# Factors of a Mersenne number

Factors of a Mersenne number
You are encouraged to solve this task according to the task description, using any language you may know.

A Mersenne number is a number in the form of 2P-1.

If P is prime, the Mersenne number may be a Mersenne prime (if P is not prime, the Mersenne number is also not prime).

In the search for Mersenne prime numbers it is advantageous to eliminate exponents by finding a small factor before starting a, potentially lengthy, Lucas-Lehmer test.

There are very efficient algorithms for determining if a number divides 2P-1 (or equivalently, if 2P mod (the number) = 1). Some languages already have built-in implementations of this exponent-and-mod operation (called modPow or similar).

The following is how to implement this modPow yourself:

For example, let's compute 223 mod 47. Convert the exponent 23 to binary, you get 10111. Starting with square = 1, repeatedly square it. Remove the top bit of the exponent, and if it's 1 multiply square by the base of the exponentiation (2), then compute square modulo 47. Use the result of the modulo from the last step as the initial value of square in the next step:

remove       optional
square      top bit   multiply by 2   mod 47
────────────   ───────   ─────────────   ──────
1*1 = 1        1  0111   1*2 = 2            2
2*2 = 4        0   111      no              4
4*4 = 16       1    11   16*2 = 32         32
32*32 = 1024   1     1   1024*2 = 2048     27
27*27 = 729    1         729*2 = 1458       1

Since 223 mod 47 = 1, 47 is a factor of 2P-1. (To see this, subtract 1 from both sides: 223-1 = 0 mod 47.) Since we've shown that 47 is a factor, 223-1 is not prime. Further properties of Mersenne numbers allow us to refine the process even more. Any factor q of 2P-1 must be of the form 2kP+1, k being a positive integer or zero. Furthermore, q must be 1 or 7 mod 8. Finally any potential factor q must be prime. As in other trial division algorithms, the algorithm stops when 2kP+1 > sqrt(N).

These primality tests only work on Mersenne numbers where P is prime. For example, M4=15 yields no factors using these techniques, but factors into 3 and 5, neither of which fit 2kP+1.

Using the above method find a factor of 2929-1 (aka M929)

•   Computers in 1948: 2127 - 1
(Note:   This video is no longer available because the YouTube account associated with this video has been terminated.)

## 11l

Translation of: Python
F is_prime(a)
I a == 2 {R 1B}
I a < 2 | a % 2 == 0 {R 0B}
L(i) (3 .. Int(sqrt(a))).step(2)
I a % i == 0
R 0B
R 1B

F m_factor(p)
V max_k = 16384 I/ p
L(k) 0 .< max_k
V q = 2 * p * k + 1
I !is_prime(q)
L.continue
E I q % 8 != 1 & q % 8 != 7
L.continue
E I pow(2, p, q) == 1
R q
R 0

V exponent = Int(input(‘Enter exponent of Mersenne number: ’))
I !is_prime(exponent)
print(‘Exponent is not prime: #.’.format(exponent))
E
V factor = m_factor(exponent)
I factor == 0
print(‘No factor found for M#.’.format(exponent))
E
print(‘M#. has a factor: #.’.format(exponent, factor))
Output:
Enter exponent of Mersenne number: 929
M929 has a factor: 13007

## 8086 Assembly

P:	equ	929		; P for 2^P-1
cpu	8086
bits	16
org	100h
section	.text
mov	ax,P		; Is P prime?
call	prime
mov	dx,notprm
jc	msg		; If not, say so and stop.
xor	bp,bp		; Let BP hold k
test_k:	inc	bp		; k += 1
mov	ax,P		; Calculate 2kP + 1
mul	bp		; AX = kP
shl	ax,1		; AX = 2kP
inc	ax		; AX = 2kP + 1
mov	dx,ovfl		; If AX overflows (16 bits), say so and stop
jc 	msg
mov	bx,ax		; What is 2^P mod (2kP+1)?
mov	cx,P
call	modpow
dec	ax		; If it is 1, we're done
jnz	test_k		; If not, increment K and try again
mov	dx,factor	; If so, we found a factor
call	msg
prbx:	mov	ax,10		; The factor is still in BX
xchg	bx,ax		; Put factor in AX and divisor (10) in BX
mov	di,number	; Generate ASCII representation of number
digit:	xor	dx,dx
div	bx		; Divide current number by 10,
dec	di		; move pointer back,
mov	[di],dl		; store digit,
test	ax,ax		; and if there are more digits,
jnz	digit		; find the next digit.
mov	dx,di		; Finally, print the number.
jmp	msg
;;;	Calculate 2^CX mod BX
;;;	Output: AX
;;;	Destroyed: CX, DX
modpow:	shl	cx,1		; Shift CX left until top bit in high bit
jnc	modpow		; Keep shifting while carry zero
rcr	cx,1		; Put the top bit back into CX
.step:	mul	ax		; Square (result is 32-bit, goes in DX:AX)
shl	cx,1		; Grab a bit from CX
jnc	.nodbl		; If zero, don't multiply by two
shl	ax,1		; Shift DX:AX left (mul by two)
rcl	dx,1
.nodbl:	div	bx		; Divide DX:AX by BX (putting modulus in DX)
mov	ax,dx		; Continue with modulus
jcxz	.done		; When CX reaches 0, we're done
jmp	.step		; Otherwise, do the next step
.done:	ret
;;;	Is AX prime?
;;;	Output: carry clear if prime, set if not prime.
;;;	Destroyed: AX, BX, CX, DX, SI, DI, BP
prime:	mov	cx,[prcnt]	; See if AX is already in the list of primes
mov	di,primes
repne	scasw		; If so, return
je	modpow.done	; Reuse the RET just above here (carry clear)
mov	bp,ax		; Move AX out of the way
mov	bx,[di-2]	; Start generating new primes
.sieve:	inc	bx		; BX = last prime + 2
inc	bx
cmp	bp,bx		; If BX higher than number to test,
jb	modpow.done	; stop, number is not prime. (carry set)
mov	cx,[prcnt]	; CX = amount of current primes
mov	si,primes	; SI = start of primes
.try:	mov	ax,bx		; BX divisible by current prime?
xor	dx,dx
div	word [si]
test	dx,dx		; If so, BX is not prime.
jz	.sieve
inc	si
inc	si
loop	.try		; Otherwise, try next prime.
mov	ax,bx		; If we get here, BX _is_ prime
stosw			; So add it to the list
inc	word [prcnt]	; We have one more prime
cmp	ax,bp		; Is it the prime we are looking for?
jne	.sieve		; If not, try next prime
ret
;;;	Print message in DX
msg:	mov	ah,9
int	21h
ret
section	.data
db	"*****"		; Placeholder for number
number:	db	"\$"
notprm:	db	"P is not prime.\$"
ovfl:	db	"Range of factor exceeded (max 16 bits)."
factor:	db	"Found factor: \$"
prcnt:	dw	2		; Amount of primes currently in list
primes:	dw	2, 3		; List of primes to be extended
Output:
Found factor: 13007

## 360 Assembly

Translation of: BBC BASIC

Use of bitwise operations (TM (Test under Mask), SLA (Shift Left Arithmetic),SRA (Shift Right Arithmetic)).

*        Factors of a Mersenne number  11/09/2015
MERSENNE CSECT
USING  MERSENNE,R15
MVC    Q,=F'929'          q=929   (M929=2**929-1)
LA     R6,1               k=1
LOOPK    C      R6,=F'1048576'     do k=1 to 2**20
BNL    ELOOPK
LR     R5,R6              k
M      R4,Q               *q
SLA    R5,1               *2   by shift left 1
LA     R5,1(R5)           +1
ST     R5,P               p=k*q*2+1
L      R2,P               p
N      R2,=F'7'           p&7
C      R2,=F'1'           if    ((p&7)=1)    p='*001'
BE     OK
C      R2,=F'7'           or if ((p&7)=7)    p='*111'
BNE    NOTOK
OK       MVI    PRIME,X'00'        then prime=false   is prime?
LA     R2,2               loop count=2
LA     R1,2               j=2 and after j=3
J2J3     L      R4,P               p
SRDA   R4,32              r4>>r5
DR     R4,R1              p/j
LTR    R4,R4              if p//j=0
BZ     NOTPRIME           then goto notprime
LA     R1,1(R1)           j=j+1
BCT    R2,J2J3
LA     R7,5               d=5
WHILED   LR     R5,R7              d
MR     R4,R7              *d
C      R5,P               do while(d*d<=p)
BH     EWHILED
LA     R2,2               loop count=2
LA     R1,2               j=2 and after j=4
J2J4     L      R4,P               p
SRDA   R4,32              r4>>r5
DR     R4,R7              /d
LTR    R4,R4              if p//d=0
BZ     NOTPRIME           then goto notprime
AR     R7,R1              d=d+j
LA     R1,2(R1)           j=j+2
BCT    R2,J2J4
B      WHILED
EWHILED  MVI    PRIME,X'01'        prime=true      so is prime
NOTPRIME L      R8,Q               i=q
MVC    Y,=F'1'            y=1
MVC    Z,=F'2'            z=2
WHILEI   LTR    R8,R8              do while(i^=0)
BZ     EWHILEI
ST     R8,PG              i
TM     PG+3,B'00000001'   if first bit of i not 1
BZ     NOTFIRST
L      R5,Y               y
M      R4,Z               *z
LA     R4,0
D      R4,P               /p
ST     R4,Y               y=(y*z)//p
NOTFIRST L      R5,Z               z
M      R4,Z               *z
LA     R4,0
D      R4,P               /p
ST     R4,Z               z=(z*z)//p
SRA    R8,1               i=i/2   by shift right 1
B      WHILEI
EWHILEI  CLI    PRIME,X'01'        if prime
BNE    NOTOK
CLC    Y,=F'1'            and if y=1
BNE    NOTOK
MVC    FACTOR,P           then factor=p
B      OKFACTOR
NOTOK    LA     R6,1(R6)           k=k+1
B      LOOPK
ELOOPK   MVC    FACTOR,=F'0'       factor=0
OKFACTOR L      R1,Q
XDECO  R1,PG              edit q
L      R1,FACTOR
XDECO  R1,PG+12           edit factor
XPRNT  PG,24              print
XR     R15,R15
BR     R14
PRIME    DS     X                  flag for prime
Q        DS     F
P        DS     F
Y        DS     F
Z        DS     F
FACTOR   DS     F                  a factor of q
PG       DS     CL24               buffer
YREGS
END    MERSENNE
Output:
929       13007

--  reuse Is_Prime from [[Primality by Trial Division]]
with Is_Prime;

procedure Mersenne is
function Is_Set (Number : Natural; Bit : Positive) return Boolean is
begin
return Number / 2 ** (Bit - 1) mod 2 = 1;
end Is_Set;

function Get_Max_Bit (Number : Natural) return Natural is
Test : Natural := 0;
begin
while 2 ** Test <= Number loop
Test := Test + 1;
end loop;
return Test;
end Get_Max_Bit;

function Modular_Power (Base, Exponent, Modulus : Positive) return Natural is
Maximum_Bit : constant Natural := Get_Max_Bit (Exponent);
Square      : Natural := 1;
begin
for Bit in reverse 1 .. Maximum_Bit loop
Square := Square ** 2;
if Is_Set (Exponent, Bit) then
Square := Square * Base;
end if;
Square := Square mod Modulus;
end loop;
return Square;
end Modular_Power;

Not_A_Prime_Exponent : exception;

function Get_Factor (Exponent : Positive) return Natural is
Factor : Positive;
begin
if not Is_Prime (Exponent) then
raise Not_A_Prime_Exponent;
end if;
for K in 1 .. 16384 / Exponent loop
Factor := 2 * K * Exponent + 1;
if Factor mod 8 = 1 or else Factor mod 8 = 7 then
if Is_Prime (Factor) and then Modular_Power (2, Exponent, Factor) = 1 then
return Factor;
end if;
end if;
end loop;
return 0;
end Get_Factor;

To_Test : constant Positive := 929;
Factor  : Natural;
begin
Ada.Text_IO.Put ("2 **" & Integer'Image (To_Test) & " - 1 ");
begin
Factor := Get_Factor (To_Test);
if Factor = 0 then
else
Ada.Text_IO.Put_Line ("has factor" & Integer'Image (Factor));
end if;
exception
when Not_A_Prime_Exponent =>
Ada.Text_IO.Put_Line ("is not a Mersenne number");
end;
end Mersenne;
Output:
2 ** 929 - 1 has factor 13007

## ALGOL 68

Translation of: Fortran
Works with: ALGOL 68 version Standard - with prelude inserted manually
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
MODE ISPRIMEINT = INT;

MODE POWMODSTRUCT = INT;

PROC m factor = (INT p)INT:BEGIN
INT m factor;
INT max k, msb, n, q;

FOR i FROM bits width - 2 BY -1 TO 0 WHILE ( BIN p SHR i AND 2r1 ) = 2r0 DO
msb := i
OD;

max k := ENTIER sqrt(max int) OVER p; # limit for k to prevent overflow of max int #
FOR k FROM 1 TO max k DO
q := 2*p*k + 1;
IF NOT is prime(q) THEN
SKIP
ELIF q MOD 8 /= 1 AND q MOD 8 /= 7 THEN
SKIP
ELSE
n := pow mod(2,p,q);
IF n = 1 THEN
m factor := q;
return
FI
FI
OD;
m factor := 0;
return:
m factor
END;

BEGIN

INT exponent, factor;
print("Enter exponent of Mersenne number:");
IF NOT is prime(exponent) THEN
print(("Exponent is not prime: ", exponent, new line))
ELSE
factor := m factor(exponent);
IF factor = 0 THEN
print(("No factor found for M", exponent, new line))
ELSE
print(("M", exponent, " has a factor: ", factor, new line))
FI
FI

END

Example:

Enter exponent of Mersenne number:929
M       +929 has a factor:      +13007

## Arturo

mersenneFactors: function [q][
if not? prime? q -> print "number not prime!"
r: new q
while -> r > 0
-> shl 'r 1
d: new 1 + 2 * q
while [true][
i: new 1
p: new r
while [p <> 0][
i: new (i * i) % d
if p < 0 -> 'i * 2
if i > d -> 'i - d
shl 'p 1
]
if? i <> 1 -> 'd + 2 * q
else -> break
]
print ["2 ^" q "- 1 = 0 ( mod" d ")"]
]

mersenneFactors 929
Output:
2 ^ 929 - 1 = 0 ( mod 13007 )

## AutoHotkey

ahk discussion

MsgBox % MFact(27)  ;-1: 27 is not prime
MsgBox % MFact(2)   ; 0
MsgBox % MFact(3)   ; 0
MsgBox % MFact(5)   ; 0
MsgBox % MFact(7)   ; 0
MsgBox % MFact(11)  ; 23
MsgBox % MFact(13)  ; 0
MsgBox % MFact(17)  ; 0
MsgBox % MFact(19)  ; 0
MsgBox % MFact(23)  ; 47
MsgBox % MFact(29)  ; 233
MsgBox % MFact(31)  ; 0
MsgBox % MFact(37)  ; 223
MsgBox % MFact(41)  ; 13367
MsgBox % MFact(43)  ; 431
MsgBox % MFact(47)  ; 2351
MsgBox % MFact(53)  ; 6361
MsgBox % MFact(929) ; 13007

MFact(p) { ; blank if 2**p-1 can be prime, otherwise a prime divisor < 2**32
If !IsPrime32(p)
Return -1                      ; Error (p must be prime)
Loop % 2.0**(p<64 ? p/2-1 : 31)/p ; test prime divisors < 2**32, up to sqrt(2**p-1)
If (((q:=2*p*A_Index+1)&7 = 1 || q&7 = 7) && IsPrime32(q) && PowMod(2,p,q)=1)
Return q
Return 0
}

IsPrime32(n) { ; n < 2**32
If n in 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
Return 1
If (!(n&1)||!mod(n,3)||!mod(n,5)||!mod(n,7)||!mod(n,11)||!mod(n,13)||!mod(n,17)||!mod(n,19))
Return 0
n1 := d := n-1, s := 0
While !(d&1)
d>>=1, s++
Loop 3 {
x := PowMod( A_Index=1 ? 2 : A_Index=2 ? 7 : 61, d, n)
If (x=1 || x=n1)
Continue
Loop % s-1
If (1 = x:=PowMod(x,2,n))
Return 0
Else If (x = n1)
Break
IfLess x,%n1%, Return 0
}
Return 1
}

PowMod(x,n,m) { ; x**n mod m
y := 1, i := n, z := x
While i>0
y := i&1 ? mod(y*z,m) : y, z := mod(z*z,m), i >>= 1
Return y
}

## BBC BASIC

PRINT "A factor of M929 is "; FNmersenne_factor(929)
PRINT "A factor of M937 is "; FNmersenne_factor(937)
END

DEF FNmersenne_factor(P%)
LOCAL K%, Q%
IF NOT FNisprime(P%) THEN = -1
FOR K% = 1 TO 1000000
Q% = 2*K%*P% + 1
IF (Q% AND 7) = 1 OR (Q% AND 7) = 7 THEN
IF FNisprime(Q%) IF FNmodpow(2, P%, Q%) = 1 THEN = Q%
ENDIF
NEXT K%
= 0

DEF FNisprime(N%)
LOCAL D%
IF N% MOD 2=0 THEN = (N% = 2)
IF N% MOD 3=0 THEN = (N% = 3)
D% = 5
WHILE D% * D% <= N%
IF N% MOD D% = 0 THEN = FALSE
D% += 2
IF N% MOD D% = 0 THEN = FALSE
D% += 4
ENDWHILE
= TRUE

DEF FNmodpow(X%, N%, M%)
LOCAL I%, Y%, Z%
I% = N% : Y% = 1 : Z% = X%
WHILE I%
IF I% AND 1 THEN Y% = (Y% * Z%) MOD M%
Z% = (Z% * Z%) MOD M%
I% = I% >>> 1
ENDWHILE
= Y%
Output:
A factor of M929 is 13007
A factor of M937 is 28111

## Bracmat

( ( modPow
=   square P divisor highbit log 2pow
.   !arg:(?P.?divisor)
& 1:?square
& 2\L!P:#%?log+?
& 2^!log:?2pow
&   whl
' (     mod
\$ (   ( div\$(!P.!2pow):1&2
| 1
)
* !square^2
. !divisor
)
: ?square
& mod\$(!P.!2pow):?P
& 1/2*!2pow:~/:?2pow
)
& !square
)
& ( isPrime
=   incs nextincs primeCandidate nextPrimeCandidate quotient
.     1 1 2 2 (4 2 4 2 4 6 2 6:?incs)
: ?nextincs
& 1:?primeCandidate
& ( nextPrimeCandidate
=   ( !nextincs:&!incs:?nextincs
|
)
& !nextincs:%?inc ?nextincs
& !inc+!primeCandidate:?primeCandidate
)
&   whl
' ( (!nextPrimeCandidate:?divisor)^2:~>!arg
& !arg*!divisor^-1:?quotient:/
)
& !quotient:/
)
& ( Factors-of-a-Mersenne-Number
=   P k candidate bignum
.   !arg:?P
& 2^!P+-1:?bignum
& 0:?k
&   whl
' ( 2*(1+!k:?k)*!P+1:?candidate
& !candidate^2:~>!bignum
& ( ~(mod\$(!candidate.8):(1|7))
| ~(isPrime\$!candidate)
| modPow\$(!P.!candidate):?mp:~1
)
)
& !mp:1
& (!candidate.(2^!P+-1)*!candidate^-1)
)
& (   Factors-of-a-Mersenne-Number\$929:(?divisorA.?divisorB)
&   out
\$ ( str
\$ ("found some divisors of 2^" !P "-1 : " !divisorA " and " !divisorB)
)
| out\$"no divisors found"
)
);
Output:
found some divisors of 2^!P-1 : 13007 and 348890248924938259750454781163390930305120269538278042934009621348894657205785
201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495
638077382028762529439880103124705348782610789919949159935587158612289264184273

## C

int isPrime(int n){
if (n%2==0) return n==2;
if (n%3==0) return n==3;
int d=5;
while(d*d<=n){
if(n%d==0) return 0;
d+=2;
if(n%d==0) return 0;
d+=4;}
return 1;}

main() {int i,d,p,r,q=929;
if (!isPrime(q)) return 1;
r=q;
while(r>0) r<<=1;
d=2*q+1;
do { 	for(p=r, i= 1; p; p<<= 1){
i=((long long)i * i) % d;
if (p < 0) i *= 2;
if (i > d) i -= d;}
if (i != 1) d += 2*q;
else break;
} while(1);
printf("2^%d - 1 = 0 (mod %d)\n", q, d);}

## C#

using System;

namespace prog
{
class MainClass
{
public static void Main (string[] args)
{
int q = 929;
if ( !isPrime(q) ) return;
int r = q;
while( r > 0 )
r <<= 1;
int d = 2 * q + 1;
do
{
int i = 1;
for( int p=r; p!=0; p<<=1 )
{
i = (i*i) % d;
if (p < 0) i *= 2;
if (i > d) i -= d;
}
if (i != 1) d += 2 * q; else break;
}
while(true);

Console.WriteLine("2^"+q+"-1 = 0 (mod "+d+")");
}

static bool isPrime(int n)
{
if ( n % 2 == 0 ) return n == 2;
if ( n % 3 == 0 ) return n == 3;
int d = 5;
while( d*d <= n )
{
if ( n % d == 0 ) return false;
d += 2;
if ( n % d == 0 ) return false;
d += 4;
}
return true;
}
}
}

## C++

#include <iostream>
#include <cstdint>

typedef uint64_t integer;

integer bit_count(integer n) {
integer count = 0;
for (; n > 0; count++)
n >>= 1;
return count;
}

integer mod_pow(integer p, integer n) {
integer square = 1;
for (integer bits = bit_count(p); bits > 0; square %= n) {
square *= square;
if (p & (1 << --bits))
square <<= 1;
}
return square;
}

bool is_prime(integer n) {
if (n < 2)
return false;
if (n % 2 == 0)
return n == 2;
for (integer p = 3; p * p <= n; p += 2)
if (n % p == 0)
return false;
return true;
}

integer find_mersenne_factor(integer p) {
for (integer k = 0, q = 1;;) {
q = 2 * ++k * p + 1;
if ((q % 8 == 1 || q % 8 == 7) && mod_pow(p, q) == 1 && is_prime(q))
return q;
}
return 0;
}

int main() {
std::cout << find_mersenne_factor(929) << std::endl;
return 0;
}
Output:
13007

## Clojure

Translation of: Python
(ns mersennenumber
(:gen-class))

(defn m* [p q m]
" Computes (p*q) mod m "
(mod (*' p q) m))

(defn power
"modular exponentiation (i.e. b^e mod m"
[b e m]
(loop [b b, e e, x 1]
(if (zero? e)
x
(if (even? e) (recur (m* b b m) (quot e 2) x)
(recur (m* b b m) (quot e 2) (m* b x m))))))

(defn divides? [k n]
" checks if k divides n "
(= (rem n k) 0))

(defn is-prime? [n]
" checks if n is prime "
(cond
(< n 2) false             ; 0, 1 not prime (i.e. primes are greater than one)
(= n 2) true              ; 2 is prime
(= 0 (mod n 2)) false     ; all other evens are not prime
:else                     ; check for divisors up to sqrt(n)
(empty? (filter #(divides? % n) (take-while #(<= (* % %) n) (range 2 n))))))

;; Max k to check
(def MAX-K 16384)

(defn trial-factor  [p k]
" check if k satisfies 2*k*P + 1 divides 2^p - 1 "
(let [q  (+ (* 2 p k) 1)
mq (mod q 8)]
(cond
(not (is-prime? q))     nil
(and (not= 1 mq)
(not= 7 mq))       nil
(= 1 (power 2 p q))     q
:else                   nil)))

(defn m-factor [p]
" searches for k-factor "
(some #(trial-factor p %) (range 16384)))

(defn -main [p]
(if-not (is-prime? p)
(format "M%d = 2^%d - 1 exponent is not prime" p p)
(if-let [factor (m-factor p)]
(format "M%d = 2^%d - 1 is composite with factor %d" p p factor)
(format "M%d = 2^%d - 1 is prime" p p))))

;; Tests different p values
(doseq [p [2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,53,929]
:let [s (-main p)]]
(println s))
Output:
M2 = 2^2 - 1 is prime
M3 = 2^3 - 1 is composite with factor 7
M4 = 2^4 - 1 exponent is not prime
M5 = 2^5 - 1 is composite with factor 31
M7 = 2^7 - 1 is composite with factor 127
M11 = 2^11 - 1 is composite with factor 23
M13 = 2^13 - 1 is composite with factor 8191
M17 = 2^17 - 1 is composite with factor 131071
M19 = 2^19 - 1 is composite with factor 524287
M23 = 2^23 - 1 is composite with factor 47
M29 = 2^29 - 1 is composite with factor 233
M31 = 2^31 - 1 is prime
M37 = 2^37 - 1 is composite with factor 223
M41 = 2^41 - 1 is composite with factor 13367
M43 = 2^43 - 1 is composite with factor 431
M47 = 2^47 - 1 is composite with factor 2351
M53 = 2^53 - 1 is composite with factor 6361
M929 = 2^929 - 1 is composite with factor 13007

## CoffeeScript

Works with: node.js
Translation of: Ruby
mersenneFactor = (p) ->
limit = Math.sqrt(Math.pow(2,p) - 1)
k = 1
while (2*k*p - 1) < limit
q = 2*k*p + 1
if isPrime(q) and (q % 8 == 1 or q % 8 == 7) and trialFactor(2,p,q)
return q
k++
return null

isPrime = (value) ->
for i in [2...value]
return false if value % i == 0
return true  if value % i != 0

trialFactor = (base, exp, mod) ->
square = 1
bits = exp.toString(2).split('')
for bit in bits
square = Math.pow(square, 2) * (if +bit is 1 then base else 1) % mod
return square == 1

checkMersenne = (p) ->
factor = mersenneFactor(+p)
console.log "M#{p} = 2^#{p}-1 is #{if factor is null then "prime" else "composite with #{factor}"}"

checkMersenne(prime) for prime in ["2","3","4","5","7","11","13","17","19","23","29","31","37","41","43","47","53","929"]
M2 = 2^2-1 is prime
M3 = 2^3-1 is prime
M4 = 2^4-1 is prime
M5 = 2^5-1 is prime
M7 = 2^7-1 is prime
M11 = 2^11-1 is composite with 23
M13 = 2^13-1 is prime
M17 = 2^17-1 is prime
M19 = 2^19-1 is prime
M23 = 2^23-1 is composite with 47
M29 = 2^29-1 is composite with 233
M31 = 2^31-1 is prime
M37 = 2^37-1 is composite with 223
M41 = 2^41-1 is composite with 13367
M43 = 2^43-1 is composite with 431
M47 = 2^47-1 is composite with 2351
M53 = 2^53-1 is composite with 6361
M929 = 2^929-1 is composite with 13007

## Common Lisp

Translation of: Maxima
(defun mersenne-fac (p &aux (m (1- (expt 2 p))))
(loop for k from 1
for n = (1+ (* 2 k p))
until (zerop (mod m n))
finally (return n)))

(print (mersenne-fac 929))
Output:
13007

### Version 2

We can use a primality test from the Primality by Trial Division task.

(defun primep (n)
"Is N prime?"
(and (> n 1)
(or (= n 2) (oddp n))
(loop for i from 3 to (isqrt n) by 2
never (zerop (rem n i)))))

Specific to this task, we define modulo-power and mersenne-prime-p.

(defun modulo-power (base power modulus)
(loop with square = 1
for bit across (format nil "~b" power)
do (setf square (* square square))
when (char= bit #\1) do (setf square (* square base))
do (setf square (mod square modulus))
finally (return square)))

(defun mersenne-prime-p (power)
(do* ((N (1- (expt 2 power)))
(sqN (isqrt N))
(k 1 (1+ k))
(q (1+ (* 2 power k)) (1+ (* 2 power k)))
(m (mod q 8) (mod q 8)))
((> q sqN) (values t))
(when (and (or (= 1 m) (= 7 m))
(primep q)
(= 1 (modulo-power 2 power q)))
(return (values nil q)))))

We can run the same tests from the Ruby entry.

> (loop for p in '(2 3 4 5 7 11 13 17 19 23 29 31 37 41 43 47 53 929)
do (multiple-value-bind (primep factor)
(mersenne-prime-p p)
(format t "~&M~w = 2**~:*~w-1 is ~:[composite with factor ~w~;prime~]."
p primep factor)))
M2 = 2**2-1 is prime.
M3 = 2**3-1 is prime.
M4 = 2**4-1 is prime.
M5 = 2**5-1 is prime.
M7 = 2**7-1 is prime.
M11 = 2**11-1 is composite with factor 23.
M13 = 2**13-1 is prime.
M17 = 2**17-1 is prime.
M19 = 2**19-1 is prime.
M23 = 2**23-1 is composite with factor 47.
M29 = 2**29-1 is composite with factor 233.
M31 = 2**31-1 is prime.
M37 = 2**37-1 is composite with factor 223.
M41 = 2**41-1 is composite with factor 13367.
M43 = 2**43-1 is composite with factor 431.
M47 = 2**47-1 is composite with factor 2351.
M53 = 2**53-1 is composite with factor 6361.
M929 = 2**929-1 is composite with factor 13007.

## Crystal

Translation of: Ruby
require "big"

def prime?(n)                             # P3 Prime Generator primality test
return n | 1 == 3 if n < 5              # n: 0,1,4|false, 2,3|true
return false if n.gcd(6) != 1           # for n a P3 prime candidate (pc)
pc1, pc2 = -1, 1                        # use P3's prime candidates sequence
until (pc1 += 6) > Math.sqrt(n).to_i    # pcs are only 1/3 of all integers
return false if n % pc1 == 0 || n % (pc2 += 6) == 0  # if n is composite
end
true
end

# Compute b**e mod m
def powmod(b, e, m)
r, b = 1.to_big_i, b.to_big_i
while e > 0
r = (r * b) % m if e.odd?
b = (b * b) % m
e >>= 1
end
r
end

def mersenne_factor(p)
mers_num = 2.to_big_i ** p - 1
kp2 = p2 = 2.to_big_i *  p
while (kp2 - 1) ** 2 < mers_num
q  = kp2 + 1     # return q if it's a factor
return q if [1, 7].includes?(q % 8) && prime?(q) && (powmod(2, p, q) == 1)
kp2 += p2
end
true    # could also set to `0` value to check for
end

def check_mersenne(p)
print "M#{p} = 2**#{p}-1 is "
f = mersenne_factor(p)
(puts "prime"; return) if f.is_a?(Bool)  # or f == 0
puts "composite with factor #{f}"
end

(2..53).each { |p| check_mersenne(p) if prime?(p) }
check_mersenne 929
Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

## D

import std.stdio, std.math, std.traits;

ulong mersenneFactor(in ulong p) pure nothrow @nogc {
static bool isPrime(T)(in T n) pure nothrow @nogc {
if (n < 2 || n % 2 == 0)
return n == 2;
for (Unqual!T i = 3; i ^^ 2 <= n; i += 2)
if (n % i == 0)
return false;
return true;
}

static ulong modPow(in ulong cb, in ulong ce,in ulong m)
pure nothrow @nogc {
ulong b = cb;
ulong result = 1;
for (ulong e = ce; e > 0; e >>= 1) {
if ((e & 1) == 1)
result = (result * b) % m;
b = (b ^^ 2) % m;
}
return result;
}

immutable ulong limit = p <= 64 ? cast(ulong)(real(2.0) ^^ p - 1).sqrt : uint.max; // prevents silent overflows
for (ulong k = 1; (2 * p * k + 1) < limit; k++) {
immutable ulong q = 2 * p * k + 1;
if ((q % 8 == 1 || q % 8 == 7) && isPrime(q) &&
modPow(2, p, q) == 1)
return q;
}
return 1; // returns a sensible smallest factor
}

void main() {
writefln("Factor of M929: %d", 929.mersenneFactor);
}
Output:
Factor of M929: 13007

See Pascal.

## EasyLang

Translation of: C++
fastfunc isprim num .
i = 2
while i <= sqrt num
if num mod i = 0
return 0
.
i += 1
.
return 1
.
func bit_count n .
while n > 0
n = bitshift n -1
cnt += 1
.
return cnt
.
func mod_pow p n .
square = 1
bits = bit_count p
while bits > 0
square *= square
bits -= 1
if bitand p bitshift 1 bits > 0
square = bitshift square 1
.
square = square mod n
.
return square
.
func mersenne_factor p .
while 1 = 1
k += 1
q = 2 * k * p + 1
if (q mod 8 = 1 or q mod 8 = 7) and mod_pow p q = 1 and isprim q = 1
return q
.
.
.
print mersenne_factor 929
Output:
13007

## EchoLisp

;; M = 2^P - 1 , P prime
;; look for a prime divisor q such as : q < √ M, q = 1 or 7 modulo 8, q = 1 + 2kP
;; q is divisor if (powmod 2 P q) = 1
;; m-divisor returns q or #f

(define  ( m-divisor P )
;; must limit the search as √ M may be HUGE
(define  maxprime  (min 1_000_000_000 (sqrt (expt 2 P))))
(for ((q (in-range 1 maxprime (* 2 P))))
#:when (member (modulo q 8) '(1 7))
#:when (prime? q)
#:break (= 1 (powmod 2 P q)) => q
#f ))

(m-divisor 929)
13007
(m-divisor 4423)
#f

(lib 'bigint)
(prime? (1- (expt 2 4423))) ;; 2^4423 -1 is a Mersenne prime
#t

## Elixir

Translation of: Ruby
defmodule Mersenne do
def mersenne_factor(p) do
limit = :math.sqrt(:math.pow(2, p) - 1)
mersenne_loop(p, limit, 1)
end

defp mersenne_loop(p, limit, k) when (2*k*p - 1) > limit, do: nil
defp mersenne_loop(p, limit, k) do
q = 2*k*p + 1
if prime?(q) and rem(q,8) in [1,7] and trial_factor(2,p,q),
do: q, else: mersenne_loop(p, limit, k+1)
end

defp trial_factor(base, exp, mod) do
Integer.digits(exp, 2)
|> Enum.reduce(1, fn bit,square ->
(square * square * (if bit==1, do: base, else: 1)) |> rem(mod)
end) == 1
end

def check_mersenne(p) do
IO.write "M#{p} = 2**#{p}-1 is "
f = mersenne_factor(p)
IO.puts if f, do: "composite with factor #{f}", else: "prime"
end

def prime?(n), do: prime?(n, :math.sqrt(n), 2)

defp prime?(_, limit, i) when limit < i, do: true
defp prime?(n, limit, i) do
if rem(n,i) == 0, do: false, else: prime?(n, limit, i+1)
end
end

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,929]
|> Enum.each(fn p -> Mersenne.check_mersenne(p) end)
Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

## Erlang

The modpow function is not my original. This is a translation of python, more or less.

-module(mersene2).
-export([prime/1,modpow/3,mf/1]).

mf(P) -> merseneFactor(P,math:sqrt(math:pow(2,P)-1),2).

merseneFactor(P,Limit,Acc) when Acc >= Limit -> io:write("None found");
merseneFactor(P,Limit,Acc) ->
Q = 2 * P * Acc + 1,
Isprime = prime(Q),
Mod = modpow(2,P,Q),

if
Isprime == false ->
merseneFactor(P,Limit,Acc+1);

Q rem 8 =/= 1 andalso Q rem 8 =/= 7 ->
merseneFactor(P,Limit,Acc+1);

Mod == 1 ->
io:format("M~w is composite with Factor: ~w~n",[P,Q]);

true -> merseneFactor(P,Limit,Acc+1)
end.

modpow(B, E, M) -> modpow(B, E, M, 1).

modpow(_B, E, _M, R) when E =< 0 -> R;
modpow(B, E, M, R) ->
R1 = case E band 1 =:= 1 of
true -> (R * B) rem M;
false  -> R
end,
modpow( (B*B) rem M, E bsr 1, M, R1).

prime(N) -> divisors(N, N-1).

divisors(N, 1) -> true;
divisors(N, C) ->
case N rem C =:= 0 of
true  -> false;
false -> divisors(N, C-1)
end.
Output:
30> [ mersene2:mf(X) || X <- [37,41,43,47,53,92,929]].
M37 is composite with Factor: 223
M41 is composite with Factor: 13367
M43 is composite with Factor: 431
M47 is composite with Factor: 2351
M53 is composite with Factor: 6361
M92 is composite with Factor: 1657
M929 is composite with Factor: 13007
[ok,ok,ok,ok,ok,ok,ok]

## Factor

USING: combinators.short-circuit interpolate io kernel locals
math math.bits math.functions math.primes sequences ;
IN: rosetta-code.mersenne-factors

: mod-pow-step ( square bit m -- square' )
[ [ sq ] [ [ 2 * ] when ] bi* ] dip mod ;

:: mod-pow ( m q -- n )
1 :> s! m make-bits <reversed>
[ s swap q mod-pow-step s! ] each s ;

: halt-search? ( m q N -- ? )
dupd > [
{
[ nip 8 mod [ 1 ] [ 7 ] bi [ = ] 2bi@ or ]
[ mod-pow 1 = ] [ nip prime? ]
} 2&&
] dip or ;

:: find-mersenne-factor ( m -- factor/f )
1          :> k!
2 m * 1 +  :> q!                 ! the tentative factor.
2 m ^ sqrt :> N                  ! upper bound on search.
[ m q N halt-search? ] [ k 1 + k! 2 k * m * 1 + q! ] until
q N > f q ? ;

: test-mersenne ( m -- )
dup find-mersenne-factor
[ [I M\${1} is not prime: factor \${0} found.I] ]
[ [I No factor found for M\${}.I] ] if* nl ;

929 test-mersenne
Output:
M929 is not prime: factor 13007 found.

## Forth

: prime? ( odd -- ? )
3
begin 2dup dup * >=
while 2dup mod 0=
if 2drop false exit
then 2 +
repeat   2drop true ;

: 2-exp-mod { e m -- 2^e mod m }
1
0 30 do
e 1 i lshift >= if
dup *
e 1 i lshift and if 2* then
m mod
then
-1 +loop ;

: factor-mersenne ( exponent -- factor )
16384 over /  dup 2 < abort" Exponent too large!"
1 do
dup i * 2* 1+      ( q )
dup prime? if
dup 7 and  dup 1 = swap 7 = or if
2dup 2-exp-mod 1 = if
nip unloop exit
then
then
then drop
loop drop 0 ;

929 factor-mersenne .  \ 13007
4423 factor-mersenne .  \ 0

## Fortran

Works with: Fortran version 90 and later
PROGRAM EXAMPLE
IMPLICIT NONE
INTEGER :: exponent, factor

WRITE(*,*) "Enter exponent of Mersenne number"
factor = Mfactor(exponent)
IF (factor == 0) THEN
WRITE(*,*) "No Factor found"
ELSE
WRITE(*,"(A,I0,A,I0)") "M", exponent, " has a factor: ", factor
END IF

CONTAINS

FUNCTION isPrime(number)
!   code omitted - see [[Primality by Trial Division]]
END FUNCTION

FUNCTION  Mfactor(p)
INTEGER :: Mfactor
INTEGER, INTENT(IN) :: p
INTEGER :: i, k,  maxk, msb, n, q

DO i = 30, 0 , -1
IF(BTEST(p, i)) THEN
msb = i
EXIT
END IF
END DO

maxk = 16384  / p     ! limit for k to prevent overflow of 32 bit signed integer
DO k = 1, maxk
q = 2*p*k + 1
IF (.NOT. isPrime(q)) CYCLE
IF (MOD(q, 8) /= 1 .AND. MOD(q, 8) /= 7) CYCLE
n = 1
DO i = msb, 0, -1
IF (BTEST(p, i)) THEN
n = MOD(n*n*2, q)
ELSE
n = MOD(n*n, q)
ENDIF
END DO
IF (n == 1) THEN
Mfactor = q
RETURN
END IF
END DO
Mfactor = 0
END FUNCTION
END PROGRAM EXAMPLE
Output:
M929 has a factor: 13007

## FreeBASIC

Translation of: C
' FB 1.05.0 Win64

Function isPrime(n As Integer) As Boolean
If n Mod 2 = 0 Then Return n = 2
If n Mod 3 = 0 Then Return n = 3
Dim d As Integer = 5
While d * d <= n
If n Mod d = 0 Then Return False
d += 2
If n Mod d = 0 Then Return False
d += 4
Wend
Return True
End Function

' test 929 plus all prime numbers below 100 which are known not to be Mersenne primes
Dim q(1 To 16) As Integer = {11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929}
For k As Integer = 1 To 16
If isPrime(q(k)) Then
Dim As Integer d, i, p, r = q(k)
While r > 0 : r Shl= 1 : Wend
d = 2 * q(k) + 1
Do
i = 1
p = r
While p <> 0
i = (i * i) Mod d
If p < 0 Then i *= 2
If i > d Then i -= d
p Shl= 1
Wend
If i <> 1 Then
d += 2 * q(k)
Else
Exit Do
End If
Loop
Print "2^"; Str(q(k)); Tab(6); " - 1 = 0 (mod"; d; ")"
Else
Print Str(q(k)); " is not prime"
End If
Next
Print
Print "Press any key to quit"
Sleep
Output:
2^11  - 1 = 0 (mod 23)
2^23  - 1 = 0 (mod 47)
2^29  - 1 = 0 (mod 233)
2^37  - 1 = 0 (mod 223)
2^41  - 1 = 0 (mod 13367)
2^43  - 1 = 0 (mod 431)
2^47  - 1 = 0 (mod 2351)
2^53  - 1 = 0 (mod 6361)
2^59  - 1 = 0 (mod 179951)
2^67  - 1 = 0 (mod 193707721)
2^71  - 1 = 0 (mod 228479)
2^73  - 1 = 0 (mod 439)
2^79  - 1 = 0 (mod 2687)
2^83  - 1 = 0 (mod 167)
2^97  - 1 = 0 (mod 11447)
2^929 - 1 = 0 (mod 13007)

## Frink

Frink has built-in routines for iterating through prime numbers and modular exponentiation. The following program will find all of the factors of the number given enough runtime.

for p = primes[]
if modPow[2, 929, p] - 1 == 0
println[p]
Output:
13007

## GAP

MersenneSmallFactor := function(n)
local k, m, d;
if IsPrime(n) then
d := 2*n;
m := 1;
for k in [1 .. 1000000] do
m := m + d;
if PowerModInt(2, n, m) = 1 then
return m;
fi;
od;
fi;
return fail;
end;

# If n is not prime, fail immediately
MersenneSmallFactor(15);
# fail

MersenneSmallFactor(929);
# 13007

MersenneSmallFactor(1009);
# 3454817

# We stop at k = 1000000 in 2*k*n + 1, so it may fail if 2^n - 1 has only larger factors
MersenneSmallFactor(101);
# fail

FactorsInt(2^101-1);
# [ 7432339208719, 341117531003194129 ]

## Go

package main

import (
"fmt"
"math"
)

// limit search to small primes.  really this is higher than
// you'd want it, but it's fun to factor M67.
const qlimit = 2e8

func main() {
mtest(31)
mtest(67)
mtest(929)
}

func mtest(m int32) {
// the function finds odd prime factors by
// searching no farther than sqrt(N), where N = 2^m-1.
// the first odd prime is 3, 3^2 = 9, so M3 = 7 is still too small.
// M4 = 15 is first number for which test is meaningful.
if m < 4 {
fmt.Printf("%d < 4.  M%d not tested.\n", m, m)
return
}
flimit := math.Sqrt(math.Pow(2, float64(m)) - 1)
var qlast int32
if flimit < qlimit {
qlast = int32(flimit)
} else {
qlast = qlimit
}
composite := make([]bool, qlast+1)
sq := int32(math.Sqrt(float64(qlast)))
loop:
for q := int32(3); ; {
if q <= sq {
for i := q * q; i <= qlast; i += q {
composite[i] = true
}
}
if q8 := q % 8; (q8 == 1 || q8 == 7) && modPow(2, m, q) == 1 {
fmt.Printf("M%d has factor %d\n", m, q)
return
}
for {
q += 2
if q > qlast {
break loop
}
if !composite[q] {
break
}
}
}
fmt.Printf("No factors of M%d found.\n", m)
}

// base b to power p, mod m
func modPow(b, p, m int32) int32 {
pow := int64(1)
b64 := int64(b)
m64 := int64(m)
bit := uint(30)
for 1<<bit&p == 0 {
bit--
}
for {
pow *= pow
if 1<<bit&p != 0 {
pow *= b64
}
pow %= m64
if bit == 0 {
break
}
bit--
}
return int32(pow)
}
Output:
No factors of M31 found.
M67 has factor 193707721
M929 has factor 13007

Using David Amos module Primes [1] for prime number testing:

import Data.List
import HFM.Primes (isPrime)
import Control.Arrow

int2bin = reverse.unfoldr(\x -> if x==0 then Nothing
else Just ((uncurry.flip\$(,))\$divMod x 2))

trialfac m = take 1. dropWhile ((/=1).(\q -> foldl (((`mod` q).).pm) 1 bs)) \$ qs
where qs = filter (liftM2 (&&) (liftM2 (||) (==1) (==7) .(`mod`8)) isPrime ).
map (succ.(2*m*)). enumFromTo 1 \$ m `div` 2
bs = int2bin m
pm n b = 2^b*n*n
*Main> trialfac 929
[13007]

## Icon and Unicon

Translation of: PHP

The following works in both languages:

procedure main(A)
p := integer(A[1]) | 929
write("M",p," has a factor ",mfactor(p))
end

procedure mfactor(p)
if isPrime(p) then {
limit := sqrt(2^p)-1
k := 1
while 2*p*k-1 < limit do {
q := 2*p*k+1
if isPrime(q) & (q%8 = (1|7)) & btest(p,q) then return q
k +:= 1
}
}
end

procedure btest(p, q)
return (2^p % q) = 1
end

procedure isPrime(n)
if n%(i := 2|3) = 0 then return n = i;
d := 5
while d*d <= n do {
if n%d = 0 then fail
d +:= 2
if n%d = 0 then fail
d +:= 4
}
return
end

Sample runs:

->fmn
M929 has a factor 13007
->fmn 41
M41 has a factor 13367
->

## J

trialfac=: 3 : 0
qs=. (#~8&(1=|+.7=|))(#~1&p:)1+(*(1x+i.@<:@<.)&.-:)y
qs#~1=qs&|@(2&^@[**:@])/ 1,~ |.#: y
)
Examples:
trialfac 929
13007
trialfac 44497

Empty output --> No factors found.

## Java

import java.math.BigInteger;

class MersenneFactorCheck
{

private final static BigInteger TWO = BigInteger.valueOf(2);

public static boolean isPrime(long n)
{
if (n == 2)
return true;
if ((n < 2) || ((n & 1) == 0))
return false;
long maxFactor = (long)Math.sqrt((double)n);
for (long possibleFactor = 3; possibleFactor <= maxFactor; possibleFactor += 2)
if ((n % possibleFactor) == 0)
return false;
return true;
}

public static BigInteger findFactorMersenneNumber(int primeP)
{
if (primeP <= 0)
throw new IllegalArgumentException();
BigInteger bigP = BigInteger.valueOf(primeP);
BigInteger m = BigInteger.ONE.shiftLeft(primeP).subtract(BigInteger.ONE);
// There are more complicated ways of getting closer to sqrt(), but not that important here, so go with simple
BigInteger maxFactor = BigInteger.ONE.shiftLeft((primeP + 1) >>> 1);
BigInteger twoP = BigInteger.valueOf(primeP << 1);
BigInteger possibleFactor = BigInteger.ONE;
int possibleFactorBits12 = 0;
int twoPBits12 = primeP & 3;

while ((possibleFactor = possibleFactor.add(twoP)).compareTo(maxFactor) <= 0)
{
possibleFactorBits12 = (possibleFactorBits12 + twoPBits12) & 3;
// "Furthermore, q must be 1 or 7 mod 8". We know it's odd due to the +1 done above, so bit 0 is set. Therefore, we only care about bits 1 and 2 equaling 00 or 11
if ((possibleFactorBits12 == 0) || (possibleFactorBits12 == 3))
if (TWO.modPow(bigP, possibleFactor).equals(BigInteger.ONE))
return possibleFactor;
}
return null;
}

public static void checkMersenneNumber(int p)
{
if (!isPrime(p))
{
System.out.println("M" + p + " is not prime");
return;
}
BigInteger factor = findFactorMersenneNumber(p);
if (factor == null)
System.out.println("M" + p + " is prime");
else
System.out.println("M" + p + " is not prime, has factor " + factor);
return;
}

public static void main(String[] args)
{
for (int p = 1; p <= 50; p++)
checkMersenneNumber(p);
checkMersenneNumber(929);
return;
}

}
Output:
M1 is not prime
M2 is prime
M3 is prime
M4 is not prime
M5 is prime
M6 is not prime
M7 is prime
M8 is not prime
M9 is not prime
M10 is not prime
M11 is not prime, has factor 23
M12 is not prime
M13 is prime
M14 is not prime
...
M47 is not prime, has factor 2351
M48 is not prime
M49 is not prime
M50 is not prime
M929 is not prime, has factor 13007

## JavaScript

function mersenne_factor(p){
var limit, k, q
limit = Math.sqrt(Math.pow(2,p) - 1)
k = 1
while ((2*k*p - 1) < limit){
q = 2*k*p + 1
if (isPrime(q) && (q % 8 == 1 || q % 8 == 7) && trial_factor(2,p,q)){
return q // q is a factor of 2**p-1
}
k++
}
return null
}

function isPrime(value){
for (var i=2; i < value; i++){
if (value % i == 0){
return false
}
if (value % i != 0){
return true;
}
}
}

function trial_factor(base, exp, mod){
var square, bits
square = 1
bits = exp.toString(2).split('')
for (var i=0,ln=bits.length; i<ln; i++){
square = Math.pow(square, 2) * (bits[i] == 1 ? base : 1) % mod
}
return (square == 1)
}

function check_mersenne(p){
var f, result
console.log("M"+p+" = 2^"+p+"-1 is ")
f = mersenne_factor(p)
console.log(f == null ? "prime" : "composite with factor "+f)
}
> check_mersenne(3)
"M3 = 2**3-1 is prime"
> check_mersenne(23)
"M23 = 2**23-1 is composite with factor 47"
> check_mersenne(929)
"M929 = 2**929-1 is composite with factor 13007"

## jq

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

The following has been written with the task requirements (notably M929) in mind, and for compatibility with the three implementations of jq indicated above. For speed and robustness with respect to very large values of P, variants should be considered.

# Generic filters:

# Integer division (for gojq and jaq)
# If \$j is 0, then an error condition is raised;
# otherwise, assuming infinite-precision integer arithmetic,
# if the input and \$j are integers, then the result will be an integer.
def idivide(\$j):
(. % \$j) as \$mod
| (. - \$mod) / \$j | round;

# Convert the input integer to a stream of 0s and 1s, least significant bit first
def bitwise:
recurse( if . >= 2 then idivide(2) else empty end) | . % 2;

def is_prime:
. as \$n
| if (\$n < 2)         then false
elif (\$n % 2 == 0)  then \$n == 2
elif (\$n % 3 == 0)  then \$n == 3
elif (\$n % 5 == 0)  then \$n == 5
elif (\$n % 7 == 0)  then \$n == 7
elif (\$n % 11 == 0) then \$n == 11
elif (\$n % 13 == 0) then \$n == 13
elif (\$n % 17 == 0) then \$n == 17
elif (\$n % 19 == 0) then \$n == 19
else sqrt as \$s
| 23
| until( . > \$s or (\$n % . == 0); . + 2)
| . > \$s
end;

### Factors of Mersene numbers

def trialFactor(\$base; \$exp; \$mod):
[\$exp | bitwise] as \$bits
| (\$bits|length) as \$length
| reduce range( 0; \$length) as \$i (1;
(. * . * (if \$bits[\$length-\$i-1] == 1 then \$base else 1 end)) % \$mod )
| . == 1 ;

def mersenneFactor(\$p):
((pow(2;\$p) - 1) | sqrt | floor) as \$limit
| {k: 1}
| until ((2*.k*\$p - 1) >= \$limit or .emit;
(2*.k*\$p + 1 ) as \$q
| if (\$q%8 == 1 or \$q%8 == 7) and trialFactor(2; \$p; \$q) and (\$q | is_prime)
then .emit = \$q  # q is a factor of 2^p - 1
else .k += 1
end)
| if .emit then .emit else null end;

### Examples:

def m: [3, 5, 11, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929];

m[]
| mersenneFactor(.) as \$f
| "2^\(.) - 1 is " +
if \$f then "composite (factor \(\$f))"
else "prime"
end
Output:
2^3 - 1 is prime
2^5 - 1 is prime
2^11 - 1 is composite (factor 23)
2^17 - 1 is prime
2^23 - 1 is composite (factor 47)
2^29 - 1 is composite (factor 233)
2^31 - 1 is prime
2^37 - 1 is composite (factor 223)
2^41 - 1 is composite (factor 13367)
2^43 - 1 is composite (factor 431)
2^47 - 1 is composite (factor 2351)
2^53 - 1 is composite (factor 6361)
2^59 - 1 is composite (factor 179951)
2^67 - 1 is composite (factor 193707721)
2^71 - 1 is composite (factor 228479)
2^73 - 1 is composite (factor 439)
2^79 - 1 is composite (factor 2687)
2^83 - 1 is composite (factor 167)
2^97 - 1 is composite (factor 11447)
2^929 - 1 is composite (factor 13007)

## Julia

# v0.6

using Primes

function mersennefactor(p::Int)::Int
q = 2p + 1
while true
if log2(q) > p / 2
return -1
elseif q % 8 in (1, 7) && Primes.isprime(q) && powermod(2, p, q) == 1
return q
end
q += 2p
end
end

for i in filter(Primes.isprime, push!(collect(1:20), 929))
mf = mersennefactor(i)
if mf != -1 println("M\$i = ", mf, " × ", (big(2) ^ i - 1) ÷ mf)
else println("M\$i is prime") end
end
Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 = 23 × 89
M13 is prime
M17 is prime
M19 is prime
M929 = 13007 × 34889024892493825975045478116339093030512026953827804293400962134
88946572057852012474541189660261508521493994102599382170621001921687473524507195
61908445272675574320888385228421992652298715687625495638077382028762529439880103
124705348782610789919949159935587158612289264184273

## Kotlin

Translation of: C
// version 1.0.6

fun isPrime(n: Int): Boolean {
if (n < 2) return false
if (n % 2 == 0) return n == 2
if (n % 3 == 0) return n == 3
var d = 5
while (d * d <= n) {
if (n % d == 0) return false
d += 2
if (n % d == 0) return false
d += 4
}
return true
}

fun main(args: Array<String>) {
// test 929 plus all prime numbers below 100 which are known not to be Mersenne primes
val q = intArrayOf(11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929)
for (k in 0 until q.size) {
if (isPrime(q[k])) {
var i: Long
var d: Int
var p: Int
var r: Int = q[k]
while (r > 0) r = r shl 1
d = 2 * q[k] + 1
while (true) {
i = 1L
p = r
while (p != 0) {
i = (i * i) % d
if (p < 0) i *= 2
if (i > d) i -= d
p = p shl 1
}
if (i != 1L)
d += 2 * q[k]
else
break
}
println("2^\${"%3d".format(q[k])} - 1 = 0 (mod \$d)")
} else {
println("\${q[k]} is not prime")
}
}
}
Output:
2^ 11 - 1 = 0 (mod 23)
2^ 23 - 1 = 0 (mod 47)
2^ 29 - 1 = 0 (mod 233)
2^ 37 - 1 = 0 (mod 223)
2^ 41 - 1 = 0 (mod 13367)
2^ 43 - 1 = 0 (mod 431)
2^ 47 - 1 = 0 (mod 2351)
2^ 53 - 1 = 0 (mod 6361)
2^ 59 - 1 = 0 (mod 179951)
2^ 67 - 1 = 0 (mod 193707721)
2^ 71 - 1 = 0 (mod 228479)
2^ 73 - 1 = 0 (mod 439)
2^ 79 - 1 = 0 (mod 2687)
2^ 83 - 1 = 0 (mod 167)
2^ 97 - 1 = 0 (mod 11447)
2^929 - 1 = 0 (mod 13007)

## Lingo

on modPow (b, e, m)
bits = getBits(e)
sq = 1
repeat while TRUE
tb = bits[1]
bits.deleteAt(1)
sq = sq*sq
if tb then sq=sq*b
sq = sq mod m
if bits.count=0 then return sq
end repeat
end

on getBits (n)
bits = []
f = 1
repeat while TRUE
f = f * 2
if f>n then exit repeat
end repeat
return bits
end
repeat with i = 2 to the maxInteger
if modPow(2, 929, i)=1 then
put "M929 has a factor: " & i
exit repeat
end if
end repeat
Output:
-- "M929 has a factor: 13007"

## Mathematica /Wolfram Language

Believe it or not, this type of test runs faster in Mathematica than the squaring version described above.

For[i = 2, i < Prime[1000000], i = NextPrime[i],
If[Mod[2^44497, i] == 1,
Print["divisible by "<>i]]]; Print["prime test passed; call Lucas and Lehmer"]

## Maxima

mersenne_fac(p) := block([m: 2^p - 1, k: 1],
while mod(m, 2 * k * p + 1) # 0 do k: k + 1,
2 * k * p + 1
)\$

mersenne_fac(929);
/* 13007 */

## Nim

Translation of: C
import math

proc isPrime(a: int): bool =
if a == 2: return true
if a < 2 or a mod 2 == 0: return false
for i in countup(3, int sqrt(float a), 2):
if a mod i == 0:
return false
return true

const q = 929
if not isPrime q: quit 1
var r = q
while r > 0: r = r shl 1
var d = 2 * q + 1
while true:
var i = 1
var p = r
while p != 0:
i = (i * i) mod d
if p < 0: i *= 2
if i > d: i -= d
p = p shl 1
if i != 1: d += 2 * q
else: break
echo "2^",q," - 1 = 0 (mod ",d,")"
Output:
2^929 - 1 = 0 (mod 13007)

## Octave

Translation of: Fortran

(GNU Octave has a isprime built-in test)

% test a bit; lsb is 1 (like built-in bit* ops)
function b = bittst(n, p)
b = bitand(n, 2^(p-1)) > 0;
endfunction

function f = Mfactor(p)
% msb is the index of the first non-zero bit
[b, msb] = max(bitand(p, 2 .^ [32:-1:1]) > 0);
maxk = floor(sqrt(intmax()) / p);
for k = 1 : maxk
q = 2*p*k + 1;
if ( ! isprime(q) )
continue;
endif
if ( (mod(q, 8) != 1) && ( mod(q, 8) != 7) )
continue;
endif
n = 1;
for i = msb:-1:1
if ( bittst(p, i) )
n = mod(n*n*2, q);
else
n = mod(n*n, q);
endif
endfor
if ( n==1 )
f = q;
return
endif
endfor
f = 0;
endfunction

printf("%d\n", Mfactor(929));

## PARI/GP

This version takes about 15 microseconds to find a factor of 2929 − 1.

factorMersenne(p)={
forstep(q=2*p+1,sqrt(2)<<(p\2),2*p,
[1,0,0,0,0,0,1][q%8] && Mod(2, q)^p==1 && return(q)
);
1<<p-1
};
factorMersenne(929)

This implementation seems to be broken:

TM(p) = local(status=1, i=1, len=0, S=0);{
printp("Test TM \t...");
S=2*p+1;
len = length(binary(p));
B = Vecsmall(binary(p));
q = B[i]*B[i];
while( i<=len & status ==1,
if( B[i] != 0,
q = q*2;
);
r = q%S;
q = r*r;
if( i == len & r == 1,
status = 0;
printp("Not Prime!");
);
i++;
);
return(status);
}

## Pascal

Translation of: Fortran
program FactorsMersenneNumber(input, output);

function isPrime(n: longint): boolean;
var
d: longint;
begin
isPrime := true;
if (n mod 2) = 0 then
begin
isPrime := (n = 2);
exit;
end;
if (n mod 3) = 0 then
begin
isPrime := (n = 3);
exit;
end;
d := 5;
while d*d <= n do
begin
if (n mod d) = 0 then
begin
isPrime := false;
exit;
end;
d := d + 2;
end;
end;

function btest(n, pos: longint): boolean;
begin
btest := (n shr pos) mod 2 = 1;
end;

function MFactor(p: longint): longint;
var
i, k,  maxk, msb, n, q: longint;
begin
for i := 30 downto 0 do
if btest(p, i) then
begin
msb := i;
break;
end;
maxk := 16384 div p;     // limit for k to prevent overflow of 32 bit signed integer
for k := 1 to maxk do
begin
q := 2*p*k + 1;
if not isprime(q) then
continue;
if ((q mod 8) <> 1) and ((q mod 8) <> 7) then
continue;
n := 1;
for i := msb downto 0 do
if btest(p, i) then
n := (n*n*2) mod q
else
n := (n*n) mod q;
if n = 1 then
begin
mfactor := q;
exit;
end;
end;
mfactor := 0;
end;

var
exponent, factor: longint;

begin
write('Enter the exponent of the Mersenne number (suggestion: 929): ');
if not isPrime(exponent) then
begin
writeln('M', exponent, ' (2**', exponent, ' - 1) is not prime.');
exit;
end;
factor := MFactor(exponent);
if factor = 0 then
writeln('M', exponent, ' (2**', exponent, ' - 1) has no factor.')
else
writeln('M', exponent, ' (2**', exponent, ' - 1) has the factor: ', factor);
end.
Output:
:> ./FactorsMersenneNumber
Enter the exponent of the Mersenne number (suggestion: 929): 929
M929 (2**929 - 1) has the factor: 13007

## Perl

use strict;
use utf8;

sub factors {
my \$n = shift;
my \$p = 2;
my @out;

while (\$n >= \$p * \$p) {
while (\$n % \$p == 0) {
push @out, \$p;
\$n /= \$p;
}
\$p = next_prime(\$p);
}
push @out, \$n if \$n > 1 || !@out;
@out;
}

sub next_prime {
my \$p = shift;
do { \$p = \$p == 2 ? 3 : \$p + 2 } until is_prime(\$p);
\$p;
}

my %pcache;
sub is_prime {
my \$x = shift;
\$pcache{\$x} //=	(factors(\$x) == 1)
}

sub mtest {
my @bits = split "", sprintf("%b", shift);
my \$p = shift;
my \$sq = 1;
while (@bits) {
\$sq = \$sq * \$sq;
\$sq *= 2 if shift @bits;
\$sq %= \$p;
}
\$sq == 1;
}

for my \$m (2 .. 60, 929) {
next unless is_prime(\$m);
use bigint;

my (\$f, \$k, \$x) = (0, 0, 2**\$m - 1);

my \$q;
while (++\$k) {
\$q = 2 * \$k * \$m + 1;
next if ((\$q & 7) != 1 && (\$q & 7) != 7);
next unless is_prime(\$q);
last if \$q * \$q > \$x;
last if \$f = mtest(\$m, \$q);
}

print \$f? "M\$m = \$x = \$q × @{[\$x / \$q]}\n"
: "M\$m = \$x is prime\n";
}
Output:
M2 = 3 is prime
M2 = 3 is prime
M3 = 7 is prime
M5 = 31 is prime
M7 = 127 is prime
M11 = 2047 = 23  × 89
M13 = 8191 is prime
...
M53 = 9007199254740991 = 6361 × 1416003655831
M59 = 576460752303423487 = 179951 × 3203431780337

Following the task introduction, this uses GMP's modular exponentiation and simple probable prime test for the small numbers, then looks for small factors before doing a Lucas-Lehmer test. For ranges above about p=2000, looking for small factors this way saves time (the amount of testing should be adjusted based on the input size and platform -- this example just uses a fixed amount). Note as well that the Lucas-Lehmer test shown here is ignoring the large speedup we can get by optimizing the modulo operation, but that's a different task.

use Math::GMP;

# Use GMP's simple probable prime test.
sub is_prime { Math::GMP->new(shift)->probab_prime(20); }

# Lucas-Lehmer test, deterministic for 2^p-1 given p
sub is_mersenne_prime {
my(\$p, \$mp, \$s) = (\$_[0], Math::GMP->new(2)**\$_[0]-1, Math::GMP->new(4));
return 1 if \$p == 2;
\$s = (\$s * \$s - 2) % \$mp  for 3 .. \$p;
\$s == 0;
}

for my \$p (2 .. 100, 929) {
next unless is_prime(\$p);
my \$mp = Math::GMP->new(2) ** \$p - 1;
my \$lim = \$mp->bsqrt();
\$lim = 1000000 if \$lim > 1000000;   # We're using it as a pre-test
my \$factor;
for (my \$q = Math::GMP->new(2*\$p+1);  \$q <= \$lim && !\$factor;  \$q += 2*\$p) {
next unless (\$q & 7) == 1 || (\$q & 7) == 7;
next unless is_prime(\$q);
\$factor = \$q if Math::GMP->new(2)->powm_gmp(\$p,\$q) == 1;  #  \$mp % \$q == 0
}
if (\$factor) {
print "M\$p = \$factor * ",\$mp/\$factor,"\n";
} else {
print "M\$p is ", is_mersenne_prime(\$p) ? "prime" : "composite", "\n";
}
}
Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 = 23 * 89
M13 is prime
M17 is prime
M19 is prime
M23 = 47 * 178481
M29 = 233 * 2304167
M31 is prime
M37 = 223 * 616318177
M41 = 13367 * 164511353
M43 = 431 * 20408568497
M47 = 2351 * 59862819377
M53 = 6361 * 1416003655831
M59 = 179951 * 3203431780337
M61 is prime
M67 is composite
M71 = 228479 * 10334355636337793
M73 = 439 * 21514198099633918969
M79 = 2687 * 224958284260258499201
M83 = 167 * 57912614113275649087721
M89 is prime
M97 = 11447 * 13842607235828485645766393
M929 = 13007 * 348890248924[.....]64184273

## Phix

Translation/Amalgamation of BBC BASIC, D, and Go

with javascript_semantics
function modpow(atom x, atom n, atom m)
atom i = n,
y = 1,
z = x
while i do
if and_bits(i,1) then
y = mod(y*z,m)
end if
z = mod(z*z,m)
i = floor(i/2)
end while
return y
end function

function mersenne_factor(integer p)
if not is_prime(p) then return -1 end if
atom limit = sqrt(power(2,p))-1
integer k = 1
while 1 do
atom q = 2*p*k + 1
if q>=limit then exit end if
if find(mod(q,8),{1,7})
and is_prime(q)
and modpow(2,p,q)=1 then
return q
end if
k += 1
end while
return 0
end function

sequence tests = {11, 23, 29, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929, 937}
for i=1 to length(tests) do
integer ti = tests[i]
printf(1,"A factor of M%d is %d\n",{ti,mersenne_factor(ti)})
end for
Output:
A factor of M11 is 23
A factor of M23 is 47
A factor of M29 is 233
A factor of M37 is 223
A factor of M41 is 13367
A factor of M43 is 431
A factor of M47 is 2351
A factor of M53 is 6361
A factor of M59 is 179951
A factor of M67 is 193707721
A factor of M71 is 228479
A factor of M73 is 439
A factor of M79 is 2687
A factor of M83 is 167
A factor of M97 is 11447
A factor of M929 is 13007
A factor of M937 is 28111

## PHP

Translation of: D

Requires bcmath

echo 'M929 has a factor: ',  mersenneFactor(929), '</br>';

function mersenneFactor(\$p) {
\$limit = sqrt(pow(2, \$p) - 1);
for (\$k = 1; 2 * \$p * \$k - 1 < \$limit; \$k++) {
\$q = 2 * \$p * \$k + 1;
if (isPrime(\$q) && (\$q % 8 == 1 || \$q % 8 == 7) && bcpowmod("2", "\$p", "\$q") == "1") {
return \$q;
}
}
return 0;
}

function isPrime(\$n) {
if (\$n < 2 || \$n % 2 == 0) return \$n == 2;
for (\$i = 3; \$i * \$i <= \$n; \$i += 2) {
if (\$n % \$i == 0) {
return false;
}
}
return true;
}
Output:
M929 has a factor: 13007

## PicoLisp

(de **Mod (X Y N)
(let M 1
(loop
(when (bit? 1 Y)
(setq M (% (* M X) N)) )
(T (=0 (setq Y (>> 1 Y)))
M )
(setq X (% (* X X) N)) ) ) )

(de prime? (N)
(or
(= N 2)
(and
(> N 1)
(bit? 1 N)
(let S (sqrt N)
(for (D 3  T  (+ D 2))
(T (> D S) T)
(T (=0 (% N D)) NIL) ) ) ) ) )

(de mFactor (P)
(let (Lim (sqrt (dec (** 2 P)))  K 0  Q)
(loop
(setq Q (inc (* 2 (inc 'K) P)))
(T (>= Q Lim) NIL)
(T
(and
(member (% Q 8) (1 7))
(prime? Q)
(= 1 (**Mod 2 P Q)) )
Q ) ) ) )
Output:
: (for P (2 3 4 5 7 11 13 17 19 23 29 31 37 41 43 47 53 929)
(prinl
"M" P " = 2**" P "-1 is "
(cond
((not (prime? P)) "not prime")
((mFactor P) (pack "composite with factor " @))
(T "prime") ) ) )
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M4 = 2**4-1 is not prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

## Prolog

mersenne_factor(P, F) :-
prime(P),
once((
between(1, 100_000, K),  % Fail if we can't find a small factor
Q is 2*K*P + 1,
test_factor(Q, P, F))).

test_factor(Q, P, prime) :- Q*Q > (1 << P - 1), !.
test_factor(Q, P, Q) :-
R is Q /\ 7, member(R, [1, 7]),
prime(Q),
powm(2, P, Q) =:= 1.

wheel235(L) :-
W = [4, 2, 4, 2, 4, 6, 2, 6 | W],
L = [1, 2, 2 | W].

prime(N) :-
N >= 2,
wheel235(W),
prime(N, 2, W).

prime(N, D, _) :- D*D > N, !.
prime(N, D, [A|As]) :-
N mod D =\= 0,
D2 is D + A, prime(N, D2, As).
Output:
?- mersenne_factor(23, X).
X = 47.

?- mersenne_factor(5,X).
X = prime.

?- mersenne_factor(25,X).
false.

?- mersenne_factor(929,X).
X = 13007.

?- mersenne_factor(127,X).
false.

## Python

def is_prime(number):
return True # code omitted - see Primality by Trial Division

def m_factor(p):
max_k = 16384 / p # arbitrary limit; since Python automatically uses long's, it doesn't overflow
for k in xrange(max_k):
q = 2*p*k + 1
if not is_prime(q):
continue
elif q % 8 != 1 and q % 8 != 7:
continue
elif pow(2, p, q) == 1:
return q
return None

if __name__ == '__main__':
exponent = int(raw_input("Enter exponent of Mersenne number: "))
if not is_prime(exponent):
print "Exponent is not prime: %d" % exponent
else:
factor = m_factor(exponent)
if not factor:
print "No factor found for M%d" % exponent
else:
print "M%d has a factor: %d" % (exponent, factor)
Example:
Enter exponent of Mersenne number: 929
M929 has a factor: 13007

## Racket

#lang racket

(define (number->digits n)
(map (compose1 string->number string)
(string->list (number->string n 2))))

(define (modpow exp base)
(for/fold ([square 1])
([d (number->digits exp)])
(modulo (* (if (= d 1) 2 1) square square) base)))

; Search through all integers from 1 on to find the first divisor.
; Returns #f if 2^p-1 is prime.
(define (mersenne-factor p)
(for/first ([i (in-range 1 (floor (expt 2 (quotient p 2))) (* 2 p))]
#:when (and (member (modulo i 8) '(1 7))
(= 1 (modpow p i))))
i))

(mersenne-factor 929)
Output:
13007

## Raku

(formerly Perl 6)

sub mtest(\$bits, \$p) {
my @bits = \$bits.base(2).comb;
loop (my \$sq = 1; @bits; \$sq %= \$p) {
\$sq ×= \$sq;
\$sq += \$sq if 1 == @bits.shift;
}
\$sq == 1;
}

for flat 2 .. 60, 929 -> \$m {
next unless is-prime(\$m);
my \$f = 0;
my \$x = 2**\$m - 1;
my \$q;
for 1..* -> \$k {
\$q = 2 × \$k × \$m + 1;
next unless \$q % 8 == 1|7 or is-prime(\$q);
last if \$q × \$q > \$x or \$f = mtest(\$m, \$q);
}

say \$f ?? "M\$m = \$x\n\t= \$q × { \$x div \$q }"
!! "M\$m = \$x is prime";
}
Output:
M2 = 3 is prime
M3 = 7 is prime
M5 = 31 is prime
M7 = 127 is prime
M11 = 2047
= 23 × 89
M13 = 8191 is prime
M17 = 131071 is prime
M19 = 524287 is prime
M23 = 8388607
= 47 × 178481
M29 = 536870911
= 233 × 2304167
M31 = 2147483647 is prime
M37 = 137438953471
= 223 × 616318177
M41 = 2199023255551
= 13367 × 164511353
M43 = 8796093022207
= 431 × 20408568497
M47 = 140737488355327
= 2351 × 59862819377
M53 = 9007199254740991
= 6361 × 1416003655831
M59 = 576460752303423487
= 179951 × 3203431780337
M929 = 4538015467766671944574165338592225830478699345884382504442663144885072806275648112625635725391102144133907238129251016389326737199538896813326509341743147661691195191795226666084858428449394948944821764472508048114220424520501343042471615418544488778723282182172070046459244838911
= 13007 × 348890248924938259750454781163390930305120269538278042934009621348894657205785201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495638077382028762529439880103124705348782610789919949159935587158612289264184273

## REXX

REXX practically has no limit (well, up to around 8 million) on the number of decimal digits (precision).

This REXX version automatically adjusts the   numeric digits   to whatever is needed.

/*REXX program uses  exponent─and─mod  operator to test possible Mersenne numbers.      */
numeric digits 20                                /*this will be increased if necessary. */
parse arg N spec                                 /*obtain optional arguments from the CL*/
if    N=='' |    N==","  then    N=  88          /*Not specified?  Then use the default.*/
if spec=='' | spec==","  then spec= 920 970      /* "      "         "   "   "     "    */
do j=1;                  z= j              /*process a range, & then do some more.*/
if j==N             then j= word(spec, 1)  /*now, use  the high range of numbers. */
if j>word(spec, 2)  then leave             /*done with  "    "    "    "    "     */
if \isPrime(z)  then iterate               /*if  Z  isn't a prime,  keep plugging.*/
r= commas( testMer(z) );   L= length(r)    /*add commas;    get its new length.   */
if r==0  then say right('M'z, 10)     "──────── is a Mersenne prime."
else say right('M'z, 50)     "is composite, a factor:"right(r, max(L, 13) )
end   /*j*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _;  do jc=length(_)-3  to 1  by -3; _=insert(',', _, jc); end;  return _
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPrime: procedure; parse arg x;             if wordpos(x, '2 3 5 7') \== 0  then return 1
if x<11  then return 0;             if x//2 == 0 | x//3       == 0  then return 0
do j=5  by 6;                  if x//j == 0 | x//(j+2)   == 0  then return 0
if j*j>x   then return 1                 /*◄─┐         ___                */
end   /*j*/                              /*  └─◄ Is j>√ x ?  Then return 1*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
iSqrt:   procedure; parse arg x;  #= 1;   r= 0;                 do while #<=x;    #= # * 4
end   /*while*/
do while #>1;      #= # % 4;   _= x-r-#;    r= r % 2
if _>=0  then do;  x= _;       r= r + #
end
end   /*while*/                             /*iSqrt ≡    integer square root.*/
return r                                      /*─────      ─       ──     ─  ─ */
/*──────────────────────────────────────────────────────────────────────────────────────*/
testMer: procedure;  parse arg x;              p= 2**x /* [↓]  do we have enough digits?*/
\$\$=x2b( d2x(x) ) + 0
if pos('E',p)\==0  then do;  parse var p "E" _;   numeric digits _ + 2;   p= 2**x
end
!.= 1;   !.1= 0;   !.7= 0                     /*array used for a quicker test. */
R= iSqrt(p)                                   /*obtain integer square root of P*/
do k=2  by 2;         q= k*x  +  1 /*(shortcut) compute value of Q. */
m= q // 8                          /*obtain the remainder when ÷ 8. */
if !.m       then iterate          /*M  must be either one or seven.*/
parse var q '' -1 _;  if _==5  then iterate   /*last digit a five ? */
if q// 3==0  then iterate                     /*divisible by three? */
if q// 7==0  then iterate                     /*    "      " seven? */
if q//11==0  then iterate                     /*    "      " eleven?*/
/*      ____                     */
if q>R               then return 0 /*Is q>√2**x ?   A Mersenne prime*/
sq= 1;        \$= \$\$                /*obtain binary version from  \$. */
do  until \$=='';      sq= sq*sq
parse var \$  _  2  \$           /*obtain 1st digit and the rest. */
if _  then sq= (sq+sq) // q
end   /*until*/
if sq==1  then return q            /*Not a prime?   Return a factor.*/
end   /*k*/

Program note:   the   iSqrt   function computes the integer square root of a non-negative integer without using any floating point, just integers.

output   when using the default (two) ranges of numbers:
M2 ──────── is a Mersenne prime.
M3 ──────── is a Mersenne prime.
M5 ──────── is a Mersenne prime.
M7 ──────── is a Mersenne prime.
M11 is composite, a factor:           23
M13 ──────── is a Mersenne prime.
M17 ──────── is a Mersenne prime.
M19 ──────── is a Mersenne prime.
M23 is composite, a factor:           47
M29 is composite, a factor:          233
M31 ──────── is a Mersenne prime.
M37 is composite, a factor:          223
M41 is composite, a factor:       13,367
M43 is composite, a factor:          431
M47 is composite, a factor:        2,351
M53 is composite, a factor:        6,361
M59 is composite, a factor:      179,951
M61 ──────── is a Mersenne prime.
M67 is composite, a factor:  193,707,721
M71 is composite, a factor:      228,479
M73 is composite, a factor:          439
M79 is composite, a factor:        2,687
M83 is composite, a factor:          167
M929 is composite, a factor:       13,007
M937 is composite, a factor:       28,111
M941 is composite, a factor:        7,529
M947 is composite, a factor:  295,130,657
M953 is composite, a factor:      343,081
M967 is composite, a factor:       23,209

## Ring

# Project : Factors of a Mersenne number

see "A factor of M929 is " + mersennefactor(929) + nl
see "A factor of M937 is " + mersennefactor(937) + nl

func mersennefactor(p)
if not isprime(p)
return -1
ok
for k = 1 to 50
q = 2*k*p + 1
if (q && 7) = 1 or (q && 7) = 7
if isprime(q)
if modpow(2, p, q) = 1
return q
ok
ok
ok
next
return 0

func isprime(num)
if (num <= 1) return 0 ok
if (num % 2 = 0) and num != 2 return 0 ok
for i = 3 to floor(num / 2) -1 step 2
if (num % i = 0) return 0 ok
next
return 1

func modpow(x,n,m)
i = n
y = 1
z = x
while i > 0
if i & 1
y = (y * z) % m
ok
z = (z * z) % m
i = (i >> 1)
end
return y

Output:

A factor of M929 is 13007
A factor of M937 is 28111

## RPL

Works with: HP version 48

PRIM? is defined at Primality by trial division

RPL code Comment
≪ SWAP R→B → quotient power
≪ 2 power B→R LN 2 LN / FLOOR ^ R→B
1
WHILE OVER B→R REPEAT
SQ
IF OVER power AND B→R THEN DUP + END
quotient MOD
SWAP SR SWAP
END SWAP DROP
≫ ≫ 'MODPOW' STO

≪ 2 OVER ^ 1 - √ 0 → power max k
≪ 1
WHILE 'k' INCR 2 * 1 + DUP max ≤ REPEAT
IF { 1 7 } OVER 8 MOD POS THEN
IF DUP PRIM? THEN
IF power OVER MODPOW 1 == THEN
SWAP max 'k' STO END
END END
DROP
END DROP
≫ 'MFACT' STO
MODPOW ( power quotient → remainder )
square = 1
square *= square
if unmasked bit = 1 then square += square
square = square mod quotient
clean stack
return square

MFACT ( N → factor )
factor = 1
while 2k+1 ≤ sqrt(M(N))
if 2k+1 mod 8 is equal to 1 or 7
if 2k+1 prime
is 2K+1 a factor of M(N) ?
if yes, exit loop

return factor
929 MFACT
Output:
1: 13007

Factor found in 69 minutes on a 4-bit HP-48SX calculator.

## Ruby

Works with: Ruby version 1.9.3+
require 'prime'

def mersenne_factor(p)
limit = Math.sqrt(2**p - 1)
k = 1
while (2*k*p - 1) < limit
q = 2*k*p + 1
if q.prime? and (q % 8 == 1 or q % 8 == 7) and trial_factor(2,p,q)
# q is a factor of 2**p-1
return q
end
k += 1
end
nil
end

def trial_factor(base, exp, mod)
square = 1
("%b" % exp).each_char {|bit| square = square**2 * (bit == "1" ? base : 1) % mod}
(square == 1)
end

def check_mersenne(p)
print "M#{p} = 2**#{p}-1 is "
f = mersenne_factor(p)
if f.nil?
puts "prime"
else
puts "composite with factor #{f}"
end
end

Prime.each(53) { |p| check_mersenne p }
check_mersenne 929
Output:
M2 = 2**2-1 is prime
M3 = 2**3-1 is prime
M5 = 2**5-1 is prime
M7 = 2**7-1 is prime
M11 = 2**11-1 is composite with factor 23
M13 = 2**13-1 is prime
M17 = 2**17-1 is prime
M19 = 2**19-1 is prime
M23 = 2**23-1 is composite with factor 47
M29 = 2**29-1 is composite with factor 233
M31 = 2**31-1 is prime
M37 = 2**37-1 is composite with factor 223
M41 = 2**41-1 is composite with factor 13367
M43 = 2**43-1 is composite with factor 431
M47 = 2**47-1 is composite with factor 2351
M53 = 2**53-1 is composite with factor 6361
M929 = 2**929-1 is composite with factor 13007

## Rust

Translation of: C++
fn bit_count(mut n: usize) -> usize {
let mut count = 0;
while n > 0 {
n >>= 1;
count += 1;
}
count
}

fn mod_pow(p: usize, n: usize) -> usize {
let mut square = 1;
let mut bits = bit_count(p);
while bits > 0 {
square = square * square;
bits -= 1;
if (p & (1 << bits)) != 0 {
square <<= 1;
}
square %= n;
}
return square;
}

fn is_prime(n: usize) -> bool {
if n < 2 {
return false;
}
if n % 2 == 0 {
return n == 2;
}
if n % 3 == 0 {
return n == 3;
}
let mut p = 5;
while p * p <= n {
if n % p == 0 {
return false;
}
p += 2;
if n % p == 0 {
return false;
}
p += 4;
}
true
}

fn find_mersenne_factor(p: usize) -> usize {
let mut k = 0;
loop {
k += 1;
let q = 2 * k * p + 1;
if q % 8 == 1 || q % 8 == 7 {
if mod_pow(p, q) == 1 && is_prime(p) {
return q;
}
}
}
}

fn main() {
println!("{}", find_mersenne_factor(929));
}
Output:
13007

## Scala

Library: Scala

### Full-blown version

/** Find factors of a Mersenne number
*
* The implementation finds factors for M929 and further.
*
* @example M59 = 2^059 - 1 =             576460752303423487  (   2 msec)
* @example = 179951 × 3203431780337.
*/
object FactorsOfAMersenneNumber extends App {

val two: BigInt = 2
// An infinite stream of primes, lazy evaluation and memo-ized
val oddPrimes = sieve(LazyList.from(3, 2))

def sieve(nums: LazyList[Int]): LazyList[Int] =

def primes: LazyList[Int] = sieve(2 #:: oddPrimes)

def factorMersenne(p: Int): Option[Long] = {
val limit = (mersenne(p) - 1 min Int.MaxValue).toLong

def factorTest(p: Long, q: Long): Boolean = {
(List(1, 7) contains (q % 8)) && two.modPow(p, q) == 1 && BigInt(q).isProbablePrime(7)
}

// Build a stream of factors from (2*p+1) step-by (2*p)
def s(a: Long): LazyList[Long] = a #:: s(a + (2 * p)) // Build stream of possible factors

// Limit and Filter Stream and then take the head element
val e = s(2 * p + 1).takeWhile(_ < limit).filter(factorTest(p, _))
}

def mersenne(p: Int): BigInt = (two pow p) - 1

// Test
(primes takeWhile (_ <= 97)) ++ List(929, 937) foreach { p => { // Needs some intermediate results for nice formatting
val nMersenne = mersenne(p);
val lit = s"\${nMersenne}"
val preAmble = f"\${s"M\${p}"}%4s = 2^\$p%03d - 1 = \${lit}%s"

val datum = System.nanoTime
val result = factorMersenne(p)
val mSec = ((System.nanoTime - datum) / 1.0e+6).round

def decStr = {
if (lit.length > 30) f"(M has \${lit.length}%3d dec)" else ""
}

def sPrime: String = {
if (result.isEmpty) " is a Mersenne prime number." else " " * 28
}

println(f"\$preAmble\${sPrime} \${f"(\$mSec%,1d"}%13s msec)")
if (result.isDefined)
println(f"\${decStr}%-17s = \${result.get} × \${nMersenne / result.get}")
}
}
}
Output:
M2 = 2^002 - 1 =                              3 is a Mersenne prime number.           (63 msec)
M3 = 2^003 - 1 =                              7 is a Mersenne prime number.            (0 msec)
M5 = 2^005 - 1 =                             31 is a Mersenne prime number.            (1 msec)
M7 = 2^007 - 1 =                            127 is a Mersenne prime number.            (2 msec)
M11 = 2^011 - 1 =                           2047                                    (2.097 msec)
= 23 × 89
M13 = 2^013 - 1 =                           8191 is a Mersenne prime number.           (33 msec)
M17 = 2^017 - 1 =                         131071 is a Mersenne prime number.          (254 msec)
M19 = 2^019 - 1 =                         524287 is a Mersenne prime number.          (524 msec)
M23 = 2^023 - 1 =                        8388607                                        (0 msec)
= 47 × 178481
M29 = 2^029 - 1 =                      536870911                                        (0 msec)
= 233 × 2304167
M31 = 2^031 - 1 =                     2147483647 is a Mersenne prime number.       (31.484 msec)
M37 = 2^037 - 1 =                   137438953471                                        (0 msec)
= 223 × 616318177
M41 = 2^041 - 1 =                  2199023255551                                        (0 msec)
= 13367 × 164511353
M43 = 2^043 - 1 =                  8796093022207                                        (0 msec)
= 431 × 20408568497
M47 = 2^047 - 1 =                140737488355327                                        (0 msec)
= 2351 × 59862819377
M53 = 2^053 - 1 =               9007199254740991                                        (0 msec)
= 6361 × 1416003655831
M59 = 2^059 - 1 =             576460752303423487                                        (1 msec)
= 179951 × 3203431780337
M61 = 2^061 - 1 =            2305843009213693951 is a Mersenne prime number.       (16.756 msec)
M67 = 2^067 - 1 =          147573952589676412927                                    (1.435 msec)
= 193707721 × 761838257287
M71 = 2^071 - 1 =         2361183241434822606847                                        (2 msec)
= 228479 × 10334355636337793
M73 = 2^073 - 1 =         9444732965739290427391                                        (0 msec)
= 439 × 21514198099633918969
M79 = 2^079 - 1 =       604462909807314587353087                                        (0 msec)
= 2687 × 224958284260258499201
M83 = 2^083 - 1 =      9671406556917033397649407                                        (0 msec)
= 167 × 57912614113275649087721
M89 = 2^089 - 1 =    618970019642690137449562111 is a Mersenne prime number.       (11.097 msec)
M97 = 2^097 - 1 = 158456325028528675187087900671                                        (0 msec)
= 11447 × 13842607235828485645766393
M929 = 2^929 - 1 = 4538015467766671944574165338592225830478699345884382504442663144885072806275648112625635725391102144133907238129251016389326737199538896813326509341743147661691195191795226666084858428449394948944821764472508048114220424520501343042471615418544488778723282182172070046459244838911                                        (0 msec)
(M has 280 dec)   = 13007 × 348890248924938259750454781163390930305120269538278042934009621348894657205785201247454118966026150852149399410259938217062100192168747352450719561908445272675574320888385228421992652298715687625495638077382028762529439880103124705348782610789919949159935587158612289264184273
M937 = 2^937 - 1 = 1161731959748268017810986326679609812602547032546401921137321765090578638406565916832162745700122148898280252961088260195667644723081957584211586391486245801392945969099578026517723757683045106929874371704962060317240428677248343818872733547147389127353160238636049931893566678761471                                        (0 msec)
(M has 283 dec)   = 28111 × 41326596696960905617409068573854000661753300577937530544531385048222355604801178073784737138491058621119143856891902109340387916583613446131819799775399160520541637405271175928203328152077304504637841830776637626453716647477796727931156257235508844486256634009321971181870679761

## Scheme

This works with PLT Scheme, other implementations only need to change the inclusion.

#lang scheme

;;; this needs to be changed for other R6RS implementations
(require rnrs/arithmetic/bitwise-6)

;;; modpow, as per the task description.
(define (modpow exponent base)
(let loop ([square 1] [index (- (bitwise-length exponent) 1)])
(if (< index 0)
square
(loop (modulo (* (if (bitwise-bit-set? exponent index) 2 1)
square square) base)
(- index 1)))))

;;; search through all integers from 1 on to find the first divisor
;;; returns #f if 2^p-1 is prime
(define (mersenne-factor p)
(for/first ((i (in-range 1 (floor (expt 2 (quotient p 2))) (* 2 p)))
#:when (and (or (= 1 (modulo i 8)) (= 7 (modulo i 8)))
(= 1 (modpow p i))))
i))
Output:
> (mersenne-factor 929)
13007
> (mersenne-factor 23)
47
> (mersenne-factor 3)
#f

## Seed7

\$ include "seed7_05.s7i";

const func boolean: isPrime (in integer: number) is func
result
var boolean: prime is FALSE;
local
var integer: upTo is 0;
var integer: testNum is 3;
begin
if number = 2 then
prime := TRUE;
elsif odd(number) and number > 2 then
upTo := sqrt(number);
while number rem testNum <> 0 and testNum <= upTo do
testNum +:= 2;
end while;
prime := testNum > upTo;
end if;
end func;

const func integer: modPow (in var integer: base,
in var integer: exponent, in integer: modulus) is func
result
var integer: power is 1;
begin
if exponent < 0 or modulus < 0 then
raise RANGE_ERROR;
else
while exponent > 0 do
if odd(exponent) then
power := (power * base) mod modulus;
end if;
exponent >>:= 1;
base := base ** 2 mod modulus;
end while;
end if;
end func;

const func integer: mersenneFactor (in integer: exponent) is func
result
var integer: factor is 0;
local
var integer: maxk is 0;
var integer: k is 1;
var boolean: searching is TRUE;
begin
maxk := 16384 div exponent; # Limit for k to prevent overflow of 32 bit signed integer
while k <= maxk and searching do
factor := 2 * exponent * k + 1;
if (factor mod 8 = 1 or factor mod 8 = 7) and
isPrime(factor) and modPow(2, exponent, factor) = 1 then
searching := FALSE;
end if;
incr(k);
end while;
if searching then
factor := 0;
end if;
end func;

const proc: main is func
begin
writeln("Factor of M929: " <& mersenneFactor(929));
end func;

Original source: isPrime, modPow (modified to use integer instead of bigInteger).

Output:
Factor of M929: 13007

## Sidef

func mtest(b, p) {
var bits = b.base(2).digits
for (var sq = 1; bits; sq %= p) {
sq *= sq
sq += sq if bits.shift==1
}
sq == 1
}

for m (2..60 -> grep{ .is_prime }, 929) {
var f = 0
var x = (2**m - 1)
var q
{ |k|
q = (2*k*m + 1)
q%8 ~~ [1,7] || q.is_prime || next
q*q > x || (f = mtest(m, q)) && break
} << 1..Inf
say (f ? "M#{m} is composite with factor #{q}"
: "M#{m} is prime")
}
Output:
M2 is prime
M3 is prime
M5 is prime
M7 is prime
M11 is composite with factor 23
M13 is prime
M17 is prime
M19 is prime
M23 is composite with factor 47
M29 is composite with factor 233
M31 is prime
M37 is composite with factor 223
M41 is composite with factor 13367
M43 is composite with factor 431
M47 is composite with factor 2351
M53 is composite with factor 6361
M59 is composite with factor 179951
M929 is composite with factor 13007

## Swift

import Foundation

extension BinaryInteger {
var isPrime: Bool {
if self == 0 || self == 1 {
return false
} else if self == 2 {
return true
}

let max = Self(ceil((Double(self).squareRoot())))

for i in stride(from: 2, through: max, by: 1) where self % i == 0  {
return false
}

return true
}

func modPow(exp: Self, mod: Self) -> Self {
guard exp != 0 else {
return 1
}

var res = Self(1)
var base = self % mod
var exp = exp

while true {
if exp & 1 == 1 {
res *= base
res %= mod
}

if exp == 1 {
return res
}

exp >>= 1
base *= base
base %= mod
}
}
}

func mFactor(exp: Int) -> Int? {
for k in 0..<16384 {
let q = 2*exp*k + 1

if !q.isPrime {
continue
} else if q % 8 != 1 && q % 8 != 7 {
continue
} else if 2.modPow(exp: exp, mod: q) == 1 {
return q
}
}

return nil
}

print(mFactor(exp: 929)!)
Output:
13007

## Tcl

For primes::is_prime see Prime decomposition#Tcl

proc int2bits {n} {
binary scan [binary format I1 \$n] B* binstring
return [split [string trimleft \$binstring 0] ""]

# another method
if {\$n == 0} {return 0}
set bits [list]
while {\$n > 0} {
lappend bits [expr {\$n % 2}]
set n [expr {\$n / 2}]
}
return [lreverse \$bits]
}

proc trial_factor {base exp mod} {
set square 1
foreach bit [int2bits \$exp] {
set square [expr {(\$square ** 2) * (\$bit == 1 ? \$base : 1) % \$mod}]
}
return [expr {\$square == 1}]
}

proc m_factor p {
set limit [expr {sqrt(2**\$p - 1)}]
for {set k 1} {2 * \$k * \$p - 1 < \$limit} {incr k} {
set q [expr {2 * \$k * \$p + 1}]
if { ! [primes::is_prime \$q]} {
continue
} elseif { ! (\$q % 8 == 1 || \$q % 8 == 7)} {
# optimization
continue
} elseif {[trial_factor 2 \$p \$q]} {
# \$q is a factor of 2**\$p-1
return \$q
}
}
return -1
}

set exp 929
if {[set fact [m_factor 929]] > 0} {
puts "M\$exp has a factor: \$fact"
} else {
puts "no factor found for M\$exp"
}

## TI-83 BASIC

Translation of: BBC BASIC
Works with: TI-83 BASIC version TI-84Plus 2.55MP

The program uses the new remainder function from OS 2.53MP, if not available it can be replaced by:

remainder(A,B)   equivalent to   iPart(B*fPart(A/B))

Due to several problems, no Goto has been used. As a matter of fact the version is clearer.

Prompt Q
1→K:0→T
While K≤2^20 and T=0
2KQ+1→P
remainder(P,8)→W
If W=1 or W=7
Then
0→E:0→M
If remainder(P,2)=0:1→M
If remainder(P,3)=0:1→M
5→D
While M=0 and DD≤P
If remainder(P,D)=0:1→M
D+2→D
If remainder(P,D)=0:1→M
D+4→D
End
If M=0:1→E
Q→I:1→Y:2→Z
While I≠0
If remainder(I,2)=1:remainder(YZ,P)→Y
remainder(ZZ,P)→Z
iPart(I/2)→I
End
If E=1 and Y=1
Then
P→F:1→T
End
End
K+1→K
End
If T=0:0→F
Disp Q,F
Input:
Q=?929
Output:
929
13007
Done

## uBasic/4tH

Print "A factor of M929 is "; FUNC(_FNmersenne_factor(929))
Print "A factor of M937 is "; FUNC(_FNmersenne_factor(937))

End

_FNmersenne_factor Param(1)
Local(2)

If (FUNC(_FNisprime(a@)) = 0) Then Return (-1)

For b@ = 1 TO 99999
c@ = (2*a@*b@) + 1
If (FUNC(_FNisprime(c@))) Then
If (AND (c@, 7) = 1) + (AND (c@, 7) = 7) Then
Until FUNC(_ModPow2 (a@, c@)) = 1
EndIf
EndIf
Next

Return (c@ * (b@<100000))

_FNisprime Param(1)
Local (1)

If ((a@ % 2) = 0) Then Return (a@ = 2)
If ((a@ % 3) = 0) Then Return (a@ = 3)

b@ = 5

Do Until ((b@ * b@) > a@) + ((a@ % b@) = 0)
b@ = b@ + 2
Until (a@ % b@) = 0
b@ = b@ + 4
Loop

Return ((b@ * b@) > a@)

_ModPow2 Param(2)
Local(2)

d@ = 1
For c@ = 30 To 0 Step -1
If ((a@+1) > SHL(1,c@)) Then
d@ = d@ * d@
If AND (a@, SHL(1,c@)) Then
d@ = d@ * 2
EndIf
d@ = d@ % b@
EndIf
Next

Return (d@)
Output:
A factor of M929 is 13007
A factor of M937 is 28111

0 OK, 0:123

## VBScript

Translation of: REXX
' Factors of a Mersenne number
for i=1 to 59
z=i
if z=59 then z=929  ':) 61 turns into 929.
if isPrime(z) then
r=testM(z)
zz=left("M" & z & space(4),4)
if r=0 then
Wscript.echo zz & " prime."
else
Wscript.echo zz & " not prime, a factor: " & r
end if
end if
next

function modPow(base,n,div)
dim i,y,z
i = n : y = 1 : z = base
do while i
if i and 1 then y = (y * z) mod div
z = (z * z) mod div
i = i \ 2
loop
modPow= y
end function

function isPrime(x)
dim i
if x=2 or x=3 or _
x=5 or x=7 _
then isPrime=1: exit function
if x<11       then isPrime=0: exit function
if x mod 2=0  then isPrime=0: exit function
if x mod 3=0  then isPrime=0: exit function
i=5
do
if (x mod i)     =0 or _
(x mod (i+2)) =0 _
then isPrime=0: exit function
if i*i>x  then isPrime=1: exit function
i=i+6
loop
end function

function testM(x)
dim sqroot,k,q
sqroot=Sqr(2^x)
k=1
do
q=2*k*x+1
if q>sqroot then exit do
if (q and 7)=1 or (q and 7)=7 then
if isPrime(q) then
if modPow(2,x,q)=1 then
testM=q
exit function
end if
end if
end if
k=k+1
loop
testM=0
end function
Output:
M2   prime.
M3   prime.
M5   prime.
M7   prime.
M11  not prime, a factor: 23
M13  prime.
M17  prime.
M19  prime.
M23  not prime, a factor: 47
M29  not prime, a factor: 233
M31  prime.
M37  not prime, a factor: 223
M41  not prime, a factor: 13367
M43  not prime, a factor: 431
M47  not prime, a factor: 2351
M53  not prime, a factor: 6361
M929 not prime, a factor: 13007

## Visual Basic

Translation of: BBC BASIC
Works with: Visual Basic version VB6 Standard
Sub mersenne()
Dim q As Long, k As Long, p As Long, d As Long
Dim factor As Long, i As Long, y As Long, z As Long
Dim prime As Boolean
q = 929   'input value
For k = 1 To 1048576   '2**20
p = 2 * k * q + 1
If (p And 7) = 1 Or (p And 7) = 7 Then    'p=*001 or p=*111
'p is prime?
prime = False
If p Mod 2 = 0 Then GoTo notprime
If p Mod 3 = 0 Then GoTo notprime
d = 5
Do While d * d <= p
If p Mod d = 0 Then GoTo notprime
d = d + 2
If p Mod d = 0 Then GoTo notprime
d = d + 4
Loop
prime = True
notprime:   'modpow
i = q: y = 1: z = 2
Do While i   'i <> 0
On Error GoTo okfactor
If i And 1 Then y = (y * z) Mod p  'test first bit
z = (z * z) Mod p
On Error GoTo 0
i = i \ 2
Loop
If prime And y = 1 Then factor = p: GoTo okfactor
End If
Next k
factor = 0
okfactor:
Debug.Print "M" & q, "factor=" & factor
End Sub
Output:
M47           factor=2351

## V (Vlang)

Translation of: go
import math
const qlimit = int(2e8)

fn main() {
mtest(31)
mtest(67)
mtest(929)
}

fn mtest(m int) {
// the function finds odd prime factors by
// searching no farther than sqrt(N), where N = 2^m-1.
// the first odd prime is 3, 3^2 = 9, so M3 = 7 is still too small.
// M4 = 15 is first number for which test is meaningful.
if m < 4 {
println("\$m < 4.  M\$m not tested.")
return
}
flimit := math.sqrt(math.pow(2, f64(m)) - 1)
mut qlast := 0
if flimit < qlimit {
qlast = int(flimit)
} else {
qlast = qlimit
}
mut composite := []bool{len: qlast+1}
sq := int(math.sqrt(f64(qlast)))
loop:
for q := int(3); ; {
if q <= sq {
for i := q * q; i <= qlast; i += q {
composite[i] = true
}
}
q8 := q % 8
if (q8 == 1 || q8 == 7) && mod_pow(2, m, q) == 1 {
println("M\$m has factor \$q")
return
}
for {
q += 2
if q > qlast {
break loop
}
if !composite[q] {
break
}
}
}
println("No factors of M\$m found.")
}

// base b to power p, mod m
fn mod_pow(b int, p int, m int) int {
mut pow := i64(1)
b64 := i64(b)
m64 := i64(m)
mut bit := u32(30)
for 1<<bit&p == 0 {
bit--
}
for {
pow *= pow
if 1<<bit&p != 0 {
pow *= b64
}
pow %= m64
if bit == 0 {
break
}
bit--
}
return int(pow)
}
Output:
No factors of M31 found.
M67 has factor 193707721
M929 has factor 13007

## Wren

Translation of: JavaScript
Library: Wren-math
Library: Wren-fmt
import "./math" for Int
import "./fmt" for Conv, Fmt

var trialFactor = Fn.new { |base, exp, mod|
var square = 1
var bits = Conv.itoa(exp, 2).toList
var ln = bits.count
for (i in 0...ln) {
square = square * square * (bits[i] == "1" ? base : 1) % mod
}
return square == 1
}

var mersenneFactor = Fn.new { |p|
var limit = (2.pow(p) - 1).sqrt.floor
var k = 1
while ((2*k*p - 1) < limit) {
var q = 2*k*p + 1
if (Int.isPrime(q) && (q%8 == 1 || q%8 == 7) && trialFactor.call(2, p, q)) {
return q  // q is a factor of 2^p - 1
}
k = k + 1
}
return null
}

var m = [3, 5, 11, 17, 23, 29, 31, 37, 41, 43, 47, 53, 59, 67, 71, 73, 79, 83, 97, 929]
for (p in m) {
var f = mersenneFactor.call(p)
Fmt.write("2^\$3d - 1 is ", p)
if (f) {
Fmt.print("composite (factor \$d)", f)
} else {
System.print("prime")
}
}
Output:
2^  3 - 1 is prime
2^  5 - 1 is prime
2^ 11 - 1 is composite (factor 23)
2^ 17 - 1 is prime
2^ 23 - 1 is composite (factor 47)
2^ 29 - 1 is composite (factor 233)
2^ 31 - 1 is prime
2^ 37 - 1 is composite (factor 223)
2^ 41 - 1 is composite (factor 13367)
2^ 43 - 1 is composite (factor 431)
2^ 47 - 1 is composite (factor 2351)
2^ 53 - 1 is composite (factor 6361)
2^ 59 - 1 is composite (factor 179951)
2^ 67 - 1 is composite (factor 193707721)
2^ 71 - 1 is composite (factor 228479)
2^ 73 - 1 is composite (factor 439)
2^ 79 - 1 is composite (factor 2687)
2^ 83 - 1 is composite (factor 167)
2^ 97 - 1 is composite (factor 11447)
2^929 - 1 is composite (factor 13007)

## zkl

Translation of: EchoLisp
var [const] BN=Import("zklBigNum");  // libGMP

// M = 2^P - 1 , P prime
// Look for a prime divisor q such as:
//     q < M.sqrt(), q = 1 or 7 modulo 8, q = 1 + 2kP
// q is divisor if 2.powmod(P,q) == 1
// m-divisor returns q or False
fcn m_divisor(P){
// must limit the search as M.sqrt() may be HUGE and I'm slow
maxPrime:='wrap{ BN(2).pow(P).sqrt().min(0d5_000_000) };
t,b2:=BN(0),BN(2);  // so I can do some in place BigInt math
foreach q in (maxPrime(P*2)){ // 0..maxPrime -1, faster than just odd #s
if((q%8==1 or q%8==7) and t.set(q).probablyPrime() and
b2.powm(P,q)==1) return(q);
}
False
}
m_divisor(929).println();	// 13007
m_divisor(4423).println();	// False
(BN(2).pow(4423) - 1).probablyPrime().println();  // True
Output:
13007
False
True