Isqrt (integer square root) of X

From Rosetta Code
Task
Isqrt (integer square root) of X
You are encouraged to solve this task according to the task description, using any language you may know.

Sometimes a function is needed to find the integer square root of   X,   where   X   can be a real non─negative number.

Often   X   is actually a non─negative integer.

For the purposes of this task,   X   can be an integer or a real number,   but if it simplifies things in your computer programming language,   assume it's an integer.


One of the most common uses of   Isqrt   is in the division of an integer by all factors   (or primes)   up to the    X    of that integer,   either to find the factors of that integer,   or to determine primality.


An alternative method for finding the   Isqrt   of a number is to calculate:       floor( sqrt(X) )

  •   where   sqrt    is the   square root   function for non─negative real numbers,   and
  •   where   floor   is the   floor   function for real numbers.


If the hardware supports the computation of (real) square roots,   the above method might be a faster method for small numbers that don't have very many significant (decimal) digits.

However, floating point arithmetic is limited in the number of   (binary or decimal)   digits that it can support.


Pseudo─code using quadratic residue

For this task, the integer square root of a non─negative number will be computed using a version of   quadratic residue,   which has the advantage that no   floating point   calculations are used,   only integer arithmetic.

Furthermore, the two divisions can be performed by bit shifting,   and the one multiplication can also be be performed by bit shifting or additions.

The disadvantage is the limitation of the size of the largest integer that a particular computer programming language can support.


Pseudo─code of a procedure for finding the integer square root of   X       (all variables are integers):

         q ◄── 1                                /*initialize  Q  to unity.  */
                                  /*find a power of 4 that's greater than X.*/
                  perform  while q <= x         /*perform while  Q <= X.    */
                  q ◄── q * 4                   /*multiply  Q  by  four.    */
                  end  /*perform*/
                                                /*Q  is now greater than  X.*/
         z ◄── x                                /*set  Z  to the value of X.*/
         r ◄── 0                                /*initialize  R  to zero.   */
                  perform  while q > 1          /*perform while  Q > unity. */
                  q ◄── q ÷ 4                   /*integer divide by  four.  */
                  t ◄── z - r - q               /*compute value of  T.      */
                  r ◄── r ÷ 2                   /*integer divide by  two.   */
                  if t >= 0  then do            
                                  z ◄── t       /*set  Z  to value of  T.   */
                                  r ◄── r + q   /*compute new value of  R.  */
                                  end
                  end  /*perform*/
                                                /*R  is now the  Isqrt(X).  */

         /* Sidenote: Also, Z is now the remainder after square root (i.e.  */
         /*           R^2 + Z = X, so if Z = 0 then X is a perfect square). */

Another version for the (above)   1st   perform   is:

                  perform  until q > X          /*perform until  Q > X.     */
                  q ◄── q * 4                   /*multiply  Q  by  four.    */
                  end  /*perform*/


Integer square roots of some values:

Isqrt( 0)  is   0               Isqrt(60)  is  7                Isqrt( 99)  is   9
Isqrt( 1)  is   1               Isqrt(61)  is  7                Isqrt(100)  is  10
Isqrt( 2)  is   1               Isqrt(62)  is  7                Isqrt(102)  is  10
Isqrt( 3)  is   1               Isqrt(63)  is  7
Isqrt( 4)  is   2               Isqrt(64)  is  8                Isqet(120)  is  10
Isqrt( 5)  is   2               Isqrt(65)  is  8                Isqrt(121)  is  11
Isqrt( 6)  is   2               Isqrt(66)  is  8                Isqrt(122)  is  11
Isqrt( 7)  is   2               Isqrt(67)  is  8
Isqrt( 8)  is   2               Isqrt(68)  is  8                Isqrt(143)  is  11
Isqrt( 9)  is   3               Isqrt(69)  is  8                Isqrt(144)  is  12
Isqrt(10)  is   3               Isqrt(70)  is  8                Isqrt(145)  is  12


Task

Compute and show all output here   (on this page)   for:

  •   the Isqrt of the     integers     from     0 ───► 65    (inclusive), shown in a horizontal format.
  •   the Isqrt of the   odd powers  from   71 ───► 773   (inclusive), shown in a   vertical   format.
  •   use commas in the displaying of larger numbers.


You can show more numbers for the 2nd requirement if the displays fits on one screen on Rosetta Code.
If your computer programming language only supports smaller integers,   show what you can.


Related tasks



11l

Translation of: D
F commatize(number, step = 3, sep = ‘,’)
   V s = reversed(String(number))
   String r = s[0]
   L(i) 1 .< s.len
      I i % step == 0
         r ‘’= sep
      r ‘’= s[i]
   R reversed(r)

F isqrt(BigInt x)
   assert(x >= 0)

   V q = BigInt(1)
   L q <= x
      q *= 4

   V z = x
   V r = BigInt(0)
   L q > 1
      q I/= 4
      V t = z - r - q
      r I/= 2
      I t >= 0
         z = t
         r += q

   R r

print(‘The integer square root of integers from 0 to 65 are:’)
L(i) 66
   print(isqrt(BigInt(i)), end' ‘ ’)
print()

print(‘The integer square roots of powers of 7 from 7^1 up to 7^73 are:’)
print(‘power                                    7 ^ power                                                 integer square root’)
print(‘----- --------------------------------------------------------------------------------- -----------------------------------------’)
V pow7 = BigInt(7)
V bi49 = BigInt(49)
L(i) (1..73).step(2)
   print(‘#2 #84 #41’.format(i, commatize(pow7), commatize(isqrt(pow7))))
   pow7 *= bi49
Output:
The integer square root of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
The integer square roots of powers of 7 from 7^1 up to 7^73 are:
power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Ada

Works with: Ada 2022
with Ada.Text_Io;
with Ada.Numerics.Big_Numbers.Big_Integers;
with Ada.Strings.Fixed;

procedure Integer_Square_Root is

   use Ada.Numerics.Big_Numbers.Big_Integers;
   use Ada.Text_Io;

   function Isqrt (X : Big_Integer) return Big_Integer is
      Q       : Big_Integer := 1;
      Z, T, R : Big_Integer;
   begin
      while Q <= X loop
         Q := Q * 4;
      end loop;
      Z := X;
      R := 0;
      while Q > 1 loop
         Q := Q / 4;
         T := Z - R - Q;
         R := R / 2;
         if T >= 0 then
            Z := T;
            R := R + Q;
         end if;
      end loop;
      return R;
   end Isqrt;

   function Commatize (N : Big_Integer; Width : Positive) return String is
      S     : constant String := To_String (N, Width);
      Image : String (1 .. Width + Width / 3) := (others => ' ');
      Pos   : Natural := Image'Last;
   begin
      for I in S'Range loop
         Image (Pos) := S (S'Last - I + S'First);
         exit when Image (Pos) = ' ';
         Pos := Pos - 1;
         if I mod 3 = 0 and S (S'Last - I + S'First - 1) /= ' ' then
            Image (Pos) := ''';
            Pos := Pos - 1;
         end if;
      end loop;
      return Image;
   end Commatize;

   type Mode_Kind is (Tens, Ones, Spacer, Result);
begin
   Put_Line ("Integer square roots of integers 0 .. 65:");
   for Mode in Mode_Kind loop
      for N in 0 .. 65 loop
         case Mode is
            when Tens   =>  Put ((if N / 10 = 0
                                  then "  "
                                  else Natural'Image (N / 10)));
            when Ones   =>  Put (Natural'Image (N mod 10));
            when Spacer =>  Put ("--");
            when Result =>  Put (To_String (Isqrt (To_Big_Integer (N))));
         end case;
      end loop;
      New_Line;
   end loop;
   New_Line;

   declare
      package Integer_Io is new Ada.Text_Io.Integer_Io (Natural);
      use Ada.Strings.Fixed;
      N    : Integer    := 1;
      P, R : Big_Integer;
   begin
      Put_Line ("|  N|" & 80 * " " & "7**N|" & 30 * " " & "isqrt (7**N)|");
      Put_Line (133 * "=");
      loop
         P := 7**N;
         R := Isqrt (P);
         Put ("|");  Integer_Io.Put (N, Width => 3);
         Put ("|");  Put (Commatize (P, Width => 63));
         Put ("|");  Put (Commatize (R, Width => 32));
         Put ("|");  New_Line;
         exit when N >= 73;
         N := N + 2;
      end loop;
      Put_Line (133 * "=");
   end;

end Integer_Square_Root;
Output:
Integer square roots of integers 0 .. 65:
                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
------------------------------------------------------------------------------------------------------------------------------------
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

|  N|                                                                                7**N|                              isqrt (7**N)|
=====================================================================================================================================
|  1|                                                                                   7|                                         2|
|  3|                                                                                 343|                                        18|
|  5|                                                                              16'807|                                       129|
|  7|                                                                             823'543|                                       907|
|  9|                                                                          40'353'607|                                     6'352|
| 11|                                                                       1'977'326'743|                                    44'467|
| 13|                                                                      96'889'010'407|                                   311'269|
| 15|                                                                   4'747'561'509'943|                                 2'178'889|
| 17|                                                                 232'630'513'987'207|                                15'252'229|
| 19|                                                              11'398'895'185'373'143|                               106'765'608|
| 21|                                                             558'545'864'083'284'007|                               747'359'260|
| 23|                                                          27'368'747'340'080'916'343|                             5'231'514'822|
| 25|                                                       1'341'068'619'663'964'900'807|                            36'620'603'758|
| 27|                                                      65'712'362'363'534'280'139'543|                           256'344'226'312|
| 29|                                                   3'219'905'755'813'179'726'837'607|                         1'794'409'584'184|
| 31|                                                 157'775'382'034'845'806'615'042'743|                        12'560'867'089'291|
| 33|                                               7'730'993'719'707'444'524'137'094'407|                        87'926'069'625'040|
| 35|                                             378'818'692'265'664'781'682'717'625'943|                       615'482'487'375'282|
| 37|                                          18'562'115'921'017'574'302'453'163'671'207|                     4'308'377'411'626'977|
| 39|                                         909'543'680'129'861'140'820'205'019'889'143|                    30'158'641'881'388'842|
| 41|                                      44'567'640'326'363'195'900'190'045'974'568'007|                   211'110'493'169'721'897|
| 43|                                   2'183'814'375'991'796'599'109'312'252'753'832'343|                 1'477'773'452'188'053'281|
| 45|                                 107'006'904'423'598'033'356'356'300'384'937'784'807|                10'344'414'165'316'372'973|
| 47|                               5'243'338'316'756'303'634'461'458'718'861'951'455'543|                72'410'899'157'214'610'812|
| 49|                             256'923'577'521'058'878'088'611'477'224'235'621'321'607|               506'876'294'100'502'275'687|
| 51|                          12'589'255'298'531'885'026'341'962'383'987'545'444'758'743|             3'548'134'058'703'515'929'815|
| 53|                         616'873'509'628'062'366'290'756'156'815'389'726'793'178'407|            24'836'938'410'924'611'508'707|
| 55|                      30'226'801'971'775'055'948'247'051'683'954'096'612'865'741'943|           173'858'568'876'472'280'560'953|
| 57|                   1'481'113'296'616'977'741'464'105'532'513'750'734'030'421'355'207|         1'217'009'982'135'305'963'926'677|
| 59|                  72'574'551'534'231'909'331'741'171'093'173'785'967'490'646'405'143|         8'519'069'874'947'141'747'486'745|
| 61|               3'556'153'025'177'363'557'255'317'383'565'515'512'407'041'673'852'007|        59'633'489'124'629'992'232'407'216|
| 63|             174'251'498'233'690'814'305'510'551'794'710'260'107'945'042'018'748'343|       417'434'423'872'409'945'626'850'517|
| 65|           8'538'323'413'450'849'900'970'017'037'940'802'745'289'307'058'918'668'807|     2'922'040'967'106'869'619'387'953'625|
| 67|         418'377'847'259'091'645'147'530'834'859'099'334'519'176'045'887'014'771'543|    20'454'286'769'748'087'335'715'675'381|
| 69|      20'500'514'515'695'490'612'229'010'908'095'867'391'439'626'248'463'723'805'607|   143'180'007'388'236'611'350'009'727'669|
| 71|   1'004'525'211'269'079'039'999'221'534'496'697'502'180'541'686'174'722'466'474'743| 1'002'260'051'717'656'279'450'068'093'686|
| 73|  49'221'735'352'184'872'959'961'855'190'338'177'606'846'542'622'561'400'857'262'407| 7'015'820'362'023'593'956'150'476'655'802|
=====================================================================================================================================

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32

Implements the task pseudo-code.

BEGIN # Integer square roots #
    PR precision 200 PR
    # returns the integer square root of x; x must be >= 0                   #
    PROC isqrt = ( LONG LONG INT x )LONG LONG INT:
         IF   x < 0 THEN print( ( "Negative number in isqrt", newline ) );stop
         ELIF x < 2 THEN x
         ELSE
            # x is greater than 1                                            #
            # find a power of 4 that's greater than x                        #
            LONG LONG INT q := 1;
            WHILE q <= x DO q *:= 4 OD;
            # find the root                                                  #
            LONG LONG INT z := x;
            LONG LONG INT r := 0;
            WHILE q > 1 DO
                q OVERAB 4;
                LONG LONG INT t = z - r - q;
                r OVERAB 2;
                IF t >= 0 THEN
                    z  := t;
                    r +:= q
                FI
            OD;
            r
         FI; # isqrt #
    # returns a string representation of n with commas                       #
    PROC commatise = ( LONG LONG INT n )STRING:
         BEGIN
            STRING result      := "";
            STRING unformatted  = whole( n, 0 );
            INT    ch count    := 0;
            FOR c FROM UPB unformatted BY -1 TO LWB unformatted DO
                IF   ch count <= 2 THEN ch count +:= 1
                ELSE                    ch count  := 1; "," +=: result
                FI;
                unformatted[ c ] +=: result
            OD;
            result
         END; # commatise #
    # left-pads a string to at least n characters                            #
    PROC pad left = ( STRING s, INT n )STRING:
         BEGIN
             STRING result := s;
             WHILE ( UPB result - LWB result ) + 1 < n DO " " +=: result OD;
             result
         END; # pad left #
    # task test cases #
    print( ( "Integer square roots of 0..65", newline ) );
    FOR i FROM 0 TO 65 DO print( ( " ", whole( isqrt( i ), 0 ) ) ) OD;
    print( ( newline ) );
    # integer square roots of odd powers of 7                                #
    print( ( "Integer square roots of 7^n", newline ) );
    print( ( " n|", pad left( "7^n", 82 ), "|", pad left( "isqrt(7^n)", 42 ), newline ) );
    LONG LONG INT p7 := 7;
    FOR p BY 2 TO 73 DO
        print( ( whole( p, -2 )
               , "|"
               , pad left( commatise(        p7   ), 82 )
               , "|"
               , pad left( commatise( isqrt( p7 ) ), 42 )
               , newline
               )
             );
        p7 *:= 49
    OD
END
Output:
Integer square roots of 0..65
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
Integer square roots of 7^n
 n|                                                                               7^n|                                isqrt(7^n)
 1|                                                                                 7|                                         2
 3|                                                                               343|                                        18
 5|                                                                            16,807|                                       129
 7|                                                                           823,543|                                       907
 9|                                                                        40,353,607|                                     6,352
11|                                                                     1,977,326,743|                                    44,467
13|                                                                    96,889,010,407|                                   311,269
15|                                                                 4,747,561,509,943|                                 2,178,889
17|                                                               232,630,513,987,207|                                15,252,229
19|                                                            11,398,895,185,373,143|                               106,765,608
21|                                                           558,545,864,083,284,007|                               747,359,260
23|                                                        27,368,747,340,080,916,343|                             5,231,514,822
25|                                                     1,341,068,619,663,964,900,807|                            36,620,603,758
27|                                                    65,712,362,363,534,280,139,543|                           256,344,226,312
29|                                                 3,219,905,755,813,179,726,837,607|                         1,794,409,584,184
31|                                               157,775,382,034,845,806,615,042,743|                        12,560,867,089,291
33|                                             7,730,993,719,707,444,524,137,094,407|                        87,926,069,625,040
35|                                           378,818,692,265,664,781,682,717,625,943|                       615,482,487,375,282
37|                                        18,562,115,921,017,574,302,453,163,671,207|                     4,308,377,411,626,977
39|                                       909,543,680,129,861,140,820,205,019,889,143|                    30,158,641,881,388,842
41|                                    44,567,640,326,363,195,900,190,045,974,568,007|                   211,110,493,169,721,897
43|                                 2,183,814,375,991,796,599,109,312,252,753,832,343|                 1,477,773,452,188,053,281
45|                               107,006,904,423,598,033,356,356,300,384,937,784,807|                10,344,414,165,316,372,973
47|                             5,243,338,316,756,303,634,461,458,718,861,951,455,543|                72,410,899,157,214,610,812
49|                           256,923,577,521,058,878,088,611,477,224,235,621,321,607|               506,876,294,100,502,275,687
51|                        12,589,255,298,531,885,026,341,962,383,987,545,444,758,743|             3,548,134,058,703,515,929,815
53|                       616,873,509,628,062,366,290,756,156,815,389,726,793,178,407|            24,836,938,410,924,611,508,707
55|                    30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943|           173,858,568,876,472,280,560,953
57|                 1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207|         1,217,009,982,135,305,963,926,677
59|                72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143|         8,519,069,874,947,141,747,486,745
61|             3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007|        59,633,489,124,629,992,232,407,216
63|           174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343|       417,434,423,872,409,945,626,850,517
65|         8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807|     2,922,040,967,106,869,619,387,953,625
67|       418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543|    20,454,286,769,748,087,335,715,675,381
69|    20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607|   143,180,007,388,236,611,350,009,727,669
71| 1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743| 1,002,260,051,717,656,279,450,068,093,686
73|49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407| 7,015,820,362,023,593,956,150,476,655,802

ALGOL W

Algol W integers are restricted to signed 32-bit, so only the roots of the powers of 7 up to 7^9 are shown (7^11 will fit in 32-bits but the smallest power of 4 higher than 7^11 will overflow).

begin % Integer square roots by quadratic residue                            %
    % returns the integer square root of x - x must be >= 0                  %
    integer procedure iSqrt ( integer value x ) ;
        if      x < 0 then begin assert x >= 0; 0 end
        else if x < 2 then x
        else begin
            % x is greater than 1                                            %
            integer q, r, t, z;
            % find a power of 4 that's greater than x                        %
            q := 1;
            while q <= x do q := q * 4;
            % find the root                                                  %
            z := x;
            r := 0;
            while q > 1 do begin
                q := q div 4;
                t := z - r - q;
                r := r div 2;
                if t >= 0 then begin
                    z := t;
                    r := r + q
                end if_t_ge_0
            end while_q_gt_1 ;
            r
         end isqrt;
    % writes n in 14 character positions with separator commas               %
    procedure writeonWithCommas ( integer value n ) ;
    begin
        string(10) decDigits;
        string(14) r;
        integer    v, cPos, dCount;
        decDigits    := "0123456789";
        v            := abs n;
        r            := " ";
        r( 13 // 1 ) := decDigits( v rem 10 // 1 );
        v            := v div 10;
        cPos         := 12;
        dCount       := 1;
        while cPos > 0 and v > 0 do begin
            r( cPos // 1 ) := decDigits( v rem 10 // 1 );
            v      :=  v div 10;
            cPos   := cPos - 1;
            dCount := dCount + 1;
            if v not = 0 and dCount = 3 then begin
                r( cPos // 1 ) := ",";
                cPos   := cPos - 1;
                dCount := 0
            end if_v_ne_0_and_dCount_eq_3
        end for_cPos;
        r( cPos // 1 ) := if n < 0 then "-" else " ";
        writeon( s_w := 0, r )
    end writeonWithCommas ;
    begin % task test cases                                                  %
        integer prevI, prevR, root, p7;
        write( "Integer square roots of 0..65 (values the same as the previous one not shown):" );
        write();
        prevR := prevI := -1;
        for i := 0 until 65 do begin
            root := iSqrt( i );
            if root not = prevR then begin
                prevR := root;
                prevI := i;
                writeon( i_w := 1, s_w := 0, " ", i, ":", root )
                end
            else if prevI = i - 1 then writeon( "..." ); 
        end for_i ;
        write();
        % integer square roots of odd powers of 7                            %
        write( "Integer square roots of 7^n, odd n" );
        write( " n|           7^n|    isqrt(7^n)" );
        write( " -+--------------+--------------" );
        p7 := 7;
        for p := 1 step 2 until 9 do begin
            write( i_w := 2, s_w := 0, p );
            writeon( s_w := 0, "|" ); writeonWithCommas(        p7   );
            writeon( s_w := 0, "|" ); writeonWithCommas( iSqrt( p7 ) );
            p7 := p7 * 49
        end for_p
    end task_test_cases
end.
Output:
Integer square roots of 0..65 (values the same as the previous one not shown):
 0:0 1:1... 4:2... 9:3... 16:4... 25:5... 36:6... 49:7... 64:8...

Integer square roots of 7^n, odd n
 n|           7^n|    isqrt(7^n)
 -+--------------+--------------
 1|             7|             2
 3|           343|            18
 5|        16,807|           129
 7|       823,543|           907
 9|    40,353,607|         6,352

ALGOL-M

The code presented here follows the task description. But be warned: there is a bug lurking in the algorithm as presented. The statement q := q * 4 in the first while loop will overflow the limits of ALGOL-M's integer data type (-16,383 to +16,383) for any value of x greater than 4095 and trigger an endless loop. The output has been put into columnar form to avoid what would otherwise be an ugly mess on a typical 80 column display.

BEGIN

COMMENT
    RETURN INTEGER SQUARE ROOT OF N USING QUADRATIC RESIDUE 
    ALGORITHM. WARNING: THE FUNCTION WILL FAIL FOR X GREATER
    THAN 4095;
INTEGER FUNCTION ISQRT(X);
INTEGER X;
BEGIN
    INTEGER Q, R, Z, T;
    Q := 1;
    WHILE Q <= X DO
        Q := Q * 4;   % WARNING! OVERFLOW YIELDS 0 %
    Z := X;
    R := 0;
    WHILE Q > 1 DO
        BEGIN
           Q := Q / 4;
           T := Z - R - Q;
           R := R / 2;
           IF T >= 0 THEN
               BEGIN
                   Z := T;
                   R := R + Q;
               END;
        END;
    ISQRT := R;
END;

COMMENT - LET'S EXERCISE THE FUNCTION;

INTEGER I, COL;
WRITE("INTEGER SQUARE ROOT OF FIRST 65 NUMBERS:");
WRITE("");
COL := 1;
FOR I := 1 STEP 1 UNTIL 65 DO
    BEGIN
        WRITEON(ISQRT(I));
        COL := COL + 1;
        IF COL > 10 THEN
            BEGIN
                WRITE("");
                COL := 1;
            END;
    END;

WRITE("");
WRITE("     N    7^N  ISQRT");
WRITE("--------------------");
COMMENT - ODD POWERS OF 7 GREATER THAN 3 WILL CAUSE OVERFLOW;
FOR I := 1 STEP 2 UNTIL 3 DO
    BEGIN
        INTEGER POW7;
        POW7 := 7**I;
        WRITE(I, POW7, ISQRT(POW7));
    END;
WRITE("THAT'S ALL. GOODBYE.");

END

An alternative to the quadratic residue approach will allow calculation of the integer square root for the full range of signed integer values supported by ALGOL-M. (The output is identical.)

% RETURN INTEGER SQUARE ROOT OF N %
INTEGER FUNCTION ISQRT(N);
INTEGER N;
BEGIN
    INTEGER R1, R2;
    R1 := N;
    R2 := 1;
    WHILE R1 > R2 DO
        BEGIN
            R1 := (R1+R2) / 2;
            R2 := N / R1;
        END;
    ISQRT := R1;
END;
Output:
INTEGER SQUARE ROOT OF FIRST 65 NUMBERS:
     1     1     1     2     2     2     2     2     3     3
     3     3     3     3     3     4     4     4     4     4
     4     4     4     4     5     5     5     5     5     5
     5     5     5     5     5     6     6     6     6     6
     6     6     6     6     6     6     6     6     7     7
     7     7     7     7     7     7     7     7     7     7
     7     7     7     8     8

     N    7^N  ISQRT
--------------------
     1     7     2
     3   343    18
THAT'S ALL. GOODBYE.

AppleScript

The odd-powers-of-7 part of the task is limited by the precision of AppleScript reals.

on isqrt(x)
    set q to 1
    repeat until (q > x)
        set q to q * 4
    end repeat
    set z to x
    set r to 0
    repeat while (q > 1)
        set q to q div 4
        set t to z - r - q
        set r to r div 2
        if (t > -1) then
            set z to t
            set r to r + q
        end if
    end repeat
    
    return r
end isqrt

-- Task code
on intToText(n, separator)
    set output to ""
    repeat until (n < 1000)
        set output to separator & (text 2 thru 4 of ((1000 + (n mod 1000) as integer) as text)) & output
        set n to n div 1000
    end repeat
    
    return (n as integer as text) & output
end intToText

on doTask()
    -- Get the integer and power results.
    set {integerResults, powerResults} to {{}, {}}
    repeat with x from 0 to 65
        set end of integerResults to isqrt(x)
    end repeat
    repeat with p from 1 to 73 by 2
        set x to 7 ^ p
        if (x > 1.0E+15) then exit repeat -- Beyond the precision of AppleScript reals.
        set end of powerResults to "7^" & p & tab & "(" & intToText(x, ",") & "):" & (tab & tab & intToText(isqrt(x), ","))
    end repeat
    -- Format and output.
    set astid to AppleScript's text item delimiters
    set AppleScript's text item delimiters to space
    set output to {"Isqrts of integers from 0 to 65:", space & integerResults, ¬
        "Isqrts of odd powers of 7 from 1 to " & (p - 2) & ":", powerResults}
    set AppleScript's text item delimiters to linefeed
    set output to output as text
    set AppleScript's text item delimiters to astid
    
    return output
end doTask

doTask()
Output:
"Isqrts of integers from 0 to 65:
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
Isqrts of odd powers of 7 from 1 to 17:
7^1	(7):		2
7^3	(343):		18
7^5	(16,807):		129
7^7	(823,543):		907
7^9	(40,353,607):		6,352
7^11	(1,977,326,743):		44,467
7^13	(96,889,010,407):		311,269
7^15	(4,747,561,509,943):		2,178,889
7^17	(232,630,513,987,207):		15,252,229"

APL

Works in Dyalog APL

 i{x
    q(×4){>x}1
    {  r z q
        qq÷4
        t(z-r)-q
        rr÷2
        zz t[1+t0]
        rr+q×t0
        r z q
    }{ r z q
        q1
    }0 x q
 }
Output:
      i¨⍳65
1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6

       6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

      (⎕fr⎕pp)←1287 34
      ↑{⍵ (7*⍵) (i 7*⍵)}¨1,1+2×⍳10
 1                  7         2
 3                343        18
 5              16807       129
 7             823543       907
 9           40353607      6352
11         1977326743     44467
13        96889010407    311269
15      4747561509943   2178889
17    232630513987207  15252229
19  11398895185373143 106765608
21 558545864083284007 747359260

Arturo

commatize: function [x][
    reverse join.with:"," map split.every: 3 split reverse to :string x => join
]

isqrt: function [x][
    num: new x
    q: new 1
    r: new 0

    while [q =< num]-> shl.safe 'q 2
    while [q > 1][
        shr 'q 2
        t: (num-r)-q
        shr 'r 1
        if t >= 0 [
            num: t
            r: new r+q
        ]
    ]
    return r
]

print map 0..65 => isqrt
 
loop range 1 .step: 2 72 'n ->
    print [n "\t" commatize isqrt 7^n]
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
1 	 2 
3 	 18 
5 	 129 
7 	 907 
9 	 6,352 
11 	 44,467 
13 	 311,269 
15 	 2,178,889 
17 	 15,252,229 
19 	 106,765,608 
21 	 747,359,260 
23 	 5,231,514,822 
25 	 36,620,603,758 
27 	 256,344,226,312 
29 	 1,794,409,584,184 
31 	 12,560,867,089,291 
33 	 87,926,069,625,040 
35 	 615,482,487,375,282 
37 	 4,308,377,411,626,977 
39 	 30,158,641,881,388,842 
41 	 211,110,493,169,721,897 
43 	 1,477,773,452,188,053,281 
45 	 10,344,414,165,316,372,973 
47 	 72,410,899,157,214,610,812 
49 	 506,876,294,100,502,275,687 
51 	 3,548,134,058,703,515,929,815 
53 	 24,836,938,410,924,611,508,707 
55 	 173,858,568,876,472,280,560,953 
57 	 1,217,009,982,135,305,963,926,677 
59 	 8,519,069,874,947,141,747,486,745 
61 	 59,633,489,124,629,992,232,407,216 
63 	 417,434,423,872,409,945,626,850,517 
65 	 2,922,040,967,106,869,619,387,953,625 
67 	 20,454,286,769,748,087,335,715,675,381 
69 	 143,180,007,388,236,611,350,009,727,669 
71 	 1,002,260,051,717,656,279,450,068,093,686

ATS

Big integers are achieved via the GNU Multiple Precision interface, which enforces proper memory management, without the need for a garbage collector. I felt that, in ATS, using GMP would be almost as simple as writing isqrt only for machine-native integers. One has to try it, to see the advantage of using a compiler that tells you when you have left out an initialization or a "free".

One might note the construction of a "comma'd numeral" by consing of a linked list. This method will work in any Lisp, ML, etc., also. Here the lists are of type "list_vt" and so enforce proper memory management, even in absence of a garbage collector.


(*

Compile with "myatscc isqrt.dats", thus obtaining an executable called
"isqrt".

##myatsccdef=\
patscc -O2 \
  -I"${PATSHOME}/contrib/atscntrb" \
  -IATS "${PATSHOME}/contrib/atscntrb" \
  -D_GNU_SOURCE -DATS_MEMALLOC_LIBC \
  -o $fname($1) $1 -lgmp

*)

#include "share/atspre_staload.hats"

(* An interface to GNU Multiple Precision. The type system will help
   ensure that you do "mpz_clear" on whatever you allocate. *)
staload "atscntrb-hx-libgmp/SATS/gmp.sats"

(* As of this writing, gmp.dats is empty, but it does no harm to
   staload it. *)
staload _ = "atscntrb-hx-libgmp/DATS/gmp.dats"

fn
find_a_power_of_4_greater_than_x
          (x : &mpz,            (* Input. *)
           q : &mpz? >> mpz)    (* Output. *)
    : void =
  let
    fun
    loop (x : &mpz, q : &mpz) : void =
      if 0 <= mpz_cmp (x, q) then
        begin
          mpz_mul (q, 4u);
          loop (x, q)
        end
  in
    mpz_init_set (q, 1u);
    loop (x, q)
  end

fn
isqrt_and_remainder
          (x : &mpz,            (* Input. *)
           r : &mpz? >> mpz,    (* Output: square root. *)
           z : &mpz? >> mpz)    (* Output: remainder. *)
    : void =
  let
    fun
    loop (q : &mpz, z : &mpz, r : &mpz, t : &mpz) : void =
      if 0 < mpz_cmp (q, 1u) then
        begin
          mpz_tdiv_q (q, 4u);
          mpz_set_mpz (t, z);
          mpz_sub (t, r);
          mpz_sub (t, q);
          mpz_tdiv_q (r, 2u);
          if 0 <= mpz_cmp (t, 0u) then
            begin
              mpz_set_mpz (z, t);
              mpz_add (r, q);
            end;
          loop (q, z, r, t);
        end

    var q : mpz
    var t : mpz
  in
    find_a_power_of_4_greater_than_x (x, q);
    mpz_init_set (z, x);
    mpz_init_set (r, 0u);
    mpz_init (t);

    loop (q, z, r, t);

    mpz_clear (q);
    mpz_clear (t);
  end

fn
isqrt (x : &mpz,                (* Input. *)
       r : &mpz? >> mpz)        (* Output: square root. *)
    : void =
  let
    var z : mpz
  in
    isqrt_and_remainder (x, r, z);
    mpz_clear (z);
  end

fn
print_n_spaces (n : uint) : void =
  let
    var i : [i : nat] uint i
  in
    for (i := 0u; i < n; i := succ i)
      print! (" ")
  end

fn
print_with_commas (n           : &mpz,
                   num_columns : uint) : void =
  let
    fun
    make_list (q   : &mpz,
               r   : &mpz,
               lst : List0_vt char,
               i   : uint) : List_vt char =
      if mpz_cmp (q, 0u) = 0 then
        lst
      else
        let
          val _ = mpz_tdiv_qr (q, r, 10u)
          val ones_place = mpz_get_int (r)
          val digit = int2char0 (ones_place + char2i '0')
        in
          if i = 3u then
            let
              val lst = list_vt_cons (',', lst)
              val lst = list_vt_cons (digit, lst)
            in
              make_list (q, r, lst, 1u)
            end
          else
            let
              val lst = list_vt_cons (digit, lst)
            in
              make_list (q, r, lst, succ i)
            end
        end

    var q : mpz
    var r : mpz

    val _ = mpz_init_set (q, n)
    val _ = mpz_init (r)
    val char_lst = make_list (q, r, list_vt_nil (), 0u)
    val _ = mpz_clear (q)
    val _ = mpz_clear (r)

    fun
    print_and_consume_lst (char_lst : List0_vt char) : void =
      case+ char_lst of
      | ~ list_vt_nil () => ()
      | ~ list_vt_cons (head, tail) =>
        begin
          print! (head);
          print_and_consume_lst (tail);
        end

    prval _ = lemma_list_vt_param (char_lst)
    val len = i2u (list_vt_length (char_lst))
  in
    assertloc (len <= num_columns);
    print_n_spaces (num_columns - len);
    print_and_consume_lst (char_lst)
  end

fn
do_the_roots_of_0_to_65 () : void =
  let
    var i : mpz
  in
    mpz_init_set (i, 0u);
    while (mpz_cmp (i, 65u) <= 0)
      let
        var r : mpz
      in
        isqrt (i, r);
        fprint (stdout_ref, r);
        print! (" ");
        mpz_add (i, 1u);
        mpz_clear (r);
      end;
    mpz_clear (i);
  end

fn
do_the_roots_of_odd_powers_of_7 () : void =
  let
    var seven : mpz
    var seven_raised_i : mpz
    var i_mpz : mpz
    var i : [i : pos] uint i
  in
    mpz_init_set (seven, 7u);
    mpz_init (seven_raised_i);
    mpz_init (i_mpz);
    for (i := 1u; i <= 73u; i := succ (succ i))
      let
        var r : mpz
      in
        mpz_pow_uint (seven_raised_i, seven, i);
        isqrt (seven_raised_i, r);
        mpz_set_uint (i_mpz, i);
        print_with_commas (i_mpz, 2u);
        print! (" ");
        print_with_commas (seven_raised_i, 84u);
        print! (" ");
        print_with_commas (r, 43u);
        print! ("\n");
        mpz_clear (r);
      end;
    mpz_clear (seven);
    mpz_clear (seven_raised_i);
    mpz_clear (i_mpz);
  end

implement
main0 () =
  begin
    print! ("isqrt(i) for 0 <= i <= 65:\n\n");
    do_the_roots_of_0_to_65 ();
    print! ("\n\n\n");
    print! ("isqrt(7**i) for 1 <= i <= 73, i odd:\n\n");
    print! (" i                                                                                 7**i                                  sqrt(7**i)\n");
    print! ("-----------------------------------------------------------------------------------------------------------------------------------\n");
    do_the_roots_of_odd_powers_of_7 ();
  end
Output:
$ myatscc isqrt.dats
$ ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

BASIC256

print "Integer square root of first 65 numbers:"
for n = 1 to 65
    print ljust(isqrt(n),3);
next n
print : print
print "Integer square root of odd powers of 7"
print "  n                 7^n       isqrt"
print "-"*36
for n = 1 to 21 step 2
    pow7 = int(7 ^ n)
    print rjust(n,3);rjust(pow7,20);rjust(isqrt(pow7),12)
next n
end

function isqrt(x)
    q = 1
    while q <= x
        q *= 4
    end while
    r = 0
    while q > 1
        q /= 4
        t = x - r - q
        r /= 2
        if t >= 0 then
            x = t
            r += q
        end if
    end while
    return int(r)
end function

C

Translation of: C++

Up to 64-bit limits with no big int library.

#include <stdint.h>
#include <stdio.h>

int64_t isqrt(int64_t x) {
    int64_t q = 1, r = 0;
    while (q <= x) {
        q <<= 2;
    }
    while (q > 1) {
        int64_t t;
        q >>= 2;
        t = x - r - q;
        r >>= 1;
        if (t >= 0) {
            x = t;
            r += q;
        }
    }
    return r;
}

int main() {
    int64_t p;
    int n;

    printf("Integer square root for numbers 0 to 65:\n");
    for (n = 0; n <= 65; n++) {
        printf("%lld ", isqrt(n));
    }
    printf("\n\n");

    printf("Integer square roots of odd powers of 7 from 1 to 21:\n");
    printf(" n |              7 ^ n | isqrt(7 ^ n)\n");
    p = 7;
    for (n = 1; n <= 21; n += 2, p *= 49) {
        printf("%2d | %18lld | %12lld\n", n, p, isqrt(p));
    }
}
Output:
Integer square root for numbers 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

Integer square roots of odd powers of 7 from 1 to 21:
 n |              7 ^ n | isqrt(7 ^ n)
 1 |                  7 |            2
 3 |                343 |           18
 5 |              16807 |          129
 7 |             823543 |          907
 9 |           40353607 |         6352
11 |         1977326743 |        44467
13 |        96889010407 |       311269
15 |      4747561509943 |      2178889
17 |    232630513987207 |     15252229
19 |  11398895185373143 |    106765608
21 | 558545864083284007 |    747359260

C++

Library: Boost
#include <iomanip>
#include <iostream>
#include <sstream>
#include <boost/multiprecision/cpp_int.hpp>

using big_int = boost::multiprecision::cpp_int;

template <typename integer>
integer isqrt(integer x) {
    integer q = 1;
    while (q <= x)
        q <<= 2;
    integer r = 0;
    while (q > 1) {
        q >>= 2;
        integer t = x - r - q;
        r >>= 1;
        if (t >= 0) {
            x = t;
            r += q;
        }
    }
    return r;
}

std::string commatize(const big_int& n) {
    std::ostringstream out;
    out << n;
    std::string str(out.str());
    std::string result;
    size_t digits = str.size();
    result.reserve(4 * digits/3);
    for (size_t i = 0; i < digits; ++i) {
        if (i > 0 && i % 3 == digits % 3)
            result += ',';
        result += str[i];
    }
    return result;
}

int main() {
    std::cout << "Integer square root for numbers 0 to 65:\n";
    for (int n = 0; n <= 65; ++n)
        std::cout << isqrt(n) << ' ';
    std::cout << "\n\n";

    std::cout << "Integer square roots of odd powers of 7 from 1 to 73:\n";
    const int power_width = 83, isqrt_width = 42;
    std::cout << " n |"
        << std::setw(power_width) << "7 ^ n" << " |"
        << std::setw(isqrt_width) << "isqrt(7 ^ n)"
        << '\n';
    std::cout << std::string(6 + power_width + isqrt_width, '-') << '\n';
    big_int p = 7;
    for (int n = 1; n <= 73; n += 2, p *= 49) {
        std::cout << std::setw(2) << n << " |"
            << std::setw(power_width) << commatize(p) << " |"
            << std::setw(isqrt_width) << commatize(isqrt(p))
            << '\n';
    }
    return 0;
}
Output:
Integer square root for numbers 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of odd powers of 7 from 1 to 73:
 n |                                                                              7 ^ n |                              isqrt(7 ^ n)
-----------------------------------------------------------------------------------------------------------------------------------
 1 |                                                                                  7 |                                         2
 3 |                                                                                343 |                                        18
 5 |                                                                             16,807 |                                       129
 7 |                                                                            823,543 |                                       907
 9 |                                                                         40,353,607 |                                     6,352
11 |                                                                      1,977,326,743 |                                    44,467
13 |                                                                     96,889,010,407 |                                   311,269
15 |                                                                  4,747,561,509,943 |                                 2,178,889
17 |                                                                232,630,513,987,207 |                                15,252,229
19 |                                                             11,398,895,185,373,143 |                               106,765,608
21 |                                                            558,545,864,083,284,007 |                               747,359,260
23 |                                                         27,368,747,340,080,916,343 |                             5,231,514,822
25 |                                                      1,341,068,619,663,964,900,807 |                            36,620,603,758
27 |                                                     65,712,362,363,534,280,139,543 |                           256,344,226,312
29 |                                                  3,219,905,755,813,179,726,837,607 |                         1,794,409,584,184
31 |                                                157,775,382,034,845,806,615,042,743 |                        12,560,867,089,291
33 |                                              7,730,993,719,707,444,524,137,094,407 |                        87,926,069,625,040
35 |                                            378,818,692,265,664,781,682,717,625,943 |                       615,482,487,375,282
37 |                                         18,562,115,921,017,574,302,453,163,671,207 |                     4,308,377,411,626,977
39 |                                        909,543,680,129,861,140,820,205,019,889,143 |                    30,158,641,881,388,842
41 |                                     44,567,640,326,363,195,900,190,045,974,568,007 |                   211,110,493,169,721,897
43 |                                  2,183,814,375,991,796,599,109,312,252,753,832,343 |                 1,477,773,452,188,053,281
45 |                                107,006,904,423,598,033,356,356,300,384,937,784,807 |                10,344,414,165,316,372,973
47 |                              5,243,338,316,756,303,634,461,458,718,861,951,455,543 |                72,410,899,157,214,610,812
49 |                            256,923,577,521,058,878,088,611,477,224,235,621,321,607 |               506,876,294,100,502,275,687
51 |                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743 |             3,548,134,058,703,515,929,815
53 |                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407 |            24,836,938,410,924,611,508,707
55 |                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943 |           173,858,568,876,472,280,560,953
57 |                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207 |         1,217,009,982,135,305,963,926,677
59 |                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143 |         8,519,069,874,947,141,747,486,745
61 |              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007 |        59,633,489,124,629,992,232,407,216
63 |            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343 |       417,434,423,872,409,945,626,850,517
65 |          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807 |     2,922,040,967,106,869,619,387,953,625
67 |        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543 |    20,454,286,769,748,087,335,715,675,381
69 |     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607 |   143,180,007,388,236,611,350,009,727,669
71 |  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 | 1,002,260,051,717,656,279,450,068,093,686
73 | 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 | 7,015,820,362,023,593,956,150,476,655,802

C#

using System;
using static System.Console;
using BI = System.Numerics.BigInteger;
 
class Program {
 
    static BI isqrt(BI x) { BI q = 1, r = 0, t; while (q <= x) q <<= 2; while (q > 1) {
        q >>= 2; t = x - r - q; r >>= 1; if (t >= 0) { x = t; r += q; } } return r; }
 
    static void Main() { const int max = 73, smax = 65;
        int power_width = ((BI.Pow(7, max).ToString().Length / 3) << 2) + 3,
            isqrt_width = (power_width + 1) >> 1;
        WriteLine("Integer square root for numbers 0 to {0}:", smax);
        for (int n = 0; n <= smax; ++n) Write("{0} ", 
            (n / 10).ToString().Replace("0", " ")); WriteLine();
        for (int n = 0; n <= smax; ++n) Write("{0} ", n % 10); WriteLine();
        WriteLine(new String('-', (smax << 1) + 1));
        for (int n = 0; n <= smax; ++n) Write("{0} ", isqrt(n));
        WriteLine("\n\nInteger square roots of odd powers of 7 from 1 to {0}:", max);
        string s = string.Format("[0,2] |[1,{0}:n0] |[2,{1}:n0]",
            power_width, isqrt_width).Replace("[", "{").Replace("]", "}");
        WriteLine(s, "n", "7 ^ n", "isqrt(7 ^ n)");
        WriteLine(new String('-', power_width + isqrt_width + 6));
        BI p = 7; for (int n = 1; n <= max; n += 2, p *= 49)
            WriteLine (s, n, p, isqrt(p)); }
}
Output:
Integer square root for numbers 0 to 65:
                    1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
-----------------------------------------------------------------------------------------------------------------------------------
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of odd powers of 7 from 1 to 73:
 n |                                                                              7 ^ n |                              isqrt(7 ^ n)
-----------------------------------------------------------------------------------------------------------------------------------
 1 |                                                                                  7 |                                         2
 3 |                                                                                343 |                                        18
 5 |                                                                             16,807 |                                       129
 7 |                                                                            823,543 |                                       907
 9 |                                                                         40,353,607 |                                     6,352
11 |                                                                      1,977,326,743 |                                    44,467
13 |                                                                     96,889,010,407 |                                   311,269
15 |                                                                  4,747,561,509,943 |                                 2,178,889
17 |                                                                232,630,513,987,207 |                                15,252,229
19 |                                                             11,398,895,185,373,143 |                               106,765,608
21 |                                                            558,545,864,083,284,007 |                               747,359,260
23 |                                                         27,368,747,340,080,916,343 |                             5,231,514,822
25 |                                                      1,341,068,619,663,964,900,807 |                            36,620,603,758
27 |                                                     65,712,362,363,534,280,139,543 |                           256,344,226,312
29 |                                                  3,219,905,755,813,179,726,837,607 |                         1,794,409,584,184
31 |                                                157,775,382,034,845,806,615,042,743 |                        12,560,867,089,291
33 |                                              7,730,993,719,707,444,524,137,094,407 |                        87,926,069,625,040
35 |                                            378,818,692,265,664,781,682,717,625,943 |                       615,482,487,375,282
37 |                                         18,562,115,921,017,574,302,453,163,671,207 |                     4,308,377,411,626,977
39 |                                        909,543,680,129,861,140,820,205,019,889,143 |                    30,158,641,881,388,842
41 |                                     44,567,640,326,363,195,900,190,045,974,568,007 |                   211,110,493,169,721,897
43 |                                  2,183,814,375,991,796,599,109,312,252,753,832,343 |                 1,477,773,452,188,053,281
45 |                                107,006,904,423,598,033,356,356,300,384,937,784,807 |                10,344,414,165,316,372,973
47 |                              5,243,338,316,756,303,634,461,458,718,861,951,455,543 |                72,410,899,157,214,610,812
49 |                            256,923,577,521,058,878,088,611,477,224,235,621,321,607 |               506,876,294,100,502,275,687
51 |                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743 |             3,548,134,058,703,515,929,815
53 |                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407 |            24,836,938,410,924,611,508,707
55 |                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943 |           173,858,568,876,472,280,560,953
57 |                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207 |         1,217,009,982,135,305,963,926,677
59 |                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143 |         8,519,069,874,947,141,747,486,745
61 |              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007 |        59,633,489,124,629,992,232,407,216
63 |            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343 |       417,434,423,872,409,945,626,850,517
65 |          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807 |     2,922,040,967,106,869,619,387,953,625
67 |        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543 |    20,454,286,769,748,087,335,715,675,381
69 |     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607 |   143,180,007,388,236,611,350,009,727,669
71 |  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 | 1,002,260,051,717,656,279,450,068,093,686
73 | 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 | 7,015,820,362,023,593,956,150,476,655,802

CLU

% This program uses the 'bigint' cluster from PCLU's 'misc.lib'

% Integer square root of a bigint
isqrt = proc (x: bigint) returns (bigint)
    % Initialize a couple of bigints we will reuse
    own zero: bigint := bigint$i2bi(0)
    own one: bigint := bigint$i2bi(1)
    own two: bigint := bigint$i2bi(2)
    own four: bigint := bigint$i2bi(4)
    
    q: bigint := one
    while q <= x do q := q * four end
    
    t: bigint
    z: bigint := x
    r: bigint := zero
    while q>one do
        q := q / four
        t := z - r - q
        r := r / two
        if t >= zero then
            z := t
            r := r + q
        end
    end 
    return(r)
end isqrt

% Format a bigint using commas
fmt = proc (x: bigint) returns (string)
    own zero: bigint := bigint$i2bi(0)
    own ten: bigint := bigint$i2bi(10)
    
    if x=zero then return("0") end 
    out: array[char] := array[char]$[]
    ds: int := 0
    while x>zero do
        array[char]$addl(out, char$i2c(bigint$bi2i(x // ten) + 48))
        x := x / ten
        ds := ds + 1
        if x~=zero cand ds//3=0 then
            array[char]$addl(out, ',')
        end
    end
    return(string$ac2s(out))
end fmt
        
    
start_up = proc ()
    po: stream := stream$primary_output()
    
    % print square roots from 0..65 
    stream$putl(po, "isqrt of 0..65:")
    for i: int in int$from_to(0, 65) do
        stream$puts(po, fmt(isqrt(bigint$i2bi(i))) || " ")
    end
    
    % print square roots of odd powers 
    stream$putl(po, "\n\nisqrt of odd powers of 7:")
    seven: bigint := bigint$i2bi(7)
    for p: int in int$from_to_by(1, 73, 2) do
        stream$puts(po, "isqrt(7^")
        stream$putright(po, int$unparse(p), 2)
        stream$puts(po, ") = ")
        stream$putright(po, fmt(isqrt(seven ** bigint$i2bi(p))), 41)
        stream$putl(po, "")
    end
end start_up
Output:
isqrt of 0..65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

isqrt of odd powers of 7:
isqrt(7^ 1) =                                         2
isqrt(7^ 3) =                                        18
isqrt(7^ 5) =                                       129
isqrt(7^ 7) =                                       907
isqrt(7^ 9) =                                     6,352
isqrt(7^11) =                                    44,467
isqrt(7^13) =                                   311,269
isqrt(7^15) =                                 2,178,889
isqrt(7^17) =                                15,252,229
isqrt(7^19) =                               106,765,608
isqrt(7^21) =                               747,359,260
isqrt(7^23) =                             5,231,514,822
isqrt(7^25) =                            36,620,603,758
isqrt(7^27) =                           256,344,226,312
isqrt(7^29) =                         1,794,409,584,184
isqrt(7^31) =                        12,560,867,089,291
isqrt(7^33) =                        87,926,069,625,040
isqrt(7^35) =                       615,482,487,375,282
isqrt(7^37) =                     4,308,377,411,626,977
isqrt(7^39) =                    30,158,641,881,388,842
isqrt(7^41) =                   211,110,493,169,721,897
isqrt(7^43) =                 1,477,773,452,188,053,281
isqrt(7^45) =                10,344,414,165,316,372,973
isqrt(7^47) =                72,410,899,157,214,610,812
isqrt(7^49) =               506,876,294,100,502,275,687
isqrt(7^51) =             3,548,134,058,703,515,929,815
isqrt(7^53) =            24,836,938,410,924,611,508,707
isqrt(7^55) =           173,858,568,876,472,280,560,953
isqrt(7^57) =         1,217,009,982,135,305,963,926,677
isqrt(7^59) =         8,519,069,874,947,141,747,486,745
isqrt(7^61) =        59,633,489,124,629,992,232,407,216
isqrt(7^63) =       417,434,423,872,409,945,626,850,517
isqrt(7^65) =     2,922,040,967,106,869,619,387,953,625
isqrt(7^67) =    20,454,286,769,748,087,335,715,675,381
isqrt(7^69) =   143,180,007,388,236,611,350,009,727,669
isqrt(7^71) = 1,002,260,051,717,656,279,450,068,093,686
isqrt(7^73) = 7,015,820,362,023,593,956,150,476,655,802


COBOL

The COBOL compiler used here is limited to 18-digit math, meaning 7^19 is the largest odd power of 7 that can be calculated.

       IDENTIFICATION DIVISION.
       PROGRAM-ID. I-SQRT.

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 QUAD-RET-VARS.
          03 X          PIC 9(18).
          03 Q          PIC 9(18).
          03 Z          PIC 9(18).
          03 T          PIC S9(18).
          03 R          PIC 9(18).

       01 TO-65-VARS.
          03 ISQRT-N    PIC 99.
          03 DISP-LN    PIC X(22) VALUE SPACES.
          03 DISP-FMT   PIC Z9.
          03 PTR        PIC 99 VALUE 1.

       01 BIG-SQRT-VARS.
          03 POW-7      PIC 9(18) VALUE 7.
          03 POW-N      PIC 99 VALUE 1.
          03 POW-N-OUT  PIC Z9.
          03 POW-7-OUT  PIC Z(10).

       PROCEDURE DIVISION.
       BEGIN.
           PERFORM SQRTS-TO-65.
           PERFORM BIG-SQRTS.
           STOP RUN.

       SQRTS-TO-65.
           PERFORM DISP-SMALL-SQRT
           VARYING ISQRT-N FROM 0 BY 1
           UNTIL ISQRT-N IS GREATER THAN 65.

       DISP-SMALL-SQRT.
           MOVE ISQRT-N TO X.
           PERFORM ISQRT.
           MOVE R TO DISP-FMT.
           STRING DISP-FMT DELIMITED BY SIZE INTO DISP-LN 
           WITH POINTER PTR.
           IF PTR IS GREATER THAN 22, 
               DISPLAY DISP-LN, 
               MOVE 1 TO PTR.

       BIG-SQRTS.
           PERFORM BIG-SQRT 10 TIMES.
 
       BIG-SQRT.
           MOVE POW-7 TO X.
           PERFORM ISQRT.
           MOVE POW-N TO POW-N-OUT. 
           MOVE R TO POW-7-OUT. 
           DISPLAY "ISQRT(7^" POW-N-OUT ") = " POW-7-OUT.
           ADD 2 TO POW-N.
           MULTIPLY 49 BY POW-7.

       ISQRT.
           MOVE 1 TO Q.
           PERFORM MUL-Q-BY-4 UNTIL Q IS GREATER THAN X.
           MOVE X TO Z.
           MOVE ZERO TO R.
           PERFORM ISQRT-STEP UNTIL Q IS NOT GREATER THAN 1. 

       MUL-Q-BY-4.
           MULTIPLY 4 BY Q.

       ISQRT-STEP.
           DIVIDE 4 INTO Q.
           COMPUTE T = Z - R - Q.
           DIVIDE 2 INTO R.
           IF T IS NOT LESS THAN ZERO,
               MOVE T TO Z,
               ADD Q TO R.
Output:
 0 1 1 1 2 2 2 2 2 3 3
 3 3 3 3 3 4 4 4 4 4 4
 4 4 4 5 5 5 5 5 5 5 5
 5 5 5 6 6 6 6 6 6 6 6
 6 6 6 6 6 7 7 7 7 7 7
 7 7 7 7 7 7 7 7 7 8 8
ISQRT(7^ 1) =          2
ISQRT(7^ 3) =         18
ISQRT(7^ 5) =        129
ISQRT(7^ 7) =        907
ISQRT(7^ 9) =       6352
ISQRT(7^11) =      44467
ISQRT(7^13) =     311269
ISQRT(7^15) =    2178889
ISQRT(7^17) =   15252229
ISQRT(7^19) =  106765608


Common Lisp

Translation of: Scheme


The program is wrapped in a Roswell script. On a POSIX system with Roswell installed, you can simply run the script.

The code is an "imperative" translation of the "functional" Scheme.

Side notes:

  • Straight translations from Scheme to Common Lisp run the risk of running properly with some CL compilers but not others, due to the prevalence of tail calls in Scheme. Common Lisp does not require proper tail calls, although CL compilers do optimize such calls, to varying degrees depending on the compiler.
  • The simple program here would not require tail call optimization at all; the depth of recursion would be too small. I felt it better to write the CL in "imperative" style nonetheless.
  • Not all Scheme compilers make all tail calls proper, either, at least by default. This, however, is nonstandard behavior.


#!/bin/sh
#|-*- mode:lisp -*-|#
#|
exec ros -Q -- $0 "$@"
|#
(progn ;;init forms
  (ros:ensure-asdf)
  #+quicklisp(ql:quickload '() :silent t)
  )

(defpackage :ros.script.isqrt.3860764029
  (:use :cl))
(in-package :ros.script.isqrt.3860764029)

;;
;; The Rosetta Code integer square root task, in Common Lisp.
;;
;; I translate the tail recursions of the Scheme as regular loops in
;; Common Lisp, although CL compilers most often can optimize tail
;; recursions of the kind. They are not required to, however.
;;
;; As a result, the CL is actually closer to the task's pseudocode
;; than is the Scheme.
;;
;; (The Scheme, by the way, could have been written much as follows,
;; using "set!" where the CL has "setf", and with other such
;; "linguistic" changes.)
;;

(defun find-a-power-of-4-greater-than-x (x)
  (let ((q 1))
    (loop until (< x q)
          do (setf q (* 4 q)))
    q))

(defun isqrt+remainder (x)
  (let ((q (find-a-power-of-4-greater-than-x x))
        (z x)
        (r 0))
    (loop until (= q 1)
          do (progn (setf q (/ q 4))
                    (let ((z1 (- z r q)))
                      (setf r (/ r 2))
                      (when (<= 0 z1)
                        (setf z z1)
                        (setf r (+ r q))))))
    (values r z)))

(defun rosetta_code_isqrt (x)
  (nth-value 0 (isqrt+remainder x)))

(defun main (&rest argv)
  (declare (ignorable argv))
  (format t "isqrt(i) for ~D <= i <= ~D:~2%" 0 65)
  (loop for i from 0 to 64
        do (format t "~D " (isqrt i)))
  (format t "~D~3%" (isqrt 65))
  (format t "isqrt(7**i) for ~D <= i <= ~D, i odd:~2%" 1 73)
  (format t "~2@A ~84@A ~43@A~%" "i" "7**i" "sqrt(7**i)")
  (format t "~A~%" (make-string 131 :initial-element #\-))
  (loop for i from 1 to 73 by 2
        for 7**i = (expt 7 i)
        for root = (rosetta_code_isqrt 7**i)
        do (format t "~2D ~84:D ~43:D~%" i 7**i root)))

;;; vim: set ft=lisp lisp:
Output:
$ sh isqrt.ros
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

Cowgol

include "cowgol.coh";

# Integer square root
sub isqrt(x: uint32): (x0: uint32) is
    x0 := x >> 1;
    if x0 == 0 then
        x0 := x;
        return;
    end if;
    loop    
        var x1 := (x0 + x/x0) >> 1;
        if x1 >= x0 then
            break;
        end if;
        x0 := x1;
    end loop;
end sub;

# Power
sub pow(x: uint32, n: uint8): (r: uint32) is
    r := 1;
    while n > 0 loop
        r := r * x;
        n := n - 1;
    end loop;
end sub;

# Print integer square roots of 0..65
var n: uint32 := 0;
var col: uint8 := 11;
while n <= 65 loop
    print_i32(isqrt(n));
    col := col - 1;
    if col == 0 then
        print_nl();
        col := 11;
    else
        print_char(' ');
    end if;
    n := n + 1;
end loop;

# Cowgol only supports 32-bit integers out of the box, so only powers of 7
# up to 7^11 are printed
var x: uint8 := 0;
while x <= 11 loop 
    print("isqrt(7^");
    print_i8(x);
    print(") = ");
    print_i32(isqrt(pow(7, x)));
    print_nl();
    x := x + 1;
end loop;
Output:
0 1 1 1 2 2 2 2 2 3 3
3 3 3 3 3 4 4 4 4 4 4
4 4 4 5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6 6 6 6
6 6 6 6 6 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 8 8
isqrt(7^0) = 1
isqrt(7^1) = 2
isqrt(7^2) = 7
isqrt(7^3) = 18
isqrt(7^4) = 49
isqrt(7^5) = 129
isqrt(7^6) = 343
isqrt(7^7) = 907
isqrt(7^8) = 2401
isqrt(7^9) = 6352
isqrt(7^10) = 16807
isqrt(7^11) = 44467

Craft Basic

alert "integer square root of first 65 numbers:"

for n = 1 to 65

	let x = n
	gosub isqrt
	print r

next n

alert "integer square root of odd powers of 7"
cls
cursor 1, 1

for n = 1 to 21 step 2

	let x = 7 ^ n
	gosub isqrt
	print "isqrt of 7 ^ ", n, " = ", r  

next n

end

sub isqrt

	let q = 1

	do

		if q <= x then

			let q = q * 4

		endif

		wait

	loop q <= x

	let r = 0

	do

		if q > 1 then

			let q = q / 4
			let t = x - r - q
			let r = r / 2

			if t >= 0 then

				let x = t
				let r = r + q

			endif

		endif

	loop q > 1

	let r = int(r)

return
Output:
integer square root of first 65 numbers:

1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

integer square root of odd powers of 7: isqrt of 7 ^ 1 = 2 isqrt of 7 ^ 3 = 18 isqrt of 7 ^ 5 = 129 isqrt of 7 ^ 7 = 907

isqrt of 7 ^ 9 = 6352

D

Translation of: Kotlin
import std.bigint;
import std.conv;
import std.exception;
import std.range;
import std.regex;
import std.stdio;

//Taken from the task http://rosettacode.org/wiki/Commatizing_numbers#D
auto commatize(in char[] txt, in uint start=0, in uint step=3, in string ins=",") @safe
in {
    assert(step > 0);
} body {
    if (start > txt.length || step > txt.length)    {
        return txt;
    }

    // First number may begin with digit or decimal point. Exponents ignored.
    enum decFloField = ctRegex!("[0-9]*\\.[0-9]+|[0-9]+");

    auto matchDec = matchFirst(txt[start .. $], decFloField);
    if (!matchDec) {
        return txt;
    }

    // Within a decimal float field:
    // A decimal integer field to commatize is positive and not after a point.
    enum decIntField = ctRegex!("(?<=\\.)|[1-9][0-9]*");
    // A decimal fractional field is preceded by a point, and is only digits.
    enum decFracField = ctRegex!("(?<=\\.)[0-9]+");

    return txt[0 .. start] ~ matchDec.pre ~ matchDec.hit
        .replace!(m => m.hit.retro.chunks(step).join(ins).retro)(decIntField)
        .replace!(m => m.hit.chunks(step).join(ins))(decFracField)
        ~ matchDec.post;
}

auto commatize(BigInt v) {
    return commatize(v.to!string);
}

BigInt sqrt(BigInt x) {
    enforce(x >= 0);

    auto q = BigInt(1);
    while (q <= x) {
        q <<= 2;
    }
    auto z = x;
    auto r = BigInt(0);
    while (q > 1) {
        q >>= 2;
        auto t = z;
        t -= r;
        t -= q;
        r >>= 1;
        if (t >= 0) {
            z = t;
            r += q;
        }
    }
    return r;
}

void main() {
    writeln("The integer square root of integers from 0 to 65 are:");
    foreach (i; 0..66) {
        write(sqrt(BigInt(i)), ' ');
    }
    writeln;

    writeln("The integer square roots of powers of 7 from 7^1 up to 7^73 are:");
    writeln("power                                    7 ^ power                                                 integer square root");
    writeln("----- --------------------------------------------------------------------------------- -----------------------------------------");
    auto pow7 = BigInt(7);
    immutable bi49 = BigInt(49);
    for (int i = 1; i <= 73; i += 2) {
        writefln("%2d %84s %41s", i, pow7.commatize, sqrt(pow7).commatize);
        pow7 *= bi49;
    }
}
Output:
The integer square root of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
The integer square roots of powers of 7 from 7^1 up to 7^73 are:
power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Delphi

See #Pascal.

Draco

Because all the intermediate values have to fit in a signed 32-bit integer, the largest power of 7 for which the square root can be calculated is 7^10.

/* Integer square root using quadratic residue method */
proc nonrec isqrt(ulong x) ulong:
    ulong q, z, r;
    long t;
    
    q := 1;
    while q <= x do q := q << 2 od;
    
    z := x;
    r := 0;
    while q > 1 do
        q := q >> 2;
        t := z - r - q;
        r := r >> 1;
        if t >= 0 then
            z := t;
            r := r + q
        fi
    od;
    
    r
corp

proc nonrec main() void:
    byte x;
    ulong pow7;
    
    /* print isqrt(0) ... isqrt(65) */
    for x from 0 upto 65 do
        write(isqrt(x):2);
        if x % 11 = 10 then writeln() fi
    od;
    
    /* print isqrt(7^0) thru isqrt(7^10) */
    pow7 := 1;
    for x from 0 upto 10 do
        writeln("isqrt(7^", x:2, ") = ", isqrt(pow7):5);
        pow7 := pow7 * 7
    od
corp
Output:
 0 1 1 1 2 2 2 2 2 3 3
 3 3 3 3 3 4 4 4 4 4 4
 4 4 4 5 5 5 5 5 5 5 5
 5 5 5 6 6 6 6 6 6 6 6
 6 6 6 6 6 7 7 7 7 7 7
 7 7 7 7 7 7 7 7 7 8 8
isqrt(7^ 0) =     1
isqrt(7^ 1) =     2
isqrt(7^ 2) =     7
isqrt(7^ 3) =    18
isqrt(7^ 4) =    49
isqrt(7^ 5) =   129
isqrt(7^ 6) =   343
isqrt(7^ 7) =   907
isqrt(7^ 8) =  2401
isqrt(7^ 9) =  6352
isqrt(7^10) = 16807

EasyLang

Translation of: Lua
func isqrt x .
   q = 1
   while q <= x
      q *= 4
   .
   while q > 1
      q = q div 4
      t = x - r - q
      r = r div 2
      if t >= 0
         x = t
         r = r + q
      .
   .
   return r
.
print "Integer square roots from 0 to 65:"
for n = 0 to 65
   write isqrt n & " "
.
print ""
print ""
print "Integer square roots of 7^n"
p = 7
n = 1
while n <= 21
   print n & " " & isqrt p
   n = n + 2
   p = p * 49
.


F#

// Find Integer Floor sqrt of a Large Integer. Nigel Galloway: July 17th., 2020
let Isqrt n=let rec fN i g l=match(l>0I,i-g-l) with
                              (true,e) when e>=0I->fN e (g/2I+l) (l/4I)
                             |(true,_)           ->fN i (g/2I)   (l/4I)
                             |_                  ->g
            fN n 0I (let rec fG g=if g>n then g/4I else fG (g*4I) in fG 1I)
[0I..65I]|>Seq.iter(Isqrt>>string>>printf "%s "); printfn "\n"
let fN n=7I**n in [1..2..73]|>Seq.iter(fN>>Isqrt>>printfn "%a" (fun n g -> n.Write("{0:#,#}", g)))
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

2
18
129
907
6,352
44,467
311,269
2,178,889
15,252,229
106,765,608
747,359,260
5,231,514,822
36,620,603,758
256,344,226,312
1,794,409,584,184
12,560,867,089,291
87,926,069,625,040
615,482,487,375,282
4,308,377,411,626,977
30,158,641,881,388,842
211,110,493,169,721,897
1,477,773,452,188,053,281
10,344,414,165,316,372,973
72,410,899,157,214,610,812
506,876,294,100,502,275,687
3,548,134,058,703,515,929,815
24,836,938,410,924,611,508,707
173,858,568,876,472,280,560,953
1,217,009,982,135,305,963,926,677
8,519,069,874,947,141,747,486,745
59,633,489,124,629,992,232,407,216
417,434,423,872,409,945,626,850,517
2,922,040,967,106,869,619,387,953,625
20,454,286,769,748,087,335,715,675,381
143,180,007,388,236,611,350,009,727,669
1,002,260,051,717,656,279,450,068,093,686
7,015,820,362,023,593,956,150,476,655,802

Factor

The isqrt word is a straightforward translation of the pseudocode from the task description using lexical variables.

Works with: Factor version 0.99 2020-07-03
USING: formatting io kernel locals math math.functions
math.ranges prettyprint sequences tools.memory.private ;

:: isqrt ( x -- n )
    1 :> q!
    [ q x > ] [ q 4 * q! ] until
    x 0 :> ( z! r! )    
    [ q 1 > ] [
        q 4 /i q!
        z r - q - :> t
        r -1 shift r!
        t 0 >= [
            t z!
            r q + r!
        ] when
    ] while
    r ;

"Integer square root for numbers 0 to 65 (inclusive):" print
66 <iota> [ bl ] [ isqrt pprint ] interleave nl nl

: align ( str str str -- ) "%2s%85s%44s\n" printf ;
: show ( n -- ) dup 7 swap ^ dup isqrt [ commas ] tri@ align ;

"x" "7^x" "isqrt(7^x)" align
"-" "---" "----------" align
1 73 2 <range> [ show ] each
Output:
Integer square root for numbers 0 to 65 (inclusive):
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

 x                                                                                  7^x                                  isqrt(7^x)
 -                                                                                  ---                                  ----------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

Fish

A function (isolated stack; remove the 1[ and ] instructions to create "inline" version) that calculates and outputs the square root of the top of the stack/input number.

Código sacado de https://esolangs.org/wiki/Fish

1[:>:r:@@:@,\;
]~$\!?={:,2+/n

Forth

Only handles odd powers of 7 up to 7^21.

: d., ( n -- ) \ write double precision int, commatized.
    tuck dabs
    <# begin  2dup 1.000 d>  while  # # # [char] , hold  repeat #s rot sign #>
    type space ;

: .,  ( n -- ) \ write integer commatized.
    s>d d., ;

: 4*  s" 2 lshift" evaluate ; immediate
: 4/  s" 2 rshift" evaluate ; immediate

: isqrt-mod ( n -- z r )  \ n = r^2 + z
    1 begin 2dup >= while 4* repeat
    0 locals| r q z |
    begin q 1 > while
        q 4/ to q
        z r - q - \ t
        r 2/ to r
        dup 0>= if
            to z
            r q + to r
        else
            drop
        then
    repeat z r ;

: isqrt  isqrt-mod nip ;

: task1
    ." Integer square roots from 0 to 65:" cr
    66 0 do  i isqrt .  loop cr ;

: task2
    ." Integer square roots of 7^n" cr
    7 11 0 do
        i 2* 1+ 2 .r 3 spaces
        dup isqrt ., cr
        49 *
    loop ;

task1 cr task2 bye

This version of the core word does not require locals.

: sqrt-rem                             ( n -- sqrt rem)
  >r 0 1 begin dup r@ > 0= while 4 * repeat
  begin                                \ find a power of 4 greater than TORS
    dup 1 >                            \ compute while greater than unity
  while
    2/ 2/ swap over over + negate r@ + \ integer divide by 4
    dup 0< if drop 2/ else r> drop >r 2/ over + then swap
  repeat drop r>                       ( sqrt rem)
;

: isqrt-mod sqrt-rem swap ;
Output:
Integer square roots from 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of 7^n
 1   2 
 3   18 
 5   129 
 7   907 
 9   6,352 
11   44,467 
13   311,269 
15   2,178,889 
17   15,252,229 
19   106,765,608 
21   747,359,260 

Fortran

MODULE INTEGER_SQUARE_ROOT
    IMPLICIT NONE

    CONTAINS
        
    ! Convert string representation number to string with comma digit separation
    FUNCTION COMMATIZE(NUM) RESULT(OUT_STR)
         INTEGER(16), INTENT(IN) :: NUM
         INTEGER(16) I 
         CHARACTER(83) :: TEMP, OUT_STR
         
         WRITE(TEMP, '(I0)') NUM

         OUT_STR = ""

         DO I=0, LEN_TRIM(TEMP)-1
             IF (MOD(I, 3) .EQ. 0 .AND. I .GT. 0 .AND. I .LT. LEN_TRIM(TEMP)) THEN
                  OUT_STR = "," // TRIM(OUT_STR)
             END IF
             OUT_STR = TEMP(LEN_TRIM(TEMP)-I:LEN_TRIM(TEMP)-I) // TRIM(OUT_STR)
         END DO
    END FUNCTION COMMATIZE


    ! Calculate the integer square root for a given integer
    FUNCTION ISQRT(NUM)
        INTEGER(16), INTENT(IN) :: NUM
        INTEGER(16) :: ISQRT
        INTEGER(16) :: Q, Z, R, T
    
        Q = 1
        Z = NUM
        R = 0
        T = 0
    
        DO WHILE (Q .LE. NUM)
            Q = Q * 4
        END DO
    
        DO WHILE (Q .GT. 1)
            Q = Q / 4
            T = Z - R - Q
            R = R / 2
            
            IF (T .GE. 0) THEN
                Z = T
                R = R + Q
            END IF
        END DO
    
        ISQRT = R
    END FUNCTION ISQRT

END MODULE INTEGER_SQUARE_ROOT


! Demonstration of integer square root for numbers 0-65 followed by odd powers of 7
! from 1-73. Currently this demo takes significant time for numbers above 43
PROGRAM ISQRT_DEMO
    USE INTEGER_SQUARE_ROOT
    IMPLICIT NONE


    INTEGER(16), PARAMETER :: MIN_NUM_HZ = 0
    INTEGER(16), PARAMETER :: MAX_NUM_HZ = 65
    INTEGER(16), PARAMETER :: POWER_BASE = 7
    INTEGER(16), PARAMETER :: POWER_MIN = 1
    INTEGER(16), PARAMETER :: POWER_MAX = 73
    INTEGER(16), DIMENSION(MAX_NUM_HZ-MIN_NUM_HZ+1) :: VALUES
    CHARACTER(2) :: HEADER_1
    CHARACTER(83) :: HEADER_2
    CHARACTER(83) :: HEADER_3

    INTEGER(16) :: I

    HEADER_1 = " n"
    HEADER_2 = "7^n"
    HEADER_3 = "isqrt(7^n)"

    WRITE(*,'(A, I0, A, I0)') "Integer square root for numbers ", MIN_NUM_HZ, " to ", MAX_NUM_HZ

    DO I=1, SIZE(VALUES)
        VALUES(I) = ISQRT(MIN_NUM_HZ+I)
    END DO

    WRITE(*,'(100I2)') VALUES
    WRITE(*,*) NEW_LINE('A')
    
    WRITE(*,'(A,A,A,A,A)') HEADER_1, " | ", HEADER_2, " | ", HEADER_3
    WRITE(*,*) REPEAT("-", 8+83*2)

    DO I=POWER_MIN,POWER_MAX, 2
        WRITE(*,'(I2, A, A, A, A)') I, " | " // COMMATIZE(7**I), " | ", COMMATIZE(ISQRT(7**I))
    END DO
        

 END PROGRAM ISQRT_DEMO
Integer square root for numbers 0 to 65
 0 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


 n | 7^n                                                                                 | isqrt(7^n)
 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 1 | 7                                                                                   | 2
 3 | 343                                                                                 | 18
 5 | 16,807                                                                              | 129
 7 | 823,543                                                                             | 907
 9 | 40,353,607                                                                          | 6,352
11 | 1,977,326,743                                                                       | 44,467
13 | 96,889,010,407                                                                      | 311,269
15 | 4,747,561,509,943                                                                   | 2,178,889
17 | 232,630,513,987,207                                                                 | 15,252,229
19 | 11,398,895,185,373,143                                                              | 106,765,608
21 | 558,545,864,083,284,007                                                             | 747,359,260
23 | 27,368,747,340,080,916,343                                                          | 5,231,514,822
25 | 1,341,068,619,663,964,900,807                                                       | 36,620,603,758
27 | 65,712,362,363,534,280,139,543                                                      | 256,344,226,312
29 | 3,219,905,755,813,179,726,837,607                                                   | 1,794,409,584,184
31 | 157,775,382,034,845,806,615,042,743                                                 | 12,560,867,089,291
33 | 7,730,993,719,707,444,524,137,094,407                                               | 87,926,069,625,040
35 | 378,818,692,265,664,781,682,717,625,943                                             | 615,482,487,375,282
37 | 18,562,115,921,017,574,302,453,163,671,207                                          | 4,308,377,411,626,977
39 | 909,543,680,129,861,140,820,205,019,889,143                                         | 30,158,641,881,388,842
41 | 44,567,640,326,363,195,900,190,045,974,568,007                                      | 211,110,493,169,721,897
43 | 2,183,814,375,991,796,599,109,312,252,753,832,343                                   | 1,477,773,452,188,053,281

FreeBASIC

Odd powers up to 7^21 are shown; more would require an arbitrary precision library that would just add bloat without being illustrative.

function isqrt( byval x as ulongint ) as ulongint
    dim as ulongint q = 1, r
    dim as longint t
    while q <= x
        q = q shl 2
    wend
    while q > 1
        q = q shr 2
        t = x - r - q
        r = r shr 1
        if t >= 0  then           
            x  = t
            r += q
        end if
    wend
    return r
end function

function commatize( byval N as string ) as string
    dim as string bloat = ""
    dim as uinteger c = 0
    while N<>""
        bloat = right(N,1) + bloat
        N = left(N, len(N)-1)
        c += 1
        if c mod 3 = 0 and N<>"" then bloat = "," + bloat
    wend
    return bloat
end function

for i as ulongint = 0 to 65
    print isqrt(i);" ";
next i
print

dim as string ns
for i as uinteger = 1 to 22 step 2
    ns = str(isqrt(7^i))
    print i, commatize(ns)
next i
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
1             2
3             18
5             129
7             907
9             6,352
11            44,467
13            311,269
15            2,178,889
17            15,252,229
19            106,765,608
21            747,359,260


FutureBasic

include "NSLog.incl"

local fn IntSqrt( x as SInt64 ) as SInt64
  SInt64 q = 1, z = x, r = 0, t
  do
    q = q * 4
  until ( q > x )
  while( q > 1 )
    q = q / 4 : t = z - r - q : r = r / 2
    if ( t > -1 ) then  z = t : r = r + q
  wend
end fn = r

SInt64      p
NSInteger   n
CFNumberRef tempNum
CFStringRef tempStr

NSLog( @"Integer square root for numbers 0 to 65:" )

for n = 0 to 65
  NSLog( @"%lld \b", fn IntSqrt( n ) )
next
NSLog( @"\n" )

NSLog( @"Integer square roots of odd powers of 7 from 1 to 21:" )
NSLog( @" n |              7 ^ n | fn IntSqrt(7 ^ n)" )
p = 7
for n = 1 to 21 step 2
  tempNum = fn NumberWithLongLong( fn IntSqrt(p) )
  tempStr = fn NumberDescriptionWithLocale( tempNum, fn LocaleCurrent )
  NSLog( @"%2d | %18lld | %12s", n, p, fn StringUTF8String( tempStr ) )
  p = p * 49
next

HandleEvents
Output:
Integer square root for numbers 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of odd powers of 7 from 1 to 21:
 n |              7 ^ n | fn IntSqrt(7 ^ n)
 1 |                  7 |            2
 3 |                343 |           18
 5 |              16807 |          129
 7 |             823543 |          907
 9 |           40353607 |        6,352
11 |         1977326743 |       44,467
13 |        96889010407 |      311,269
15 |      4747561509943 |    2,178,889
17 |    232630513987207 |   15,252,229
19 |  11398895185373143 |  106,765,608
21 | 558545864083284007 |  747,359,260


Go

Go's big.Int type already has a built-in integer square root function but, as the point of this task appears to be to compute it using a particular algorithm, we re-code it from the pseudo-code given in the task description.

package main

import (
    "fmt"
    "log"
    "math/big"
)

var zero = big.NewInt(0)
var one = big.NewInt(1)

func isqrt(x *big.Int) *big.Int {
    if x.Cmp(zero) < 0 {
        log.Fatal("Argument cannot be negative.")
    }
    q := big.NewInt(1)
    for q.Cmp(x) <= 0 {
        q.Lsh(q, 2)
    }
    z := new(big.Int).Set(x)
    r := big.NewInt(0)
    for q.Cmp(one) > 0 {
        q.Rsh(q, 2)
        t := new(big.Int)
        t.Add(t, z)
        t.Sub(t, r)
        t.Sub(t, q)
        r.Rsh(r, 1)
        if t.Cmp(zero) >= 0 {
            z.Set(t)
            r.Add(r, q)
        }
    }
    return r
}

func commatize(s string) string {
    le := len(s)
    for i := le - 3; i >= 1; i -= 3 {
        s = s[0:i] + "," + s[i:]
    }
    return s
}

func main() {
    fmt.Println("The integer square roots of integers from 0 to 65 are:")
    for i := int64(0); i <= 65; i++ {
        fmt.Printf("%d ", isqrt(big.NewInt(i)))
    }
    fmt.Println()
    fmt.Println("\nThe integer square roots of powers of 7 from 7^1 up to 7^73 are:\n")
    fmt.Println("power                                    7 ^ power                                                 integer square root")
    fmt.Println("----- --------------------------------------------------------------------------------- -----------------------------------------")
    pow7 := big.NewInt(7)
    bi49 := big.NewInt(49)
    for i := 1; i <= 73; i += 2 {
        fmt.Printf("%2d %84s %41s\n", i, commatize(pow7.String()), commatize(isqrt(pow7).String()))
        pow7.Mul(pow7, bi49)
    }
}
Output:
The integer square roots of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

The integer square roots of powers of 7 from 7^1 up to 7^73 are:

power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Haskell

import Data.Bits

isqrt :: Integer -> Integer
isqrt n = go n 0 (q `shiftR` 2)
 where
   q = head $ dropWhile (< n) $ iterate (`shiftL` 2) 1
   go z r 0 = r
   go z r q = let t = z - r - q
              in if t >= 0
                 then go t (r `shiftR` 1 + q) (q `shiftR` 2)
                 else go z (r `shiftR` 1) (q `shiftR` 2)

main = do
  print $ isqrt <$> [1..65]
  mapM_ print $ zip [1,3..73] (isqrt <$> iterate (49 *) 7)
*Main> main
[0,1,1,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8]
(1,2)
(3,18)
(5,129)
(7,907)
(9,6352)
(11,44467)
(13,311269)
(15,2178889)
(17,15252229)
(19,106765608)
(21,747359260)
(23,5231514822)
(25,36620603758)
(27,256344226312)
(29,1794409584184)
(31,12560867089291)
(33,87926069625040)
(35,615482487375282)
(37,4308377411626977)
(39,30158641881388842)
(41,211110493169721897)
(43,1477773452188053281)
(45,10344414165316372973)
(47,72410899157214610812)
(49,506876294100502275687)
(51,3548134058703515929815)
(53,24836938410924611508707)
(55,173858568876472280560953)
(57,1217009982135305963926677)
(59,8519069874947141747486745)
(61,59633489124629992232407216)
(63,417434423872409945626850517)
(65,2922040967106869619387953625)
(67,20454286769748087335715675381)
(69,143180007388236611350009727669)
(71,1002260051717656279450068093686)
(73,7015820362023593956150476655802)

Icon

link numbers                    # For the "commas" procedure.
link printf

procedure main ()
  write ("isqrt(i) for 0 <= i <= 65:")
  write ()
  roots_of_0_to_65()
  write ()
  write ()
  write ("isqrt(7**i) for 1 <= i <= 73, i odd:")
  write ()
  printf ("%2s %84s %43s\n", "i", "7**i", "sqrt(7**i)")
  write (repl("-", 131))
  roots_of_odd_powers_of_7()
end

procedure roots_of_0_to_65 ()
  local i

  every i := 0 to 64 do writes (isqrt(i), " ")
  write (isqrt(65))
end

procedure roots_of_odd_powers_of_7 ()
  local i, power_of_7, root

  every i := 1 to 73 by 2 do {
    power_of_7 := 7^i
    root := isqrt(power_of_7)
    printf ("%2d %84s %43s\n", i, commas(power_of_7), commas(root))
  }
end

procedure isqrt (x)
  local q, z, r, t

  q := find_a_power_of_4_greater_than_x (x)
  z := x
  r := 0
  while 1 < q do {
    q := ishift(q, -2)
    t := z - r - q
    r := ishift(r, -1)
    if 0 <= t then {
      z := t
      r +:= q
    }
  }
  return r
end

procedure find_a_power_of_4_greater_than_x (x)
  local q

  q := 1
  while q <= x do q := ishift(q, 2)
  return q
end
Output:
$ icont -s -u -o isqrt isqrt-in-Icon.icn && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802


J

Three implementations given. The floating point method is best for small square roots, Newton's method is fastest for extended integers. isqrt adapted from the page preamble. Note that the "floating point method" is exact when arbitrary precision integers or rational numbers are used.

isqrt_float=: <.@:%:
isqrt_newton=: 9&$: :(x:@:<.@:-:@:(] + x:@:<.@:%)^:_&>~&:x:)


align=: (|.~ i.&' ')"1
comma=: (' ' -.~ [: }: [: , [: (|.) _3 (',' ,~ |.)\ |.)@":&>
While=: {{ u^:(0-.@:-:v)^:_ }}

isqrt=: 3 :0&>
 y =. x: y
 NB. q is a power of 4 that's greater than y.  Append 0 0 under binary representation
 q =. y (,&0 0x&.:#:@:])While>: 1x
 z =. y               NB. set  z  to the value of y.
 r =. 0x              NB. initialize  r  to zero.
 while. 1 < q do.     NB. perform while  q > unity.
  q =. _2&}.&.:#: q   NB. integer divide by 4 (-2 drop under binary representation)
  t =. (z - r) - q    NB. compute value of  t.
  r =. }:&.:#: r      NB. integer divide by  two. (curtail under binary representation)
  if. 0 <: t do.
   z =. t             NB. set  z  to value of t
   r =. r + q         NB. compute new value of r
  end.
 end.
 NB. r  is now the  isqrt(y). (most recent value computed)
 NB. Sidenote: Also, Z is now the remainder after square root
 NB. ie. r^2 + z = y, so if z = 0 then x is a perfect square
 NB. r , z
)

The first line here shows that the simplest approach (the "floating point square root") is treated specially by J.

   <.@%: 1000000000000000000000000000000000000000000000000x
1000000000000000000000000

   (,. isqrt_float) 7x ^ 20 21x
 79792266297612001 282475249
558545864083284007 747359260
   
   (,. isqrt_newton) 7x ^ 20 21x
 79792266297612001 282475249
558545864083284007 747359260


   align comma (,. isqrt) 7 ^&x: 1 2 p. i. 37
                                                                                 7
                                                                                 2

                                                                               343
                                                                                18

                                                                            16,807
                                                                               129

                                                                           823,543
                                                                               907

                                                                        40,353,607
                                                                             6,352

                                                                     1,977,326,743
                                                                            44,467

                                                                    96,889,010,407
                                                                           311,269

                                                                 4,747,561,509,943
                                                                         2,178,889

                                                               232,630,513,987,207
                                                                        15,252,229

                                                            11,398,895,185,373,143
                                                                       106,765,608

                                                           558,545,864,083,284,007
                                                                       747,359,260

                                                        27,368,747,340,080,916,343
                                                                     5,231,514,822

                                                     1,341,068,619,663,964,900,807
                                                                    36,620,603,758

                                                    65,712,362,363,534,280,139,543
                                                                   256,344,226,312

                                                 3,219,905,755,813,179,726,837,607
                                                                 1,794,409,584,184

                                               157,775,382,034,845,806,615,042,743
                                                                12,560,867,089,291

                                             7,730,993,719,707,444,524,137,094,407
                                                                87,926,069,625,040

                                           378,818,692,265,664,781,682,717,625,943
                                                               615,482,487,375,282

                                        18,562,115,921,017,574,302,453,163,671,207
                                                             4,308,377,411,626,977

                                       909,543,680,129,861,140,820,205,019,889,143
                                                            30,158,641,881,388,842

                                    44,567,640,326,363,195,900,190,045,974,568,007
                                                           211,110,493,169,721,897

                                 2,183,814,375,991,796,599,109,312,252,753,832,343
                                                         1,477,773,452,188,053,281

                               107,006,904,423,598,033,356,356,300,384,937,784,807
                                                        10,344,414,165,316,372,973

                             5,243,338,316,756,303,634,461,458,718,861,951,455,543
                                                        72,410,899,157,214,610,812

                           256,923,577,521,058,878,088,611,477,224,235,621,321,607
                                                       506,876,294,100,502,275,687

                        12,589,255,298,531,885,026,341,962,383,987,545,444,758,743
                                                     3,548,134,058,703,515,929,815

                       616,873,509,628,062,366,290,756,156,815,389,726,793,178,407
                                                    24,836,938,410,924,611,508,707

                    30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943
                                                   173,858,568,876,472,280,560,953

                 1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207
                                                 1,217,009,982,135,305,963,926,677

                72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143
                                                 8,519,069,874,947,141,747,486,745

             3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007
                                                59,633,489,124,629,992,232,407,216

           174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343
                                               417,434,423,872,409,945,626,850,517

         8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807
                                             2,922,040,967,106,869,619,387,953,625

       418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543
                                            20,454,286,769,748,087,335,715,675,381

    20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607
                                           143,180,007,388,236,611,350,009,727,669

 1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743
                                         1,002,260,051,717,656,279,450,068,093,686

49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407
                                         7,015,820,362,023,593,956,150,476,655,802

   NB. isqrt_float is exact for large integers
   align comma (,.isqrt_float),7^73x
49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407
                                         7,015,820,362,023,593,956,150,476,655,802


   NB. Newton's method result matches isqrt
   (isqrt_newton -: isqrt)7 ^&x: 1 2 p. i. 37
1
   
   NB. An order of magnitude faster and one tenth the space, in j

   timespacex 'isqrt_newton 7 ^&x: 1 2 p. i. 37'
0.038085 39552
   timespacex 'isqrt 7 ^&x: 1 2 p. i. 37'
0.367744 319712

   NB. but not as fast as isqrt_float, nor as space efficient
   timespacex 'isqrt_float 7 ^&x: 1 2 p. i. 37'
0.0005145 152192

Note that isqrt_float (<.@%:) is, mechanically, a different operation from floating point square root followed by floor. This difference is probably best thought of as a type issue. For example, <.%:7^73x (without the @) produces a result which has the comma delimited integer representation of 7,015,820,362,023,594,877,495,225,090 rather than the 7,015,820,362,023,593,956,150,476,655,802 which we would get from integer square root.

Java

Translation of: Kotlin
import java.math.BigInteger;

public class Isqrt {
    private static BigInteger isqrt(BigInteger x) {
        if (x.compareTo(BigInteger.ZERO) < 0) {
            throw new IllegalArgumentException("Argument cannot be negative");
        }
        var q = BigInteger.ONE;
        while (q.compareTo(x) <= 0) {
            q = q.shiftLeft(2);
        }
        var z = x;
        var r = BigInteger.ZERO;
        while (q.compareTo(BigInteger.ONE) > 0) {
            q = q.shiftRight(2);
            var t = z;
            t = t.subtract(r);
            t = t.subtract(q);
            r = r.shiftRight(1);
            if (t.compareTo(BigInteger.ZERO) >= 0) {
                z = t;
                r = r.add(q);
            }
        }
        return r;
    }

    public static void main(String[] args) {
        System.out.println("The integer square root of integers from 0 to 65 are:");
        for (int i = 0; i <= 65; i++) {
            System.out.printf("%s ", isqrt(BigInteger.valueOf(i)));
        }
        System.out.println();

        System.out.println("The integer square roots of powers of 7 from 7^1 up to 7^73 are:");
        System.out.println("power                                    7 ^ power                                                 integer square root");
        System.out.println("----- --------------------------------------------------------------------------------- -----------------------------------------");
        var pow7 = BigInteger.valueOf(7);
        var bi49 = BigInteger.valueOf(49);
        for (int i = 1; i < 74; i += 2) {
            System.out.printf("%2d %,84d %,41d\n", i, pow7, isqrt(pow7));
            pow7 = pow7.multiply(bi49);
        }
    }
}
Output:
The integer square root of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
The integer square roots of powers of 7 from 7^1 up to 7^73 are:
power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

jq

Translation of: Julia

The following program takes advantage of the support for unbounded-precision

integer arithmetic provided by gojq, the Go implementation of jq, but it can also be run, with different numerical results, using the C implementation.

# For gojq
def idivide($j):
  . as $i
  | ($i % $j) as $mod
  | ($i - $mod) / $j ;

# input should be non-negative
def isqrt:
  . as $x
  | 1 | until(. > $x; . * 4) as $q
  | {$q, $x, r: 0}
  | until( .q <= 1;
           .q |= idivide(4)
           | .t = .x - .r - .q
           | .r |= idivide(2)
           | if .t >= 0
             then .x = .t
	     | .r += .q
             else . end).r ;

def power($n):
  . as $in
  | reduce range(0;$n) as $i (1; . * $in);

def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;

## The task:

"The integer square roots of integers from 0 to 65 are:",
[range(0;66) | isqrt],
"", 
"The integer square roots of odd powers of 7 from 7^1 up to 7^73 are:",
("power" + " "*16 + "7 ^ power" + " "*70 + "integer square root"),

(range( 1;74;2) as $i
  | (7 | power($i)) as $p
  | "\($i|lpad(2)) \($p|lpad(84)) \($p | isqrt | lpad(43))" )
Output:

Invocation: gojq -ncr -f isqrt.jq

The integer square roots of integers from 0 to 65 are:
[0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8]

The integer square roots of odd powers of 7 from 7^1 up to 7^73 are:
power                7 ^ power                                                                      integer square root
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                                16807                                         129
 7                                                                               823543                                         907
 9                                                                             40353607                                        6352
11                                                                           1977326743                                       44467
13                                                                          96889010407                                      311269
15                                                                        4747561509943                                     2178889
17                                                                      232630513987207                                    15252229
19                                                                    11398895185373143                                   106765608
21                                                                   558545864083284007                                   747359260
23                                                                 27368747340080916343                                  5231514822
25                                                               1341068619663964900807                                 36620603758
27                                                              65712362363534280139543                                256344226312
29                                                            3219905755813179726837607                               1794409584184
31                                                          157775382034845806615042743                              12560867089291
33                                                         7730993719707444524137094407                              87926069625040
35                                                       378818692265664781682717625943                             615482487375282
37                                                     18562115921017574302453163671207                            4308377411626977
39                                                    909543680129861140820205019889143                           30158641881388842
41                                                  44567640326363195900190045974568007                          211110493169721897
43                                                2183814375991796599109312252753832343                         1477773452188053281
45                                              107006904423598033356356300384937784807                        10344414165316372973
47                                             5243338316756303634461458718861951455543                        72410899157214610812
49                                           256923577521058878088611477224235621321607                       506876294100502275687
51                                         12589255298531885026341962383987545444758743                      3548134058703515929815
53                                        616873509628062366290756156815389726793178407                     24836938410924611508707
55                                      30226801971775055948247051683954096612865741943                    173858568876472280560953
57                                    1481113296616977741464105532513750734030421355207                   1217009982135305963926677
59                                   72574551534231909331741171093173785967490646405143                   8519069874947141747486745
61                                 3556153025177363557255317383565515512407041673852007                  59633489124629992232407216
63                               174251498233690814305510551794710260107945042018748343                 417434423872409945626850517
65                              8538323413450849900970017037940802745289307058918668807                2922040967106869619387953625
67                            418377847259091645147530834859099334519176045887014771543               20454286769748087335715675381
69                          20500514515695490612229010908095867391439626248463723805607              143180007388236611350009727669
71                        1004525211269079039999221534496697502180541686174722466474743             1002260051717656279450068093686
73                       49221735352184872959961855190338177606846542622561400857262407             7015820362023593956150476655802

Julia

Translation of: Go

Julia also has a built in isqrt() function which works on integer types, but the function integer_sqrt is shown for the task.

using Formatting

function integer_sqrt(x)
    @assert(x >= 0)
    q = one(x)
    while q <= x
        q <<= 2
    end
    z, r = x, zero(x)
    while q > 1
        q >>= 2
        t = z - r - q
        r >>= 1
        if t >= 0
            z = t
            r += q
        end
    end
    return r
end

println("The integer square roots of integers from 0 to 65 are:")
println(integer_sqrt.(collect(0:65)))

println("\nThe integer square roots of odd powers of 7 from 7^1 up to 7^73 are:\n")
println("power", " "^36, "7 ^ power", " "^60, "integer square root")
println("----- ", "-"^80, " ------------------------------------------")
pow7 = big"7"
for i in 1:2:73
    println(lpad(i, 2), lpad(format(pow7^i, commas=true), 84),
        lpad(format(integer_sqrt(pow7^i), commas=true), 43))
end
Output:
The integer square roots of integers from 0 to 65 are:
[0, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8]

The integer square roots of odd powers of 7 from 7^1 up to 7^73 are:

power                                    7 ^ power                                                            integer square root
----- -------------------------------------------------------------------------------- ------------------------------------------
 1                                                                                   7                                          2
 3                                                                                 343                                         18
 5                                                                              16,807                                        129
 7                                                                             823,543                                        907
 9                                                                          40,353,607                                      6,352
11                                                                       1,977,326,743                                     44,467
13                                                                      96,889,010,407                                    311,269
15                                                                   4,747,561,509,943                                  2,178,889
17                                                                 232,630,513,987,207                                 15,252,229
19                                                              11,398,895,185,373,143                                106,765,608
21                                                             558,545,864,083,284,007                                747,359,260
23                                                          27,368,747,340,080,916,343                              5,231,514,822
25                                                       1,341,068,619,663,964,900,807                             36,620,603,758
27                                                      65,712,362,363,534,280,139,543                            256,344,226,312
29                                                   3,219,905,755,813,179,726,837,607                          1,794,409,584,184
31                                                 157,775,382,034,845,806,615,042,743                         12,560,867,089,291
33                                               7,730,993,719,707,444,524,137,094,407                         87,926,069,625,040
35                                             378,818,692,265,664,781,682,717,625,943                        615,482,487,375,282
37                                          18,562,115,921,017,574,302,453,163,671,207                      4,308,377,411,626,977
39                                         909,543,680,129,861,140,820,205,019,889,143                     30,158,641,881,388,842
41                                      44,567,640,326,363,195,900,190,045,974,568,007                    211,110,493,169,721,897
43                                   2,183,814,375,991,796,599,109,312,252,753,832,343                  1,477,773,452,188,053,281
45                                 107,006,904,423,598,033,356,356,300,384,937,784,807                 10,344,414,165,316,372,973
47                               5,243,338,316,756,303,634,461,458,718,861,951,455,543                 72,410,899,157,214,610,812
49                             256,923,577,521,058,878,088,611,477,224,235,621,321,607                506,876,294,100,502,275,687
51                          12,589,255,298,531,885,026,341,962,383,987,545,444,758,743              3,548,134,058,703,515,929,815
53                         616,873,509,628,062,366,290,756,156,815,389,726,793,178,407             24,836,938,410,924,611,508,707
55                      30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943            173,858,568,876,472,280,560,953
57                   1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207          1,217,009,982,135,305,963,926,677
59                  72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143          8,519,069,874,947,141,747,486,745
61               3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007         59,633,489,124,629,992,232,407,216
63             174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343        417,434,423,872,409,945,626,850,517
65           8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807      2,922,040,967,106,869,619,387,953,625
67         418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543     20,454,286,769,748,087,335,715,675,381
69      20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607    143,180,007,388,236,611,350,009,727,669
71   1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743  1,002,260,051,717,656,279,450,068,093,686
73  49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407  7,015,820,362,023,593,956,150,476,655,802

Kotlin

Translation of: Go
import java.math.BigInteger

fun isqrt(x: BigInteger): BigInteger {
    if (x < BigInteger.ZERO) {
        throw IllegalArgumentException("Argument cannot be negative")
    }
    var q = BigInteger.ONE
    while (q <= x) {
        q = q.shiftLeft(2)
    }
    var z = x
    var r = BigInteger.ZERO
    while (q > BigInteger.ONE) {
        q = q.shiftRight(2)
        var t = z
        t -= r
        t -= q
        r = r.shiftRight(1)
        if (t >= BigInteger.ZERO) {
            z = t
            r += q
        }
    }
    return r
}

fun main() {
    println("The integer square root of integers from 0 to 65 are:")
    for (i in 0..65) {
        print("${isqrt(BigInteger.valueOf(i.toLong()))} ")
    }
    println()

    println("The integer square roots of powers of 7 from 7^1 up to 7^73 are:")
    println("power                                    7 ^ power                                                 integer square root")
    println("----- --------------------------------------------------------------------------------- -----------------------------------------")
    var pow7 = BigInteger.valueOf(7)
    val bi49 = BigInteger.valueOf(49)
    for (i in (1..73).step(2)) {
        println("%2d %,84d %,41d".format(i, pow7, isqrt(pow7)))
        pow7 *= bi49
    }
}
Output:
The integer square root of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
The integer square roots of powers of 7 from 7^1 up to 7^73 are:
power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Lua

Translation of: C
function isqrt(x)
    local q = 1
    local r = 0
    while q <= x do
        q = q << 2
    end
    while q > 1 do
        q = q >> 2
        local t = x - r - q
        r = r >> 1
        if t >= 0 then
            x = t
            r = r + q
        end
    end
    return r
end

print("Integer square root for numbers 0 to 65:")
for n=0,65 do
    io.write(isqrt(n) .. ' ')
end
print()
print()

print("Integer square roots of oddd powers of 7 from 1 to 21:")
print(" n |              7 ^ n | isqrt(7 ^ n)")
local p = 7
local n = 1
while n <= 21 do
    print(string.format("%2d | %18d | %12d", n, p, isqrt(p)))
    ----------------------
    n = n + 2
    p = p * 49
end
Output:
Integer square root for numbers 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 
7 7 8 8

Integer square roots of oddd powers of 7 from 1 to 21:
 n |              7 ^ n | isqrt(7 ^ n)
 3 |                343 |           18
 5 |              16807 |          129
 7 |             823543 |          907
 9 |           40353607 |         6352
11 |         1977326743 |        44467
13 |        96889010407 |       311269
15 |      4747561509943 |      2178889
17 |    232630513987207 |     15252229
19 |  11398895185373143 |    106765608
21 | 558545864083284007 |    747359260

M2000 Interpreter

Using various types up to 7^35

module integer_square_root (f=-2) {
    function IntSqrt(x as long long) {
    	long long q=1, z=x, t, r
    	do q*=4&& : until (q>x)
    	while q>1&&
    		q|div 4&&:t=z-r-q:r|div 2&&
    		if t>-1&& then z=t:r+= q
          end while
    	=r
    }
    long i
    print #f, "The integer square root of integers from 0 to 65 are:"
    for i=0 to 65
    	print #f, IntSqrt(i)+" ";
    next
    print #f
    print #f, "Using Long Long Type"
    print #f, "The integer square roots of powers of 7 from 7^1 up to 7^21 are:"
    for i=1 to 21 step 2 {
    	print #f, "IntSqrt(7^"+i+")="+(IntSqrt(7&&^i))+" of 7^"+i+" ("+(7&&^I)+")"
    }
    print #f
    function IntSqrt(x as decimal) {
    	decimal q=1, z=x, t, r
    	do q*=4 : until (q>x)
    	while q>1
    		q/=4:t=z-r-q:r/=2
    		if t>-1 then z=t:r+= q
          end while
    	=r
    }
    print #f, "Using Decimal Type"
    print #f, "The integer square roots of powers of 7 from 7^23 up to 7^33 are:"
    decimal j,p
    for i=23 to 33 step 2 {
    	p=1:for j=1 to i:p*=7@:next
    	print #f, "IntSqrt(7^"+i+")="+(IntSqrt(p))+" of 7^"+i+" ("+p+")"
    }
    print #f
    
    
    function IntSqrt(x as double) {
    	double q=1, z=x, t, r
    	do q*=4 : until (q>x)
    	while q>1
    		q/=4:t=z-r-q:r/=2
    		if t>-1 then z=t:r+= q
          end while
    	=r
    }
    print #f, "Using Double Type"
    print #f, "The integer square roots of powers of 7 from 7^19 up to 7^35 are:"
    for i=19 to 35 step 2 {
    	print #f, "IntSqrt(7^"+i+")="+(IntSqrt(7^i))+" of 7^"+i+" ("+(7^i)+")"
    }
    print #f
}
open "" for output as #f  // f = -2 now, direct output to screen
integer_square_root
close #f
open "out.txt" for output as #f
	integer_square_root f
close #f
win "notepad", dir$+"out.txt"
Output:
The integer square root of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
Using Long Long Type
The integer square roots of powers of 7 from 7^1 up to 7^21 are:
IntSqrt(7^1)=2 of 7^1 (7)
IntSqrt(7^3)=18 of 7^3 (343)
IntSqrt(7^5)=129 of 7^5 (16807)
IntSqrt(7^7)=907 of 7^7 (823543)
IntSqrt(7^9)=6352 of 7^9 (40353607)
IntSqrt(7^11)=44467 of 7^11 (1977326743)
IntSqrt(7^13)=311269 of 7^13 (96889010407)
IntSqrt(7^15)=2178889 of 7^15 (4747561509943)
IntSqrt(7^17)=15252229 of 7^17 (232630513987207)
IntSqrt(7^19)=106765608 of 7^19 (11398895185373143)
IntSqrt(7^21)=747359260 of 7^21 (558545864083284007)

Using Decimal Type
The integer square roots of powers of 7 from 7^23 up to 7^33 are:
IntSqrt(7^23)=5231514822 of 7^23 (27368747340080916343)
IntSqrt(7^25)=36620603758 of 7^25 (1341068619663964900807)
IntSqrt(7^27)=256344226312 of 7^27 (65712362363534280139543)
IntSqrt(7^29)=1794409584184 of 7^29 (3219905755813179726837607)
IntSqrt(7^31)=12560867089291 of 7^31 (157775382034845806615042743)
IntSqrt(7^33)=87926069625040 of 7^33 (7730993719707444524137094407)

Using Double Type
The integer square roots of powers of 7 from 7^19 up to 7^35 are:
IntSqrt(7^19)=106765608 of 7^19 (1.13988951853731E+16)
IntSqrt(7^21)=747359260 of 7^21 (5.58545864083284E+17)
IntSqrt(7^23)=5231514822 of 7^23 (2.73687473400809E+19)
IntSqrt(7^25)=36620603758 of 7^25 (1.34106861966396E+21)
IntSqrt(7^27)=256344226312 of 7^27 (6.57123623635343E+22)
IntSqrt(7^29)=1794409584184 of 7^29 (3.21990575581318E+24)
IntSqrt(7^31)=12560867089291 of 7^31 (1.57775382034846E+26)
IntSqrt(7^33)=87926069625040 of 7^33 (7.73099371970744E+27)
IntSqrt(7^35)=615482487375282 of 7^35 (3.78818692265665E+29)


MAD

            NORMAL MODE IS INTEGER
            
          R  INTEGER SQUARE ROOT OF X
          
            INTERNAL FUNCTION(X)
            ENTRY TO ISQRT.
            Q = 1
FNDPW4      WHENEVER Q.LE.X
                Q = Q * 4
                TRANSFER TO FNDPW4
            END OF CONDITIONAL
            Z = X
            R = 0
FNDRT       WHENEVER Q.G.1
                Q = Q / 4
                T = Z - R - Q
                R = R / 2
                WHENEVER T.GE.0
                    Z = T
                    R = R + Q
                END OF CONDITIONAL
                TRANSFER TO FNDRT
            END OF CONDITIONAL 
            FUNCTION RETURN R
            END OF FUNCTION
            
          R  PRINT INTEGER SQUARE ROOTS OF 0..65
          
            THROUGH SQ65, FOR N=0, 11, N.G.65
SQ65        PRINT FORMAT N11, ISQRT.(N), ISQRT.(N+1), ISQRT.(N+2),
          0    ISQRT.(N+3), ISQRT.(N+4), ISQRT.(N+5), ISQRT.(N+6),
          1    ISQRT.(N+7), ISQRT.(N+8), ISQRT.(N+9), ISQRT.(N+10)
            VECTOR VALUES N11 = $11(I1,S1)*$
            
          R  MACHINE WORD SIZE ON IBM 704 IS 36 BITS
          R  PRINT UP TO AND INCLUDING ISQRT(7^12)
          
            POW7 = 1
            THROUGH SQ7P12, FOR I=0, 1, I.G.12
            PRINT FORMAT SQ7, I, ISQRT.(POW7)
SQ7P12      POW7 = POW7 * 7
            VECTOR VALUES SQ7 = $9HISQRT.(7^,I2,4H) = ,I6*$

            END OF PROGRAM
Output:
0 1 1 1 2 2 2 2 2 3 3
3 3 3 3 3 4 4 4 4 4 4
4 4 4 5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6 6 6 6
6 6 6 6 6 7 7 7 7 7 7
7 7 7 7 7 7 7 7 7 8 8
ISQRT.(7^ 0) =      1
ISQRT.(7^ 1) =      2
ISQRT.(7^ 2) =      7
ISQRT.(7^ 3) =     18
ISQRT.(7^ 4) =     49
ISQRT.(7^ 5) =    129
ISQRT.(7^ 6) =    343
ISQRT.(7^ 7) =    907
ISQRT.(7^ 8) =   2401
ISQRT.(7^ 9) =   6352
ISQRT.(7^10) =  16807
ISQRT.(7^11) =  44467
ISQRT.(7^12) = 117649

Mathematica /Wolfram Language

ClearAll[ISqrt]
ISqrt[x_Integer?NonNegative] := Module[{q = 1, z, r, t},
  While[q <= x,
   q *= 4
   ];
  z = x;
  r = 0;
  While[q > 1,
   q = Quotient[q, 4];
   t = z - r - q;
   r /= 2;
   If[t >= 0,
    z = t;
    r += q
    ];
   ];
  r
  ]
ISqrt /@ Range[65]
Column[ISqrt /@ (7^Range[1, 73])]
Output:
{1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8}
2
7
18
49
129
343
907
2401
6352
16807
44467
117649
311269
823543
2178889
5764801
15252229
40353607
106765608
282475249
747359260
1977326743
5231514822
13841287201
36620603758
96889010407
256344226312
678223072849
1794409584184
4747561509943
12560867089291
33232930569601
87926069625040
232630513987207
615482487375282
1628413597910449
4308377411626977
11398895185373143
30158641881388842
79792266297612001
211110493169721897
558545864083284007
1477773452188053281
3909821048582988049
10344414165316372973
27368747340080916343
72410899157214610812
191581231380566414401
506876294100502275687
1341068619663964900807
3548134058703515929815
9387480337647754305649
24836938410924611508707
65712362363534280139543
173858568876472280560953
459986536544739960976801
1217009982135305963926677
3219905755813179726837607
8519069874947141747486745
22539340290692258087863249
59633489124629992232407216
157775382034845806615042743
417434423872409945626850517
1104427674243920646305299201
2922040967106869619387953625
7730993719707444524137094407
20454286769748087335715675381
54116956037952111668959660849
143180007388236611350009727669
378818692265664781682717625943
1002260051717656279450068093686
2651730845859653471779023381601
7015820362023593956150476655802

Maxima

/* -*- Maxima -*- */

/*

The Rosetta Code integer square root task, in Maxima.

I have not tried to make the output conform quite to the task
description, because Maxima is not a general purpose programming
language. Perhaps someone else will care to do it.

I *do* check that the Rosetta Code routine gives the same results as
the built-in function.

*/

/* pow4gtx -- find a power of 4 greater than x. */
pow4gtx (x) := block (
  [q],
  q : 1, while q <= x do q : bit_lsh (q, 2),
  q
  ) $

/* rosetta_code_isqrt -- find the integer square root. */
rosetta_code_isqrt (x) := block (
  [q, z, r, t],
  q : pow4gtx (x),
  z : x,
  r : 0,
  while 1 < q do (
    q : bit_rsh (q, 2),
    t : z - r - q,
    r : bit_rsh (r, 1),
    if 0 <= t then (
      z : t,
      r : r + q
      )
    ),
  r
  ) $

for i : 0 thru 65 do (
  display (rosetta_code_isqrt (i),
    is (equal (rosetta_code_isqrt (i), isqrt (i))))
  ) $
for i : 1 thru 73 step 2 do (
  display (7**i, rosetta_code_isqrt (7**i),
    is (equal (rosetta_code_isqrt (7**i), isqrt (7**i))))
  ) $
Output:
$ maxima -q -b isqrt.mac
(%i1) batch("isqrt.mac")

read and interpret /home/trashman/src/chemoelectric/rosettacode-contributions/isqrt.mac
(%i2) pow4gtx(x):=block([q],q:1,while q <= x do q:bit_lsh(q,2),q)
(%i3) rosetta_code_isqrt(x):=block([q,z,r,t],q:pow4gtx(x),z:x,r:0,
                         while 1 < q do
                               (q:bit_rsh(q,2),t:z-r-q,r:bit_rsh(r,1),
                                if 0 <= t then (z:t,r:r+q)),r)
(%i4) for i from 0 thru 65 do
          display(rosetta_code_isqrt(i),
                  is(equal(rosetta_code_isqrt(i),isqrt(i))))
                           rosetta_code_isqrt(0) = 0

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(1) = 1

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(2) = 1

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(3) = 1

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(4) = 2

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(5) = 2

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(6) = 2

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(7) = 2

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(8) = 2

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                           rosetta_code_isqrt(9) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(10) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(11) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(12) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(13) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(14) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(15) = 3

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(16) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(17) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(18) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(19) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(20) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(21) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(22) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(23) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(24) = 4

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(25) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(26) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(27) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(28) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(29) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(30) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(31) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(32) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(33) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(34) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(35) = 5

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(36) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(37) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(38) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(39) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(40) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(41) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(42) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(43) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(44) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(45) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(46) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(47) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(48) = 6

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(49) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(50) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(51) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(52) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(53) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(54) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(55) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(56) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(57) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(58) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(59) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(60) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(61) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(62) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(63) = 7

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(64) = 8

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

                          rosetta_code_isqrt(65) = 8

               is(equal(rosetta_code_isqrt(i), isqrt(i))) = true

(%i5) for i step 2 thru 73 do
          display(7^i,rosetta_code_isqrt(7^i),
                  is(equal(rosetta_code_isqrt(7^i),isqrt(7^i))))
                                     1
                                    7  = 7

                           rosetta_code_isqrt(7) = 2

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                    3
                                   7  = 343

                         rosetta_code_isqrt(343) = 18

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                   5
                                  7  = 16807

                        rosetta_code_isqrt(16807) = 129

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                   7
                                  7  = 823543

                       rosetta_code_isqrt(823543) = 907

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                  9
                                 7  = 40353607

                      rosetta_code_isqrt(40353607) = 6352

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                11
                               7   = 1977326743

                    rosetta_code_isqrt(1977326743) = 44467

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                                13
                               7   = 96889010407

                   rosetta_code_isqrt(96889010407) = 311269

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                               15
                              7   = 4747561509943

                  rosetta_code_isqrt(4747561509943) = 2178889

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                              17
                             7   = 232630513987207

                rosetta_code_isqrt(232630513987207) = 15252229

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                             19
                            7   = 11398895185373143

               rosetta_code_isqrt(11398895185373143) = 106765608

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                            21
                           7   = 558545864083284007

              rosetta_code_isqrt(558545864083284007) = 747359260

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                           23
                          7   = 27368747340080916343

             rosetta_code_isqrt(27368747340080916343) = 5231514822

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                          25
                         7   = 1341068619663964900807

           rosetta_code_isqrt(1341068619663964900807) = 36620603758

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                          27
                         7   = 65712362363534280139543

          rosetta_code_isqrt(65712362363534280139543) = 256344226312

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                         29
                        7   = 3219905755813179726837607

         rosetta_code_isqrt(3219905755813179726837607) = 1794409584184

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                        31
                       7   = 157775382034845806615042743

       rosetta_code_isqrt(157775382034845806615042743) = 12560867089291

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                       33
                      7   = 7730993719707444524137094407

       rosetta_code_isqrt(7730993719707444524137094407) = 87926069625040

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                      35
                     7   = 378818692265664781682717625943

     rosetta_code_isqrt(378818692265664781682717625943) = 615482487375282

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                     37
                    7   = 18562115921017574302453163671207

    rosetta_code_isqrt(18562115921017574302453163671207) = 4308377411626977

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                     39
                    7   = 909543680129861140820205019889143

   rosetta_code_isqrt(909543680129861140820205019889143) = 30158641881388842

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                    41
                   7   = 44567640326363195900190045974568007

 rosetta_code_isqrt(44567640326363195900190045974568007) = 211110493169721897

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                   43
                  7   = 2183814375991796599109312252753832343

rosetta_code_isqrt(2183814375991796599109312252753832343) = 1477773452188053281

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                  45
                 7   = 107006904423598033356356300384937784807

rosetta_code_isqrt(107006904423598033356356300384937784807) = 
                                                           10344414165316372973

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                 47
                7   = 5243338316756303634461458718861951455543

rosetta_code_isqrt(5243338316756303634461458718861951455543) = 
                                                           72410899157214610812

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

                49
               7   = 256923577521058878088611477224235621321607

rosetta_code_isqrt(256923577521058878088611477224235621321607) = 
                                                          506876294100502275687

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

               51
              7   = 12589255298531885026341962383987545444758743

rosetta_code_isqrt(12589255298531885026341962383987545444758743) = 
                                                         3548134058703515929815

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

               53
              7   = 616873509628062366290756156815389726793178407

rosetta_code_isqrt(616873509628062366290756156815389726793178407) = 
                                                        24836938410924611508707

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

              55
             7   = 30226801971775055948247051683954096612865741943

rosetta_code_isqrt(30226801971775055948247051683954096612865741943) = 
                                                       173858568876472280560953

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

             57
            7   = 1481113296616977741464105532513750734030421355207

rosetta_code_isqrt(1481113296616977741464105532513750734030421355207) = 
                                                      1217009982135305963926677

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

            59
           7   = 72574551534231909331741171093173785967490646405143

rosetta_code_isqrt(72574551534231909331741171093173785967490646405143) = 
                                                      8519069874947141747486745

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

           61
          7   = 3556153025177363557255317383565515512407041673852007

rosetta_code_isqrt(3556153025177363557255317383565515512407041673852007) = 
                                                     59633489124629992232407216

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

          63
         7   = 174251498233690814305510551794710260107945042018748343

rosetta_code_isqrt(174251498233690814305510551794710260107945042018748343) = 
                                                    417434423872409945626850517

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

          65
         7   = 8538323413450849900970017037940802745289307058918668807

rosetta_code_isqrt(8538323413450849900970017037940802745289307058918668807) = 
                                                   2922040967106869619387953625

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

         67
        7   = 418377847259091645147530834859099334519176045887014771543

rosetta_code_isqrt(418377847259091645147530834859099334519176045887014771543
                                              ) = 20454286769748087335715675381

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

        69
       7   = 20500514515695490612229010908095867391439626248463723805607

rosetta_code_isqrt(20500514515695490612229010908095867391439626248463723805607
                                             ) = 143180007388236611350009727669

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

       71
      7   = 1004525211269079039999221534496697502180541686174722466474743

rosetta_code_isqrt(10045252112690790399992215344966975021805416861747224664747\
43) = 1002260051717656279450068093686

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

      73
     7   = 49221735352184872959961855190338177606846542622561400857262407

rosetta_code_isqrt(49221735352184872959961855190338177606846542622561400857262\
407) = 7015820362023593956150476655802

                                           i          i
              is(equal(rosetta_code_isqrt(7 ), isqrt(7 ))) = true

(%o6) /home/trashman/src/chemoelectric/rosettacode-contributions/isqrt.mac

Mercury

Translation of: Prolog
Works with: Mercury version 20.06.1


:- module isqrt_in_mercury.

:- interface.
:- import_module io.
:- pred main(io, io).
:- mode main(di, uo) is det.

:- implementation.
:- import_module char.
:- import_module exception.
:- import_module int.
:- import_module integer.       % Integers of arbitrary size.
:- import_module list.
:- import_module string.

:- func four = integer.
four = integer(4).

:- func seven = integer.
seven = integer(7).

%% Find a power of 4 greater than X.
:- func pow4gtx(integer) = integer.
pow4gtx(X) = Q :- pow4gtx_(X, one, Q).

%% The tail recursion for pow4gtx.
:- pred pow4gtx_(integer, integer, integer).
:- mode pow4gtx_(in, in, out) is det.
pow4gtx_(X, A, Q) :- if (X < A) then (Q = A)
                     else (A1 = A * four,
                           pow4gtx_(X, A1, Q)).

%% Integer square root function.
:- func isqrt(integer) = integer.
isqrt(X) = Root :- isqrt(X, Root, _).

%% Integer square root and remainder.
:- pred isqrt(integer, integer, integer).
:- mode isqrt(in, out, out) is det.
isqrt(X, Root, Remainder) :-
  Q = pow4gtx(X),
  isqrt_(X, Q, zero, X, Root, Remainder).

%% The tail recursion for isqrt.
:- pred isqrt_(integer, integer, integer, integer, integer, integer).
:- mode isqrt_(in, in, in, in, out, out) is det.
isqrt_(X, Q, R0, Z0, R, Z) :-
  if (X < zero) then throw("isqrt of a negative integer")
  else if (Q = one) then (R = R0, Z = Z0)
  else (Q1 = Q // four,
        T = Z0 - R0 - Q1,
        (if (T >= zero)
         then (R1 = (R0 // two) + Q1,
               isqrt_(X, Q1, R1, T, R, Z))
         else (R1 is R0 // two,
               isqrt_(X, Q1, R1, Z0, R, Z)))).

%% Insert a character, every three digits, into (what presumably is)
%% an integer numeral. (The name "commas" is not very good.)
:- func commas(string, char) = string.
commas(S, Comma) = T :-
  RCL = to_rev_char_list(S),
  commas_(RCL, Comma, 0, [], CL),
  T = from_char_list(CL).

%% The tail recursion for commas.
:- pred commas_(list(char), char, int, list(char), list(char)).
:- mode commas_(in, in, in, in, out) is det.
commas_([], _, _, L, CL) :- L = CL.
commas_([C | Tail], Comma, I, L, CL) :-
  if (I = 3) then commas_([C | Tail], Comma, 0, [Comma | L], CL)
  else (I1 = I + 1,
        commas_(Tail, Comma, I1, [C | L], CL)).

:- pred roots_m_to_n(integer, integer, io, io).
:- mode roots_m_to_n(in, in, di, uo) is det.
roots_m_to_n(M, N, !IO) :-
  if (N < M) then true
  else (write_string(to_string(isqrt(M)), !IO),
        (if (M \= N) then write_string(" ", !IO)
         else true),
        M1 = M + one,
        roots_m_to_n(M1, N, !IO)).

:- pred roots_of_odd_powers_of_7(integer, integer, io, io).
:- mode roots_of_odd_powers_of_7(in, in, di, uo) is det.
roots_of_odd_powers_of_7(M, N, !IO) :-
  if (N < M) then true
  else (Pow7 = pow(seven, M),
        Isqrt = isqrt(Pow7),
        format("%2s %84s %43s",
               [s(commas(to_string(M), (','))),
                s(commas(to_string(Pow7), (','))),
                s(commas(to_string(Isqrt), (',')))],
               !IO),
        nl(!IO),
        M1 = M + two,
        roots_of_odd_powers_of_7(M1, N, !IO)).

main(!IO) :-
  write_string("isqrt(i) for 0 <= i <= 65:", !IO),
  nl(!IO), nl(!IO),
  roots_m_to_n(zero, integer(65), !IO),
  nl(!IO), nl(!IO), nl(!IO),
  write_string("isqrt(7**i) for 1 <= i <= 73, i odd:", !IO),
  nl(!IO), nl(!IO),
  format("%2s %84s %43s", [s("i"), s("7**i"), s("isqrt(7**i)")], !IO),
  nl(!IO),
  write_string(duplicate_char(('-'), 131), !IO),
  nl(!IO),
  roots_of_odd_powers_of_7(one, integer(73), !IO).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Instructions for GNU Emacs--
%%% local variables:
%%% mode: mercury
%%% prolog-indent-width: 2
%%% end:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Output:
$ mmc --warn-non-tail-recursion=self-and-mutual -o isqrt isqrt_in_mercury.m && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                 isqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

Modula-2

Uses the algorithm in the task description, with two modifications: (1) As noted in the ALGOL-M solution, the original algorithm can lead to integer overflow when trying to find a power of 4 greater than the argument X. The modified algorithm avoids overflow. (2) In the original algorithm, the variable t can be negative. In the modified algorithm, all variables remain non-negative, and can therefore be declared as unsigned integers if desired.

TopSpeed Modula-2 supports no integers larger than unsigned 32-bit, which means that the second part of the task stops at 7^11. There seems to be no option to insert commas into long numbers as requested.

MODULE IntSqrt;

IMPORT IO;

(* Procedure to find integer square root of a 32-bit unsigned integer. *)
PROCEDURE Isqrt( X : LONGCARD) : LONGCARD;
VAR
  Xdiv4, q, r, s, z : LONGCARD;
BEGIN
  Xdiv4 := X DIV 4;
  q := 1;
  WHILE q <= Xdiv4 DO q := 4*q; END;
  z := X;
  r := 0;
  REPEAT
    s := q + r;
    r := r DIV 2;
    IF z >= s THEN
      DEC(z, s);
      INC(r, q);
    END;
    q := q DIV 4;
  UNTIL q = 0;
  RETURN r;
END Isqrt;

(* Main program *)
CONST (* constants for Part 1 of the task *)
  Max_n = 65;
  NrPerLine = 22;
VAR
  n : LONGCARD;
  arr_n, arr_i : ARRAY[0..NrPerLine - 1] OF LONGCARD; (* for display *)
  j, k : INTEGER;
BEGIN
(* Part 1 *)
  k := 0; (* index into arrays *)
  FOR n := 0 TO Max_n DO
    arr_n[k] := n;
    arr_i[k] := Isqrt(n);
    INC(k);
    IF (k = NrPerLine) OR (n = Max_n) THEN
      IO.WrStr( 'Number: ');
      FOR j := 0 TO k - 1 DO IO.WrLngCard(arr_n[j], 3); END;
      IO.WrLn();
      IO.WrStr( 'Isqrt:  ');
      FOR j := 0 TO k - 1 DO IO.WrLngCard(arr_i[j], 3); END;
      IO.WrLn();
      k := 0;
    END;
  END;
  IO.WrLn();

(* Part 2 *)
  IO.WrStr( 'Isqrt of odd powers of 7'); IO.WrLn();
  n := 7;
  FOR k := 1 TO 11 BY 2 DO
    IF k > 1 THEN n := n*49; END;
    IO.WrInt( k, 2); IO.WrStr( ' --> ');
    IO.WrLngCard( n, 10); IO.WrStr(' --> ');
    IO.WrLngCard( Isqrt(n), 5); IO.WrLn();
  END;
END IntSqrt.
Output:
Number:   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21
Isqrt:    0  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3  4  4  4  4  4  4
Number:  22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
Isqrt:    4  4  4  5  5  5  5  5  5  5  5  5  5  5  6  6  6  6  6  6  6  6
Number:  44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Isqrt:    6  6  6  6  6  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  8  8

Isqrt of odd powers of 7
 1 -->          7 -->     2
 3 -->        343 -->    18
 5 -->      16807 -->   129
 7 -->     823543 -->   907
 9 -->   40353607 -->  6352
11 --> 1977326743 --> 44467

Nim

Library: bignum

This Nim implementation provides an isqrt function for signed integers and for big integers.

import strformat, strutils
import bignum


func isqrt*[T: SomeSignedInt | Int](x: T): T =
  ## Compute integer square root for signed integers
  ## and for big integers.

  when T is Int:
    result = newInt()
    var q = newInt(1)
  else:
    result = 0
    var q = T(1)

  while q <= x:
    q = q shl 2

  var z = x
  while q > 1:
    q = q shr 2
    let t = z - result - q
    result = result shr 1
    if t >= 0:
      z = t
      result += q


when isMainModule:

  echo "Integer square root for numbers 0 to 65:"
  for n in 0..65:
    stdout.write ' ', isqrt(n)
  echo "\n"

  echo "Integer square roots of odd powers of 7 from 7^1 to 7^73:"
  echo " n" & repeat(' ', 82) & "7^n" & repeat(' ', 34) & "isqrt(7^n)"
  echo repeat("—", 131)

  var x = newInt(7)
  for n in countup(1, 73, 2):
    echo &"{n:>2}   {insertSep($x, ','):>82}   {insertSep($isqrt(x), ','):>41}"
    x *= 49
Output:
Integer square root for numbers 0 to 65:
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

Integer square roots of odd powers of 7 from 7^1 to 7^73:
 n                                                                                  7^n                                  isqrt(7^n)
———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

ObjectIcon

Translation of: Icon


The only changes needed to make the Icon version work in Object Icon were to "import io" and to import the IPL modules in a different way. ("write" and "writes" are supported by the io module, presumably for compatibility with Icon and to ease migration of the IPL.)


# -*- ObjectIcon -*-

import io
import ipl.numbers              # For the "commas" procedure.
import ipl.printf

procedure main ()
  write ("isqrt(i) for 0 <= i <= 65:")
  write ()
  roots_of_0_to_65()
  write ()
  write ()
  write ("isqrt(7**i) for 1 <= i <= 73, i odd:")
  write ()
  printf ("%2s %84s %43s\n", "i", "7**i", "sqrt(7**i)")
  write (repl("-", 131))
  roots_of_odd_powers_of_7()
end

procedure roots_of_0_to_65 ()
  local i

  every i := 0 to 64 do writes (isqrt(i), " ")
  write (isqrt(65))
end

procedure roots_of_odd_powers_of_7 ()
  local i, power_of_7, root

  every i := 1 to 73 by 2 do {
    power_of_7 := 7^i
    root := isqrt(power_of_7)
    printf ("%2d %84s %43s\n", i, commas(power_of_7), commas(root))
  }
end

procedure isqrt (x)
  local q, z, r, t

  q := find_a_power_of_4_greater_than_x (x)
  z := x
  r := 0
  while 1 < q do {
    q := ishift(q, -2)
    t := z - r - q
    r := ishift(r, -1)
    if 0 <= t then {
      z := t
      r +:= q
    }
  }
  return r
end

procedure find_a_power_of_4_greater_than_x (x)
  local q

  q := 1
  while q <= x do q := ishift(q, 2)
  return q
end
Output:
$ oit -s -o isqrt isqrt-in-OI.icn && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802


OCaml

Translation of: Scheme
Library: Zarith


(* The Rosetta Code integer square root task, in OCaml, using Zarith
   for large integers.

   Compile with, for example:

      ocamlfind ocamlc -package zarith -linkpkg -o isqrt isqrt.ml

   Translated from the Scheme. *)

let find_a_power_of_4_greater_than_x x =
  let open Z in
  let rec loop q =
    if x < q then q else loop (q lsl 2)
  in
  loop one

let isqrt x =
  let open Z in
  let rec loop q z r =
    if q = one then
      r
    else
      let q = q asr 2 in
      let t = z - r - q in
      let r = r asr 1 in
      if t < zero then
        loop q z r
      else
        loop q t (r + q)
  in
  let q0 = find_a_power_of_4_greater_than_x x in
  let z0 = x in
  let r0 = zero in
  loop q0 z0 r0

let insert_separators s sep =
  let rec loop revchars i newchars =
    match revchars with
    | [] -> newchars
    | revchars when i = 3 -> loop revchars 0 (sep :: newchars)
    | c :: tail -> loop tail (i + 1) (c :: newchars)
  in
  let revchars = List.rev (List.of_seq (String.to_seq s)) in
  String.of_seq (List.to_seq (loop revchars 0 []))

let commas s = insert_separators s ','

let main () =
  Printf.printf "isqrt(i) for 0 <= i <= 65:\n\n";
  for i = 0 to 64 do
    Printf.printf "%s " Z.(to_string (isqrt (of_int i)))
  done;
  Printf.printf "%s\n" Z.(to_string (isqrt (of_int 65)));
  Printf.printf "\n\n";
  Printf.printf "isqrt(7**i) for 1 <= i <= 73, i odd:\n\n";
  Printf.printf "%2s %84s %43s\n" "i" "7**i" "isqrt(7**i)";
  for i = 1 to 131 do Printf.printf "-" done;
  Printf.printf "\n";
  for j = 0 to 36 do
    let i = j + j + 1 in
    let power = Z.(of_int 7 ** i) in
    let root = isqrt power in
    Printf.printf "%2d %84s %43s\n"
      i (commas (Z.to_string power)) (commas (Z.to_string root))
  done
;;

main ()
Output:
$ ocamlfind ocamlc -package zarith -linkpkg -o isqrt isqrt.ml && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                 isqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802


Ol

(print "Integer square roots of 0..65")
(for-each (lambda (x)
      (display (isqrt x))
      (display " "))
   (iota 66))
(print)

(print "Integer square roots of 7^n")
(for-each (lambda (x)
      (print "x: " x ", isqrt: " (isqrt x)))
   (map (lambda (i)
         (expt 7 i))
      (iota 73 1)))
(print)
Output:
Integer square roots of 0..65
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
Integer square roots of 7^n
x: 7, isqrt: 2
x: 49, isqrt: 7
x: 343, isqrt: 18
x: 2401, isqrt: 49
x: 16807, isqrt: 129
x: 117649, isqrt: 343
x: 823543, isqrt: 907
x: 5764801, isqrt: 2401
x: 40353607, isqrt: 6352
x: 282475249, isqrt: 16807
x: 1977326743, isqrt: 44467
x: 13841287201, isqrt: 117649
x: 96889010407, isqrt: 311269
x: 678223072849, isqrt: 823543
x: 4747561509943, isqrt: 2178889
x: 33232930569601, isqrt: 5764801
x: 232630513987207, isqrt: 15252229
x: 1628413597910449, isqrt: 40353607
x: 11398895185373143, isqrt: 106765608
x: 79792266297612001, isqrt: 282475249
x: 558545864083284007, isqrt: 747359260
x: 3909821048582988049, isqrt: 1977326743
x: 27368747340080916343, isqrt: 5231514822
x: 191581231380566414401, isqrt: 13841287201
x: 1341068619663964900807, isqrt: 36620603758
x: 9387480337647754305649, isqrt: 96889010407
x: 65712362363534280139543, isqrt: 256344226312
x: 459986536544739960976801, isqrt: 678223072849
x: 3219905755813179726837607, isqrt: 1794409584184
x: 22539340290692258087863249, isqrt: 4747561509943
x: 157775382034845806615042743, isqrt: 12560867089291
x: 1104427674243920646305299201, isqrt: 33232930569601
x: 7730993719707444524137094407, isqrt: 87926069625040
x: 54116956037952111668959660849, isqrt: 232630513987207
x: 378818692265664781682717625943, isqrt: 615482487375282
x: 2651730845859653471779023381601, isqrt: 1628413597910449
x: 18562115921017574302453163671207, isqrt: 4308377411626977
x: 129934811447123020117172145698449, isqrt: 11398895185373143
x: 909543680129861140820205019889143, isqrt: 30158641881388842
x: 6366805760909027985741435139224001, isqrt: 79792266297612001
x: 44567640326363195900190045974568007, isqrt: 211110493169721897
x: 311973482284542371301330321821976049, isqrt: 558545864083284007
x: 2183814375991796599109312252753832343, isqrt: 1477773452188053281
x: 15286700631942576193765185769276826401, isqrt: 3909821048582988049
x: 107006904423598033356356300384937784807, isqrt: 10344414165316372973
x: 749048330965186233494494102694564493649, isqrt: 27368747340080916343
x: 5243338316756303634461458718861951455543, isqrt: 72410899157214610812
x: 36703368217294125441230211032033660188801, isqrt: 191581231380566414401
x: 256923577521058878088611477224235621321607, isqrt: 506876294100502275687
x: 1798465042647412146620280340569649349251249, isqrt: 1341068619663964900807
x: 12589255298531885026341962383987545444758743, isqrt: 3548134058703515929815
x: 88124787089723195184393736687912818113311201, isqrt: 9387480337647754305649
x: 616873509628062366290756156815389726793178407, isqrt: 24836938410924611508707
x: 4318114567396436564035293097707728087552248849, isqrt: 65712362363534280139543
x: 30226801971775055948247051683954096612865741943, isqrt: 173858568876472280560953
x: 211587613802425391637729361787678676290060193601, isqrt: 459986536544739960976801
x: 1481113296616977741464105532513750734030421355207, isqrt: 1217009982135305963926677
x: 10367793076318844190248738727596255138212949486449, isqrt: 3219905755813179726837607
x: 72574551534231909331741171093173785967490646405143, isqrt: 8519069874947141747486745
x: 508021860739623365322188197652216501772434524836001, isqrt: 22539340290692258087863249
x: 3556153025177363557255317383565515512407041673852007, isqrt: 59633489124629992232407216
x: 24893071176241544900787221684958608586849291716964049, isqrt: 157775382034845806615042743
x: 174251498233690814305510551794710260107945042018748343, isqrt: 417434423872409945626850517
x: 1219760487635835700138573862562971820755615294131238401, isqrt: 1104427674243920646305299201
x: 8538323413450849900970017037940802745289307058918668807, isqrt: 2922040967106869619387953625
x: 59768263894155949306790119265585619217025149412430681649, isqrt: 7730993719707444524137094407
x: 418377847259091645147530834859099334519176045887014771543, isqrt: 20454286769748087335715675381
x: 2928644930813641516032715844013695341634232321209103400801, isqrt: 54116956037952111668959660849
x: 20500514515695490612229010908095867391439626248463723805607, isqrt: 143180007388236611350009727669
x: 143503601609868434285603076356671071740077383739246066639249, isqrt: 378818692265664781682717625943
x: 1004525211269079039999221534496697502180541686174722466474743, isqrt: 1002260051717656279450068093686
x: 7031676478883553279994550741476882515263791803223057265323201, isqrt: 2651730845859653471779023381601
x: 49221735352184872959961855190338177606846542622561400857262407, isqrt: 7015820362023593956150476655802

Pascal

[1]

Translation of: C++
//************************************************//
//                                                //
//  Thanks for rvelthuis for BigIntegers library  //
//  https://github.com/rvelthuis/DelphiBigNumbers //
//                                                //
//************************************************//

program IsqrtTask;

{$APPTYPE CONSOLE}

{$R *.res}

uses
  System.SysUtils,
  Velthuis.BigIntegers;

function isqrt(x: BigInteger): BigInteger;
var
  q, r, t: BigInteger;
begin
  q := 1;
  r := 0;
  while (q <= x) do
    q := q shl 2;

  while (q > 1) do
  begin
    q := q shr 2;
    t := x - r - q;
    r := r shr 1;
    if (t >= 0) then
    begin
      x := t;
      r := r + q;
    end;
  end;
  Result := r;
end;

function commatize(const n: BigInteger; size: Integer): string;
var
  str: string;
  digits: Integer;
  i: Integer;
begin
  Result := '';
  str := n.ToString;
  digits := str.Length;

  for i := 1 to digits do
  begin
    if ((i > 1) and (((i - 1) mod 3) = (digits mod 3))) then
      Result := Result + ',';
    Result := Result + str[i];
  end;

  if Result.Length < size then
    Result := string.Create(' ', size - Result.Length) + Result;
end;

const
  POWER_WIDTH = 83;
  ISQRT_WIDTH = 42;

var
  n, i: Integer;
  f: TextFile;
  p: BigInteger;

begin
  AssignFile(f, 'output.txt');
  rewrite(f);

  Writeln(f, 'Integer square root for numbers 0 to 65:');
  for n := 0 to 65 do
    Write(f, isqrt(n).ToString, ' ');

  Writeln(f, #10#10'Integer square roots of odd powers of 7 from 1 to 73:');

  Write(f, ' n |', string.Create(' ', 78), '7 ^ n |', string.Create(' ', 30),
    'isqrt(7 ^ n)'#10);

  Writeln(f, string.Create('-', 17 + POWER_WIDTH + ISQRT_WIDTH));

  p := 7;
  n := 1;
  repeat
    Writeln(f, Format('%2d', [n]), ' |', commatize(p, power_width), ' |',
      commatize(isqrt(p), isqrt_width));
    inc(n, 2);
    p := p * 49;
  until (n > 73);

  CloseFile(f);
end.

Perl

Translation of: Julia
# 20201029 added Perl programming solution

use strict;
use warnings;
use bigint;

use CLDR::Number 'decimal_formatter';

sub integer_sqrt {
   ( my $x = $_[0] ) >= 0 or die;
   my $q = 1;
   while ($q <= $x) {
      $q <<= 2
   }
   my ($z, $r) = ($x, 0);
   while ($q > 1) {
      $q >>= 2;
      my $t = $z - $r - $q;
      $r >>= 1;
      if ($t >= 0) {
         $z  = $t;
         $r += $q;
      }
   }
   return $r
}

print "The integer square roots of integers from 0 to 65 are:\n";
print map { ( integer_sqrt $_ ) . ' ' } (0..65);

my $cldr = CLDR::Number->new();
my $decf = $cldr->decimal_formatter;

print "\nThe integer square roots of odd powers of 7 from 7^1 up to 7^73 are:\n";
print "power", " "x36, "7 ^ power", " "x60, "integer square root\n";
print "----- ", "-"x79, "  ------------------------------------------\n";

for (my $i = 1; $i < 74; $i += 2) {
   printf("%2s ", $i);
   printf("%82s", $decf->format( 7**$i ) );
   printf("%44s", $decf->format( integer_sqrt(7**$i) ) ) ;
   print "\n";
}
Output:
The integer square roots of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
The integer square roots of odd powers of 7 from 7^1 up to 7^73 are:
power                                    7 ^ power                                                            integer square root
----- -------------------------------------------------------------------------------  ------------------------------------------
 1                                                                                  7                                           2
 3                                                                                343                                          18
 5                                                                             16,807                                         129
 7                                                                            823,543                                         907
 9                                                                         40,353,607                                       6,352
11                                                                      1,977,326,743                                      44,467
13                                                                     96,889,010,407                                     311,269
15                                                                  4,747,561,509,943                                   2,178,889
17                                                                232,630,513,987,207                                  15,252,229
19                                                             11,398,895,185,373,143                                 106,765,608
21                                                            558,545,864,083,284,007                                 747,359,260
23                                                         27,368,747,340,080,916,343                               5,231,514,822
25                                                      1,341,068,619,663,964,900,807                              36,620,603,758
27                                                     65,712,362,363,534,280,139,543                             256,344,226,312
29                                                  3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                              7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                            378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                         18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                        909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                     44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                  2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                              5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                            256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

Phix

See also Integer_roots#Phix for a simpler and shorter example using the mpz_root() routine, or better yet just use mpz_root() directly (that is, rather than the isqrt() below).

with javascript_semantics
include mpfr.e
 
function isqrt(mpz x)
    if mpz_cmp_si(x,0)<0 then
        crash("Argument cannot be negative.")
    end if
    mpz q = mpz_init(1),
        r = mpz_init(0),
        t = mpz_init(),
        z = mpz_init_set(x)
    while mpz_cmp(q,x)<= 0 do
        mpz_mul_si(q,q,4)
    end while
    while mpz_cmp_si(q,1)>0 do
        assert(mpz_fdiv_q_ui(q, q, 4)=0)
        mpz_sub(t,z,r)
        mpz_sub(t,t,q)
        assert(mpz_fdiv_q_ui(r, r, 2)=0)
        if mpz_cmp_si(t,0) >= 0 then
            mpz_set(z,t)
            mpz_add(r,r,q)
        end if
    end while
    string star = iff(mpz_cmp_si(z,0)=0?"*":" ")
    return shorten(mpz_get_str(r,10,true))&star
end function
 
printf(1,"The integer square roots of integers from 0 to 65 are:\n")
for i=0 to 65 do
    printf(1,"%s ", {trim(isqrt(mpz_init(i)))})
end for
printf(1,"\n\npower                          7 ^ power                                               integer square root\n")
printf(1,"-----  ---------------------------------------------------------   ----------------------------------------------------------\n")
mpz pow7 = mpz_init(7)
for i=1 to 9000 do
    if (i<=73  and remainder(i,2)=1)
    or (i<100  and remainder(i,10)=5)
    or (i<1000 and remainder(i,100)=0)
    or             remainder(i,1000)=0 then
        printf(1,"%4d  %58s %61s\n", {i, shorten(mpz_get_str(pow7,10,true)),isqrt(pow7)})
    end if
    mpz_mul_si(pow7,pow7,7)
end for
Output:

Perfect squares are denoted with an asterisk.

The integer square roots of integers from 0 to 65 are:
0* 1* 1 1 2* 2 2 2 2 3* 3 3 3 3 3 3 4* 4 4 4 4 4 4 4 4 5* 5 5 5 5 5 5 5 5 5 5 6* 6 6 6 6 6 6 6 6 6 6 6 6 7* 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8* 8

power                          7 ^ power                                               integer square root
-----  ---------------------------------------------------------   ----------------------------------------------------------
   1                                                           7                                                            2
   3                                                         343                                                           18
   5                                                      16,807                                                          129
   7                                                     823,543                                                          907
   9                                                  40,353,607                                                        6,352
  11                                               1,977,326,743                                                       44,467
  13                                              96,889,010,407                                                      311,269
  15                                           4,747,561,509,943                                                    2,178,889
  17                                         232,630,513,987,207                                                   15,252,229
  19                                      11,398,895,185,373,143                                                  106,765,608
  21                                     558,545,864,083,284,007                                                  747,359,260
  23                                  27,368,747,340,080,916,343                                                5,231,514,822
  25                               1,341,068,619,663,964,900,807                                               36,620,603,758
  27                              65,712,362,363,534,280,139,543                                              256,344,226,312
  29                           3,219,905,755,813,179,726,837,607                                            1,794,409,584,184
  31                         157,775,382,034,845,806,615,042,743                                           12,560,867,089,291
  33                       7,730,993,719,707,444,524,137,094,407                                           87,926,069,625,040
  35                     378,818,692,265,664,781,682,717,625,943                                          615,482,487,375,282
  37                  18,562,115,921,017,574,302,453,163,671,207                                        4,308,377,411,626,977
  39                 909,543,680,129,861,140,820,205,019,889,143                                       30,158,641,881,388,842
  41              44,567,640,326,363,195,900,190,045,974,568,007                                      211,110,493,169,721,897
  43           2,183,814,375,991,796,599,109,312,252,753,832,343                                    1,477,773,452,188,053,281
  45         107,006,904,423,598,033,356,356,300,384,937,784,807                                   10,344,414,165,316,372,973
  47       5,243,338,316,756,303,634,461,458,718,861,951,455,543                                   72,410,899,157,214,610,812
  49     256,923,577,521,058,878,088,611,477,224,235,621,321,607                                  506,876,294,100,502,275,687
  51     12,589,255,298,531,8...,987,545,444,758,743 (44 digits)                                3,548,134,058,703,515,929,815
  53     616,873,509,628,062,...,389,726,793,178,407 (45 digits)                               24,836,938,410,924,611,508,707
  55     30,226,801,971,775,0...,096,612,865,741,943 (47 digits)                              173,858,568,876,472,280,560,953
  57     1,481,113,296,616,97...,734,030,421,355,207 (49 digits)                            1,217,009,982,135,305,963,926,677
  59     72,574,551,534,231,9...,967,490,646,405,143 (50 digits)                            8,519,069,874,947,141,747,486,745
  61     3,556,153,025,177,36...,407,041,673,852,007 (52 digits)                           59,633,489,124,629,992,232,407,216
  63     174,251,498,233,690,...,945,042,018,748,343 (54 digits)                          417,434,423,872,409,945,626,850,517
  65     8,538,323,413,450,84...,307,058,918,668,807 (55 digits)                        2,922,040,967,106,869,619,387,953,625
  67     418,377,847,259,091,...,045,887,014,771,543 (57 digits)                       20,454,286,769,748,087,335,715,675,381
  69     20,500,514,515,695,4...,248,463,723,805,607 (59 digits)                      143,180,007,388,236,611,350,009,727,669
  71     1,004,525,211,269,07...,174,722,466,474,743 (61 digits)                    1,002,260,051,717,656,279,450,068,093,686
  73     49,221,735,352,184,8...,561,400,857,262,407 (62 digits)                    7,015,820,362,023,593,956,150,476,655,802
  75     2,411,865,032,257,05...,508,642,005,857,943 (64 digits)                   49,110,742,534,165,157,693,053,336,590,618
  85     681,292,175,541,205,...,256,581,907,552,807 (72 digits)              825,404,249,771,713,805,347,147,428,078,522,216
  95     192,448,176,927,753,...,224,874,137,973,943 (81 digits)       13,872,569,225,913,193,926,469,506,823,715,722,892,042
 100     3,234,476,509,624,75...,459,636,928,060,001 (85 digits)      1,798,465,042,647,41...,569,649,349,251,249 (43 digits)*
 200    10,461,838,291,314,3...,534,637,456,120,001 (170 digits)      3,234,476,509,624,75...,459,636,928,060,001 (85 digits)*
 300    33,838,570,200,749,1...,841,001,584,180,001 (254 digits)     5,817,092,933,824,34...,721,127,496,191,249 (127 digits)*
 400    109,450,060,433,611,...,994,729,312,240,001 (339 digits)     10,461,838,291,314,3...,534,637,456,120,001 (170 digits)*
 500    354,013,649,449,525,...,611,820,640,300,001 (423 digits)     18,815,250,448,759,0...,761,742,043,131,249 (212 digits)*
 600    1,145,048,833,231,02...,308,275,568,360,001 (508 digits)     33,838,570,200,749,1...,841,001,584,180,001 (254 digits)*
 700    3,703,633,553,458,98...,700,094,096,420,001 (592 digits)     60,857,485,599,217,6...,075,492,990,071,249 (296 digits)*
 800    11,979,315,728,921,1...,403,276,224,480,001 (677 digits)     109,450,060,433,611,...,994,729,312,240,001 (339 digits)*
 900    38,746,815,326,573,9...,033,821,952,540,001 (761 digits)     196,842,107,605,496,...,046,380,337,011,249 (381 digits)*
1000    125,325,663,996,571,...,207,731,280,600,001 (846 digits)     354,013,649,449,525,...,611,820,640,300,001 (423 digits)*
2000  15,706,522,056,181,6...,351,822,561,200,001 (1,691 digits)     125,325,663,996,571,...,207,731,280,600,001 (846 digits)*
3000  1,968,430,305,767,76...,432,273,841,800,001 (2,536 digits)   44,366,995,681,111,4...,787,731,920,900,001 (1,268 digits)*
4000  246,694,835,101,319,...,449,085,122,400,001 (3,381 digits)   15,706,522,056,181,6...,351,822,561,200,001 (1,691 digits)*
5000  30,917,194,013,597,6...,402,256,403,000,001 (4,226 digits)   5,560,323,193,268,32...,900,003,201,500,001 (2,113 digits)*
6000  3,874,717,868,664,96...,291,787,683,600,001 (5,071 digits)   1,968,430,305,767,76...,432,273,841,800,001 (2,536 digits)*
7000  485,601,589,689,818,...,117,678,964,200,001 (5,916 digits)   696,851,196,231,891,...,948,634,482,100,001 (2,958 digits)*
8000  60,858,341,665,667,3...,879,930,244,800,001 (6,761 digits)   246,694,835,101,319,...,449,085,122,400,001 (3,381 digits)*
9000  7,627,112,078,979,99...,578,541,525,400,001 (7,606 digits)   87,333,338,874,567,2...,933,625,762,700,001 (3,803 digits)*

(Note that pre-0.8.2 the "(NNN digits)" count includes commas)

Prolog

Works with: SWI-Prolog version 8.5.9


%%% -*- Prolog -*-
%%%
%%% The Rosetta Code integer square root task, for SWI Prolog.
%%%

%% pow4gtx/2 -- Find a power of 4 greater than X.
pow4gtx(X, Q) :- pow4gtx(X, 1, Q), !.
pow4gtx(X, A, Q) :- X < A, Q is A.
pow4gtx(X, A, Q) :- A1 is A * 4,
                    pow4gtx(X, A1, Q).

%% isqrt/2 -- Find integer square root.
%% isqrt/3 -- Find integer square root and remainder.
isqrt(X, R) :- isqrt(X, R, _).
isqrt(X, R, Z) :- pow4gtx(X, Q),
                  isqrt(X, Q, 0, X, R, Z).
isqrt(_, 1, R0, Z0, R, Z) :- R is R0,
                             Z is Z0.
isqrt(X, Q, R0, Z0, R, Z) :- Q1 is Q // 4,
                             T is Z0 - R0 - Q1,
                             (T >= 0
                             -> R1 is (R0 // 2) + Q1,
                                isqrt(X, Q1, R1, T, R, Z)
                             ;  R1 is R0 // 2,
                                isqrt(X, Q1, R1, Z0, R, Z)).

roots(N) :- roots(0, N).
roots(I, N) :- isqrt(I, R),
               write(R),
               (I =:= N; write(" ")),
               I1 is I + 1,
               (N < I1, !; roots(I1, N)).

rootspow7(N) :- rootspow7(1, N).
rootspow7(I, N) :- Pow7 is 7**I,
                   isqrt(Pow7, R),
                   format("~t~D~2|~t~D~87|~t~D~131|~n",
                          [I, Pow7, R]),
                   I1 is I + 2,
                   (N < I1, !; rootspow7(I1, N)).

main :-
  format("isqrt(i) for 0 <= i <= 65:~2n"),
  roots(65),
  format("~3n"),
  format("isqrt(7**i) for 1 <= i <= 73, i odd:~2n"),
  format("~t~s~2|~t~s~87|~t~s~131|~n",
         ["i", "7**i", "isqrt(7**i)"]),
  format("-----------------------------------------------------------------------------------------------------------------------------------~n"),
  rootspow7(73),
  halt.

:- initialization(main).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Instructions for GNU Emacs--
%%% local variables:
%%% mode: prolog
%%% prolog-indent-width: 2
%%% end:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Output:
$ swipl isqrt.pl
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                 isqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

Python

Works with: Python version 2.7
def isqrt ( x ):
    q = 1
    while q <= x : 
        q *= 4
    z,r = x,0
    while q > 1 :
        q  /= 4
        t,r = z-r-q,r/2
        if t >= 0 :
            z,r = t,r+q
    return r 

print ' '.join( '%d'%isqrt( n ) for n in xrange( 66 ))
print '\n'.join( '{0:114,} = isqrt( 7^{1:3} )'.format( isqrt( 7**n ),n ) for n in range( 1,204,2 ))
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
                                                                                                                 2 = isqrt( 7^  1 )
                                                                                                                18 = isqrt( 7^  3 )
                                                                                                               129 = isqrt( 7^  5 )
                                                                                                               907 = isqrt( 7^  7 )
                                                                                                             6,352 = isqrt( 7^  9 )
                                                                                                            44,467 = isqrt( 7^ 11 )
                                                                                                           311,269 = isqrt( 7^ 13 )
                                                                                                         2,178,889 = isqrt( 7^ 15 )
                                                                                                        15,252,229 = isqrt( 7^ 17 )
                                                                                                       106,765,608 = isqrt( 7^ 19 )
                                                                                                       747,359,260 = isqrt( 7^ 21 )
                                                                                                     5,231,514,822 = isqrt( 7^ 23 )
                                                                                                    36,620,603,758 = isqrt( 7^ 25 )
                                                                                                   256,344,226,312 = isqrt( 7^ 27 )
                                                                                                 1,794,409,584,184 = isqrt( 7^ 29 )
                                                                                                12,560,867,089,291 = isqrt( 7^ 31 )
                                                                                                87,926,069,625,040 = isqrt( 7^ 33 )
                                                                                               615,482,487,375,282 = isqrt( 7^ 35 )
                                                                                             4,308,377,411,626,977 = isqrt( 7^ 37 )
                                                                                            30,158,641,881,388,842 = isqrt( 7^ 39 )
                                                                                           211,110,493,169,721,897 = isqrt( 7^ 41 )
                                                                                         1,477,773,452,188,053,281 = isqrt( 7^ 43 )
                                                                                        10,344,414,165,316,372,973 = isqrt( 7^ 45 )
                                                                                        72,410,899,157,214,610,812 = isqrt( 7^ 47 )
                                                                                       506,876,294,100,502,275,687 = isqrt( 7^ 49 )
                                                                                     3,548,134,058,703,515,929,815 = isqrt( 7^ 51 )
                                                                                    24,836,938,410,924,611,508,707 = isqrt( 7^ 53 )
                                                                                   173,858,568,876,472,280,560,953 = isqrt( 7^ 55 )
                                                                                 1,217,009,982,135,305,963,926,677 = isqrt( 7^ 57 )
                                                                                 8,519,069,874,947,141,747,486,745 = isqrt( 7^ 59 )
                                                                                59,633,489,124,629,992,232,407,216 = isqrt( 7^ 61 )
                                                                               417,434,423,872,409,945,626,850,517 = isqrt( 7^ 63 )
                                                                             2,922,040,967,106,869,619,387,953,625 = isqrt( 7^ 65 )
                                                                            20,454,286,769,748,087,335,715,675,381 = isqrt( 7^ 67 )
                                                                           143,180,007,388,236,611,350,009,727,669 = isqrt( 7^ 69 )
                                                                         1,002,260,051,717,656,279,450,068,093,686 = isqrt( 7^ 71 )
                                                                         7,015,820,362,023,593,956,150,476,655,802 = isqrt( 7^ 73 )
                                                                        49,110,742,534,165,157,693,053,336,590,618 = isqrt( 7^ 75 )
                                                                       343,775,197,739,156,103,851,373,356,134,328 = isqrt( 7^ 77 )
                                                                     2,406,426,384,174,092,726,959,613,492,940,298 = isqrt( 7^ 79 )
                                                                    16,844,984,689,218,649,088,717,294,450,582,086 = isqrt( 7^ 81 )
                                                                   117,914,892,824,530,543,621,021,061,154,074,602 = isqrt( 7^ 83 )
                                                                   825,404,249,771,713,805,347,147,428,078,522,216 = isqrt( 7^ 85 )
                                                                 5,777,829,748,401,996,637,430,031,996,549,655,515 = isqrt( 7^ 87 )
                                                                40,444,808,238,813,976,462,010,223,975,847,588,606 = isqrt( 7^ 89 )
                                                               283,113,657,671,697,835,234,071,567,830,933,120,245 = isqrt( 7^ 91 )
                                                             1,981,795,603,701,884,846,638,500,974,816,531,841,720 = isqrt( 7^ 93 )
                                                            13,872,569,225,913,193,926,469,506,823,715,722,892,042 = isqrt( 7^ 95 )
                                                            97,107,984,581,392,357,485,286,547,766,010,060,244,299 = isqrt( 7^ 97 )
                                                           679,755,892,069,746,502,397,005,834,362,070,421,710,095 = isqrt( 7^ 99 )
                                                         4,758,291,244,488,225,516,779,040,840,534,492,951,970,665 = isqrt( 7^101 )
                                                        33,308,038,711,417,578,617,453,285,883,741,450,663,794,661 = isqrt( 7^103 )
                                                       233,156,270,979,923,050,322,173,001,186,190,154,646,562,631 = isqrt( 7^105 )
                                                     1,632,093,896,859,461,352,255,211,008,303,331,082,525,938,421 = isqrt( 7^107 )
                                                    11,424,657,278,016,229,465,786,477,058,123,317,577,681,568,950 = isqrt( 7^109 )
                                                    79,972,600,946,113,606,260,505,339,406,863,223,043,770,982,651 = isqrt( 7^111 )
                                                   559,808,206,622,795,243,823,537,375,848,042,561,306,396,878,562 = isqrt( 7^113 )
                                                 3,918,657,446,359,566,706,764,761,630,936,297,929,144,778,149,940 = isqrt( 7^115 )
                                                27,430,602,124,516,966,947,353,331,416,554,085,504,013,447,049,581 = isqrt( 7^117 )
                                               192,014,214,871,618,768,631,473,319,915,878,598,528,094,129,347,071 = isqrt( 7^119 )
                                             1,344,099,504,101,331,380,420,313,239,411,150,189,696,658,905,429,502 = isqrt( 7^121 )
                                             9,408,696,528,709,319,662,942,192,675,878,051,327,876,612,338,006,515 = isqrt( 7^123 )
                                            65,860,875,700,965,237,640,595,348,731,146,359,295,136,286,366,045,605 = isqrt( 7^125 )
                                           461,026,129,906,756,663,484,167,441,118,024,515,065,954,004,562,319,241 = isqrt( 7^127 )
                                         3,227,182,909,347,296,644,389,172,087,826,171,605,461,678,031,936,234,687 = isqrt( 7^129 )
                                        22,590,280,365,431,076,510,724,204,614,783,201,238,231,746,223,553,642,811 = isqrt( 7^131 )
                                       158,131,962,558,017,535,575,069,432,303,482,408,667,622,223,564,875,499,679 = isqrt( 7^133 )
                                     1,106,923,737,906,122,749,025,486,026,124,376,860,673,355,564,954,128,497,756 = isqrt( 7^135 )
                                     7,748,466,165,342,859,243,178,402,182,870,638,024,713,488,954,678,899,484,295 = isqrt( 7^137 )
                                    54,239,263,157,400,014,702,248,815,280,094,466,172,994,422,682,752,296,390,067 = isqrt( 7^139 )
                                   379,674,842,101,800,102,915,741,706,960,661,263,210,960,958,779,266,074,730,470 = isqrt( 7^141 )
                                 2,657,723,894,712,600,720,410,191,948,724,628,842,476,726,711,454,862,523,113,293 = isqrt( 7^143 )
                                18,604,067,262,988,205,042,871,343,641,072,401,897,337,086,980,184,037,661,793,056 = isqrt( 7^145 )
                               130,228,470,840,917,435,300,099,405,487,506,813,281,359,608,861,288,263,632,551,397 = isqrt( 7^147 )
                               911,599,295,886,422,047,100,695,838,412,547,692,969,517,262,029,017,845,427,859,782 = isqrt( 7^149 )
                             6,381,195,071,204,954,329,704,870,868,887,833,850,786,620,834,203,124,917,995,018,479 = isqrt( 7^151 )
                            44,668,365,498,434,680,307,934,096,082,214,836,955,506,345,839,421,874,425,965,129,358 = isqrt( 7^153 )
                           312,678,558,489,042,762,155,538,672,575,503,858,688,544,420,875,953,120,981,755,905,510 = isqrt( 7^155 )
                         2,188,749,909,423,299,335,088,770,708,028,527,010,819,810,946,131,671,846,872,291,338,571 = isqrt( 7^157 )
                        15,321,249,365,963,095,345,621,394,956,199,689,075,738,676,622,921,702,928,106,039,370,003 = isqrt( 7^159 )
                       107,248,745,561,741,667,419,349,764,693,397,823,530,170,736,360,451,920,496,742,275,590,023 = isqrt( 7^161 )
                       750,741,218,932,191,671,935,448,352,853,784,764,711,195,154,523,163,443,477,195,929,130,162 = isqrt( 7^163 )
                     5,255,188,532,525,341,703,548,138,469,976,493,352,978,366,081,662,144,104,340,371,503,911,136 = isqrt( 7^165 )
                    36,786,319,727,677,391,924,836,969,289,835,453,470,848,562,571,635,008,730,382,600,527,377,954 = isqrt( 7^167 )
                   257,504,238,093,741,743,473,858,785,028,848,174,295,939,938,001,445,061,112,678,203,691,645,679 = isqrt( 7^169 )
                 1,802,529,666,656,192,204,317,011,495,201,937,220,071,579,566,010,115,427,788,747,425,841,519,758 = isqrt( 7^171 )
                12,617,707,666,593,345,430,219,080,466,413,560,540,501,056,962,070,807,994,521,231,980,890,638,309 = isqrt( 7^173 )
                88,323,953,666,153,418,011,533,563,264,894,923,783,507,398,734,495,655,961,648,623,866,234,468,168 = isqrt( 7^175 )
               618,267,675,663,073,926,080,734,942,854,264,466,484,551,791,141,469,591,731,540,367,063,641,277,182 = isqrt( 7^177 )
             4,327,873,729,641,517,482,565,144,599,979,851,265,391,862,537,990,287,142,120,782,569,445,488,940,274 = isqrt( 7^179 )
            30,295,116,107,490,622,377,956,012,199,858,958,857,743,037,765,932,009,994,845,477,986,118,422,581,921 = isqrt( 7^181 )
           212,065,812,752,434,356,645,692,085,399,012,712,004,201,264,361,524,069,963,918,345,902,828,958,073,452 = isqrt( 7^183 )
         1,484,460,689,267,040,496,519,844,597,793,088,984,029,408,850,530,668,489,747,428,421,319,802,706,514,166 = isqrt( 7^185 )
        10,391,224,824,869,283,475,638,912,184,551,622,888,205,861,953,714,679,428,231,998,949,238,618,945,599,162 = isqrt( 7^187 )
        72,738,573,774,084,984,329,472,385,291,861,360,217,441,033,676,002,755,997,623,992,644,670,332,619,194,135 = isqrt( 7^189 )
       509,170,016,418,594,890,306,306,697,043,029,521,522,087,235,732,019,291,983,367,948,512,692,328,334,358,945 = isqrt( 7^191 )
     3,564,190,114,930,164,232,144,146,879,301,206,650,654,610,650,124,135,043,883,575,639,588,846,298,340,512,620 = isqrt( 7^193 )
    24,949,330,804,511,149,625,009,028,155,108,446,554,582,274,550,868,945,307,185,029,477,121,924,088,383,588,341 = isqrt( 7^195 )
   174,645,315,631,578,047,375,063,197,085,759,125,882,075,921,856,082,617,150,295,206,339,853,468,618,685,118,393 = isqrt( 7^197 )
 1,222,517,209,421,046,331,625,442,379,600,313,881,174,531,452,992,578,320,052,066,444,378,974,280,330,795,828,756 = isqrt( 7^199 )
 8,557,620,465,947,324,321,378,096,657,202,197,168,221,720,170,948,048,240,364,465,110,652,819,962,315,570,801,294 = isqrt( 7^201 )
59,903,343,261,631,270,249,646,676,600,415,380,177,552,041,196,636,337,682,551,255,774,569,739,736,208,995,609,059 = isqrt( 7^203 )

Quackery

  [ dup size 3 / times 
      [ char , swap
        i 1+ -3 * stuff ] 
    dup 0 peek char , = 
    if [ behead drop ] ]  is +commas (   $ --> $   )

  [ over size - 
    space swap of
    swap join ]           is justify ( $ n --> $   )

  [ 1
    [ 2dup < not while
      2 << again ]
    0
    [ over 1 > while
      dip
        [ 2 >>
          2dup - ]
      dup 1 >>
      unrot -
      dup 0 < iff drop
      else
        [ 2swap nip
          rot over + ]
      again ]
    nip swap ]            is sqrt+   (   n --> n n )

( sqrt+ returns the integer square root and remainder )
( i.e. isqrt+ of 28 is 5 remainder 3 as (5^2)+3 = 28  )
( To make it task compliant change the last line to   )
( "nip nip ]             is sqrt+   (   n --> n   )"  )

  66 times [ i^ sqrt+ drop echo sp ] cr cr
 
  73 times 
    [ 7 i^ 1+ ** sqrt+ drop
      number$ +commas 41 justify
      echo$ cr
      2 step ]

Output:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

                                        2
                                       18
                                      129
                                      907
                                    6,352
                                   44,467
                                  311,269
                                2,178,889
                               15,252,229
                              106,765,608
                              747,359,260
                            5,231,514,822
                           36,620,603,758
                          256,344,226,312
                        1,794,409,584,184
                       12,560,867,089,291
                       87,926,069,625,040
                      615,482,487,375,282
                    4,308,377,411,626,977
                   30,158,641,881,388,842
                  211,110,493,169,721,897
                1,477,773,452,188,053,281
               10,344,414,165,316,372,973
               72,410,899,157,214,610,812
              506,876,294,100,502,275,687
            3,548,134,058,703,515,929,815
           24,836,938,410,924,611,508,707
          173,858,568,876,472,280,560,953
        1,217,009,982,135,305,963,926,677
        8,519,069,874,947,141,747,486,745
       59,633,489,124,629,992,232,407,216
      417,434,423,872,409,945,626,850,517
    2,922,040,967,106,869,619,387,953,625
   20,454,286,769,748,087,335,715,675,381
  143,180,007,388,236,611,350,009,727,669
1,002,260,051,717,656,279,450,068,093,686
7,015,820,362,023,593,956,150,476,655,802

Racket

#lang racket

;; Integer Square Root (using Quadratic Residue)
(define (isqrt x)
  (define q-init       ; power of 4 greater than x
    (let loop ([acc 1])
      (if (<= acc x) (loop (* acc 4)) acc)))

  (define-values (z r q)
    (let loop ([z x] [r 0] [q q-init])
      (if (<= q 1)
          (values z r q)
          (let* ([q (/ q 4)]
                 [t (- z r q)]
                 [r (/ r 2)])
            (if (>= t 0)
                (loop t (+ r q) q)
                (loop z r q))))))

  r)

(define (format-with-commas str #:chunk-size [size 3])
  (define len (string-length str))
  (define len-mod (modulo len size))
  (define chunks
    (for/list ([i (in-range len-mod len size)])
           (substring str i (+ i size))))
  (string-join (if (= len-mod 0)
                   chunks
                   (cons (substring str 0 len-mod) chunks))
               ","))  

(displayln "Isqrt of integers (0 -> 65):")
(for ([i 66])
  (printf "~a " (isqrt i)))

(displayln "\n\nIsqrt of odd powers of 7 (7 -> 7^73):")
(for/fold ([num 7]) ([i (in-range 1 74 2)])
  (printf "Isqrt(7^~a) = ~a\n"
          i
          (format-with-commas (number->string (isqrt num))))
  (* num 49))
Output:
Isqrt of integers (0 -> 65):
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Isqrt of odd powers of 7 (7 -> 7^73):
Isqrt(7^1) = 2
Isqrt(7^3) = 18
Isqrt(7^5) = 129
Isqrt(7^7) = 907
Isqrt(7^9) = 6,352
Isqrt(7^11) = 44,467
Isqrt(7^13) = 311,269
Isqrt(7^15) = 2,178,889
Isqrt(7^17) = 15,252,229
Isqrt(7^19) = 106,765,608
Isqrt(7^21) = 747,359,260
Isqrt(7^23) = 5,231,514,822
Isqrt(7^25) = 36,620,603,758
Isqrt(7^27) = 256,344,226,312
Isqrt(7^29) = 1,794,409,584,184
Isqrt(7^31) = 12,560,867,089,291
Isqrt(7^33) = 87,926,069,625,040
Isqrt(7^35) = 615,482,487,375,282
Isqrt(7^37) = 4,308,377,411,626,977
Isqrt(7^39) = 30,158,641,881,388,842
Isqrt(7^41) = 211,110,493,169,721,897
Isqrt(7^43) = 1,477,773,452,188,053,281
Isqrt(7^45) = 10,344,414,165,316,372,973
Isqrt(7^47) = 72,410,899,157,214,610,812
Isqrt(7^49) = 506,876,294,100,502,275,687
Isqrt(7^51) = 3,548,134,058,703,515,929,815
Isqrt(7^53) = 24,836,938,410,924,611,508,707
Isqrt(7^55) = 173,858,568,876,472,280,560,953
Isqrt(7^57) = 1,217,009,982,135,305,963,926,677
Isqrt(7^59) = 8,519,069,874,947,141,747,486,745
Isqrt(7^61) = 59,633,489,124,629,992,232,407,216
Isqrt(7^63) = 417,434,423,872,409,945,626,850,517
Isqrt(7^65) = 2,922,040,967,106,869,619,387,953,625
Isqrt(7^67) = 20,454,286,769,748,087,335,715,675,381
Isqrt(7^69) = 143,180,007,388,236,611,350,009,727,669
Isqrt(7^71) = 1,002,260,051,717,656,279,450,068,093,686
Isqrt(7^73) = 7,015,820,362,023,593,956,150,476,655,802


Raku

There is a task Integer roots that covers a similar operation, with the caveat that it will calculate any nth root (including 2) not just square roots.

See the Integer roots Raku entry.

Quadratic residue algorithm follows:

use Lingua::EN::Numbers;

sub isqrt ( \x ) { my ( $X, $q, $r, $t ) =  x, 1, 0 ;
    $q +<= 2 while $q$X ;
    while $q > 1 {
        $q +>= 2; $t = $X - $r - $q; $r +>= 1;
        if $t0 { $X = $t; $r += $q }
    }
    $r
}

say (^66)».&{ isqrt $_ }.Str ;

(1, 373)».&{ "7**$_: " ~ comma(isqrt 7**$_) }».say
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
7**1: 2
7**3: 18
7**5: 129
7**7: 907
7**9: 6,352
7**11: 44,467
7**13: 311,269
7**15: 2,178,889
7**17: 15,252,229
7**19: 106,765,608
7**21: 747,359,260
7**23: 5,231,514,822
7**25: 36,620,603,758
7**27: 256,344,226,312
7**29: 1,794,409,584,184
7**31: 12,560,867,089,291
7**33: 87,926,069,625,040
7**35: 615,482,487,375,282
7**37: 4,308,377,411,626,977
7**39: 30,158,641,881,388,842
7**41: 211,110,493,169,721,897
7**43: 1,477,773,452,188,053,281
7**45: 10,344,414,165,316,372,973
7**47: 72,410,899,157,214,610,812
7**49: 506,876,294,100,502,275,687
7**51: 3,548,134,058,703,515,929,815
7**53: 24,836,938,410,924,611,508,707
7**55: 173,858,568,876,472,280,560,953
7**57: 1,217,009,982,135,305,963,926,677
7**59: 8,519,069,874,947,141,747,486,745
7**61: 59,633,489,124,629,992,232,407,216
7**63: 417,434,423,872,409,945,626,850,517
7**65: 2,922,040,967,106,869,619,387,953,625
7**67: 20,454,286,769,748,087,335,715,675,381
7**69: 143,180,007,388,236,611,350,009,727,669
7**71: 1,002,260,051,717,656,279,450,068,093,686
7**73: 7,015,820,362,023,593,956,150,476,655,802

REXX

A fair amount of code was included so that the output aligns correctly.

/*REXX program computes and displays the Isqrt  (integer square root)  of some integers.*/
numeric digits 200                               /*insure 'nuff decimal digs for results*/
parse arg range power base .                     /*obtain optional arguments from the CL*/
if range=='' | range==","  then range= 0..65     /*Not specified?  Then use the default.*/
if power=='' | power==","  then power= 1..73     /* "      "         "   "   "     "    */
if base =='' | base ==","  then base =     7     /* "      "         "   "   "     "    */
parse var  range   rLO  '..'  rHI;     if rHI==''  then rHI= rLO      /*handle a range? */
parse var  power   pLO  '..'  pHI;     if pHI==''  then pHI= pLO      /*   "   "   "    */
$=
            do j=rLO  to rHI  while rHI>0        /*compute Isqrt for a range of integers*/
            $= $ commas( Isqrt(j) )              /*append the Isqrt to a list for output*/
            end   /*j*/
$= strip($)                                      /*elide the leading blank in the list. */
say center(' Isqrt for numbers: '   rLO   " ──► "  rHI' ',  length($),  "─")
say strip($)                                     /*$  has a leading blank for 1st number*/
say
z= base ** pHI                                   /*compute  max. exponentiation product.*/
Lp= max(30, length( commas(       z) ) )         /*length of "          "          "    */
Lr= max(20, length( commas( Isqrt(z) ) ) )       /* "     "    "  "   "  Isqrt of above.*/
say 'index'   center(base"**index", Lp)       center('Isqrt', Lr)        /*show a title.*/
say '─────'   copies("─",           Lp)       copies('─',     Lr)        /*  "  " header*/

            do j=pLO  to pHI  by 2  while pHI>0;                              x= base ** j
            say center(j, 5)  right( commas(x), Lp)      right( commas( Isqrt(x) ),  Lr)
            end   /*j*/                          /* [↑]  show a bunch of powers & Isqrt.*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _;  do jc=length(_)-3  to 1  by -3; _=insert(',', _, jc); end;  return _
/*──────────────────────────────────────────────────────────────────────────────────────*/
Isqrt: procedure; parse arg x                    /*obtain the only passed argument  X.  */
       x= x % 1                                  /*convert possible real X to an integer*/     /* ◄■■■■■■■  optional. */
       q= 1                                      /*initialize the  Q  variable to unity.*/
                               do until q>x      /*find a  Q  that is greater than  X.  */
                               q= q * 4          /*multiply   Q   by four.              */
                               end   /*until*/
       r= 0                                      /*R:    will be the integer sqrt of X. */
                 do while q>1                    /*keep processing while  Q  is > than 1*/
                 q= q % 4                        /*divide  Q  by four  (no remainder).  */
                 t= x - r - q                    /*compute a temporary variable.        */
                 r= r % 2                        /*divide  R  by two   (no remainder).  */
                 if t >= 0  then do              /*if   T  is non─negative  ...         */
                                 x= t            /*recompute the value of  X            */
                                 r= r + q        /*    "      "    "    "  R            */
                                 end
                 end   /*while*/
       return r                                  /*return the integer square root of X. */
output   when using the default inputs:
───────────────────────────────────────────────── Isqrt for numbers:  0  ──►  65 ──────────────────────────────────────────────────
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

index                                      7**index                                                        Isqrt
───── ────────────────────────────────────────────────────────────────────────────────── ─────────────────────────────────────────
  1                                                                                    7                                         2
  3                                                                                  343                                        18
  5                                                                               16,807                                       129
  7                                                                              823,543                                       907
  9                                                                           40,353,607                                     6,352
 11                                                                        1,977,326,743                                    44,467
 13                                                                       96,889,010,407                                   311,269
 15                                                                    4,747,561,509,943                                 2,178,889
 17                                                                  232,630,513,987,207                                15,252,229
 19                                                               11,398,895,185,373,143                               106,765,608
 21                                                              558,545,864,083,284,007                               747,359,260
 23                                                           27,368,747,340,080,916,343                             5,231,514,822
 25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
 27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
 29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
 31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
 33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
 35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
 37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
 39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
 41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
 43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
 45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
 47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
 49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
 51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
 53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
 55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
 57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
 59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
 61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
 63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
 65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
 67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
 69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
 71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
 73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

RPL

Because RPL can only handle unsigned integers, a light change has been made in the proposed algorithm,

Works with: Halcyon Calc version 4.2.7
RPL code Comment
 ≪ 
  #1
   WHILE DUP2 ≥ REPEAT 
      SL SL END
   
   #0
   WHILE OVER #1 > REPEAT 
      SWAP SR SR SWAP
      DUP2 +  
      SWAP SR SWAP
      IF 4 PICK SWAP DUP2 ≥ THEN
         - 4 ROLL DROP ROT ROT
         OVER +
      ELSE DROP2 END 
   END ROT ROT DROP2
≫ 
´ISQRT’ STO 
ISQRT ( #n -- #sqrt(n) )
q ◄── 1        
perform while q <= x         
   q ◄── q * 4                  
z ◄── x 
r ◄── 0
perform  while q > 1
   q ◄── q ÷ 4 
   u ◄── r + q  
   r ◄── r ÷ 2   
   if z >= u  then do            
       z ◄── z - u 
       r ◄── r + q   
   else remove u and copy of z from stack
end perform, clean stack


Input:
≪ { } 0 65 FOR n n R→B ISQRT B→R + NEXT ≫ EVAL
≪ {} #7 1 11 START DUP ISQRT ROT SWAP + SWAP 49 * NEXT DROP ≫ EVAL
Output:
2: { 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 }
1: { # 2d # 18d # 129d # 907d # 6352d # 44467d # 311269d # 2178889d # 15252229d # 106765608d # 747359260d } 

Ruby

Ruby already has Integer.sqrt, which results in the integer square root of a positive integer. It can be re-implemented as follows:

module Commatize
  refine Integer do
    def commatize
      self.to_s.gsub( /(\d)(?=\d{3}+(?:\.|$))(\d{3}\..*)?/, "\\1,\\2")
    end
  end
end

using Commatize
def isqrt(x)
    q, r = 1, 0
    while (q <= x) do q <<= 2 end
    while (q > 1) do
        q >>= 2; t = x-r-q; r >>= 1
        if (t >= 0) then x, r = t, r+q end
    end
    r
end

puts (0..65).map{|n| isqrt(n) }.join(" ")

1.step(73, 2) do |n|
  print "#{n}:\t"
  puts isqrt(7**n).commatize
end
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
1:	2
3:	18
5:	129
7:	907
9:	6,352
11:	44,467
13:	311,269
15:	2,178,889
17:	15,252,229
19:	106,765,608
21:	747,359,260
23:	5,231,514,822
25:	36,620,603,758
27:	256,344,226,312
29:	1,794,409,584,184
31:	12,560,867,089,291
33:	87,926,069,625,040
35:	615,482,487,375,282
37:	4,308,377,411,626,977
39:	30,158,641,881,388,842
41:	211,110,493,169,721,897
43:	1,477,773,452,188,053,281
45:	10,344,414,165,316,372,973
47:	72,410,899,157,214,610,812
49:	506,876,294,100,502,275,687
51:	3,548,134,058,703,515,929,815
53:	24,836,938,410,924,611,508,707
55:	173,858,568,876,472,280,560,953
57:	1,217,009,982,135,305,963,926,677
59:	8,519,069,874,947,141,747,486,745
61:	59,633,489,124,629,992,232,407,216
63:	417,434,423,872,409,945,626,850,517
65:	2,922,040,967,106,869,619,387,953,625
67:	20,454,286,769,748,087,335,715,675,381
69:	143,180,007,388,236,611,350,009,727,669
71:	1,002,260,051,717,656,279,450,068,093,686
73:	7,015,820,362,023,593,956,150,476,655,802

Rust

use num::BigUint;
use num::CheckedSub;
use num_traits::{One, Zero};

fn isqrt(number: &BigUint) -> BigUint {
    let mut q: BigUint = One::one();
    while q <= *number {
        q <<= &2;
    }

    let mut z = number.clone();
    let mut result: BigUint = Zero::zero();

    while q > One::one() {
        q >>= &2;
        let t = z.checked_sub(&result).and_then(|diff| diff.checked_sub(&q));
        result >>= &1;

        if let Some(t) = t {
            z = t;
            result += &q;
        }
    }

    result
}

fn with_thousand_separator(s: &str) -> String {
    let digits: Vec<_> = s.chars().rev().collect();
    let chunks: Vec<_> = digits
        .chunks(3)
        .map(|chunk| chunk.iter().collect::<String>())
        .collect();

    chunks.join(",").chars().rev().collect::<String>()
}

fn main() {
    println!("The integer square roots of integers from 0 to 65 are:");
    (0_u32..=65).for_each(|n| print!("{} ", isqrt(&n.into())));

    println!("\nThe integer square roots of odd powers of 7 from 7^1 up to 7^74 are:");
    (1_u32..75).step_by(2).for_each(|exp| {
        println!(
            "7^{:>2}={:>83} ISQRT: {:>42} ",
            exp,
            with_thousand_separator(&BigUint::from(7_u8).pow(exp).to_string()),
            with_thousand_separator(&isqrt(&BigUint::from(7_u8).pow(exp)).to_string())
        )
    });
}
Output:
The integer square roots of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 
The integer square roots of odd powers of 7 from 7^1 up to 7^74 are:
7^ 1=                                                                                  7 ISQRT:                                          2
7^ 3=                                                                                343 ISQRT:                                         18
7^ 5=                                                                             16,807 ISQRT:                                        129
7^ 7=                                                                            823,543 ISQRT:                                        907
7^ 9=                                                                         40,353,607 ISQRT:                                      6,352
7^11=                                                                      1,977,326,743 ISQRT:                                     44,467
7^13=                                                                     96,889,010,407 ISQRT:                                    311,269
7^15=                                                                  4,747,561,509,943 ISQRT:                                  2,178,889
7^17=                                                                232,630,513,987,207 ISQRT:                                 15,252,229
7^19=                                                             11,398,895,185,373,143 ISQRT:                                106,765,608
7^21=                                                            558,545,864,083,284,007 ISQRT:                                747,359,260
7^23=                                                         27,368,747,340,080,916,343 ISQRT:                              5,231,514,822
7^25=                                                      1,341,068,619,663,964,900,807 ISQRT:                             36,620,603,758
7^27=                                                     65,712,362,363,534,280,139,543 ISQRT:                            256,344,226,312
7^29=                                                  3,219,905,755,813,179,726,837,607 ISQRT:                          1,794,409,584,184
7^31=                                                157,775,382,034,845,806,615,042,743 ISQRT:                         12,560,867,089,291
7^33=                                              7,730,993,719,707,444,524,137,094,407 ISQRT:                         87,926,069,625,040
7^35=                                            378,818,692,265,664,781,682,717,625,943 ISQRT:                        615,482,487,375,282
7^37=                                         18,562,115,921,017,574,302,453,163,671,207 ISQRT:                      4,308,377,411,626,977
7^39=                                        909,543,680,129,861,140,820,205,019,889,143 ISQRT:                     30,158,641,881,388,842
7^41=                                     44,567,640,326,363,195,900,190,045,974,568,007 ISQRT:                    211,110,493,169,721,897
7^43=                                  2,183,814,375,991,796,599,109,312,252,753,832,343 ISQRT:                  1,477,773,452,188,053,281
7^45=                                107,006,904,423,598,033,356,356,300,384,937,784,807 ISQRT:                 10,344,414,165,316,372,973
7^47=                              5,243,338,316,756,303,634,461,458,718,861,951,455,543 ISQRT:                 72,410,899,157,214,610,812
7^49=                            256,923,577,521,058,878,088,611,477,224,235,621,321,607 ISQRT:                506,876,294,100,502,275,687
7^51=                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743 ISQRT:              3,548,134,058,703,515,929,815
7^53=                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407 ISQRT:             24,836,938,410,924,611,508,707
7^55=                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943 ISQRT:            173,858,568,876,472,280,560,953
7^57=                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207 ISQRT:          1,217,009,982,135,305,963,926,677 
7^59=                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143 ISQRT:          8,519,069,874,947,141,747,486,745
7^61=              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007 ISQRT:         59,633,489,124,629,992,232,407,216
7^63=            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343 ISQRT:        417,434,423,872,409,945,626,850,517
7^65=          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807 ISQRT:      2,922,040,967,106,869,619,387,953,625
7^67=        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543 ISQRT:     20,454,286,769,748,087,335,715,675,381
7^69=     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607 ISQRT:    143,180,007,388,236,611,350,009,727,669
7^71=  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 ISQRT:  1,002,260,051,717,656,279,450,068,093,686
7^73= 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 ISQRT:  7,015,820,362,023,593,956,150,476,655,802


S-BASIC

This follows the algorithm given in the task description. The q = q * 4 computation, however, will result in overflow (and an endless loop!) for large values of x.

comment
  return integer square root of n using quadratic
  residue algorithm. WARNING: the function will fail 
  for x > 16,383.
end
function isqrt(x = integer) = integer
  var q, r, t = integer
  q = 1
  while q <= x do  
    q = q * 4       rem overflow may occur here!
  r = 0
  while q > 1 do
    begin
      q = q / 4
      t = x - r - q
      r = r / 2
      if t >= 0 then
        begin
          x = t
          r = r + q
        end
    end
end = r

rem - Exercise the function

var n, pow7 = integer
print "Integer square root of first 65 numbers"
for n=1 to 65
  print using "#####";isqrt(n);
next n
print
print "Integer square root of odd powers of 7"
print "  n    7^n   isqrt"
print "------------------"
for n=1 to 3 step 2
  pow7 = 7^n
  print using "###  ####  ####";n; pow7; isqrt(pow7)
next n

end

An alternate version of isqrt() that can handle the full range of S-BASIC integer values (well, almost: it will fail for 32,767) looks like this.

function isqrt(x = integer) = integer
   var x0, x1 = integer
   x1 = x
   repeat
      begin
         x0 = x1
         x1 = (x0 + x / x0) / 2
      end
   until x1 >= x0
end = x0
Output:

The output for 7^5 will be shown only if the alternate version of the function is used.

Integer square root of first 65 numbers
    1    1    1    2    2    2    2    2    3    3    3    3    3    3    3    4
    4    4    4    4    4    4    4    4    5    5    5    5    5    5    5    5
    5    5    5    6    6    6    6    6    6    6    6    6    6    6    6    6
    7    7    7    7    7    7    7    7    7    7    7    7    7    7    7    8
    8
Integer square root of odd powers of 7
  n    7^n   isqrt
------------------
  1     7     2
  3   343    18
  5 16807   129

Scheme

Works with: CHICKEN version 5.3.0
Library: r7rs
Library: format


Adapting this to any given R7RS Scheme is probably mainly a matter of changing how output is done.


(import (scheme base))
(import (scheme write))
(import (format)) ;; Common Lisp formatting for CHICKEN Scheme.

(define (find-a-power-of-4-greater-than-x x)
  (let loop ((q 1))
    (if (< x q)
        q
        (loop (* 4 q)))))

(define (isqrt+remainder x)
  (let loop ((q (find-a-power-of-4-greater-than-x x))
             (z x)
             (r 0))
    (if (= q 1)
        (values r z)
        (let* ((q (truncate-quotient q 4))
               (t (- z r q))
               (r (truncate-quotient r 2)))
          (if (negative? t)
              (loop q z r)
              (loop q t (+ r q)))))))

(define (isqrt x)
  (let-values (((q r) (isqrt+remainder x)))
    q))

(format #t "isqrt(i) for ~D <= i <= ~D:~2%" 0 65)
(do ((i 0 (+ i 1)))
    ((= i 65))
  (format #t "~D " (isqrt i)))
(format #t "~D~3%" (isqrt 65))

(format #t "isqrt(7**i) for ~D <= i <= ~D, i odd:~2%" 1 73)
(format #t "~2@A ~84@A ~43@A~%" "i" "7**i" "sqrt(7**i)")
(format #t "~A~%" (make-string 131 #\-))
(do ((i 1 (+ i 2)))
    ((= i 75))
  (let ((7**i (expt 7 i)))
    (format #t "~2D ~84:D ~43:D~%" i 7**i (isqrt 7**i))))
Output:
$ csc -O3 -R r7rs isqrt.scm && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802

SETL

program isqrt;
    loop for i in [1..65] do
        putchar(lpad(str isqrt(i), 5));
        if i mod 13=0 then print(); end if;
    end loop;

    print();
    loop for p in [1, 3..73] do
        sqrtp := isqrt(7 ** p);
        print("sqrt(7^" + lpad(str p,2) + ") = " + lpad(str sqrtp, 32));
    end loop;

    proc isqrt(x);
        q := 1;
        loop while q<=x do
            q *:= 4;
        end loop;
        z := x;
        r := 0;
        loop while q>1 do
            q div:= 4;
            t := z-r-q;
            r div:= 2;
            if t>=0 then
                z := t;
                r +:= q;
            end if;
        end loop;
        return r;
    end proc;
end program;
Output:
    1    1    1    2    2    2    2    2    3    3    3    3    3
    3    3    4    4    4    4    4    4    4    4    4    5    5
    5    5    5    5    5    5    5    5    5    6    6    6    6
    6    6    6    6    6    6    6    6    6    7    7    7    7
    7    7    7    7    7    7    7    7    7    7    7    8    8

sqrt(7^ 1) =                                2
sqrt(7^ 3) =                               18
sqrt(7^ 5) =                              129
sqrt(7^ 7) =                              907
sqrt(7^ 9) =                             6352
sqrt(7^11) =                            44467
sqrt(7^13) =                           311269
sqrt(7^15) =                          2178889
sqrt(7^17) =                         15252229
sqrt(7^19) =                        106765608
sqrt(7^21) =                        747359260
sqrt(7^23) =                       5231514822
sqrt(7^25) =                      36620603758
sqrt(7^27) =                     256344226312
sqrt(7^29) =                    1794409584184
sqrt(7^31) =                   12560867089291
sqrt(7^33) =                   87926069625040
sqrt(7^35) =                  615482487375282
sqrt(7^37) =                 4308377411626977
sqrt(7^39) =                30158641881388842
sqrt(7^41) =               211110493169721897
sqrt(7^43) =              1477773452188053281
sqrt(7^45) =             10344414165316372973
sqrt(7^47) =             72410899157214610812
sqrt(7^49) =            506876294100502275687
sqrt(7^51) =           3548134058703515929815
sqrt(7^53) =          24836938410924611508707
sqrt(7^55) =         173858568876472280560953
sqrt(7^57) =        1217009982135305963926677
sqrt(7^59) =        8519069874947141747486745
sqrt(7^61) =       59633489124629992232407216
sqrt(7^63) =      417434423872409945626850517
sqrt(7^65) =     2922040967106869619387953625
sqrt(7^67) =    20454286769748087335715675381
sqrt(7^69) =   143180007388236611350009727669
sqrt(7^71) =  1002260051717656279450068093686
sqrt(7^73) =  7015820362023593956150476655802

Seed7

Seed7 has integer sqrt() and bigInteger sqrt() functions. These functions could be used if an integer square root is needed. But this task does not allow using the language's built-in sqrt() function. Instead the quadratic residue algorithm for finding the integer square root must be used.

$ include "seed7_05.s7i";
  include "bigint.s7i";

const func string: commatize (in bigInteger: bigNum) is func
  result
    var string: stri is "";
  local
    var integer: index is 0;
  begin
    stri := str(bigNum);
    for index range length(stri) - 3 downto 1 step 3 do
      stri := stri[.. index] & "," & stri[succ(index) ..];
    end for;
  end func;

const func bigInteger: isqrt (in bigInteger: x) is func
  result
    var bigInteger: r is 0_;
  local
    var bigInteger: q is 1_;
    var bigInteger: z is 0_;
    var bigInteger: t is 0_;
  begin
    while q <= x do
      q *:= 4_;
    end while;
    z := x;
    while q > 1_ do
      q := q mdiv 4_;
      t := z - r - q;
      r := r mdiv 2_;
      if t >= 0_ then
        z := t;
        r +:= q;
      end if;
    end while;
  end func;

const proc: main is func
  local
    var integer: number is 0;
    var bigInteger: pow7 is 7_;
  begin
    writeln("The integer square roots of integers from 0 to 65 are:");
    for number range 0 to 65 do
      write(isqrt(bigInteger(number)) <& " ");
    end for;
    writeln("\n\nThe integer square roots of powers of 7 from 7**1 up to 7**73 are:");
    writeln("power                                    7 ** power                                                integer square root");
    writeln("----- --------------------------------------------------------------------------------- -----------------------------------------");
    for number range 1 to 73 step 2 do
        writeln(number lpad 2 <& commatize(pow7) lpad 85 <& commatize(isqrt(pow7)) lpad 42);
        pow7 *:= 49_;
    end for;
  end func;
Output:
The integer square roots of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

The integer square roots of powers of 7 from 7**1 up to 7**73 are:
power                                    7 ** power                                                integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Sidef

Built-in:

var n = 1234
say n.isqrt
say n.iroot(2)

Explicit implementation for the integer k-th root of n:

func rootint(n, k=2) {
    return 0 if (n == 0)
    var (s, v) = (n, k - 1)
    loop {
        var u = ((v*s + (n // s**v)) // k)
        break if (u >= s)
        s = u
    }
    s
}

Implementation of integer square root of n (using the quadratic residue algorithm):

func isqrt(x) { var (q, r) = (1, 0); while (q <= x) { q <<= 2 }
    while (q > 1) { q >>= 2; var t = x-r+q; r >>= 1
        if (t >= 0) { (x, r) = (t, r+q) } } r }

say isqrt.map(0..65).join(' '); printf("\n")

for n in (1..73 `by` 2) {
    printf("isqrt(7^%-2d): %42s\n", n, isqrt(7**n).commify) }
Output:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

isqrt(7^1 ):                                          2
isqrt(7^3 ):                                         18
isqrt(7^5 ):                                        129
isqrt(7^7 ):                                        907
isqrt(7^9 ):                                      6,352
isqrt(7^11):                                     44,467
isqrt(7^13):                                    311,269
isqrt(7^15):                                  2,178,889
isqrt(7^17):                                 15,252,229
isqrt(7^19):                                106,765,608
isqrt(7^21):                                747,359,260
isqrt(7^23):                              5,231,514,822
isqrt(7^25):                             36,620,603,758
isqrt(7^27):                            256,344,226,312
isqrt(7^29):                          1,794,409,584,184
isqrt(7^31):                         12,560,867,089,291
isqrt(7^33):                         87,926,069,625,040
isqrt(7^35):                        615,482,487,375,282
isqrt(7^37):                      4,308,377,411,626,977
isqrt(7^39):                     30,158,641,881,388,842
isqrt(7^41):                    211,110,493,169,721,897
isqrt(7^43):                  1,477,773,452,188,053,281
isqrt(7^45):                 10,344,414,165,316,372,973
isqrt(7^47):                 72,410,899,157,214,610,812
isqrt(7^49):                506,876,294,100,502,275,687
isqrt(7^51):              3,548,134,058,703,515,929,815
isqrt(7^53):             24,836,938,410,924,611,508,707
isqrt(7^55):            173,858,568,876,472,280,560,953
isqrt(7^57):          1,217,009,982,135,305,963,926,677
isqrt(7^59):          8,519,069,874,947,141,747,486,745
isqrt(7^61):         59,633,489,124,629,992,232,407,216
isqrt(7^63):        417,434,423,872,409,945,626,850,517
isqrt(7^65):      2,922,040,967,106,869,619,387,953,625
isqrt(7^67):     20,454,286,769,748,087,335,715,675,381
isqrt(7^69):    143,180,007,388,236,611,350,009,727,669
isqrt(7^71):  1,002,260,051,717,656,279,450,068,093,686
isqrt(7^73):  7,015,820,362,023,593,956,150,476,655,802

Standard ML

Translation of: Scheme
Translation of: OCaml
Works with: MLton


(*

  The Rosetta Code integer square root task, in Standard ML.

  Compile with, for example:

     mlton isqrt.sml

*)

val zero = IntInf.fromInt (0)
val one = IntInf.fromInt (1)
val seven = IntInf.fromInt (7)
val word1 = Word.fromInt (1)
val word2 = Word.fromInt (2)

fun
find_a_power_of_4_greater_than_x (x) =
let
  fun
  loop (q) =
  if x < q then
    q
  else
    loop (IntInf.<< (q, word2))
in
  loop (one)
end;

fun
isqrt (x) =
let
  fun
  loop (q, z, r) =
  if q = one then
    r
  else
    let
      val q = IntInf.~>> (q, word2)
      val t = z - r - q
      val r = IntInf.~>> (r, word1)
    in
      if t < zero then
        loop (q, z, r)
      else
        loop (q, t, r + q)
    end
in
  loop (find_a_power_of_4_greater_than_x (x), x, zero)
end;

fun
insert_separators (s, sep) =
(* Insert separator characters (such as #",", #".", #" ") in a numeral
   that is already in string form. *)
let
  fun
  loop (revchars, i, newchars) =
  case (revchars, i) of
      ([], _) => newchars
    | (revchars, 3) => loop (revchars, 0, sep :: newchars)
    | (c :: tail, i) => loop (tail, i + 1, c :: newchars)
in
  implode (loop (rev (explode s), 0, []))
end;

fun
commas (s) =
(* Insert commas in a numeral that is already in string form. *)
insert_separators (s, #",");

val pad_with_spaces = StringCvt.padLeft #" "

fun
main () =
let
  val i = ref 0
in
  print ("isqrt(i) for 0 <= i <= 65:\n\n");

  i := 0;
  while !i < 65 do (
    print (IntInf.toString (isqrt (IntInf.fromInt (!i))));
    print (" ");
    i := !i + 1
  );
  print (IntInf.toString (isqrt (IntInf.fromInt (65))));
  print ("\n\n\n");

  print ("isqrt(7**i) for 1 <= i <= 73, i odd:\n\n");
  print (pad_with_spaces 2 "i");
  print (pad_with_spaces 85 "7**i");
  print (pad_with_spaces 44 "sqrt(7**i)");
  print ("\n");

  i := 1;
  while !i <= 131 do (
    print ("-");
    i := !i + 1
  );
  print ("\n");

  i := 1;
  while !i <= 73 do (
    let
      val pow7 = IntInf.pow (seven, !i)
      val root = isqrt (pow7)
    in
      print (pad_with_spaces 2 (Int.toString (!i)));
      print (pad_with_spaces 85 (commas (IntInf.toString pow7)));
      print (pad_with_spaces 44 (commas (IntInf.toString root)));
      print ("\n");
      i := !i + 2
    end
  )
end;

main ();

(* local variables: *)
(* mode: sml *)
(* sml-indent-level: 2 *)
(* sml-indent-args: 2 *)
(* end: *)
Output:
$ mlton isqrt.sml && ./isqrt
isqrt(i) for 0 <= i <= 65:

0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8


isqrt(7**i) for 1 <= i <= 73, i odd:

 i                                                                                 7**i                                  sqrt(7**i)
-----------------------------------------------------------------------------------------------------------------------------------
 1                                                                                    7                                           2
 3                                                                                  343                                          18
 5                                                                               16,807                                         129
 7                                                                              823,543                                         907
 9                                                                           40,353,607                                       6,352
11                                                                        1,977,326,743                                      44,467
13                                                                       96,889,010,407                                     311,269
15                                                                    4,747,561,509,943                                   2,178,889
17                                                                  232,630,513,987,207                                  15,252,229
19                                                               11,398,895,185,373,143                                 106,765,608
21                                                              558,545,864,083,284,007                                 747,359,260
23                                                           27,368,747,340,080,916,343                               5,231,514,822
25                                                        1,341,068,619,663,964,900,807                              36,620,603,758
27                                                       65,712,362,363,534,280,139,543                             256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                           1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                          12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                          87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                         615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                       4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                      30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                     211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                   1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                  10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                  72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607                 506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743               3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407              24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943             173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207           1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143           8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007          59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343         417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807       2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543      20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607     143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743   1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407   7,015,820,362,023,593,956,150,476,655,802


Swift

Translation of: C++

Requires the attaswift BigInt package.

import BigInt

func integerSquareRoot<T: BinaryInteger>(_ num: T) -> T {
    var x: T = num
    var q: T = 1
    while q <= x {
        q <<= 2
    }
    var r: T = 0
    while q > 1 {
        q >>= 2
        let t: T = x - r - q
        r >>= 1
        if t >= 0 {
            x = t
            r += q
        }
    }
    return r
}

func pad(string: String, width: Int) -> String {
    if string.count >= width {
        return string
    }
    return String(repeating: " ", count: width - string.count) + string
}

func commatize<T: BinaryInteger>(_ num: T) -> String {
    let string = String(num)
    var result = String()
    result.reserveCapacity(4 * string.count / 3)
    var i = 0
    for ch in string {
        if i > 0 && i % 3 == string.count % 3 {
            result += ","
        }
        result.append(ch)
        i += 1
    }
    return result
}

print("Integer square root for numbers 0 to 65:")
for n in 0...65 {
    print(integerSquareRoot(n), terminator: " ")
}

let powerWidth = 83
let isqrtWidth = 42
print("\n\nInteger square roots of odd powers of 7 from 1 to 73:")
print(" n |\(pad(string: "7 ^ n", width: powerWidth)) |\(pad(string: "isqrt(7 ^ n)", width: isqrtWidth))")
print(String(repeating: "-", count: powerWidth + isqrtWidth + 6))
var p: BigInt = 7
for n in stride(from: 1, through: 73, by: 2) {
    let power = pad(string: commatize(p), width: powerWidth)
    let isqrt = pad(string: commatize(integerSquareRoot(p)), width: isqrtWidth)
    print("\(pad(string: String(n), width: 2)) |\(power) |\(isqrt)")
    p *= 49
}
Output:
Integer square root for numbers 0 to 65:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of odd powers of 7 from 1 to 73:
 n |                                                                              7 ^ n |                              isqrt(7 ^ n)
-----------------------------------------------------------------------------------------------------------------------------------
 1 |                                                                                  7 |                                         2
 3 |                                                                                343 |                                        18
 5 |                                                                             16,807 |                                       129
 7 |                                                                            823,543 |                                       907
 9 |                                                                         40,353,607 |                                     6,352
11 |                                                                      1,977,326,743 |                                    44,467
13 |                                                                     96,889,010,407 |                                   311,269
15 |                                                                  4,747,561,509,943 |                                 2,178,889
17 |                                                                232,630,513,987,207 |                                15,252,229
19 |                                                             11,398,895,185,373,143 |                               106,765,608
21 |                                                            558,545,864,083,284,007 |                               747,359,260
23 |                                                         27,368,747,340,080,916,343 |                             5,231,514,822
25 |                                                      1,341,068,619,663,964,900,807 |                            36,620,603,758
27 |                                                     65,712,362,363,534,280,139,543 |                           256,344,226,312
29 |                                                  3,219,905,755,813,179,726,837,607 |                         1,794,409,584,184
31 |                                                157,775,382,034,845,806,615,042,743 |                        12,560,867,089,291
33 |                                              7,730,993,719,707,444,524,137,094,407 |                        87,926,069,625,040
35 |                                            378,818,692,265,664,781,682,717,625,943 |                       615,482,487,375,282
37 |                                         18,562,115,921,017,574,302,453,163,671,207 |                     4,308,377,411,626,977
39 |                                        909,543,680,129,861,140,820,205,019,889,143 |                    30,158,641,881,388,842
41 |                                     44,567,640,326,363,195,900,190,045,974,568,007 |                   211,110,493,169,721,897
43 |                                  2,183,814,375,991,796,599,109,312,252,753,832,343 |                 1,477,773,452,188,053,281
45 |                                107,006,904,423,598,033,356,356,300,384,937,784,807 |                10,344,414,165,316,372,973
47 |                              5,243,338,316,756,303,634,461,458,718,861,951,455,543 |                72,410,899,157,214,610,812
49 |                            256,923,577,521,058,878,088,611,477,224,235,621,321,607 |               506,876,294,100,502,275,687
51 |                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743 |             3,548,134,058,703,515,929,815
53 |                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407 |            24,836,938,410,924,611,508,707
55 |                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943 |           173,858,568,876,472,280,560,953
57 |                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207 |         1,217,009,982,135,305,963,926,677
59 |                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143 |         8,519,069,874,947,141,747,486,745
61 |              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007 |        59,633,489,124,629,992,232,407,216
63 |            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343 |       417,434,423,872,409,945,626,850,517
65 |          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807 |     2,922,040,967,106,869,619,387,953,625
67 |        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543 |    20,454,286,769,748,087,335,715,675,381
69 |     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607 |   143,180,007,388,236,611,350,009,727,669
71 |  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 | 1,002,260,051,717,656,279,450,068,093,686
73 | 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 | 7,015,820,362,023,593,956,150,476,655,802

Tiny BASIC

Works with: TinyBasic

Tiny BASIC does not support string formatting or concatenation, and is limited to integer arithmetic on numbers no greater than 32,767. The isqrt of 0-65 and the first two odd powers of 7 are shown in column format. The algorithm itself (the interesting part) begins on line 100.

10 LET X = 0
20 GOSUB 100
30 PRINT R
40 LET X = X + 1
50 IF X < 66 THEN GOTO 20
70 PRINT "---"
71 LET X = 7
72 GOSUB 100
73 PRINT R
77 LET X = 343
78 GOSUB 100
79 PRINT R
90 END
100 REM integer square root function
110 LET Q = 1
120 IF Q > X THEN GOTO 150
130 LET Q = Q * 4
140 GOTO 120
150 LET Z = X
160 LET R = 0
170 IF Q <= 1 THEN RETURN
180 LET Q = Q / 4
190 LET T = Z - R - Q
200 LET R = R / 2
210 IF T < 0 THEN GOTO 170
220 LET Z = T
230 LET R = R + Q
240 GOTO 170

UNIX Shell

Works with: Bourne Again SHell
Works with: Korn Shell
Works with: Zsh
function isqrt {
  typeset -i x
  for x; do
    typeset -i q=1
    while (( q <= x )); do
      (( q <<= 2 ))
      if (( q <= 0 )); then
        return 1
      fi
    done
    typeset -i z=x
    typeset -i r=0
    typeset -i t
    while (( q > 1 )); do
      (( q >>= 2 ))
      (( t = z - r - q ))
      (( r >>= 1 ))
      if (( t >= 0 )); then
        (( z = t ))
        (( r = r + q ))
      fi
    done
    printf '%d\n' "$r"
  done
}
 
# demo
printf 'isqrt(n) for n from 0 to 65:\n'
for i in {1..4}; do
  for n in {0..65}; do
    case $i in
     1)
      (( tens=n/10 ))
      if (( tens )); then
        printf '%2d' "$tens"
      else
        printf '  '
      fi
      ;;
     2) printf '%2d' $(( n%10 ));;
     3) printf -- '--';;
     4) printf '%2d' "$(isqrt "$n")";;
    esac
  done
  printf '\n'
done
printf '\n'
 
printf 'isqrt(7ⁿ) for odd n up to the limit of integer precision:\n'
printf '%2s|%27sⁿ|%14sⁿ)\n' "n" "7" "isqrt(7"
for (( i=0;i<48; ++i )); do printf '-'; done; printf '\n'
for (( p=1; p<=73 && (n=7**p) > 0; p+=2)); do
  if r=$(isqrt $n); then
    printf "%2d|%'28d|%'16d\n" "$p" "$n" "$r"
  else
    break
  fi
done
Output:

The powers-of-7 table is limited by the built-in precision; on my system, both bash and zsh use signed 64-bit integers with a max value of 7²² < 9223372036854775807 < 7²³. Ksh uses signed 32-bit integers with a max value of 7¹¹ < 2147483647 < 7¹²; if I remove the typeset -i integer restriction, the code will work to a much larger power of 7, but at that point it's doing floating-point arithmetic, which is against the spirit of the task.

isqrt(n) for n from 0 to 65:
                     1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
------------------------------------------------------------------------------------------------------------------------------------
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8

isqrt(7ⁿ) for odd n up to the limit of integer precision:
 n|                          7ⁿ|       isqrt(7ⁿ)
------------------------------------------------
 1|                           7|               2
 3|                         343|              18
 5|                      16,807|             129
 7|                     823,543|             907
 9|                  40,353,607|           6,352 # ksh stops here
11|               1,977,326,743|          44,467
13|              96,889,010,407|         311,269
15|           4,747,561,509,943|       2,178,889
17|         232,630,513,987,207|      15,252,229
19|      11,398,895,185,373,143|     106,765,608
21|     558,545,864,083,284,007|     747,359,260

Visual Basic .NET

Translation of: C#
Imports System
Imports System.Console
Imports BI = System.Numerics.BigInteger

Module Module1
    Function isqrt(ByVal x As BI) As BI
        Dim t As BI, q As BI = 1, r As BI = 0
        While q <= x : q <<= 2 : End While
        While q > 1 : q >>= 2 : t = x - r - q : r >>= 1
            If t >= 0 Then x = t : r += q
        End While : Return r
    End Function

    Sub Main()
        Const max As Integer = 73, smax As Integer = 65
        Dim power_width As Integer = ((BI.Pow(7, max).ToString().Length \ 3) << 2) + 3,
            isqrt_width As Integer = (power_width + 1) >> 1,
            n as Integer
        WriteLine("Integer square root for numbers 0 to {0}:", smax)
        For n = 0 To smax : Write("{0} ", (n \ 10).ToString().Replace("0", " "))
            Next : WriteLine()
        For n = 0 To smax : Write("{0} ", n Mod 10) : Next : WriteLine()
        WriteLine(New String("-"c, (smax << 1) + 1))
        For n = 0 To smax : Write("{0} ", isqrt(n)) : Next
        WriteLine(vbLf & vbLf & "Integer square roots of odd powers of 7 from 1 to {0}:", max)
        Dim s As String = String.Format("[0,2] |[1,{0}:n0] |[2,{1}:n0]",
            power_width, isqrt_width).Replace("[", "{").Replace("]", "}")
        WriteLine(s, "n", "7 ^ n", "isqrt(7 ^ n)")
        WriteLine(New String("-"c, power_width + isqrt_width + 6))
        Dim p As BI = 7 : n = 1 : While n <= max
            WriteLine(s, n, p, isqrt(p)) : n += 2 : p = p * 49
        End While
    End Sub
End Module
Output:
Integer square root for numbers 0 to 65:
                    1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 
-----------------------------------------------------------------------------------------------------------------------------------
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

Integer square roots of odd powers of 7 from 1 to 73:
 n |                                                                              7 ^ n |                              isqrt(7 ^ n)
-----------------------------------------------------------------------------------------------------------------------------------
 1 |                                                                                  7 |                                         2
 3 |                                                                                343 |                                        18
 5 |                                                                             16,807 |                                       129
 7 |                                                                            823,543 |                                       907
 9 |                                                                         40,353,607 |                                     6,352
11 |                                                                      1,977,326,743 |                                    44,467
13 |                                                                     96,889,010,407 |                                   311,269
15 |                                                                  4,747,561,509,943 |                                 2,178,889
17 |                                                                232,630,513,987,207 |                                15,252,229
19 |                                                             11,398,895,185,373,143 |                               106,765,608
21 |                                                            558,545,864,083,284,007 |                               747,359,260
23 |                                                         27,368,747,340,080,916,343 |                             5,231,514,822
25 |                                                      1,341,068,619,663,964,900,807 |                            36,620,603,758
27 |                                                     65,712,362,363,534,280,139,543 |                           256,344,226,312
29 |                                                  3,219,905,755,813,179,726,837,607 |                         1,794,409,584,184
31 |                                                157,775,382,034,845,806,615,042,743 |                        12,560,867,089,291
33 |                                              7,730,993,719,707,444,524,137,094,407 |                        87,926,069,625,040
35 |                                            378,818,692,265,664,781,682,717,625,943 |                       615,482,487,375,282
37 |                                         18,562,115,921,017,574,302,453,163,671,207 |                     4,308,377,411,626,977
39 |                                        909,543,680,129,861,140,820,205,019,889,143 |                    30,158,641,881,388,842
41 |                                     44,567,640,326,363,195,900,190,045,974,568,007 |                   211,110,493,169,721,897
43 |                                  2,183,814,375,991,796,599,109,312,252,753,832,343 |                 1,477,773,452,188,053,281
45 |                                107,006,904,423,598,033,356,356,300,384,937,784,807 |                10,344,414,165,316,372,973
47 |                              5,243,338,316,756,303,634,461,458,718,861,951,455,543 |                72,410,899,157,214,610,812
49 |                            256,923,577,521,058,878,088,611,477,224,235,621,321,607 |               506,876,294,100,502,275,687
51 |                         12,589,255,298,531,885,026,341,962,383,987,545,444,758,743 |             3,548,134,058,703,515,929,815
53 |                        616,873,509,628,062,366,290,756,156,815,389,726,793,178,407 |            24,836,938,410,924,611,508,707
55 |                     30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943 |           173,858,568,876,472,280,560,953
57 |                  1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207 |         1,217,009,982,135,305,963,926,677
59 |                 72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143 |         8,519,069,874,947,141,747,486,745
61 |              3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007 |        59,633,489,124,629,992,232,407,216
63 |            174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343 |       417,434,423,872,409,945,626,850,517
65 |          8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807 |     2,922,040,967,106,869,619,387,953,625
67 |        418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543 |    20,454,286,769,748,087,335,715,675,381
69 |     20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607 |   143,180,007,388,236,611,350,009,727,669
71 |  1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 | 1,002,260,051,717,656,279,450,068,093,686
73 | 49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 | 7,015,820,362,023,593,956,150,476,655,802

VTL-2

The ISQRT routine starts at line 2000. As VTL-2 only has unsigned 16-bit arithmetic, only the roots of 7^1, 7^3 and 7^5 are shown as 7^7 is too large.

1000 X=0
1010 #=2000
1020 $=32
1030 ?=R
1040 X=X+1
1050 #=X=33=0*1070
1060 ?=""
1070 #=X<66*1010
1080 P=1
1090 X=7
1100 #=2000
1110 ?=""
1120 ?="Root 7^";
1130 ?=P
1140 ?="(";
1150 ?=X
1160 ?=") = ";
1170 ?=R
1180 X=X*49
1190 P=P+2
1200 #=P<6*1100
1210 #=9999
2000 A=!
2010 Q=1
2020 #=X>Q=0*2050
2030 Q=Q*4
2040 #=2020
2050 Z=X
2060 R=0
2070 #=Q<2*A
2080 Q=Q/4
2090 T=Z-R-Q
2100 I=Z<(R+Q)
2110 R=R/2
2120 #=I*2070
2130 Z=T
2140 R=R+Q
2150 #=2070
Output:
 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8
Root 7^1(7) = 2
Root 7^3(343) = 18
Root 7^5(16807) = 129

Wren

Library: Wren-big
Library: Wren-fmt
import "./big" for BigInt
import "./fmt" for Fmt

var isqrt = Fn.new { |x|
    if (!(x is BigInt && x >= BigInt.zero)) {
        Fiber.abort("Argument must be a non-negative big integer.")
    }
    var q = BigInt.one
    while (q <= x) q = q * 4
    var z = x
    var r = BigInt.zero
    while (q > BigInt.one) {
        q = q >> 2
        var t = z - r - q
        r = r >> 1
        if (t >= 0) {
            z = t
            r = r + q
        }
    }
    return r
}

System.print("The integer square roots of integers from 0 to 65 are:")
for (i in 0..65) System.write("%(isqrt.call(BigInt.new(i))) ")
System.print()

System.print("\nThe integer square roots of powers of 7 from 7^1 up to 7^73 are:\n")
System.print("power                                    7 ^ power                                                 integer square root")
System.print("----- --------------------------------------------------------------------------------- -----------------------------------------")
var pow7 = BigInt.new(7)
var bi49 = BigInt.new(49)
var i = 1
while (i <= 73) {
    Fmt.print("$2d $,84s $,41s", i, pow7, isqrt.call(pow7))
    pow7 = pow7 * bi49
    i = i + 2
}
Output:
The integer square roots of integers from 0 to 65 are:
0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 

The integer square roots of odd powers of 7 from 7^1 up to 7^73 are:

power                                    7 ^ power                                                 integer square root
----- --------------------------------------------------------------------------------- -----------------------------------------
 1                                                                                    7                                         2
 3                                                                                  343                                        18
 5                                                                               16,807                                       129
 7                                                                              823,543                                       907
 9                                                                           40,353,607                                     6,352
11                                                                        1,977,326,743                                    44,467
13                                                                       96,889,010,407                                   311,269
15                                                                    4,747,561,509,943                                 2,178,889
17                                                                  232,630,513,987,207                                15,252,229
19                                                               11,398,895,185,373,143                               106,765,608
21                                                              558,545,864,083,284,007                               747,359,260
23                                                           27,368,747,340,080,916,343                             5,231,514,822
25                                                        1,341,068,619,663,964,900,807                            36,620,603,758
27                                                       65,712,362,363,534,280,139,543                           256,344,226,312
29                                                    3,219,905,755,813,179,726,837,607                         1,794,409,584,184
31                                                  157,775,382,034,845,806,615,042,743                        12,560,867,089,291
33                                                7,730,993,719,707,444,524,137,094,407                        87,926,069,625,040
35                                              378,818,692,265,664,781,682,717,625,943                       615,482,487,375,282
37                                           18,562,115,921,017,574,302,453,163,671,207                     4,308,377,411,626,977
39                                          909,543,680,129,861,140,820,205,019,889,143                    30,158,641,881,388,842
41                                       44,567,640,326,363,195,900,190,045,974,568,007                   211,110,493,169,721,897
43                                    2,183,814,375,991,796,599,109,312,252,753,832,343                 1,477,773,452,188,053,281
45                                  107,006,904,423,598,033,356,356,300,384,937,784,807                10,344,414,165,316,372,973
47                                5,243,338,316,756,303,634,461,458,718,861,951,455,543                72,410,899,157,214,610,812
49                              256,923,577,521,058,878,088,611,477,224,235,621,321,607               506,876,294,100,502,275,687
51                           12,589,255,298,531,885,026,341,962,383,987,545,444,758,743             3,548,134,058,703,515,929,815
53                          616,873,509,628,062,366,290,756,156,815,389,726,793,178,407            24,836,938,410,924,611,508,707
55                       30,226,801,971,775,055,948,247,051,683,954,096,612,865,741,943           173,858,568,876,472,280,560,953
57                    1,481,113,296,616,977,741,464,105,532,513,750,734,030,421,355,207         1,217,009,982,135,305,963,926,677
59                   72,574,551,534,231,909,331,741,171,093,173,785,967,490,646,405,143         8,519,069,874,947,141,747,486,745
61                3,556,153,025,177,363,557,255,317,383,565,515,512,407,041,673,852,007        59,633,489,124,629,992,232,407,216
63              174,251,498,233,690,814,305,510,551,794,710,260,107,945,042,018,748,343       417,434,423,872,409,945,626,850,517
65            8,538,323,413,450,849,900,970,017,037,940,802,745,289,307,058,918,668,807     2,922,040,967,106,869,619,387,953,625
67          418,377,847,259,091,645,147,530,834,859,099,334,519,176,045,887,014,771,543    20,454,286,769,748,087,335,715,675,381
69       20,500,514,515,695,490,612,229,010,908,095,867,391,439,626,248,463,723,805,607   143,180,007,388,236,611,350,009,727,669
71    1,004,525,211,269,079,039,999,221,534,496,697,502,180,541,686,174,722,466,474,743 1,002,260,051,717,656,279,450,068,093,686
73   49,221,735,352,184,872,959,961,855,190,338,177,606,846,542,622,561,400,857,262,407 7,015,820,362,023,593,956,150,476,655,802

Yabasic

// Rosetta Code problem: https://rosettacode.org/wiki/Isqrt_(integer_square_root)_of_X
// by Jjuanhdez, 06/2022

print "Integer square root of first 65 numbers:"
for n = 1 to 65
    print isqrt(n) using("##");
next n
print : print
print "Integer square root of odd powers of 7"
print "  n |                7^n |     isqrt "
print "----|--------------------|-----------"
for n = 1 to 21 step 2
    pow7 = 7 ^ n
    print n using("###"), " | ", left$(str$(pow7,"%20.1f"),18), " | ", left$(str$(isqrt(pow7),"%11.1f"),9)
    
next n
end

sub isqrt(x)
    q = 1
    while q <= x
        q = q * 4
    wend
    r = 0
    while q > 1
        q = q / 4
        t = x - r - q
        r = r / 2
        if t >= 0 then
            x = t
            r = r + q
        end if
    wend
    return int(r)
end sub