Lucas-Lehmer test
You are encouraged to solve this task according to the task description, using any language you may know.
Lucas-Lehmer Test:
for an odd prime, the Mersenne number is prime if and only if divides where , and .
- Task
Calculate all Mersenne primes up to the implementation's
maximum precision, or the 47th Mersenne prime (whichever comes first).
11l
F isPrime(p)
I p < 2 | p % 2 == 0
R p == 2
L(i) 3..Int(sqrt(p))
I p % i == 0
R 0B
R 1B
F isMersennePrime(p)
I !isPrime(p)
R 0B
I p == 2
R 1B
V mp = BigInt(2) ^ p - 1
V s = BigInt(4)
L 3..p
s = (s ^ 2 - 2) % mp
R s == 0
L(p) 2..2299
I isMersennePrime(p)
print(‘M’p, end' ‘ ’)
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281
360 Assembly
For maximum compatibility, this program uses only the basic instruction set.
* Lucas-Lehmer test
LUCASLEH CSECT
USING LUCASLEH,R12
SAVEARA B STM-SAVEARA(R15)
DC 17F'0'
DC CL8'LUCASLEH'
STM STM R14,R12,12(R13) save calling context
ST R13,4(R15)
ST R15,8(R13)
LR R12,R15 set addessability
* ---- CODE
LA R2,2 R2=2
LA R11,0 R11:N'
BCTR R11,0 N':=X'FFFFFFFF'
LA R10,1 R10:N N=1
LA R4,1 R4:IEXP
LA R6,1 step
LH R7,IEXPMAX R7:IEXPMAX limit
LOOPE BXH R4,R6,ENDLOOPE do iexp=2 to iexpmax
SR R3,R3 R3:S S=0
CR R4,R2 if iexp=2 then S=0
BE OKS
LA R3,4 else S=4
OKS EQU *
SLDA R10,1 n=(n+1)*2-1
LA R5,0 I
LA R8,1 step
LR R9,R4 IEXP
SR R9,R2 IEXP-2 limit
LOOPI BXH R5,R8,ENDLOOPI do i=1 to iexp-2
* ---- compute s=(s*s-2) MOD n
SR R14,R14 R14=0
LR R15,R3 R15=S
MR R14,R3 R{14-15}=S*S
SLR R15,R2 R15=R15-2=S*S-2
BNM *+6 skip next if no borrow
BCTR R14,0 perform borrow
DR R14,R10 R10=N
LR R3,R14 R14=MOD
B LOOPI
ENDLOOPI EQU *
LTR R3,R3
BNZ NOPRT if s<>0 then no print
CVD R4,P store to packed P
UNPK Z,P Z=P
MVC C,Z C=Z
OI C+L'C-1,X'F0' zap sign
MVC WTOBUF(4),C+12
MVI WTOBUF,C'M'
WTO MF=(E,WTOMSG)
NOPRT EQU *
B LOOPE
ENDLOOPE EQU *
* ---- END CODE
RETURN EQU *
LM R14,R12,12(R13)
XR R15,R15
BR R14
* ---- DATA
IEXPMAX DC H'31'
I DS H
IEXP DS H
S DS F
N DS F
P DS PL8 packed
Z DS ZL16 zoned
C DS CL16 character
WTOMSG DS 0F
DC H'80',XL2'0000'
WTOBUF DC 80C' '
LTORG
YREGS
END LUCASLEH
- Output:
M002 M003 M005 M007 M013 M017 M019 M031
Ada
with Ada.Text_Io; use Ada.Text_Io;
with Ada.Integer_Text_Io; use Ada.Integer_Text_Io;
procedure Lucas_Lehmer_Test is
type Ull is mod 2**64;
function Mersenne(Item : Integer) return Boolean is
S : Ull := 4;
MP : Ull := 2**Item - 1;
begin
if Item = 2 then
return True;
else
for I in 3..Item loop
S := (S * S - 2) mod MP;
end loop;
return S = 0;
end if;
end Mersenne;
Upper_Bound : constant Integer := 64;
begin
Put_Line(" Mersenne primes:");
for P in 2..Upper_Bound loop
if Mersenne(P) then
Put(" M");
Put(Item => P, Width => 1);
end if;
end loop;
end Lucas_Lehmer_Test;
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19 M31
Agena
Because of the very large numbers computed, the mapm binding is used to calculate with arbitrary precision.
readlib 'mapm';
mapm.xdigits(100);
mersenne := proc(p::number) is
local s, m;
s := 4;
m := mapm.xnumber(2^p) - 1;
if p = 2 then
return true
else
for i from 3 to p do
s := (mapm.xnumber(s)^2 - 2) % m
od;
return mapm.xtoNumber(s) = 0
fi
end;
for i from 3 to 64 do
if mersenne(i) then
write('M' & i & ' ')
fi
od;
produces:
M3 M5 M7 M13 M17 M19 M31
ALGOL 68
PRAGMAT stack=1M precision=20000 PRAGMAT
PROC is prime = ( INT p )BOOL:
IF p = 2 THEN TRUE
ELIF p <= 1 OR p MOD 2 = 0 THEN FALSE
ELSE
BOOL prime := TRUE;
FOR i FROM 3 BY 2 TO ENTIER sqrt(p)
WHILE prime := p MOD i /= 0 DO SKIP OD;
prime
FI;
PROC is mersenne prime = ( INT p )BOOL:
IF p = 2 THEN TRUE
ELSE
LONG LONG INT m p := LONG LONG 2 ** p - 1, s := 4;
FROM 3 TO p DO
s := (s ** 2 - 2) MOD m p
OD;
s = 0
FI;
test:(
INT upb prime = ( long long bits width - 1 ) OVER 2; # no unsigned #
INT upb count = 45; # find 45 mprimes if INT has enough bits #
printf(($" Finding Mersenne primes in M[2.."g(0)"]: "l$,upb prime));
INT count:=0;
FOR p FROM 2 TO upb prime WHILE
IF is prime(p) THEN
IF is mersenne prime(p) THEN
printf (($" M"g(0)$,p));
count +:= 1
FI
FI;
count <= upb count
DO SKIP OD
)
- Output:
Finding Mersenne primes in M[2..33252]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209
See also: http://www.xs4all.nl/~jmvdveer/mersenne.a68.html
ARM Assembly
/* ARM assembly Raspberry PI */
/* program lucaslehmer.s */
/* use library gmp */
/* link with gcc option -lgmp */
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ NBRECH, 30
/* Initialized data */
.data
szMessResult: .ascii "Prime : M"
sMessValeur: .fill 11, 1, ' ' @ size => 11
.asciz "\n"
szCarriageReturn: .asciz "\n"
szformat: .asciz "nombre= %Zd\n"
/* UnInitialized data */
.bss
.align 4
spT: .skip 100
mpT: .skip 100
Deux: .skip 100
snT: .skip 100
/* code section */
.text
.global main
main:
ldr r0,iAdrDeux @ create big number = 2
mov r1,#2
bl __gmpz_init_set_ui
ldr r0,iAdrspT @ init big number
bl __gmpz_init
ldr r0,iAdrmpT @ init big number
bl __gmpz_init
mov r5,#3 @ start number
mov r6,#0 @ result counter
1:
ldr r0,iAdrspT @ conversion integer in big number gmp
mov r1,r5
bl __gmpz_set_ui
ldr r0,iAdrspT @ control if exposant is prime !
ldr r0,iAdrspT
mov r1,#25
bl __gmpz_probab_prime_p
cmp r0,#0
beq 5f
2:
//ldr r1,iAdrspT @ example number display
//ldr r0,iAdrszformat
//bl __gmp_printf
/******** Compute (2 pow p) - 1 ******/
ldr r0,iAdrmpT @ compute 2 pow p
ldr r1,iAdrDeux
mov r2,r5
bl __gmpz_pow_ui
ldr r0,iAdrmpT
ldr r1,iAdrmpT
mov r2,#1
bl __gmpz_sub_ui @ then (2 pow p) - 1
ldr r0,iAdrsnT
mov r1,#4
bl __gmpz_init_set_ui @ init big number with 4
/********** Test lucas_lehner *******/
mov r4,#2 @ loop counter
3: @ begin loop
ldr r0,iAdrsnT
ldr r1,iAdrsnT
mov r2,#2
bl __gmpz_pow_ui @ compute square big number
ldr r0,iAdrsnT
ldr r1,iAdrsnT
mov r2,#2
bl __gmpz_sub_ui @ = (sn *sn) - 2
ldr r0,iAdrsnT @ compute remainder -> sn
ldr r1,iAdrsnT @ sn
ldr r2,iAdrmpT @ p
bl __gmpz_tdiv_r
//ldr r1,iAdrsnT @ display number for control
//ldr r0,iAdrszformat
//bl __gmp_printf
add r4,#1 @ increment counter
cmp r4,r5 @ end ?
blt 3b @ no -> loop
@ compare result with zero
ldr r0,iAdrsnT
mov r1,#0
bl __gmpz_cmp_d
cmp r0,#0
bne 5f
/********* is prime display result *********/
mov r0,r5
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call conversion decimal
ldr r0,iAdrszMessResult @ display message
bl affichageMess
add r6,#1 @ increment counter result
cmp r6,#NBRECH
bge 10f
5:
add r5,#2 @ increment number by two
b 1b @ and loop
10:
ldr r0,iAdrDeux @ clear memory big number
bl __gmpz_clear
ldr r0,iAdrsnT
bl __gmpz_clear
ldr r0,iAdrmpT
bl __gmpz_clear
ldr r0,iAdrspT
bl __gmpz_clear
100: @ standard end of the program
mov r0, #0 @ return code
mov r7, #EXIT @ request to exit program
svc 0 @ perform system call
iAdrszMessResult: .int szMessResult
iAdrsMessValeur: .int sMessValeur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrszformat: .int szformat
iAdrspT: .int spT
iAdrmpT: .int mpT
iAdrDeux: .int Deux
iAdrsnT: .int snT
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registers
mov r2,#0 @ counter length */
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call system
pop {r0,r1,r2,r7,lr} @ restaur registers
bx lr @ return
/******************************************************************/
/* Converting a register to a decimal unsigned */
/******************************************************************/
/* r0 contains value and r1 address area */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes */
.equ LGZONECAL, 10
conversion10:
push {r1-r4,lr} @ save registers
mov r3,r1
mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10U @ unsigned r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
cmp r0,#0 @ stop if quotient = 0
subne r2,#1 @ else previous position
bne 1b @ and loop
@ and move digit from left of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4]
add r2,#1
add r4,#1
cmp r2,#LGZONECAL
ble 2b
@ and move spaces in end on area
mov r0,r4 @ result length
mov r1,#' ' @ space
3:
strb r1,[r3,r4] @ store space in area
add r4,#1 @ next position
cmp r4,#LGZONECAL
ble 3b @ loop if r4 <= area size
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
//mov r3,#0xCCCD @ r3 <- magic_number lower raspberry 3
//movt r3,#0xCCCC @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber @ r3 <- magic_number raspberry 1 2
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
iMagicNumber: .int 0xCCCCCCCD
- Output:
Prime : M3 Prime : M5 Prime : M7 Prime : M13 Prime : M17 Prime : M19 Prime : M31 Prime : M61 Prime : M89 Prime : M107 Prime : M127 Prime : M521 Prime : M607 Prime : M1279 Prime : M2203 Prime : M2281 Prime : M3217 Prime : M4253 Prime : M4423 Exception en point flottant
Arturo
mersenne?: function [p][
if p=2 -> return true
mp: dec shl 1 p
s: 4
loop 3..p 'i ->
s: (sub s*s 2) % mp
return s=0
]
print "Mersenne primes:"
mersennes: select 2..32 'x -> and? prime? x mersenne? x
print join.with:", " map mersennes 'm -> ~"M|m|"
- Output:
Mersenne primes: M2, M3, M5, M7, M13, M17, M19, M31
AWK
# syntax: GAWK -f LUCAS-LEHMER_TEST.AWK
# converted from Pascal
BEGIN {
printf("Mersenne primes:")
n = 1
for (exponent=2; exponent<=32; exponent++) {
s = (exponent == 2) ? 0 : 4
n = (n+1)*2-1
for (i=1; i<=exponent-2; i++) {
s = (s*s-2)%n
}
if (s == 0) {
printf(" M%s",exponent)
}
}
printf("\n")
exit(0)
}
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19
BASIC
BASIC256
BASIC256 has no large integer support. Calculations are limited to the range of a integer type.
print "Mersenne Primes :"
for p = 2 to 18
if lucasLehmer(p) then print "M"; p
next p
end
function lucasLehmer (p)
mp = (2 ^ p) - 1
sn = 4
for i = 2 to p-1
sn = (sn ^ 2) - 2
sn = sn - (mp * floor(sn / mp))
next
return sn = 0
end function
BBC BASIC
Using its native arithmetic BBC BASIC can only test up to M23.
*FLOAT 64
PRINT "Mersenne Primes:"
FOR p% = 2 TO 23
IF FNlucas_lehmer(p%) PRINT "M" ; p%
NEXT
END
DEF FNlucas_lehmer(p%)
LOCAL i%, mp, sn
IF p% = 2 THEN = TRUE
IF (p% AND 1) = 0 THEN = FALSE
mp = 2^p% - 1
sn = 4
FOR i% = 3 TO p%
sn = sn^2 - 2
sn -= (mp * INT(sn / mp))
NEXT
= (sn = 0)
- Output:
Mersenne Primes: M2 M3 M5 M7 M13 M17 M19
Craft Basic
let m = 7
let n = 1
for e = 2 to m
if e = 2 then
let s = 0
else
let s = 4
endif
let n = (n + 1) * 2 - 1
for i = 1 to e - 2
let s = (s * s - 2) % n
next i
if s = 0 then
print e, " ",
endif
next e
- Output:
2 3 5 7
BCPL
Uses the 64 bit version
GET "libhdr"
LET M(n) = (1 << n) - 1
LET isMersennePrime(p) =
p < 3 -> p = 2,
VALOF {
LET n = M(p)
LET s = 4
FOR i = 1 TO p-2 DO {
muldiv(s, s, n) // ignore quotient; remainder is in result2
s := result2 - 2
s := s + (n & s < 0)
}
RESULTIS s = 0
}
LET start() = VALOF {
LET primes = #x28208A20A08A28AC // bitmask of primes upto 63
writes("These Mersenne numbers are prime: ")
FOR k = 0 TO 63 DO
IF (primes & 1 << k) ~= 0 & isMersennePrime(k) THEN
writef("M%d ", k)
wrch('*n')
RESULTIS 0
}
- Output:
$ cintsys64 -c mersenne BCPL 64-bit Cintcode System (13 Jan 2020) 0.000> These Mersenne numbers are prime: M2 M3 M5 M7 M13 M17 M19 M31 M61 0.001>
Bracmat
Only exponent
s that are prime are tried. The primality test of these numbers uses a side effect of Bracmat's attempt at
computing a root of a small enough number. ('small enough' meaning that the number must fit in a computer word, normally 32 or 64 bits.)
To do that, Bracmat first creates a list of factors of the number and then takes the root of each factor. For example, to compute 54^2/3
,
Bracmat first creates the expression (2*3^3)^2/3
and then 2^2/3*3^(3*2/3)
, which becomes 2^2/3*9
.
If a number cannot be factorized, (either because it is prime or because it is to great to fit in a computer word) the root expression doesn't change much.
For example, the expression 13^(13^-1)
becomes 13^1/13
, and this matches the pattern 13^%
.
( clk$:?t0:?now
& ( time
= ( print
=
. put
$ ( str
$ ( div$(!arg,1)
","
( div$(mod$(!arg*100,100),1):?arg
& !arg:<10
& 0
|
)
!arg
" "
)
)
)
& -1*!now+(clk$:?now):?SEC
& print$!SEC
& print$(!now+-1*!t0)
& put$"s: "
)
& 3:?exponent
& whl
' ( !exponent:~>12000
& ( !exponent^(!exponent^-1):!exponent^%
& 4:?s
& 2^!exponent+-1:?n
& 0:?i
& whl
' ( 1+!i:?i
& !exponent+-2:~<!i
& mod$(!s^2+-2.!n):?s
)
& ( !s:0
& !time
& out$(str$(M !exponent " is PRIME!"))
|
)
|
)
& 1+!exponent:?exponent
)
& done
);
- Output:
(after 4.5 hours)
0,00 0,00 s: M3 is PRIME! 0,00 0,00 s: M5 is PRIME! 0,00 0,00 s: M7 is PRIME! 0,00 0,00 s: M13 is PRIME! 0,00 0,00 s: M17 is PRIME! 0,00 0,01 s: M19 is PRIME! 0,00 0,01 s: M31 is PRIME! 0,00 0,01 s: M61 is PRIME! 0,01 0,02 s: M89 is PRIME! 0,01 0,03 s: M107 is PRIME! 0,00 0,04 s: M127 is PRIME! 0,50 0,54 s: M521 is PRIME! 0,29 0,84 s: M607 is PRIME! 6,81 7,65 s: M1279 is PRIME! 38,35 46,01 s: M2203 is PRIME! 6,32 52,33 s: M2281 is PRIME! 116,01 168,34 s: M3217 is PRIME! 293,09 461,44 s: M4253 is PRIME! 64,61 526,05 s: M4423 is PRIME! 8863,90 9389,95 s: M9689 is PRIME! 1101,12 10491,08 s: M9941 is PRIME! 5618,45 16109,53 s: M11213 is PRIME!
Burlesque
607rz2en{J4{J.*2.-2{th}c!**-..%}#R2.-E!n!it}f[2+]{2\/**-.}m[p^
- Output:
3 7 31 127 8191 131071 524287 2147483647 2305843009213693951 618970019642690137449562111 162259276829213363391578010288127 170141183460469231731687303715884105727 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151 531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127
C
GMP
This uses some pre-tests to show how we can skip some numbers with relatively inexpensive methods. This also does a simple optimization of the modulus. It takes about 30 seconds to get to M11213. This is substantially faster than many of the other solutions, though certainly not comparable to dedicated programs such as Prime95.
Takes an optional argument to test up to the given value.
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <gmp.h>
int lucas_lehmer(unsigned long p)
{
mpz_t V, mp, t;
unsigned long k, tlim;
int res;
if (p == 2) return 1;
if (!(p&1)) return 0;
mpz_init_set_ui(t, p);
if (!mpz_probab_prime_p(t, 25)) /* if p is composite, 2^p-1 is not prime */
{ mpz_clear(t); return 0; }
if (p < 23) /* trust the PRP test for these values */
{ mpz_clear(t); return (p != 11); }
mpz_init(mp);
mpz_setbit(mp, p);
mpz_sub_ui(mp, mp, 1);
/* If p=3 mod 4 and p,2p+1 both prime, then 2p+1 | 2^p-1. Cheap test. */
if (p > 3 && p % 4 == 3) {
mpz_mul_ui(t, t, 2);
mpz_add_ui(t, t, 1);
if (mpz_probab_prime_p(t,25) && mpz_divisible_p(mp, t))
{ mpz_clear(mp); mpz_clear(t); return 0; }
}
/* Do a little trial division first. Saves quite a bit of time. */
tlim = p/2;
if (tlim > (ULONG_MAX/(2*p)))
tlim = ULONG_MAX/(2*p);
for (k = 1; k < tlim; k++) {
unsigned long q = 2*p*k+1;
/* factor must be 1 or 7 mod 8 and a prime */
if ( (q%8==1 || q%8==7) &&
q % 3 && q % 5 && q % 7 &&
mpz_divisible_ui_p(mp, q) )
{ mpz_clear(mp); mpz_clear(t); return 0; }
}
mpz_init_set_ui(V, 4);
for (k = 3; k <= p; k++) {
mpz_mul(V, V, V);
mpz_sub_ui(V, V, 2);
/* mpz_mod(V, V, mp) but more efficiently done given mod 2^p-1 */
if (mpz_sgn(V) < 0) mpz_add(V, V, mp);
/* while (n > mp) { n = (n >> p) + (n & mp) } if (n==mp) n=0 */
/* but in this case we can have at most one loop plus a carry */
mpz_tdiv_r_2exp(t, V, p);
mpz_tdiv_q_2exp(V, V, p);
mpz_add(V, V, t);
while (mpz_cmp(V, mp) >= 0) mpz_sub(V, V, mp);
}
res = !mpz_sgn(V);
mpz_clear(t); mpz_clear(mp); mpz_clear(V);
return res;
}
int main(int argc, char* argv[]) {
unsigned long i, n = 43112609;
if (argc >= 2) n = strtoul(argv[1], 0, 10);
for (i = 1; i <= n; i++) {
if (lucas_lehmer(i)) {
printf("M%lu ", i);
fflush(stdout);
}
}
printf("\n");
return 0;
}
- Output:
(partial output after 50 minutes)
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M11213 M19937 M21701 M23209 M44497
Small inputs with native types
Compiler options: gcc -std=c99 -lm Lucas-Lehmer_test.c -o Lucas-Lehmer_test
#include <math.h>
#include <stdio.h>
#include <limits.h>
#pragma precision=log10l(ULLONG_MAX)/2
typedef enum { FALSE=0, TRUE=1 } BOOL;
BOOL is_prime( int p ){
if( p == 2 ) return TRUE;
else if( p <= 1 || p % 2 == 0 ) return FALSE;
else {
BOOL prime = TRUE;
const int to = sqrt(p);
int i;
for(i = 3; i <= to; i+=2)
if (!(prime = p % i))break;
return prime;
}
}
BOOL is_mersenne_prime( int p ){
if( p == 2 ) return TRUE;
else {
const long long unsigned m_p = ( 1LLU << p ) - 1;
long long unsigned s = 4;
int i;
for (i = 3; i <= p; i++){
s = (s * s - 2) % m_p;
}
return s == 0;
}
}
int main(int argc, char **argv){
const int upb = log2l(ULLONG_MAX)/2;
int p;
printf(" Mersenne primes:\n");
for( p = 2; p <= upb; p += 1 ){
if( is_prime(p) && is_mersenne_prime(p) ){
printf (" M%u",p);
}
}
printf("\n");
}
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19 M31
C#
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Threading.Tasks;
namespace LucasLehmerTestForRosettaCode
{
public class LucasLehmerTest
{
static BigInteger ZERO = new BigInteger(0);
static BigInteger ONE = new BigInteger(1);
static BigInteger TWO = new BigInteger(2);
static BigInteger FOUR = new BigInteger(4);
private static bool isMersennePrime(int p)
{
if (p % 2 == 0) return (p == 2);
else {
for (int i = 3; i <= (int)Math.Sqrt(p); i += 2)
if (p % i == 0) return false; //not prime
BigInteger m_p = BigInteger.Pow(TWO, p) - ONE;
BigInteger s = FOUR;
for (int i = 3; i <= p; i++)
s = (s * s - TWO) % m_p;
return s == ZERO;
}
}
public static int[] GetMersennePrimeNumbers(int upTo)
{
List<int> response = new List<int>();
Parallel.For(2, upTo + 1, i => {
if (isMersennePrime(i)) response.Add(i);
});
response.Sort();
return response.ToArray();
}
static void Main(string[] args)
{
int[] mersennePrimes = LucasLehmerTest.GetMersennePrimeNumbers(11213);
foreach (int mp in mersennePrimes)
Console.Write("M" + mp+" ");
Console.ReadLine();
}
}
}
- Output:
(Run only to 11213)
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213
Quick Remainder
The mod function, (%
) has a computation cost equivalent to the divide operation. In this case, a combination of ands, shifts and adds can replace the mod function. Another change is creating the list of candidate Mersenne numbers in descending order, the point being to start the more time consuming calculations first. This avoids a long calculation occurring by itself at the end of the Parallel.For
queue. Also added trial division step, translated from the Rust and C versions.
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Threading.Tasks;
public class Program {
static int[] oddPrimes = new int[] { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47 };
static void Main() {
int iExpMax = 11213;
List<int> mn = new List<int>(), res = new List<int>();
DateTime st = DateTime.Now;
for (bool skip = false; iExpMax >= 2; iExpMax--, skip = false) {
for (int i = 2; i * i <= iExpMax; i += i == 2 ? 1 : 2)
if (iExpMax % i == 0) { skip = true; continue; }
if (!skip) mn.Add(iExpMax); }
Parallel.ForEach(mn, e => {
if (e == 2) { res.Add(2); return; }
// trial division
BigInteger m = BigInteger.Pow(2, e) - 1;
for (long k = 1, ee = e << 1, q = ee + 1; k <= 100000 && q < m; k++, q += ee) {
bool cont = false;
foreach (int j in oddPrimes) if (q % j == 0) { cont = true; break; }
if (cont || ((q & 7) != 1 && (q & 7) != 7)) continue;
if (m % q == 0) return; }
// main event
BigInteger s = 4, mask = BigInteger.Pow(2, e) - 1, msk2 = mask + 2;
for (int j = e; j > 2; j--) {
s = ((s *= s) & mask) + (s >> e); s -= s >= mask ? msk2 : 2; }
if (s == 0) res.Add(e);
});
res.Sort(); foreach (int item in res) Console.Write("M{0} ", item);
Console.WriteLine("\n{0}", DateTime.Now - st);
if (System.Diagnostics.Debugger.IsAttached) Console.ReadLine();
}
}
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 00:00:26.8747764
Execution time of this quicker version is less than one-quarter, the former program taking well over 2 minutes to reach M11213, and this version completing in under half a minute. Heh, still 4 times slower than the Rust version...
C++
Straightforward method.
#include <iostream>
#include <gmpxx.h>
static bool is_mersenne_prime(mpz_class p)
{
if( 2 == p ) {
return true;
}
mpz_class s(4);
mpz_class div( (mpz_class(1) << p.get_ui()) - 1 );
for( mpz_class i(3); i <= p; ++i )
{
s = (s * s - mpz_class(2)) % div ;
}
return ( s == mpz_class(0) );
}
int main()
{
mpz_class maxcount(45);
mpz_class found(0);
mpz_class check(0);
for( mpz_nextprime(check.get_mpz_t(), check.get_mpz_t());
found < maxcount;
mpz_nextprime(check.get_mpz_t(), check.get_mpz_t()))
{
//std::cout << "P" << check << " " << std::flush;
if( is_mersenne_prime(check) )
{
++found;
std::cout << "M" << check << " " << std::flush;
}
}
}
- Output:
(Incomplete; It takes a long time.)
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209 M44497
Clojure
(defn prime? [i]
(cond (< i 4) (>= i 2)
(zero? (rem i 2)) false
:else (not-any? #(zero? (rem i %)) (range 3 (inc (Math/sqrt i))))))))
(defn mersenne? [p] (or (= p 2)
(let [mp (dec (bit-shift-left 1 p))]
(loop [n 3 s 4]
(if (> n p)
(zero? s)
(recur (inc n) (rem (- (* s s) 2) mp)))))))
(filter mersenne? (filter prime? (iterate inc 1)))
- Output:
Infinite list of Mersenne primes: (2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253...
CoffeeScript
Coffee Script is really hampered by its lack of full syntactic support for JavaScript generators. The loop to collect Mersenne numbers must be done in imperative style, rather than a more functional style, when using the infinite lazy prime generator.
sorenson = require('sieve').primes # Sorenson's extensible sieve from task: Extensible Prime Number Generator
# Test if 2^n-1 is a Mersenne prime.
# assumes that the argument p is prime.
#
isMersennePrime = (p) ->
if p is 2 then yes
else
n = (1n << BigInt p) - 1n
s = 4n
s = (s*s - 2n) % n for _ in [1..p-2]
s is 0n
primes = sorenson()
mersennes = []
while (p = primes.next().value) < 3000
if isMersennePrime(p)
mersennes.push p
console.log "Some Mersenne primes: #{"M" + String p for p in mersennes}"
- Output:
Some Mersenne primes: M2,M3,M5,M7,M13,M17,M19,M31,M61,M89,M107,M127,M521,M607,M1279,M2203,M2281
Common Lisp
(defun or-f (&optional a b) (or a b));necessary for reduce, as 'or' is implemented as a macro
(defun prime-p (n)
(cond ((< n 4) (>= n 2))
((zerop (rem n 2)) nil)
(t (not (reduce #'or-f (mapcar (lambda (x) (zerop (rem n x))) (loop for i from 3 to (sqrt n) collect i)))))))
(defun mersenne-p (p)
(or (= p 2)
(let ((mp (- 1 (expt 2 p))))
(do ((n 3) (s 4))
((> n p) (zerop s))
(incf n)
(setf s (rem (- (* s s) 2) mp))))))
(princ (remove-if-not #'mersenne-p (remove-if-not #'prime-p (loop for i to 5000 collect i))))
- Output:
(2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423)
Crystal
require "big"
def is_prime(n) # P3 Prime Generator primality test
return n | 1 == 3 if n < 5 # n: 0,1,4|false, 2,3|true
return false if n.gcd(6) != 1 # for n a P3 prime candidate (pc)
pc1, pc2 = -1, 1 # use P3's prime candidates sequence
until (pc1 += 6) > Math.sqrt(n).to_i # pcs are only 1/3 of all integers
return false if n % pc1 == 0 || n % (pc2 += 6) == 0 # if n is composite
end
true
end
def is_mersenne_prime(p)
return true if p == 2
m_p = (1.to_big_i << p) - 1
s = 4
(p - 2).times { s = (s**2 - 2) % m_p }
s == 0
end
precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 #
long_bits_width = precision / Math.log(2) * Math.log(10)
upb_prime = (long_bits_width - 1).to_i // 2 # no unsigned #
upb_count = 45 # find 45 mprimes if int was given enough bits #
puts "Finding Mersenne primes in M[2..%d]:" % upb_prime
count = 0
(2..upb_prime).each do |p|
if is_prime(p) && is_mersenne_prime(p)
print "M%d " % p
count += 1
end
break if count >= upb_count
end
puts
- Output:
Finding Mersenne primes in M[2..33218]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209
D
import std.stdio, std.math, std.bigint;
bool isPrime(in uint p) pure nothrow @safe @nogc {
if (p < 2 || p % 2 == 0)
return p == 2;
foreach (immutable i; 3 .. cast(uint)real(p).sqrt + 1)
if (p % i == 0)
return false;
return true;
}
bool isMersennePrime(in uint p) pure nothrow /*@safe*/ {
if (!p.isPrime)
return false;
if (p == 2)
return true;
immutable mp = (1.BigInt << p) - 1;
auto s = 4.BigInt;
foreach (immutable _; 3 .. p + 1)
s = (s ^^ 2 - 2) % mp;
return s == 0;
}
void main() {
foreach (immutable p; 2 .. 2_300)
if (p.isMersennePrime) {
write('M', p, ' ');
stdout.flush;
}
}
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281
With p up to 10_000 it prints:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9941
Delphi
function IsMersennePrime(P: int64): boolean;
{Test for Mersenne Prime - P cannot be bigger than 63}
{Because (1 shl 64) would be bigger than in64}
var S,MP: int64;
var I: integer;
begin
if P= 2 then Result:=true
else
begin
MP:=(1 shl P) - 1;
S:=4;
for I:=3 to P do
begin
S:=(S * S - 2) mod MP;
end;
Result:=S = 0;
end;
end;
procedure ShowMersennePrime(Memo: TMemo);
var Sieve: TPrimeSieve;
var I: integer;
begin
{Create Sieve}
Sieve:=TPrimeSieve.Create;
{Test cannot handle values bigger than 64}
Sieve.Intialize(64);
for I:=0 to Sieve.PrimeCount-1 do
if IsMersennePrime(Sieve.Primes[I]) then
begin
Memo.Lines.Add(IntToStr(Sieve.Primes[I]));
end;
Sieve.Free;
end;
- Output:
2 3 5 7 13 17 19 31 Elapsed Time: 10.167 ms.
DWScript
Using Integer type, which is 64bit, limits the search to M31.
function IsMersennePrime(p : Integer) : Boolean;
var
i, s, m_p : Integer;
begin
if p=2 then
Result:=True
else begin
m_p := (1 shl p)-1;
s := 4;
for i:=3 to p do
s:=(s*s-2) mod m_p;
Result:=(s=0);
end;
end;
const upperBound = Round(Log2(High(Integer))/2);
PrintLn('Finding Mersenne primes in M[2..' + IntToStr(upperBound) + ']: ');
Print('M2');
var p : Integer;
for p:=3 to upperBound step 2 do begin
if IsMersennePrime(p) then
Print(' M'+IntToStr(p));
end;
PrintLn('');
- Output:
M2 M3 M5 M7 M13 M17 M19 M31
EasyLang
write "Mersenne Primes: "
func lulehm p .
mp = bitshift 1 p - 1
sn = 4
for i = 2 to p - 1
sn = sn * sn - 2
sn = sn - (mp * (sn div mp))
.
return if sn = 0
.
for p = 2 to 23
if lulehm p = 1
write "M" & p & " "
.
.
- Output:
Mersenne Primes: M3 M5 M7 M13 M17 M19
EchoLisp
(require 'bigint)
(define (mersenne-prime? odd-prime: p)
(define mp (1- (expt 2 p)))
(define s #4)
(for [(i (in-range 3 (1+ p)))]
(set! s (% (- (* s s) 2) mp)))
(when (zero? s) (printf "M%d" p)))
;; run it in the background
(require 'tasks)
(define LP (primes 10000)) ; list of candidate primes
(define (mp-task LP)
(mersenne-prime? (first LP))
(rest LP)) ;; return next state
(task-run (make-task mp-task LP))
→ M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281
Elixir
defmodule LucasLehmer do
use Bitwise
def test do
for p <- 2..1300, p==2 or s(bsl(1,p)-1, p-1)==0, do: IO.write "M#{p} "
end
defp s(mp, 1), do: rem(4, mp)
defp s(mp, n) do
x = s(mp, n-1)
rem(x*x-2, mp)
end
end
LucasLehmer.test
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279
Erlang
-module(mp).
-export([main/0]).
main() -> [ io:format("M~p ", [P]) || P <- lists:seq(2,700), (P == 2) orelse (s((1 bsl P) - 1, P-1) == 0) ].
s(MP,1) -> 4 rem MP;
s(MP,N) -> X=s(MP,N-1), (X*X - 2) rem MP.
In 3 seconds will print
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607
Testing larger numbers (i.e. 5000) is possible but will take few minutes.
ERRE
With native arithmetic up to 23: for bigger numbers you must use MULPREC program.
PROGRAM LL_TEST
!$DOUBLE
PROCEDURE LUCAS_LEHMER(P%->RES)
LOCAL I%,MP,SN
IF P%=2 THEN RES%=TRUE EXIT PROCEDURE END IF
IF (P% AND 1)=0 THEN RES%=FALSE EXIT PROCEDURE END IF
MP=2^P%-1
SN=4
FOR I%=3 TO P% DO
SN=SN^2-2
SN-=(MP*INT(SN/MP))
END FOR
RES%=(SN=0)
END PROCEDURE
BEGIN
PRINT("Mersenne Primes:")
FOR P%=2 TO 23 DO
LUCAS_LEHMER(P%->RES%)
IF RES% THEN PRINT("M";P%) END IF
END FOR
END PROGRAM
- Output:
Mersenne Primes: M 2 M 3 M 5 M 7 M 13 M 17 M 19
F#
Simple arbitrary-precision version:
let rec s mp n =
if n = 1 then 4I % mp else ((s mp (n - 1)) ** 2 - 2I) % mp
[ for p in 2..47 do
if p = 2 || s ((1I <<< p) - 1I) (p - 1) = 0I then
yield p ]
Tail-recursive version:
let IsMersennePrime exponent =
if exponent <= 1 then failwith "Exponent must be >= 2"
let prime = 2I ** exponent - 1I;
let rec LucasLehmer i acc =
match i with
| x when x = exponent - 2 -> acc
| x -> LucasLehmer (x + 1) ((acc*acc - 2I) % prime)
LucasLehmer 0 4I = 0I
Version using library folding function (way shorter and faster than the above):
let IsMersennePrime exponent =
if exponent <= 1 then failwith "Exponent must be >= 2"
let prime = 2I ** exponent - 1I;
let LucasLehmer =
[| 1 .. exponent-2 |] |> Array.fold (fun acc _ -> (acc*acc - 2I) % prime) 4I
LucasLehmer = 0I
Factor
USING: io math.primes.lucas-lehmer math.ranges prettyprint
sequences ;
47 [1,b] [ lucas-lehmer ] filter
"Mersenne primes:" print
[ "M" write pprint bl ] each nl
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19 M31
Forth
: lucas-lehmer
1+ 2 do
4 i 2 <> * abs swap 1+ dup + 1- swap
i 1- 1 ?do dup * 2 - over mod loop 0= if ." M" i . then
loop cr
;
1 15 lucas-lehmer
Alternate version to handle 64 and 128 bit integers.
Forth supports modular multiplication without overflow by having mixed mode operations that work on 128 bit intermediate results. It's also possible to do the Lucas-Lehmer test using double-precision (128 bit) integers, though support for that is more limited in the Forth language, so it requires writing more support code. This version contains the code for both 64 bit (mixed mode) and 128 bit (double precision mode)
18 constant π-64 \ count of primes < 64
31 constant π-128 \ count of primes < 128
create primes
2 c, 3 c, 5 c, 7 c, 11 c, 13 c, 17 c, 19 c, 23 c, 29 c,
31 c, 37 c, 41 c, 43 c, 47 c, 53 c, 59 c, 61 c, 67 c, 71 c,
73 c, 79 c, 83 c, 89 c, 97 c, 101 c, 103 c, 107 c, 109 c, 113 c,
127 c,
\ Lucas-Lehmer single precision test for 64 bit integers.
\
: *mod >r um* r> ud/mod 2drop ;
: 3rd s" 2 pick" evaluate ; immediate
: 2^ 1 swap lshift ;
: lucas-lehmer? ( n -- n )
dup 3 <
if 2 =
else
dup 2^ 1- 4
rot 2 do dup 3rd *mod 2 - loop 0= nip
then ;
: .mersenne64 ( -- )
primes π-64 bounds do
i c@ lucas-lehmer?
if 'M emit i c@ . then
loop ;
\ Lucas-Lehmer double precision test for 128 bit integers.
\
: 4dup 2over 2over ;
: 2-3rd 5 pick 5 pick ;
: d2^ ( n -- d )
dup 64 <
if 2^ 0
else 0 swap 64 - 2^
then ;
: d+mod ( d1 d2 d3 -- d ) \ d1 + d2 (mod d3); d1, d2 < d3
2-3rd 2over 2swap d- \ d1 d2 d3 -- d1 d2 d3 d3-d1
2-3rd d> \ if d2 < d3-d1 then don't subtract the modulus.
if 2drop 0.
then d- d+ ;
: d-even? ( d -- f )
drop 1 and 0= ;
: d*mod ( d1 d2 d3 -- d )
2>r 0. \ result
begin 2over d0> while
2over d-even? invert if 2-3rd 2r@ d+mod then
2swap d2/ 2swap
2rot 2dup 2r@ d+mod 2rot 2rot
repeat 2rdrop 2nip 2nip ;
: d-lucas-lehmer? ( n -- n )
dup 3 <
if 2 =
else
dup d2^ 1. d- 4.
4 roll 2 do 2dup 2-3rd d*mod 2. d- loop d0= nip nip
then ;
: .mersenne128 ( -- )
primes π-128 bounds do
i c@ d-lucas-lehmer?
if 'M emit i c@ . then
loop ;
- Output:
$ gforth ./mersenne.fs Gforth 0.7.3, Copyright (C) 1995-2008 Free Software Foundation, Inc. Gforth comes with ABSOLUTELY NO WARRANTY; for details type `license' Type `bye' to exit .mersenne64 M2 M3 M5 M7 M13 M17 M19 M31 M61 ok .mersenne128 M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 ok
Fortran
Only Mersenne number with prime exponent can be themselves prime but for the small numbers used in this example it was not worth the effort to include this check. As the size of the exponent increases this becomes more important.
PROGRAM LUCAS_LEHMER
IMPLICIT NONE
INTEGER, PARAMETER :: i64 = SELECTED_INT_KIND(18)
INTEGER(i64) :: s, n
INTEGER :: i, exponent
DO exponent = 2, 31
IF (exponent == 2) THEN
s = 0
ELSE
s = 4
END IF
n = 2_i64**exponent - 1
DO i = 1, exponent-2
s = MOD(s*s - 2, n)
END DO
IF (s==0) WRITE(*,"(A,I0,A)") "M", exponent, " is PRIME"
END DO
END PROGRAM LUCAS_LEHMER
128 Bit Version
This version can find all Mersenne Primes up to M127. Its based on the Zig code but written in Fortran 77 style (fixed format, unstructured loops.) Works with GNU Fortran which has 128 bit integer support.
PROGRAM Mersenne Primes
IMPLICIT INTEGER (a-z)
LOGICAL is mersenne prime
PARAMETER (sz primes = 31)
INTEGER*1 primes(sz primes)
DATA primes
& /2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
& 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
& 73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
& 127/
PRINT *, 'These Mersenne numbers are prime:'
DO 10 i = 1, sz primes
p = primes(i)
10 IF (is mersenne prime(p))
& WRITE (*, '(I5)', ADVANCE = 'NO'), p
PRINT *
END
FUNCTION is mersenne prime(p)
IMPLICIT NONE
LOGICAL is mersenne prime
INTEGER*4 p, i
INTEGER*16 n, s, modmul
IF (p .LT. 3) THEN
is mersenne prime = p .EQ. 2
ELSE
n = 2_16**p - 1
s = 4
DO 10 i = 1, p - 2
s = modmul(s, s, n) - 2
10 IF (s .LT. 0) s = s + n
is mersenne prime = s .EQ. 0
END IF
END
FUNCTION modmul(a0, b0, m)
IMPLICIT INTEGER*16 (a-z)
modmul = 0
a = MODULO(a0, m)
b = MODULO(b0, m)
10 IF (b .EQ. 0) RETURN
IF (MOD(b, 2) .EQ. 1) THEN
IF (a .LT. m - modmul) THEN
modmul = modmul + a
ELSE
modmul = modmul - m + a
END IF
END IF
b = b / 2
IF (a .LT. m - a) THEN
a = a * 2
ELSE
a = a - m + a
END IF
GO TO 10
END
- Output:
These Mersenne numbers are prime: 2 3 5 7 13 17 19 31 61 89 107 127
FreeBASIC
Native types for Mersenne primes <= M63
' version 18-09-2015
' compile with: fbc -s console
#Ifndef TRUE ' define true and false for older freebasic versions
#Define FALSE 0
#Define TRUE Not FALSE
#EndIf
Function mul_mod(a As ULongInt, b As ULongInt, modulus As ULongInt) As ULongInt
' returns a * b mod modulus
Dim As ULongInt x , y = a ' a mod modulus, but a is already smaller then modulus
While b > 0
If (b And 1) = 1 Then
x = (x + y) Mod modulus
End If
y = (y Shl 1) Mod modulus
b = b Shr 1
Wend
Return x
End Function
Function LLT(p As UInteger) As Integer
Dim As ULongInt s = 4, m = 1
m = m Shl p : m = m - 1 ' m = 2 ^ p - 1
For i As Integer = 2 To p - 1
s = mul_mod(s, s, m) - 2
Next
If s = 0 Then Return TRUE Else Return FALSE
End Function
' ------=< MAIN >=------
Dim As UInteger p
Print
' M2 can not be tested, we start with 3
for p = 3 To 63
If LLT(p) = TRUE Then Print " M";Str(p);
Next
Print
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
M3 M5 M7 M13 M17 M19 M31 M61
Uses the trick from the C entry to avoid the slow Mod
' version 18-09-2015
' compile with: fbc -s console
#Include Once "gmp.bi"
#Macro init_big_int (a)
Dim As Mpz_ptr a = Allocate( Len(__mpz_struct))
Mpz_init(a)
#EndMacro
' ------=< MAIN >=------
Const As UInteger max = 12000 ' 230 sec., 10000 about 125 sec.
Dim As UInteger p, x
Dim As Byte sieve(max)
Dim As String buffer = Space(Len(Str(max))+1)
init_big_int(m)
init_big_int(s)
init_big_int(r)
' sieve to find the primes
' remove even numbers except 2
For p = 4 To Sqr(max) Step 2
sieve(p) = 1
Next
For p = 3 To Sqr(max) Step 2
For x = p * p To max Step p * 2
sieve(x) = 1
Next
Next
' exception: the test will not work for p = 2
For p = 3 To max Step 2 ' odd numbers only
If sieve(p) = 1 Then Continue For
Mpz_set_ui(s, 4) ' s(0) = 4
Mpz_set_ui(m, 1) ' set m to 1
Mpz_mul_2exp(m, m, p) ' m = m shl p = 2 ^ p
Mpz_sub_ui(m, m, 1) ' m = m - 1 = 2 ^ p - 1
For x = 2 To p - 1
Mpz_mul(s, s, s) ' s = s * s
Mpz_sub_ui(s, s, 2) ' s = s - 2
' Mpz_fdiv_r(s, s, m) ' s = s mod m
If Mpz_sgn(s) < 0 Then
Mpz_add(s, s ,m)
Else
Mpz_tdiv_r_2exp(r, s, p)
Mpz_tdiv_q_2exp(s, s, p)
Mpz_add(s, s, r)
End If
If (Mpz_cmp(s, m) >= 0) Then Mpz_sub(s, s, m)
Next
'If Mpz_cmp_ui(s, 0) = 0 Then
' LSet buffer = Str(p)
' Print "M"; buffer; " is prime"
'End If
If Mpz_cmp_ui(s, 0) = 0 Then
Print "M";Str(p),
End If
Next
Print
Mpz_clear (m) ' cleanup
DeAllocate(m)
Mpz_clear (s)
DeAllocate(s)
Mpz_clear (r)
DeAllocate(r)
' empty keyboard buffer
While InKey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213
Frink
Frink's isPrime
function automatically detects numbers of the form 2n-1 and performs a Lucas-Lehmer test on them, including testing if n is prime, which is sufficient to prove primality for this form.
for n = primes[]
if isPrime[2^n-1]
println[n]
FunL
def mersenne( p ) =
if p == 2 then return true
var s = 4
var M = 2^p - 1
repeat p - 2
s = (s*s - 2) mod M
s == 0
import integers.primes
for p <- primes().filter( mersenne ).take( 20 )
println( 'M' + p )
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423
GAP
LucasLehmer := function(n)
local i, m, s;
if n = 2 then
return true;
elif not IsPrime(n) then
return false;
else
m := 2^n - 1;
s := 4;
for i in [3 .. n] do
s := RemInt(s*s, m) - 2;
od;
return s = 0;
fi;
end;
Filtered([1 .. 2000], LucasLehmer);
[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279]
Go
Processing the first list indicates that the test works. Processing the second shows it working on some larger numbers.
package main
import (
"fmt"
"math/big"
)
var primes = []uint{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127}
var mersennes = []uint{521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
20996011, 24036583}
func main() {
llTest(primes)
fmt.Println()
llTest(mersennes)
}
func llTest(ps []uint) {
var s, m big.Int
one := big.NewInt(1)
two := big.NewInt(2)
for _, p := range ps {
m.Sub(m.Lsh(one, p), one)
s.SetInt64(4)
for i := uint(2); i < p; i++ {
s.Mod(s.Sub(s.Mul(&s, &s), two), &m)
}
if s.BitLen() == 0 {
fmt.Printf("M%d ", p)
}
}
}
- Output:
M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937...
Haskell
module Main
where
main = printMersennes $ take 45 $ filter lucasLehmer $ sieve [2..]
s mp 1 = 4 `mod` mp
s mp n = ((s mp $ n-1)^2-2) `mod` mp
lucasLehmer 2 = True
lucasLehmer p = s (2^p-1) (p-1) == 0
printMersennes = mapM_ (\x -> putStrLn $ "M" ++ show x)
It is pointed out on the Sieve of Eratosthenes page that the following "sieve" is inefficient. Nonetheless it takes very little time compared to the Lucas-Lehmer test itself.
sieve (p:xs) = p : sieve [x | x <- xs, x `mod` p > 0]
It takes about 30 minutes to get up to:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213
HicEst
s = 0
DO exponent = 2, 31
IF(exponent > 2) s = 4
n = 2^exponent - 1
DO i = 1, exponent-2
s = MOD(s*s - 2, n)
ENDDO
IF(s == 0) WRITE(Messagebox) 'M', exponent, ' is prime;', n
ENDDO
END
J
See Primality Tests essay on the J wiki.
Java
We use arbitrary-precision integers in order to be able to test any arbitrary prime.
import java.math.BigInteger;
public class Mersenne
{
public static boolean isPrime(int p) {
if (p == 2)
return true;
else if (p <= 1 || p % 2 == 0)
return false;
else {
int to = (int)Math.sqrt(p);
for (int i = 3; i <= to; i += 2)
if (p % i == 0)
return false;
return true;
}
}
public static boolean isMersennePrime(int p) {
if (p == 2)
return true;
else {
BigInteger m_p = BigInteger.ONE.shiftLeft(p).subtract(BigInteger.ONE);
BigInteger s = BigInteger.valueOf(4);
for (int i = 3; i <= p; i++)
s = s.multiply(s).subtract(BigInteger.valueOf(2)).mod(m_p);
return s.equals(BigInteger.ZERO);
}
}
// an arbitrary upper bound can be given as an argument
public static void main(String[] args) {
int upb;
if (args.length == 0)
upb = 500;
else
upb = Integer.parseInt(args[0]);
System.out.print(" Finding Mersenne primes in M[2.." + upb + "]:\nM2 ");
for (int p = 3; p <= upb; p += 2)
if (isPrime(p) && isMersennePrime(p))
System.out.print(" M" + p);
System.out.println();
}
}
- Output:
(after about eight hours)
Finding Mersenne primes in M[2..2147483647]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213
JavaScript
In JavaScript we using BigInt ( numbers with 'n' suffix ) - so we can use really big numbers
////////// In JavaScript we don't have sqrt for BigInt - so here is implementation
function newtonIteration(n, x0) {
const x1 = ((n / x0) + x0) >> 1n;
if (x0 === x1 || x0 === (x1 - 1n)) {
return x0;
}
return newtonIteration(n, x1);
}
function sqrt(value) {
if (value < 0n) {
throw 'square root of negative numbers is not supported'
}
if (value < 2n) {
return value;
}
return newtonIteration(value, 1n);
}
////////// End of sqrt implementation
function isPrime(p) {
if (p == 2n) {
return true;
} else if (p <= 1n || p % 2n === 0n) {
return false;
} else {
var to = sqrt(p);
for (var i = 3n; i <= to; i += 2n)
if (p % i == 0n) {
return false;
}
return true;
}
}
function isMersennePrime(p) {
if (p == 2n) {
return true;
} else {
var m_p = (1n << p) - 1n;
var s = 4n;
for (var i = 3n; i <= p; i++) {
s = (s * s - 2n) % m_p;
}
return s === 0n;
}
}
var upb = 5000;
var tm = Date.now();
console.log(`Finding Mersenne primes in M[2..${upb}]:`);
console.log('M2');
for (var p = 3n; p <= upb; p += 2n){
if (isPrime(p) && isMersennePrime(p)) {
console.log("M" + p);
}
}
console.log(`... Took: ${Date.now()-tm} ms`);
- Output:
Finding Mersenne primes in M[2..5000]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 ... Took: 107748 ms
jq
Works with jq (*)
Works with gojq, the Go implementation of jq
(*) jq's integer arithmetic is not sufficiently precise to get beyond M19.
The output shown is for gojq until memory is just about exhausted on a machine with 16GB of RAM.
Output includes the length of the decimal representation of the Mersenne prime.
# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);
def is_prime:
. as $n
| if ($n < 2) then false
elif ($n % 2 == 0) then $n == 2
elif ($n % 3 == 0) then $n == 3
elif ($n % 5 == 0) then $n == 5
elif ($n % 7 == 0) then $n == 7
elif ($n % 11 == 0) then $n == 11
elif ($n % 13 == 0) then $n == 13
elif ($n % 17 == 0) then $n == 17
elif ($n % 19 == 0) then $n == 19
else {i:23}
| until( (.i * .i) > $n or ($n % .i == 0); .i += 2)
| .i * .i > $n
end;
# using the Lucac-Lehmer test for p>2, emit a stream of the form
# Mp:l where p is a Mersenne_prime and l is (p|tostring|length).
# 2^1 - 1 = 2 so we begin with M2:1.
def mersenne_primes:
"M2:1",
(range(3;infinite;2)
| . as $i
| select(is_prime)
| . as $p
| ((2 | power($p)) - 1) as $mp
| select(0 == (reduce range(3; $p + 1) as $_ (4; (power(2) -2) % $mp) ) )
| "M\($i):\($mp|tostring|length)" );
mersenne_primes
- Output:
M2:1 M3:1 M5:2 M7:3 M13:4 M17:6 M19:6 M31:10 M61:19 M89:27 M107:33 M127:39 M521:157 M607:183 M1279:386 M2203:664 M2281:687 M3217:969 M4253:1281 M4423:1332 M9689:2917 M9941:2993 ...
Julia
using Primes
function getmersenneprimes(n)
t1 = time()
count = 0
i = 2
while(n > count)
if(isprime(i) && ismersenneprime(2^BigInt(i) - 1))
println("M$i, cumulative time elapsed: $(time() - t1) seconds")
count += 1
end
i += 1
end
end
getmersenneprimes(50)
- Output:
M2, cumulative time elapsed: 0.019999980926513672 seconds M3, cumulative time elapsed: 0.02200007438659668 seconds M5, cumulative time elapsed: 0.02200007438659668 seconds M7, cumulative time elapsed: 0.02200007438659668 seconds M13, cumulative time elapsed: 0.02200007438659668 seconds M17, cumulative time elapsed: 0.02200007438659668 seconds M19, cumulative time elapsed: 0.02200007438659668 seconds M31, cumulative time elapsed: 0.02200007438659668 seconds M61, cumulative time elapsed: 0.023000001907348633 seconds M89, cumulative time elapsed: 0.024000167846679688 seconds M107, cumulative time elapsed: 0.02500009536743164 seconds M127, cumulative time elapsed: 0.026000022888183594 seconds M521, cumulative time elapsed: 0.12400007247924805 seconds M607, cumulative time elapsed: 0.14300012588500977 seconds M1279, cumulative time elapsed: 0.6940000057220459 seconds M2203, cumulative time elapsed: 2.5870001316070557 seconds M2281, cumulative time elapsed: 2.88700008392334 seconds M3217, cumulative time elapsed: 8.276000022888184 seconds M4253, cumulative time elapsed: 20.874000072479248 seconds M4423, cumulative time elapsed: 23.56000018119812 seconds M9689, cumulative time elapsed: 338.970999956131 seconds M9941, cumulative time elapsed: 373.2020001411438 seconds M11213, cumulative time elapsed: 557.3210000991821 seconds M19937, cumulative time elapsed: 3963.986000061035 seconds M21701, cumulative time elapsed: 5330.933000087738 seconds M23209, cumulative time elapsed: 6783.236999988556 seconds M44497, cumulative time elapsed: 57961.360000133514 seconds
Kotlin
In view of the Java result, I've set the program to stop at M4423 so it will run in a reasonable time (about 85 seconds) on a typical laptop:
// version 1.0.6
import java.math.BigInteger
const val MAX = 19
val bigTwo = BigInteger.valueOf(2L)
val bigFour = bigTwo * bigTwo
fun isPrime(n: Int): Boolean {
if (n < 2) return false
if (n % 2 == 0) return n == 2
if (n % 3 == 0) return n == 3
var d : Int = 5
while (d * d <= n) {
if (n % d == 0) return false
d += 2
if (n % d == 0) return false
d += 4
}
return true
}
fun main(args: Array<String>) {
var count = 0
var p = 3 // first odd prime
var s: BigInteger
var m: BigInteger
while (true) {
m = bigTwo.shiftLeft(p - 1) - BigInteger.ONE
s = bigFour
for (i in 1 .. p - 2) s = (s * s - bigTwo) % m
if (s == BigInteger.ZERO) {
count +=1
print("M$p ")
if (count == MAX) {
println()
break
}
}
// obtain next odd prime
while(true) {
p += 2
if (isPrime(p)) break
}
}
}
- Output:
M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423
langur
It is theoretically possible to test to the 47th Mersenne prime, as stated in the task description, but it could take a while. As for the limit, it would be extremely high.
val isPrime = fn(i) {
i == 2 or i > 2 and
not any(fn x:i div x, pseries(2 .. i ^/ 2))
}
val isMersennePrime = fn(p) {
if p == 2: return true
if not isPrime(p): return false
val mp = 2 ^ p - 1
for[s=4] of 3 .. p {
s = (s ^ 2 - 2) rem mp
} == 0
}
writeln join(" ", map(fn x:"M{{x}}", filter(isMersennePrime, series(2300))))
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281
Mathematica /Wolfram Language
This version is very speedy and is bounded.
Select[Table[M = 2^p - 1;
For[i = 1; s = 4, i <= p - 2, i++, s = Mod[s^2 - 2, M]];
If[s == 0, "M" <> ToString@p, p], {p,
Prime /@ Range[300]}], StringQ]
=> {M3, M5, M7, M13, M17, M19, M31, M61, M89, M107, M127, M521, M607, M1279}
This version is unbounded (and timed):
t = SessionTime[];
For[p = 2, True, p = NextPrime[p], M = 2^p - 1;
For[i = 1; s = 4, i <= p - 2, i++, s = Mod[s^2 - 2, M]];
If[s == 0, Print["M" <> ToString@p]]]
(SessionTime[] - t) {Seconds, Minutes/60, Hours/3600, Days/86400}
I'll see what this gets.
MATLAB
MATLAB suffers from a lack of an arbitrary precision math (bignums) library. It also doesn't have great support for 64-bit integer arithmetic...or at least MATLAB 2007 doesn't. So, the best precision we have is doubles; therefore, this script can only find up to M19 and no greater.
function [mNumber,mersennesPrime] = mersennePrimes()
function isPrime = lucasLehmerTest(thePrime)
llResidue = 4;
mersennesPrime = (2^thePrime)-1;
for i = ( 1:thePrime-2 )
llResidue = mod( ((llResidue^2) - 2),mersennesPrime );
end
isPrime = (llResidue == 0);
end
%Because IEEE764 Double is the highest precision number we can
%represent in MATLAB, the highest Mersenne Number we can test is 2^52.
%In addition, because we have this cap, we can only test up to the
%number 30 for Mersenne Primeness. When we input 31 into the
%Lucas-Lehmer test, during the computation of the residue, the
%algorithm multiplies two numbers together the result of which is
%greater than 2^53. Because we require every digit to be significant,
%this leads to an error. The Lucas-Lehmer test should say that M31 is a
%Mersenne Prime, but because of the rounding error in calculating the
%residues caused by floating-point arithmetic, it does not. So M30 is
%the largest number we test.
mNumber = (3:30);
[isPrime] = arrayfun(@lucasLehmerTest,mNumber);
mNumber = [2 mNumber(isPrime)];
mersennesPrime = (2.^mNumber) - 1;
end
- Output:
[mNumber,mersennesPrime] = mersennePrimes
mNumber =
2 3 5 7 13 17 19
mersennesPrime =
3 7 31 127 8191 131071 524287
Maxima
lucas_lehmer(p) := block([s, n, i],
if not primep(p) then false elseif p = 2 then true else
(s: 4,
n: 2^p - 1,
for i: 2 thru p - 1 do s: mod(s*s - 2, n),
is(s = 0))
)$
sublist(makelist(i, i, 1, 200), lucas_lehmer);
/* [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127] */
Modula-3
Modula-3 uses L as the literal for LONGINT.
MODULE LucasLehmer EXPORTS Main;
IMPORT IO, Fmt, Long;
PROCEDURE Mersenne(p: CARDINAL): BOOLEAN =
VAR
s := 4L;
m := Long.Shift(1L, p) - 1L; (* 2^p - 1 *)
BEGIN
IF p = 2 THEN
RETURN TRUE;
ELSE
FOR i := 3 TO p DO
s := (s * s - 2L) MOD m;
END;
RETURN s = 0L;
END;
END Mersenne;
BEGIN
FOR i := 2 TO 63 DO
IF Mersenne(i) THEN
IO.Put("M" & Fmt.Int(i) & " ");
END;
END;
IO.Put("\n");
END LucasLehmer.
- Output:
M2 M3 M5 M7 M13 M17 M19 M31
Nim
import math
proc isPrime(a: int): bool =
if a == 2: return true
if a < 2 or a mod 2 == 0: return false
for i in countup(3, int sqrt(float a), 2):
if a mod i == 0:
return false
return true
proc isMersennePrime(p: int): bool =
if p == 2: return true
let mp = (1'i64 shl p) - 1
var s = 4'i64
for i in 3 .. p:
s = (s * s - 2) mod mp
result = s == 0
let upb = int((log2 float int64.high) / 2)
echo " Mersenne primes:"
for p in 2 .. upb:
if isPrime(p) and isMersennePrime(p):
stdout.write " M",p
echo ""
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19 M31
Oz
Oz's multiple precision number system use GMP core.
%% compile : ozc -x <file.oz>
functor
import
Application
System
define
fun {Arg Idx Default}
Cmd = {Application.getArgs plain}
Len = {Length Cmd}
in
if Len < Idx then
Default
else
{StringToInt {Nth Cmd Idx}}
end
end
fun {LLtest N}
Mp = {Pow 2 N} - 1
fun {S K} X T
in
if K == 1 then 4
else
T = {S K-1}
X = T * T - 2
X mod Mp
end
end
in
if N == 2 then
true
else
{S N-1} == 0
end
end
proc {FindLL X}
fun {Sieve Ls}
case Ls of nil then nil
[] X|Xs then
fun {DIV M} M mod X \= 0 end
in
X|{Sieve {Filter Xs DIV}}
end
end
in
if {IsList X} then
case X of nil then skip
[] M|Ms then
{System.printInfo "M"#M#" "}
{FindLL Ms}
end
else
{FindLL {Filter {Sieve 2|{List.number 3 X 2}} LLtest}}
end
end
Num = {Arg 1 607}
{FindLL Num}
{Application.exit 0}
end
PARI/GP
Standard version
LL(p)={
my(m=Mod(4,1<<p-1));
for(i=3,p,m=m^2-2);
m==0
};
search()={
print("2^2-1");
forprime(p=3,43112609,
if(LL(p), print("2^"p"-1"))
)
};
Version with trial division and fast modular reduction
ll.gp
/* ll(p): input odd prime 'p'. */
/* returns '1' if 2^p-1 is a Mersenne prime. */
ll(p) = {
/* trial division up to a reasonable depth (time ratio tdiv/llt approx. 0.2) */
my(l=log(p), ld=log(l));
forprimestep(q = 1, sqr(ld)^(l/log(2))\4, p+p,
if(Mod(2,q)^p == 1, return)
);
/* Lucas-Lehmer test with fast modular reduction. */
my(s=4, m=2^p-1, n=m+2);
for(i = 3, p,
s = sqr(s);
s = bitand(s,m)+ s>>p;
if(s >= m, s -= n, s -= 2)
);
!s
}; /* end ll */
/* get Mersenne primes in range [a,b] */
llrun(a, b) = {
my(t=0, c=0, p=2, thr=default(nbthreads));
if(a <= 2,
c++;
printf("#%d\tM%d\t%3dh, %2dmin, %2d,%03d ms\n", c, p, t\3600000, t\60000%60, t\1000%60, t%1000);
a = 3;
);
gettime();
parforprime(p= a, b, ll(p), d, /* ll(p) -> d copy from parallel world into real world. */
if(d,
t += gettime()\thr;
c++;
printf("#%d\tM%d\t%3dh, %2dmin, %2d,%03d ms\n", c, p, t\3600000, t\60000%60, t\1000%60, t%1000)
)
)
}; /* end llrun */
\\ export(ll); /* if running ll as script */
Compiled with gp2c option: gp2c-run -g ll.gp.
llrun(2, 132049)
- Output:
Done on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz, 4 hyperthreaded cores.
#1 M2 0h, 0min, 0,000 ms #2 M3 0h, 0min, 0,000 ms #3 M5 0h, 0min, 0,000 ms #4 M7 0h, 0min, 0,000 ms #5 M13 0h, 0min, 0,000 ms #6 M17 0h, 0min, 0,000 ms #7 M19 0h, 0min, 0,000 ms #8 M31 0h, 0min, 0,000 ms #9 M61 0h, 0min, 0,000 ms #10 M89 0h, 0min, 0,000 ms #11 M107 0h, 0min, 0,000 ms #12 M127 0h, 0min, 0,000 ms #13 M521 0h, 0min, 0,001 ms #14 M607 0h, 0min, 0,001 ms #15 M1279 0h, 0min, 0,007 ms #16 M2203 0h, 0min, 0,030 ms #17 M2281 0h, 0min, 0,033 ms #18 M3217 0h, 0min, 0,079 ms #19 M4253 0h, 0min, 0,163 ms #20 M4423 0h, 0min, 0,186 ms #21 M9689 0h, 0min, 1,789 ms #22 M9941 0h, 0min, 2,022 ms #23 M11213 0h, 0min, 2,835 ms #24 M19937 0h, 0min, 23,858 ms #25 M21701 0h, 0min, 35,268 ms #26 M23209 0h, 0min, 45,233 ms #27 M44497 0h, 6min, 53,051 ms #28 M86243 1h, 3min, 41,811 ms #29 M110503 2h, 29min, 14,055 ms #30 M132049 4h, 42min, 27,694 ms ? ## *** last result: cpu time 37h, 31min, 41,619 ms, real time 4h, 42min, 46,515 ms.
Pascal
int64 is good enough up to M31:
Program LucasLehmer(output);
var
s, n: int64;
i, exponent: integer;
begin
n := 1;
for exponent := 2 to 31 do
begin
if exponent = 2 then
s := 0
else
s := 4;
n := (n + 1)*2 - 1; // This saves from needing the math unit for exponentiation
for i := 1 to exponent-2 do
s := (s*s - 2) mod n;
if s = 0 then
writeln('M', exponent, ' is PRIME!');
end;
end.
- Output:
:> ./LucasLehmer M2 is PRIME! M3 is PRIME! M5 is PRIME! M7 is PRIME! M13 is PRIME! M17 is PRIME! M19 is PRIME! M31 is PRIME!
Perl
Using Math::GMP:
use Math::GMP qw/:constant/;
sub is_prime { Math::GMP->new(shift)->probab_prime(12); }
sub is_mersenne_prime {
my $p = shift;
return 1 if $p == 2;
my $mp = 2 ** $p - 1;
my $s = 4;
$s = ($s * $s - 2) % $mp for 3..$p;
$s == 0;
}
foreach my $p (2 .. 43_112_609) {
print "M$p\n" if is_prime($p) && is_mersenne_prime($p);
}
The ntheory module offers a couple options. This is direct:
use ntheory qw/:all/;
$|=1; # flush output on every print
my $n = 0;
for (1..47) {
1 while !is_mersenne_prime(++$n);
print "M$n ";
}
print "\n";
However it uses knowledge from the thousands of CPU years spent by GIMPS to accelerate results for known values, so doesn't actually run the L-L test until after the 44th value, although code is included for C, Perl, and C+GMP. If we substitute Math::Prime::Util::GMP::is_mersenne_prime we can force the test to run.
A less opaque method uses the modular Lucas sequence, though it has no pretesting other than primality and calculates both and so won't be as fast:
use ntheory qw/:all/;
use bigint try=>"GMP,Pari";
forprimes {
my $p = $_;
my $mp1 = 2**$p;
print "M$p\n" if $p == 2 || 0 == (lucas_sequence($mp1-1, 4, 1, $mp1))[0];
} 43_112_609;
We can also use the core module Math::BigInt
:
sub is_prime {
my $p = shift;
if ($p == 2) {
return 1;
} elsif ($p <= 1 || $p % 2 == 0) {
return 0;
} else {
my $limit = sqrt($p);
for (my $i = 3; $i <= $limit; $i += 2) {
return 0 if $p % $i == 0;
}
return 1;
}
}
sub is_mersenne_prime {
use bigint;
my $p = shift;
if ($p == 2) {
return 1;
} else {
my $m_p = 2 ** $p - 1;
my $s = 4;
foreach my $i (3 .. $p) {
$s = ($s ** 2 - 2) % $m_p;
}
return $s == 0;
}
}
my $precision = 20000; # maximum requested number of decimal places of 2 ** MP-1 #
my $long_bits_width = $precision / log(2) * log(10);
my $upb_prime = int(($long_bits_width - 1)/2); # no unsigned #
my $upb_count = 45; # find 45 mprimes if int was given enough bits #
print " Finding Mersenne primes in M[2..$upb_prime]:\n";
my $count = 0;
foreach my $p (2 .. $upb_prime) {
if (is_prime($p) && is_mersenne_prime($p)) {
print "M$p\n";
$count++;
}
last if $count >= $upb_count;
}
Phix
Native types work up to M31, after which inaccuracies mean that we need to wheel out gmp. Uses the mod replacement trick from C/FreeBASIC(gmp)
with javascript_semantics bool full = true -- (see extended output below) constant limit = iff(full?20:23) include mpfr.e function mersenne(integer p) if p = 2 then return true end if if not is_prime(p) then return false end if mpz s := mpz_init(4), m := mpz_init(), r = mpz_init() mpz_ui_pow_ui(m, 2, p) mpz_sub_si(m,m,1) for i=3 to p do mpz_mul(s,s,s) mpz_sub_si(s,s,2) -- mpz_mod(s,s,m) if mpz_sign(s) < 0 then mpz_add(s, s ,m) else mpz_tdiv_r_2exp(r, s, p) mpz_tdiv_q_2exp(s, s, p) mpz_add(s, s, r) end if if (mpz_cmp(s, m) >= 0) then mpz_sub(s, s, m) end if end for bool res = mpz_cmp_si(s,0)=0 {s,m,r} = mpz_free({s,m,r}) return res end function atom t0 = time(), t1 = t0 integer i=2, j = 1, count = 0 constant mersennes = {1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609} while count<limit do if mersenne(i) then count += 1 string e = iff(time()-t1<0.1?"",", "&elapsed(time()-t1)) printf(1,"M%d (%d%s)\n",{i,count,e}) t1 = time() end if if full or i<1000 then i += 1 else i = mersennes[j] j += 1 end if end while printf(1,"completed in %s\n",{elapsed(time()-t0)})
- Output:
M2 (1) M3 (2) M5 (3) M7 (4) M13 (5) M17 (6) M19 (7) M31 (8) M61 (9) M89 (10) M107 (11) M127 (12) M521 (13, 0.1s) M607 (14) M1279 (15, 0.7s) M2203 (16, 2.0s) M2281 (17, 0.3s) M3217 (18, 4.0s) M4253 (19, 8.0s) M4423 (20, 1.7s) completed in 16.9s
Using the idea from Go of using a mersennes table above 1000 to speed things up, ie by setting full to false we get:
(ditto) M1279 (15, 0.3s) M2203 (16) M2281 (17) M3217 (18) M4253 (19) M4423 (20) M9689 (21, 0.5s) M9941 (22, 0.5s) M11213 (23, 0.6s) completed in 2.5s
Three more entries in one sixth of the time. Increasing the limit to 31 (with full still false) we can also get
(ditto) M19937 (24, 2.1s) M21701 (25, 2.5s) M23209 (26, 3.0s) M44497 (27, 15.3s) M86243 (28, 1 minute and 12s) M110503 (29, 1 minute and 53s) M132049 (30, 2 minutes and 46s) M216091 (31, 7 minutes and 45s) completed in 14 minutes and 01s
but beyond that I gave up.
PicoLisp
(de prime? (N)
(or
(= N 2)
(and
(> N 1)
(bit? 1 N)
(let S (sqrt N)
(for (D 3 T (+ D 2))
(T (> D S) T)
(T (=0 (% N D)) NIL) ) ) ) ) )
(de mersenne? (P)
(or
(= P 2)
(let (MP (dec (>> (- P) 1)) S 4)
(do (- P 2)
(setq S (% (- (* S S) 2) MP)) )
(=0 S) ) ) )
- Output:
: (for N 10000 (and (prime? N) (mersenne? N) (println N)) ) 2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423 9689 9941
Pop11
Checking large numbers takes a lot of time so we limit p to be smaller than 1000.
define Lucas_Lehmer_Test(p);
lvars mp = 2**p - 1, sn = 4, i;
for i from 2 to p - 1 do
(sn*sn - 2) rem mp -> sn;
endfor;
sn = 0;
enddefine;
lvars p = 3;
printf('M2', '%p\n');
while p < 1000 do
if Lucas_Lehmer_Test(p) then
printf('M', '%p');
printf(p, '%p\n');
endif;
p + 2 -> p;
endwhile;
- Output:
(obtained in few seconds)
M2
M3
M5
M7
M13
M17
M19
M31
M61
M89
M107
M127
M521
M607
PowerShell
This is just a translation of VBScript using [bigint], it could be optimized. Flirt with the girl in the cubicle next door while it runs:
function Get-MersennePrime ([bigint]$Maximum = 4800)
{
[bigint]$n = [bigint]::One
for ($exp = 2; $exp -lt $Maximum; $exp++)
{
if ($exp -eq 2)
{
$s = 0
}
else
{
$s = 4
}
$n = ($n + 1) * 2 - 1
for ($i = 1; $i -le $exp - 2; $i++)
{
$s = ($s * $s - 2) % $n
}
if ($s -eq 0)
{
$exp
}
}
}
Get-MersennePrime | Format-Wide {"{0,4}" -f $_} -Column 4 -Force
- Output:
2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423
Prolog
show(Count) :-
findall(N, limit(Count, (between(2, infinite, N), mersenne_prime(N))), S),
forall(member(P, S), (write(P), write(" "))), nl.
lucas_lehmer_seq(M, L) :-
lazy_list(ll_iter, 4-M, L).
ll_iter(S-M, T-M, T) :-
T is ((S*S) - 2) mod M.
drop(N, Lz1, Lz2) :-
append(Pfx, Lz2, Lz1), length(Pfx, N), !.
mersenne_prime(2).
mersenne_prime(P) :-
P > 2,
prime(P),
M is (1 << P) - 1,
lucas_lehmer_seq(M, Residues),
Skip is P - 3, drop(Skip, Residues, [R|_]),
R =:= 0.
% check if a number is prime
%
wheel235(L) :-
W = [4, 2, 4, 2, 4, 6, 2, 6 | W],
L = [1, 2, 2 | W].
prime(N) :-
N >= 2,
wheel235(W),
prime(N, 2, W).
prime(N, D, _) :- D*D > N, !.
prime(N, D, [A|As]) :-
N mod D =\= 0,
D2 is D + A, prime(N, D2, As).
- Output:
?- show(20). 2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423 true.
PureBasic
PureBasic has no large integer support. Calculations are limited to the range of a signed quad integer type.
Procedure Lucas_Lehmer_Test(p)
Protected mp.q = (1 << p) - 1, sn.q = 4, i
For i = 3 To p
sn = (sn * sn - 2) % mp
Next
If sn = 0
ProcedureReturn #True
EndIf
ProcedureReturn #False
EndProcedure
#upperBound = SizeOf(Quad) * 8 - 1 ;equivalent to significant bits in a signed quad integer
If OpenConsole()
Define p = 3
PrintN("M2")
While p <= #upperBound
If Lucas_Lehmer_Test(p)
PrintN("M" + Str(p))
EndIf
p + 2
Wend
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf
- Output:
M2 M3 M5 M7 M13 M17 M19 M31
Python
from sys import stdout
from math import sqrt, log
def is_prime ( p ):
if p == 2: return True # Lucas-Lehmer test only works on odd primes
elif p <= 1 or p % 2 == 0: return False
else:
for i in range(3, int(sqrt(p))+1, 2 ):
if p % i == 0: return False
return True
def is_mersenne_prime ( p ):
if p == 2:
return True
else:
m_p = ( 1 << p ) - 1
s = 4
for i in range(3, p+1):
s = (s ** 2 - 2) % m_p
return s == 0
precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 #
long_bits_width = precision * log(10, 2)
upb_prime = int( long_bits_width - 1 ) / 2 # no unsigned #
upb_count = 45 # find 45 mprimes if int was given enough bits #
print (" Finding Mersenne primes in M[2..%d]:"%upb_prime)
count=0
for p in range(2, int(upb_prime+1)):
if is_prime(p) and is_mersenne_prime(p):
print("M%d"%p),
stdout.flush()
count += 1
if count >= upb_count: break
print
- Output:
Finding Mersenne primes in M[2..33218]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209
Faster loop without division
def isqrt(n):
if n < 0:
raise ValueError
elif n < 2:
return n
else:
a = 1 << ((1 + n.bit_length()) >> 1)
while True:
b = (a + n // a) >> 1
if b >= a:
return a
a = b
def isprime(n):
if n < 5:
return n == 2 or n == 3
elif n%2 == 0:
return False
else:
r = isqrt(n)
k = 3
while k <= r:
if n%k == 0:
return False
k += 2
return True
def lucas_lehmer_fast(n):
if n == 2:
return True
elif not isprime(n):
return False
else:
m = 2**n - 1
s = 4
for i in range(2, n):
sqr = s*s
s = (sqr & m) + (sqr >> n)
if s >= m:
s -= m
s -= 2
return s == 0
# test taken from the previous rosetta implementation
from math import log
from sys import stdout
precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 #
long_bits_width = precision * log(10, 2)
upb_prime = int( long_bits_width - 1 ) / 2 # no unsigned #
# upb_count = 45 # find 45 mprimes if int was given enough bits #
upb_count = 15 # find 45 mprimes if int was given enough bits #
print (" Finding Mersenne primes in M[2..%d]:"%upb_prime)
count=0
# for p in range(2, upb_prime+1):
for p in range(2, int(upb_prime+1)):
if lucas_lehmer_fast(p):
print("M%d"%p),
stdout.flush()
count += 1
if count >= upb_count: break
print
The main loop may be run much faster using gmpy2 :
import gmpy2 as mp
def lucas_lehmer(n):
if n == 2:
return True
if not mp.is_prime(n):
return False
two = mp.mpz(2)
m = two**n - 1
s = two*two
for i in range(2, n):
sqr = s*s
s = (sqr & m) + (sqr >> n)
if s >= m:
s -= m
s -= two
return mp.is_zero(s)
With this, one can test all primes below 10^5 in around 24 hours on a Core i5 processor, with only one running thread.
The primes found are
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243
Of course, they agree with OEIS A000043.
Quackery
eratosthenes
and isprime
are defined at Sieve of Eratosthenes#Quackery.
[ dup temp put
dup bit 1 -
4
rot 2 - times
[ dup *
dup temp share >>
dip [ over & ] +
2dup > not if
[ over - ]
2 - ]
0 =
nip temp release ] is l-l ( n --> b )
25000 eratosthenes
[] 25000 times [ i^ isprime if [ i^ join ] ]
1 split
witheach
[ dup l-l iff join else drop ]
echo
- Output:
[ 2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 3217 4253 4423 9689 9941 11213 19937 21701 23209 ]
R
# vectorized approach based on scalar code from primeSieve and mersenne in CRAN package `numbers`
require(gmp)
n <- 4423 # note that the sieve below assumes n > 9
# sieve the set of primes up to n
p <- seq(1, n, by = 2)
q <- length(p)
p[1] <- 2
for (k in seq(3, sqrt(n), by = 2))
if (p[(k + 1)/2] != 0)
p[seq((k * k + 1)/2, q, by = k)] <- 0
p <- p[p > 0]
cat(p[1]," special case M2 == 3\n")
p <- p[-1]
z2 <- gmp::as.bigz(2)
z4 <- z2 * z2
zp <- gmp::as.bigz(p)
zmp <- z2^zp - 1
S <- rep(z4, length(p))
for (i in 1:(p[length(p)] - 2)){
S <- gmp::mod.bigz(S * S - z2, zmp)
if( i+2 == p[1] ){
if( S[1] == 0 ){
cat( p[1], "\n")
flush.console()
}
p <- p[-1]
zmp <- zmp[-1]
S <- S[-1]
}
}
Racket
#lang racket
(require math)
(define (mersenne-prime? p)
(divides? (- (expt 2 p) 1) (S (- p 1))))
(define (S n)
(if (= n 1) 4 (- (sqr (S (- n 1))) 2)))
(define (loop p)
(when (mersenne-prime? p)
(displayln p))
(loop (next-prime p)))
(loop 3)
Raku
(formerly Perl 6)
multi is_mersenne_prime(2) { True }
multi is_mersenne_prime(Int $p) {
my $m_p = 2 ** $p - 1;
my $s = 4;
$s = $s.expmod(2, $m_p) - 2 for 3 .. $p;
!$s
}
.say for (2,3,5,7 … *).hyper(:8degree).grep( *.is-prime ).map: { next unless .&is_mersenne_prime; "M$_" };
- On my system:
Letting it run for about a minute...
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 ^C real 0m55.527s user 6m47.106s sys 0m0.404s
REXX
REXX won't have a problem with the large number of digits involved, but since it's an interpreted language,
such massive number crunching isn't conducive in searching for large primes.
/*REXX pgm uses the Lucas─Lehmer primality test for prime powers of 2 (Mersenne primes)*/
@.=0; @.2=1; @.3=1; @.5=1; @.7=1; @.11=1; @.13=1 /*a partial list of some low primes. */
!.=@.; !.0=1; !.2=1; !.4=1; !.5=1; !.6=1; !.8=1 /*#'s with these last digs aren't prime*/
parse arg limit . /*obtain optional arguments from the CL*/
if limit=='' then limit= 200 /*Not specified? Then use the default.*/
say center('Mersenne prime index list',70-3,"═") /*show a fancy─dancy header (or title).*/
say right('M'2, 25) " [1 decimal digit]" /*left─justify them to align&look nice.*/
/* [►] note that J==1 is a special case*/
do j=1 by 2 to limit /*there're only so many hours in a day.*/
power= j + (j==1) /*POWER ≡ J except for when J=1. */
if \isPrime(power) then iterate /*if POWER isn't prime, then ignore it.*/
$= LL2(power) /*perform the Lucas─Lehmer 2 (LL2) test*/
if $=='' then iterate /*Did it flunk LL2? Then skip this #.*/
say right($, 25) MPsize /*left─justify them to align&look nice.*/
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPrime: procedure expose !. @. /*allow 2 stemmed arrays to be accessed*/
parse arg x '' -1 z /*obtain variable X and last digit.*/
if @.x then return 1 /*is X already found to be a prime? */
if !.z then return 0 /*is last decimal digit even or a five?*/
if x//3==0 then return 0 /*divisible by three? Then not a prime*/
if x//7==0 then return 0 /*divisible by seven? " " " " */
do j=11 by 6 until j*j > x /*ensures that J isn't divisible by 3. */
if x // j ==0 then return 0 /*Is X divisible by J ? */
if x // (j+2)==0 then return 0 /* " " " " J+2 ? ___ */
end /*j*/ /* [↑] perform DO loop through √ x */
@.x=1; return 1 /*indicate number X is a prime. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
LL2: procedure expose MPsize; parse arg ? /*Lucas─Lehmer test on 2**? - 1 */
if ?==2 then s=0 /*handle special case for an even prime*/
else s=4 /* [↓] same as NUMERIC FORM SCIENTIFIC*/
numeric form; q= 2**? /*ensure correct form for REXX numbers.*/
/*╔═══════════════════════════════════════════════════════════════════════════╗
╔═╝ Compute a power of 2 using only 9 decimal digits. One million digits ║
║ could be used, but that really slows up computations. So, we start with the║
║ default of 9 digits, and then find the ten's exponent in the product (2**?),║
║ double it, and then add 6. {2 is all that's needed, but 6 is a lot ║
║ safer.} The doubling is for the squaring of S (below, for s*s). ╔═╝
╚═══════════════════════════════════════════════════════════════════════════╝*/
if pos('E', q)\==0 then do /*is number in exponential notation ? */
parse var q 'E' tenPow /*get the exponent. */
numeric digits tenPow * 2 + 6 /*expand precision. */
end /*REXX used dec FP. */
else numeric digits digits() * 2 + 6 /*use 9*2 + 6 digits*/
q=2**? - 1 /*compute a power of two, minus one. */
r= q // 8 /*obtain Q modulus eight. */
if r==1 | r==7 then nop /*before crunching, do a simple test. */
else return '' /*modulus Q isn't one or seven. */
do ?-2; s= (s*s -2) // q /*lather, rinse, repeat ··· */
end /* [↑] compute and test for a MP. */
if s\==0 then return '' /*Not a Mersenne prime? Return a null.*/
sz= length(q) /*obtain number of decimal digs in MP. */
MPsize=' ['sz "decimal digit"s(sz)']' /*define a literal to display after MP.*/
return 'M'? /*return "modified" # (Mersenne index).*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
s: if arg(1)==1 then return arg(3); return word(arg(2) 's', 1) /*simple pluralizer*/
- output when the following is used for input: 10000
═════════════════════Mersenne prime index list═════════════════════ M2 [1 decimal digit] M3 [1 decimal digit] M5 [2 decimal digits] M7 [3 decimal digits] M13 [4 decimal digits] M17 [6 decimal digits] M19 [6 decimal digits] M31 [10 decimal digits] M61 [19 decimal digits] M89 [27 decimal digits] M107 [33 decimal digits] M127 [39 decimal digits] M521 [157 decimal digits] M607 [183 decimal digits] M1279 [386 decimal digits] M2203 [664 decimal digits] M2281 [687 decimal digits] M3217 [969 decimal digits] M4253 [1281 decimal digits] M4423 [1332 decimal digits] M9689 [2917 decimal digits] M9941 [2993 decimal digits]
Ring
see "Mersenne Primes :" + nl
for p = 2 to 18
if lucasLehmer(p) see "M" + p + nl ok
next
func lucasLehmer p
i = 0 mp = 0 sn = 0
if p = 2 return true ok
if (p and 1) = 0 return false ok
mp = pow(2,p) - 1
sn = 4
for i = 3 to p
sn = pow(sn,2) - 2
sn -= (mp * floor(sn / mp))
next
return (sn=0)
RPL
RPL HP-50 series
%%HP: T(3)A(R)F(.); ; ASCII transfer header
\<< DUP LN DUP \pi * 4 SWAP / 1 + UNROT / * IP 2 { 2 } ROT 2 SWAP ; input n; n := Int(n/ln(n)*(1 + 4/(pi*ln(n)))), p:=2; (n ~ number of primes less then n, pi used here only as a convenience), 2 is assumed to be the 1st elemente in the list
START SWAP NEXTPRIME DUP UNROT DUP 2 SWAP ^ 1 - 4 PICK3 2 - 1 SWAP ; for i := 2 to n, p := nextprime; s := 4; m := 2^p - 1;
START SQ 2 - OVER MOD ; for j := 1 to p - 2; s := s^2 mod m;
NEXT NIP NOT { + } { DROP } IFTE ; next j; if s = 0 then add p to the list else discard p;
NEXT NIP ; next i;
\>>
- Output:
Outputs for arguments 130, 607 and 2281, respectively: { 2 3 5 7 13 17 19 31 61 89 107 127 } { 2 3 5 7 13 17 19 31 61 89 107 127 521 607 } { 2 3 5 7 13 17 19 31 61 89 107 127 521 607 1279 2203 2281 } These take respectively 1m 22s on the real HP 50g, 4m 29s and 10h 29m 23s on the emulator (Debug4 running on PC under WinXP, Intel(R) Core(TM) Duo CPU T2350 @ 1.86GHz).
RPL HP-28 series
Unlike RPL implemented on HP-50 series, the first version of the language does not feature big integers, modular arithmetic operators, prime number test functions, nor even modulo operator for unsigned integers. Let's build them all...
RPL code | Comment |
---|---|
≪ IF { #1 #2 #3 #5 } OVER POS THEN #1 ≠ ELSE IF # 1d DUP2 AND ≠ OVER 3 DUP2 / * == OR THEN DROP 0 ELSE DUP B→R √ → divm ≪ 1 SF 4 5 divm FOR n IF OVER n DUP2 / * == THEN 1 CF divm 'n' STO END 6 SWAP - DUP STEP DROP2 1 FS? ≫ END END ≫ 'bPRIM?' STO ≪ → m ≪ #1 WHILE OVER #0 > REPEAT IF OVER #1 AND #1 == THEN 3 PICK * m / LAST ROT * - END SWAP SR SWAP ROT DUP * m / LAST ROT * - ROT ROT END ROT ROT DROP2 ≫ ≫ 'MODXP' STO ≪ 2 OVER ^ R→B 1 - → mp ≪ #4 3 ROT FOR n #2 mp MODXP IF DUP #2 < THEN mp + END #2 - NEXT #0 == ≫ ≫ 'MSNP?' STO ≪ { 2 } 3 32 FOR j IF j R→B bPRIM? THEN IF j MNSP? THEN j + END END NEXT ≫ 'TASK' STO |
bPRIM? ( #a → boolean ) return 1 if a is 2, 3 or 5 and 0 if a is 1 if 2 or 3 divides a return 0 else store sqrt(a) d = 4 ; flag 1 set while presumed prime for n=5 to sqrt(a) if d divides a prepare loop exit d = 6-d ; n += d clean stack, return result MODXP ( #base #exp #m → #mod(base^exp,m) ) result = 1; while (exp > 0) { if ((exp & 1) > 0) result = (result * base) % m; exp >>= 1; base = (base * base) % m; } clean stack, return result MNSP? ( p → boolean ) s0 = 4 loop p-2 times r = mod(s(n-1)^2 mod Mp s(n) = (r - 2) mod Mp return 1 if s(p-2)=0 mod Mp |
- Output:
1: { 2 3 5 7 13 17 19 31 }
Runs in 48 seconds on a standard HP-28S.
Ruby
def is_prime ( p )
return true if p == 2
return false if p <= 1 || p.even?
(3 .. Math.sqrt(p)).step(2) do |i|
return false if p % i == 0
end
true
end
def is_mersenne_prime ( p )
return true if p == 2
m_p = ( 1 << p ) - 1
s = 4
(p-2).times { s = (s ** 2 - 2) % m_p }
s == 0
end
precision = 20000 # maximum requested number of decimal places of 2 ** MP-1 #
long_bits_width = precision / Math.log(2) * Math.log(10)
upb_prime = (long_bits_width - 1).to_i / 2 # no unsigned #
upb_count = 45 # find 45 mprimes if int was given enough bits #
puts " Finding Mersenne primes in M[2..%d]:" % upb_prime
count = 0
for p in 2..upb_prime
if is_prime(p) && is_mersenne_prime(p)
print "M%d " % p
count += 1
end
break if count >= upb_count
end
puts
- Output:
Finding Mersenne primes in M[2..33218]: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209
Rust
extern crate rug;
extern crate primal;
use rug::Integer;
use rug::ops::Pow;
use std::thread::spawn;
fn is_mersenne (p : usize) {
let p = p as u32;
let mut m = Integer::from(1);
m = m << p;
m = Integer::from(&m - 1);
let mut flag1 = false;
for k in 1..10_000 {
let mut flag2 = false;
let mut div : u32 = 2*k*p + 1;
if &div >= &m {break; }
for j in [3,5,7,11,13,17,19,23,29,31,37].iter() {
if div % j == 0 {
flag2 = true;
break;
}
}
if flag2 == true {continue;}
if div % 8 != 1 && div % 8 != 7 { continue; }
if m.is_divisible_u(div) {
flag1 = true;
break;
}
}
if flag1 == true {return ()}
let mut s = Integer::from(4);
let two = Integer::from(2);
for _i in 2..p {
let mut sqr = s.pow(2);
s = Integer::from(&Integer::from(&sqr & &m) + &Integer::from(&sqr >> p));
if &s >= &m {s = s - &m}
s = Integer::from(&s - &two);
}
if s == 0 {println!("Mersenne : {}",p);}
}
fn main () {
println!("Mersenne : 2");
let limit = 11_214;
let mut thread_handles = vec![];
for p in primal::Primes::all().take_while(|p| *p < limit) {
thread_handles.push(spawn(move || is_mersenne(p)));
}
for handle in thread_handles {
handle.join().unwrap();
}
}
with Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz : Less than 8,6 seconds to get the Mersenne primes up to 11213
- Output:
Mersenne : 2 Mersenne : 5 Mersenne : 3 Mersenne : 7 Mersenne : 13 Mersenne : 17 Mersenne : 19 Mersenne : 31 Mersenne : 61 Mersenne : 89 Mersenne : 127 Mersenne : 107 Mersenne : 521 Mersenne : 607 Mersenne : 1279 Mersenne : 2281 Mersenne : 2203 Mersenne : 3217 Mersenne : 4423 Mersenne : 4253 Mersenne : 9689 Mersenne : 9941 Mersenne : 11213 real 0m8.581s user 0m33.894s sys 0m0.107s
Scala
In accordance with definition of Mersenne primes it could only be a Mersenne number with prime exponent.
object LLT extends App {
import Stream._
def primeSieve(s: Stream[Int]): Stream[Int] =
s.head #:: primeSieve(s.tail filter { _ % s.head != 0 })
val primes = primeSieve(from(2))
def mersenne(p: Int): BigInt = (BigInt(2) pow p) - 1
def s(mp: BigInt, p: Int): BigInt = { if (p == 1) 4 else ((s(mp, p - 1) pow 2) - 2) % mp }
val upbPrime = 9941
println(s"Finding Mersenne primes in M[2..$upbPrime]")
((primes takeWhile (_ <= upbPrime)).par map { p => (p, mersenne(p)) }
map { p => if (p._1 == 2) (p, 0) else (p, s(p._2, p._1 - 1)) } filter { _._2 == 0 })
.foreach { p =>
println(s"prime M${(p._1)._1}: " +
{ if ((p._1)._1 < 200) (p._1)._2 else s"(${(p._1)._2.toString.size} digits)" })
}
println("That's All Folks!")
}
- Output:
After approx 20 minutes (2.10 GHz dual core)
Finding Mersenne primes in M[2..9999] prime M2: 3 prime M3: 7 prime M5: 31 prime M7: 127 prime M13: 8191 prime M17: 131071 prime M19: 524287 prime M31: 2147483647 prime M61: 2305843009213693951 prime M89: 618970019642690137449562111 prime M107: 162259276829213363391578010288127 prime M127: 170141183460469231731687303715884105727 prime M521: (157 digits) prime M607: (183 digits) prime M1279: (386 digits) prime M2203: (664 digits) prime M2281: (687 digits) prime M3217: (969 digits) prime M4253: (1281 digits) prime M4423: (1332 digits) prime M9689: (2917 digits) prime M9941: (2993 digits) That's All Folks!
Scheme
;;;The heart of the algorithm
(define (S n)
(let ((m (- (expt 2 n) 1)))
(let loop ((c (- n 2)) (a 4))
(if (zero? c)
a
(loop (- c 1) (remainder (- (* a a) 2) m))))))
(define (mersenne-prime? n)
(if (= n 2)
#t
(zero? (S n))))
;;;Trivial unoptimized implementation for the base primes
(define (next-prime x)
(if (prime? (+ x 1))
(+ x 1)
(next-prime (+ x 1))))
(define (prime? x)
(let loop ((c 2))
(cond ((>= c x) #t)
((zero? (remainder x c)) #f)
(else (loop (+ c 1))))))
;;Main loop
(let loop ((i 45) (p 2))
(if (not (zero? i))
(if (mersenne-prime? p)
(begin
(display "M") (display p) (display " ")
(loop (- i 1) (next-prime p)))
(loop i (next-prime p)))))
M2 M3 M5 M7 M13...
Scilab
iexpmax=30
n=1
for iexp=2:iexpmax
if iexp==2 then s=0; else s=4; end
n=(n+1)*2-1
for i=1:iexp-2
s=modulo((s*s-2),n)
end
if s==0 then printf("M%d ",iexp); end
end
- Output:
M2 M3 M5 M7 M13 M17 M19
Seed7
To get maximum speed the program should be compiled with -O2.
$ include "seed7_05.s7i";
include "bigint.s7i";
const func boolean: isPrime (in integer: number) is func
result
var boolean: prime is FALSE;
local
var integer: upTo is 0;
var integer: testNum is 3;
begin
if number = 2 then
prime := TRUE;
elsif number rem 2 = 0 or number <= 1 then
prime := FALSE;
else
upTo := sqrt(number);
while number rem testNum <> 0 and testNum <= upTo do
testNum +:= 2;
end while;
prime := testNum > upTo;
end if;
end func;
const func boolean: lucasLehmerTest (in integer: p) is func
result
var boolean: prime is TRUE;
local
var bigInteger: m_p is 0_;
var bigInteger: s is 4_;
var integer: i is 0;
begin
if p <> 2 then
m_p := 2_ ** p - 1_;
for i range 2 to pred(p) do
s := (s ** 2 - 2_) rem m_p;
end for;
prime := s = 0_;
end if;
end func;
const proc: main is func
local
var integer: p is 2;
begin
writeln(" Mersenne primes:");
while p <= 3217 do
if isPrime(p) and lucasLehmerTest(p) then
write(" M" <& p);
flush(OUT);
end if;
incr(p);
end while;
writeln;
end func;
Original source: lucasLehmerTest, isPrime
- Output:
Mersenne primes: M2 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217
Sidef
func is_mersenne_prime(p) {
return true if (p == 2)
var s = 4
var M = (2**p - 1)
{ s = powmod(s, 2, M)-2 } * (p-2)
s == 0
}
Inf.times {|n|
if (n.is_prime && is_mersenne_prime(n)) {
say "M#{n}"
}
}
- Output:
M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 ^C
Swift
Uses a sieve of Eratosthenes.
import BigInt // add package attaswift/BigInt from Github
import Darwin
func Eratosthenes(upTo: Int) -> [Int] {
let maxroot = Int(sqrt(Double(upTo)))
var isprime = [Bool](repeating: true, count: upTo+1 )
for i in 2...maxroot {
if isprime[i] {
for k in stride(from: upTo/i, through: i, by: -1) {
if isprime[k] {
isprime[i*k] = false }
}
}
}
var result = [Int]()
for i in 2...upTo {
if isprime[i] {
result.append( i)
}
}
return result
}
func lucasLehmer(_ p: Int) -> Bool {
let m = BigInt(2).power(p) - 1
var s = BigInt(4)
for _ in 0..<p-2 {
s = ((s * s) - 2) % m
}
return s == 0
}
for prime in Eratosthenes(upTo: 128) where lucasLehmer(prime) {
let mprime = BigInt(2).power(prime) - 1
print("2^\(prime) - 1 = \(mprime) is prime")
}
- Output:
2^3 - 1 = 7 is prime 2^5 - 1 = 31 is prime 2^7 - 1 = 127 is prime 2^13 - 1 = 8191 is prime 2^17 - 1 = 131071 is prime 2^19 - 1 = 524287 is prime 2^31 - 1 = 2147483647 is prime 2^61 - 1 = 2305843009213693951 is prime 2^89 - 1 = 618970019642690137449562111 is prime 2^107 - 1 = 162259276829213363391578010288127 is prime 2^127 - 1 = 170141183460469231731687303715884105727 is prime
Tcl
proc main argv {
set n 0
set t [clock seconds]
show_mersenne 2 [incr n] t
for {set p 3} {$p <= [lindex $argv 0]} {incr p 2} {
if {![prime $p]} continue
if {[LucasLehmer $p]} {
show_mersenne $p [incr n] t
}
}
}
proc show_mersenne {p n timevar} {
upvar 1 $timevar time
set now [clock seconds]
puts [format "%2d: %5ds M%s" $n [expr {$now - $time}] $p]
set time $now
}
proc prime i {
if {$i in {2 3}} {return 1}
prime0 $i [expr {int(sqrt($i))}]
}
proc prime0 {i div} {
expr {!($i % $div)? 0: $div <= 2? 1: [prime0 $i [incr div -1]]}
}
proc LucasLehmer p {
set mp [expr {2**$p-1}]
set s 4
for {set i 2} {$i < $p} {incr i} {
set s [expr {($s**2 - 2) % $mp}]
}
expr {$s == 0}
}
main 33218
- Output:
The program was still running, but as the next Mersenne prime is 19937 there will be a long wait until the program finds it.
1: 0s M2 2: 0s M3 3: 0s M5 4: 0s M7 5: 0s M13 6: 0s M17 7: 0s M19 8: 0s M31 9: 0s M61 10: 0s M89 11: 0s M107 12: 0s M127 13: 1s M521 14: 0s M607 15: 4s M1279 16: 21s M2203 17: 4s M2281 18: 69s M3217 19: 180s M4253 20: 39s M4423 21: 5543s M9689 22: 655s M9941 23: 3546s M11213
TI-83 BASIC
19→M
1→N
For(E,2,M)
If E=2
Then:0→S
Else:4→S
End
(N+1)*2-1→N
For(I,1,E-2)
Reminder(S*S-2,N)→S
End
If S=0
Then:Disp E
End
End
- Output:
2 3 5 7 13 17 19
uBasic/4tH
m = 15
n = 1
For j = 2 To m
If j = 2 Then
s = 0
Else
s = 4
EndIf
n = (n + 1) * 2 - 1
For i = 1 To j - 2
s = (s * s - 2) % n
Next i
If s = 0 Then Print "M";j
Next
VBScript
iexpmax = 15
n=1
out=""
For iexp = 2 To iexpmax
If iexp = 2 Then
s = 0
Else
s = 4
End If
n = (n + 1) * 2 - 1
For i = 1 To iexp - 2
s = (s * s - 2) Mod n
Next
If s = 0 Then
out=out & "M" & iexp & " "
End If
Next
Wscript.echo out
- Output:
M2 M3 M5 M7 M13
Visual Basic .NET
Public Class LucasLehmer
Private Sub btnGo_Click(sender As Object, e As EventArgs) Handles btnGo.Click
Const iexpmax = 31
Dim s, n As Long
Dim i, iexp As Integer
n = 1
txtOut.Text = ""
For iexp = 2 To iexpmax
If iexp = 2 Then
s = 0
Else
s = 4
End If
n = (n + 1) * 2 - 1
For i = 1 To iexp - 2
s = (s * s - 2) Mod n
Next i
If s = 0 Then
txtOut.Text = txtOut.Text & "M" & iexp & " "
End If
Next iexp
End Sub
End Class
- Output:
M2 M3 M5 M7 M13 M17 M19 M31
V (Vlang)
import math.big
const (
primes = [u32(3), 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127]
mersennes = [u32(521), 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917,
20996011, 24036583]
)
fn main() {
ll_test(primes)
println('')
ll_test(mersennes)
}
fn ll_test(ps []u32) {
mut s, mut m := big.zero_int, big.zero_int
one := big.one_int
two := big.two_int
for p in ps {
m = one.lshift(p) - one
s= big.integer_from_int(4)
for i := u32(2); i < p; i++ {
s = (s*s - two)%m
}
if s.bit_len() == 0 {
print("M$p ")
}
}
}
- Output:
M3 M5 M7 M13 M17 M19 M31 ...
Wren
Wren-CLI (BigInt)
This follows the lines of my Kotlin entry but uses a table to quicken up the checking of the larger numbers. Despite this, it still takes just over 3 minutes to reach M4423. Surprisingly, using modPow rather than the simple % operator is even slower.
import "./big" for BigInt
import "./math" for Int
import "io" for Stdout
var start = System.clock
var max = 19
var count = 0
var table = [521, 607, 1279, 2203, 2281, 3217, 4253, 4423]
var p = 3 // first odd prime
var ix = 0 // index into table for larger primes
var one = BigInt.one
var two = BigInt.two
while (true) {
var m = (BigInt.two << (p - 1)) - one
var s = BigInt.four
for (i in 1..p-2) s = (s.square - two) % m
if (s.bitLength == 0) {
count = count + 1
System.write("M%(p) ")
Stdout.flush()
if (count == max) {
System.print()
break
}
}
// obtain next odd prime or look up in table after 127
if (p < 127) {
while (true) {
p = p + 2
if (Int.isPrime(p)) break
}
} else {
p = table[ix]
ix = ix + 1
}
}
System.print("\nTook %(System.clock - start) seconds.")
- Output:
M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 Took 181.271083 seconds.
Embedded (GMP)
Same approach as the CLI version but now uses GMP. Far quicker, of course, as we can now check up to M110503 in less time than before.
import "./gmp" for Mpz
import "./math" for Int
var start = System.clock
var max = 28
var count = 0
var table = [521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503]
var p = 3 // first odd prime
var ix = 0
var one = Mpz.one
var two = Mpz.two
var m = Mpz.new()
var s = Mpz.new()
while (true) {
m.uiPow(2, p).sub(one)
s.setUi(4)
for (i in 1..p-2) s.square.sub(two).rem(m)
if (s.isZero) {
count = count + 1
System.write("M%(p) ")
if (count == max) {
System.print()
break
}
}
// obtain next odd prime or look up in table after 127
if (p < 127) {
while (true) {
p = p + 2
if (Int.isPrime(p)) break
}
} else {
p = table[ix]
ix = ix + 1
}
}
System.print("\nTook %(System.clock - start) seconds.")
- Output:
M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209 M44497 M86243 M110503 Took 127.317323 seconds.
Yabasic
print "Mersenne Primes :"
for p = 2 to 20
if lucasLehmer(p) print "M",p
next p
end
sub lucasLehmer (p)
mp = (2 ^ p) - 1
sn = 4
for i = 2 to p-1
sn = (sn ^ 2) - 2
sn = sn - (mp * floor(sn / mp))
next
return sn = 0
end sub
Zig
Zig supports 128 bit integer types natively, which means it's possible to find all Mersenne primes up to M127. (requires writing a modmul() routine to compute (a * b) % m for 128 bit integers without overflow.)
const std = @import("std");
const stdout = std.io.getStdOut().outStream();
const assert = std.debug.assert;
pub fn main() !void {
const primes = [_]u7{
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113,
127,
};
try stdout.print("These Mersenne numbers are prime: ", .{});
for (primes) |p|
if (isMersennePrime(p))
try stdout.print("M{} ", .{p});
try stdout.print("\n", .{});
}
inline fn M(n: u7) u128 {
return (@as(u128, 1) << n) - 1;
}
fn isMersennePrime(p: u7) bool {
if (p < 3)
return p == 2
else {
const n = M(p);
var s: u128 = 4;
var i: u7 = p - 2;
while (i > 0) : (i -= 1) {
s = modmul(s, s, n);
s = if (s >= 2) s - 2 else n - 2 + s;
}
return s == 0;
}
}
fn modmul(a0: u128, b0: u128, m: u128) u128 {
var r: u128 = 0;
var a = a0 % m;
var b = b0 % m;
while (b > 0) {
if (b & 1 == 1)
r = if ((m - r) > a) r + a else r + a - m;
b >>= 1;
if (b > 0)
a = if ((m - a) > a) a + a else a + a - m;
}
return r;
}
- Output:
These Mersenne numbers are prime: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127
zkl
Using Extensible prime generator#zkl and the GMP library.
var [const] BN=Import.lib("zklBigNum"); // lib GMP
primes:=Utils.Generator(Import("sieve").postponed_sieve);
fcn isMersennePrime(p){
if(p==2) return(True);
mp:=BN(1).shiftLeft(p) - 1; // 2^p - 1, a BIG number, like 1000s of digits
s:=BN(4); do(p-2){ s.mul(s).sub(2).mod(mp) } // the % REALLY cuts down on mem usage
return(s==0);
}
Calculating S(n) is done in place (overwriting the value in the BigInt with the result); this really cuts down on memory usage.
mersennePrimes:=primes.tweak(fcn(p){ isMersennePrime(p) and p or Void.Skip });
println("Mersenne primes:");
foreach mp in (mersennePrimes) { print(" M",mp); }
This will "continuously" spew out Mersenne Primes.
Tweaking a Walker (aka iterator, Generators are a class of Walker) basically puts a filter on the underlying iterator, in this case, ignoring prime numbers that are not Mersenne primes and passing those that are.
- Output:
Mersenne primes: M2 M3 M5 M7 M13 M17 M19 M31 M61 M89 M107 M127 M521 M607 M1279 M2203 M2281 M3217 M4253 M4423 M9689 M9941 M11213 M19937 M21701 M23209 M44497 ^C
Additionally, this problem is readily threaded and has a linear speedup. Since there are lots of calculations between results, the [bigger] results are basically time sorted. However, N times faster doesn't mean much given the huge calculations used by the LL test (math with thousands of digits ain't quick).
Using five threads:
ps,mpOut := Thread.Pipe(),Thread.Pipe(); // how the threads will communicate
fcn(ps){ // a thread to generate primes, sleeps most of the time
Utils.Generator(Import("sieve").postponed_sieve).pump(ps)
}.launch(ps);
do(4){ // four threads to perform the Lucas-Lehmer test
fcn(ps,out){ ps.pump(out,isMersennePrime,Void.Filter) }.launch(ps,mpOut)
}
println("Mersenne primes:");
foreach mp in (mpOut) { print(" M",mp); }
- Programming Tasks
- Prime Numbers
- Arbitrary precision
- Arithmetic operations
- 11l
- 360 Assembly
- Ada
- Agena
- ALGOL 68
- ARM Assembly
- Arturo
- AWK
- BASIC
- BASIC256
- BBC BASIC
- Craft Basic
- BCPL
- Bracmat
- Burlesque
- C
- GMP
- C sharp
- C++
- Clojure
- CoffeeScript
- Common Lisp
- Crystal
- D
- Delphi
- SysUtils,StdCtrls
- DWScript
- EasyLang
- EchoLisp
- Elixir
- Erlang
- ERRE
- F Sharp
- Factor
- Forth
- Fortran
- FreeBASIC
- Frink
- FunL
- GAP
- Go
- Haskell
- HicEst
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Langur
- Mathematica
- Wolfram Language
- MATLAB
- Maxima
- Modula-3
- Nim
- Oz
- PARI/GP
- Pascal
- Perl
- Ntheory
- Phix
- Phix/mpfr
- PicoLisp
- Pop11
- PowerShell
- Prolog
- PureBasic
- Python
- Quackery
- R
- Racket
- Raku
- REXX
- Ring
- RPL
- Ruby
- Rust
- Scala
- Scheme
- Scilab
- Seed7
- Sidef
- Swift
- AttaSwift BigInt
- Tcl
- TI-83 BASIC
- UBasic/4tH
- VBScript
- Visual Basic .NET
- V (Vlang)
- Vlang examples needing attention
- Examples needing attention
- Wren
- Wren-big
- Wren-math
- Wren-gmp
- Yabasic
- Zig
- Zkl
- GUISS/Omit