   V factors = Set[Int]()
   L(x) 1..Int(sqrt(n))
      I n % x == 0
         factors.add(x)
         factors.add(n I/ x)
   R sorted(Array(factors))

L(i) (45, 53, 64)
   print(i‘: factors: ’String(factor(i)))
Output:
45: factors: [1, 3, 5, 9, 15, 45]
53: factors: [1, 53]
64: factors: [1, 2, 4, 8, 16, 32, 64]

360 Assembly

Very compact version.

*        Factors of an integer -   07/10/2015
FACTOR   CSECT
         USING  FACTOR,R15         set base register
         LA     R7,PG              pgi=@pg
         LA     R6,1               i
         L      R3,N               loop count
LOOP     L      R5,N               n
         LA     R4,0
         DR     R4,R6              n/i
         LTR    R4,R4              if mod(n,i)=0
         BNZ    NEXT
         XDECO  R6,PG+120          edit i
         MVC    0(6,R7),PG+126     output i
         LA     R7,6(R7)           pgi=pgi+6
NEXT     LA     R6,1(R6)           i=i+1
         BCT    R3,LOOP            loop
         XPRNT  PG,120             print buffer
         XR     R15,R15            set return code
         BR     R14                return to caller
N        DC     F'12345'           <== input value
PG       DC     CL132' '           buffer
         YREGS
         END    FACTOR
Output:
     1     3     5    15   823  2469  4115 12345

68000 Assembly

;max input range equals 0 to 0xFFFFFFFF.



jsr GetInput		;unimplemented routine to get user input for a positive (nonzero) integer.
                        ;output of this routine will be in D0.

MOVE.L D0,D1            ;D1 will be used for temp storage.
MOVE.L #1,D2		;start with 1.

computeFactors:
DIVU D2,D1              ;remainder is in top 2 bytes, quotient in bottom 2.
MOVE.L D1,D3		;temporarily store into D3 to check the remainder
SWAP D3			;swap the high and low words of D3. Now bottom 2 bytes contain remainder.
CMP.W #0,D3		;is the bottom word equal to 0?
BNE D2_Wasnt_A_Divisor	;if not, D2 was not a factor of D1.

JSR PrintD2		;unimplemented routine to print D2 to the screen as a decimal number.


D2_Wasnt_A_Divisor:
MOVE.L D0,D1            ;restore D1.
ADDQ.L #1,D2		;increment D2
CMP.L D2,D1             ;is D2 now greater than D1?
BLS computeFactors      ;if not, loop again


;end of program

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program factorst64.s   */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"

.equ CHARPOS,       '@'

/*******************************************/
/* Initialized data                        */
/*******************************************/
.data
szMessDeb:         .ascii "Factors of : @ are : \n"
szMessFactor:      .asciz "@ \n"
szCarriageReturn:  .asciz "\n"
/*******************************************/
/* UnInitialized data                      */
/*******************************************/
.bss 
sZoneConversion:        .skip 100
/*******************************************/
/*  code section                           */
/*******************************************/
.text
.global main 
main:                             // entry of program

    mov x0,#100
    bl factors
    mov x0,#97
    bl factors
    ldr x0,qNumber
    bl factors

100:                             // standard end of the program
    mov x0, #0                   // return code
    mov x8, #EXIT                // request to exit program
    svc 0                        // perform the system call

qNumber:               .quad 32767
qAdrszCarriageReturn:  .quad szCarriageReturn
/******************************************************************/
/*     calcul factors of number                                  */ 
/******************************************************************/
/* x0 contains the number to factorize */
factors:
    stp x1,lr,[sp,-16]!         // save  registers
    stp x2,x3,[sp,-16]!         // save  registers

    mov x5,x0                   // limit calcul
    ldr x1,qAdrsZoneConversion  // conversion register in decimal string
    bl conversion10S
    ldr x0,qAdrszMessDeb        // display message
    ldr x1,qAdrsZoneConversion 
    bl strInsertAtChar
    bl affichageMess
    mov x6,#1                   // counter loop
1:   // loop 
    udiv x0,x5,x6               // division
    msub x3,x0,x6,x5            // compute remainder
    cbnz x3,2f                  // remainder not = zero -> loop
                                // display result if yes
    mov x0,x6
    ldr x1,qAdrsZoneConversion
    bl conversion10S
    ldr x0,qAdrszMessFactor     // display message
    ldr x1,qAdrsZoneConversion 
    bl strInsertAtChar
    bl affichageMess
2:
    add x6,x6,#1                // add 1 to loop counter
    cmp x6,x5                   // <=  number ?
    ble 1b                      // yes loop
100:
    ldp x2,x3,[sp],16           // restaur  2 registers
    ldp x1,lr,[sp],16           // restaur  2 registers
    ret

qAdrszMessDeb:        .quad szMessDeb
qAdrszMessFactor:     .quad szMessFactor
qAdrsZoneConversion:  .quad sZoneConversion
/******************************************************************/
/*   insert string at character insertion  */ 
/******************************************************************/
/* x0 contains the address of string 1 */
/* x1 contains the address of insertion string   */
/* x0 return the address of new string  on the heap */
/* or -1 if error   */
strInsertAtChar:
    stp x2,lr,[sp,-16]!                      // save  registers
    stp x3,x4,[sp,-16]!                      // save  registers
    stp x5,x6,[sp,-16]!                      // save  registers
    stp x7,x8,[sp,-16]!                      // save  registers
    mov x3,#0                                // length counter 
1:                                           // compute length of string 1
    ldrb w4,[x0,x3]
    cmp w4,#0
    cinc  x3,x3,ne                           // increment to one if not equal
    bne 1b                                   // loop if not equal
    mov x5,#0                                // length counter insertion string
2:                                           // compute length to insertion string
    ldrb w4,[x1,x5]
    cmp x4,#0
    cinc  x5,x5,ne                           // increment to one if not equal
    bne 2b                                   // and loop
    cmp x5,#0
    beq 99f                                  // string empty -> error
    add x3,x3,x5                             // add 2 length
    add x3,x3,#1                             // +1 for final zero
    mov x6,x0                                // save address string 1
    mov x0,#0                                // allocation place heap
    mov x8,BRK                               // call system 'brk' 
    svc #0
    mov x5,x0                                // save address heap for output string
    add x0,x0,x3                             // reservation place x3 length
    mov x8,BRK                               // call system 'brk'
    svc #0
    cmp x0,#-1                               // allocation error
    beq 99f
    
    mov x2,0
    mov x4,0               
3:                                           // loop copy string begin 
    ldrb w3,[x6,x2]
    cmp w3,0
    beq 99f
    cmp w3,CHARPOS                           // insertion character ?
    beq 5f                                   // yes
    strb w3,[x5,x4]                          // no store character in output string
    add x2,x2,1
    add x4,x4,1
    b 3b                                     // and loop
5:                                           // x4 contains position insertion
    add x8,x4,1                              // init index character output string
                                             // at position insertion + one
    mov x3,#0                                // index load characters insertion string
6:
    ldrb w0,[x1,x3]                          // load characters insertion string
    cmp w0,#0                                // end string ?
    beq 7f                                   // yes 
    strb w0,[x5,x4]                          // store in output string
    add x3,x3,#1                             // increment index
    add x4,x4,#1                             // increment output index
    b 6b                                     // and loop
7:                                           // loop copy end string 
    ldrb w0,[x6,x8]                          // load other character string 1
    strb w0,[x5,x4]                          // store in output string
    cmp x0,#0                                // end string 1 ?
    beq 8f                                   // yes -> end
    add x4,x4,#1                             // increment output index
    add x8,x8,#1                             // increment index
    b 7b                                     // and loop
8:
    mov x0,x5                                // return output string address 
    b 100f
99:                                          // error
    mov x0,#-1
100:
    ldp x7,x8,[sp],16                        // restaur  2 registers
    ldp x5,x6,[sp],16                        // restaur  2 registers
    ldp x3,x4,[sp],16                        // restaur  2 registers
    ldp x2,lr,[sp],16                        // restaur  2 registers
    ret

/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"

ACL2

(defun factors-r (n i)
   (declare (xargs :measure (nfix (- n i))))
   (cond ((zp (- n i))
          (list n))
         ((= (mod n i) 0)
          (cons i (factors-r n (1+ i))))
         (t (factors-r n (1+ i)))))

(defun factors (n)
   (factors-r n 1))

Action!

PROC PrintFactors(CARD a)
  BYTE notFirst
  CARD p

  p=1 notFirst=0
  WHILE p<=a
  DO
    IF a MOD p=0 THEN
      IF notFirst THEN
        Print(", ")
      FI
      notFirst=1
      PrintC(p)
    FI
    p==+1
  OD
RETURN

PROC Test(CARD a)
  PrintF("Factors of %U: ",a)
  PrintFactors(a)
  PutE()
RETURN

PROC Main()
  Test(1)
  Test(101)
  Test(666)
  Test(1977)
  Test(2021)
  Test(6502)
  Test(12345)
RETURN
Output:

Screenshot from Atari 8-bit computer

Factors of 1: 1
Factors of 101: 1, 101
Factors of 666: 1, 2, 3, 6, 9, 18, 37,74, 111, 222, 333, 666
Factors of 1977: 1, 3, 659, 1977
Factors of 2021: 1, 43, 47, 2021
Factors of 6502: 1, 2, 3251, 6502
Factors of 12345: 1, 3, 5, 15, 823, 2469, 4115, 12345

ActionScript

function factor(n:uint):Vector.<uint>
{
	var factors:Vector.<uint> = new Vector.<uint>();
	for(var i:uint = 1; i <= n; i++)
		if(n % i == 0)factors.push(i);
	return factors;
}

Ada

with Ada.Text_IO;
with Ada.Command_Line;
procedure Factors is
   Number  : Positive;
   Test_Nr : Positive := 1;
begin
   if Ada.Command_Line.Argument_Count /= 1 then
      Ada.Text_IO.Put (Ada.Text_IO.Standard_Error, "Missing argument!");
      Ada.Command_Line.Set_Exit_Status (Ada.Command_Line.Failure);
      return;
   end if;
   Number := Positive'Value (Ada.Command_Line.Argument (1));
   Ada.Text_IO.Put ("Factors of" & Positive'Image (Number) & ": ");
   loop
      if Number mod Test_Nr = 0 then
         Ada.Text_IO.Put (Positive'Image (Test_Nr) & ",");
      end if;
      exit when Test_Nr ** 2 >= Number;
      Test_Nr := Test_Nr + 1;
   end loop;
   Ada.Text_IO.Put_Line (Positive'Image (Number) & ".");
end Factors;

Aikido

import math

function factor (n:int) {
    var result = []
    function append (v) {
        if (!(v in result)) {
            result.append (v)
        }
    }
    var sqrt = cast<int>(Math.sqrt (n))
    append (1)
    for (var i = n-1 ; i >= sqrt ; i--) {
        if ((n % i) == 0) {
            append (i)
            append (n/i)
        }
    }
    append (n)
    return result.sort()
}

function printvec (vec) {
    var comma = ""
    print ("[")
    foreach v vec {
        print (comma + v)
        comma = ", "
    }
    println ("]")
}

printvec (factor (45))
printvec (factor (25))
printvec (factor (100))

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d

Note: The following implements generators, eliminating the need of declaring arbitrarily long int arrays for caching.

MODE YIELDINT = PROC(INT)VOID;

PROC gen factors = (INT n, YIELDINT yield)VOID: (
  FOR i FROM 1 TO ENTIER sqrt(n) DO
    IF n MOD i = 0 THEN
      yield(i); 
      INT other = n OVER i;
      IF i NE other THEN yield(n OVER i) FI
    FI
  OD
);

[]INT nums2factor = (45, 53, 64);

FOR i TO UPB nums2factor DO
  INT num = nums2factor[i];
  STRING sep := ": ";
  print(num);
# FOR INT j IN # gen factors(num, # ) DO ( #
##   (INT j)VOID:(
       print((sep,whole(j,0))); 
       sep:=", "
# OD # ));
  print(new line)
OD
Output:
        +45: 1, 45, 3, 15, 5, 9
        +53: 1, 53
        +64: 1, 64, 2, 32, 4, 16, 8

ALGOL W

begin
    % return the factors of n ( n should be >= 1 ) in the array factor       %
    % the bounds of factor should be 0 :: len (len must be at least 1)       %
    % the number of factors will be returned in factor( 0 )                  %
    procedure getFactorsOf ( integer value n
                           ; integer array factor( * )
                           ; integer value len
                           ) ;
    begin
        for i := 0 until len do factor( i ) := 0;
        if n >= 1 and len >= 1 then begin
            integer pos, lastFactor;
            factor( 0 ) := factor( 1 ) := pos := 1;
            % find the factors up to sqrt( n )                               %
            for f := 2 until truncate( sqrt( n ) ) + 1 do begin
                if ( n rem f ) = 0 and pos <= len then begin
                    % found another factor and there's room to store it      %
                    pos           := pos + 1;
                    factor( 0   ) := pos;
                    factor( pos ) := f
                end if_found_factor
            end for_f;
            % find the factors above sqrt( n )                               %
            lastFactor := factor( factor( 0 ) );
            for f := factor( 0 ) step -1 until 1 do begin
                integer newFactor;
                newFactor := n div factor( f );
                if newFactor > lastFactor and pos <= len then begin
                    % found another factor and there's room to store it      %
                    pos           := pos + 1;
                    factor( 0   ) := pos;
                    factor( pos ) := newFactor
                end if_found_factor
            end for_f;
        end if_params_ok
    end getFactorsOf ;


    % prpocedure to test getFactorsOf                                        %
    procedure testFactorsOf( integer value n ) ;
    begin
        integer array factor( 0 :: 100 );
        getFactorsOf( n, factor, 100 );
        i_w := 1; s_w := 0; % set output format                              %
        write( n, " has ", factor( 0 ), " factors:" );
        for f := 1 until factor( 0 ) do writeon( " ", factor( f ) )
    end testFactorsOf ;

    % test the factorising                                                   %
    for i := 1 until 100 do testFactorsOf( i )

end.
Output:
1 has 1 factors: 1
2 has 2 factors: 1 2
3 has 2 factors: 1 3
4 has 3 factors: 1 2 4
...
96 has 12 factors: 1 2 3 4 6 8 12 16 24 32 48 96
97 has 2 factors: 1 97
98 has 6 factors: 1 2 7 14 49 98
99 has 6 factors: 1 3 9 11 33 99
100 has 9 factors: 1 2 4 5 10 20 25 50 100

ALGOL-M

Instead of displaying 1 and the number itself as factors, prime numbers are explicitly reported as such. To reduce the number of test divisions, only odd divisors are tested if an initial check shows the number to be factored is not even. The upper limit of divisors is set at N/2 or N/3, depending on whether N is even or odd, and is continuously reduced to N divided by the next potential divisor until the first factor is found. For a prime number the resulting limit will be the square root of N, which avoids the necessity of explicitly calculating that value. (ALGOL-M does not have a built-in square root function.)

BEGIN

COMMENT RETURN P MOD Q; 
INTEGER FUNCTION MOD (P, Q);
INTEGER P, Q;
BEGIN
    MOD := P - Q * (P / Q);
END;

INTEGER I, N, LIMIT, FOUND, START, DELTA;

WHILE 1 = 1 DO
  BEGIN
    WRITE ("NUMBER TO FACTOR (OR 0 TO QUIT):");
    READ (N);
    IF N = 0 THEN GOTO DONE;
    WRITE ("THE FACTORS ARE:");

    COMMENT CHECK WHETHER NUMBER IS EVEN OR ODD;
    IF MOD(N, 2) = 0 THEN
      BEGIN
        START := 2;
        DELTA := 1;
      END
    ELSE
      BEGIN
        START := 3;
        DELTA := 2;
      END;

    COMMENT TEST POTENTIAL DIVISORS;
    FOUND := 0;
    I := START;
    LIMIT := N / I;
    WHILE I <= LIMIT DO
      BEGIN
        IF MOD(N, I) = 0 THEN
          BEGIN
            WRITEON (I);
            FOUND := FOUND + 1;
          END;
        I := I + DELTA;
        IF FOUND = 0 THEN LIMIT := N / I;
      END;
    IF FOUND = 0 THEN WRITEON (" NONE - THE NUMBER IS PRIME.");
    WRITE("");
  END;

DONE: WRITE ("GOODBYE");

END
Output:
NUMBER TO FACTOR (OR 0 TO QUIT):
-> 96
THE FACTORS ARE:     2    3    4    6    8   12   16   24   32   48

NUMBER TO FACTOR (OR 0 TO QUIT):
-> 97
THE FACTORS ARE: NONE - THE NUMBER IS PRIME.

NUMBER TO FACTOR (OR 0 TO QUIT):
-> 98
THE FACTORS ARE:     2     7    14    49

NUMBER TO FACTOR (OR 0 TO QUIT):
-> 0
GOODBYE

APL

      factors{(0=()|)/}
      factors 12345
1 3 5 15 823 2469 4115 12345
      factors 720
1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 30 36 40 45 48 60 72 80 90 120 144 180 240 360 720

AppleScript

Functional

Translation of: JavaScript
-- integerFactors :: Int -> [Int]
on integerFactors(n)
    if n = 1 then
        {1}
    else if 1 > n then
        missing value
    else
        set realRoot to n ^ (1 / 2)
        set intRoot to realRoot as integer
        set blnPerfectSquare to intRoot = realRoot
        
        -- isFactor :: Int -> Bool 
        script isFactor
            on |λ|(x)
                (n mod x) = 0
            end |λ|
        end script
        
        -- Factors up to square root of n,
        set lows to filter(isFactor, enumFromTo(1, intRoot))
        
        -- integerQuotient :: Int -> Int
        script integerQuotient
            on |λ|(x)
                (n / x) as integer
            end |λ|
        end script
        
        -- and quotients of these factors beyond the square root.
        lows & map(integerQuotient, ¬
            items (1 + (blnPerfectSquare as integer)) thru -1 of reverse of lows)
    end if
end integerFactors

--------------------------- TEST -------------------------
on run
    
    integerFactors(120)
    
    --> {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}
end run


-------------------- GENERIC FUNCTIONS -------------------

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
    if n < m then
        set d to -1
    else
        set d to 1
    end if
    set lst to {}
    repeat with i from m to n by d
        set end of lst to i
    end repeat
    return lst
end enumFromTo

-- filter :: (a -> Bool) -> [a] -> [a]
on filter(f, xs)
    tell mReturn(f)
        set lst to {}
        set lng to length of xs
        repeat with i from 1 to lng
            set v to item i of xs
            if |λ|(v, i, xs) then set end of lst to v
        end repeat
        return lst
    end tell
end filter

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: Handler -> Script
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn
Output:
{1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}

Straightforward

on factors(n)
    set output to {}
    
    set sqrt to n ^ 0.5
    set limit to sqrt div 1
    if (limit = sqrt) then
        set end of output to limit
        set limit to limit - 1
    end if
    repeat with i from limit to 1 by -1
        if (n mod i is 0) then
            set beginning of output to i
            set end of output to n div i
        end if
    end repeat
    
    return output
end factors

factors(123456789)
Output:
{1, 3, 9, 3607, 3803, 10821, 11409, 32463, 34227, 13717421, 41152263, 123456789}

Arc

(= divisor (fn (num)
   (= dlist '())
   (when (is 1 num) (= dlist '(1 0)))
   (when (is 2 num) (= dlist '(2 1)))
   (unless (or (is 1 num) (is 2 num))
   (up i 1 (+ 1 (/ num 2))
     (if (is 0 (mod num i))
         (push i dlist)))
   (= dlist (cons num dlist)))
   dlist))

(map [rev _] (map [divisor _] '(45 53 60 64)))
Output:
'(
(1 3 5 9 15 45) 
(1 53) 
(1 2 3 4 5 6 10 12 15 20 30 60) 
(1 2 4 8 16 32 64)
)

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program factorst.s   */

/* Constantes    */
.equ STDOUT, 1     @ Linux output console
.equ EXIT,   1     @ Linux syscall
.equ WRITE,  4     @ Linux syscall
/* Initialized data */
.data
szMessDeb: .ascii "Factors of :"
sMessValeur:   .fill 12, 1, ' '
                   .asciz "are : \n"
sMessFactor:   .fill 12, 1, ' '
                   .asciz "\n"
szCarriageReturn:  .asciz "\n"

/* UnInitialized data */
.bss 

/*  code section */
.text
.global main 
main:                /* entry of program  */
    push {fp,lr}    /* saves 2 registers */
 
    mov r0,#100
    bl factors
    mov r0,#97
    bl factors
    ldr r0,iNumber
    bl factors

    
100:   /* standard end of the program */
    mov r0, #0                  @ return code
    pop {fp,lr}                 @restaur 2 registers
    mov r7, #EXIT              @ request to exit program
    swi 0                       @ perform the system call

iNumber: .int 32767
iAdrszCarriageReturn:  .int  szCarriageReturn
/******************************************************************/
/*     calcul factors of number                                  */ 
/******************************************************************/
/* r0 contains the number */
factors:
    push {fp,lr}    			/* save  registres */ 
    push {r1-r6}    		/* save others registers */
    mov r5,r0    @ limit calcul
    ldr r1,iAdrsMessValeur   @ conversion register in decimal string
    bl conversion10S
    ldr r0,iAdrszMessDeb     @ display message
    bl affichageMess
    mov r6,#1    @ counter loop
1:   @ loop 
    mov r0,r5    @ dividende
    mov r1,r6    @ divisor
    bl division
    cmp r3,#0    @ remainder = zero ?
    bne 2f
    @ display result if yes
    mov r0,r6
    ldr r1,iAdrsMessFactor
    bl conversion10S
    ldr r0,iAdrsMessFactor
    bl affichageMess
2:
    add r6,#1      @ add 1 to loop counter
    cmp r6,r5      @ <=  number ?
    ble 1b        @ yes loop
100:
    pop {r1-r6}     		/* restaur others registers */
    pop {fp,lr}    				/* restaur des  2 registres */ 
    bx lr	        			/* return  */
iAdrsMessValeur: .int sMessValeur
iAdrszMessDeb: .int szMessDeb
iAdrsMessFactor: .int sMessFactor
/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {fp,lr}    			/* save  registres */ 
    push {r0,r1,r2,r7}    		/* save others registers */
    mov r2,#0   				/* counter length */
1:      	/* loop length calculation */
    ldrb r1,[r0,r2]  			/* read octet start position + index */
    cmp r1,#0       			/* if 0 its over */
    addne r2,r2,#1   			/* else add 1 in the length */
    bne 1b          			/* and loop */
                                /* so here r2 contains the length of the message */
    mov r1,r0        			/* address message in r1 */
    mov r0,#STDOUT      		/* code to write to the standard output Linux */
    mov r7, #WRITE             /* code call system "write" */
    swi #0                      /* call systeme */
    pop {r0,r1,r2,r7}     		/* restaur others registers */
    pop {fp,lr}    				/* restaur des  2 registres */ 
    bx lr	        			/* return  */
/*=============================================*/
/* division integer unsigned                */
/*============================================*/
division:
    /* r0 contains N */
    /* r1 contains D */
    /* r2 contains Q */
    /* r3 contains R */
    push {r4, lr}
    mov r2, #0                 /* r2 ? 0 */
    mov r3, #0                 /* r3 ? 0 */
    mov r4, #32                /* r4 ? 32 */
    b 2f
1:
    movs r0, r0, LSL #1    /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */
    adc r3, r3, r3         /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */
 
    cmp r3, r1             /* compute r3 - r1 and update cpsr */
    subhs r3, r3, r1       /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */
    adc r2, r2, r2         /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */
2:
    subs r4, r4, #1        /* r4 ? r4 - 1 */
    bpl 1b            /* if r4 >= 0 (N=0) then branch to .Lloop1 */
 
    pop {r4, lr}
    bx lr	

/***************************************************/
/*   conversion register in string décimal signed  */
/***************************************************/
/* r0 contains the register   */
/* r1 contains address of conversion area */
conversion10S:
    push {fp,lr}    /* save registers frame and return */
    push {r0-r5}   /* save other registers  */
    mov r2,r1       /* early storage area */
    mov r5,#'+'     /* default sign is + */
    cmp r0,#0       /* négatif number ? */
    movlt r5,#'-'     /* yes sign is - */
    mvnlt r0,r0       /* and inverse in positive value */
    addlt r0,#1
    mov r4,#10   /* area length */
1: /* conversion loop */
    bl divisionpar10 /* division  */
    add r1,#48        /* add 48 at remainder for conversion ascii */	
    strb r1,[r2,r4]  /* store byte area r5 + position r4 */
    sub r4,r4,#1      /* previous position */
    cmp r0,#0     
    bne 1b	       /* loop if quotient not equal zéro */
    strb r5,[r2,r4]  /* store sign at current position  */
    subs r4,r4,#1   /* previous position */
    blt  100f         /* if r4 < 0  end  */
    /* else complete area with space */
    mov r3,#' '   /* character space */	
2:
    strb r3,[r2,r4]  /* store  byte  */
    subs r4,r4,#1   /* previous position */
    bge 2b        /* loop if r4 greather or equal zero */
100:  /*  standard end of function  */
    pop {r0-r5}   /*restaur others registers */
    pop {fp,lr}   /* restaur des  2 registers frame et return  */
    bx lr   

/***************************************************/
/*   division par 10   signé                       */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*  
/* and   http://www.hackersdelight.org/            */
/***************************************************/
/* r0 contient le dividende   */
/* r0 retourne le quotient */	
/* r1 retourne le reste  */
divisionpar10:	
  /* r0 contains the argument to be divided by 10 */
   push {r2-r4}   /* save autres registres  */
   mov r4,r0 
   ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
   smull r1, r2, r3, r0   /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
   mov r2, r2, ASR #2     /* r2 <- r2 >> 2 */
   mov r1, r0, LSR #31    /* r1 <- r0 >> 31 */
   add r0, r2, r1         /* r0 <- r2 + r1 */
   add r2,r0,r0, lsl #2   /* r2 <- r0 * 5 */
   sub r1,r4,r2, lsl #1   /* r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10) */
   pop {r2-r4}
   bx lr                  /* leave function */
   .align 4
.Ls_magic_number_10: .word 0x66666667

Arturo

factors: $[num][
	select 1..num [x][
		(num%x)=0
	]
]

print factors 36
Output:
1 2 3 4 6 9 12 18 36

Asymptote

int[] n = {11, 21, 32, 45, 67, 519};

for(var j : n) {
  write(j, suffix=none);
  write(" =>", suffix=none);
    for(int i = 1; i < (j/2); ++i) {
      if(j % i == 0) {
        write(" ", i, suffix=none);
      }
    }
  write(" ", j);
}
Output:
11 => 1 11
21 => 1 3 7 21
32 => 1 2 4 8 32
45 => 1 3 5 9 15 45
67 => 1 67
519 => 1 3 173 519

AutoHotkey

msgbox, % factors(45) "`n" factors(53) "`n" factors(64)

Factors(n)
{  Loop, % floor(sqrt(n))
   {  v := A_Index = 1 ? 1 "," n : mod(n,A_Index) ? v : v "," A_Index "," n//A_Index
   }
   Sort, v, N U D,
   Return, v
}
Output:
1,3,5,9,15,45
1,53
1,2,4,8,16,32,64

AutoIt

;AutoIt Version: 3.2.10.0
$num = 45
MsgBox (0,"Factors", "Factors of " & $num & " are: " & factors($num))
consolewrite ("Factors of " & $num & " are: " & factors($num))
Func factors($intg)
   $ls_factors=""
   For $i = 1 to $intg/2
      if ($intg/$i - int($intg/$i))=0 Then
	 $ls_factors=$ls_factors&$i &", "
      EndIf
   Next
   Return $ls_factors&$intg
EndFunc
Output:
Factors of 45 are: 1, 3, 5, 9, 15, 45

AWK

# syntax: GAWK -f FACTORS_OF_AN_INTEGER.AWK
BEGIN {
    print("enter a number or C/R to exit")
}
{   if ($0 == "") { exit(0) }
    if ($0 !~ /^[0-9]+$/) {
      printf("invalid: %s\n",$0)
      next
    }
    n = $0
    printf("factors of %s:",n)
    for (i=1; i<=n; i++) {
      if (n % i == 0) {
        printf(" %d",i)
      }
    }
    printf("\n")
}
Output:
enter a number or C/R to exit
invalid: -1
factors of 0:
factors of 1: 1
factors of 2: 1 2
factors of 11: 1 11
factors of 64: 1 2 4 8 16 32 64
factors of 100: 1 2 4 5 10 20 25 50 100
factors of 32766: 1 2 3 6 43 86 127 129 254 258 381 762 5461 10922 16383 32766
factors of 32767: 1 7 31 151 217 1057 4681 32767

BASIC

Applesoft BASIC

The Factors_of_an_integer#Sinclair ZX81 BASIC code works the same in Applesoft BASIC.

ASIC

Translation of: GW-BASIC
REM Factors of an integer
PRINT "Enter an integer";
LOOP:
  INPUT N
  IF N = 0 THEN LOOP:
NA = ABS(N) 
NDIV2 = NA / 2
FOR I = 1 TO NDIV2 
  NMODI = NA MOD I
  IF NMODI = 0 THEN
    PRINT I;
  ENDIF
NEXT I
PRINT NA
END
Output:
Enter an integer?60
     1     2     3     4     5     6    10    12    15    20    30    60

BASIC256

Translation of: FreeBASIC
subroutine printFactors(n)
    print n; " => ";
    for i = 1 to n / 2
        if n mod i = 0 then print i; "  ";
    next i
    print n
end subroutine

call printFactors(11)
call printFactors(21)
call printFactors(32)
call printFactors(45)
call printFactors(67)
call printFactors(96)
end

BBC BASIC

      INSTALL @lib$+"SORTLIB"
      sort% = FN_sortinit(0, 0)
      
      PRINT "The factors of 45 are " FNfactorlist(45)
      PRINT "The factors of 12345 are " FNfactorlist(12345)
      END
      
      DEF FNfactorlist(N%)
      LOCAL C%, I%, L%(), L$
      DIM L%(32)
      FOR I% = 1 TO SQR(N%)
        IF (N% MOD I% = 0) THEN
          L%(C%) = I%
          C% += 1
          IF (N% <> I%^2) THEN
            L%(C%) = (N% DIV I%)
            C% += 1
          ENDIF
        ENDIF
      NEXT I%
      CALL sort%, L%(0)
      FOR I% = 0 TO C%-1
        L$ += STR$(L%(I%)) + ", "
      NEXT
      = LEFT$(LEFT$(L$))
Output:
The factors of 45 are 1, 3, 5, 9, 15, 45
The factors of 12345 are 1, 3, 5, 15, 823, 2469, 4115, 12345

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Translation of: BASIC256
10 cls
20 printfactors(11)
30 printfactors(21)
40 printfactors(32)
50 printfactors(45)
60 printfactors(67)
70 printfactors(96)
80 end
100 sub printfactors(n)
110  if n < 1 then printfactors = 0
120  print n "=> ";
130  for i = 1 to n/2
140    if n mod i = 0 then print i " ";
150  next i
160  print n
170 end sub

Craft Basic

do

	input "enter an integer", n

loop n = 0

let a = abs(n)

for i = 1 to int(a / 2)

	if a = int(a / i) * i then

		print i

	endif

next i

print a
Output:
?60
1 2 3 4 5 6 10 12 15 20 30 60

FreeBASIC

' FB 1.05.0 Win64

Sub printFactors(n As Integer)
  If n < 1 Then Return
  Print n; " =>";
  For i As Integer = 1 To n / 2
    If n Mod i = 0 Then Print i; " ";
  Next i
  Print n
End Sub 

printFactors(11)
printFactors(21)
printFactors(32)
printFactors(45)
printFactors(67)
printFactors(96)
Print
Print "Press any key to quit"
Sleep
Output:
 11 => 1  11
 21 => 1  3  7  21
 32 => 1  2  4  8  16  32
 45 => 1  3  5  9  15  45
 67 => 1  67
 96 => 1  2  3  4  6  8  12  16  24  32  48  96

FutureBasic

window 1, @"Factors of an Integer", (0,0,1000,270)

clear local mode
local fn IntegerFactors( f as long ) as CFStringRef
  long        i, s, l(100), c = 0
  CFStringRef factorStr = @""
  
  for i = 1 to sqr(f)
    if ( f mod i == 0 )
      l(c) = i
      c++
      if ( f != i ^ 2 )
        l(c) = ( f / i )
        c++
      end if
    end if
  next i
  
  s = 1
  while ( s = 1 )
    s = 0
    for i = 0 to c-1
      if l(i) > l(i+1) and l(i+1) != 0
        swap l(i), l(i+1)
        s = 1
      end if
    next i
  wend
  
  for i = 0 to c - 1
    if ( i < c - 1 )
      factorStr = fn StringWithFormat( @"%@ %ld, ", factorStr, l(i) )
    else
      factorStr = fn StringWithFormat( @"%@ %ld", factorStr, l(i) )
    end if
  next
end fn = factorStr

print @"Factors of 25 are:"; fn IntegerFactors( 25 )
print @"Factors of 45 are:"; fn IntegerFactors( 45 )
print @"Factors of 103 are:"; fn IntegerFactors( 103 )
print @"Factors of 760 are:"; fn IntegerFactors( 760 )
print @"Factors of 12345 are:"; fn IntegerFactors( 12345 )
print @"Factors of 32766 are:"; fn IntegerFactors( 32766 )
print @"Factors of 32767 are:"; fn IntegerFactors( 32767 )
print @"Factors of 57097 are:"; fn IntegerFactors( 57097 )
print @"Factors of 12345678 are:"; fn IntegerFactors( 12345678 )
print @"Factors of 32434243 are:"; fn IntegerFactors( 32434243 )

HandleEvents
Output:
Factors of 25 are: 1, 5, 25
Factors of 45 are: 1, 3, 5, 9, 15, 45
Factors of 103 are: 1, 103
Factors of 760 are: 1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760
Factors of 12345 are: 1, 3, 5, 15, 823, 2469, 4115, 12345
Factors of 32766 are: 1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766
Factors of 32767 are: 1, 7, 31, 151, 217, 1057, 4681, 32767
Factors of 57097 are: 1, 57097
Factors of 12345678 are: 1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846, 14593, 29186, 43779, 87558, 131337, 262674, 685871, 1371742, 2057613, 4115226, 6172839, 12345678
Factors of 32434243 are: 1, 307, 105649, 32434243

Gambas

Translation of: FreeBASIC
Public Sub Main()  
  
  printFactors(11) 
  printFactors(21) 
  printFactors(32) 
  printFactors(45) 
  printFactors(67) 
  printFactors(96)

End

Sub printFactors(n As Integer) 

  If n < 1 Then Return 
  Print n; " =>"; 
  For i As Integer = 1 To n / 2 
    If n Mod i = 0 Then Print i; " "; 
  Next
  Print n 

End Sub

GW-BASIC

10 INPUT "Enter an integer: ", N
20 IF N = 0 THEN GOTO 10
30 NA = ABS(N)
40 FOR I = 1 TO NA/2
50 IF NA MOD I = 0 THEN PRINT I;
60 NEXT I
70 PRINT NA
Output:
Enter an integer: 1
 1
Enter an integer: 12
 1  2  3  4  6  12
Enter an integer: 13
 1  13
Enter an integer: -22222
 1  2  41  82  271 542  11111 22222

IS-BASIC

100 PROGRAM "Factors.bas"
110 INPUT PROMPT "Number: ":N
120 FOR I=1 TO INT(N/2)
130   IF MOD(N,I)=0 THEN PRINT I;
140 NEXT 
150 PRINT N

Liberty BASIC

num = 10677106534462215678539721403561279
maxnFactors = 1000
dim primeFactors(maxnFactors),  nPrimeFactors(maxnFactors)
global nDifferentPrimeNumbersFound, nFactors, iFactor

print "Start finding all factors of ";num; ":"

nDifferentPrimeNumbersFound=0
dummy = factorize(num,2)
nFactors = showPrimeFactors(num)
dim factors(nFactors)
dummy = generateFactors(1,1)
sort factors(), 0, nFactors-1
for i=1 to nFactors
   print i;"     ";factors(i-1)
next i

print "done"

wait

function factorize(iNum,offset)
    factorFound=0
    i = offset
    do
        if (iNum MOD i)=0 _
        then
            if primeFactors(nDifferentPrimeNumbersFound) = i _
            then
               nPrimeFactors(nDifferentPrimeNumbersFound) = nPrimeFactors(nDifferentPrimeNumbersFound) + 1
            else
               nDifferentPrimeNumbersFound = nDifferentPrimeNumbersFound + 1
               primeFactors(nDifferentPrimeNumbersFound) = i
               nPrimeFactors(nDifferentPrimeNumbersFound) = 1
            end if
            if iNum/i<>1 then dummy = factorize(iNum/i,i)
            factorFound=1
         end if
         i=i+1
    loop while factorFound=0 and i<=sqr(iNum)
    if factorFound=0 _
    then
       nDifferentPrimeNumbersFound = nDifferentPrimeNumbersFound + 1
       primeFactors(nDifferentPrimeNumbersFound) = iNum
       nPrimeFactors(nDifferentPrimeNumbersFound) = 1
    end if
end function

function showPrimeFactors(iNum)
   showPrimeFactors=1
   print iNum;" = ";
   for i=1 to nDifferentPrimeNumbersFound
      print primeFactors(i);"^";nPrimeFactors(i);
      if i<nDifferentPrimeNumbersFound then print " * "; else print ""
      showPrimeFactors = showPrimeFactors*(nPrimeFactors(i)+1)
   next i
end function

function generateFactors(product,pIndex)
   if pIndex>nDifferentPrimeNumbersFound _
   then
      factors(iFactor) = product
      iFactor=iFactor+1
   else
      for i=0 to nPrimeFactors(pIndex)
         dummy = generateFactors(product*primeFactors(pIndex)^i,pIndex+1)
      next i
   end if
end function
Output:
Start finding all factors of 10677106534462215678539721403561279:
10677106534462215678539721403561279 = 29269^1 * 32579^1 * 98731^2 * 104729^3
1 1
2 29269
3 32579
4 98731
5 104729
6 953554751
7 2889757639
8 3065313101
9 3216557249
10 3411966091
11 9747810361
12 10339998899
13 10968163441
14 94145414120981
15 99864835517479
16 285308661456109
17 302641427774831
18 317573913751019
19 321027175754629
20 336866824130521
21 357331796744339
22 1020878431297169
23 1082897744693371
24 1148684789012489
25 9295070881578575111
26 9859755075476219149
27 10458744358910058191
28 29880090805636839461
29 31695334089430275799
30 33259198413230468851
31 33620855089606540541
32 35279725624365333809
33 37423001741237879131
34 106915577231321212201
35 113410797903992051459
36 973463478356842592799919
37 1032602289299548955255621
38 1095333837964291484285239
39 3129312029983540559911069
40 3319420643851943354153471
41 3483202590619213772296379
42 3694810384914157044482761
43 11197161487859039232598529
44 101949856624833767901342716951
45 108143405156052462534965931709
46 327729719588146219298926345301
47 364792324112959639158827476291
48 10677106534462215678539721403561279
done

A Simpler Approach

This is a somewhat simpler approach for finding the factors of smaller numbers (less than one million).

Works with: Just BASIC
print "ROSETTA CODE - Factors of an integer"
'A simpler approach for smaller numbers
[Start]
print
input "Enter an integer (< 1,000,000): "; n
n=abs(int(n)): if n=0 then goto [Quit]
if n>999999 then goto [Start]
FactorCount=FactorCount(n)
select case FactorCount
    case 1: print "The factor of 1 is: 1"
    case else
        print "The "; FactorCount; " factors of "; n; " are: ";
        for x=1 to FactorCount
            print " "; Factor(x);
        next x
        if FactorCount=2 then print " (Prime)" else print
end select
goto [Start]

[Quit]
print "Program complete."
end

function FactorCount(n)
    dim Factor(100)
    for y=1 to n
        if y>sqr(n) and FactorCount=1 then
'If no second factor is found by the square root of n, then n is prime.
            FactorCount=2: Factor(FactorCount)=n: exit function
        end if
        if (n mod y)=0 then
            FactorCount=FactorCount+1
            Factor(FactorCount)=y
        end if
    next y
end function
Output:
ROSETTA CODE - Factors of an integer

Enter an integer (< 1,000,000): 1
The factor of 1 is: 1

Enter an integer (< 1,000,000): 2
The 2 factors of 2 are:  1 2 (Prime)

Enter an integer (< 1,000,000): 4
The 3 factors of 4 are:  1 2 4

Enter an integer (< 1,000,000): 6
The 4 factors of 6 are:  1 2 3 6

Enter an integer (< 1,000,000): 999999
The 64 factors of 999999 are:  1 3 7 9 11 13 21 27 33 37 39 63 77 91 99 111 117 143 189 231 259 273 297 333 351 407 429 481 693 777 819 999 1001 1221 1287 1443 2079 2331 2457 2849 3003 3367 3663 3861 4329 5291 6993 8547 9009 10101 10989 12987 15873 25641 27027 30303 37037 47619 76923 90909 111111 142857 333333 999999

Enter an integer (< 1,000,000):
Program complete.

Minimal BASIC

Translation of: GW-BASIC
Works with: Commodore BASIC
Works with: IS-BASIC
Works with: MSX BASIC version any
Works with: Nascom ROM BASIC version 4.7
10 REM Factors of an integer
20 PRINT "Enter an integer";
30 INPUT N
40 IF N = 0 THEN 30
50 N1 = ABS(N)
60 FOR I = 1 TO N1/2
70 IF INT(N1/I)*I <> N1 THEN 90
80 PRINT I;
90 NEXT I
100 PRINT N1
110 END

MSX Basic

Translation of: GW-BASIC
10 INPUT "Enter an integer: "; N
20 IF N = 0 THEN GOTO 10
30 N1 = ABS(N)
40 FOR I = 1 TO N1/2
50  IF N1 MOD I = 0 THEN PRINT I;
60 NEXT I
70 PRINT N1

Nascom BASIC

Translation of: GW-BASIC
Works with: Nascom ROM BASIC version 4.7
10 REM Factors of an integer
20 INPUT "Enter an integer"; N
30 IF N=0 THEN 20
40 NA=ABS(N)
50 FOR I=1 TO INT(NA/2)
60 IF NA=INT(NA/I)*I THEN PRINT I;
70 NEXT I
80 PRINT NA
90 END
Output:
Enter an integer? 60
 1  2  3  4  5  6  10  12  15  20  30  60

See also Minimal BASIC

Palo Alto Tiny BASIC

Translation of: GW-BASIC
10 REM FACTORS OF AN INTEGER
20 INPUT "ENTER AN INTEGER"N
30 IF N=0 GOTO 20
40 LET A=ABS(N)
50 IF A=1 GOTO 90
60 FOR I=1 TO A/2
70 IF (A/I)*I=A PRINT I," ",
80 NEXT I
90 PRINT A
100 STOP
Output:

3 runs.

ENTER AN INTEGER:1
      1
ENTER AN INTEGER:60
      1       2       3       4       5       6      10      12      15      20     30      60
ENTER AN INTEGER:-22222
      1       2      41      82     271     542   11111   22222

PureBasic

Procedure PrintFactors(n)
  Protected i, lim=Round(sqr(n),#PB_Round_Up)
  NewList F.i()
  For i=1 To lim
    If n%i=0
      AddElement(F()): F()=i
      AddElement(F()): F()=n/i
    EndIf
  Next
  ;- Present the result
  SortList(F(),#PB_Sort_Ascending)
  ForEach F()
    Print(str(F())+" ")
  Next
EndProcedure

If OpenConsole()
  Print("Enter integer to factorize: ")
  PrintFactors(Val(Input()))
  Print(#CRLF$+#CRLF$+"Press ENTER to quit."): Input()
EndIf
Output:
 Enter integer to factorize: 96
 1 2 3 4 6 8 12 16 24 32 48 96

QB64

'Task
'Compute the   factors   of a positive integer.

'These factors are the positive integers by which the number being factored can be divided to yield a positive integer result.
Dim Dividendum As Integer, Index As Integer
Randomize Timer
Dividendum = Int(Rnd * 1000) + 1
Print " Dividendum: "; Dividendum
Index = Int(Dividendum / 2)
print "Divisors: ";
While Index > 0
    If Dividendum Mod Index = 0 Then Print Index; " ";
    Index = Index - 1
Wend
End

QBasic

See QuickBASIC.

QuickBASIC

Works with: QBasic

This example stores the factors in a shared array (with the original number as the last element) for later retrieval.

Note that this will error out if you pass 32767 (or higher).

DECLARE SUB factor (what AS INTEGER)

REDIM SHARED factors(0) AS INTEGER

DIM i AS INTEGER, L AS INTEGER

INPUT "Gimme a number"; i

factor i

PRINT factors(0);
FOR L = 1 TO UBOUND(factors)
    PRINT ","; factors(L);
NEXT
PRINT

SUB factor (what AS INTEGER)
    DIM tmpint1 AS INTEGER
    DIM L0 AS INTEGER, L1 AS INTEGER

    REDIM tmp(0) AS INTEGER
    REDIM factors(0) AS INTEGER
    factors(0) = 1

    FOR L0 = 2 TO what
        IF (0 = (what MOD L0)) THEN
            'all this REDIMing and copying can be replaced with:
            'REDIM PRESERVE factors(UBOUND(factors)+1)
            'in languages that support the PRESERVE keyword
            REDIM tmp(UBOUND(factors)) AS INTEGER
            FOR L1 = 0 TO UBOUND(factors)
                tmp(L1) = factors(L1)
            NEXT
            REDIM factors(UBOUND(factors) + 1) AS INTEGER
            FOR L1 = 0 TO UBOUND(factors) - 1
                factors(L1) = tmp(L1)
            NEXT
            factors(UBOUND(factors)) = L0
        END IF
    NEXT
END SUB
Output:
 Gimme a number? 17
  1 , 17
 Gimme a number? 12345
  1 , 3 , 5 , 15 , 823 , 2469 , 4115 , 12345
 Gimme a number? 32765
  1 , 5 , 6553 , 32765
 Gimme a number? 32766
  1 , 2 , 3 , 6 , 43 , 86 , 127 , 129 , 254 , 258 , 381 , 762 , 5461 , 10922 ,
  16383 , 32766

Quite BASIC

Translation of: GW-BASIC
10 INPUT "Enter an integer: "; N
20 IF N = 0 THEN GOTO 15
30 N1 = ABS(N)
40 FOR I = 1 TO N1/2
50  IF N1 - INT(N1 / I) * I = 0 THEN PRINT I; " ";
60 NEXT I
70 PRINT N1

REALbasic

Function factors(num As UInt64) As UInt64()
  'This function accepts an unsigned 64 bit integer as input and returns an array of unsigned 64 bit integers
  Dim result() As UInt64
  Dim iFactor As UInt64 = 1
  While iFactor <= num/2 'Since a factor will never be larger than half of the number
    If num Mod iFactor = 0 Then
      result.Append(iFactor)
    End If
    iFactor = iFactor + 1
  Wend
  result.Append(num) 'Since a given number is always a factor of itself
  Return result
End Function

Run BASIC

PRINT "Factors of 45 are ";factorlist$(45)
PRINT "Factors of 12345 are "; factorlist$(12345)
END
 
FUNCTION factorlist$(f)
DIM L(100)
FOR i = 1 TO SQR(f)
  IF (f MOD i) = 0 THEN
    L(c) = i
    c = c + 1
    IF (f <> i^2) THEN
      L(c) = (f / i)
      c = c + 1
    END IF
  END IF
NEXT i
s = 1
WHILE s = 1
s = 0
FOR i = 0 TO c-1
 IF L(i) > L(i+1) AND L(i+1) <> 0 THEN
  t = L(i)
  L(i) = L(i+1)
  L(i+1) = t
  s      = 1
 END IF
NEXT i
WEND
FOR i = 0 TO c-1
  factorlist$ = factorlist$ + STR$(L(i)) + ", "
NEXT
END FUNCTION
Output:
Factors of 45 are 1, 3, 5, 9, 15, 45, 
Factors of 12345 are 1, 3, 5, 15, 823, 2469, 4115, 12345, 

Sinclair ZX81 BASIC

Works with: Applesoft BASIC
10 INPUT N
20 FOR I=1 TO N
30 IF N/I=INT (N/I) THEN PRINT I;" ";
40 NEXT I
Input:
315
Output:
1 3 5 7 9 15 35 45 63 105 315

Tiny BASIC

Works with: TinyBasic
100 PRINT "Give me a number:"
110 INPUT I
120 LET C=1
130 PRINT "Factors of ",I,":"
140 IF I/C*C=I THEN PRINT C
150 LET C=C+1
160 IF C<=I THEN GOTO 140
170 END
Output:
Give me a number:
60
Factors of 60:
1
2
3
4
5
6
10
12
15
20
30
60

True BASIC

Translation of: FreeBASIC
SUB printfactors(n)
    IF n < 1 THEN EXIT SUB
    PRINT n; "=>";
    FOR i = 1 TO n / 2
        IF REMAINDER(n, i) = 0 THEN PRINT i;
    NEXT i
    PRINT n
END SUB

CALL printfactors(11)
CALL printfactors(21)
CALL printfactors(32)
CALL printfactors(45)
CALL printfactors(67)
CALL printfactors(96)
END

VBA

Function Factors(x As Integer) As String
 Application.Volatile
 Dim i As Integer
 Dim cooresponding_factors As String
 Factors = 1
 corresponding_factors = x
 For i = 2 To Sqr(x)
  If x Mod i = 0 Then
   Factors = Factors & ", " & i
   If i <> x / i Then corresponding_factors = x / i & ", " & corresponding_factors
  End If
 Next i
 If x <> 1 Then Factors = Factors & ", " & corresponding_factors
End Function
Output:
cell formula is "=Factors(840)"
resultant value is "1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840"

XBasic

Translation of: BASIC256
Works with: Windows XBasic
PROGRAM  "Factors of an integer"
VERSION  "0.0000"

DECLARE FUNCTION  Entry ()
DECLARE FUNCTION printFactors (n)

FUNCTION  Entry ()
     printFactors(11)
     printFactors(21)
     printFactors(32)
     printFactors(45)
     printFactors(67)
     printFactors(96)
END FUNCTION

FUNCTION printFactors (n)
    PRINT n; " =>";
    FOR i = 1 TO n / 2
        IF n MOD i = 0 THEN PRINT i; " ";
    NEXT i
    PRINT n
END FUNCTION
END PROGRAM

Yabasic

Translation of: FreeBASIC
sub printFactors(n)
    if n < 1  return 0
    print n, " =>";
    for i = 1 to n / 2
        if mod(n, i) = 0  print i, "  "; 
    next i
    print n
end sub 

printFactors(11)
printFactors(21)
printFactors(32)
printFactors(45)
printFactors(67)
printFactors(96)
print
end

ZX Spectrum Basic

Translation of: AWK
10 INPUT "Enter a number or 0 to exit: ";n
20 IF n=0 THEN STOP 
30 PRINT "Factors of ";n;": ";
40 FOR i=1 TO n
50 IF FN m(n,i)=0 THEN PRINT i;" ";
60 NEXT i
70 DEF FN m(a,b)=a-INT (a/b)*b

Batch File

Command line version:

@echo off
set res=Factors of %1:
for /L %%i in (1,1,%1) do call :fac %1 %%i
echo %res%
goto :eof

:fac
set /a test = %1 %% %2
if %test% equ 0 set res=%res% %2
Output:
>factors 32767
Factors of 32767: 1 7 31 151 217 1057 4681 32767

>factors 45
Factors of 45: 1 3 5 9 15 45

>factors 53
Factors of 53: 1 53

>factors 64
Factors of 64: 1 2 4 8 16 32 64

>factors 100
Factors of 100: 1 2 4 5 10 20 25 50 100

Interactive version:

@echo off
set /p limit=Gimme a number:
set res=Factors of %limit%:
for /L %%i in (1,1,%limit%) do call :fac %limit% %%i
echo %res%
goto :eof

:fac
set /a test = %1 %% %2
if %test% equ 0 set res=%res% %2
Output:
>factors
Gimme a number:27
Factors of 27: 1 3 9 27

>factors
Gimme a number:102
Factors of 102: 1 2 3 6 17 34 51 102

bc

/* Calculate the factors of n and return their count.
 * This function mutates the global array f[] which will
 * contain all factors of n in ascending order after the call!
 */
define f(n) {
    auto i, d, h, h[], l, o
    /* Local variables:
     * i: Loop variable.
     * d: Complementary (higher) factor to i.
     * h: Will always point to the last element of h[].
     * h[]: Array to hold the greater factor of the pair (x, y), where 
     *      x * y == n. The factors are stored in descending order.
     * l: Will always point to the next free spot in f[].
     * o: For saving the value of scale.
     */

    /* Use integer arithmetic */
    o = scale
    scale = 0

    /* Two factors are 1 and n (if n != 1) */
    f[l++] = 1
    if (n == 1) return(1)
    h[0] = n

    /* Main loop */
    for (i = 2; i < h[h]; i++) {
        if (n % i == 0) {
            d = n / i
            if (d != i) {
                h[++h] = d
            }
            f[l++] = i
        }
    }

    /* Append the values in h[] to f[] */
    while (h >= 0) {
        f[l++] = h[h--]
    }

    scale = o
    return(l)
}

Befunge

10:p&v:      >:0:g%#v_0:g\:0:g/\v
     >:0:g:*`|      >           >0:g1+0:p
             >:0:g:*-#v_0:g\>$>:!#@_.v
                      >     ^ ^  ," "<

BQN

A bqncrate idiom.

Factors  (1+↕)(⊣/˜0=|)

•Show Factors 12345
•Show Factors 729
⟨ 1 3 5 15 823 2469 4115 12345 ⟩
⟨ 1 3 9 27 81 243 729 ⟩

The primes library from bqn-libs can be used for a solution that's more efficient for large inputs. FactorExponents returns each unique prime factor along with its exponent.

FactorExponents  •Import "primes.bqn"  # With appropriate path
Factors  { ∧⥊ 1 ×⌜´ (1+⊢)¨˝ FactorExponents 𝕩 }

Burlesque

blsq ) 32767 fc
{1 7 31 151 217 1057 4681 32767}

C

#include <stdio.h>
#include <stdlib.h>

typedef struct {
    int *list;
    short count; 
} Factors;

void xferFactors( Factors *fctrs, int *flist, int flix ) 
{
    int ix, ij;
    int newSize = fctrs->count + flix;
    if (newSize > flix)  {
        fctrs->list = realloc( fctrs->list, newSize * sizeof(int));
    }
    else {
        fctrs->list = malloc(  newSize * sizeof(int));
    }
    for (ij=0,ix=fctrs->count; ix<newSize; ij++,ix++) {
        fctrs->list[ix] = flist[ij];
    }
    fctrs->count = newSize;
}

Factors *factor( int num, Factors *fctrs)
{
    int flist[301], flix;
    int dvsr;
    flix = 0;
    fctrs->count = 0;
    free(fctrs->list);
    fctrs->list = NULL;
    for (dvsr=1; dvsr*dvsr < num; dvsr++) {
        if (num % dvsr != 0) continue;
        if ( flix == 300) {
            xferFactors( fctrs, flist, flix );
            flix = 0;
        }
        flist[flix++] = dvsr;
        flist[flix++] = num/dvsr;
    }
    if (dvsr*dvsr == num) 
        flist[flix++] = dvsr;
    if (flix > 0)
        xferFactors( fctrs, flist, flix );

    return fctrs;
}
        
int main(int argc, char*argv[])
{
    int nums2factor[] = { 2059, 223092870, 3135, 45 };
    Factors ftors = { NULL, 0};
    char sep;
    int i,j;

    for (i=0; i<4; i++) {
        factor( nums2factor[i], &ftors );
        printf("\nfactors of %d are:\n  ", nums2factor[i]);
        sep = ' ';
        for (j=0; j<ftors.count; j++) {
            printf("%c %d", sep, ftors.list[j]);
            sep = ',';
        }
        printf("\n");
    }
    return 0;
}

Prime factoring

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* 65536 = 2^16, so we can factor all 32 bit ints */
char bits[65536];

typedef unsigned long ulong;
ulong primes[7000], n_primes;

typedef struct { ulong p, e; } prime_factor; /* prime, exponent */

void sieve()
{
	int i, j;
	memset(bits, 1, 65536);
	bits[0] = bits[1] = 0;
	for (i = 0; i < 256; i++)
		if (bits[i])
			for (j = i * i; j < 65536; j += i)
				bits[j] = 0;

	/* collect primes into a list. slightly faster this way if dealing with large numbers */
	for (i = j = 0; i < 65536; i++)
		if (bits[i]) primes[j++] = i;

	n_primes = j;
}

int get_prime_factors(ulong n, prime_factor *lst)
{
	ulong i, e, p;
	int len = 0;

	for (i = 0; i < n_primes; i++) {
		p = primes[i];
		if (p * p > n) break;
		for (e = 0; !(n % p); n /= p, e++);
		if (e) {
			lst[len].p = p;
			lst[len++].e = e;
		}
	}

	return n == 1 ? len : (lst[len].p = n, lst[len].e = 1, ++len);
}

int ulong_cmp(const void *a, const void *b)
{
	return *(const ulong*)a < *(const ulong*)b ? -1 : *(const ulong*)a > *(const ulong*)b;
}

int get_factors(ulong n, ulong *lst)
{
	int n_f, len, len2, i, j, k, p;
	prime_factor f[100];

	n_f = get_prime_factors(n, f);

	len2 = len = lst[0] = 1;
	/* L = (1); L = (L, L * p**(1 .. e)) forall((p, e)) */
	for (i = 0; i < n_f; i++, len2 = len)
		for (j = 0, p = f[i].p; j < f[i].e; j++, p *= f[i].p)
			for (k = 0; k < len2; k++)
				lst[len++] = lst[k] * p;

	qsort(lst, len, sizeof(ulong), ulong_cmp);
	return len;
}

int main()
{
	ulong fac[10000];
	int len, i, j;
	ulong nums[] = {3, 120, 1024, 2UL*2*2*2*3*3*3*5*5*7*11*13*17*19 };

	sieve();

	for (i = 0; i < 4; i++) {
		len = get_factors(nums[i], fac);
		printf("%lu:", nums[i]);
		for (j = 0; j < len; j++)
			printf(" %lu", fac[j]);
		printf("\n");
	}

	return 0;
}
Output:
3: 1 3
120: 1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
1024: 1 2 4 8 16 32 64 128 256 512 1024
3491888400: 1 2 3 4 5 6 7 8 9 10 11 ...(>1900 numbers)... 1163962800 1745944200 3491888400

C#

C# 1.0

static void Main (string[] args) {
    do {
        Console.WriteLine ("Number:");
        Int64 p = 0;
        do {
            try {
                p = Convert.ToInt64 (Console.ReadLine ());
                break;
            } catch (Exception) { }

        } while (true);

        Console.WriteLine ("For 1 through " + ((int) Math.Sqrt (p)).ToString () + "");
        for (int x = 1; x <= (int) Math.Sqrt (p); x++) {
            if (p % x == 0)
                Console.WriteLine ("Found: " + x.ToString () + ". " + p.ToString () + " / " + x.ToString () + " = " + (p / x).ToString ());
        }

        Console.WriteLine ("Done.");
    } while (true);
}
Output:
Number:
32434243
For 1 through 5695
Found: 1. 32434243 / 1 = 32434243
Found: 307. 32434243 / 307 = 105649
Done.

C# 3.0

using System;
using System.Collections.Generic;
using System.Linq;

public static class Extension {
    public static List<int> Factors (this int me) {
        return Enumerable.Range (1, me).Where (x => me % x == 0).ToList ();
    }
}

class Program {
    static void Main (string[] args) {
        Console.WriteLine (String.Join (", ", 45. Factors ()));
    }
}
Output:
1, 3, 5, 9, 15, 45

C++

#include <iostream>
#include <iomanip>
#include <vector>
#include <algorithm>
#include <iterator>

std::vector<int> GenerateFactors(int n) {
    std::vector<int> factors = { 1, n };
    for (int i = 2; i * i <= n; ++i) {
        if (n % i == 0) {
            factors.push_back(i);
            if (i * i != n)
                factors.push_back(n / i);
        }
    }

    std::sort(factors.begin(), factors.end());
    return factors;
}

int main() {
    const int SampleNumbers[] = { 3135, 45, 60, 81 };

    for (size_t i = 0; i < sizeof(SampleNumbers) / sizeof(int); ++i) {
        std::vector<int> factors = GenerateFactors(SampleNumbers[i]);
        std::cout << "Factors of ";
        std::cout.width(4);
        std::cout << SampleNumbers[i] << " are: ";
        std::copy(factors.begin(), factors.end(), std::ostream_iterator<int>(std::cout, " "));
        std::cout << std::endl;
    }

    return EXIT_SUCCESS;
}
Output:
Factors of 3135 are: 1 3 5 11 15 19 33 55 57 95 165 209 285 627 1045 3135 
Factors of   45 are: 1 3 5 9 15 45 
Factors of   60 are: 1 2 3 4 5 6 10 12 15 20 30 60 
Factors of   81 are: 1 3 9 27 81 

Ceylon

shared void run() {
	{Integer*} getFactors(Integer n) =>
		(1..n).filter((Integer element) => element.divides(n));
	
	for(Integer i in 1..100) {
		print("the factors of ``i`` are ``getFactors(i)``");
	}
}

Chapel

Inspired by the Clojure solution:

iter factors(n) {
	for i in 1..floor(sqrt(n)):int {
		if n % i == 0 then {
			yield i;
			yield n / i;
		}
	}
}

Clojure

(defn factors [n] 
	(filter #(zero? (rem n %)) (range 1 (inc n))))

(print (factors 45))
(1 3 5 9 15 45)

Improved version. Considers small factors from 1 up to (sqrt n) -- we increment it because range does not include the end point. Pair each small factor with its co-factor, flattening the results, and put them into a sorted set to get the factors in order.

(defn factors [n]
  (into (sorted-set)
    (mapcat (fn [x] [x (/ n x)])
      (filter #(zero? (rem n %)) (range 1 (inc (Math/sqrt n)))) )))

Same idea, using for comprehensions.

(defn factors [n]
  (into (sorted-set)
    (reduce concat
      (for [x (range 1 (inc (Math/sqrt n))) :when (zero? (rem n x))]
        [x (/ n x)]))))

CLU

Translation of: Sather
isqrt = proc (s: int) returns (int)
    x0: int := s/2
    if x0=0 then return(s) end
    x1: int := (x0 + s/x0)/2
    while x1<x0 do
        x0, x1 := x1, (x1 + s/x1)/2
    end
    return(x0)
end isqrt

factors = iter (n: int) yields (int)
    yield(1)
    for i: int in int$from_to(2,isqrt(n)) do
        if n//i=0 then
            yield(i)
            if i*i ~= n then yield(n/i) end
        end
    end
    yield(n)
end factors

start_up = proc ()
    po: stream := stream$primary_output()
    a: array[int] := array[int]$[3135, 45, 64, 53, 45, 81]
    for n: int in array[int]$elements(a) do
        stream$puts(po, "Factors of " || int$unparse(n) || ":")
        for f: int in factors(n) do
            stream$puts(po, " " || int$unparse(f))
        end
        stream$putl(po, "")
    end
end start_up
Output:
Factors of 3135: 1 3 1045 5 627 11 285 15 209 19 165 33 95 55 57 3135
Factors of 45: 1 3 15 5 9 45
Factors of 64: 1 2 32 4 16 8 64
Factors of 53: 1 53
Factors of 45: 1 3 15 5 9 45
Factors of 81: 1 3 27 9 81

COBOL

       IDENTIFICATION DIVISION.
       PROGRAM-ID. FACTORS.
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  CALCULATING.
           03  NUM  USAGE BINARY-LONG VALUE ZERO.
           03  LIM  USAGE BINARY-LONG VALUE ZERO.
           03  CNT  USAGE BINARY-LONG VALUE ZERO.
           03  DIV  USAGE BINARY-LONG VALUE ZERO.
           03  REM  USAGE BINARY-LONG VALUE ZERO.
           03  ZRS  USAGE BINARY-SHORT VALUE ZERO.

       01  DISPLAYING.
           03  DIS  PIC 9(10) USAGE DISPLAY.

       PROCEDURE DIVISION.
       MAIN-PROCEDURE.
           DISPLAY "Factors of? " WITH NO ADVANCING
           ACCEPT NUM
           DIVIDE NUM BY 2 GIVING LIM.

           PERFORM VARYING CNT FROM 1 BY 1 UNTIL CNT > LIM
               DIVIDE NUM BY CNT GIVING DIV REMAINDER REM
               IF REM = 0
                   MOVE CNT TO DIS
                   PERFORM SHODIS
               END-IF
           END-PERFORM.

           MOVE NUM TO DIS.
           PERFORM SHODIS.
           STOP RUN.

       SHODIS.
           MOVE ZERO TO ZRS.
           INSPECT DIS TALLYING ZRS FOR LEADING ZERO.
           DISPLAY DIS(ZRS + 1:)
           EXIT PARAGRAPH.

       END PROGRAM FACTORS.

CoffeeScript

# Reference implementation for finding factors is slow, but hopefully
# robust--we'll use it to verify the more complicated (but hopefully faster)
# algorithm.
slow_factors = (n) ->
  (i for i in [1..n] when n % i == 0)
  
# The rest of this code does two optimizations:
#   1) When you find a prime factor, divide it out of n (smallest_prime_factor).
#   2) Find the prime factorization first, then compute composite factors from those.

smallest_prime_factor = (n) ->
  for i in [2..n]
    return n if i*i > n
    return i if n % i == 0

prime_factors = (n) ->
  return {} if n == 1
  spf = smallest_prime_factor n
  result = prime_factors(n / spf)
  result[spf] or= 0
  result[spf] += 1
  result

fast_factors = (n) ->
  prime_hash = prime_factors n
  exponents = []
  for p of prime_hash
    exponents.push
      p: p
      exp: 0
  result = []
  while true
    factor = 1
    for obj in exponents
      factor *= Math.pow obj.p, obj.exp
    result.push factor
    break if factor == n
    # roll the odometer
    for obj, i in exponents
      if obj.exp < prime_hash[obj.p]
        obj.exp += 1
        break
      else
        obj.exp = 0
  
  return result.sort (a, b) -> a - b
    
verify_factors = (factors, n) ->
  expected_result = slow_factors n
  throw Error("wrong length") if factors.length != expected_result.length
  for factor, i in expected_result
    console.log Error("wrong value") if factors[i] != factor     
    
  
for n in [1, 3, 4, 8, 24, 37, 1001, 11111111111, 99999999999]
  factors = fast_factors n
  console.log n, factors
  if n < 1000000
    verify_factors factors, n
Output:
> coffee factors.coffee 
1 [ 1 ]
3 [ 1, 3 ]
4 [ 1, 2, 4 ]
8 [ 1, 2, 4, 8 ]
24 [ 1, 2, 3, 4, 6, 8, 12, 24 ]
37 [ 1, 37 ]
1001 [ 1, 7, 11, 13, 77, 91, 143, 1001 ]
11111111111 [ 1, 21649, 513239, 11111111111 ]
99999999999 [ 1,
  3,
  9,
  21649,
  64947,
  194841,
  513239,
  1539717,
  4619151,
  11111111111,
  33333333333,
  99999999999 ]

Common Lisp

We iterate in the range 1..sqrt(n) collecting ‘low’ factors and corresponding ‘high’ factors, and combine at the end to produce an ordered list of factors.

(defun factors (n &aux (lows '()) (highs '()))
  (do ((limit (1+ (isqrt n))) (factor 1 (1+ factor)))
      ((= factor limit)
       (when (= n (* limit limit))
         (push limit highs))
       (remove-duplicates (nreconc lows highs)))
    (multiple-value-bind (quotient remainder) (floor n factor)
      (when (zerop remainder)
        (push factor lows)
        (push quotient highs)))))

Crystal

Translation of: Ruby

Brute force and slow, by checking every value up to n.

struct Int
  def factors() (1..self).select { |n| (self % n).zero? } end
end

Faster, by only checking values up to .

struct Int
  def factors
    f = [] of Int32
    (1..Math.sqrt(self)).each{ |i|
      (f << i; f << self // i if self // i != i) if (self % i).zero?
    }
    f.sort
  end
end

Tests:

[45, 53, 64].each {|n| puts "#{n} : #{n.factors}"}
Output:
45 : [1, 3, 5, 9, 15, 45]
53 : [1, 53]
64 : [1, 2, 4, 8, 16, 32, 64]

D

Procedural Style

import std.stdio, std.math, std.algorithm;

T[] factors(T)(in T n) pure nothrow {
    if (n == 1)
        return [n];

    T[] res = [1, n];
    T limit = cast(T)real(n).sqrt + 1;
    for (T i = 2; i < limit; i++) {
        if (n % i == 0) {
            res ~= i;
            immutable q = n / i;
            if (q > i)
                res ~= q;
        }
    }

    return res.sort().release;
}

void main() {
    writefln("%(%s\n%)", [45, 53, 64, 1111111].map!factors);
}
Output:
[1, 3, 5, 9, 15, 45]
[1, 53]
[1, 2, 4, 8, 16, 32, 64]
[1, 239, 4649, 1111111]

Functional Style

import std.stdio, std.algorithm, std.range;

auto factors(I)(I n) {
    return iota(1, n + 1).filter!(i => n % i == 0);
}

void main() {
    36.factors.writeln;
}
Output:
[1, 2, 3, 4, 6, 9, 12, 18, 36]

Dart

import 'dart:math';

factors(n)
{
 var factorsArr = [];
 factorsArr.add(n);
 factorsArr.add(1);
 for(var test = n - 1; test >= sqrt(n).toInt(); test--)
  if(n % test == 0)
  {
   factorsArr.add(test);
   factorsArr.add(n / test);
  }
 return factorsArr;
}

void main() {
  print(factors(5688));
}

Dc

Simple O(n) version

[Enter positive number: ]P ? sn
[Factors of ]P lnn [ are: ]P
[q]sq 1si [[ ]P lin]sp [ li ln <q ln li % 0=p li1+si lxx ]dsxx AP
Output:
Factors of 998877 are:  1 3 11 33 30269 90807 332959 998877
0m1.120s

Faster O(sqrt(n)) version

[Enter positive number: ]P ? sn
[Factors of ]P lnn [ are: ]P
[q]sq lnvsv 1si 0sj [[ ]P lin]sp [lkSb lj1+sj]sa [lpx ln li /dsk li<a ]sP
[li lv <q ln li % 0=P li1+si lxx]dsxx
[lj 1>q lj1-sj Lbsi lpx lxx]dsxx AP
0m0.004s

Delphi

See #Pascal.

Dyalect

func Iterator.Where(pred) {
    for x in this when pred(x) {
        yield x
    }
}

func Integer.Factors() {
    (1..this).Where(x => this % x == 0)
}

for x in 45.Factors() {
    print(x)
}

Output:

1
3
5
9
15
45

E

This example is in need of improvement:

Use a cleverer algorithm such as in the Common Lisp example.

def factors(x :(int > 0)) {
    var xfactors := []
    for f ? (x % f <=> 0) in 1..x {
      xfactors with= f
    }
    return xfactors
}

EasyLang

n = 720
for i = 1 to n
  if n mod i = 0
    factors[] &= i
  .
.
print factors[]

EchoLisp

prime-factors gives the list of n's prime-factors. We mix them to get all the factors.

;; ppows
;; input : a list g of grouped prime factors ( 3 3 3 ..)
;; returns (1 3 9 27 ...)

(define (ppows g (mult 1))
	(for/fold (ppows '(1)) ((a g))
	    (set! mult (* mult a))
	    (cons mult ppows)))

;; factors
;; decomp n into ((2 2 ..) ( 3 3 ..)  ) prime factors groups
;; combines (1 2 4 8 ..) (1 3 9 ..) lists

(define (factors n)
   (list-sort <
   (if (<= n 1) '(1) 
        (for/fold (divs'(1)) ((g (map  ppows (group (prime-factors n)))))
		    (for*/list ((a divs) (b g)) (* a b))))))
Output:
(lib 'bigint)
(factors 666)
    (1 2 3 6 9 18 37 74 111 222 333 666)

(length (factors 108233175859200))
    666 ;; 💀

(define huge 1200034005600070000008900000000000000000)
(time ( length (factors huge)))
     (394ms 7776)

EDSAC order code

Input is limited to 10 decimal digits, which is as many as the EDSAC print subroutine P7 can handle. Factors are printed in pairs, such that the product of the factors in each pair equals the input number.

2021-10-10 Integers are now read from the tape in decimal format, instead of being defined by the awkward method of pseudo-orders. The factorization of 999,999,999 has been removed, as it took too long on the commonly-used EdsacPC simulator (14.6 million orders - over 6 hours on the original EDSAC).

  [Factors of an integer, from Rosetta Code website.]
  [EDSAC program, Initial Orders 2.]

[The numbers to  be factorized are read in by library subroutine R2
  (Wilkes, Wheeler and Gill, 1951 edition, pp.96-97, 148).]
[The address of the integers is placed in location 46, so they can be
  referred to by the N parameter (or we could have used 45 and H, etc.)]
            T   46 K
            P  600 F  [address of integers]
[Subroutine R2]
GKT20FVDL8FA40DUDTFI40FA40FS39FG@S2FG23FA5@T5@E4@E13Z
            T     #N  [pass address of integers to R2]

[List of integers to be factorized; edit ad lib. R2 requires 'F' after
   each integer except the last, and '#' (pi) after the last.
 This program uses 0 to mark the end of the list.]
 42000F999999F0#
            T      Z  [resume normal loading]

  [Modified library subroutine P7.]
  [Prints signed integer; up to 10 digits, left-justified.]
  [Input: 0D = integer,]
  [54 locations. Load at even address. Workspace 4D.]
            T   56 K
GKA3FT42@A49@T31@ADE10@T31@A48@T31@SDTDH44#@NDYFLDT4DS43@
TFH17@S17@A43@G23@UFS43@T1FV4DAFG50@SFLDUFXFOFFFSFL4FT4DA49@
T31@A1FA43@G20@XFP1024FP610D@524D!FO46@O26@XFSFL8FT4DE39@

  [Division subroutine for positive long integers.
   35-bit dividend and divisor (max 2^34 - 1)
   returning quotient and remainder.
   Input:  dividend at 4D, divisor at 6D
   Output: remainder at 4D, quotient at 6D.
   37 locations; working locations 0D, 8D.]
            T  110 K
GKA3FT35@A6DU8DTDA4DRDSDG13@T36@ADLDE4@T36@T6DA4DSDG23@
T4DA6DYFYFT6DT36@A8DSDE35@T36@ADRDTDA6DLDT6DE15@EFPF

  [********************** ROSETTA CODE TASK **********************]
  [Subroutine to find and print factors of a positive integer.
   Input: 0D = integer, maximum 10 decimal digits.
   Load at even address.]
            T  148 K
            G      K
            A    3 F  [form and plant link for return]
            T   55 @
            A      D [load integer whose factors are to be found]
            T   56#@ [store]
            A   62#@ [load 1]
            T   58#@ [possible factor := 1]
            S   65 @ [negative count of items per line]
            T   64 @ [initialize count]

          [Start of loop round possible factors]
      [8]   T      F [clear acc]
            A   56#@ [load integer]
            T    4 D [to 4F for division]
            A   58#@ [load possible factor]
            T    6 D [to 6F for division]
            A   13 @ [for return from next]
            G  110 F [do division; clears acc]
            A    6 D [save quotient (6F may be changed below)]
            T   60#@
            S    4 D [load negative of remainder]
            G   44 @ [skip if remainder > 0]

          [Here if m is a factor of n.]
          [Print m and the quotient together]
            T      F [clear acc]
            A   64 @ [test count of items per line]
            G   26 @ [skip if not start of line]
            S   65 @ [start of line, reset count]
            T   64 @
            O   70 @ [and print CR, LF]
            O   71 @
     [26]   T      F [clear acc]
            O   67 @ [print '(']
            A   58#@ [load factor]
            T      D [to 0D for printing]
            A   30 @ [for return from next]
            G   56 F [print factor; clears acc]
            O   69 @ [print comma]
            A   60#@ [load quotient]
            T      D [to 0D for printing]
            A   35 @ [for return from next]
            G   56 F [print quotient; clears acc]
            O   68 @ [print ')']
            A   64 @ [negative counter for items per line]
            A    2 F [inc]
            E   43 @ [skip if end of line]
            O   66 @ [not end of line, print 2 spaces]
            O   66 @
     [43]   T   64 @ [update counter]

          [Common code after testing possible factor]
     [44]   T      F [clear acc]
            A   58#@ [load possible factor]
            A   62#@ [inc by 1]
            U   58#@ [store back]
            S   60#@ [compare with quotient]
            G    8 @ [loop if (new factor) < (old quotient)]

          [Here when found all factors]
            O   70 @ [print CR, LF twice]
            O   71 @
            O   70 @
            O   71 @
            T      F [exit with acc = 0]
     [55]   E      F [return]
           [--------]
     [56]   PF    PF [number whose factors are to be found]
     [58]   PF    PF [possible factor]
     [60]   PF    PF [integer part of (number/factor)]
            T62#Z PF [clear sandwich digit in 35-bit constant 1]
            T   62 Z [resume normal loading]
     [62]   PD    PF [35-bit constant 1]
     [64]   P      F [negative counter for items per line]
     [65]   P    4 F [items per line, in address field]
     [66]   !      F [space]
     [67]   K      F [left parenthesis (in figures mode)]
     [68]   L      F [right parenthesis (in figures mode)]
     [69]   N      F [comma (in figures mode)]
     [70]   @      F [carriage return]
     [71]   &      F [line feed]

  [Main routine for demonstrating subroutine.]
            T  400 K
            G      K
      [0]   #      F [set figures mode]
      [1]   K 4096 F [null char]
      [2]   S     #N [order to load negative of first number]
      [3]   P    2 F [to inc address by 2 for next number]

          [Enter with acc = 0]
      [4]   O      @ [set teleprinter to figures]
            A    2 @ [load order for first integer]
      [6]   T    7 @ [plant in next order]
      [7]   S      D [load negative of 35-bit integer]
            E   17 @ [exit if number is 0]
            T      D [negative to 0D]
            S      D [convert to positive]
            T      D [pass to subroutine]
            A   12 @ [call subroutine to find and print factors]
            G  148 F
            A    7 @ [modify order above, for next integer]
            A    3 @
            E    6 @ [always jump, since S = 12 > 0]
           [--------]
     [17]   O    1 @ [done, print null to flush printer buffer]
            Z      F [stop]

            E    4 Z  [define entry point]
            P      F  [acc = 0 on entry]
Output:
(1,42000)  (2,21000)  (3,14000)  (4,10500)
(5,8400)  (6,7000)  (7,6000)  (8,5250)
(10,4200)  (12,3500)  (14,3000)  (15,2800)
(16,2625)  (20,2100)  (21,2000)  (24,1750)
(25,1680)  (28,1500)  (30,1400)  (35,1200)
(40,1050)  (42,1000)  (48,875)  (50,840)
(56,750)  (60,700)  (70,600)  (75,560)
(80,525)  (84,500)  (100,420)  (105,400)
(112,375)  (120,350)  (125,336)  (140,300)
(150,280)  (168,250)  (175,240)  (200,210)

(1,999999)  (3,333333)  (7,142857)  (9,111111)
(11,90909)  (13,76923)  (21,47619)  (27,37037)
(33,30303)  (37,27027)  (39,25641)  (63,15873)
(77,12987)  (91,10989)  (99,10101)  (111,9009)
(117,8547)  (143,6993)  (189,5291)  (231,4329)
(259,3861)  (273,3663)  (297,3367)  (333,3003)
(351,2849)  (407,2457)  (429,2331)  (481,2079)
(693,1443)  (777,1287)  (819,1221)  (999,1001)

Ela

Using higher-order function

open list

factors m = filter (\x -> m % x == 0) [1..m]

Using comprehension

factors m = [x \\ x <- [1..m] | m % x == 0]

Elixir

defmodule RC do
  def factor(1), do: [1]
  def factor(n) do
    (for i <- 1..div(n,2), rem(n,i)==0, do: i) ++ [n]
  end
  
  # Recursive (faster version);
  def divisor(n), do: divisor(n, 1, []) |> Enum.sort
  
  defp divisor(n, i, factors) when n < i*i    , do: factors
  defp divisor(n, i, factors) when n == i*i   , do: [i | factors]
  defp divisor(n, i, factors) when rem(n,i)==0, do: divisor(n, i+1, [i, div(n,i) | factors])
  defp divisor(n, i, factors)                 , do: divisor(n, i+1, factors)
end

Enum.each([45, 53, 60, 64], fn n ->
  IO.puts "#{n}: #{inspect RC.factor(n)}"
end)

IO.puts "\nRange: #{inspect range = 1..10000}"
funs = [ factor:  &RC.factor/1,
         divisor: &RC.divisor/1 ]
Enum.each(funs, fn {name, fun} ->
  {time, value} = :timer.tc(fn -> Enum.count(range, &length(fun.(&1))==2) end)
  IO.puts "#{name}\t prime count : #{value},\t#{time/1000000} sec"
end)
Output:
45: [1, 3, 5, 9, 15, 45]
53: [1, 53]
60: [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]
64: [1, 2, 4, 8, 16, 32, 64]

Range: 1..10000
factor   prime count : 1229,    7.316 sec
divisor  prime count : 1229,    0.265 sec

EMal

fun factors = List by int n
  List result = int[1]
  for each int i in range(2, n)
    if n % i == 0 do result.append(i) end
  end
  result.append(n)
  return result
end
fun main = int by List args
  int n = when(args.length == 0, ask(int, "Enter the number to factor please "), int!args[0])
  writeLine(factors(n))
  return 0
end
exit main(Runtime.args)
Output:
emal.exe Org\RosettaCode\FactorsOfAnInteger.emal 999997
[1,757,1321,999997]

Erlang

with Built in fuctions

factors(N) ->
    [I || I <- lists:seq(1,trunc(N/2)), N rem I == 0]++[N].

Recursive

Another, less concise, but faster version

-module(divs).
-export([divs/1]).

divs(0) -> [];
divs(1) -> [];
divs(N) -> lists:sort(divisors(1,N))++[N].

divisors(1,N) -> 
     [1] ++ divisors(2,N,math:sqrt(N)).

divisors(K,_N,Q) when K > Q -> [];
divisors(K,N,_Q) when N rem K =/= 0 -> 
    [] ++ divisors(K+1,N,math:sqrt(N));
divisors(K,N,_Q) when K * K  == N -> 
    [K] ++ divisors(K+1,N,math:sqrt(N));
divisors(K,N,_Q) ->
    [K, N div K] ++ divisors(K+1,N,math:sqrt(N)).
Output:
58> timer:tc(divs, factors, [20000]).
{2237,
 [1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,
  500,625,800,1000,1250,2000,2500,4000|...]}
59> timer:tc(divs, divs, [20000]).   
{106,
 [1,2,4,5,8,10,16,20,25,32,40,50,80,100,125,160,200,250,400,
  500,625,800,1000,1250,2000,2500,4000|...]}

The first number is milliseconds. I'v ommitted repeating the first fuction.

ERRE

PROGRAM FACTORS

!$DOUBLE

PROCEDURE FACTORLIST(N->L$)

      LOCAL C%,I,FLIPS%,I%
      LOCAL DIM L[32]
      FOR I=1 TO SQR(N) DO
        IF N=I*INT(N/I) THEN
          L[C%]=I
          C%=C%+1
          IF N<>I*I THEN
            L[C%]=INT(N/I)
            C%=C%+1
          END IF
        END IF
      END FOR

      ! BUBBLE SORT ARRAY L[]
      FLIPS%=1
      WHILE FLIPS%>0 DO
         FLIPS%=0
         FOR I%=0 TO C%-2 DO
            IF L[I%]>L[I%+1] THEN SWAP(L[I%],L[I%+1]) FLIPS%=1
         END FOR
      END WHILE

      L$=""
      FOR I%=0 TO C%-1 DO
        L$=L$+STR$(L[I%])+","
      END FOR
      L$=LEFT$(L$,LEN(L$)-1)

END PROCEDURE

BEGIN
    PRINT(CHR$(12);) ! CLS
    FACTORLIST(45->L$)
    PRINT("The factors of 45 are ";L$)
    FACTORLIST(12345->L$)
    PRINT("The factors of 12345 are ";L$)
END PROGRAM
Output:
The factors of 45 are  1, 3, 5, 9, 15, 45
The factors of 12345 are  1, 3, 5, 15, 823, 2469, 4115, 12345

Excel

LAMBDA

Binding the name FACTORS to a custom function defined by the following LAMBDA expression

in the Name Manager of an Excel workbook.

(See: The LAMBDA worksheet function in Excel)

=LAMBDA(n,
    IF(1 < n,
        LET(
            froot, SQRT(n),
            nroot, FLOOR.MATH(froot),
            lows, FILTERP(
                LAMBDA(x, 0 = MOD(n, x))
            )(
                ENUMFROMTO(1)(nroot)
            ),
            APPEND(lows)(
                LAMBDA(x, n / x)(
                    REVERSE(
                        IF(froot <> nroot,
                            lows,
                            INIT(lows)
                        )
                    )
                )
            )
        ),
        IF(1 = n, {1}, NA())
    )
)

and assuming that in the same worksheet, each of the following names is bound to the reusable generic lambda expression which follows it:

APPEND
=LAMBDA(xs,
    LAMBDA(ys,
        LET(
            nx, ROWS(xs),
            rowIndexes, SEQUENCE(nx + ROWS(ys)),
            colIndexes, SEQUENCE(
                1,
                MAX(COLUMNS(xs), COLUMNS(ys))
            ),
            IF(
                rowIndexes <= nx,
                INDEX(xs, rowIndexes, colIndexes),
                INDEX(ys, rowIndexes - nx, colIndexes)
            )
        )
    )
)


ENUMFROMTO
=LAMBDA(a,
    LAMBDA(z,
        SEQUENCE(1 + z - a, 1, a, 1)
    )
)


FILTERP
=LAMBDA(p,
    LAMBDA(xs,
        FILTER(xs, p(xs))
    )
)


INIT
=LAMBDA(xs,
    IF(
        AND(1=ROWS(xs), ISBLANK(xs)),
        NA(),
        INDEX(
            xs,
            SEQUENCE(ROWS(xs)-1, 1, 1, 1)
        )
    )
)


REVERSE
=LAMBDA(xs,
    LET(
        n, ROWS(xs),
        SORTBY(
            xs,
            SEQUENCE(n, 1, n, -1)
        )
    )
)

The FACTORS function, applied to an integer, defines a column of integer values.

Here we define a row instead, by composing FACTORS with the standard TRANSPOSE function.

Output:
fx =TRANSPOSE(FACTORS(A2))
A B C D E F G H I J K L M N O P Q
1 N Factors
2 64 1 2 4 8 16 32 64
3 120 1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
4 123456789 1 3 9 3607 3803 10821 11409 32463 34227 13717421 41152263 123456789
5 2 1 2
6 1 1
7 0 #N/A
8 -1 #N/A

F#

If number % divisor = 0 then both divisor AND number / divisor are factors.

So, we only have to search till sqrt(number).

Also, this is lazily evaluated.

let factors number = seq {
    for divisor in 1 .. (float >> sqrt >> int) number do
    if number % divisor = 0 then
        yield divisor
        if number <> 1 then yield number / divisor //special case condition: when number=1 then divisor=(number/divisor), so don't repeat it
}

Prime factoring

[6;120;2048;402642;1206432] |> Seq.iter(fun n->printf "%d :" n; [1..n]|>Seq.filter(fun g->n%g=0)|>Seq.iter(fun n->printf " %d" n); printfn "");;
Output:
OUTPUT :
6 : 1  2  3  6                                                                                                                                                                  
120 : 1  2  3  4  5  6  8  10  12  15  20  24  30  40  60  120                                                                                                                  
2048 : 1  2  4  8  16  32  64  128  256  512  1024  2048                                                                                                                        
402642 : 1  2  3  6  9  18  22369  44738  67107  134214  201321  402642                                                                                                         
120643200 : 1  2  3  4  6  8  9  12  16  18  24  32  36  48  59  71  72  96  118  142  144  177  213  236  284  288  354  426  472  531  568  639  708  852  944  1062  1136  12
78  1416  1704  1888  2124  2272  2556  2832  3408  4189  4248  5112  5664  6816  8378  8496  10224  12567  16756  16992  20448  25134  33512  37701  50268  67024  75402  10053
6  134048  150804  201072  301608  402144  603216  1206432

Factor

   USE: math.primes.factors
   ( scratchpad ) 24 divisors .
   { 1 2 3 4 6 8 12 24 }

FALSE

[1[\$@$@-][\$@$@$@$@\/*=[$." "]?1+]#.%]f:
45f;! 53f;! 64f;!

Fish

0v
 >i:0(?v'0'%+a*
       >~a,:1:>r{%        ?vr:nr','ov
              ^:&:;?(&:+1r:<        <

Must be called with pre-polulated value (Positive Integer) in the input stack. Try at Fish Playground[1].

For Input Number :

 120

The following output was generated:

1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120,

Forth

This is a slightly optimized algorithm, since it realizes there are no factors between n/2 and n. The values are saved on the stack and - in true Forth fashion - printed in descending order.

: factors dup 2/ 1+ 1 do dup i mod 0= if i swap then loop ;
: .factors factors begin dup dup . 1 <> while drop repeat drop cr ; 

45 .factors
53 .factors
64 .factors
100 .factors

Alternative version with vectored execution

It's not really idiomatic FORTH to leave a variable number of items on the stack, so instead this version repeatedly calls an execution token for each factor, and it uses a defining word to create a fold over the factors of an integer. This version also only tests up to the square root, which means that items are generated in pairs, rather than in sorted order.

: sq  s" dup *" evaluate ; immediate

: factors ( n a xt -- )
    swap 2>r 1
    BEGIN 2dup sq > WHILE
        2dup /mod swap 0= IF
            over
            r> r@ execute
               r@ execute >r
        ELSE
            drop
        THEN 1+
    REPEAT
    2dup sq = IF
        2r> swap execute nip
    ELSE
        2drop r> rdrop
    THEN ;

: <with-factors>
    create 2, does> 2@ factors ;

0 :noname nip 1+ ; <with-factors> count-factors
0 ' + <with-factors> sum-factors

0 :noname swap . ; <with-factors> (.factors)
: .factors  (.factors) drop ;
Output:
100 .factors 1 100 2 50 4 25 5 20 10  ok
100 count-factors . 9  ok
100 sum-factors . 217  ok
1 100 + 2 + 50 + 4 + 25 + 5 + 20 + 10 + . 217  ok  \ test sum-factors result
77 .factors 1 77 7 11  ok
108 .factors 1 108 2 54 3 36 4 27 6 18 9 12  ok

Fortran

Works with: Fortran version 90 and later
program Factors
  implicit none
  integer :: i, number
  
  write(*,*) "Enter a number between 1 and 2147483647"
  read*, number

  do i = 1, int(sqrt(real(number))) - 1
    if (mod(number, i) == 0) write (*,*) i, number/i
  end do
  
  ! Check to see if number is a square
  i = int(sqrt(real(number))) 
  if (i*i == number) then
     write (*,*) i
  else if (mod(number, i) == 0) then
     write (*,*) i, number/i
  end if
    
end program

Frink

Frink has built-in factoring functions which use wheel factoring, trial division, Pollard p-1 factoring, and Pollard rho factoring. It also recognizes some special forms (e.g. Mersenne numbers) and handles them efficiently. Integers can either be decomposed into prime factors or all factors.

The factors[n] function will return the prime decomposition of n.

The allFactors[n, include1=true, includeN=true, sort=true, onlyToSqrt=false] function will return all factors of n. The optional arguments include1 and includeN indicate if the numbers 1 and n are to be included in the results. If the optional argument sort is true, the results will be sorted. If the optional argument onlyToSqrt=true, then only the factors less than or equal to the square root of the number will be produced.

The following produces all factors of n, including 1 and n:

allFactors[n]

FunL

Function to compute set of factors:

def factors( n ) = {d | d <- 1..n if d|n}

Test:

for x <- [103, 316, 519, 639, 760]
  println( 'The set of factors of ' + x + ' is ' + factors(x) )
Output:
The set of factors of 103 is {1, 103}
The set of factors of 316 is {158, 4, 79, 1, 2, 316}
The set of factors of 519 is {1, 3, 173, 519}
The set of factors of 639 is {9, 639, 71, 213, 1, 3}
The set of factors of 760 is {8, 19, 4, 40, 152, 5, 10, 76, 1, 95, 190, 760, 20, 2, 38, 380}

GAP

# Built-in function
DivisorsInt(Factorial(5));
# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]

# A possible implementation, not suitable to large n
div := n -> Filtered([1 .. n], k -> n mod k = 0);

div(Factorial(5));
# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]

# Another implementation, usable for large n (if n can be factored quickly)
div2 := function(n)                                              
  local f, p;
  f := Collected(FactorsInt(n));
  p := List(f, v -> List([0 .. v[2]], k -> v[1]^k));
  return SortedList(List(Cartesian(p), Product));
end;

div2(Factorial(5));
# [ 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 ]

Go

Trial division, no prime number generator, but with some optimizations. It's good enough to factor any 64 bit integer, with large primes taking several seconds.

package main

import "fmt"

func main() {
    printFactors(-1)
    printFactors(0)
    printFactors(1)
    printFactors(2)
    printFactors(3)
    printFactors(53)
    printFactors(45)
    printFactors(64)
    printFactors(600851475143)
    printFactors(999999999999999989)
}

func printFactors(nr int64) {
    if nr < 1 {
        fmt.Println("\nFactors of", nr, "not computed")
        return
    }
    fmt.Printf("\nFactors of %d: ", nr)
    fs := make([]int64, 1)
    fs[0] = 1
    apf := func(p int64, e int) {
        n := len(fs)
        for i, pp := 0, p; i < e; i, pp = i+1, pp*p {
            for j := 0; j < n; j++ {
                fs = append(fs, fs[j]*pp)
            }
        }
    }
    e := 0
    for ; nr & 1 == 0; e++ {
        nr >>= 1
    }
    apf(2, e)
    for d := int64(3); nr > 1; d += 2 {
        if d*d > nr {
            d = nr
        }
        for e = 0; nr%d == 0; e++ {
            nr /= d
        }
        if e > 0 {
            apf(d, e)
        }
    }
    fmt.Println(fs)
    fmt.Println("Number of factors =", len(fs))
}
Output:
Factors of -1 not computed

Factors of 0 not computed

Factors of 1: [1]
Number of factors = 1

Factors of 2: [1 2]
Number of factors = 2

Factors of 3: [1 3]
Number of factors = 2

Factors of 53: [1 53]
Number of factors = 2

Factors of 45: [1 3 9 5 15 45]
Number of factors = 6

Factors of 64: [1 2 4 8 16 32 64]
Number of factors = 7

Factors of 600851475143: [1 71 839 59569 1471 104441 1234169 87625999 6857 486847 5753023 408464633 10086647 716151937 8462696833 600851475143]
Number of factors = 16

Factors of 999999999999999989: [1 999999999999999989]
Number of factors = 2

Gosu

var numbers = {11, 21, 32, 45, 67, 96}
numbers.each(\ number -> printFactors(number))

function printFactors(n: int) {
  if (n < 1) return
  var result ="${n} => "
  (1 .. n/2).each(\ i -> {result += n % i == 0 ? "${i} " : ""})
  print("${result}${n}")
}
Output:
11 => 1 11
21 => 1 3 7 21
32 => 1 2 4 8 16 32
45 => 1 3 5 9 15 45
67 => 1 67
96 => 1 2 3 4 6 8 12 16 24 32 48 96

Groovy

A straight brute force approach up to the square root of N:

def factorize = { long target -> 

    if (target == 1) return [1L]

    if (target < 4) return [1L, target]

    def targetSqrt = Math.sqrt(target)
    def lowfactors = (2L..targetSqrt).grep { (target % it) == 0 }
    if (lowfactors == []) return [1L, target]
    def nhalf = lowfactors.size() - ((lowfactors[-1] == targetSqrt) ? 1 : 0)
    
    [1] + lowfactors + (0..<nhalf).collect { target.intdiv(lowfactors[it]) }.reverse() + [target]
}

Test:

((1..30) + [333333]).each { println ([number:it, factors:factorize(it)]) }
Output:
[number:1, factors:[1]]
[number:2, factors:[1, 2]]
[number:3, factors:[1, 3]]
[number:4, factors:[1, 2, 4]]
[number:5, factors:[1, 5]]
[number:6, factors:[1, 2, 3, 6]]
[number:7, factors:[1, 7]]
[number:8, factors:[1, 2, 4, 8]]
[number:9, factors:[1, 3, 9]]
[number:10, factors:[1, 2, 5, 10]]
[number:11, factors:[1, 11]]
[number:12, factors:[1, 2, 3, 4, 6, 12]]
[number:13, factors:[1, 13]]
[number:14, factors:[1, 2, 7, 14]]
[number:15, factors:[1, 3, 5, 15]]
[number:16, factors:[1, 2, 4, 8, 16]]
[number:17, factors:[1, 17]]
[number:18, factors:[1, 2, 3, 6, 9, 18]]
[number:19, factors:[1, 19]]
[number:20, factors:[1, 2, 4, 5, 10, 20]]
[number:21, factors:[1, 3, 7, 21]]
[number:22, factors:[1, 2, 11, 22]]
[number:23, factors:[1, 23]]
[number:24, factors:[1, 2, 3, 4, 6, 8, 12, 24]]
[number:25, factors:[1, 5, 25]]
[number:26, factors:[1, 2, 13, 26]]
[number:27, factors:[1, 3, 9, 27]]
[number:28, factors:[1, 2, 4, 7, 14, 28]]
[number:29, factors:[1, 29]]
[number:30, factors:[1, 2, 3, 5, 6, 10, 15, 30]]
[number:333333, factors:[1, 3, 7, 9, 11, 13, 21, 33, 37, 39, 63, 77, 91, 99, 111, 117, 143, 231, 259, 273, 333, 407, 429, 481, 693, 777, 819, 1001, 1221, 1287, 1443, 2331, 2849, 3003, 3367, 3663, 4329, 5291, 8547, 9009, 10101, 15873, 25641, 30303, 37037, 47619, 111111, 333333]]

Haskell

Using D. Amos'es Primes module for finding prime factors

import HFM.Primes (primePowerFactors)
import Control.Monad (mapM)
import Data.List (product)

-- primePowerFactors :: Integer -> [(Integer,Int)]

factors = map product .
          mapM (\(p,m)-> [p^i | i<-[0..m]]) . primePowerFactors

Returns list of factors out of order, e.g.:

~> factors 42
[1,7,3,21,2,14,6,42]

Or, prime decomposition task can be used (although, a trial division-only version will become very slow for large primes),

import Data.List (group)
primePowerFactors = map (\x-> (head x, length x)) . group . factorize

The above function can also be found in the package arithmoi, as Math.NumberTheory.Primes.factorise :: Integer -> [(Integer, Int)], which performs "factorisation of Integers by the elliptic curve algorithm after Montgomery" and "is best suited for numbers of up to 50-60 digits".

Or, deriving cofactors from factors up to the square root:

integerFactors :: Int -> [Int]
integerFactors n
  | 1 > n = []
  | otherwise = lows <> (quot n <$> part n (reverse lows))
  where
    part n
      | n == square = tail
      | otherwise = id
    (square, lows) =
      (,) . (^ 2)
        <*> (filter ((0 ==) . rem n) . enumFromTo 1)
        $ floor (sqrt $ fromIntegral n)

main :: IO ()
main = print $ integerFactors 600
Output:
[1,2,3,4,5,6,8,10,12,15,20,24,25,30,40,50,60,75,100,120,150,200,300,600]

List comprehension

Naive, functional, no import, in increasing order:

factorsNaive n =
  [ i
  | i <- [1 .. n] 
  , mod n i == 0 ]
~> factorsNaive 25
[1,5,25]

Factor, cofactor. Get the list of factor–cofactor pairs sorted, for a quadratic speedup:

import Data.List (sort)

factorsCo n =
  sort
    [ i
    | i <- [1 .. floor (sqrt (fromIntegral n))] 
    , (d, 0) <- [divMod n i] 
    , i <-
       i :
       [ d
       | d > i ] ]

A version of the above without the need for sorting, making it to be online (i.e. productive immediately, which can be seen in GHCi); factors in increasing order:

factorsO n =
  ds ++
  [ r
  | (d, 0) <- [divMod n r] 
  , r <-
     r :
     [ d
     | d > r ] ] ++
  reverse (map (n `div`) ds)
  where
    r = floor (sqrt (fromIntegral n))
    ds =
      [ i
      | i <- [1 .. r - 1] 
      , mod n i == 0 ]

Testing:

*Main> :set +s
~> factorsO 120
[1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120]
(0.00 secs, 0 bytes)

~> factorsO 12041111117
[1,7,41,287,541,3787,22181,77551,155267,542857,3179591,22257137,41955091,2936856
37,1720158731,12041111117]
(0.09 secs, 50758224 bytes)

HicEst

 DLG(NameEdit=N, TItle='Enter an integer')

 DO i = 1, N^0.5
   IF( MOD(N,i) == 0) WRITE() i, N/i
 ENDDO

END

Icon and Unicon

procedure main(arglist)
numbers := arglist ||| [ 32767, 45, 53, 64, 100]    # combine command line provided and default set of values
every writes(lf,"factors of ",i := !numbers,"=") & writes(divisors(i)," ") do lf := "\n"
end

link factors
Output:
factors of 32767=1 7 31 151 217 1057 4681 32767
factors of 45=1 3 5 9 15 45
factors of 53=1 53
factors of 64=1 2 4 8 16 32 64
factors of 100=1 2 4 5 10 20 25 50 100

divisors

Insitux

Translation of: Clojure
(function factors n
  (filter (div? n) (range 1 (inc n))))

(factors 45)
Output:
[1 3 5 9 15 45]

J

The "brute force" approach is the most concise:

foi=: [: I. 0 = (|~ i.@>:)

Example use:

   foi 40
1 2 4 5 8 10 20 40

Basically we test every non-negative integer up through the number itself to see if it divides evenly.

However, this becomes very slow for large numbers. So other approaches can be worthwhile.

J has a primitive, q: which returns its argument's prime factors.

q: 40
 2 2 2 5

Alternatively, q: can produce provide a table of the exponents of the unique relevant prime factors

   __ q: 420
2 3 5 7
2 1 1 1

With this, we can form lists of each of the potential relevant powers of each of these prime factors

   (^ i.@>:)&.>/ __ q: 420
┌─────┬───┬───┬───┐
1 2 41 31 51 7
└─────┴───┴───┴───┘

From here, it's a simple matter (*/&>@{ or, find all possible combinations of one item from each list ({ without a left argument) then unpack each list and multiply its elements) to compute all possible factors of the original number

factrs=: */&>@{@((^ i.@>:)&.>/)@q:~&__
   factrs 40
 1  5
 2 10
 4 20
 8 40

However, a data structure which is organized around the prime decomposition of the argument can be hard to read. So, for reader convenience, we should probably arrange them in a monotonically increasing list:

   factrst=: [: /:~@, */&>@{@((^ i.@>:)&.>/)@q:~&__
   factrst 420
1 2 3 4 5 6 7 10 12 14 15 20 21 28 30 35 42 60 70 84 105 140 210 420

A less efficient, but concise variation on this theme:

    ~.,*/&> { 1 ,&.> q: 40
1 5 2 10 4 20 8 40

This computes 2^n intermediate values where n is the number of prime factors of the original number.

That said, note that we get a representation issue when dealing with large numbers:

   factors 568474220
1 2 4 5 10 17 20 34 68 85 170 340 1.67198e6 3.34397e6 6.68793e6 8.35992e6 1.67198e7 2.84237e7 3.34397e7 5.68474e7 1.13695e8 1.42119e8 2.84237e8 5.68474e8

One approach here (if we don't want to explicitly format the result) is to use an arbitrary precision (aka "extended") argument. This propagates through into the result:

   factors 568474220x
1 2 4 5 10 17 20 34 68 85 170 340 1671983 3343966 6687932 8359915 16719830 28423711 33439660 56847422 113694844 142118555 284237110 568474220

Another less efficient approach, in which remainders are examined up to the square root, larger factors obtained as fractions, and the combined list nubbed and sorted might be:

factorsOfNumber=: monad define
  Y=. y"_
  /:~ ~. ( , Y%]) ( #~ 0=]|Y) 1+i.>.%:y
)

   factorsOfNumber 40
1 2 4 5 8 10 20 40

Another approach:

odometer =: #: i.@(*/)
factors=: (*/@:^"1 odometer@:>:)/@q:~&__

See also the J essays Odometer and Divisors.

Java

Works with: Java version 5+
public static TreeSet<Long> factors(long n)
{
 TreeSet<Long> factors = new TreeSet<Long>();
 factors.add(n);
 factors.add(1L);
 for(long test = n - 1; test >= Math.sqrt(n); test--)
  if(n % test == 0)
  {
   factors.add(test);
   factors.add(n / test);
  }
 return factors;
}

JavaScript

Imperative

function factors(num)
{
 var
  n_factors = [],
  i;

 for (i = 1; i <= Math.floor(Math.sqrt(num)); i += 1)
  if (num % i === 0)
  {
   n_factors.push(i);
   if (num / i !== i)
    n_factors.push(num / i);
  }
 n_factors.sort(function(a, b){return a - b;});  // numeric sort
 return n_factors;
}

factors(45);  // [1,3,5,9,15,45] 
factors(53);  // [1,53] 
factors(64);  // [1,2,4,8,16,32,64]

Functional

ES5

Translating the naive list comprehension example from Haskell, using a list monad for the comprehension

// Monadic bind (chain) for lists
function chain(xs, f) {
  return [].concat.apply([], xs.map(f));
}

// [m..n]
function range(m, n) {
  return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
    return m + i;
  });
}

function factors_naive(n) {
  return chain( range(1, n), function (x) {       // monadic chain/bind
    return n % x ? [] : [x];                      // monadic fail or inject/return
  });
}

factors_naive(6)

Output:

[1, 2, 3, 6]

Translating the Haskell (lows and highs) example

console.log(
  (function (lstTest) {

    // INTEGER FACTORS
    function integerFactors(n) {
      var rRoot = Math.sqrt(n),
        intRoot = Math.floor(rRoot),

        lows = range(1, intRoot).filter(function (x) {
          return (n % x) === 0;
        });

      // for perfect squares, we can drop the head of the 'highs' list
      return lows.concat(lows.map(function (x) {
        return n / x;
      }).reverse().slice((rRoot === intRoot) | 0));
    }

    // [m .. n]
    function range(m, n) {
      return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
        return m + i;
      });
    }

    /*************************** TESTING *****************************/

    // TABULATION OF RESULTS IN SPACED AND ALIGNED COLUMNS
    function alignedTable(lstRows, lngPad, fnAligned) {
      var lstColWidths = range(0, lstRows.reduce(function (a, x) {
        return x.length > a ? x.length : a;
      }, 0) - 1).map(function (iCol) {
        return lstRows.reduce(function (a, lst) {
          var w = lst[iCol] ? lst[iCol].toString().length : 0;
          return (w > a) ? w : a;
        }, 0);
      });

      return lstRows.map(function (lstRow) {
        return lstRow.map(function (v, i) {
          return fnAligned(v, lstColWidths[i] + lngPad);
        }).join('')
      }).join('\n');
    }

    function alignRight(n, lngWidth) {
      var s = n.toString();
      return Array(lngWidth - s.length + 1).join(' ') + s;
    }

    // TEST
    return '\nintegerFactors(n)\n\n' + alignedTable(
      lstTest.map(integerFactors).map(function (x, i) {
        return [lstTest[i], '-->'].concat(x);
      }), 2, alignRight
    ) + '\n';

  })([25, 45, 53, 64, 100, 102, 120, 12345, 32766, 32767])
);

Output:

integerFactors(n)

     25  -->  1   5  25
     45  -->  1   3   5    9   15    45
     53  -->  1  53
     64  -->  1   2   4    8   16    32    64
    100  -->  1   2   4    5   10    20    25     50  100
    102  -->  1   2   3    6   17    34    51    102
    120  -->  1   2   3    4    5     6     8     10   12   15   20   24    30     40     60    120
  12345  -->  1   3   5   15  823  2469  4115  12345
  32766  -->  1   2   3    6   43    86   127    129  254  258  381  762  5461  10922  16383  32766
  32767  -->  1   7  31  151  217  1057  4681  32767


ES6

(function (lstTest) {
    'use strict';

    // INTEGER FACTORS

    // integerFactors :: Int -> [Int]
    let integerFactors = (n) => {
            let rRoot = Math.sqrt(n),
                intRoot = Math.floor(rRoot),

                lows = range(1, intRoot)
                .filter(x => (n % x) === 0);

            // for perfect squares, we can drop 
            // the head of the 'highs' list
            return lows.concat(lows
                .map(x => n / x)
                .reverse()
                .slice((rRoot === intRoot) | 0)
            );
        },

        // range :: Int -> Int -> [Int]
        range = (m, n) => Array.from({
            length: (n - m) + 1
        }, (_, i) => m + i);





    /*************************** TESTING *****************************/

    // TABULATION OF RESULTS IN SPACED AND ALIGNED COLUMNS
    let alignedTable = (lstRows, lngPad, fnAligned) => {
            var lstColWidths = range(
                    0, lstRows
                    .reduce(
                        (a, x) => (x.length > a ? x.length : a),
                        0
                    ) - 1
                )
                .map((iCol) => lstRows
                    .reduce((a, lst) => {
                        let w = lst[iCol] ? lst[iCol].toString()
                            .length : 0;
                        return (w > a) ? w : a;
                    }, 0));

            return lstRows.map((lstRow) =>
                    lstRow.map((v, i) => fnAligned(
                        v, lstColWidths[i] + lngPad
                    ))
                    .join('')
                )
                .join('\n');
        },

        alignRight = (n, lngWidth) => {
            let s = n.toString();
            return Array(lngWidth - s.length + 1)
                .join(' ') + s;
        };

    // TEST
    return '\nintegerFactors(n)\n\n' + alignedTable(lstTest
        .map(integerFactors)
        .map(
            (x, i) => [lstTest[i], '-->'].concat(x)
        ), 2, alignRight
    ) + '\n';

})([25, 45, 53, 64, 100, 102, 120, 12345, 32766, 32767]);
Output:
integerFactors(n)

     25  -->  1   5  25
     45  -->  1   3   5    9   15    45
     53  -->  1  53
     64  -->  1   2   4    8   16    32    64
    100  -->  1   2   4    5   10    20    25     50  100
    102  -->  1   2   3    6   17    34    51    102
    120  -->  1   2   3    4    5     6     8     10   12   15   20   24    30     40     60    120
  12345  -->  1   3   5   15  823  2469  4115  12345
  32766  -->  1   2   3    6   43    86   127    129  254  258  381  762  5461  10922  16383  32766
  32767  -->  1   7  31  151  217  1057  4681  32767

jq

Works with: jq version 1.4
# This implementation uses "sort" for tidiness
def factors:
  . as $num
  | reduce range(1; 1 + sqrt|floor) as $i
      ([];
       if ($num % $i) == 0 then
         ($num / $i) as $r
         | if $i == $r then . + [$i] else . + [$i, $r] end
       else . 
       end )
  | sort;
 
def task:
  (45, 53, 64) | "\(.): \(factors)" ;

task
Output:
$ jq -n -M -r -c -f factors.jq
45: [1,3,5,9,15,45]
53: [1,53]
64: [1,2,4,8,16,32,64]

Julia

using Primes

""" Return the factors of n, including 1, n """
function factors(n::T)::Vector{T} where T <: Integer
  sort(vec(map(prod, Iterators.product((p.^(0:m) for (p, m) in eachfactor(n))...))))
end

const examples = [28, 45, 53, 64, 6435789435768]

for n in examples
    @time println("The factors of $n are: $(factors(n))")
end
Output:
The factors of 28 are: [1, 2, 4, 7, 14, 28]
  0.330684 seconds (784.75 k allocations: 39.104 MiB, 3.17% gc time)
The factors of 45 are: [1, 3, 5, 9, 15, 45]
  0.000117 seconds (56 allocations: 2.672 KiB)
The factors of 53 are: [1, 53]
  0.000102 seconds (35 allocations: 1.516 KiB)


The factors of 64 are: [1, 2, 4, 8, 16, 32, 64]
  0.000093 seconds (56 allocations: 3.172 KiB)
The factors of 6435789435768 are: [1, 2, 3, 4, 6, 7, 8, 11, 12, 14, 21, 22, 24, 28, 
33, 42, 44, 56, 66, 77, 84, 88, 132, 154, 168, 191, 231, 264, 308, 382, 462, 573, 
616, 764, 924, 1146, 1337, 1528, 1848, 2101, 2292, 2674, 4011, 4202, 4584, 5348, 
6303, 8022, 8404, 10696, 12606, 14707, 16044, 16808, 25212, 29414, 32088, 44121, 
50424, 58828, 88242, 117656, 176484, 352968, 18233351, 36466702, 54700053, 72933404, 
109400106, 127633457, 145866808, 200566861, 218800212, 255266914, 382900371, 
401133722, 437600424, 510533828, 601700583, 765800742, 802267444, 1021067656, 
1203401166, 1403968027, 1531601484, 1604534888, 2406802332, 2807936054, 3063202968, 
3482570041, 4211904081, 4813604664, 5615872108, 6965140082, 8423808162, 10447710123, 
11231744216, 13930280164, 16847616324, 20895420246, 24377990287, 27860560328, 
33695232648, 38308270451, 41790840492, 48755980574, 73133970861, 76616540902, 
83581680984, 97511961148, 114924811353, 146267941722, 153233081804, 195023922296, 
229849622706, 268157893157, 292535883444, 306466163608, 459699245412, 536315786314, 
585071766888, 804473679471, 919398490824, 1072631572628, 1608947358942, 2145263145256, 
3217894717884, 6435789435768]
  0.000249 seconds (451 allocations: 24.813 KiB)

K

 f:{i:{y[&x=y*x div y]}[x;1+!_sqrt x];?i,x div|i}
equivalent to:
q)f:{i:{y where x=y*x div y}[x ; 1+ til floor sqrt x]; distinct i,x div reverse i}

   f 120
1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120

   f 1024
1 2 4 8 16 32 64 128 256 512 1024

   f 600851475143
1 71 839 1471 6857 59569 104441 486847 1234169 5753023 10086647 87625999 408464633 716151937 8462696833 600851475143

   #f 3491888400 / has 1920 factors
1920

   / Number of factors for 3491888400 .. 3491888409
   #:'f' 3491888400+!10
1920 16 4 4 12 16 32 16 8 24

Kotlin

fun printFactors(n: Int) {
    if (n < 1) return
    print("$n => ")
    (1..n / 2)
        .filter { n % it == 0 }
        .forEach { print("$it ") }
    println(n)
}

fun main(args: Array<String>) {
    val numbers = intArrayOf(11, 21, 32, 45, 67, 96)
    for (number in numbers) printFactors(number)
}
Output:
11 => 1 11
21 => 1 3 7 21
32 => 1 2 4 8 16 32
45 => 1 3 5 9 15 45
67 => 1 67
96 => 1 2 3 4 6 8 12 16 24 32 48 96

Lambdatalk

{def factors
 {def factors.r 
  {lambda {:num :i :N}
   {if {> :i :N}
    then 
    else {if {= {% :num :i} 0}
          then :i
               {if {not {= {/ :num :i} :i}}
                then {/ :num :i}
                else}
          else}   
         {factors.r :num {+ :i 1} :N} }}}
 {lambda {:n}
  {S.sort < {factors.r :n 1 {sqrt :n}}}}}
-> factors

{factors 45}
-> 1 3 5 9 15 45
{factors 53}
-> 1 53
{factors 64}
-> 1 2 4 8 16 32 64

LFE

Using List Comprehensions

This following function is elegant looking and concise. However, it will not handle large numbers well: it will consume a great deal of memory (on one large number, the function consumed 4.3GB of memory on my desktop machine):

(defun factors (n)
  (list-comp
    ((<- i (when (== 0 (rem n i))) (lists:seq 1 (trunc (/ n 2)))))
    i))

Non-Stack-Consuming

This version will not consume the stack (this function only used 18MB of memory on my machine with a ridiculously large number):

(defun factors (n)
  "Tail-recursive prime factors function."
  (factors n 2 '()))

(defun factors
  ((1 _ acc) (++ acc '(1)))
  ((n _ acc) (when (=< n 0))
    #(error undefined))
  ((n k acc) (when (== 0 (rem n k)))
    (factors (div n k) k (cons k acc)))
  ((n k acc)
    (factors n (+ k 1) acc)))
Output:
> (factors 10677106534462215678539721403561279)
(104729 104729 104729 98731 98731 32579 29269 1)

Lingo

on factors(n) 
  res = [1]
  repeat with i = 2 to n/2
    if n mod i = 0 then res.add(i)
  end repeat
  res.add(n)
  return res
end
put factors(45)
-- [1, 3, 5, 9, 15, 45]
put factors(53)
-- [1, 53]
put factors(64)
-- [1, 2, 4, 8, 16, 32, 64]

to factors :n
  output filter [equal? 0 modulo :n ?] iseq 1 :n
end

show factors 28       ; [1 2 4 7 14 28]

Lua

function Factors( n ) 
    local f = {}
    
    for i = 1, n/2 do
        if n % i == 0 then 
            f[#f+1] = i
        end
    end
    f[#f+1] = n
    
    return f
end

M2000 Interpreter

\\ Factors of an integer
\\ For act as BASIC's FOR (if N<1 no loop start)
FORM 60,40
SET SWITCHES "+FOR"
MODULE LikeBasic {     
      10 INPUT N%
      20 FOR I%=1 TO N%
      30 IF N%/I%=INT(N%/I%) THEN PRINT I%,
      40 NEXT I%
      50 PRINT
}
CALL LikeBasic
SET SWITCHES "-FOR"
MODULE LikeM2000 {
      DEF DECIMAL N%, I%
      INPUT N%
      IF N%<1 THEN EXIT
      FOR I%=1 TO N% {
          IF N% MOD I%=0 THEN PRINT I%,
      }
      PRINT
}
CALL LikeM2000

Maple

numtheory:-divisors(n);

Mathematica / Wolfram Language

Factorize[n_Integer] := Divisors[n]

MATLAB / Octave

  function fact(n);
    f = factor(n);	% prime decomposition
    K = dec2bin(0:2^length(f)-1)-'0';   % generate all possible permutations
    F = ones(1,2^length(f));	
    for k = 1:size(K)
      F(k) = prod(f(~K(k,:)));		% and compute products 
    end; 
    F = unique(F);	% eliminate duplicates
    printf('There are %i factors for %i.\n',length(F),n);
    disp(F);
  end;
Output:
>> fact(12)
There are 6 factors for 12.
    1    2    3    4    6   12
>> fact(28)
There are 6 factors for 28.
    1    2    4    7   14   28
>> fact(64)
There are 7 factors for 64.
    1    2    4    8   16   32   64
>>fact(53)
There are 2 factors for 53.
    1   53

Maxima

The builtin divisors function does this.

(%i96) divisors(100);
(%o96) {1,2,4,5,10,20,25,50,100}

Such a function could be implemented like so:

divisors2(n) := map( lambda([l], lreduce("*", l)),
    apply( cartesian_product,
    map( lambda([fac],
        setify(makelist(fac[1]^i, i, 0, fac[2]))),
    ifactors(n))));

MAXScript

fn factors n =
(
	return (for i = 1 to n+1 where mod n i == 0 collect i)
)
Output:
factors 3
#(1, 3)
factors 7
#(1, 7)
factors 14
#(1, 2, 7, 14)
factors 60
#(1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)
factors 54
#(1, 2, 3, 6, 9, 18, 27, 54)

Mercury

Mercury is both a logic language and a functional language. As such there are two possible interfaces for calculating the factors of an integer. This code shows both styles of implementation. Note that much of the code here is ceremony put in place to have this be something which can actually compile. The actual factoring is contained in the predicate factor/2 and in the function factor/1. The function form is implemented in terms of the predicate form rather than duplicating all of the predicate code.

The predicates main/2 and factor/2 are shown with the combined type and mode statement (e.g. int::in) as is the usual case for simple predicates with only one mode. This makes the code more immediately understandable. The predicate factor/5, however, has its mode broken out onto a separate line both to show Mercury's mode statement (useful for predicates which can have varying instantiation of parameters) and to stop the code from extending too far to the right. Finally the function factor/1 has its mode statements removed (shown underneath in a comment for illustration purposes) because good coding style (and the default of the compiler!) has all parameters "in"-moded and the return value "out"-moded.

This implementation of factoring works as follows:

  1. The input number itself and 1 are both considered factors.
  2. The numbers between 2 and the square root of the input number are checked for even division.
  3. If the incremental number divides evenly into the input number, both the incremental number and the quotient are added to the list of factors.

This implementation makes use of Mercury's "state variable notation" to keep a pair of variables for accumulation, thus allowing the implementation to be tail recursive. !Accumulator is syntax sugar for a *pair* of variables. One of them is an "in"-moded variable and the other is an "out"-moded variable.  !:Accumulator is the "out" portion and !.Accumulator is the "in" portion in the ensuing code.

Using the state variable notation avoids having to keep track of strings of variables unified in the code named things like Acc0, Acc1, Acc2, Acc3, etc.

fac.m

:- module fac.

:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.

:- implementation.
:- import_module float, int, list, math, string.

main(!IO) :-
    io.command_line_arguments(Args, !IO),
    list.filter_map(string.to_int, Args, CleanArgs),
    list.foldl((pred(Arg::in, !.IO::di, !:IO::uo) is det :-
                    factor(Arg, X),
                    io.format("factor(%d, [", [i(Arg)], !IO),
                    io.write_list(X, ",", io.write_int, !IO),
                    io.write_string("])\n", !IO)
               ), CleanArgs, !IO).

:- pred factor(int::in, list(int)::out) is det.
factor(N, Factors) :-
    Limit = float.truncate_to_int(math.sqrt(float(N))),
	factor(N, 2, Limit, [], Unsorted),
    list.sort_and_remove_dups([1, N | Unsorted], Factors).
 
:- pred factor(int, int, int, list(int), list(int)).
:- mode factor(in,  in,  in,  in,        out) is det.
factor(N, X, Limit, !Accumulator) :-
    ( if X  > Limit 
          then true
          else ( if 0 = N mod X 
                     then !:Accumulator = [X, N / X | !.Accumulator]
                     else true ),
               factor(N, X + 1, Limit, !Accumulator) ).

:- func factor(int) = list(int).
%:- mode factor(in) = out is det.
factor(N) = Factors :- factor(N, Factors).

:- end_module fac.

Use and output

Use of the code looks like this:

$ mmc fac.m && ./fac 100 999 12345678 booger
factor(100, [1,2,4,5,10,20,25,50,100])
factor(999, [1,3,9,27,37,111,333,999])
factor(12345678, [1,2,3,6,9,18,47,94,141,282,423,846,14593,29186,43779,87558,131337,262674,685871,1371742,2057613,4115226,6172839,12345678])

min

Works with: min version 0.19.6
(mod 0 ==) :divisor?
(() 0 shorten) :new
(new (over swons 'pred dip) pick times nip) :iota

(
  :n
  n sqrt int iota                            ; Only consider numbers up to sqrt(n).
  (n swap divisor?) filter =f1
  f1 (n swap div) map reverse =f2            ; "Mirror" the list of divisors at sqrt(n).
  (f1 last f2 first ==) (f2 rest #f2) when   ; Handle perfect squares.
  f1 f2 concat
) :factors

24 factors puts!
9 factors puts!
11 factors puts!

MiniScript

factors = function(n)
    result = [1]
    for i in range(2, n)
        if n % i == 0 then result.push i
    end for
    return result
end function

while true
    n = val(input("Number to factor (0 to quit)? "))
    if n <= 0 then break
    print factors(n)
end while
Output:
Number to factor (0 to quit)? 42
[1, 2, 3, 6, 7, 14, 21, 42]
Number to factor (0 to quit)? 101
[1, 101]
Number to factor (0 to quit)? 360
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]
Number to factor (0 to quit)? 0

МК-61/52

П9	1	П6	КИП6	ИП9	ИП6	/	П8	^	[x]
x#0	21	-	x=0	03	ИП6	С/П	ИП8	П9	БП
04	1	С/П	БП	21

MUMPS

factors(num)	New fctr,list,sep,sqrt
	If num<1 Quit "Too small a number"
	If num["." Quit "Not an integer"
	Set sqrt=num**0.5\1
	For fctr=1:1:sqrt Set:num/fctr'["." list(fctr)=1,list(num/fctr)=1
	Set (list,fctr)="",sep="[" For  Set fctr=$Order(list(fctr)) Quit:fctr=""  Set list=list_sep_fctr,sep=","
	Quit list_"]"

w $$factors(45) ; [1,3,5,9,15,45]
w $$factors(53) ; [1,53]
w $$factors(64) ; [1,2,4,8,16,32,64]

Nanoquery

n = int(input())

for i in range(1, n / 2) 
	if (n % i = 0)
		print i + " "
	end
end
println n

NetRexx

Translation of: REXX
/* NetRexx ***********************************************************
* 21.04.2013 Walter Pachl
* 21.04.2013 add method main to accept argument(s)
*********************************************************************/
options replace format comments java crossref symbols nobinary
class divl
  method main(argwords=String[]) static
    arg=Rexx(argwords)
    Parse arg a b
    Say a b
    If a='' Then Do
      help='java divl low [high] shows'
      help=help||' divisors of all numbers between low and high'
      Say help
      Return
      End
    If b='' Then b=a
    loop x=a To b
      say x '->' divs(x)
      End

method divs(x) public static returns Rexx
  if x==1 then return 1               /*handle special case of 1     */
  lo=1
  hi=x
  odd=x//2                            /* 1 if x is odd               */
  loop j=2+odd By 1+odd While j*j<x   /*divide by numbers<sqrt(x)    */
    if x//j==0 then Do                /*Divisible?  Add two divisors:*/
      lo=lo j                         /* list low divisors           */
      hi=x%j hi                       /* list high divisors          */
      End
    End
  If j*j=x Then                       /*for a square number as input */
    lo=lo j                           /* add its square root         */
  return lo hi                        /* return both lists           */
Output:
java divl 1 10
1 -> 1
2 -> 1 2
3 -> 1 3
4 -> 1 2 4
5 -> 1 5
6 -> 1 2 3 6
7 -> 1 7
8 -> 1 2 4 8
9 -> 1 3 9
10 -> 1 2 5 10

Nim

import intsets, math, algorithm
 
proc factors(n: int): seq[int] =
  var fs: IntSet
  for x in 1 .. int(sqrt(float(n))):
    if n mod x == 0:
      fs.incl(x)
      fs.incl(n div x)
 
  for x in fs:
    result.add(x)
  result.sort()
 
echo factors(45)

Niue

[ 'n ; [ negative-or-zero [ , ] if 
       [ n not-factor [ , ] when ] else ] n times n ] 'factors ;

[ dup 0 <= ] 'negative-or-zero ;
[ swap dup rot swap mod 0 = not ] 'not-factor ;

( tests )
100 factors .s .clr ( => 1 2 4 5 10 20 25 50 100 ) newline
53 factors .s .clr ( => 1 53 ) newline
64 factors .s .clr ( => 1 2 4 8 16 32 64 ) newline
12 factors .s .clr ( => 1 2 3 4 6 12 )

Oberon-2

Oxford Oberon-2

MODULE Factors;
IMPORT Out,SYSTEM;
TYPE	
	LIPool = POINTER TO ARRAY OF LONGINT;
	LIVector= POINTER TO LIVectorDesc;
	LIVectorDesc = RECORD
		cap: INTEGER;
		len: INTEGER;
		LIPool: LIPool;
	END;
	
	PROCEDURE New(cap: INTEGER): LIVector;
	VAR
		v: LIVector;
	BEGIN
		NEW(v);
		v.cap := cap;
		v.len := 0;
		NEW(v.LIPool,cap);
		RETURN v
	END New;
	
	PROCEDURE (v: LIVector) Add(x: LONGINT);
	VAR 
		newLIPool: LIPool;
	BEGIN
		IF v.len = LEN(v.LIPool^) THEN
			(* run out of space *)
			v.cap := v.cap + (v.cap DIV 2);
			NEW(newLIPool,v.cap);
			SYSTEM.MOVE(SYSTEM.ADR(v.LIPool^),SYSTEM.ADR(newLIPool^),v.cap * SIZE(LONGINT));
			v.LIPool := newLIPool
		END;
		v.LIPool[v.len] := x;
		INC(v.len)
	END Add;
	
	PROCEDURE (v: LIVector) At(idx: INTEGER): LONGINT;
	BEGIN
		RETURN v.LIPool[idx];
	END At;
	
	
PROCEDURE Factors(n:LONGINT): LIVector;
VAR 
	j: LONGINT;
	v: LIVector;
BEGIN
	v := New(16);
	FOR j := 1 TO n DO
		IF (n MOD j) = 0 THEN v.Add(j) END;
	END; 
	RETURN v
END Factors;

VAR
	v: LIVector;
	j: INTEGER;
BEGIN
	v := Factors(123);
	FOR j := 0 TO v.len - 1 DO
		Out.LongInt(v.At(j),4);Out.Ln
	END;
	Out.Int(v.len,6);Out.String(" factors");Out.Ln
END Factors.
Output:
   
   1
   3
  41
 123
     4 factors

Objeck

use IO;
use Structure;

bundle Default {
  class Basic {
    function : native : GenerateFactors(n : Int)  ~ IntVector {
      factors := IntVector->New();
      factors-> AddBack(1);
      factors->AddBack(n);

      for(i := 2; i * i <= n; i += 1;) {
        if(n % i = 0) {
          factors->AddBack(i);
          if(i * i <> n) {
            factors->AddBack(n / i);
          };
        };
      };
      factors->Sort();

        
      return factors;
    }
     
    function : Main(args : String[]) ~ Nil {
      numbers := [3135, 45, 60, 81];
      for(i := 0; i < numbers->Size(); i += 1;) {
        factors := GenerateFactors(numbers[i]);
        
        Console->GetInstance()->Print("Factors of ")->Print(numbers[i])->PrintLine(" are:");
        each(i : factors) {
          Console->GetInstance()->Print(factors->Get(i))->Print(", ");
        };
        "\n\n"->Print();
      };
    }
  }
}

OCaml

let rec range = function 0 -> [] | n -> range(n-1) @ [n]

let factors n =
  List.filter (fun v -> (n mod v) = 0) (range n)

Odin

Uses built-in dynamic arrays, and only checks up to the square root

package main

import "core:fmt"
import "core:slice"

factors :: proc(n: int) -> [dynamic]int {
    d := 1
    factors := make([dynamic]int)

    for {
        q := n / d
        r := n % d

        if d >= q {
            if d == q && r == 0 {
                append(&factors, d)
            }
            slice.sort(factors[:])
            return factors
        }
        if r == 0 {
            append(&factors, d, q)
        }

        d += 1
    }
}

main :: proc() {
    for n in ([?]int{100, 108, 999, 255, 256, 257}) {
        a := factors(n)
        fmt.println("The factors of", n, "are", a)
        delete(a)
    }
}
Output:
The factors of 100 are [1, 2, 4, 5, 10, 20, 25, 50, 100]
The factors of 108 are [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]
The factors of 999 are [1, 3, 9, 27, 37, 111, 333, 999]
The factors of 255 are [1, 3, 5, 15, 17, 51, 85, 255]
The factors of 256 are [1, 2, 4, 8, 16, 32, 64, 128, 256]
The factors of 257 are [1, 257]

Oforth

Integer method: factors  self seq filter(#[ self isMultiple ]) ;

120 factors println
Output:
[1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]

Oz

declare
  fun {Factors N}
     Sqr = {Float.toInt {Sqrt {Int.toFloat N}}}
 
     Fs = for X in 1..Sqr append:App do
             if N mod X == 0 then
                CoFactor = N div X
             in
                if CoFactor == X then %% avoid duplicate factor
                   {App [X]}          %% when N is a square number
                else
                   {App [X CoFactor]}
                end
             end
          end
  in
     {Sort Fs Value.'<'}
  end
in
  {Show {Factors 53}}

Panda

Panda has a factor function already, it's defined as:

fun factor(n) type integer->integer
   f where n.mod(1..n=>f)==0

45.factor

PARI/GP

divisors(n)

Pascal

Translation of: Fortran
Works with: Free Pascal version 2.6.2
program Factors;
var
  i, number: integer;
begin 
  write('Enter a number between 1 and 2147483647: ');
  readln(number);
 
  for i := 1 to round(sqrt(number)) - 1 do
    if number mod i = 0 then
      write (i, ' ',  number div i, ' ');
 
  // Check to see if number is a square
  i := round(sqrt(number));
  if i*i = number then
     write(i)
  else if number mod i = 0 then
     write(i, number/i);
  writeln;
end.
Output:
Enter a number between 1 and 2147483647: 49
1 49 7

Enter a number between 1 and 2147483647: 353435
1 25755 3 8585 5 5151 15 1717 17 1515 51 505 85 303 101 255 

using Prime decomposition

Works with: Free Pascal

like [C Prime_factoring].
Insertion sort was much faster, because mostly not so many factors need to be sorted.
"runtime overhead" +25% instead +100% for quicksort against no sort.
Especially fast for consecutive integers.

program FacOfInt;
// gets factors of consecutive integers fast
// limited to 1.2e11
{$IFDEF FPC}
  {$MODE DELPHI}  {$OPTIMIZATION ON,ALL}  {$COPERATORS ON}
{$ELSE}
  {$APPTYPE CONSOLE}
{$ENDIF}
uses
  sysutils
{$IFDEF WINDOWS},Windows{$ENDIF}
  ;
//######################################################################
//prime decomposition
const
//HCN(86) > 1.2E11 = 128,501,493,120     count of divs = 4096   7 3 1 1 1 1 1 1 1
  HCN_DivCnt  = 4096;
type
  tItem     = Uint64;
  tDivisors = array [0..HCN_DivCnt] of tItem;
  tpDivisor = pUint64;
const
  //used odd size for test only
  SizePrDeFe = 32768;//*72 <= 64kb level I or 2 Mb ~ level 2 cache
type
  tdigits = array [0..31] of Uint32;
  //the first number with 11 different prime factors =
  //2*3*5*7*11*13*17*19*23*29*31 = 2E11
  //56 byte
  tprimeFac = packed record
                 pfSumOfDivs,
                 pfRemain  : Uint64;
                 pfDivCnt  : Uint32;
                 pfMaxIdx  : Uint32;
                 pfpotPrimIdx : array[0..9] of word;
                 pfpotMax  : array[0..11] of byte;
               end;
  tpPrimeFac = ^tprimeFac;

  tPrimeDecompField = array[0..SizePrDeFe-1] of tprimeFac;
  tPrimes = array[0..65535] of Uint32;

var
  {$ALIGN 8}
  SmallPrimes: tPrimes;
  {$ALIGN 32}
  PrimeDecompField :tPrimeDecompField;
  pdfIDX,pdfOfs: NativeInt;

procedure InitSmallPrimes;
//get primes. #0..65535.Sieving only odd numbers
const
  MAXLIMIT = (821641-1) shr 1;
var
  pr : array[0..MAXLIMIT] of byte;
  p,j,d,flipflop :NativeUInt;
Begin
  SmallPrimes[0] := 2;
  fillchar(pr[0],SizeOf(pr),#0);
  p := 0;
  repeat
    repeat
      p +=1
    until pr[p]= 0;
    j := (p+1)*p*2;
    if j>MAXLIMIT then
      BREAK;
    d := 2*p+1;
    repeat
      pr[j] := 1;
      j += d;
    until j>MAXLIMIT;
  until false;

  SmallPrimes[1] := 3;
  SmallPrimes[2] := 5;
  j := 3;
  d := 7;
  flipflop := (2+1)-1;//7+2*2,11+2*1,13,17,19,23
  p := 3;
  repeat
    if pr[p] = 0 then
    begin
      SmallPrimes[j] := d;
      inc(j);
    end;
    d += 2*flipflop;
    p+=flipflop;
    flipflop := 3-flipflop;
  until (p > MAXLIMIT) OR (j>High(SmallPrimes));
end;

function OutPots(pD:tpPrimeFac;n:NativeInt):Ansistring;
var
  s: String[31];
  chk,p,i: NativeInt;
Begin
  str(n,s);
  result := s+' :';
  with pd^ do
  begin
    str(pfDivCnt:3,s);
    result += s+' : ';
    chk := 1;
    For n := 0 to pfMaxIdx-1 do
    Begin
      if n>0 then
        result += '*';
      p := SmallPrimes[pfpotPrimIdx[n]];
      chk *= p;
      str(p,s);
      result += s;
      i := pfpotMax[n];
      if i >1 then
      Begin
        str(pfpotMax[n],s);
        result += '^'+s;
        repeat
          chk *= p;
          dec(i);
        until i <= 1;
      end;

    end;
    p := pfRemain;
    If p >1 then
    Begin
      str(p,s);
      chk *= p;
      result += '*'+s;
    end;
    str(chk,s);
    result += '_chk_'+s+'<';
    str(pfSumOfDivs,s);
    result += '_SoD_'+s+'<';
  end;
end;

function smplPrimeDecomp(n:Uint64):tprimeFac;
var
  pr,i,pot,fac,q :NativeUInt;
Begin
  with result do
  Begin
    pfDivCnt := 1;
    pfSumOfDivs := 1;
    pfRemain := n;
    pfMaxIdx := 0;
    pfpotPrimIdx[0] := 1;
    pfpotMax[0] := 0;

    i := 0;
    while i < High(SmallPrimes) do
    begin
      pr := SmallPrimes[i];
      q := n DIV pr;
      //if n < pr*pr
      if pr > q then
         BREAK;
      if n = pr*q then
      Begin
        pfpotPrimIdx[pfMaxIdx] := i;
        pot := 0;
        fac := pr;
        repeat
          n := q;
          q := n div pr;
          pot+=1;
          fac *= pr;
        until n <> pr*q;
        pfpotMax[pfMaxIdx] := pot;
        pfDivCnt *= pot+1;
        pfSumOfDivs *= (fac-1)DIV(pr-1);
        inc(pfMaxIdx);
      end;
      inc(i);
    end;
    pfRemain := n;
    if n > 1 then
    Begin
      pfDivCnt *= 2;
      pfSumOfDivs *= n+1
    end;
  end;
end;

function CnvtoBASE(var dgt:tDigits;n:Uint64;base:NativeUint):NativeInt;
//n must be multiple of base aka n mod base must be 0
var
  q,r: Uint64;
  i : NativeInt;
Begin
  fillchar(dgt,SizeOf(dgt),#0);
  i := 0;
  n := n div base;
  result := 0;
  repeat
    r := n;
    q := n div base;
    r  -= q*base;
    n := q;
    dgt[i] := r;
    inc(i);
  until (q = 0);
  //searching lowest pot in base
  result := 0;
  while (result<i) AND (dgt[result] = 0) do
    inc(result);
  inc(result);
end;

function IncByBaseInBase(var dgt:tDigits;base:NativeInt):NativeInt;
var
  q :NativeInt;
Begin
  result := 0;
  q := dgt[result]+1;
  if q = base then
    repeat
      dgt[result] := 0;
      inc(result);
      q := dgt[result]+1;
    until q <> base;
  dgt[result] := q;
  result +=1;
end;

function SieveOneSieve(var pdf:tPrimeDecompField):boolean;
var
  dgt:tDigits;
  i,j,k,pr,fac,n,MaxP : Uint64;
begin
  n := pdfOfs;
  if n+SizePrDeFe >= sqr(SmallPrimes[High(SmallPrimes)]) then
    EXIT(FALSE);
  //init
  for i := 0 to SizePrDeFe-1 do
  begin
    with pdf[i] do
    Begin
      pfDivCnt := 1;
      pfSumOfDivs := 1;
      pfRemain := n+i;
      pfMaxIdx := 0;
      pfpotPrimIdx[0] := 0;
      pfpotMax[0] := 0;
    end;
  end;
  //first factor 2. Make n+i even
  i := (pdfIdx+n) AND 1;
  IF (n = 0) AND (pdfIdx<2)  then
    i := 2;

  repeat
    with pdf[i] do
    begin
      j := BsfQWord(n+i);
      pfMaxIdx := 1;
      pfpotPrimIdx[0] := 0;
      pfpotMax[0] := j;
      pfRemain := (n+i) shr j;
      pfSumOfDivs := (Uint64(1) shl (j+1))-1;
      pfDivCnt := j+1;
    end;
    i += 2;
  until i >=SizePrDeFe;
  //i now index in SmallPrimes
  i := 0;
  maxP := trunc(sqrt(n+SizePrDeFe))+1;
  repeat
    //search next prime that is in bounds of sieve
    if n = 0 then
    begin
      repeat
        inc(i);
        pr := SmallPrimes[i];
        k := pr-n MOD pr;
        if k < SizePrDeFe then
          break;
      until pr > MaxP;
    end
    else
    begin
      repeat
        inc(i);
        pr := SmallPrimes[i];
        k := pr-n MOD pr;
        if (k = pr) AND (n>0) then
          k:= 0;
        if k < SizePrDeFe then
          break;
      until pr > MaxP;
    end;

    //no need to use higher primes
    if pr*pr > n+SizePrDeFe then
      BREAK;

    //j is power of prime
    j := CnvtoBASE(dgt,n+k,pr);
    repeat
      with pdf[k] do
      Begin
        pfpotPrimIdx[pfMaxIdx] := i;
        pfpotMax[pfMaxIdx] := j;
        pfDivCnt *= j+1;
        fac := pr;
        repeat
          pfRemain := pfRemain DIV pr;
          dec(j);
          fac *= pr;
        until j<= 0;
        pfSumOfDivs *= (fac-1)DIV(pr-1);
        inc(pfMaxIdx);
        k += pr;
        j := IncByBaseInBase(dgt,pr);
      end;
    until k >= SizePrDeFe;
  until false;

  //correct sum of & count of divisors
  for i := 0 to High(pdf) do
  Begin
    with pdf[i] do
    begin
      j := pfRemain;
      if j <> 1 then
      begin
        pfSumOFDivs *= (j+1);
        pfDivCnt *=2;
      end;
    end;
  end;
  result := true;
end;

function NextSieve:boolean;
begin
  dec(pdfIDX,SizePrDeFe);
  inc(pdfOfs,SizePrDeFe);
  result := SieveOneSieve(PrimeDecompField);
end;

function GetNextPrimeDecomp:tpPrimeFac;
begin
  if pdfIDX >= SizePrDeFe then
    if Not(NextSieve) then
      EXIT(NIL);
  result := @PrimeDecompField[pdfIDX];
  inc(pdfIDX);
end;

function Init_Sieve(n:NativeUint):boolean;
//Init Sieve pdfIdx,pdfOfs are Global
begin
  pdfIdx := n MOD SizePrDeFe;
  pdfOfs := n-pdfIdx;
  result := SieveOneSieve(PrimeDecompField);
end;

procedure InsertSort(pDiv:tpDivisor; Left, Right : NativeInt );
var
  I, J: NativeInt;
  Pivot : tItem;
begin
  for i:= 1 + Left to Right do
  begin
    Pivot:= pDiv[i];
    j:= i - 1;
    while (j >= Left) and (pDiv[j] > Pivot) do
    begin
      pDiv[j+1]:=pDiv[j];
      Dec(j);
    end;
    pDiv[j+1]:= pivot;
  end;
end;

procedure GetDivisors(pD:tpPrimeFac;var Divs:tDivisors);
var
  pDivs : tpDivisor;
  pPot : UInt64;
  i,len,j,l,p,k: Int32;
Begin
  pDivs := @Divs[0];
  pDivs[0] := 1;
  len := 1;
  l   := 1;
  with pD^ do
  Begin
    For i := 0 to pfMaxIdx-1 do
    begin
      //Multiply every divisor before with the new primefactors
      //and append them to the list
      k := pfpotMax[i];
      p := SmallPrimes[pfpotPrimIdx[i]];
      pPot :=1;
      repeat
        pPot *= p;
        For j := 0 to len-1 do
        Begin
          pDivs[l]:= pPot*pDivs[j];
          inc(l);
        end;
        dec(k);
      until k<=0;
      len := l;
    end;
    p := pfRemain;
    If p >1 then
    begin
      For j := 0 to len-1 do
      Begin
        pDivs[l]:= p*pDivs[j];
        inc(l);
      end;
      len := l;
    end;
  end;
  //Sort. Insertsort much faster than QuickSort in this special case
  InsertSort(pDivs,0,len-1);
  //end marker
  pDivs[len] :=0;
end;

procedure AllFacsOut(var Divs:tdivisors;proper:boolean=true);
var
  k,j: Int32;
Begin
  k := 0;
  j := 1;
  if Proper then
    j:= 2;
  repeat
    IF Divs[j] = 0 then
      BREAK;
    write(Divs[k],',');
    inc(j);
    inc(k);
  until false;
  writeln(Divs[k]);
end;

var
  pPrimeDecomp :tpPrimeFac;
  Mypd : tPrimeFac;
  Divs:tDivisors;
  T0:Int64;
  n : NativeUInt;
Begin
  InitSmallPrimes;

  T0 := GetTickCount64;
  n := 0;
  Init_Sieve(0);
  repeat
    pPrimeDecomp:= GetNextPrimeDecomp;
    GetDivisors(pPrimeDecomp,Divs);
    inc(n);
  until n > 10*1000*1000+1;
  T0 := GetTickCount64-T0;
  writeln('runtime ',T0/1000:0:3,' s');
  GetDivisors(pPrimeDecomp,Divs);
  AllFacsOut(Divs,true);
  AllFacsOut(Divs,false);
  writeln('simple version');
  T0 := GetTickCount64;
  n := 0;
  repeat
    Mypd:= smplPrimeDecomp(n);
    GetDivisors(@Mypd,Divs);
    inc(n);
  until n > 10*1000*1000+1;
  T0 := GetTickCount64-T0;
  writeln('runtime ',T0/1000:0:3,' s');
  GetDivisors(@Mypd,Divs);
  AllFacsOut(Divs,true);
  AllFacsOut(Divs,false);
end.
Output:
TIO.RUN
//out-commented GetDivisors, but still calculates sum of divisors and count of divisors
runtime 0.555 s
1,11,909091
1,11,909091,10000001
simple version
runtime 8.167 s
1,11,909091
1,11,909091,10000001
Real time: 8.868 s  CPU share: 99.57 %
//with GetDivisors
runtime 1.815 s
1,11,909091
1,11,909091,10000001
simple version
runtime 11.057 s
1,11,909091
1,11,909091,10000001
Real time: 13.082 s  CPU share: 99.16 %

PascalABC.NET

function Factors(n: integer): List<integer>;
begin
  var res := HSet(1,n);
  for var i:=2 to n.Sqrt.Trunc do
    if n.Divs(i) then
    begin
      res.Add(i);
      res.Add(n div i);
    end;
  Result := res.Order.ToList;
end;

begin
  foreach var x in |45,53,64| do
    Println(x,Factors(x));
end.
Output:
45 [1,3,5,9,15,45]
53 [1,53]
64 [1,2,4,8,16,32,64]


Perl

sub factors
{
        my($n) = @_;
        return grep { $n % $_ == 0 }(1 .. $n);
}
print join ' ',factors(64), "\n";

Or more intelligently:

sub factors {
  my $n = shift;
  $n = -$n if $n < 0;
  my @divisors;
  for (1 .. int(sqrt($n))) {  # faster and less memory than map/grep
    push @divisors, $_ unless $n % $_;
  }
  # Return divisors including top half, without duplicating a square
  @divisors, map { $_*$_ == $n ? () : int($n/$_) } reverse @divisors;
}
print join " ", factors(64), "\n";

One could also use a module, e.g.:

Library: ntheory
use ntheory qw/divisors/;
print join " ", divisors(12345678), "\n";
# Alternately something like:  fordivisors { say } 12345678;

Phix

There is a builtin factors(n), which takes an optional second parameter to include 1 and n:

?factors(12345,1)
Output:
{1,3,5,15,823,2469,4115,12345}

You can find the implementation of factors(), prime_factors(), and prime_powers() in builtins\pfactors.e,
and mpz_factors(), mpz_prime_factors(), and mpz_pollard_rho() in mpfr.e for larger numbers, for example:

requires("1.0.2") -- [p2js/integer() bugs]
include mpfr.e
?shorten(factors(3491888400),"factors",4) -- {2,3,4,5,"...",698377680,872972100,1163962800.0,1745944200.0," (1,918 factors)"}
?shorten(mpz_factors(3491888400),"factors",4) -- {2,3,4,5,"...",698377680,872972100,1163962800.0,1745944200.0," (1,918 factors)"}
-- If the include1 parameter is 1 or "BOTH", then you'll also get 1 and 3491888400
?prime_factors(3491888400) -- {2,3,5,7,11,13,17,19}
?prime_powers(3491888400) -- {{2,4},{3,3},{5,2},{7,1},{11,1},{13,1},{17,1},{19,1}}
?vslice(mpz_prime_factors("3491888400",10000),1) -- {2,3,5,7,11,13,17,19}
?mpz_prime_factors("3491888400",10000) -- {{2,4},{3,3},{5,2},{7,1},{11,1},{13,1},{17,1},{19,1}}
-- Note that mpz_prime_factors() only accepts string or mpz, and not a raw native atom/integer.
?length(factors(108233175859200,1))     -- 666
?length(mpz_factors(108233175859200,1)) -- 666
string d = "10677106534462215678539721403561279"
?mpz_prime_factors(d,10000) -- {{29269,1},{32579,1},{98731,2},{104729,3}}
?shorten(mpz_factors(d,1),"factors",2) -- {1,29269,"...","364792324112959639158827476291","10677106534462215678539721403561279"," (48 factors)"}

Note the value in (string) d exceeds the precision limit of an IEEE-754 float, and would trigger a suitable human readable run-time error if passed to any of the non-mpz routines. Sadly, 1200034005600070000008900000000000000000 exceeds the capabilities of my mpz_pollard_rho(), which I had hoped to showcase - perhaps you would like to improve it?

Phixmonti

/# Rosetta Code problem: http://rosettacode.org/wiki/Factors_of_an_integer
by Galileo, 05/2022 #/

include ..\Utilitys.pmt

def Factors >ps
    ( ( 1 tps 2 / ) for tps over mod if drop endif endfor ps> )
enddef

11 Factors
21 Factors
32 factors
45 factors
67 factors
96 factors

pstack
Output:
[[1, 11], [1, 3, 7, 21], [1, 2, 4, 8, 16, 32], [1, 3, 5, 9, 15, 45], [1, 67], [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]]

=== Press any key to exit ===

PHP

function GetFactors($n){
   $factors = array(1, $n);
   for($i = 2; $i * $i <= $n; $i++){
      if($n % $i == 0){
         $factors[] = $i;
         if($i * $i != $n)
            $factors[] = $n/$i;
      }
   }
   sort($factors);
   return $factors;
}

Picat

List comprehension

factors(N) = [[D,N // D] : D in 1..N.sqrt.floor, N mod D == 0].flatten.sort_remove_dups.

Recursion

Translation of: Prolog
factors2(N,Fs) :-
  integer(N),
  N > 0,
  Fs = findall(F,factors2_(N,F)).sort_remove_dups.
 
factors2_(N,F) :-
  L = floor(sqrt(N)),
  between(1,L,X),
  0 == N mod X,
  ( F = X ; F = N // X ).

Loop using set

factors3(N) = Set.keys.sort =>
  Set = new_set(),
  Set.put(1),
  Set.put(N),
  foreach(I in 1..floor(sqrt(N)), N mod I == 0)
    Set.put(I),
    Set.put(N//I)
  end.

Comparison

Let's compare with 18! (6402373705728000) which has 14688 factors. The recursive version is slightly faster than the loop + set version.

go =>  
  N = 6402373705728000, % factorial(18),
  println("factors:"),
  time(_Fs1 = factors(N)) ,
  println("factors2:"),
  time(factors2(N,_Fs2)),
  println("factors3:"),
  time(Fs3=factors3(N)).len),
Output:
factors:

CPU time 3.938 seconds.

factors2:

CPU time 3.108 seconds.

factors3:

CPU time 3.159 seconds.

PicoLisp

(de factors (N)
   (filter
      '((D) (=0 (% N D)))
      (range 1 N) ) )

PILOT

T  :Enter a number.
A  :#n
C  :factor = 1
T  :The factors of #n are:
*Loop
C  :remainder = n % factor
T ( remainder = 0 )  :#factor
J ( factor = n )     :*Finished
C  :factor = factor + 1
J  :*Loop
*Finished
END:

PL/0

Translation of: GW-BASIC

PL/0 does not handle strings. So, no prompt. The program waits for entering a number, and then displays the factors.

var n, absn, ndiv2, i;
begin
  ? n;
  absn := n;
  if n < 0 then absn := -n; 
  ndiv2 := absn / 2;
  i := 1;
  while i <= ndiv2 do
  begin
    if (absn / i) * i = absn then ! i;
    i := i + 1
  end;
  ! absn;
end.

4 runs.

Input:
1
Output:
       1
Input:
11
Output:
       1
       2
       3
       4
       6
      12
Input:
13
Output:
       1
      13
Input:
-22222
Output:
       1
       2
      41
      82
     271
     542
   11111
   22222

PL/I

factors: procedure options(main);
   declare i binary( 15 )fixed;
   declare n binary( 15 )fixed;
    do n = 90 to 100;
       put skip list( 'factors of: ', n, ': ' );
       do i = 1 to n;
         if mod(n, i) = 0 then put edit( i )(f(4));
       end;
    end;
end factors;
Output:
factors of:         90 :    1   2   3   5   6   9  10  15  18  30  45  90
factors of:         91 :    1   7  13  91
factors of:         92 :    1   2   4  23  46  92
factors of:         93 :    1   3  31  93
factors of:         94 :    1   2  47  94
factors of:         95 :    1   5  19  95
factors of:         96 :    1   2   3   4   6   8  12  16  24  32  48  96
factors of:         97 :    1  97
factors of:         98 :    1   2   7  14  49  98
factors of:         99 :    1   3   9  11  33  99
factors of:        100 :    1   2   4   5  10  20  25  50 100

See also #Polyglot:PL/I and PL/M

PL/M

See #Polyglot:PL/I and PL/M

Plain English

To run:
Start up.
Show the factors of 11.
Show the factors of 21.
Show the factors of 519.
Wait for the escape key.
Shut down.

To show the factors of a number:
Write "The factors of " then the number then ":" on the console.
Find a square root of the number.
Loop.
If a counter is past the square root, write "" on the console; exit.
Divide the number by the counter giving a quotient and a remainder.
If the remainder is 0, show the counter and the quotient.
Repeat.

A factor is a number.

To show a factor and another factor:
If the factor is not the other factor, write "" then the factor then " " then the other factor then " " on the console without advancing; exit.
Write "" then the factor on the console without advancing.
Output:
The factors of 11:
1 11
The factors of 21:
1 21 3 7
The factors of 519:
1 519 3 173

Polyglot:PL/I and PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

Should work with many PL/I implementations.
The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler.

factors_100H: procedure options                                                 (main);

/* PL/I DEFINITIONS                                                             */
%include 'pg.inc';
/* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */    /*
   DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';
   DECLARE SADDR  LITERALLY '.',       BIT       LITERALLY 'BYTE';
   DECLARE FIXED  LITERALLY ' ';
   BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;
   PRSTRING: PROCEDURE( S );   DECLARE S ADDRESS;   CALL BDOS( 9, S ); END;
   PRCHAR:   PROCEDURE( C );   DECLARE C CHARACTER; CALL BDOS( 2, C ); END;
   PRNL:     PROCEDURE;        CALL PRCHAR( 0DH ); CALL PRCHAR( 0AH ); END;
   PRNUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      N$STR( W := LAST( N$STR ) ) = '$';
      N$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END; 
      CALL BDOS( 9, .N$STR( W ) );
   END PRNUMBER;
   MODF: PROCEDURE( A, B )ADDRESS;
      DECLARE ( A, B )ADDRESS;
      RETURN( A MOD B );
   END MODF;
/* END LANGUAGE DEFINITIONS */

   /* TASK */
   DECLARE ( I, N ) FIXED BINARY;
   DO N = 90 TO 100;
       CALL PRSTRING( SADDR( 'FACTORS OF: $' ) );
       CALL PRNUMBER( N );
       CALL PRCHAR( ':' );
       DO I = 1 TO N;
          IF MODF( N, I ) = 0 THEN DO;
             CALL PRCHAR( ' ' );
             CALL PRNUMBER( I );
          END;
       END;
       CALL PRNL;
   END;
EOF: end factors_100H;
Output:
FACTORS OF: 90: 1 2 3 5 6 9 10 15 18 30 45 90
FACTORS OF: 91: 1 7 13 91
FACTORS OF: 92: 1 2 4 23 46 92
FACTORS OF: 93: 1 3 31 93
FACTORS OF: 94: 1 2 47 94
FACTORS OF: 95: 1 5 19 95
FACTORS OF: 96: 1 2 3 4 6 8 12 16 24 32 48 96
FACTORS OF: 97: 1 97
FACTORS OF: 98: 1 2 7 14 49 98
FACTORS OF: 99: 1 3 9 11 33 99
FACTORS OF: 100: 1 2 4 5 10 20 25 50 100

PowerShell

Straightforward but slow

function Get-Factor ($a) {
    1..$a | Where-Object { $a % $_ -eq 0 }
}

This one uses a range of integers up to the target number and just filters it using the Where-Object cmdlet. It's very slow though, so it is not very usable for larger numbers.

A little more clever

function Get-Factor ($a) {
    1..[Math]::Sqrt($a) `
        | Where-Object { $a % $_ -eq 0 } `
        | ForEach-Object { $_; $a / $_ } `
        | Sort-Object -Unique
}

Here the range of integers is only taken up to the square root of the number, the same filtering applies. Afterwards the corresponding larger factors are calculated and sent down the pipeline along with the small ones found earlier.

ProDOS

Uses the math module:

editvar /newvar /value=a /userinput=1 /title=Enter an integer:
do /delimspaces %% -a- >b
printline Factors of -a-: -b-

Prolog

Simple Brute Force Implementation

brute_force_factors( N , Fs ) :-
  integer(N) ,
  N > 0 ,  
  setof( F , ( between(1,N,F) , N mod F =:= 0 ) , Fs )
  .

A Slightly Smarter Implementation

smart_factors(N,Fs) :-
  integer(N) ,
  N > 0 ,
  setof( F , factor(N,F) , Fs )
  .

factor(N,F) :-
  L is floor(sqrt(N)) ,
  between(1,L,X) ,
  0 =:= N mod X ,
  ( F = X ; F is N // X )
  .

Not every Prolog has between/3: you might need this:

between(X,Y,Z) :-
  integer(X) ,
  integer(Y) ,
  X =< Z ,
  between1(X,Y,Z)
  .

between1(X,Y,X) :-
  X =< Y
  .
between1(X,Y,Z) :-
  X < Y ,
  X1 is X+1 ,
  between1(X1,Y,Z)
  .
Output:
?- N=36 ,( brute_force_factors(N,Factors) ; smart_factors(N,Factors) ).
N = 36, Factors = [1, 2, 3, 4, 6, 9, 12, 18, 36] ;
N = 36, Factors = [1, 2, 3, 4, 6, 9, 12, 18, 36] .

?- N=53,( brute_force_factors(N,Factors) ; smart_factors(N,Factors) ).
N = 53, Factors = [1, 53] ;
N = 53, Factors = [1, 53] .

?- N=100,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).
N = 100, Factors = [1, 2, 4, 5, 10, 20, 25, 50, 100] ;
N = 100, Factors = [1, 2, 4, 5, 10, 20, 25, 50, 100] .

?- N=144,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).
N = 144, Factors = [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144] ;
N = 144, Factors = [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144] .

?- N=32765,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).
N = 32765, Factors = [1, 5, 6553, 32765] ;
N = 32765, Factors = [1, 5, 6553, 32765] .

?- N=32766,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).
N = 32766, Factors = [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766] ;
N = 32766, Factors = [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766] .

38 ?- N=32767,( brute_force_factors(N,Factors);smart_factors(N,Factors) ).
N = 32767, Factors = [1, 7, 31, 151, 217, 1057, 4681, 32767] ;
N = 32767, Factors = [1, 7, 31, 151, 217, 1057, 4681, 32767] .

Python

Naive and slow but simplest (check all numbers from 1 to n):

>>> def factors(n):
      return [i for i in range(1, n + 1) if not n%i]

Slightly better (realize that there are no factors between n/2 and n):

>>> def factors(n):
      return [i for i in range(1, n//2 + 1) if not n%i] + [n]

>>> factors(45)
[1, 3, 5, 9, 15, 45]

Much better (realize that factors come in pairs, the smaller of which is no bigger than sqrt(n)):

from math import isqrt
def factor(n):
    factors1, factors2 = [], []
    for x in range(1, isqrt(n)):
        if n % x == 0:
            factors1.append(x)
            factors2.append(n // x)
    x += 1
    if x * x == n:
        factors1.append(x)
    factors1.extend(reversed(factors2))
    return factors1

for i in 45, 53, 64:
    print("%i: factors: %s" % (i, factor(i)))
45: factors: [1, 3, 5, 9, 15, 45]
53: factors: [1, 53]
64: factors: [1, 2, 4, 8, 16, 32, 64]

More efficient when factoring many numbers:

from itertools import chain, cycle, accumulate # last of which is Python 3 only

def factors(n):
    def prime_powers(n):
        # c goes through 2, 3, 5, then the infinite (6n+1, 6n+5) series
        for c in accumulate(chain([2, 1, 2], cycle([2,4]))):
            if c*c > n: break
            if n%c: continue
            d,p = (), c
            while not n%c:
                n,p,d = n//c, p*c, d + (p,)
            yield(d)
        if n > 1: yield((n,))

    r = [1]
    for e in prime_powers(n):
        r += [a*b for a in r for b in e]
    return r

Quackery

sqrt+ is defined at Isqrt (integer square root) of X#Quackery. It returns the integer square root and remainder (i.e. the square root of 11 is 3 remainder 2, because three squared plus two equals eleven.) If the number is a perfect square the remainder is zero. This is used to remove a duplicate factor from the list of factors which is generated when finding the factors of a perfect square.

The nest editing at the end of the definition (i.e. the code after the drop on a line by itself) removes a duplicate factor if there is one, and arranges the factors in ascending numerical order at the same time.

  [ [] swap
    dup sqrt+ 0 = dip
      [ times
        [ dup i^ 1+ /mod iff
            drop done
          rot join 
          i^ 1+ join swap ]
        drop 
        dup size 2 / split ]
    if [ -1 split drop ]
    swap join ]                is factors (   n --> [  )
  
  20 times 
    [ i^ 1+ dup 
      dup 10 < if sp 
      echo 
      say ": "  
      factors witheach
        [ echo i if say ", " ]
      cr ]
Output:
 1: 1
 2: 1, 2
 3: 1, 3
 4: 1, 2, 4
 5: 1, 5
 6: 1, 2, 3, 6
 7: 1, 7
 8: 1, 2, 4, 8
 9: 1, 3, 9
10: 1, 2, 5, 10
11: 1, 11
12: 1, 2, 3, 4, 6, 12
13: 1, 13
14: 1, 2, 7, 14
15: 1, 3, 5, 15
16: 1, 2, 4, 8, 16
17: 1, 17
18: 1, 2, 3, 6, 9, 18
19: 1, 19
20: 1, 2, 4, 5, 10, 20

R

Array solution

factors <- function(n)
{
   if(length(n) > 1) 
   {
      lapply(as.list(n), factors)
   } else
   {
      one.to.n <- seq_len(n)
      one.to.n[(n %% one.to.n) == 0]
   }
}
Output:
>factors(60)
[1]  1  2  3  4  5  6 10 12 15 20 30 60
>factors(c(45, 53, 64))
[[1]]
[1]  1  3  5  9 15 45
[[2]]
[1]  1 53
[[3]]
[1]  1  2  4  8 16 32 64

Filter solution

With identical output, a more idiomatic way is to use R's Filter.

factors <- function(n) c(Filter(function(x) n %% x == 0, seq_len(n %/% 2)), n)
#Vectorize is an interesting alternative to the previous solution's lapply.
manyFactors <- function(vec) Vectorize(factors)(vec)

Racket

#lang racket

;; a naive version
(define (naive-factors n)
  (for/list ([i (in-range 1 (add1 n))] #:when (zero? (modulo n i))) i))
(naive-factors 120) ; -> '(1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120)

;; much better: use `factorize' to get prime factors and construct the
;; list of results from that
(require math)
(define (factors n)
  (sort (for/fold ([l '(1)]) ([p (factorize n)])
          (append (for*/list ([e (in-range 1 (add1 (cadr p)))] [x l])
                    (* x (expt (car p) e)))
                  l))
        <))
(naive-factors 120) ; -> same

;; to see how fast it is:
(define huge 1200034005600070000008900000000000000000)
(time (length (factors  huge)))
;; I get 42ms for getting a list of 7776 numbers

;; but actually the math library comes with a `divisors' function that
;; does the same, except even faster
(divisors 120) ; -> same

(time (length (divisors huge)))
;; And this one clocks at 17ms

Raku

(formerly Perl 6)

Works with: Rakudo version 2015.12
sub factors (Int $n) { (1..$n).grep($n %% *) }

Red

Red []

factors: function [n [integer!]] [
    n: absolute n
    collect [
        repeat i (sq: sqrt n) - 1 [
            if n % i = 0 [
                keep i
                keep n / i
            ]
        ]
        if sq = sq: to-integer sq [keep sq]
    ]
]

foreach num [
    24
   -64        ; negative
    64        ; square
    101       ; prime
    123456789 ; large
][
    print mold/flat sort factors num
]

Refal

$ENTRY Go {
    = <Prout <Factors 120>>;
}

Factors {
    s.N = <Factors (s.N 1)>;
    (s.N s.D), <Compare s.N <* s.D s.D>>: '-' = ;
    (s.N s.D), <Divmod s.N s.D>: {
        (s.D) 0 = s.D;
        (s.F) 0 = s.D <Factors (s.N <+ 1 s.D>)> s.F;
        (s.X) s.Y = <Factors (s.N <+ 1 s.D>)>;
    };
};
Output:
1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120

Relation

program factors(num)
relation fact
insert 1
set i = 2
while i < num / 2
if num / i = floor(num/i)
insert i
end if
set i = i + 1
end while
insert num
print
end program

REXX

optimized version

This REXX version has no effective limits on the number of decimal digits in the number to be factored   [by adjusting the number of digits (precision)].

This REXX version also supports negative integers and zero.

It also indicates   primes   in the output listing as well as the number of divisors.

It also displays a final count of the number of primes found.

This REXX version is about   22%   faster than the alternate REXX version   (2nd version).

/*REXX program  displays  divisors  of any [negative/zero/positive]  integer or a range.*/
parse arg LO HI inc .                                         /*obtain the optional args*/
HI= word(HI LO 20, 1);  LO= word(LO 1,1);  inc= word(inc 1,1) /*define the range options*/
w= length(HI) + 2;    numeric digits max(9, w-2);     != '∞'  /*decimal digits for  //  */
@.=left('',7); @.1= "{unity}"; @.2= '[prime]'; @.!= "  {∞}  " /*define some literals.   */
say center('n', w)    "#divisors"    center('divisors', 60)   /*display the  header.    */
say copies('═', w)    "═════════"    copies('═'       , 60)   /*   "     "   separator. */
pn= 0                                                         /*count of prime numbers. */
                 do k=2  until sq.k>=HI;   sq.k= k*k          /*memoization for squares.*/
                 end   /*k*/
     do n=LO  to HI  by inc;  $= divs(n);  #= words($)        /*get list of divs; # divs*/
     if $==!  then do;  #= !;  $= '  (infinite)';  end        /*handle case for infinity*/
     p= @.#;    if n<0  then if n\==-1  then p= @..           /*   "     "   "  negative*/
     if p==@.2  then pn= pn + 1                               /*Prime? Then bump counter*/
     say center(n, w)      center('['#"]", 9)       "──► "        p      ' '       $
     end   /*n*/                                 /* [↑]   process a range of integers.  */
say
say right(pn, 20)    ' primes were found.'       /*display the number of primes found.  */
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
divs: procedure expose sq.; parse arg x 1 b; a=1 /*set  X  and  B  to the 1st argument. */
      if x<2  then do;  x= abs(x);  if x==1  then return 1; if x==0  then return '∞';  b=x
                   end
      odd= x // 2                                /* [↓]  process EVEN or ODD ints.   ___*/
        do j=2+odd  by 1+odd  while sq.j<x       /*divide by all the integers up to √ x */
        if x//j==0  then do; a=a j; b=x%j b; end /*÷?  Add divisors to  α  and  ß  lists*/
        end   /*j*/                              /* [↑]  %  ≡  integer division.     ___*/
      if sq.j==x  then  return  a j b            /*Was  X  a square?   Then insert  √ x */
                        return  a   b            /*return the divisors of both lists.   */
output   when using the input of:     -6   200

(Shown at   3/4   size.)

  n    #divisors                           divisors
══════ ═════════ ════════════════════════════════════════════════════════════
  -6      [4]    ──►            1 2 3 6
  -5      [2]    ──►            1 5
  -4      [3]    ──►            1 2 4
  -3      [2]    ──►            1 3
  -2      [2]    ──►            1 2
  -1      [1]    ──►  {unity}   1
  0       [∞]    ──►    {∞}       (infinite)
  1       [1]    ──►  {unity}   1
  2       [2]    ──►  [prime]   1 2
  3       [2]    ──►  [prime]   1 3
  4       [3]    ──►            1 2 4
  5       [2]    ──►  [prime]   1 5
  6       [4]    ──►            1 2 3 6
  7       [2]    ──►  [prime]   1 7
  8       [4]    ──►            1 2 4 8
  9       [3]    ──►            1 3 9
  10      [4]    ──►            1 2 5 10
  11      [2]    ──►  [prime]   1 11
  12      [6]    ──►            1 2 3 4 6 12
  13      [2]    ──►  [prime]   1 13
  14      [4]    ──►            1 2 7 14
  15      [4]    ──►            1 3 5 15
  16      [5]    ──►            1 2 4 8 16
  17      [2]    ──►  [prime]   1 17
  18      [6]    ──►            1 2 3 6 9 18
  19      [2]    ──►  [prime]   1 19
  20      [6]    ──►            1 2 4 5 10 20
  21      [4]    ──►            1 3 7 21
  22      [4]    ──►            1 2 11 22
  23      [2]    ──►  [prime]   1 23
  24      [8]    ──►            1 2 3 4 6 8 12 24
  25      [3]    ──►            1 5 25
  26      [4]    ──►            1 2 13 26
  27      [4]    ──►            1 3 9 27
  28      [6]    ──►            1 2 4 7 14 28
  29      [2]    ──►  [prime]   1 29
  30      [8]    ──►            1 2 3 5 6 10 15 30
  31      [2]    ──►  [prime]   1 31
  32      [6]    ──►            1 2 4 8 16 32
  33      [4]    ──►            1 3 11 33
  34      [4]    ──►            1 2 17 34
  35      [4]    ──►            1 5 7 35
  36      [9]    ──►            1 2 3 4 6 9 12 18 36
  37      [2]    ──►  [prime]   1 37
  38      [4]    ──►            1 2 19 38
  39      [4]    ──►            1 3 13 39
  40      [8]    ──►            1 2 4 5 8 10 20 40
  41      [2]    ──►  [prime]   1 41
  42      [8]    ──►            1 2 3 6 7 14 21 42
  43      [2]    ──►  [prime]   1 43
  44      [6]    ──►            1 2 4 11 22 44
  45      [6]    ──►            1 3 5 9 15 45
  46      [4]    ──►            1 2 23 46
  47      [2]    ──►  [prime]   1 47
  48     [10]    ──►            1 2 3 4 6 8 12 16 24 48
  49      [3]    ──►            1 7 49
  50      [6]    ──►            1 2 5 10 25 50
  51      [4]    ──►            1 3 17 51
  52      [6]    ──►            1 2 4 13 26 52
  53      [2]    ──►  [prime]   1 53
  54      [8]    ──►            1 2 3 6 9 18 27 54
  55      [4]    ──►            1 5 11 55
  56      [8]    ──►            1 2 4 7 8 14 28 56
  57      [4]    ──►            1 3 19 57
  58      [4]    ──►            1 2 29 58
  59      [2]    ──►  [prime]   1 59
  60     [12]    ──►            1 2 3 4 5 6 10 12 15 20 30 60
  61      [2]    ──►  [prime]   1 61
  62      [4]    ──►            1 2 31 62
  63      [6]    ──►            1 3 7 9 21 63
  64      [7]    ──►            1 2 4 8 16 32 64
  65      [4]    ──►            1 5 13 65
  66      [8]    ──►            1 2 3 6 11 22 33 66
  67      [2]    ──►  [prime]   1 67
  68      [6]    ──►            1 2 4 17 34 68
  69      [4]    ──►            1 3 23 69
  70      [8]    ──►            1 2 5 7 10 14 35 70
  71      [2]    ──►  [prime]   1 71
  72     [12]    ──►            1 2 3 4 6 8 9 12 18 24 36 72
  73      [2]    ──►  [prime]   1 73
  74      [4]    ──►            1 2 37 74
  75      [6]    ──►            1 3 5 15 25 75
  76      [6]    ──►            1 2 4 19 38 76
  77      [4]    ──►            1 7 11 77
  78      [8]    ──►            1 2 3 6 13 26 39 78
  79      [2]    ──►  [prime]   1 79
  80     [10]    ──►            1 2 4 5 8 10 16 20 40 80
  81      [5]    ──►            1 3 9 27 81
  82      [4]    ──►            1 2 41 82
  83      [2]    ──►  [prime]   1 83
  84     [12]    ──►            1 2 3 4 6 7 12 14 21 28 42 84
  85      [4]    ──►            1 5 17 85
  86      [4]    ──►            1 2 43 86
  87      [4]    ──►            1 3 29 87
  88      [8]    ──►            1 2 4 8 11 22 44 88
  89      [2]    ──►  [prime]   1 89
  90     [12]    ──►            1 2 3 5 6 9 10 15 18 30 45 90
  91      [4]    ──►            1 7 13 91
  92      [6]    ──►            1 2 4 23 46 92
  93      [4]    ──►            1 3 31 93
  94      [4]    ──►            1 2 47 94
  95      [4]    ──►            1 5 19 95
  96     [12]    ──►            1 2 3 4 6 8 12 16 24 32 48 96
  97      [2]    ──►  [prime]   1 97
  98      [6]    ──►            1 2 7 14 49 98
  99      [6]    ──►            1 3 9 11 33 99
 100      [9]    ──►            1 2 4 5 10 20 25 50 100
 101      [2]    ──►  [prime]   1 101
 102      [8]    ──►            1 2 3 6 17 34 51 102
 103      [2]    ──►  [prime]   1 103
 104      [8]    ──►            1 2 4 8 13 26 52 104
 105      [8]    ──►            1 3 5 7 15 21 35 105
 106      [4]    ──►            1 2 53 106
 107      [2]    ──►  [prime]   1 107
 108     [12]    ──►            1 2 3 4 6 9 12 18 27 36 54 108
 109      [2]    ──►  [prime]   1 109
 110      [8]    ──►            1 2 5 10 11 22 55 110
 111      [4]    ──►            1 3 37 111
 112     [10]    ──►            1 2 4 7 8 14 16 28 56 112
 113      [2]    ──►  [prime]   1 113
 114      [8]    ──►            1 2 3 6 19 38 57 114
 115      [4]    ──►            1 5 23 115
 116      [6]    ──►            1 2 4 29 58 116
 117      [6]    ──►            1 3 9 13 39 117
 118      [4]    ──►            1 2 59 118
 119      [4]    ──►            1 7 17 119
 120     [16]    ──►            1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
 121      [3]    ──►            1 11 121
 122      [4]    ──►            1 2 61 122
 123      [4]    ──►            1 3 41 123
 124      [6]    ──►            1 2 4 31 62 124
 125      [4]    ──►            1 5 25 125
 126     [12]    ──►            1 2 3 6 7 9 14 18 21 42 63 126
 127      [2]    ──►  [prime]   1 127
 128      [8]    ──►            1 2 4 8 16 32 64 128
 129      [4]    ──►            1 3 43 129
 130      [8]    ──►            1 2 5 10 13 26 65 130
 131      [2]    ──►  [prime]   1 131
 132     [12]    ──►            1 2 3 4 6 11 12 22 33 44 66 132
 133      [4]    ──►            1 7 19 133
 134      [4]    ──►            1 2 67 134
 135      [8]    ──►            1 3 5 9 15 27 45 135
 136      [8]    ──►            1 2 4 8 17 34 68 136
 137      [2]    ──►  [prime]   1 137
 138      [8]    ──►            1 2 3 6 23 46 69 138
 139      [2]    ──►  [prime]   1 139
 140     [12]    ──►            1 2 4 5 7 10 14 20 28 35 70 140
 141      [4]    ──►            1 3 47 141
 142      [4]    ──►            1 2 71 142
 143      [4]    ──►            1 11 13 143
 144     [15]    ──►            1 2 3 4 6 8 9 12 16 18 24 36 48 72 144
 145      [4]    ──►            1 5 29 145
 146      [4]    ──►            1 2 73 146
 147      [6]    ──►            1 3 7 21 49 147
 148      [6]    ──►            1 2 4 37 74 148
 149      [2]    ──►  [prime]   1 149
 150     [12]    ──►            1 2 3 5 6 10 15 25 30 50 75 150
 151      [2]    ──►  [prime]   1 151
 152      [8]    ──►            1 2 4 8 19 38 76 152
 153      [6]    ──►            1 3 9 17 51 153
 154      [8]    ──►            1 2 7 11 14 22 77 154
 155      [4]    ──►            1 5 31 155
 156     [12]    ──►            1 2 3 4 6 12 13 26 39 52 78 156
 157      [2]    ──►  [prime]   1 157
 158      [4]    ──►            1 2 79 158
 159      [4]    ──►            1 3 53 159
 160     [12]    ──►            1 2 4 5 8 10 16 20 32 40 80 160
 161      [4]    ──►            1 7 23 161
 162     [10]    ──►            1 2 3 6 9 18 27 54 81 162
 163      [2]    ──►  [prime]   1 163
 164      [6]    ──►            1 2 4 41 82 164
 165      [8]    ──►            1 3 5 11 15 33 55 165
 166      [4]    ──►            1 2 83 166
 167      [2]    ──►  [prime]   1 167
 168     [16]    ──►            1 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
 169      [3]    ──►            1 13 169
 170      [8]    ──►            1 2 5 10 17 34 85 170
 171      [6]    ──►            1 3 9 19 57 171
 172      [6]    ──►            1 2 4 43 86 172
 173      [2]    ──►  [prime]   1 173
 174      [8]    ──►            1 2 3 6 29 58 87 174
 175      [6]    ──►            1 5 7 25 35 175
 176     [10]    ──►            1 2 4 8 11 16 22 44 88 176
 177      [4]    ──►            1 3 59 177
 178      [4]    ──►            1 2 89 178
 179      [2]    ──►  [prime]   1 179
 180     [18]    ──►            1 2 3 4 5 6 9 10 12 15 18 20 30 36 45 60 90 180
 181      [2]    ──►  [prime]   1 181
 182      [8]    ──►            1 2 7 13 14 26 91 182
 183      [4]    ──►            1 3 61 183
 184      [8]    ──►            1 2 4 8 23 46 92 184
 185      [4]    ──►            1 5 37 185
 186      [8]    ──►            1 2 3 6 31 62 93 186
 187      [4]    ──►            1 11 17 187
 188      [6]    ──►            1 2 4 47 94 188
 189      [8]    ──►            1 3 7 9 21 27 63 189
 190      [8]    ──►            1 2 5 10 19 38 95 190
 191      [2]    ──►  [prime]   1 191
 192     [14]    ──►            1 2 3 4 6 8 12 16 24 32 48 64 96 192
 193      [2]    ──►  [prime]   1 193
 194      [4]    ──►            1 2 97 194
 195      [8]    ──►            1 3 5 13 15 39 65 195
 196      [9]    ──►            1 2 4 7 14 28 49 98 196
 197      [2]    ──►  [prime]   1 197
 198     [12]    ──►            1 2 3 6 9 11 18 22 33 66 99 198
 199      [2]    ──►  [prime]   1 199
 200     [12]    ──►            1 2 4 5 8 10 20 25 40 50 100 200

                  46  primes were found.

Alternate Version

Translation of: REXX optimized version
/* REXX ***************************************************************
* Program to calculate and show divisors of positive integer(s).
* 03.08.2012 Walter Pachl  simplified the above somewhat
*            in particular I see no benefit from divAdd procedure
* 04.08.2012 the reference to 'above' is no longer valid since that
*            was meanwhile changed for the better.
* 04.08.2012 took over some improvements from new above
**********************************************************************/
Parse arg low high .
Select
  When low=''  Then Parse Value '1 200' with low high
  When high='' Then high=low
  Otherwise Nop
  End
do j=low to high
  say '   n = ' right(j,6) "   divisors = " divs(j)
  end
exit

divs: procedure; parse arg x
  if x==1 then return 1               /*handle special case of 1     */
  Parse Value '1' x With lo hi        /*initialize lists: lo=1 hi=x  */
  odd=x//2                            /* 1 if x is odd               */
  Do j=2+odd By 1+odd While j*j<x     /*divide by numbers<sqrt(x)    */
    if x//j==0 then Do                /*Divisible?  Add two divisors:*/
      lo=lo j                         /* list low divisors           */
      hi=x%j hi                       /* list high divisors          */
      End
    End
  If j*j=x Then                       /*for a square number as input */
    lo=lo j                           /* add its square root         */
  return lo hi                        /* return both lists           */
output   when using the default input:

(Shown at   3/4   size.)

   n =       1    divisors =  1
   n =       2    divisors =  1 2
   n =       3    divisors =  1 3
   n =       4    divisors =  1 2 4
   n =       5    divisors =  1 5
   n =       6    divisors =  1 2 3 6
   n =       7    divisors =  1 7
   n =       8    divisors =  1 2 4 8
   n =       9    divisors =  1 3 9
   n =      10    divisors =  1 2 5 10
   n =      11    divisors =  1 11
   n =      12    divisors =  1 2 3 4 6 12
   n =      13    divisors =  1 13
   n =      14    divisors =  1 2 7 14
   n =      15    divisors =  1 3 5 15
   n =      16    divisors =  1 2 4 8 16
   n =      17    divisors =  1 17
   n =      18    divisors =  1 2 3 6 9 18
   n =      19    divisors =  1 19
   n =      20    divisors =  1 2 4 5 10 20
   n =      21    divisors =  1 3 7 21
   n =      22    divisors =  1 2 11 22
   n =      23    divisors =  1 23
   n =      24    divisors =  1 2 3 4 6 8 12 24
   n =      25    divisors =  1 5 25
   n =      26    divisors =  1 2 13 26
   n =      27    divisors =  1 3 9 27
   n =      28    divisors =  1 2 4 7 14 28
   n =      29    divisors =  1 29
   n =      30    divisors =  1 2 3 5 6 10 15 30
   n =      31    divisors =  1 31
   n =      32    divisors =  1 2 4 8 16 32
   n =      33    divisors =  1 3 11 33
   n =      34    divisors =  1 2 17 34
   n =      35    divisors =  1 5 7 35
   n =      36    divisors =  1 2 3 4 6 9 12 18 36
   n =      37    divisors =  1 37
   n =      38    divisors =  1 2 19 38
   n =      39    divisors =  1 3 13 39
   n =      40    divisors =  1 2 4 5 8 10 20 40
   n =      41    divisors =  1 41
   n =      42    divisors =  1 2 3 6 7 14 21 42
   n =      43    divisors =  1 43
   n =      44    divisors =  1 2 4 11 22 44
   n =      45    divisors =  1 3 5 9 15 45
   n =      46    divisors =  1 2 23 46
   n =      47    divisors =  1 47
   n =      48    divisors =  1 2 3 4 6 8 12 16 24 48
   n =      49    divisors =  1 7 49
   n =      50    divisors =  1 2 5 10 25 50
   n =      51    divisors =  1 3 17 51
   n =      52    divisors =  1 2 4 13 26 52
   n =      53    divisors =  1 53
   n =      54    divisors =  1 2 3 6 9 18 27 54
   n =      55    divisors =  1 5 11 55
   n =      56    divisors =  1 2 4 7 8 14 28 56
   n =      57    divisors =  1 3 19 57
   n =      58    divisors =  1 2 29 58
   n =      59    divisors =  1 59
   n =      60    divisors =  1 2 3 4 5 6 10 12 15 20 30 60
   n =      61    divisors =  1 61
   n =      62    divisors =  1 2 31 62
   n =      63    divisors =  1 3 7 9 21 63
   n =      64    divisors =  1 2 4 8 16 32 64
   n =      65    divisors =  1 5 13 65
   n =      66    divisors =  1 2 3 6 11 22 33 66
   n =      67    divisors =  1 67
   n =      68    divisors =  1 2 4 17 34 68
   n =      69    divisors =  1 3 23 69
   n =      70    divisors =  1 2 5 7 10 14 35 70
   n =      71    divisors =  1 71
   n =      72    divisors =  1 2 3 4 6 8 9 12 18 24 36 72
   n =      73    divisors =  1 73
   n =      74    divisors =  1 2 37 74
   n =      75    divisors =  1 3 5 15 25 75
   n =      76    divisors =  1 2 4 19 38 76
   n =      77    divisors =  1 7 11 77
   n =      78    divisors =  1 2 3 6 13 26 39 78
   n =      79    divisors =  1 79
   n =      80    divisors =  1 2 4 5 8 10 16 20 40 80
   n =      81    divisors =  1 3 9 27 81
   n =      82    divisors =  1 2 41 82
   n =      83    divisors =  1 83
   n =      84    divisors =  1 2 3 4 6 7 12 14 21 28 42 84
   n =      85    divisors =  1 5 17 85
   n =      86    divisors =  1 2 43 86
   n =      87    divisors =  1 3 29 87
   n =      88    divisors =  1 2 4 8 11 22 44 88
   n =      89    divisors =  1 89
   n =      90    divisors =  1 2 3 5 6 9 10 15 18 30 45 90
   n =      91    divisors =  1 7 13 91
   n =      92    divisors =  1 2 4 23 46 92
   n =      93    divisors =  1 3 31 93
   n =      94    divisors =  1 2 47 94
   n =      95    divisors =  1 5 19 95
   n =      96    divisors =  1 2 3 4 6 8 12 16 24 32 48 96
   n =      97    divisors =  1 97
   n =      98    divisors =  1 2 7 14 49 98
   n =      99    divisors =  1 3 9 11 33 99
   n =     100    divisors =  1 2 4 5 10 20 25 50 100
   n =     101    divisors =  1 101
   n =     102    divisors =  1 2 3 6 17 34 51 102
   n =     103    divisors =  1 103
   n =     104    divisors =  1 2 4 8 13 26 52 104
   n =     105    divisors =  1 3 5 7 15 21 35 105
   n =     106    divisors =  1 2 53 106
   n =     107    divisors =  1 107
   n =     108    divisors =  1 2 3 4 6 9 12 18 27 36 54 108
   n =     109    divisors =  1 109
   n =     110    divisors =  1 2 5 10 11 22 55 110
   n =     111    divisors =  1 3 37 111
   n =     112    divisors =  1 2 4 7 8 14 16 28 56 112
   n =     113    divisors =  1 113
   n =     114    divisors =  1 2 3 6 19 38 57 114
   n =     115    divisors =  1 5 23 115
   n =     116    divisors =  1 2 4 29 58 116
   n =     117    divisors =  1 3 9 13 39 117
   n =     118    divisors =  1 2 59 118
   n =     119    divisors =  1 7 17 119
   n =     120    divisors =  1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
   n =     121    divisors =  1 11 121
   n =     122    divisors =  1 2 61 122
   n =     123    divisors =  1 3 41 123
   n =     124    divisors =  1 2 4 31 62 124
   n =     125    divisors =  1 5 25 125
   n =     126    divisors =  1 2 3 6 7 9 14 18 21 42 63 126
   n =     127    divisors =  1 127
   n =     128    divisors =  1 2 4 8 16 32 64 128
   n =     129    divisors =  1 3 43 129
   n =     130    divisors =  1 2 5 10 13 26 65 130
   n =     131    divisors =  1 131
   n =     132    divisors =  1 2 3 4 6 11 12 22 33 44 66 132
   n =     133    divisors =  1 7 19 133
   n =     134    divisors =  1 2 67 134
   n =     135    divisors =  1 3 5 9 15 27 45 135
   n =     136    divisors =  1 2 4 8 17 34 68 136
   n =     137    divisors =  1 137
   n =     138    divisors =  1 2 3 6 23 46 69 138
   n =     139    divisors =  1 139
   n =     140    divisors =  1 2 4 5 7 10 14 20 28 35 70 140
   n =     141    divisors =  1 3 47 141
   n =     142    divisors =  1 2 71 142
   n =     143    divisors =  1 11 13 143
   n =     144    divisors =  1 2 3 4 6 8 9 12 16 18 24 36 48 72 144
   n =     145    divisors =  1 5 29 145
   n =     146    divisors =  1 2 73 146
   n =     147    divisors =  1 3 7 21 49 147
   n =     148    divisors =  1 2 4 37 74 148
   n =     149    divisors =  1 149
   n =     150    divisors =  1 2 3 5 6 10 15 25 30 50 75 150
   n =     151    divisors =  1 151
   n =     152    divisors =  1 2 4 8 19 38 76 152
   n =     153    divisors =  1 3 9 17 51 153
   n =     154    divisors =  1 2 7 11 14 22 77 154
   n =     155    divisors =  1 5 31 155
   n =     156    divisors =  1 2 3 4 6 12 13 26 39 52 78 156
   n =     157    divisors =  1 157
   n =     158    divisors =  1 2 79 158
   n =     159    divisors =  1 3 53 159
   n =     160    divisors =  1 2 4 5 8 10 16 20 32 40 80 160
   n =     161    divisors =  1 7 23 161
   n =     162    divisors =  1 2 3 6 9 18 27 54 81 162
   n =     163    divisors =  1 163
   n =     164    divisors =  1 2 4 41 82 164
   n =     165    divisors =  1 3 5 11 15 33 55 165
   n =     166    divisors =  1 2 83 166
   n =     167    divisors =  1 167
   n =     168    divisors =  1 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
   n =     169    divisors =  1 13 169
   n =     170    divisors =  1 2 5 10 17 34 85 170
   n =     171    divisors =  1 3 9 19 57 171
   n =     172    divisors =  1 2 4 43 86 172
   n =     173    divisors =  1 173
   n =     174    divisors =  1 2 3 6 29 58 87 174
   n =     175    divisors =  1 5 7 25 35 175
   n =     176    divisors =  1 2 4 8 11 16 22 44 88 176
   n =     177    divisors =  1 3 59 177
   n =     178    divisors =  1 2 89 178
   n =     179    divisors =  1 179
   n =     180    divisors =  1 2 3 4 5 6 9 10 12 15 18 20 30 36 45 60 90 180
   n =     181    divisors =  1 181
   n =     182    divisors =  1 2 7 13 14 26 91 182
   n =     183    divisors =  1 3 61 183
   n =     184    divisors =  1 2 4 8 23 46 92 184
   n =     185    divisors =  1 5 37 185
   n =     186    divisors =  1 2 3 6 31 62 93 186
   n =     187    divisors =  1 11 17 187
   n =     188    divisors =  1 2 4 47 94 188
   n =     189    divisors =  1 3 7 9 21 27 63 189
   n =     190    divisors =  1 2 5 10 19 38 95 190
   n =     191    divisors =  1 191
   n =     192    divisors =  1 2 3 4 6 8 12 16 24 32 48 64 96 192
   n =     193    divisors =  1 193
   n =     194    divisors =  1 2 97 194
   n =     195    divisors =  1 3 5 13 15 39 65 195
   n =     196    divisors =  1 2 4 7 14 28 49 98 196
   n =     197    divisors =  1 197
   n =     198    divisors =  1 2 3 6 9 11 18 22 33 66 99 198
   n =     199    divisors =  1 199
   n =     200    divisors =  1 2 4 5 8 10 20 25 40 50 100 200

Using REXX libraries

Libraries: How to use
Library: Functions
Library: Numbers

The procedure Divisors() is also present in Numbers.

include Settings
say 'Factors of an integer - Using REXX libraries'
parse version version; say version; say
parse arg l','h
call Time('r')
do i = l to h
   f = Divisors(i)
   call charout ,right(i,3) 'has' right(f,2) 'divisors: '
   do j = 1 to f
      call charout ,divi.divisor.j' '
   end
   say
end
say; say Format(Time('e'),,3) 'seconds'; say
exit

Divisors:
/* Divisors of an integer */
procedure expose divi.
arg x
/* Validate */
if \ Whole(x) then
   x = dummy
if x < 0 then
   x = dummy
/* Init */
divi. = 0
/* Fast values */
if x = 1 then do
   divi.divisor.1 = 1; divi.0 = 1
   return 1
end
/* Euclid's method */
a = 1; divi.left.1 = 1; b = 1; divi.right.1 = x
m = x//2
do j = 2+m by 1+m while j*j < x
   if x//j = 0 then do
      a = a+1; divi.left.a = j; b = b+1; divi.right.b = x%j
   end
end
if j*j = x then do
   a = a+1; divi.left.a = j
end
/* Save in table */
n = 0
do i = 1 to a
   n = n+1; divi.divisor.n = divi.left.i
end
do i = b by -1 to 1
   n = n+1; divi.divisor.n = divi.right.i
end
divi.0 = n
/* Return number of divisors */
return n

include Functions
include Numbers
include Abend

This version is slightly slower than both previous ones, due to the storage of all values in a stem. Running with parameters 1,200 gives:

Factors of an integer - Using REXX libraries
REXX-ooRexx_5.0.0(MT)_64-bit 6.05 23 Dec 2022

  1 has  1 divisors: 1
  2 has  2 divisors: 1 2
  3 has  2 divisors: 1 3
  4 has  3 divisors: 1 2 4
  5 has  2 divisors: 1 5
  6 has  4 divisors: 1 2 3 6
  7 has  2 divisors: 1 7
  8 has  4 divisors: 1 2 4 8
  9 has  3 divisors: 1 3 9
 10 has  4 divisors: 1 2 5 10
 11 has  2 divisors: 1 11
 12 has  6 divisors: 1 2 3 4 6 12
 13 has  2 divisors: 1 13
 14 has  4 divisors: 1 2 7 14
 15 has  4 divisors: 1 3 5 15
 16 has  5 divisors: 1 2 4 8 16
 17 has  2 divisors: 1 17
 18 has  6 divisors: 1 2 3 6 9 18
 19 has  2 divisors: 1 19
 20 has  6 divisors: 1 2 4 5 10 20
 21 has  4 divisors: 1 3 7 21
 22 has  4 divisors: 1 2 11 22
 23 has  2 divisors: 1 23
 24 has  8 divisors: 1 2 3 4 6 8 12 24
 25 has  3 divisors: 1 5 25
 26 has  4 divisors: 1 2 13 26
 27 has  4 divisors: 1 3 9 27
 28 has  6 divisors: 1 2 4 7 14 28
 29 has  2 divisors: 1 29
 30 has  8 divisors: 1 2 3 5 6 10 15 30
 31 has  2 divisors: 1 31
 32 has  6 divisors: 1 2 4 8 16 32
 33 has  4 divisors: 1 3 11 33
 34 has  4 divisors: 1 2 17 34
 35 has  4 divisors: 1 5 7 35
 36 has  9 divisors: 1 2 3 4 6 9 12 18 36
 37 has  2 divisors: 1 37
 38 has  4 divisors: 1 2 19 38
 39 has  4 divisors: 1 3 13 39
 40 has  8 divisors: 1 2 4 5 8 10 20 40
 41 has  2 divisors: 1 41
 42 has  8 divisors: 1 2 3 6 7 14 21 42
 43 has  2 divisors: 1 43
 44 has  6 divisors: 1 2 4 11 22 44
 45 has  6 divisors: 1 3 5 9 15 45
 46 has  4 divisors: 1 2 23 46
 47 has  2 divisors: 1 47
 48 has 10 divisors: 1 2 3 4 6 8 12 16 24 48
 49 has  3 divisors: 1 7 49
 50 has  6 divisors: 1 2 5 10 25 50
 51 has  4 divisors: 1 3 17 51
 52 has  6 divisors: 1 2 4 13 26 52
 53 has  2 divisors: 1 53
 54 has  8 divisors: 1 2 3 6 9 18 27 54
 55 has  4 divisors: 1 5 11 55
 56 has  8 divisors: 1 2 4 7 8 14 28 56
 57 has  4 divisors: 1 3 19 57
 58 has  4 divisors: 1 2 29 58
 59 has  2 divisors: 1 59
 60 has 12 divisors: 1 2 3 4 5 6 10 12 15 20 30 60
 61 has  2 divisors: 1 61
 62 has  4 divisors: 1 2 31 62
 63 has  6 divisors: 1 3 7 9 21 63
 64 has  7 divisors: 1 2 4 8 16 32 64
 65 has  4 divisors: 1 5 13 65
 66 has  8 divisors: 1 2 3 6 11 22 33 66
 67 has  2 divisors: 1 67
 68 has  6 divisors: 1 2 4 17 34 68
 69 has  4 divisors: 1 3 23 69
 70 has  8 divisors: 1 2 5 7 10 14 35 70
 71 has  2 divisors: 1 71
 72 has 12 divisors: 1 2 3 4 6 8 9 12 18 24 36 72
 73 has  2 divisors: 1 73
 74 has  4 divisors: 1 2 37 74
 75 has  6 divisors: 1 3 5 15 25 75
 76 has  6 divisors: 1 2 4 19 38 76
 77 has  4 divisors: 1 7 11 77
 78 has  8 divisors: 1 2 3 6 13 26 39 78
 79 has  2 divisors: 1 79
 80 has 10 divisors: 1 2 4 5 8 10 16 20 40 80
 81 has  5 divisors: 1 3 9 27 81
 82 has  4 divisors: 1 2 41 82
 83 has  2 divisors: 1 83
 84 has 12 divisors: 1 2 3 4 6 7 12 14 21 28 42 84
 85 has  4 divisors: 1 5 17 85
 86 has  4 divisors: 1 2 43 86
 87 has  4 divisors: 1 3 29 87
 88 has  8 divisors: 1 2 4 8 11 22 44 88
 89 has  2 divisors: 1 89
 90 has 12 divisors: 1 2 3 5 6 9 10 15 18 30 45 90
 91 has  4 divisors: 1 7 13 91
 92 has  6 divisors: 1 2 4 23 46 92
 93 has  4 divisors: 1 3 31 93
 94 has  4 divisors: 1 2 47 94
 95 has  4 divisors: 1 5 19 95
 96 has 12 divisors: 1 2 3 4 6 8 12 16 24 32 48 96
 97 has  2 divisors: 1 97
 98 has  6 divisors: 1 2 7 14 49 98
 99 has  6 divisors: 1 3 9 11 33 99
100 has  9 divisors: 1 2 4 5 10 20 25 50 100
101 has  2 divisors: 1 101
102 has  8 divisors: 1 2 3 6 17 34 51 102
103 has  2 divisors: 1 103
104 has  8 divisors: 1 2 4 8 13 26 52 104
105 has  8 divisors: 1 3 5 7 15 21 35 105
106 has  4 divisors: 1 2 53 106
107 has  2 divisors: 1 107
108 has 12 divisors: 1 2 3 4 6 9 12 18 27 36 54 108
109 has  2 divisors: 1 109
110 has  8 divisors: 1 2 5 10 11 22 55 110
111 has  4 divisors: 1 3 37 111
112 has 10 divisors: 1 2 4 7 8 14 16 28 56 112
113 has  2 divisors: 1 113
114 has  8 divisors: 1 2 3 6 19 38 57 114
115 has  4 divisors: 1 5 23 115
116 has  6 divisors: 1 2 4 29 58 116
117 has  6 divisors: 1 3 9 13 39 117
118 has  4 divisors: 1 2 59 118
119 has  4 divisors: 1 7 17 119
120 has 16 divisors: 1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
121 has  3 divisors: 1 11 121
122 has  4 divisors: 1 2 61 122
123 has  4 divisors: 1 3 41 123
124 has  6 divisors: 1 2 4 31 62 124
125 has  4 divisors: 1 5 25 125
126 has 12 divisors: 1 2 3 6 7 9 14 18 21 42 63 126
127 has  2 divisors: 1 127
128 has  8 divisors: 1 2 4 8 16 32 64 128
129 has  4 divisors: 1 3 43 129
130 has  8 divisors: 1 2 5 10 13 26 65 130
131 has  2 divisors: 1 131
132 has 12 divisors: 1 2 3 4 6 11 12 22 33 44 66 132
133 has  4 divisors: 1 7 19 133
134 has  4 divisors: 1 2 67 134
135 has  8 divisors: 1 3 5 9 15 27 45 135
136 has  8 divisors: 1 2 4 8 17 34 68 136
137 has  2 divisors: 1 137
138 has  8 divisors: 1 2 3 6 23 46 69 138
139 has  2 divisors: 1 139
140 has 12 divisors: 1 2 4 5 7 10 14 20 28 35 70 140
141 has  4 divisors: 1 3 47 141
142 has  4 divisors: 1 2 71 142
143 has  4 divisors: 1 11 13 143
144 has 15 divisors: 1 2 3 4 6 8 9 12 16 18 24 36 48 72 144
145 has  4 divisors: 1 5 29 145
146 has  4 divisors: 1 2 73 146
147 has  6 divisors: 1 3 7 21 49 147
148 has  6 divisors: 1 2 4 37 74 148
149 has  2 divisors: 1 149
150 has 12 divisors: 1 2 3 5 6 10 15 25 30 50 75 150
151 has  2 divisors: 1 151
152 has  8 divisors: 1 2 4 8 19 38 76 152
153 has  6 divisors: 1 3 9 17 51 153
154 has  8 divisors: 1 2 7 11 14 22 77 154
155 has  4 divisors: 1 5 31 155
156 has 12 divisors: 1 2 3 4 6 12 13 26 39 52 78 156
157 has  2 divisors: 1 157
158 has  4 divisors: 1 2 79 158
159 has  4 divisors: 1 3 53 159
160 has 12 divisors: 1 2 4 5 8 10 16 20 32 40 80 160
161 has  4 divisors: 1 7 23 161
162 has 10 divisors: 1 2 3 6 9 18 27 54 81 162
163 has  2 divisors: 1 163
164 has  6 divisors: 1 2 4 41 82 164
165 has  8 divisors: 1 3 5 11 15 33 55 165
166 has  4 divisors: 1 2 83 166
167 has  2 divisors: 1 167
168 has 16 divisors: 1 2 3 4 6 7 8 12 14 21 24 28 42 56 84 168
169 has  3 divisors: 1 13 169
170 has  8 divisors: 1 2 5 10 17 34 85 170
171 has  6 divisors: 1 3 9 19 57 171
172 has  6 divisors: 1 2 4 43 86 172
173 has  2 divisors: 1 173
174 has  8 divisors: 1 2 3 6 29 58 87 174
175 has  6 divisors: 1 5 7 25 35 175
176 has 10 divisors: 1 2 4 8 11 16 22 44 88 176
177 has  4 divisors: 1 3 59 177
178 has  4 divisors: 1 2 89 178
179 has  2 divisors: 1 179
180 has 18 divisors: 1 2 3 4 5 6 9 10 12 15 18 20 30 36 45 60 90 180
181 has  2 divisors: 1 181
182 has  8 divisors: 1 2 7 13 14 26 91 182
183 has  4 divisors: 1 3 61 183
184 has  8 divisors: 1 2 4 8 23 46 92 184
185 has  4 divisors: 1 5 37 185
186 has  8 divisors: 1 2 3 6 31 62 93 186
187 has  4 divisors: 1 11 17 187
188 has  6 divisors: 1 2 4 47 94 188
189 has  8 divisors: 1 3 7 9 21 27 63 189
190 has  8 divisors: 1 2 5 10 19 38 95 190
191 has  2 divisors: 1 191
192 has 14 divisors: 1 2 3 4 6 8 12 16 24 32 48 64 96 192
193 has  2 divisors: 1 193
194 has  4 divisors: 1 2 97 194
195 has  8 divisors: 1 3 5 13 15 39 65 195
196 has  9 divisors: 1 2 4 7 14 28 49 98 196
197 has  2 divisors: 1 197
198 has 12 divisors: 1 2 3 6 9 11 18 22 33 66 99 198
199 has  2 divisors: 1 199
200 has 12 divisors: 1 2 4 5 8 10 20 25 40 50 100 200

0.016 seconds

Ring

nArray = list(100)
n = 45
j = 0
for i = 1 to n
    if n % i = 0 j = j + 1 nArray[j] = i ok
next

see "Factors of " + n + " = "
for i = 1 to j
    see "" + nArray[i] + " "
next

RPL

Works with: Halcyon Calc version 4.2.7
≪ → n 
   ≪ { } DUP 1 n √ FOR d
        IF n d MOD NOT 
        THEN 
           d + n d / 
           IF DUP d ≠ THEN ROT + SWAP ELSE DROP END 
        END 
     NEXT
     SWAP + 
≫ ≫
'FACTS' STO
45 FACTS
53 FACTS
64 FACTS
Output:
3: { 1 3 5 9 15 45 }
2: { 1 53 }
1: { 1 2 4 8 16 32 64 }

Ruby

class Integer
  def factors() (1..self).select { |n| (self % n).zero? } end
end
p 45.factors
[1, 3, 5, 9, 15, 45]

As we only have to loop up to , we can write

class Integer
  def factors
    1.upto(Integer.sqrt(self)).select {|i| (self % i).zero?}.inject([]) do |f, i| 
      f << self/i unless i == self/i
      f << i
    end.sort
  end
end
[45, 53, 64].each {|n| puts "#{n} : #{n.factors}"}
Output:
45 : [1, 3, 5, 9, 15, 45]
53 : [1, 53]
64 : [1, 2, 4, 8, 16, 32, 64]

Using the prime library

require 'prime'

def factors m
  return [1] if 1==m
  primes, powers = Prime.prime_division(m).transpose
  ranges = powers.map{|n| (0..n).to_a}
  ranges[0].product( *ranges[1..-1] ).
  map{|es| primes.zip(es).map{|p,e| p**e}.reduce :*}.
  sort
end

[1, 7, 45, 100].each{|n| p factors n}

Output:

[1]
[1, 7]
[1, 3, 5, 9, 15, 45]
[1, 2, 4, 5, 10, 20, 25, 50, 100]

Rust

fn main() {
    assert_eq!(vec![1, 2, 4, 5, 10, 10, 20, 25, 50, 100], factor(100)); // asserts that two expressions are equal to each other
    assert_eq!(vec![1, 101], factor(101));

}

fn factor(num: i32) -> Vec<i32> {
    let mut factors: Vec<i32> = Vec::new(); // creates a new vector for the factors of the number

    for i in 1..((num as f32).sqrt() as i32 + 1) { 
        if num % i == 0 {
            factors.push(i); // pushes smallest factor to factors
            factors.push(num/i); // pushes largest factor to factors
        }
    }
    factors.sort(); // sorts the factors into numerical order for viewing purposes
    factors // returns the factors
}

Alternative functional version:

fn factor(n: i32) -> Vec<i32> {
    (1..=n).filter(|i| n % i == 0).collect()
}

Sather

class MAIN is

  factors!(n :INT):INT is
    yield 1;
    loop i ::= 2.upto!( n.flt.sqrt.int );
      if n%i = 0 then
        yield i;
        if (i*i) /= n then
          yield n / i;
        end;
      end;
    end;
    yield n;
  end;

  main is
    a :ARRAY{INT} := |3135, 45, 64, 53, 45, 81|;
    loop l ::= a.elt!;
      #OUT + "factors of " + l + ": ";
      loop ri ::= factors!(l);
        #OUT + ri + " ";
      end;
      #OUT + "\n";
    end;
  end;
end;

Scala

Brute force approach:

def factors(num: Int) = {
    (1 to num).filter { divisor =>
      num % divisor == 0
    }
}

Brute force until sqrt(num) is enough, the code above can be edited as follows (Scala 3 enabled)

def factors(num: Int) = {
    val list = (1 to math.sqrt(num).floor.toInt).filter(num % _ == 0)
    list ++ list.reverse.dropWhile(d => d*d == num).map(num / _)
}

Scheme

This implementation uses a naive trial division algorithm.

(define (factors n)
  (define (*factors d)
    (cond ((> d n) (list))
          ((= (modulo n d) 0) (cons d (*factors (+ d 1))))
          (else (*factors (+ d 1)))))
  (*factors 1))

(display (factors 1111111))
(newline)
Output:
 (1 239 4649 1111111)

Seed7

$ include "seed7_05.s7i";

const proc: writeFactors (in integer: number) is func
  local
    var integer: testNum is 0;
  begin
    write("Factors of " <& number <& ": ");
    for testNum range 1 to sqrt(number) do
      if number rem testNum = 0 then
        if testNum <> 1 then
          write(", ");
        end if;
        write(testNum);
        if testNum <> number div testNum then
          write(", " <& number div testNum);
        end if;
      end if;
    end for;
    writeln;
  end func;

const proc: main is func
  local
    const array integer: numsToFactor is [] (45, 53, 64);
    var integer: number is 0;
  begin
    for number range numsToFactor do
      writeFactors(number);
    end for;
  end func;
Output:
Factors of 45: 1, 45, 3, 15, 5, 9
Factors of 53: 1, 53
Factors of 64: 1, 64, 2, 32, 4, 16, 8

SequenceL

Brute Force Method

A simple brute force method using an indexed partial function as a filter.

Factors(num(0))[i] := i when num mod i = 0 foreach i within 1 ... num;

Slightly More Efficient Method

A slightly more efficient method, only going up to the sqrt(n).

Factors(num(0)) :=
	let
		factorPairs[i] :=
				[i] when i = sqrt(num)
			else 
				[i, num/i] when num mod i = 0 
			foreach i within 1 ... floor(sqrt(num));
	in
		join(factorPairs);

Sidef

Built-in:

say divisors(97)    #=> [1, 97]
say divisors(2695)  #=> [1, 5, 7, 11, 35, 49, 55, 77, 245, 385, 539, 2695]

Trial-division (slow for large n):

func divisors(n) {
  gather {
    { |d|
        take(d, n//d) if d.divides(n)
    } << 1..n.isqrt
  }.sort.uniq
}
 
[53, 64, 32766].each {|n|
    say "divisors(#{n}): #{divisors(n)}"
}
Output:
divisors(53): [1, 53]
divisors(64): [1, 2, 4, 8, 16, 32, 64]
divisors(32766): [1, 2, 3, 6, 43, 86, 127, 129, 254, 258, 381, 762, 5461, 10922, 16383, 32766]

Slate

n@(Integer traits) primeFactors
[
  [| :result |
   result nextPut: 1.
   n primesDo: [| :prime | result nextPut: prime]] writingAs: {}
].

where primesDo: is a part of the standard numerics library:

n@(Integer traits) primesDo: block
"Decomposes the Integer into primes, applying the block to each (in increasing
order)."
[| div next remaining |
  div: 2.
  next: 3.
  remaining: n.
  [[(remaining \\ div) isZero]
     whileTrue:
       [block applyTo: {div}.
	remaining: remaining // div].
   remaining = 1] whileFalse:
     [div: next.
      next: next + 2] "Just looks at the next odd integer."
].

Smalltalk

Copied from the Python example, but code added to the Integer built in class:

Integer>>factors
	| a |
	a := OrderedCollection new.
	1 to: (self / 2) do: [ :i | 
		((self \\ i) = 0) ifTrue: [ a add: i ] ].
	a add: self.
	^a

Then use as follows:

59 factors -> an OrderedCollection(1 59)
120 factors -> an OrderedCollection(1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120)

Standard ML

Need to print the list because Standard ML truncates the display of longer returned lists.

fun printIntList ls =
  (
    List.app (fn n => print(Int.toString n ^ " ")) ls;
    print "\n"
  );

fun factors n =
  let
    fun factors'(n, k) =
      if k > n then
        []
      else if n mod k = 0 then
        k :: factors'(n, k+1)
      else
        factors'(n, k+1)
  in
    factors'(n,1)
  end;

Call:

printIntList(factors 12345)
printIntList(factors 120)
Output:
1 3 5 15 823 2469 4115 12345
1 2 3 4 5 6 8 10 12 15 20 24 30 40 60

Swift

Simple implementation:

func factors(n: Int) -> [Int] {
    
    return filter(1...n) { n % $0 == 0 }
}

More efficient implementation:

import func Darwin.sqrt

func sqrt(x:Int) -> Int { return Int(sqrt(Double(x))) }

func factors(n: Int) -> [Int] {
    
    var result = [Int]()
    
    for factor in filter (1...sqrt(n), { n % $0 == 0 }) {
        
        result.append(factor)

        if n/factor != factor { result.append(n/factor) }
    }
    
    return sorted(result)
    
}

Call:

println(factors(4))
println(factors(1))
println(factors(25))
println(factors(63))
println(factors(19))
println(factors(768))
Output:
[1, 2, 4]
[1]
[1, 5, 25]
[1, 3, 7, 9, 21, 63]
[1, 19]
[1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]

Tailspin

[1..351 -> \(when <?(351 mod $ <=0>)> do $! \)] -> !OUT::write
Output:
[1, 3, 9, 13, 27, 39, 117, 351]

Tcl

proc factors {n} {
    set factors {}
    for {set i 1} {$i <= sqrt($n)} {incr i} {
        if {$n % $i == 0} {
            lappend factors $i [expr {$n / $i}]
        }
    }
    return [lsort -unique -integer $factors]
}
puts [factors 64]
puts [factors 45]
puts [factors 53]
Output:
1 2 4 8 16 32 64
1 3 5 9 15 45
1 53

Uiua

Factors ← ◴⊂⟜(⇌÷)⊸(▽:⟜≡(=0◿)⊙¤⊸(↘1⇡+1⌊√))
⍚Factors {45 53 64}
Output:
{[1 3 5 9 15 45] [1 53] [1 2 4 8 16 32 64]}

UNIX Shell

This should work in all Bourne-compatible shells, assuming the system has both sort and at least one of bc or dc.

factor() {
  r=`echo "sqrt($1)" | bc` # or `echo $1 v p | dc`
  i=1 
  while [ $i -lt $r ]; do
    if [ `expr $1 % $i` -eq 0 ]; then
      echo $i  
      expr $1 / $i
    fi
    i=`expr $i + 1`
  done | sort -nu
}

Ursa

This program takes an integer from the command line and outputs its factors.

decl int n
set n (int args<1>)

decl int i
for (set i 1) (< i (+ (/ n 2) 1)) (inc i)
        if (= (mod n i) 0)
                out i "  " console
        end if
end for
out n endl console

Ursala

The simple way:

#import std
#import nat

factors "n" = (filter not remainder/"n") nrange(1,"n")

The complicated way:

factors "n" = nleq-<&@s <.~&r,quotient>*= "n"-* (not remainder/"n")*~ nrange(1,root("n",2))

Another idea would be to approximate an upper bound for the square root of "n" with some bit twiddling such as &!*K31 "n", which evaluates to a binary number of all 1's half the width of "n" rounded up, and another would be to use the division function to get the quotient and remainder at the same time. Combining these ideas, losing the dummy variable, and cleaning up some other cruft, we have

factors = nleq-<&@rrZPFLs+ ^(~&r,division)^*D/~& nrange/1+ &!*K31

where nleq-<& isn't strictly necessary unless an ordered list is required.

#cast %nL

example = factors 100
Output:
<1,2,4,5,10,20,25,50,100>

Verilog

module main;
  integer i, n;

  initial begin
    n = 45;
    
    $write(n, " =>");
    for(i = 1; i <= n / 2; i = i + 1) if(n % i == 0) $write(i);
    $display(n);
    $finish ;
    end
endmodule
Output:
         45 =>          1          3          5          9         15         45

Wortel

@let {
  factors1      &n !-\%%n @to n
  factors_tacit @(\\%% !- @to)
  [[
    !factors1 10 
    !factors_tacit 100 
    !factors1 720 
  ]]
}

Returns:

[
  [1 2 5 10]
  [1 2 4 5 10 20 25 50 100]
  [1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 30 36 40 45 48 60 72 80 90 120 144 180 240 360 720]
]

V (Vlang)

Translation of: Ring
fn main() {
	mut arr := []int{len: 100}
	mut n, mut j := 45, 0
	for i in 1..n + 1 {
		if n % i == 0 {
			j++ 
			arr[j] = i
		}
	}
	print("Factors of ${n} = ")
	for i in 1..j + 1 {print(" ${arr[i]} ")}
}
Output:
Factors of 45 =  1  3  5  9  15  45

Wren

Library: Wren-fmt
Library: Wren-math
import "./fmt" for Fmt
import "./math" for Int

var a = [11, 21, 32, 45, 67, 96, 159, 723, 1024, 5673, 12345, 32767, 123459, 999997]
System.print("The factors of the following numbers are:")
for (e in a) Fmt.print("$6d => $n", e, Int.divisors(e))
Output:
The factors of the following numbers are:
    11 => [1, 11]
    21 => [1, 3, 7, 21]
    32 => [1, 2, 4, 8, 16, 32]
    45 => [1, 3, 5, 9, 15, 45]
    67 => [1, 67]
    96 => [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]
   159 => [1, 3, 53, 159]
   723 => [1, 3, 241, 723]
  1024 => [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
  5673 => [1, 3, 31, 61, 93, 183, 1891, 5673]
 12345 => [1, 3, 5, 15, 823, 2469, 4115, 12345]
 32767 => [1, 7, 31, 151, 217, 1057, 4681, 32767]
123459 => [1, 3, 7, 21, 5879, 17637, 41153, 123459]
999997 => [1, 757, 1321, 999997]

X86 Assembly

Works with: nasm
section .bss 
    factorArr resd 250 ;big buffer against seg fault
    
section .text
global _main
_main:
    mov ebp, esp; for correct debugging
    mov eax, 0x7ffffffe ;number of which we want to know the factors, max num this program works with
    mov ebx, eax ;save eax
    mov ecx, 1 ;n, factor we test for
    mov [factorArr], dword 0
    looping:
        mov eax, ebx ;restore eax
        xor edx, edx ;clear edx
        div ecx
        cmp edx, 0 ;test if our number % n == 0
        jne next
        mov edx, [factorArr] ;if yes, we increment the size of the array and append n
        inc edx
        mov [factorArr+edx*4], ecx ;appending n
        mov [factorArr], edx ;storing the new size
    next:
        mov eax, ecx
        cmp eax, ebx ;is n bigger then our number ?
        jg end ;if yes we end
        inc ecx
        jmp looping
    end:
        mov ecx, factorArr ;pass arr address by ecx  
        xor eax, eax ;clear eax
        mov esp, ebp ;garbage collecting
        ret

XPL0

include c:\cxpl\codes;
int     N0, N, F;
[N0:= 1;
repeat  IntOut(0, N0);  Text(0, " = ");
        F:= 2;  N:= N0;
        repeat  if rem(N/F) = 0 then
                        [if N # N0 then Text(0, " * ");
                        IntOut(0, F);
                        N:= N/F;
                        ]
                else F:= F+1;
        until   F>N;
        if N0=1 then IntOut(0, 1);      \1 = 1
        CrLf(0);
        N0:= N0+1;
until   KeyHit;
]
Output:
1 = 1
2 = 2
3 = 3
4 = 2 * 2
5 = 5
6 = 2 * 3
7 = 7
8 = 2 * 2 * 2
9 = 3 * 3
10 = 2 * 5
11 = 11
12 = 2 * 2 * 3
13 = 13
14 = 2 * 7
15 = 3 * 5
16 = 2 * 2 * 2 * 2
17 = 17
18 = 2 * 3 * 3
. . .
57086 = 2 * 17 * 23 * 73
57087 = 3 * 3 * 6343
57088 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 223
57089 = 57089
57090 = 2 * 3 * 5 * 11 * 173
57091 = 37 * 1543
57092 = 2 * 2 * 7 * 2039
57093 = 3 * 19031
57094 = 2 * 28547
57095 = 5 * 19 * 601
57096 = 2 * 2 * 2 * 3 * 3 * 13 * 61
57097 = 57097

zkl

Translation of: Chapel
fcn f(n){ (1).pump(n.toFloat().sqrt(), List,
   'wrap(m){((n % m)==0) and T(m,n/m) or Void.Skip}) }
fcn g(n){ [[(m); [1..n.toFloat().sqrt()],'{n%m==0}; '{T(m,n/m)} ]] }  // list comprehension
Output:
zkl: f(45)
L(L(1,45),L(3,15),L(5,9))

zkl: g(45)
L(L(1,45),L(3,15),L(5,9))