# Pi

Pi
You are encouraged to solve this task according to the task description, using any language you may know.

Create a program to continually calculate and output the next decimal digit of   ${\displaystyle \pi }$   (pi).

The program should continue forever (until it is aborted by the user) calculating and outputting each decimal digit in succession.

The output should be a decimal sequence beginning   3.14159265 ...

Note: this task is about   calculating   pi.   For information on built-in pi constants see Real constants and functions.

## 11l

Translation of: D
V ndigits = 0
V q = BigInt(1)
V r = BigInt(0)
V t = q
V k = q
V n = BigInt(3)
V l = n

V first = 1B
L ndigits < 1'000
I 4 * q + r - t < n * t
print(n, end' ‘’)
ndigits++
I ndigits % 70 == 0
print()
I first
first = 0B
print(‘.’, end' ‘’)
V nr = 10 * (r - n * t)
n = ((10 * (3 * q + r)) I/ t) - 10 * n
q *= 10
r = nr
E
V nr = (2 * q + r) * l
V nn = (q * (7 * k + 2) + r * l) I/ (t * l)
q *= k
t *= l
l += 2
k++
n = nn
r = nr
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816
4062862089986280348253421170679821480865132823066470938446095505822317
2535940812848111745028410270193852110555964462294895493038196442881097
5665933446128475648233786783165271201909145648566923460348610454326648
2133936072602491412737245870066063155881748815209209628292540917153643
6789259036001133053054882046652138414695194151160943305727036575959195
3092186117381932611793105118548074462379962749567351885752724891227938
1830119491298336733624406566430860213949463952247371907021798609437027
7053921717629317675238467481846766940513200056812714526356082778577134
2757789609173637178721468440901224953430146549585371050792279689258923
5420199561121290219608640344181598136297747713099605187072113499999983
7297804995105973173281609631859502445945534690830264252230825334468503
5261931188171010003137838752886587533208381420617177669147303598253490
4287554687311595628638823537875937519577818577805321712268066130019278
76611195909216420198


## 360 Assembly

Translation of: FORTRAN

The program uses one ASSIST macro (XPRNT) to keep the code as short as possible.

*        Spigot algorithm do the digits of PI  02/07/2016
PISPIG   CSECT
USING  PISPIG,R13         base register
B      72(R15)            skip savearea
DC     17F'0'             savearea
STM    R14,R12,12(R13)    prolog
ST     R13,4(R15)         "
ST     R15,8(R13)         "
LR     R13,R15            "
SR     R0,R0              0
ST     R0,MORE            more=0
LA     R6,1               i=1
LOOPI1   C      R6,=A(NBUF)        do i=1 to hbound(buf)
BH     ELOOPI1            "
SR     R9,R9                karray=0
L      R7,=A(NVECT)         j=hbound(vect)
LR     R1,R7                  j
SLA    R1,2                   .
LA     R10,VECT-4(R1)       r10=@vect(j)
LOOPJ    EQU    *                    do j=hbound(vect) to 1 by -1
L      R5,=F'100000'            100000
M      R4,0(R10)                *vect(j)
LR     R2,R5                    r2=100000*vect(j)
LR     R5,R9                    karray
MR     R4,R7                    karray*j
AR     R2,R5                    r2+karray*j
LR     R11,R2                 n=100000*vect(j)+karray*j
LR     R3,R7                    j
SLA    R3,1                     2*j
BCTR   R3,0                     2*j-1)
LR     R4,R11                   n
SRDA   R4,32                    .
DR     R4,R3                    n/(2*j-1)
LR     R9,R5                  karray=n/(2*j-1)
LR     R5,R9                    karray
MR     R4,R3                    karray*(2*j-1)
LR     R1,R11                   n
SR     R1,R5                    n-karray*(2*j-1)
ST     R1,0(R10)              vect(j)=n-karray*(2*j-1)
SH     R10,=H'4'              r10=@vect(j)
BCT    R7,LOOPJ             end do j
LR     R4,R9                karray
SRDA   R4,32                .
D      R4,=F'100000'        karray/100000
LR     R11,R5               k=karray/100000
L      R2,MORE              more
AR     R2,R11               +k
LR     R1,R6                i
SLA    R1,2                 .
ST     R2,BUF-4(R1)         buf(i)=more+k
LR     R5,R11                 k
M      R4,=F'100000'          *100000
LR     R1,R9                  karray
SR     R1,R5                  -k*100000
ST     R1,MORE              more=karray-k*100000
LA     R6,1(R6)             i=i+1
B      LOOPI1             end do i
ELOOPI1  L      R1,BUF             buf(1)
CVD    R1,PACKED          convert buf(1) to packed decimal
OI     PACKED+7,X'0F'     prepare unpack
UNPK   PG(1),PACKED       packed decimal to zoned printable
MVI    PG+1,C'.'          output '.'
XPRNT  PG,80              print buffer
MVC    PG,=CL80' '        clear buffer
LA     R3,PG              pgi=0
LA     R6,2               i=2
LOOPI2   C      R6,=A(NBUF)        do i=2 to hbound(buf)
BH     ELOOPI2            "
MVC    0(1,R3),=C' '        output ' '
LA     R3,1(R3)             pgi=pgi+1
LR     R1,R6                i
SLA    R1,2                 .
L      R2,BUF-4(R1)         buf(i)
CVD    R2,PACKED            convert v to packed decimal
OI     PACKED+7,X'0F'       prepare unpack
UNPK   XDEC,PACKED          packed decimal to zoned printable
MVC    0(5,R3),XDEC+7       output buf(i) with 5 decimals
LA     R3,5(R3)             pgi=pgi+5
LR     R4,R6                i
BCTR   R4,0                 i-1
SRDA   R4,32                .
D      R4,=F'10'            (i-1)/10
LTR    R4,R4                if (i-1)//10=0
BNZ    NOSKIP               then
XPRNT  PG,80                  print buffer
LA     R3,PG                  pgi=0
MVC    PG,=CL80' '            clear buffer
NOSKIP   LA     R6,1(R6)             i=i+1
B      LOOPI2             end do i
ELOOPI2  L      R13,4(0,R13)       epilog
LM     R14,R12,12(R13)    "
XR     R15,R15            "
BR     R14                exit
LTORG
MORE     DS     F                  more
PACKED   DS     0D,PL8             packed decimal
PG       DC     CL80' '            buffer
XDEC     DS     CL12               temp
BUF      DC     (NBUF)F'0'         buf(nbuf)
VECT     DC     (NVECT)F'2'        vect(nvect) init 2
YREGS
NBUF     EQU    201                number of 5 decimals
NVECT    EQU    3350               nvect=ceil(nbuf*50/3)
END    PISPIG
Output:
3.
14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196
44288 10975 66593 34461 28475 64823 37867 83165 27120 19091
45648 56692 34603 48610 45432 66482 13393 60726 02491 41273
72458 70066 06315 58817 48815 20920 96282 92540 91715 36436
78925 90360 01133 05305 48820 46652 13841 46951 94151 16094
33057 27036 57595 91953 09218 61173 81932 61179 31051 18548
07446 23799 62749 56735 18857 52724 89122 79381 83011 94912
98336 73362 44065 66430 86021 39494 63952 24737 19070 21798
60943 70277 05392 17176 29317 67523 84674 81846 76694 05132
00056 81271 45263 56082 77857 71342 75778 96091 73637 17872
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235
42019 95611 21290 21960 86403 44181 59813 62977 47713 09960
51870 72113 49999 99837 29780 49951 05973 17328 16096 31859
50244 59455 34690 83026 42522 30825 33446 85035 26193 11881
71010 00313 78387 52886 58753 32083 81420 61717 76691 47303
59825 34904 28755 46873 11595 62863 88235 37875 93751 95778
18577 80532 17122 68066 13001 92787 66111 95909 21642 01989


Library: GMP

uses same algorithm as Go solution, from http://web.comlab.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf

with Ada.Command_Line;
with GNU_Multiple_Precision.Big_Integers;
with GNU_Multiple_Precision.Big_Rationals;
use GNU_Multiple_Precision;

procedure Pi_Digits is
type Int is mod 2 ** 64;
package Int_To_Big is new Big_Integers.Modular_Conversions (Int);

-- constants
Zero : constant Big_Integer := Int_To_Big.To_Big_Integer (0);
One : constant Big_Integer := Int_To_Big.To_Big_Integer (1);
Two : constant Big_Integer := Int_To_Big.To_Big_Integer (2);
Three : constant Big_Integer := Int_To_Big.To_Big_Integer (3);
Four : constant Big_Integer := Int_To_Big.To_Big_Integer (4);
Ten : constant Big_Integer := Int_To_Big.To_Big_Integer (10);

-- type LFT = (Integer, Integer, Integer, Integer
type LFT is record
Q, R, S, T : Big_Integer;
end record;

-- extr :: LFT -> Integer -> Rational
function Extr (T : LFT; X : Big_Integer) return Big_Rational is
use Big_Integers;
Result : Big_Rational;
begin
-- extr (q,r,s,t) x = ((fromInteger q) * x + (fromInteger r)) /
--                    ((fromInteger s) * x + (fromInteger t))
Big_Rationals.Set_Numerator (Item         => Result,
New_Value    => T.Q * X + T.R,
Canonicalize => False);
Big_Rationals.Set_Denominator (Item      => Result,
New_Value => T.S * X + T.T);
return Result;
end Extr;

-- unit :: LFT
function Unit return LFT is
begin
-- unit = (1,0,0,1)
return LFT'(Q => One, R => Zero, S => Zero, T => One);
end Unit;

-- comp :: LFT -> LFT -> LFT
function Comp (T1, T2 : LFT) return LFT is
use Big_Integers;
begin
-- comp (q,r,s,t) (u,v,w,x) = (q*u+r*w,q*v+r*x,s*u+t*w,s*v+t*x)
return LFT'(Q => T1.Q * T2.Q + T1.R * T2.S,
R => T1.Q * T2.R + T1.R * T2.T,
S => T1.S * T2.Q + T1.T * T2.S,
T => T1.S * T2.R + T1.T * T2.T);
end Comp;

-- lfts = [(k, 4*k+2, 0, 2*k+1) | k<-[1..]
K : Big_Integer := Zero;
function LFTS return LFT is
use Big_Integers;
begin
K := K + One;
return LFT'(Q => K,
R => Four * K + Two,
S => Zero,
T => Two * K + One);
end LFTS;

-- next z = floor (extr z 3)
function Next (T : LFT) return Big_Integer is
begin
return Big_Rationals.To_Big_Integer (Extr (T, Three));
end Next;

-- safe z n = (n == floor (extr z 4)
function Safe (T : LFT; N : Big_Integer) return Boolean is
begin
return N = Big_Rationals.To_Big_Integer (Extr (T, Four));
end Safe;

-- prod z n = comp (10, -10*n, 0, 1)
function Prod (T : LFT; N : Big_Integer) return LFT is
use Big_Integers;
begin
return Comp (LFT'(Q => Ten, R => -Ten * N, S => Zero, T => One), T);
end Prod;

procedure Print_Pi (Digit_Count : Positive) is
Z : LFT := Unit;
Y : Big_Integer;
Count : Natural := 0;
begin
loop
Y := Next (Z);
if Safe (Z, Y) then
Count := Count + 1;
exit when Count >= Digit_Count;
Z := Prod (Z, Y);
else
Z := Comp (Z, LFTS);
end if;
end loop;
end Print_Pi;

N : Positive := 250;
begin
end if;
Print_Pi (N);
end Pi_Digits;


output:

 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7

## ALGOL 68

Translation of: Pascal

Note: This specimen retains the original Pascal coding style of code.

Works with: ALGOL 68 version Revision 1 - no extensions to language used.
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny.

This codes uses 33 decimals places as a test case. Performance is O(2) based on the number of decimal places required.

#!/usr/local/bin/a68g --script #

INT base := 10;

MODE YIELDINT = PROC(INT)VOID;
PROC gen pi digits = (INT decimal places, YIELDINT yield)VOID:
BEGIN
INT nine = base - 1;
INT nines := 0, predigit := 0; # First predigit is a 0 #
[decimal places*10 OVER 3]#LONG# INT digits; # We need 3 times the digits to calculate #
FOR place FROM LWB digits TO UPB digits DO digits[place] := 2 OD; # Start with 2s #
FOR place TO decimal places + 1 DO
INT digit := 0;
FOR i FROM UPB digits BY -1 TO LWB digits DO # Work backwards #
INT x := #SHORTEN#(base*digits[i] + #LENG# digit*i);
digits[i] := x MOD (2*i-1);
digit := x OVER (2*i-1)
OD;
digits[LWB digits] := digit MOD base; digit OVERAB base;
nines :=
IF digit = nine THEN
nines + 1
ELSE
IF digit = base THEN
yield(predigit+1); predigit := 0 ;
FOR repeats TO nines DO yield(0) OD # zeros #
ELSE
IF place NE 1 THEN yield(predigit) FI; predigit := digit;
FOR repeats TO nines DO yield(nine) OD
FI;
0
FI
OD;
yield(predigit)
END;

main:(
INT feynman point = 762; # feynman point + 4 is a good test case #
# the 33rd decimal place is a shorter tricky test case #
INT test decimal places = UPB "3.1415926.......................502"-2;

INT width = ENTIER log(base*(1+small real*10));

# iterate throught the digits as they are being found #
# FOR INT digit IN # gen pi digits(test decimal places#) DO ( #,
## (INT digit)VOID: (
printf(($n(width)d$,digit))
)
# OD #);
print(new line)
)

Output:

3141592653589793238462643383279502


## Arturo

q: 1
r: 0
t: 1
k: 1
n: 3
l: 3
d: 0

dotWritten: false

while [true][
if? (n*t) > (4*q)+r-t [
d: d+1
prints n
unless dotWritten [
prints "."
dotWritten: true
d: d+1
]

if 0 = d%80 -> prints "\n"
nr: 10*(r - n*t)
n: ((10*(r + 3*q)) / t) - 10*n
q: q*10
r: nr
]
else [
nr: (r + 2*q) * l
nn: ((q*(2 + 7*k)) + r*l) / (t*l)
q: q*k
t: t*l
l: l+2
k: k+1
n: nn
r: nr
]
]

Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
59502445945534690830264252230825334468503526193118817101000313783875288658753320
83814206171776691473035982534904287554687311595628638823537875937519577818577805
32171226806613001927876611195909216420198938095257201065485863278865936153381827
96823030195203530185296899577362259941389124972177528347913151557485724245415069
59508295331168617278558890750983817546374649393192550604009277016711390098488240
12858361603563707660104710181942955596198946767837449448255379774726847104047534
64620804668425906949129331367702898915210475216205696602405803815019351125338243
00355876402474964732639141992726042699227967823547816360093417216412199245863150
30286182974555706749838505494588586926995690927210797509302955321165344987202755
96023648066549911988183479775356636980742654252786255181841757467289097777279380
00816470600161452491921732172147723501414419735685481613611573525521334757418494
68438523323907394143334547762416862518983569485562099219222184272550254256887671
79049460165346680498862723279178608578438382796797668145410095388378636095068006
42251252051173929848960841284886269456042419652850222106611863067442786220391949
45047123713786960956364371917287467764657573962413890865832645995813390478027590
...

## AutoHotkey

Library: MPL

Could be optimized with Ipp functions, but runs fast enough for me as-is. Does not work in AHKLx64.

#NoEnv
#SingleInstance, Force
SetBatchLines, -1
#Include mpl.ahk
dot:=".", i:=0
, MP_SET(q, "1")
, MP_SET(r, "0")
, MP_SET(t, "1")
, MP_SET(k, "1")
, MP_SET(n, "3")
, MP_SET(l, "3")
, MP_SET(ONE, "1")
, MP_SET(TWO, "2")
, MP_SET(THREE, "3")
, MP_SET(FOUR, "4")
, MP_SET(SEVEN, "7")
, MP_SET(TEN, "10")

Loop
{
MP_MUL(q4, q, FOUR)
, MP_SUB(q4rt, q4r, t)
, MP_MUL(tn, t, n)
If (MP_CMP(q4rt,tn) = -1)
{
s := MP_DEC(n) . dot
OutputDebug %s%
dot := ""
, i++
, MP_MUL(tn, t, n)
, MP_SUB(rtn, r, tn)
, MP_MUL(nr, rtn, TEN)
, MP_MUL(q3, q, THREE)
, MP_DIV(q3rt, remainder, q3r, t)
, MP_SUB(q3rtn, q3rt, n)
, MP_MUL(n, q3rtn, TEN)
, MP_MUL(tmp, q, TEN)
, MP_CPY(q, tmp)
, MP_CPY(r, nr)
}
Else
{
MP_MUL(q2, q, TWO)
, MP_MUL(nr, q2r, l)
, MP_MUL(k7, k, SEVEN)
, MP_MUL(qk, q, k72)
, MP_MUL(rl, r, l)
, MP_MUL(tl, t, l)
, MP_DIV(nn, remainder, qkrl, tl)
, MP_MUL(tmp, q, k)
, MP_CPY(q, tmp)
, MP_MUL(tmp, t, l)
, MP_CPY(t, tmp)
, MP_CPY(l, tmp)
, MP_CPY(k, tmp)
, MP_CPY(n, nn)
, MP_CPY(r, nr)
}
}


## BASIC

### Applesoft BASIC

10 REM ADOPTED FROM COMMODORE BASIC
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT PD
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT D;: RETURN
510 IF D=0 THEN RETURN
520  PRINT D;".";
530 ND = 0
550 RETURN


### Atari 8-bit

10 REM ADOPTED FROM COMMODORE BASIC
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT PD
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT D;: RETURN
510 IF D=0 THEN RETURN
520 PRINT D;".";
530 ND = 0
550 RETURN


### BASIC256

Translation of: Pascal

cls

n   =1000
len = 10*n \ 4
needdecimal = true
dim a(len)
nines = 0
predigit = 0	# {First predigit is a 0}

for j = 1 to len
next j

for j = 1 to n
q = 0
for i = len to 1 step -1
#  {Work backwards}
x   = 10*a[i-1] + q*i
a[i-1] = x % (2*i - 1)
q    = x \ (2*i - 1)
next i
a[0] = q % 10
q = q \ 10
if q = 9 then
nines = nines + 1
else
if q = 10 then
d = predigit+1: gosub outputd
if nines > 0 then
for k = 1 to nines
d =  0: gosub outputd
next k
end if
predigit = 0
nines = 0
else
d = predigit: gosub outputd
predigit = q
if nines <> 0 then
for k = 1 to nines
d =  9: gosub outputd
next k
nines = 0
end if
end if
end if
next j
print predigit
end

outputd:
if needdecimal then
if d = 0 then return
print d + ".";
needdecimal = false
else
print d;
end if
return

Output:

3.14159265358979323846264338327950288419716939937510582097494459230781...


### Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: Applesoft BASIC
Works with: MSX_BASIC
Works with: QBasic
Translation of: Applesoft BASIC
100 REM adopted from Applesoft BASIC
110 n = 100 : rem n may be increased, but will slow execution
120 ln = int(10*n/3)+16
130 nd = 1
140 dim a(ln)
150 n9 = 0
160 pd = 0 : rem First pre-digit is a 0
170 rem
180 for j = 1 to ln
190   a(j-1) = 2 : rem Start wirh 2S
200 next j
210 rem
220 for j = 1 to n
230   q = 0
240   for i = ln to 1 step -1 : rem Work backwards
250     x = 10*a(i-1)+q*i
260     a(i-1) = x-(2*i-1)*int(x/(2*i-1)) : rem X - Int ( X / Y) * Y
270     q = int(x/(2*i-1))
280   next i
290   a(0) = q-10*int(q/10)
300   q = int(q/10)
310   if q = 9 then n9 = n9+1 : goto 510
320   if q <> 10 then goto 440
330   rem Q == 10
340   d = pd+1 : gosub 560
350   if n9 <= 0 then goto 400
360     for k = 1 to n9
370       d = 0 : gosub 560
380     next k
390   rem End If
400   pd = 0
410   n9 = 0
420   goto 510
430   rem Q <> 10
440   d = pd : gosub 560
450   pd = q
460   if n9 = 0 then goto 510
470     for k = 1 to n9
480       d = 9 : gosub 560
490     next k
500     n9 = 0
510 next j
520 print str$(pd) 530 end 540 rem 550 rem Output digits 560 if nd = 0 then print str$(d); : return
570 if d = 0 then return
580 print str$(d);"."; 590 nd = 0 600 return  ### Commodore BASIC This works with Commodore Basic V2 10 PRINT CHR$(147)
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT RIGHT$(STR$(PD),1)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT RIGHT$(STR$(D),1);: RETURN
510 IF D=0 THEN RETURN
520 PRINT RIGHT$(STR$(D),1);".";
530 ND = 0
550 RETURN


### GW-BASIC

Works with: PC-BASIC version any

The Chipmunk Basic solution works without any changes.

### Integer Basic

Integer version was derived from the Pascal_spigot without any optimisation. It is more than 33% faster than the Applesoft version since it runs natively with integers.

   10 REM  PI CALCULATION WITH SPIGOT
100 N=100: REM MAX N=260 TO AVOID OVERFLOW
110 LEN=(10*N)/3
120 J=0:K=0:Q=0:NINES=0:PREDIGIT=0
125 DIM A(LEN)
130 REM  VARIABLES FOR THE SUB
140 RESULT=0:I=0:X=0
200 REM  MAIN
210 FOR J=1 TO LEN:A(J)=2: NEXT J
230 NINES=0
240 PREDIGIT=0
250 REM  FIRST PREDIGIT =0
260 FOR J=1 TO N
270 I=N-J: GOSUB 1000:Q=RESULT
275 A(1)=Q MOD 10
280 Q=Q/10
290 IF Q=9 THEN NINES=NINES+1
300 IF Q=10 THEN GOSUB 800
310 IF (Q<>9) AND (Q<>10) THEN GOSUB 900
320 NEXT J
330 PRINT PREDIGIT
340 END
800 PRINT PREDIGIT+1;
805 IF NINES=0 THEN GOTO 820
810 FOR K=1 TO NINES: PRINT 0;: NEXT K
820 PREDIGIT=0:NINES=0
830 RETURN
900 PRINT PREDIGIT;
910 PREDIGIT=Q
920 IF NINES<>0 THEN GOSUB 950
930 RETURN
950 FOR K=1 TO NINES: PRINT 9;: NEXT K
960 NINES=0
970 RETURN
1000 I=I*10/3+16
1010 IF I>LEN THEN I=LEN
1020 RESULT=0
1030 REM  REPEAT
1040 X=10*A(I)+RESULT*I
1050 RESULT=X/(2*I-1)
1060 A(I)=X MOD (2*I-1)
1070 I=I-1
1080 IF I>0 THEN GOTO 1040
1090 RETURN


### IS-BASIC

100 PROGRAM "PI.bas"
110 LET N=100 ! Nuber of digits
120 LET LN=INT(10*N/3)+16
130 DIM A(LN)
140 LET PD,N9=0:LET ND=1
150 FOR J=1 TO LN
160   LET A(J-1)=2
170 NEXT
180 FOR J=1 TO N
190   LET Q=0
200   FOR I=LN TO 1 STEP-1
210     LET X=10*A(I-1)+Q*I
220     LET A(I-1)=X-(2*I-1)*INT(X/(2*I-1))
230     LET Q=INT(X/(2*I-1))
240   NEXT
250   LET A(0)=Q-10*INT(Q/10)
260   LET Q=INT(Q/10)
270   SELECT CASE Q
280   CASE 9
290     LET N9=N9+1
300   CASE 10
310     LET D=PD+1:CALL WRITE
320     IF N9>0 THEN
330       FOR K=1 TO N9
340         LET D=0:CALL WRITE
350       NEXT
360     END IF
370     LET PD,N9=0
380   CASE ELSE
390     LET D=PD:CALL WRITE
400     LET PD=Q
410     IF N9<>0 THEN
420       FOR K=1 TO N9
430         LET D=9:CALL WRITE
440       NEXT
450       LET N9=0
460     END IF
470   END SELECT
480 NEXT
490 PRINT STR$(PD)(1) 500 END 510 DEF WRITE 520 IF ND=0 THEN 530 PRINT STR$(D)(1);
540   ELSE IF D<>0 THEN
550     PRINT STR$(D)(1);"."; 560 LET ND=0 570 END IF 580 END DEF ### MSX Basic The Chipmunk Basic solution works without any changes. ### Osborne 1 MBASIC Osborne 1 program is slightly different to allow it to keep the numbers all on the main screen rather than scrolling off to the right... 10 REM ADOPTED FROM COMMODORE BASIC 15 CR=0 20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION 30 LN = INT(10*N/3)+16 40 ND = 1 50 DIM A(LN) 60 N9 = 0 70 PD = 0:REM FIRST PRE-DIGIT IS A 0 80 REM 90 FOR J = 1 TO LN 100 A(J-1) = 2:REM START WITH 2S 110 NEXT J 120 REM 130 FOR J = 1 TO N 140 Q = 0 150 FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS 160 X = 10*A(I-1) + Q*I 170 A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y 180 Q = INT(X/(2*I - 1)) 190 NEXT I 200 A(0) = Q-10*INT(Q/10) 210 Q = INT(Q/10) 220 IF Q=9 THEN N9 = N9 + 1: GOTO 450 240 IF Q<>10 THEN GOTO 350 250 REM Q == 10 260 D = PD+1: GOSUB 500 270 IF N9 <= 0 THEN GOTO 320 280 FOR K = 1 TO N9 290 D = 0: GOSUB 500 300 NEXT K 310 REM END IF 320 PD = 0 330 N9 = 0 335 GOTO 450 340 REM Q <> 10 350 D = PD: GOSUB 500 360 PD = Q 370 IF N9 = 0 THEN GOTO 450 380 FOR K = 1 TO N9 390 D = 9: GOSUB 500 400 NEXT K 410 N9 = 0 450 NEXT J 460 PRINT STR$(PD)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 AND CR<22 THEN PRINT STR$(D);:CR=CR+1: RETURN 502 IF ND=0 AND CR=22 THEN PRINT STR$(D):CR=0: RETURN
510 IF D=0 THEN RETURN
520 PRINT STR$(D);"."; 530 ND = 0 550 RETURN  ### TRS-80 Model 4 BASIC  10 REM ADOPTED FROM COMMODORE BASIC 20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION 30 LN = INT(10*N/3)+16 40 ND = 1 50 DIM A(LN) 60 N9 = 0 70 PD = 0:REM FIRST PRE-DIGIT IS A 0 80 REM 90 FOR J = 1 TO LN 100 A(J-1) = 2:REM START WITH 2S 110 NEXT J 120 REM 130 FOR J = 1 TO N 140 Q = 0 150 FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS 160 X = 10*A(I-1) + Q*I 170 A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y 180 Q = INT(X/(2*I - 1)) 190 NEXT I 200 A(0) = Q-10*INT(Q/10) 210 Q = INT(Q/10) 220 IF Q=9 THEN N9 = N9 + 1: GOTO 450 240 IF Q<>10 THEN GOTO 350 250 REM Q == 10 260 D = PD+1: GOSUB 500 270 IF N9 <= 0 THEN GOTO 320 280 FOR K = 1 TO N9 290 D = 0: GOSUB 500 300 NEXT K 310 REM END IF 320 PD = 0 330 N9 = 0 335 GOTO 450 340 REM Q <> 10 350 D = PD: GOSUB 500 360 PD = Q 370 IF N9 = 0 THEN GOTO 450 380 FOR K = 1 TO N9 390 D = 9: GOSUB 500 400 NEXT K 410 N9 = 0 450 NEXT J 460 PRINT STR$(PD)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT STR$(D);: RETURN 510 IF D=0 THEN RETURN 520 PRINT STR$(D);".";
530 ND = 0
550 RETURN


## BBC BASIC

### BASIC version

      WIDTH 80
M% = (HIMEM-END-1000) / 4
DIM B%(M%)
FOR I% = 0 TO M% : B%(I%) = 20 : NEXT
E% = 0
L% = 2
FOR C% = M% TO 14 STEP -7
D% = 0
A% = C%*2-1
FOR P% = C% TO 1 STEP -1
D% = D%*P% + B%(P%)*&64
B%(P%) = D% MOD A%
D% DIV= A%
A% -= 2
NEXT
CASE TRUE OF
WHEN D% = 99: E% = E% * 100 + D% : L% += 2
WHEN C% = M%: PRINT ;(D% DIV 100) / 10; : E% = D% MOD 100
OTHERWISE:
PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%); E% = D% MOD 100 : L% = 2 ENDCASE NEXT  ### Assembler version The first 250,000 digits output have been verified.  DIM P% 32 [OPT 2 :.pidig mov ebp,eax :.pi1 imul edx,ecx : mov eax,[ebx+ecx*4] imul eax,100 : add eax,edx : cdq : div ebp : mov [ebx+ecx*4],edx mov edx,eax : sub ebp,2 : loop pi1 : mov eax,edx : ret :] WIDTH 80 M% = (HIMEM-END-1000) / 4 DIM B%(M%) : B% = ^B%(0) FOR I% = 0 TO M% : B%(I%) = 20 : NEXT E% = 0 L% = 2 FOR C% = M% TO 14 STEP -7 D% = 0 A% = C%*2-1 D% = USR(pidig) CASE TRUE OF WHEN D% = 99: E% = E% * 100 + D% : L% += 2 WHEN C% = M%: PRINT ;(D% DIV 100) / 10; : E% = D% MOD 100 OTHERWISE: PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%);
E% = D% MOD 100 : L% = 2
ENDCASE
NEXT


Output:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
....


## bc

The digits of Pi are printed 20 per line, by successively recomputing pi with higher precision. The computation is not accurate to the entire scale (for example, scale = 4; 4*a(1) prints 3.1412 instead of the expected 3.1415), so the program includes two excess digits in the scale. Fixed number of guarding digits will eventually fail because Pi can contain arbitrarily long sequence of consecutive 9s (or consecutive 0s), though for this task it might not matter in practice. The program proceeds more and more slowly but exploits bc's unlimited precision arithmetic.

The program uses three features of GNU bc: long variable names, # comments (for the #! line), and the print command (for zero padding).

Library: bc -l
Works with: GNU bc
Works with: OpenBSD bc
#!/usr/bin/bc -l

scaleinc= 20

define zeropad ( n ) {
auto m
for ( m= scaleinc - 1; m > 0; --m ) {
if ( n < 10^m ) {
print "0"
}
}
return ( n )
}

wantscale= scaleinc - 2
scale= wantscale + 2
oldpi= 4*a(1)
scale= wantscale
oldpi= oldpi / 1
oldpi
while( 1 ) {
wantscale= wantscale + scaleinc
scale= wantscale + 2
pi= 4*a(1)
scale= 0
digits= ((pi - oldpi) * 10^wantscale) / 1
scale= wantscale
oldpi= pi / 1
}


Output:

3.141592653589793238
46264338327950288419
71693993751058209749
44592307816406286208
99862803482534211706
79821480865132823066
47093844609550582231
72535940812848111745
02841027019385211055
59644622948954930381
96442881097566593344
61284756482337867831
65271201909145648566
92346034861045432664
82133936072602491412
73724587006606315588
17488152092096282925
40917153643678925903
60011330530548820466
52138414695194151160
94330572703657595919
....


## Bracmat

Translation of: Icon_and_Unicon
  ( pi
=   f,q r t k n l,first
.   !arg:((=?f),?q,?r,?t,?k,?n,?l)
& yes:?first
&   whl
' (   4*!q+!r+-1*!t+-1*!n*!t:<0
& f$!n & ( !first:yes & f$"."
& no:?first
|
)
& "compute and update variables for next cycle"
& 10*(!r+-1*!n*!t):?nr
& div$(10*(3*!q+!r).!t)+-10*!n:?n & !q*10:?q & !nr:?r | "compute and update variables for next cycle" & (2*!q+!r)*!l:?nr & div$(!q*(7*!k+2)+!r*!l.!t*!l):?nn
& !q*!k:?q
& !t*!l:?t
& !l+2:?l
& !k+1:?k
& !nn:?n
& !nr:?r
)
)
& pi$((=.put$!arg),1,0,1,1,3,3)

Output:

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
73724587006606315588174881520...

## C

There are many ways to do this, with quite different performance profiles. A simple measurement of 6 programs:

Digits Spigot 1 Spigot 2 Machin 1 Machin 2 AGM Chudnovsky
1,000 0.008 0.009 0.001 0.001 0.000 0.000
10,000 0.402 0.589 0.020 0.016 0.003 0.002
100,000 39.400 85.600 1.740 1.480 0.084 0.002
1,000,000 177.900 156.800 1.474 0.333
10,000,000 25.420 5.715

Using Machin's formula. The "continuous printing" part is silly: the algorithm really calls for a preset number of digits, so the program repeatedly calculates Pi digits with increasing length and chop off leading digits already displayed. But it's still faster than the unbounded Spigot method by an order of magnitude, at least for the first 100k digits.

#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>

mpz_t tmp1, tmp2, t5, t239, pows;
void actan(mpz_t res, unsigned long base, mpz_t pows)
{
int i, neg = 1;
mpz_tdiv_q_ui(res, pows, base);
mpz_set(tmp1, res);
for (i = 3; ; i += 2) {
mpz_tdiv_q_ui(tmp1, tmp1, base * base);
mpz_tdiv_q_ui(tmp2, tmp1, i);
if (mpz_cmp_ui(tmp2, 0) == 0) break;
if (neg) mpz_sub(res, res, tmp2);
neg = !neg;
}
}

char * get_digits(int n, size_t* len)
{
mpz_ui_pow_ui(pows, 10, n + 20);

actan(t5, 5, pows);
mpz_mul_ui(t5, t5, 16);

actan(t239, 239, pows);
mpz_mul_ui(t239, t239, 4);

mpz_sub(t5, t5, t239);
mpz_ui_pow_ui(pows, 10, 20);
mpz_tdiv_q(t5, t5, pows);

*len = mpz_sizeinbase(t5, 10);
return mpz_get_str(0, 0, t5);
}

int main(int c, char **v)
{
unsigned long accu = 16384, done = 0;
size_t got;
char *s;

mpz_init(tmp1);
mpz_init(tmp2);
mpz_init(t5);
mpz_init(t239);
mpz_init(pows);

while (1) {
s = get_digits(accu, &got);

/* write out digits up to the last one not preceding a 0 or 9*/
got -= 2; /* -2: length estimate may be longer than actual */
while (s[got] == '0' || s[got] == '9') got--;

printf("%.*s", (int)(got - done), s + done);
free(s);

done = got;

/* double the desired digits; slows down at least cubically */
accu *= 2;
}

return 0;
}


## C#

Translation of: Java
using System;
using System.Numerics;

namespace PiCalc {
internal class Program {
private readonly BigInteger FOUR = new BigInteger(4);
private readonly BigInteger SEVEN = new BigInteger(7);
private readonly BigInteger TEN = new BigInteger(10);
private readonly BigInteger THREE = new BigInteger(3);
private readonly BigInteger TWO = new BigInteger(2);

private BigInteger k = BigInteger.One;
private BigInteger l = new BigInteger(3);
private BigInteger n = new BigInteger(3);
private BigInteger q = BigInteger.One;
private BigInteger r = BigInteger.Zero;
private BigInteger t = BigInteger.One;

public void CalcPiDigits() {
BigInteger nn, nr;
bool first = true;
while (true) {
if ((FOUR*q + r - t).CompareTo(n*t) == -1) {
Console.Write(n);
if (first) {
Console.Write(".");
first = false;
}
nr = TEN*(r - (n*t));
n = TEN*(THREE*q + r)/t - (TEN*n);
q *= TEN;
r = nr;
} else {
nr = (TWO*q + r)*l;
nn = (q*(SEVEN*k) + TWO + r*l)/(t*l);
q *= k;
t *= l;
l += TWO;
k += BigInteger.One;
n = nn;
r = nr;
}
}
}

private static void Main(string[] args) {
new Program().CalcPiDigits();
}
}
}


using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

namespace EnumeratePi {
class Program {
private const int N = 60;
private const string ZS = " +-";
static void Main() {
Console.WriteLine("Digits of PI");
Console.WriteLine(new string('=', N + 13));

Console.WriteLine("Decimal    : {0}", string.Concat(PiDigits(10).Take(N).Select(_ => _.ToString("d"))));
Console.WriteLine("Binary     : {0}", string.Concat(PiDigits(2).Take(N).Select(_ => _.ToString("d"))));
Console.WriteLine("Quaternary : {0}", string.Concat(PiDigits(4).Take(N).Select(_ => _.ToString("d"))));
Console.WriteLine("Octal      : {0}", string.Concat(PiDigits(8).Take(N).Select(_ => _.ToString("d"))));
Console.WriteLine("Alphabetic : {0}", string.Concat(PiDigits(26).Take(N).Select(_ => (char) ('A' + _))));
Console.WriteLine("Fun        : {0}", string.Concat(PiDigits(ZS.Length).Take(N).Select(_ => ZS[(int)_])));

Console.WriteLine("Nibbles    : {0}", string.Concat(PiDigits(0x10).Take(N/2).Select(_ => string.Format("{0:x1} ", _))));
Console.WriteLine("Bytes      : {0}", string.Concat(PiDigits(0x100).Take(N/3).Select(_ => string.Format("{0:x2} ", _))));
Console.WriteLine("Words      : {0}", string.Concat(PiDigits(0x10000).Take(N/5).Select(_ => string.Format("{0:x4} ", _))));
Console.WriteLine("Dwords     : {0}", string.Concat(PiDigits(0x100000000).Take(N/9).Select(_ => string.Format("{0:x8} ", _))));

Console.WriteLine(new string('=', N + 13));
Console.WriteLine("* press any key to exit *");
}

/// <summary>Enumerates the digits of PI.</summary>
/// <param name="b">Base of the Numeral System to use for the resulting digits (default = Base.Decimal (10)).</param>
/// <returns>The digits of PI.</returns>
static IEnumerable<long> PiDigits(long b = 10) {
BigInteger
k = 1,
l = 3,
n = 3,
q = 1,
r = 0,
t = 1
;

// skip integer part
var nr = b * (r - t * n);
n = b * (3 * q + r) / t - b * n;
q *= b;
r = nr;

for (; ; ) {
var tn = t * n;
if (4 * q + r - t < tn) {
yield return (long)n;
nr = b * (r - tn);
n = b * (3 * q + r) / t - b * n;
q *= b;
} else {
t *= l;
nr = (2 * q + r) * l;
var nn = (q * (7 * k) + 2 + r * l) / t;
q *= k;
l += 2;
++k;
n = nn;
}
r = nr;
}
}
}
}

Output:
Digits of PI
=========================================================================
Decimal    : 141592653589793238462643383279502884197169399375105820974944
Binary     : 001001000011111101101010100010001000010110100011000010001101
Quaternary : 021003331222202020112203002031030103012120220232000313001303
Octal      : 110375524210264302151423063050560067016321122011160210514763
Alphabetic : DRSQLOLYRTRODNLHNQTGKUDQGTUIRXNEQBCKBSZIVQQVGDMELMUEXROIQIYA
Fun        :  + -++ +---- + -++  -+++++ --+----- +++- +-+-+-+-  +-++  +
Nibbles    : 2 4 3 f 6 a 8 8 8 5 a 3 0 8 d 3 1 3 1 9 8 a 2 e 0 3 7 0 7 3
Bytes      : 24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44 a4 09 38 22
Words      : 243f 6a88 85a3 08d3 1319 8a2e 0370 7344 a409 3822 299f 31d0
Dwords     : 243f6a88 85a308d3 13198a2e 03707344 a4093822 299f31d0
=========================================================================
* press any key to exit *

## C++

#include <iostream>
#include <boost/multiprecision/cpp_int.hpp>

using namespace boost::multiprecision;

class Gospers
{
cpp_int q, r, t, i, n;

public:

// use Gibbons spigot algorith based on the Gospers series
Gospers() : q{1}, r{0}, t{1}, i{1}
{
++*this; // move to the first digit
}

// the ++ prefix operator will move to the next digit
Gospers& operator++()
{
n = (q*(27*i-12)+5*r) / (5*t);

while(n != (q*(675*i-216)+125*r)/(125*t))
{
r = 3*(3*i+1)*(3*i+2)*((5*i-2)*q+r);
q = i*(2*i-1)*q;
t = 3*(3*i+1)*(3*i+2)*t;
i++;

n = (q*(27*i-12)+5*r) / (5*t);
}

q = 10*q;
r = 10*r-10*n*t;

return *this;
}

// the dereference operator will give the current digit
int operator*()
{
return (int)n;
}
};

int main()
{
Gospers g;

std::cout << *g << ".";  // print the first digit and the decimal point

for(;;) // run forever
{
std::cout << *++g;  // increment to the next digit and print
}
}

Output:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862 . . .


## Clojure

Translation of: Python
(ns pidigits
(:gen-class))

(def calc-pi
;  integer division rounding downwards to -infinity
(let [div (fn [x y] (long (Math/floor (/ x y))))

; Computations performed after yield clause in Python code
update-after-yield (fn [[q r t k n l]]
(let [nr (* 10 (- r (* n t)))
nn (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n))
nq (* 10 q)]
[nq nr t k nn l]))

; Update of else clause in Python code: if (< (- (+ (* 4 q) r) t) (* n t))
update-else (fn [[q r t k n l]]
(let [nr (* (+ (* 2 q) r) l)
nn (div (+ (* q 7 k) 2 (* r l)) (* t l))
nq (* k q)
nt (* l t)
nl (+ 2 l)
nk (+ 1 k)]
[nq nr nt nk nn nl]))

; Compute the lazy sequence of pi digits translating the Python code
pi-from (fn pi-from [[q r t k n l]]
(if (< (- (+ (* 4 q) r) t) (* n t))
(lazy-seq (cons n (pi-from (update-after-yield [q r t k n l]))))
(recur (update-else [q r t k n l]))))]

; Use Clojure big numbers to perform the math (avoid integer overflow)
(pi-from [1N 0N 1N 1N 3N 3N])))

;; Indefinitely Output digits of pi, with 40 characters per line
(doseq [[i q] (map-indexed vector calc-pi)]
(when (= (mod i 40) 0)
(println))
(print q))

Output:
3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
...


## Common Lisp

(defun pi-spigot ()
(labels
((g (q r t1 k n l)
(cond
((< (- (+ (* 4 q) r) t1)
(* n t1))
(princ n)
(g (* 10 q)
(* 10 (- r (* n t1)))
t1
k
(- (floor (/ (* 10 (+ (* 3 q) r))
t1))
(* 10 n))
l))
(t
(g (* q k)
(* (+ (* 2 q) r) l)
(* t1 l)
(+ k 1)
(floor (/ (+ (* q (+ (* 7 k) 2))
(* r l))
(* t1 l)))
(+ l 2))))))
(g 1 0 1 1 3 3)))

Output:
CL-USER> (pi-spigot)
3141592653589793238462643383279502884197169399375105820974944592307816406286 ...

## Crystal

Translation of: Ruby
require "big"

def pi
q, r, t, k, n, l = [1, 0, 1, 1, 3, 3].map { |n| BigInt.new(n) }
dot_written = false
loop do
if 4*q + r - t < n*t
yield n
unless dot_written
yield '.'
dot_written = true
end
nr = 10*(r - n*t)
n = ((10*(3*q + r)) / t) - 10*n
q *= 10
r = nr
else
nr = (2*q + r) * l
nn = (q*(7*k + 2) + r*l) / (t*l)
q *= k
t *= l
l += 2
k += 1
n = nn
r = nr
end
end
end

pi { |digit_or_dot| print digit_or_dot; STDOUT.flush }

Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286 ...

## D

This modified Spigot algorithm does not continue infinitely, because its required memory grow as the number of digits need to print.

import std.stdio, std.conv, std.string;

struct PiDigits {
immutable uint nDigits;

int opApply(int delegate(ref string /*chunk of pi digit*/) dg){
// Maximum width for correct output, for type ulong.
enum size_t width = 9;

enum ulong scale = 10UL ^^ width;
enum ulong initDigit = 2UL * 10UL ^^ (width - 1);
enum string formatString = "%0" ~ text(width) ~ "d";

immutable size_t len = 10 * nDigits / 3;
auto arr = new ulong[len];
arr[] = initDigit;
ulong carry;

foreach (i; 0 .. nDigits / width) {
ulong sum;
foreach_reverse (j; 0 .. len) {
auto quo = sum * (j + 1) + scale * arr[j];
arr[j] = quo % (j*2 + 1);
sum = quo / (j*2 + 1);
}
auto yield = format(formatString, carry + sum/scale);
if (dg(yield))
break;
carry = sum % scale;
}
return 0;
}
}

void main() {
foreach (d; PiDigits(100))
writeln(d);
}

Output:
314159265
358979323
846264338
327950288
419716939
937510582
097494459
230781640
628620899
862803482
534211706

### Alternative version

import std.stdio, std.bigint;

void main() {
int ndigits = 0;
auto q = BigInt(1);
auto r = BigInt(0);
auto t = q;
auto k = q;
auto n = BigInt(3);
auto l = n;

bool first = true;
while (ndigits < 1_000) {
if (4 * q + r - t < n * t) {
write(n); ndigits++;
if (ndigits % 70 == 0) writeln();
if (first) { first = false; write('.'); }
auto nr = 10 * (r - n * t);
n = ((10 * (3 * q + r)) / t) - 10 * n;
q *= 10;
r = nr;
} else {
auto nr = (2    * q + r) * l;
auto nn = (q * (7 * k + 2) + r * l) / (t * l);
q *= k;
t *= l;
l += 2;
k++;
n = nn;
r = nr;
}
}
}

Output:
3.141592653589793238462643383279502884197169399375105820974944592307816
4062862089986280348253421170679821480865132823066470938446095505822317
2535940812848111745028410270193852110555964462294895493038196442881097
5665933446128475648233786783165271201909145648566923460348610454326648
2133936072602491412737245870066063155881748815209209628292540917153643
6789259036001133053054882046652138414695194151160943305727036575959195
3092186117381932611793105118548074462379962749567351885752724891227938
1830119491298336733624406566430860213949463952247371907021798609437027
7053921717629317675238467481846766940513200056812714526356082778577134
2757789609173637178721468440901224953430146549585371050792279689258923
5420199561121290219608640344181598136297747713099605187072113499999983
7297804995105973173281609631859502445945534690830264252230825334468503
5261931188171010003137838752886587533208381420617177669147303598253490
4287554687311595628638823537875937519577818577805321712268066130019278
76611195909216420198

## Delphi

Translation of: BBC BASIC

250,000 digits of pi on a BBC micro is pretty impressive, so a translation of the BBC code has been used for this Delphi 7 solution. A Delphi TMemo replaces the BBC screen, and the output is copied from the TMemo to a disk file at the end of the program.

The number of digits written depends on the variable M, and is found by experiment to be very close to 2*M/7. The value of M is limited by the danger of overflow in D, which can approach (but doesn't exceed) 400*M.

With M = floor( (2^31 - 1)/400 ), the Delphi version writes 1,533,913 decimal places, which have been verified against [sorry, defeated by the captcha as usual]

introcs dot cs dot princeton dot edu slash java slash data slash pi-10million.txt

unit Pi_BBC_Main;

interface

uses
Classes, Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)
btnRunSpigotAlgo: TButton;
memScreen: TMemo;
procedure btnRunSpigotAlgoClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
private
fScreenWidth : integer;
fLineBuffer : string;
procedure ClearText();
procedure AddText( const s : string);
procedure FlushText();
end;

var
Form1: TForm1;

implementation

{$R *.dfm} uses SysUtils; // Button clicked to run algorithm procedure TForm1.btnRunSpigotAlgoClick(Sender: TObject); var // BBC Basic variables. Delphi longint is 32 bits. B : array of longint; A, C, D, E, I, L, M, P : longint; // Added for Delphi version temp : string; h, j, t : integer; begin fScreenWidth := 80; ClearText(); M := 5368709; // floor( (2^31 - 1)/400 ) // DIM B%(M%) in BBC Basic declares an array [0..M%], i.e. M% + 1 elements SetLength( B, M + 1); for I := 0 to M do B[I] := 20; E := 0; L := 2; // FOR C% = M% TO 14 STEP -7 // In Delphi (or at least Delphi 7) the step size in a for loop has to be 1. // So the BBC Basic FOR loop has been replaced by a repeat loop. C := M; repeat D := 0; A := C*2 - 1; for P := C downto 1 do begin D := D*P + B[P]*$64; // hex notation copied from BBC version
B[P] := D mod A;
D := D div A;
dec( A, 2);
end;

// The BBC CASE statement here amounts to a series of if ... else
if (D = 99) then begin
E := E*100 + D;
inc( L, 2);
end
else if (C = M) then begin
AddText( SysUtils.Format( '%2.1f', [1.0*(D div 100) / 10.0] ));
E := D mod 100;
end
else begin
// PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%); // This can't be done so concisely in Delphi 7 SetLength( temp, L); for j := 1 to L do temp[j] := '0'; temp := temp + SysUtils.IntToStr( E + D div 100); t := Length( temp); AddText( Copy( temp, t - L + 1, L)); E := D mod 100; L := 2; end; dec( C, 7); until (C < 14); FlushText(); // Delphi addition: Write screen output to a file for checking h := SysUtils.FileCreate( 'C:\Delphi\PiDigits.txt'); // h = file handle for j := 0 to memScreen.Lines.Count - 1 do SysUtils.FileWrite( h, memScreen.Lines[j][1], Length( memScreen.Lines[j])); SysUtils.FileClose( h); end; {=========================== Auxiliary routines ===========================} // Form created procedure TForm1.FormCreate(Sender: TObject); begin fScreenWidth := 80; // in case not set by the algotithm ClearText(); end; // This Delphi version builds each screen line in a buffer and puts // the line into the TMemo when the buffer is full. // This is faster than writing to the TMemo a few characters at a time, // but note that the buffer must be flushed at the end of the program. procedure TForm1.ClearText(); begin memScreen.Lines.Clear(); fLineBuffer := ''; end; procedure TForm1.AddText( const s : string); var nrChars, nrLeft : integer; begin nrChars := Length( s); nrLeft := fScreenWidth - Length( fLineBuffer); // nr chars left in line if (nrChars <= nrLeft) then fLineBuffer := fLineBuffer + s else begin fLineBuffer := fLineBuffer + Copy( s, 1, nrLeft); memScreen.Lines.Add( fLineBuffer); fLineBuffer := Copy( s, nrLeft + 1, nrChars - nrLeft); end; end; procedure TForm1.FlushText(); begin if (Length(fLineBuffer) > 0) then begin memScreen.Lines.Add( fLineBuffer); fLineBuffer := ''; end; end; end.  Output: 3.141592653589793238462643383279502884197169399375105820974944592307816406286208 99862803482534211706798214808651328230664709384460955058223172535940812848111745 02841027019385211055596446229489549303819644288109756659334461284756482337867831 ...  ## EDSAC order code The task is impossible if taken literally, because a program with finite memory cannot generate a non-repeating infinite sequence. Like many of the solutions posted here, this program implements the spigot algorithm of Rabinowitz and Wagon. The code takes up 192 EDSAC locations, leaving 832 for storage, which is enough for 252 correct digits of pi. With only a few changes (noted in the comments), the same code can be used to output the first 2070 digits of e. [EDSAC program, Initial Orders 2. Calculates digits of pi by spigot algorithm. Easily edited to calculate digits of e (see "if pi" and "if e" in comments). Based on http://pi314.net/eng/goutte.php See also https://www.cut-the-knot.org/Curriculum/Algorithms/SpigotForPi.shtml Uses 17-bit values throughout. Array index and counters are stored in the address field, i.e. with the least significant bit in bit 1. For integer arithmetic, the least significant bit is bit 0. Variables don't need to be initialized at load time, so they overwrite locations 6..12 of initial orders to save space.] [6] P F [index into remainder array] [7] P F [carry in the spigot algorithm] [8] P F [negative count of digits] [9] P F [pending digit, always < 9] [10] P F [negative count of pending 9's] [11] P F [9 or 0 in top 5 bits, for printing] [12] P F [negative count of characters in current line] [Array corresponding to Remainder row on http://pi314.net/eng/goutte.php] T 53 K [refer to array via B parameter] P 13 F [start array immediately after variables] [Subroutine for short (17-bit) integer division. Input: dividend at 4F, divisor at 5F. Output: remainder at 4F, quotient at 5F. Working locations 0F, 1F. 37 locations.] T 987 K GKA3FT34@A5FUFT35@A4FRDS35@G13@T1FA35@LDE4@T1FT5FA4FS35@G22@ T4FA5FA36@T5FT1FAFS35@E34@T1FA35@RDT35@A5FLDT5FE15@EFPFPD T 845 K G K [Constants] [Enter the editable numbers as addresses, e.g. P 100 F for 100. Reducing the maximum array index will make the program take less time. A maximum index of 831 (i.e. using all available memory) will give 252 correct digits of pi, or 2070 correct digits of e.] [0] P 831 F [maximum array index <-- EDIT HERE, don't exceed 831] [1] P 252 F [number of digits <-- EDIT HERE] [2] P 72 F [digits per line <-- EDIT HERE] [3] P D [short-value 1] [4] P 5 F [short-value 10] [5] J F [10*(2^12)] [6] X F [add to T order to make V order] [7] M F [used to convert T order to A order] [8] # F [figures shift (for printer)] [9] @ F [carriage return] [10] & F [line feed] [Main routine. Enter with acc = 0.] [11] O 8 @ [set printer to figures; also used to print '9'] S 2 @ [load negative characters per line] T 12 F [initialize character count] S 1 @ [load negated number of digits] T 8 F [initialize digit count] T 10 F [clear negative count of 9's] S 2 F [load -2 (any value < -1 would do)] T 9 F [initialize digit buffer] [Start algorithm: fill the remainder array with 2's (or 1's for e) The code is a bit neater if we work backwards.] A @ [maximum index] [20] A 81 @ [make T order for array entry] T 23 @ [plant in code] [if pi] A 2 F [acc := 2] [if e] [A 3 @] [acc := 1] [23] T F [store in array entry] A 23 @ [dec address in array] S 2 F S 81 @ [finished array?] E 20 @ [loop back if not Outer loop. Here for next digit.] [28] T F [clear acc] [Multiply remainder array by 10. NB To preserve integer scaling, we need product times 2^16.] H 5 @ [mult reg := 10*(2^12)] A @ [acc := maximum index] [31] A 81 @ [make T order for array entry] U 37 @ [plant in code] A 6 @ [convert to V order, same address] T 35 @ [plant in code] [35] V F [acc := array entry * 10*(2^12)] L 4 F [shift to complete mult by 10*(2^16)] [37] T F [store result in array] A 37 @ [load T order] S 2 F [dec address] S 81 @ [test for done] E 31 @ [loop back if not] T F [clear acc] T 7 F [clear carry] A @ [acc := maximum index] T 6 F [initialize array index] [Inner loop to get next digit. Work backwards through remainder array.] [46] T F [clear acc] A 6 F [load index] A 81 @ [make T order for array entry] U 61 @ [plant in code] A 7 @ [convert to A order] T 52 @ [plant in code] [52] A F [load array element] A 7 F [add carry from last time round loop] T 4 F [sum to 4F for division routine] A 6 F [acc := index as address = 2*(index as integer)] [if pi] A 3 @ [plus 1] [if e] [R D] [shift right, address --> integer] T 5 F [to 5F for division routine (for e, 5F = index/2)] [58] A 58 @ [call routine to divide 4F by 5F] G 987 F A 4 F [load remainder] [61] T F [update element of remainder array] [if pi: 4 orders] H 5 F [mult reg := quotient] V 6 F [multiply by index NB need to shift 15 left to preserve integer scaling] L F [shift 13 left] L 1 F [shift 2 more left (for e, just use quotient) [if e: 1 order, plus 3 no-ops to keep addresses the same] [A 5 F] [load quotient] [XF XF XF] T 7 F [update carry for next time round loop] A 6 F [load index] S 2 F [decrement] U 6 F [store back] [We want to terminate after doing index = 1] S 2 F [dec again] E 46 @ [jump back if index >= 1] [Treatment of index = 0 is different] T F [clear acc] A B [load rem{0)] A 7 F [add carry] T 4 F [sum to 4F for division routine] A 4 @ [load 10] T 5 F [to 5F for division routine] [78] A 78 @ [call division routine] G 987 F A 4 F [load remainder] [81] T B [store in rem{0}; also used to manufacture orders] [82] A 82 @ [call subroutine to deal with quotient (clears acc)] G 93 @ A 8 F [load negative digit count] A 2 F [increment] U 8 F [store back] G 28 @ [if not yet 0, loop for next digit] [Fake a zero digit to flush the last genuine digit(s)] T 5 F [store fake digit 0 in 5F] [89] A 89 @ [call subroutine to deal with digit] G 93 @ O 8 @ [set figures: dummy character to flush print buffer] Z F [stop] [Subroutine to handle buffering and printing of digits. Here with quotient from spigot algorithm still in 5F. The quotient at 5F is usually the new decimal digit. But the quotient can be 10, in which case we must treat it as 0 and ripple a carry through the previously-computed digits. Hence the need for buffering.] [93] A 3 F [make and plant return link] T 130 @ A 5 F [load quotient] S 4 @ [subtract 10] E 105 @ [jump if quotient >= 10] A 3 @ [add 1] G 109 @ [jump if quotient < 9] [Here if quotient = 9. Update count of 9's, don't do anything with the buffer.] T F [clear acc] A 10 F [load negative count of 9's] S 2 F [subtract 1] T 10 F [update count] E 130 @ [exit with acc = 0] [Here if quotient >= 10. Take digit = quotient - 10, and ripple a carry through the buffered digits.] [105] T 5 F [store (quotient - 10) formed above] T 11 F [store 0 to print '0' not '9'] A 3 @ [add 1 to buffered digit] E 112 @ [join common code] [Here if quotient < 9. Flush the stored digits.] [109] T F [clear acc] A 11 @ [load any O order (code for O is 9)] T 11 F [store to print '9'] [112] A 9 F [load buffered digit, plus 1 if quotient >= 10] G 118 @ [skip printing if buffer is empty] L 1024 F [shift digits to top 5 bits] T 1 F [store in 1F for printing] [116] A 116 @ [call print routine] G 131 @ [118] T F [clear acc] A 5 F [load quotient (possibly modified as above)] T 9 F [store in buffer] [121] A 10 F [load negative count of 9's] E 130 @ [if none, exit with acc = 0] A 2 F [inc count] T 10 F A 11 F [load 9 (or 0 if there's a carry)] T 1 F [to 1F for printing] [127] A 127 @ [call print routine (clears acc)] G 131 @ E 121 @ [jump back (always)] [130] E F [return to caller] [Subroutine to print character at 1F. Also prints CR LF if necessary.] [131] A 3 F [make and plant link for return] T 141 @ A 12 F [load negative character count] G 138 @ [jump if not end of line] S 2 @ [reset character count] O 9 @ [print CR LF] O 10 @ [138] O 1 F [print character] A 2 F [add 1] T 12 F [141] E F E 11 Z [define entry point] P F [acc = 0 on entry] Output: 314159265358979323846264338327950288419716939937510582097494459230781640 628620899862803482534211706798214808651328230664709384460955058223172535 940812848111745028410270193852110555964462294895493038196442881097566593 344612847564823378678316527120190914  ## Elixir Translation of: Erlang defmodule Pi do def calc, do: calc(1,0,1,1,3,3,0) defp calc(q,r,t,k,n,l,c) when c==50 do IO.write "\n" calc(q,r,t,k,n,l,0) end defp calc(q,r,t,k,n,l,c) when (4*q + r - t) < n*t do IO.write n calc(q*10, 10*(r-n*t), t, k, div(10*(3*q+r), t) - 10*n, l, c+1) end defp calc(q,r,t,k,_n,l,c) do calc(q*k, (2*q+r)*l, t*l, k+1, div(q*7*k+2+r*l, t*l), l+2, c) end end Pi.calc  Output: Hit Ctrl-C to stop it. C:\Elixir>elixir pi.exs 31415926535897932384626433832795028841971693993751 05820974944592307816406286208998628034825342117067 98214808651328230664709384460955058223172535940812 84811174502841027019385211055596446229489549303819 64428810975665933446128475648233786783165271201909 14564856692346034861045432664821339360726024914127 37245870066063155881748815209209628292540917153643 67892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854 80744623799627495673518857527248912279381830119491 29833673362440656643086021394946395224737190702179 86094370277053921717629317675238467481846766940513 20005681271452635608277857713427577896091736371787 214684409012249534301  ## Erlang % Implemented by Arjun Sunel -module(pi_calculation). -export([main/0]). main() -> pi(1,0,1,1,3,3,0). pi(Q,R,T,K,N,L,C) -> if C=:=50 -> io:format("\n"), pi(Q,R,T,K,N,L,0) ; true -> if (4*Q + R-T) < (N*T) -> io:format("~p",[N]), P = 10*(R-N*T), pi(Q*10 , P, T , K , ((10*(3*Q+R)) div T)-10*N , L,C+1); true -> P = (2*Q+R)*L, M = (Q*(7*K)+2+(R*L)) div (T*L), H = L+2, J =K+ 1, pi(Q*K, P , T*L ,J,M,H,C) end end.  Output: 31415926535897932384626433832795028841971693993751 05820974944592307816406286208998628034825342117067 98214808651328230664709384460955058223172535940812 84811174502841027019385211055596446229489549303819 64428810975665933446128475648233786783165271201909 14564856692346034861045432664821339360726024914127 37245870066063155881748815209209628292540917153643 67892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854 80744623799627495673518857527248912279381830119491 29833673362440656643086021394946395224737190702179 86094370277053921717629317675238467481846766940513 20005681271452635608277857713427577896091736371787 21468440901224953430146549585371050792279689258923 54201995611212902196086403441815981362977477130996 05187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188 17101000313783875288658753320838142061717766914730 35982534904287554687311595628638823537875937519577 81857780532171226806613001927876611195909216420198 93809525720106548586327886593615338182796823030195 20353018529689957736225994138912497217752834791315 15574857242454150695950829533116861727855889075098 38175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374 4944825537977472684710404753464620 ## F# ### Translation of Haskell Translation of: Haskell let rec g q r t k n l = seq { if 4I*q+r-t < n*t then yield n yield! (g (10I*q) (10I*(r-n*t)) t k ((10I*(3I*q+r))/t - 10I*n) l) else yield! (g (q*k) ((2I*q+r)*l) (t*l) (k+1I) ((q*(7I*k+2I)+r*l)/(t*l)) (l+2I)) } let π = (g 1I 0I 1I 1I 3I 3I) Seq.take 1 π |> Seq.iter (printf "%A.") // 6 digits beginning at position 762 of π are '9' Seq.take 767 (Seq.skip 1 π) |> Seq.iter (printf "%A")  Output: 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999 ### As an Unfold Haskell can probably do this as an unfold, it has not so I shall in F# // Generate Pi as above using unfold. Nigel Galloway: March 15th., 2022 let π()=Seq.unfold(fun(q,r,t,k,n,l)->Some(if 4I*q+r-t < n*t then(Some(int n),((10I*q),(10I*(r-n*t)),t,k,((10I*(3I*q+r))/t-10I*n),l)) else (None,((q*k),((2I*q+r)*l),(t*l),(k+1I),((q*(7I*k+2I)+r*l)/(t*l)),(l+2I)))))(1I,0I,1I,1I,3I,3I)|>Seq.choose id π()|>Seq.take 767|>Seq.iter(printf "%d")  ## Factor Translation of: Oforth USING: combinators.extras io kernel locals math prettyprint ; IN: rosetta-code.pi :: calc-pi-digits ( -- ) 1 0 1 1 3 3 :> ( q! r! t! k! n! l! ) [ 4 q * r + t - n t * < [ n pprint flush r n t * - 10 * 3 q * r + 10 * t /i n 10 * - n! r! q 10 * q! ] [ 2 q * r + l * 7 k * q * 2 + r l * + t l * /i n! r! k q * q! t l * t! l 2 + l! k 1 + k! ] if ] forever ; MAIN: calc-pi-digits  ## Fortran This is a modernized version of the example Fortran programme written by S. Rabinowitz in 1991. It works in base 100000 and the key step is the initialisation of all elements of VECT to 2. The format code of I5.5 means I5 output but with all leading spaces made zero so that 66 comes out as "00066", not " 66". program pi implicit none integer,dimension(3350) :: vect integer,dimension(201) :: buffer integer :: more,karray,num,k,l,n more = 0 vect = 2 do n = 1,201 karray = 0 do l = 3350,1,-1 num = 100000*vect(l) + karray*l karray = num/(2*l - 1) vect(l) = num - karray*(2*l - 1) end do k = karray/100000 buffer(n) = more + k more = karray - k*100000 end do write (*,'(i2,"."/(1x,10i5.5))') buffer end program pi  The output is accumulated in BUFFER then written in one go at the end, but it could be written as successive values as each is calculated without much extra nitpickery: instead of BUFFER(N) = MORE + K for example just WRITE (*,"(I5.5)") MORE + K and no need for array BUFFER. 3. 14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989  This is an alternate version using an unbounded spigot. Higher precision is accomplished by using the Fortran Multiple Precision Library, FMLIB (http://myweb.lmu.edu/dmsmith/fmlib.html), provided by Dr. David M. Smith (dsmith@lmu.edu), Mathematics Professor (Emeritus) at Loyola Marymount University. We use the default precision which is about 50 significant digits. !================================================ program pi_spigot_unbounded !================================================ do call print_next_pi_digit() end do contains !------------------------------------------------ subroutine print_next_pi_digit() !------------------------------------------------ use fmzm type (im) :: q, r, t, k, n, l, nr logical :: dot=.false., init=.false. save :: q, r, t, k, n, l if (.not.init) then q=to_im(1) r=to_im(0) t=to_im(1) k=to_im(1) n=to_im(3) l=to_im(3) init=.true. end if if (4*q+r-t < n*t) then write(6,fmt='(i1)',advance='no') to_int(n) if (.not.dot) then write(6,fmt='(a1)',advance='no') '.' dot=.true. end if flush(6) nr = 10 * ( r - n*t ) n = 10 * ( (3*q + r) / t - n ) q = 10 * q r = nr else nr = (2*q + r) * l n = ( (q * (7*k + 2) + r*l) / (t*l) ) q = q * k t = t * l l = l + 2 k = k + 1 r = nr end if end subroutine end program  ## FreeBASIC Library: GMP ' version 05-07-2018 ' compile with: fbc -s console ' unbounded spigot ' Ctrl-c to end program or close console window #Include "gmp.bi" Dim As UInteger num, ndigit, fp = Not 0 Dim As mpz_ptr q,r,t,k,n,l,tmp1,tmp2 q = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(q,1) r = Allocate(Len(__Mpz_struct)) : Mpz_init(r) t = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(t,1) k = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(k,1) n = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(n,3) l = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(l,3) tmp1 = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp1) tmp2 = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp2) Do mpz_mul_2exp(tmp1, q, 2) mpz_add(tmp1,tmp1,r) mpz_sub(tmp1,tmp1,t) mpz_mul(tmp2, n, t) If mpz_cmp(tmp1, tmp2) < 0 Then Print mpz_get_ui(n); : ndigit += 1 : If ndigit Mod 50 = 0 Then Print " :";ndigit If fp Then Print "."; : fp = Not fp : Print :ndigit = 0 mpz_sub(tmp1, r, tmp2) mpz_mul_ui(tmp1, tmp1, 10) mpz_mul_ui(tmp2, q, 3) mpz_add(tmp2, tmp2, r) mpz_mul_ui(tmp2, tmp2, 10) mpz_set(r, tmp1) mpz_mul_ui(tmp1, n, 10) mpz_tdiv_q(tmp2, tmp2, t) mpz_sub(n, tmp2, tmp1) mpz_mul_ui(q, q, 10) Else mpz_mul(tmp2, r, l) mpz_mul(tmp1, q, k) mpz_mul_ui(tmp1, tmp1, 7) mpz_add(tmp1, tmp1, tmp2) mpz_mul_2exp(tmp2, q, 1) mpz_add(tmp2, tmp2, r) mpz_mul(tmp2, tmp2, l) mpz_mul(t, t, l) mpz_tdiv_q(tmp1, tmp1, t) mpz_mul(q, q, k) mpz_add_ui(k, k, 1) mpz_add_ui(l, l, 2) mpz_set(n, tmp1) mpz_set(r, tmp2) End If Loop Output: 3. 14159265358979323846264338327950288419716939937510 :50 58209749445923078164062862089986280348253421170679 :100 82148086513282306647093844609550582231725359408128 :150 48111745028410270193852110555964462294895493038196 :200 44288109756659334461284756482337867831652712019091 :250 ...... 59284936959414340814685298150539471789004518357551 :20300 54125223590590687264878635752541911288877371766374 :20350 86027660634960353679470269232297186832771739323619 :20400 20077745221262475186983349515101986426988784717193 :20450 96649769070825217423365662725928440620430214113719 :20500 ## FunL The code for compute_pi() is from [2]. The number of digits may be given on the command line as an argument. If there's no argument, the program will run until interrupted. def compute_pi = def g( q, r, t, k, n, l ) = if 4*q + r - t < n*t n # g( 10*q, 10*(r - n*t), t, k, (10*(3*q + r))\t - 10*n, l ) else g( q*k, (2*q + r)*l, t*l, k + 1, (q*(7*k + 2) + r*l)$$t*l), l + 2 ) g( 1, 0, 1, 1, 3, 3 ) if _name_ == '-main-' print( compute_pi().head() + '.' ) if args.isEmpty() for d <- compute_pi().tail() print( d ) else for d <- compute_pi().tail().take( int(args(0)) ) print( d ) println() ## FutureBasic This old-school code still works on Mac OS Monterey and is expected to work on Ventura, but it needs a modern refactoring. _maxlong = 0x7fffffff begin globals long kf, ks xref mf(_maxLong - 1) as long xref ms(_maxLong - 1) as long long cnt, n, temp, nd long col, col1 long lloc, stor(50) end globals local mode local fn FmtStr( nn as long, s as Str255 ) as Str255 long l Str255 f l = s[0] select case case ( nn => l ) : f = string( nn-l, 32 ) + s case ( -nn > l ) : f = s + string( -nn-l, 32 ) case else : f = s end select end fn = f local mode local fn FmtInt( nn as long, s as Str255 ) as Str255 if ( left( s, 1 ) = " " ) then s = mid( s, 2 ) end fn = fn FmtStr( nn, s ) local fn yprint( m as long ) if ( cnt < n ) col++ if ( col == 11 ) col = 1 col1++ if ( col1 == 6 ) col1 = 0 print print fn FmtInt( 4, str( m mod 10) ); else print fn FmtInt( 3, str (m mod 10) ); end if else print mid( str( m ), 2 ) ; end if end if cnt++ end fn local fn xprint( m as long ) long ii, wk, wk1 if ( m < 8 ) ii = 1 while ( ii <= lloc ) fn yprint( stor(ii) ) ii++ wend lloc = 0 else if ( m > 9 ) wk = m / 10 m = m mod 10 wk1 = lloc while ( wk1 >= 1 ) wk += stor(wk1) stor(wk1) = wk mod 10 wk = wk/10 wk1-- wend end if end if lloc++ stor(lloc) = m end fn local mode local fn shift( l1 as ^long, l2 as ^long, lp as long, lmod as long ) long k if ( l2.nil& > 0 ) k = ( l2.nil& ) / lmod else k = -( -l2.nil& / lmod ) - 1 end if l2.nil& = l2.nil& - k*lmod l1.nil& = l1.nil& + k*lp end fn local fn Main( nDig as long ) long i n = nDig stor(0) = 0 mf = fn malloc( ( n + 10 ) * sizeof(long) ) if ( 0 == mf ) then stop "Out of memory" ms = fn malloc( ( n + 10 ) * sizeof(long) ) if ( 0 == ms ) then stop "Out of memory" print : printf @"Approximation of π to %ld digits", n cnt = 0 kf = 25 ks = 57121 mf(1) = 1 i = 2 while ( i <= n ) mf(i) = -16 mf(i + 1) = 16 i += 2 wend i = 1 while ( i <= n ) ms(i) = -4 ms(i + 1) = 4 i += 2 wend print : print " 3."; while ( cnt < n ) i = 0 i++ while ( i <= n - cnt ) mf(i) = mf(i) * 10 ms(i) = ms(i) * 10 i++ wend i = ( n - cnt + 1 ) i-- while ( i >= 2 ) temp = 2 * i - 1 fn shift( @mf(i - 1), @mf(i), temp - 2, temp * kf ) fn shift( @ms(i - 1), @ms(i), temp - 2, temp * ks ) i-- wend nd = 0 fn shift( @nd, @mf(1), 1, 5 ) fn shift( @nd, @ms(1), 1, 239 ) fn xprint( nd ) wend print : print "Done" fn free( ms ) fn free( mf ) end fn window 1 CFTimeInterval t t = fn CACurrentMediaTime // Here we specify the number of decimal places fn Main( 4000 ) print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000 HandleEvents Output:  Approximation of π to 4000 digits 3.1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989 3809525720 1065485863 2788659361 5338182796 8230301952 0353018529 6899577362 2599413891 2497217752 8347913151 5574857242 4541506959 5082953311 6861727855 8890750983 8175463746 4939319255 0604009277 0167113900 9848824012 8583616035 6370766010 4710181942 9555961989 4676783744 9448255379 7747268471 0404753464 6208046684 2590694912 9331367702 8989152104 7521620569 6602405803 8150193511 2533824300 3558764024 7496473263 9141992726 0426992279 6782354781 6360093417 2164121992 4586315030 2861829745 5570674983 8505494588 5869269956 9092721079 7509302955 3211653449 8720275596 0236480665 4991198818 3479775356 6369807426 5425278625 5181841757 4672890977 7727938000 8164706001 6145249192 1732172147 7235014144 1973568548 1613611573 5255213347 5741849468 4385233239 0739414333 4547762416 8625189835 6948556209 9219222184 2725502542 5688767179 0494601653 4668049886 2723279178 6085784383 8279679766 8145410095 3883786360 9506800642 2512520511 7392984896 0841284886 2694560424 1965285022 2106611863 0674427862 2039194945 0471237137 8696095636 4371917287 4677646575 7396241389 0865832645 9958133904 7802759009 9465764078 9512694683 9835259570 9825822620 5224894077 2671947826 8482601476 9909026401 3639443745 5305068203 4962524517 4939965143 1429809190 6592509372 2169646151 5709858387 4105978859 5977297549 8930161753 9284681382 6868386894 2774155991 8559252459 5395943104 9972524680 8459872736 4469584865 3836736222 6260991246 0805124388 4390451244 1365497627 8079771569 1435997700 1296160894 4169486855 5848406353 4220722258 2848864815 8456028506 0168427394 5226746767 8895252138 5225499546 6672782398 6456596116 3548862305 7745649803 5593634568 1743241125 1507606947 9451096596 0940252288 7971089314 5669136867 2287489405 6010150330 8617928680 9208747609 1782493858 9009714909 6759852613 6554978189 3129784821 6829989487 2265880485 7564014270 4775551323 7964145152 3746234364 5428584447 9526586782 1051141354 7357395231 1342716610 2135969536 2314429524 8493718711 0145765403 5902799344 0374200731 0578539062 1983874478 0847848968 3321445713 8687519435 0643021845 3191048481 0053706146 8067491927 8191197939 9520614196 6342875444 0643745123 7181921799 9839101591 9561814675 1426912397 4894090718 6494231961 5679452080 9514655022 5231603881 9301420937 6213785595 6638937787 0830390697 9207734672 2182562599 6615014215 0306803844 7734549202 6054146659 2520149744 2850732518 6660021324 3408819071 0486331734 6496514539 0579626856 1005508106 6587969981 6357473638 4052571459 1028970641 4011097120 6280439039 7595156771 5770042033 7869936007 2305587631 7635942187 3125147120 5329281918 2618612586 7321579198 4148488291 6447060957 5270695722 0917567116 7229109816 9091528017 3506712748 5832228718 3520935396 5725121083 5791513698 8209144421 0067510334 6711031412 6711136990 8658516398 3150197016 5151168517 1437657618 3515565088 4909989859 9823873455 2833163550 7647918535 8932261854 8963213293 3089857064 2046752590 7091548141 6549859461 6371802709 8199430992 4488957571 2828905923 2332609729 9712084433 5732654893 8239119325 9746366730 5836041428 1388303203 8249037589 8524374417 0291327656 1809377344 4030707469 2112019130 2033038019 7621101100 4492932151 6084244485 9637669838 9522868478 3123552658 2131449576 8572624334 4189303968 6426243410 7732269780 2807318915 4411010446 8232527162 0105265227 2111660396 Done Elapsed time: 729.405 ms  ## Go Code below is a simplistic translation of Haskell code in Unbounded Spigot Algorithms for the Digits of Pi. This is the algorithm specified for the pidigits benchmark of the Computer Language Benchmarks Game. (The standard Go distribution includes source submitted to the benchmark site, and that code runs stunning faster than the code below.) package main import ( "fmt" "math/big" ) type lft struct { q,r,s,t big.Int } func (t *lft) extr(x *big.Int) *big.Rat { var n, d big.Int var r big.Rat return r.SetFrac( n.Add(n.Mul(&t.q, x), &t.r), d.Add(d.Mul(&t.s, x), &t.t)) } var three = big.NewInt(3) var four = big.NewInt(4) func (t *lft) next() *big.Int { r := t.extr(three) var f big.Int return f.Div(r.Num(), r.Denom()) } func (t *lft) safe(n *big.Int) bool { r := t.extr(four) var f big.Int if n.Cmp(f.Div(r.Num(), r.Denom())) == 0 { return true } return false } func (t *lft) comp(u *lft) *lft { var r lft var a, b big.Int r.q.Add(a.Mul(&t.q, &u.q), b.Mul(&t.r, &u.s)) r.r.Add(a.Mul(&t.q, &u.r), b.Mul(&t.r, &u.t)) r.s.Add(a.Mul(&t.s, &u.q), b.Mul(&t.t, &u.s)) r.t.Add(a.Mul(&t.s, &u.r), b.Mul(&t.t, &u.t)) return &r } func (t *lft) prod(n *big.Int) *lft { var r lft r.q.SetInt64(10) r.r.Mul(r.r.SetInt64(-10), n) r.t.SetInt64(1) return r.comp(t) } func main() { // init z to unit z := new(lft) z.q.SetInt64(1) z.t.SetInt64(1) // lfts generator var k int64 lfts := func() *lft { k++ r := new(lft) r.q.SetInt64(k) r.r.SetInt64(4*k+2) r.t.SetInt64(2*k+1) return r } // stream for { y := z.next() if z.safe(y) { fmt.Print(y) z = z.prod(y) } else { z = z.comp(lfts()) } } }  ## Groovy Translation of: Java Solution: BigInteger q = 1, r = 0, t = 1, k = 1, n = 3, l = 3 String nn boolean first = true while (true) { (nn, first, q, r, t, k, n, l) = (4*q + r - t < n*t) \ ? ["{n}{first?'.':''}", false, 10*q, 10*(r - n*t), t , k , 10*(3*q + r)/t - 10*n , l ] \ : ['' , first, q*k , (2*q + r)*l , t*l, k + 1, (q*(7*k + 2) + r*l)/(t*l), l + 2] print nn }  Output (thru first 1000 iterations): 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337 ## Haskell The code from [3]: pi_ = g (1, 0, 1, 1, 3, 3) where g (q, r, t, k, n, l) = if 4 * q + r - t < n * t then n : g ( 10 * q , 10 * (r - n * t) , t , k , div (10 * (3 * q + r)) t - 10 * n , l) else g ( q * k , (2 * q + r) * l , t * l , k + 1 , div (q * (7 * k + 2) + r * l) (t * l) , l + 2)  ### Complete command-line program Works with: GHC version 7.4.1 #!/usr/bin/runhaskell import Control.Monad import System.IO pi_ = g(1,0,1,1,3,3) where g (q,r,t,k,n,l) = if 4*q+r-t < n*t then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l) else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2) digs = insertPoint digs' where insertPoint (x:xs) = x:'.':xs digs' = map (head . show) pi_ main = do hSetBuffering stdout BlockBuffering Just 80 forM_ digs putChar  Output: 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198  ### Quicker, Unverified Algorithm Snippet verbatim from source .pdf: piG3 = g(1,180,60,2) where g(q,r,t,i) = let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t)) in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)  This is more efficient because each term converges in less than one step, so no checking needs to be done partway through the iteration. Only caveat is that the convergence is on average slightly over one digit, so there is a chance that, if one checked enough digits, one may find a gap where a digit would be incorrect. Though it seems to be OK for the first 100k digits, or so. Output is the same. link to complete program at tio.run ## Icon and Unicon Translation of: PicoLisp based on Jeremy Gibbons' Haskell solution. procedure pi (q, r, t, k, n, l) first := "yes" repeat { # infinite loop if (4*q+r-t < n*t) then { suspend n if (\first) := &null then suspend "." # compute and update variables for next cycle nr := 10*(r-n*t) n := ((10*(3*q+r)) / t) - 10*n q *:= 10 r := nr } else { # compute and update variables for next cycle nr := (2*q+r)*l nn := (q*(7*k+2)+r*l) / (t*l) q *:= k t *:= l l +:= 2 k +:= 1 n := nn r := nr } } end procedure main () every (writes (pi (1,0,1,1,3,3))) end  ## J pi=: 3 :0 echo"0 '3.1' i=. 0 while. i=. i + 1 do. echo -/ 1 10 * <.@o. 10x ^ 1 0 + i end. )  Example use:  pi'' 3 . 1 4 1 5 9 2 6 5 3 ...  ## Java Translation of: Icon import java.math.BigInteger ; public class Pi { final BigInteger TWO = BigInteger.valueOf(2) ; final BigInteger THREE = BigInteger.valueOf(3) ; final BigInteger FOUR = BigInteger.valueOf(4) ; final BigInteger SEVEN = BigInteger.valueOf(7) ; BigInteger q = BigInteger.ONE ; BigInteger r = BigInteger.ZERO ; BigInteger t = BigInteger.ONE ; BigInteger k = BigInteger.ONE ; BigInteger n = BigInteger.valueOf(3) ; BigInteger l = BigInteger.valueOf(3) ; public void calcPiDigits(){ BigInteger nn, nr ; boolean first = true ; while(true){ if(FOUR.multiply(q).add(r).subtract(t).compareTo(n.multiply(t)) == -1){ System.out.print(n) ; if(first){System.out.print(".") ; first = false ;} nr = BigInteger.TEN.multiply(r.subtract(n.multiply(t))) ; n = BigInteger.TEN.multiply(THREE.multiply(q).add(r)).divide(t).subtract(BigInteger.TEN.multiply(n)) ; q = q.multiply(BigInteger.TEN) ; r = nr ; System.out.flush() ; }else{ nr = TWO.multiply(q).add(r).multiply(l) ; nn = q.multiply((SEVEN.multiply(k))).add(TWO).add(r.multiply(l)).divide(t.multiply(l)) ; q = q.multiply(k) ; t = t.multiply(l) ; l = l.add(TWO) ; k = k.add(BigInteger.ONE) ; n = nn ; r = nr ; } } } public static void main(String[] args) { Pi p = new Pi() ; p.calcPiDigits() ; } }  Output : 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480 ... ## JavaScript ### Spigot Algorithm Calculate one digit of π at a time and write it out. process.stdout.write will work in Node.js; to make this work in a browser, change it to document.body.textContent += . let q = 1n, r = 180n, t = 60n, i = 2n; for (;;) { let y = (q*(27n*i-12n)+5n*r)/(5n*t); let u = 3n*(3n*i+1n)*(3n*i+2n); r = 10n*u*(q*(5n*i-2n)+r-y*t); q = 10n*q*i*(2n*i-1n); t = t*u; i = i+1n; process.stdout.write(y.toString()); if (i === 3n) { process.stdout.write('.'); } }  ### Web Page version This shows how to load the previous code into a webpage that writes digits out without freezing the browser <html><head><script src='https://rawgit.com/andyperlitch/jsbn/v1.1.0/index.js'></script></head> <body style="width: 100%"><tt id="pi"></tt><tt>...</tt> <script async defer> function bi(n, b) { return new jsbn.BigInteger(n.toString(), b ? b : 10); }; var one=bi(1), two=bi(2), three=bi(3), four=bi(4), seven=bi(7), ten=bi(10); function calcPi() { var q=bi(1), r=bi(0), t=bi(1), k=bi(1), n=bi(3), l=bi(3); var digit=0, firstrun=1; var p=document.getElementById('pi'); function w(s) { p.appendChild(document.createTextNode(s));} function continueCalcPi(q, r, t, k, n, l) { while (true) { if (q.multiply(four).add(r).subtract(t).compareTo(n.multiply(t)) < 0) { w(n.toString()); if (digit==0 && firstrun==1) { w('.'); firstrun=0; }; digit = (digit+1) % 256; var nr = (r.subtract(n.multiply(t))).multiply(ten); n = (q.multiply(three).add(r)).multiply(ten).divide(t).subtract(n.multiply(ten)); q = q.multiply(ten); r = nr; if (digit%8==0) { if (digit%64==0) { p.appendChild(document.createElement('br')); } w(' '); return setTimeout(function() { continueCalcPi(q, r, t, k, n, l); }, 50); }; } else { var nr = q.shiftLeft(1).add(r).multiply(l); var nn = q.multiply(k).multiply(seven).add(two).add(r.multiply(l)).divide(t.multiply(l)); q = q.multiply(k); t = t.multiply(l); l = l.add(two); k = k.add(one); n = nn; r = nr; } } } continueCalcPi(q, r, t, k, n, l); } calcPi(); </script> </body></html>  ### Web Page using BigInt Above converted to use BigInt <html> <head> </head> <body style="width: 100%"> <tt id="pi"></tt> <tt>...</tt> <script async defer> function calcPi() { let q=1n, r=0n, t=1n, k=1n, n=3n, l=3n, nr, nn, digit=0, firstrun=1; const p=document.getElementById('pi'); function w(s) { p.appendChild(document.createTextNode(s));} // function continueCalcPi(q, r, t, k, n, l) { // (see note) function continueCalcPi() { while (true) { if (q*4n+r-t < n*t) { w(n.toString()); if (digit==0 && firstrun==1) { w('.'); firstrun=0; }; digit = (digit+1) % 256; nr = (r-n*t)*10n; n = (q*3n+r)*10n/t-n*10n; q *= 10n; r = nr; if (digit%8==0) { if (digit%64==0) { p.appendChild(document.createElement('br')); } w('\xA0'); // return setTimeout(function() { continueCalcPi(q, r, t, k, n, l); }, 50); return setTimeout(continueCalcPi, 50); }; } else { nr = (q*2n+r)*l; nn = (q*k*7n+2n+r*l)/(t*l); q *= k; t *= l; l += 2n; k += 1n; n = nn; r = nr; } } } continueCalcPi(q, r, t, k, n, l); } calcPi(); </script> </body> </html>  Note: removing the parameters to continueCalcPi() as shown may eat (even) more memory, not entirely sure about that. ### Simple Approximation Returns an approximation of Pi. var calcPi = function() { var n = 20000; var pi = 0; for (var i = 0; i < n; i++) { var temp = 4 / (i*2+1); if (i % 2 == 0) { pi += temp; } else { pi -= temp; } } return pi; }  ## jq Works with: jq version 1.4 The focus in this section is on the Gibbons spigot algorithm as it is relatively simple and therefore provides a gentle introduction to how such algorithms can be implemented in jq. Since the Gibbons algorithm quickly fails in the absence of support for large integers, we shall assume BigInt support, such as provided by BigInt.jq. The jq program presented here closely follows the Groovy and Python examples on this page. The spigot generator is named "next", and is driven by an annotation function, "decorate"; thus the main program is just "S0 | decorate(next)" where S0 is the initial state. One advantage of this approach is that the generator's state is exposed, thus making it easy to restart the stream at any point. The annotation defined here results in a triple for each digit of pi: [index, digit, space], where "space" is the sum of the lengths of the strings in the six-dimensional state vector, [q, r, t, k, n, l]. The output shows that the space requirements of the Gibbons spigot grow very slightly more than linearly. # The Gibbons spigot, in the mold of the [[#Groovy]] and [[#Python]] programs shown on this page. # The "bigint" functions needed are: # long_minus long_add long_multiply long_div def pi_spigot: # S is the sixtuple: # q r t k n l # 0 1 2 3 4 5 def long_lt(x;y): if x == y then false else lessOrEqual(x;y) end; def check: long_lt(long_minus(long_add(long_multiply("4"; .[0]); .[1]) ; .[2]); long_multiply(.[4]; .[2])); # state: [d, S] where digit is null or a digit ready to be printed def next: .[1] as S | S[0] as q | S[1] as r | S[2] as t | S[3] as k | S[4] as n | S[5] as l | if S|check then [n, [long_multiply("10"; q), long_multiply("10"; long_minus(r; long_multiply(n;t))), t, k, long_minus( long_div(long_multiply("10";long_add(long_multiply("3"; q); r)); t ); long_multiply("10";n)), l ]] else [null, [long_multiply(q;k), long_multiply( long_add(long_multiply("2";q); r); l), long_multiply(t;l), long_add(k; "1"), long_div( long_add(long_multiply(q; long_add(long_multiply("7";k); "2")) ; long_multiply(r;l)); long_multiply(t;l) ), long_add(l; "2") ]] end; # Input: input to the filter "nextstate" # Output: [count, space, digit] for successive digits produced by "nextstate" def decorate( nextstate ): # For efficiency it is important that the recursive # function have arity 0 and be tail-recursive: def count: .[0] as count | .[1] as state | state[0] as value | (state[1] | map(length) | add) as space | (if value then [count, space, value] else empty end), ( [if value then count+1 else count end, (state | nextstate)] | count); [0, .] | count; # q=1, r=0, t=1, k=1, n=3, l=3 [null, ["1", "0", "1", "1", "3", "3"]] | decorate(next) ; pi_spigot Output:  jq -M -n -c -f pi.bigint.jq [0,9,"3"] [1,14,"1"] [2,29,"4"] [3,36,"1"] [4,51,"5"] [5,69,"9"] [6,80,"2"] [7,95,"6"] [8,115,"5"] [9,125,"3"] [10,142,"5"] [11,167,"8"] [12,181,"9"] [13,197,"7"] [14,226,"9"] [15,245,"3"] [16,263,"2"] [17,276,"3"] [18,300,"8"] [19,320,"4"] [20,350,"6"] [21,363,"2"] [22,383,"6"] [23,408,"4"] [24,429,"3"] [25,442,"3"] [26,475,"8"] [27,502,"3"] [28,510,"2"] [29,531,"7"] [30,563,"9"] [31,611,"5"] [32,613,"0"] [33,628,"2"] [34,649,"8"] [35,676,"8"] [36,711,"4"] [37,720,"1"] [38,748,"9"] [39,783,"7"] [40,792,"1"] [41,814,"6"] [42,849,"9"] [43,870,"3"] [44,886,"9"] [45,923,"9"] [46,939,"3"] [47,967,"7"] [48,1004,"5"] [49,1041,"1"] [50,1043,"0"] [51,1059,"5"] [52,1103,"8"] [53,1133,"2"] [54,1135,"0"] [55,1165,"9"] [56,1195,"7"] [57,1212,"4"] [58,1242,"9"] [59,1273,"4"] [60,1297,"4"] [61,1313,"5"] [62,1358,"9"] [63,1375,"2"] [64,1421,"3"] [65,1423,"0"] [66,1447,"7"] [67,1493,"8"] [68,1501,"1"] [69,1533,"6"] [70,1579,"4"] [71,1581,"0"] [72,1613,"6"] [73,1630,"2"] [74,1662,"8"] [75,1701,"6"] [76,1733,"2"] [77,1735,"0"] [78,1781,"8"] [79,1792,"9"] [80,1816,"9"] [81,1849,"8"] [82,1889,"6"] [83,1898,"2"] [84,1961,"8"] [85,1963,"0"] [86,1988,"3"] [87,2013,"4"] [88,2054,"8"] [89,2071,"2"] [90,2104,"5"] [91,2129,"3"] [92,2162,"4"] [93,2195,"2"] [94,2220,"1"] [95,2230,"1"] [96,2287,"7"] [97,2289,"0"] [98,2314,"6"] [99,2340,"7"] [100,2373,"9"] [101,2414,"8"] [102,2448,"2"] [103,2458,"1"] [104,2484,"4"] [105,2534,"8"] [106,2536,"0"] [107,2569,"8"] [108,2602,"6"] [109,2645,"5"] [110,2662,"1"] [111,2696,"3"] [112,2707,"2"] [113,2756,"8"] [114,2775,"2"] [115,2825,"3"] [116,2827,"0"] [117,2853,"6"] [118,2887,"6"] [119,2914,"4"] [120,2964,"7"] [121,2966,"0"] [122,3008,"9"] [123,3027,"3"] [124,3061,"8"] [125,3088,"4"] [126,3114,"4"] [127,3165,"6"] [128,3167,"0"] [129,3202,"9"] [130,3237,"5"] [131,3287,"5"] [132,3289,"0"] [133,3316,"5"] [134,3360,"8"] [135,3387,"2"] [136,3414,"2"] [137,3456,"3"] [138,3466,"1"] [139,3510,"7"] [140,3529,"2"] [141,3564,"5"] [142,3583,"3"] [143,3610,"5"] [144,3653,"9"] [145,3697,"4"] [146,3699,"0"] [147,3752,"8"] [148,3770,"1"] [149,3789,"2"] [150,3825,"8"] [151,3852,"4"] [152,3905,"8"] [153,3933,"1"] [154,3960,"1"] [155,3970,"1"] [156,4006,"7"] [157,4033,"4"] [158,4102,"5"] [159,4104,"0"] [160,4124,"2"] [161,4159,"8"] [162,4203,"4"] [163,4248,"1"] [164,4250,"0"] [165,4269,"2"] [166,4348,"7"] [167,4350,"0"] [168,4361,"1"] [169,4405,"9"] [170,4424,"3"] [171,4460,"8"] [172,4497,"5"] [173,4542,"2"] [174,4569,"1"] [175,4605,"1"] [176,4607,"0"] [177,4644,"5"] [178,4672,"5"] [179,4691,"5"] [180,4727,"9"] [181,4764,"6"] [182,4792,"4"] [183,4820,"4"] [184,4865,"6"] [185,4893,"2"] [186,4913,"2"] [187,4949,"9"] [188,4968,"4"] [189,5005,"8"] [190,5042,"9"] [191,5070,"5"] [192,5098,"4"] [193,5144,"9"] [194,5198,"3"] [195,5200,"0"] [196,5219,"3"] [197,5266,"8"] [198,5276,"1"] [199,5313,"9"] [200,5350,"6"] [201,5387,"4"] [202,5416,"4"] [203,5435,"2"] [204,5471,"8"] [205,5526,"8"] [206,5556,"1"] [207,5558,"0"] [208,5594,"9"] [209,5632,"7"] [210,5660,"5"] [211,5689,"6"] [212,5726,"6"] [213,5746,"5"] [214,5792,"9"] [215,5821,"3"] [216,5849,"3"] [217,5887,"4"] [218,5906,"4"] [219,5961,"6"] [220,5981,"1"] [221,6002,"2"] [222,6038,"8"] [223,6068,"4"] [224,6096,"7"] [225,6134,"5"] [226,6163,"6"] [227,6191,"4"] [228,6238,"8"] [229,6267,"2"] [230,6296,"3"] [231,6316,"3"] [232,6344,"7"] [233,6383,"8"] [234,6411,"6"] [235,6440,"7"] [236,6487,"8"] [237,6525,"3"] [238,6545,"1"] [239,6574,"6"] [240,6621,"5"] [241,6641,"2"] [242,6688,"7"] [243,6717,"1"] [244,6782,"2"] [245,6784,"0"] [246,6795,"1"] [247,6852,"9"] [248,6854,"0"] [249,6910,"9"] [250,6929,"1"] [251,6959,"4"] [252,6988,"5"] [253,7027,"6"] [254,7046,"4"] [255,7085,"8"] [256,7115,"5"] [257,7153,"6"] [258,7181,"6"] [259,7229,"9"] [260,7258,"2"] [261,7288,"3"] [262,7317,"4"] [263,7383,"6"] [264,7385,"0"] [265,7415,"3"] [266,7435,"4"] [267,7474,"8"] [268,7530,"6"] [269,7569,"1"] [270,7571,"0"] [271,7609,"4"] [272,7639,"5"] [273,7678,"4"] [274,7716,"3"] [275,7736,"2"] [276,7766,"6"] [277,7805,"6"] [278,7826,"4"] [279,7873,"8"] [280,7912,"2"] [281,7933,"1"] [282,7971,"3"] [283,7991,"3"] [284,8030,"9"] [285,8060,"3"] [286,8118,"6"] [287,8120,"0"] [288,8168,"7"] [289,8189,"2"] [290,8264,"6"] [291,8266,"0"] [292,8287,"2"] [293,8317,"4"] [294,8374,"9"] [295,8395,"1"] [296,8443,"4"] [297,8464,"1"] [298,8485,"2"] [299,8524,"7"] [300,8544,"3"] [301,8593,"7"] [302,8623,"2"] ...  ## Julia Julia comes with built-in support for computing π in arbitrary precision (using the GNU MPFR library). This implementation computes π at precisions that are repeatedly doubled as more digits are needed, printing one digit at a time and never terminating (until it runs out of memory) as specified: let prec = precision(BigFloat), spi = "", digit = 1 while true if digit > lastindex(spi) prec *= 2 setprecision(prec) spi = string(big(π)) end print(spi[digit]) digit += 1 end end  Output: 3.141592653589793238462643383279502884195e69399375105820974944592307816406286198e9862803482534211706798214808651328230664709384460955058223172535940812848115e450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724586997e0631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526357e8277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201... ## Kotlin Translation of: Java // version 1.1.2 import java.math.BigInteger val ZERO = BigInteger.ZERO val ONE = BigInteger.ONE val TWO = BigInteger.valueOf(2L) val THREE = BigInteger.valueOf(3L) val FOUR = BigInteger.valueOf(4L) val SEVEN = BigInteger.valueOf(7L) val TEN = BigInteger.TEN fun calcPi() { var nn: BigInteger var nr: BigInteger var q = ONE var r = ZERO var t = ONE var k = ONE var n = THREE var l = THREE var first = true while (true) { if (FOUR * q + r - t < n * t) { print(n) if (first) { print ("."); first = false } nr = TEN * (r - n * t) n = TEN * (THREE * q + r) / t - TEN * n q *= TEN r = nr } else { nr = (TWO * q + r) * l nn = (q * SEVEN * k + TWO + r * l) / (t * l) q *= k t *= l l += TWO k += ONE n = nn r = nr } } } fun main(args: Array<String>) = calcPi()  Output: 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745...  ## Lambdatalk 1) We can build a lambdatalk function using the lib_BN javascript library. {require lib_BN} {def genpi {def genpi.loop {lambda {:n :pi :q :r :t :i :z} {if {> :z :n} then :pi else {let { {:n :n} {:pi :pi} {:q :q} {:r :r} {:t :t} {:i :i} {:z :z} {:digit {BN./ {BN.+ {BN.* {BN.- {BN.* :i 27} 12} :q} {BN.* :r 5} } {BN.* :t 5} } } {:u {BN.* {BN.+ {BN.* :i 3} 1} {BN.* 3 {BN.+ {BN.* :i 3} 2} } } } } {genpi.loop :n {BN.+ :pi :digit} {BN.* {BN.* :q 1} {BN.* :i {BN.- {BN.* :i 2} 1} }} {BN.* {BN.* :u 1} {BN.+ {BN.* :q {BN.- {BN.* :i 5} 2} } {BN.- :r {BN.* :t :digit} }}} {BN.* :t :u} {BN.+ :i 1} {+ :z 1}} }}}} {lambda {:n} {genpi.loop :n # 1 180 60 2 0} }} -> genpi We can generate π with 72 digits in about 500ms. {BN.DEC 72} -> 72 digits {genpi 60} -> 3.141592653589793238462643383279502884197169399375105820974944592307816406  To go further the best is to build a javascript primitive using the script special form. {script LAMBDATALK.DICT["spigot"] = function() { function generateDigitsOfPi(max) { var pi = ""; var z = 0; var q = 1n; var r = 180n; var t = 60n; var i = 2n; while (z < max) { var digit = ((i * 27n - 12n) * q + r * 5n) / (t * 5n); pi += digit; var u = (i * 3n + 1n) * 3n * (i * 3n + 2n); r = u * 10n * (q * (i * 5n - 2n) + (r - t * digit)); q = q * 10n * i * (i * 2n - 1n); i = i + 1n; t = t * u; z++; } return pi } var args = arguments[0].trim(); return generateDigitsOfPi( args ); }; } We can generate 1000 digits of π in about 70ms 3.{W.rest {spigot 100}} -> 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198  ## Lasso #!/usr/bin/lasso9 define generatePi => { yield currentCapture local(r = array(), i, k, b, d, c = 0, x) with i in generateSeries(1, 2800) do #r->insert(2000) with k in generateSeries(2800, 1, -14) do { #d = 0 #i = #k while(true) => { #d += #r->get(#i) * 10000 #b = 2 * #i - 1 #r->get(#i) = #d % #b #d /= #b #i-- !#i ? loop_abort #d *= #i } #x = (#c + #d / 10000) yield (#k == 2800 ? ((#x * 0.001)->asstring(-precision = 3)) | #x->asstring(-padding=4, -padChar='0')) #c = #d % 10000 } } local(pi_digits) = generatePi loop(200) => { stdout(#pi_digits()) }  Output (first 100 places): 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067  ## Liberty BASIC Pretty slow if you run for over 100 digits...  ndigits = 0 q = 1 r = 0 t = q k = q n = 3 L = n first = 666 ' ANY non-zero =='true' in LB. while ndigits <100 if ( 4 *q +r -t) <( n *t) then print n; ndigits =ndigits +1 if not( ndigits mod 40) then print: print " "; if first =666 then first = 0: print "."; nr =10 *( r -n *t) n =int( ( (10 *( 3 *q +r)) /t) -10 *n) q =q *10 r =nr else nr =( 2 *q +r) *L nn =(q *( 7 *k +2) +r *L) /( t *L) q =q *k t =t *L L =L +2 k =k +1 n =int( nn) r =nr end if scan wend end 3.141592653589793238462643383279502884197 1693993751058209749445923078164062862089 98628034825342117067  ## Lua Translation of: Pascal a = {} n = 1000 len = math.modf( 10 * n / 3 ) for j = 1, len do a[j] = 2 end nines = 0 predigit = 0 for j = 1, n do q = 0 for i = len, 1, -1 do x = 10 * a[i] + q * i a[i] = math.fmod( x, 2 * i - 1 ) q = math.modf( x / ( 2 * i - 1 ) ) end a[1] = math.fmod( q, 10 ) q = math.modf( q / 10 ) if q == 9 then nines = nines + 1 else if q == 10 then io.write( predigit + 1 ) for k = 1, nines do io.write(0) end predigit = 0 nines = 0 else io.write( predigit ) predigit = q if nines ~= 0 then for k = 1, nines do io.write( 9 ) end nines = 0 end end end end print( predigit )  03141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086 ... ## M2000 Interpreter We can ask for 200 digits, but we can remove Digits-- in While Digits {} to print endless number of digits (without good precision). Algorithm developed after reading [4] and [5] A Faster version handling console refresh time (and os shared time). M2000 run on an environment, which is loop event, and console is actual a form, a window. We can stop execution using Esc, Ctrl+C and Break keys, without stopping the interpreter (which is an application for Windows Os, written in Visual Basic 6,a s an ActiveX dll with a window manager on top of Vb forms). Module Checkpi { Module FindPi(Digits){ Digits++ n=Int(3.32*Digits) PlusOne=Lambda N=0% -> { =N N++ } PlusTwo=Lambda N=1% -> { =N N+=2 } Dim A(n)<<PlusOne(), B(n)<<PlusTwo() Dim Ten(n), CarrierOver(n), Sum(n),Remainder(n)=2 OutPutDigits=Digits Predigits=Stack CallBack=lambda fl=true, Chars=0 (x)->{ Print x; Chars++ If fl then Print "." : Print " "; : fl=false : Chars=0 : exit If Chars=50 then { Print Print " "; Chars=0 Refresh } else.if (Chars mod 5)=0 then { Print " "; Refresh } \\ explicitly refresh output layer, using Fast ! mode of speed } Print "Pi="; While Digits { NextDigit(&CallBack, &Digits) } print Refresh Sub NextDigit(&f, &D) CarrierOver=0 For k=n-1 to 1 { Ten(k)=Remainder(k)*10% CarrierOver(k)=CarrierOver Sum(k)=Ten(k)+CarrierOver(k) q=Sum(k) div B(k) Remainder(k)=Sum(k)-B(k)*q CarrierOver=A(k)*q } Ten(0)=Remainder(0)*10% CarrierOver(0)=CarrierOver Sum(0)=Ten(0)+CarrierOver(0) q=Sum(0) div 10% Remainder(0)=Sum(0)-10%*q if q<>9 and q<>10 then { Stack Predigits { While not empty { Call f(Number) if D>0 then D-- If D=0 then flush ' empty stack } Push q } } else.if q=9 Then { Stack Predigits { Data q } } else { Stack Predigits { While not empty { Call f((Number+1) mod 10) if D>0 then D-- If D=0 then flush ' empty stack } Push 0 } } End Sub } \\ reduce time to share with OS \\ Need explicitly use of refresh output layer (M2000 console) \\ Slow for a screen refresh per statement and give more time to OS Rem Set Slow \\ Fast is normal screen refresh, per Refresh time, and give standard time to OS Rem Set Fast \\ Fast ! use Refresh for screen refresh, and give less time o OS than standard \\ Esc key work when Refresh executed (and OS get little time) Set Fast ! FindPi 4 FindPi 28 Print Pi ' pi in M2000 is Decimal type with 29 digits (1 plus 28 after dot, is same as FindPi 28) Refresh FindPi 50 } Flush ' empty stack of values CheckPi List ' no variables exist Modules ? ' current module exist Stack ' Stack of values ' has to be empty, we didn't use current stack for values. ## Mathematica / Wolfram Language User can interrupt computation using "Alt+." or "Cmd+." on a Mac. WriteString[Output, "3."]; For[i = -1, True, i--, WriteString[Output, RealDigits[Pi, 10, 1, i][[1, 1]]]; Pause[.05]];  ## MATLAB Requires the Variable Precision Integer (vpi) Toolbox function pi_str = piSpigot(N) % Return N digits of pi using Gibbons's first spigot algorithm. % If N is omitted, the digits are printed ad infinitum. % Uses the expansion % pi = sum_{i=0} (i!)^2 2^{i+1} /(2i+1)! % = 2 + 1/3 * ( 2 + 2/5 * (2 + 3/7 * ( 2 + 4/9 * ( ..... ))))) % = (2 + 1/3 *)(2 + 2/5 *)(2 + 3/7 *)... % where the terms in the last expression represent Linear Fractional % Transforms (LFTs). % % Requires the Variable Precision Integer (vpi) Toolbox % % Reference: % "Unbounded Spigot Algorithms for the Digits of Pi" by J. Gibbons, 2004 % American Mathematical Monthly, vol. 113. if nargin < 1 N = Inf; lineLength = 50; else pi_str = repmat(' ',1,N); end q = vpi(1); r = vpi(0); t = vpi(1); k = 1; % If printing more than 3E15 digits, use k = vpi(1); i = 1; first_digit = true; while i <= N threeQplusR = 3*q + r; n = double(threeQplusR / t); if q+threeQplusR < (n+1)*t d = num2str(n); if isinf(N) fprintf(1,'%s', d); if first_digit fprintf(1,'.'); first_digit = false; i = i+1; end if i == lineLength fprintf(1,'\n'); i = 0; end else pi_str(i) = d; end q = 10*q; r = 10*(r-n*t); i = i + 1; else t = (2*k+1)*t; r = (4*k+2)*q + (2*k+1)*r; q = k*q; k = k + 1; end end end  >> piSpigot 3.141592653589793238462643383279502884197169399375 10582097494459230781640628620899862803482534211706 79821480865132823066470938446095505822317253594081 28481117450284102701938521105559644622948954930381 96442881097566593344612847564823378678316527120190 91456485669234603486104543266482133936072602491412  ## MiniScript Calculate pi using the Rabinowitz-Wagon algorithm digits = input("Enter number of digits to calculate after decimal point: ").val // I've seen variations of this "precision" calculation from // 10 * digits // to // floor(10 * digits / 3) + 16 // A larger value provides a more precise calculation but also // takes longer to run. Based on my testing, this calculation // below for precision produces accurate output for inputs // from 1 to 4000 - haven't tried larger than this. precision = floor(10 * digits / 3) + 4 A = [2] * precision nines = 0 predigit = 0 cnt = 0 while cnt <= digits carry = 0 for i in range(precision - 1, 1, -1) temp = 10 * A[i] + carry * i A[i] = temp % (2 * i - 1) carry = floor(temp/(2 * i - 1)) end for A[1] = carry % 10 carry = floor(carry / 10) current = carry if current == 9 then nines += 1 else if current == 10 then print (predigit+1), "" cnt += 1 if nines > 0 then print "9" * nines, "" cnt += nines end if predigit = 0 nines = 0 else // the first digit produced is always a zero // don't need to see that if cnt != 0 then print predigit, "" cnt += 1 predigit = current if nines > 0 then print "9" * nines, "" cnt += nines end if nines = 0 end if if cnt == 2 then print ".", "" end while print str(predigit) * (cnt < digits + 2)  Output: Enter number of digits to calculate after decimal point: 1000 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903690113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051329005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710199031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066139019278766111959092164201989  ## Nanoquery Translation of: Java q = 1; r = 0; t = 1 k = 1; n = 3; l = 3 nn = null; nr = null first = true while true if (((4 * q) + r) - t) < (n * t) print n if first print "." first = false end nr = int(10 * (r - (n * t))) n = int((10 * ((3 * q) + r)) / t) - (10 * n) q *= 10 r = nr else nr = int(((2 * q) + r) * l) nn = int((((q * (7 * k)) + 2) + (r * l)) / (t * l)) q *= k t *= l l += 2 k += 1 n = nn r = nr end if end while Output: 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...  ## NetRexx Translation of: Java /* NetRexx */ options replace format comments java crossref symbols binary import java.math.BigInteger runSample(arg) return -- 07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)~~ method runSample(arg) private static parse arg places . if places = '' then places = -1 TWO = BigInteger.valueOf(2) THREE = BigInteger.valueOf(3) FOUR = BigInteger.valueOf(4) SEVEN = BigInteger.valueOf(7) q_ = BigInteger.ONE r_ = BigInteger.ZERO t_ = BigInteger.ONE k_ = BigInteger.ONE n_ = BigInteger.valueOf(3) l_ = BigInteger.valueOf(3) nn = BigInteger nr = BigInteger first = isTrue() digitCt = 0 loop forever if FOUR.multiply(q_).add(r_).subtract(t_).compareTo(n_.multiply(t_)) == -1 then do digitCt = digitCt + 1 if places > 0 & digitCt - 1 > places then leave say n_'\-' if first then do say '.\-' first = isFalse() end nr = BigInteger.TEN.multiply(r_.subtract(n_.multiply(t_))) n_ = BigInteger.TEN.multiply(THREE.multiply(q_).add(r_)).divide(t_).subtract(BigInteger.TEN.multiply(n_)) q_ = q_.multiply(BigInteger.TEN) r_ = nr end else do nr = TWO.multiply(q_).add(r_).multiply(l_) nn = q_.multiply((SEVEN.multiply(k_))).add(TWO).add(r_.multiply(l_)).divide(t_.multiply(l_)) q_ = q_.multiply(k_) t_ = t_.multiply(l_) l_ = l_.add(TWO) k_ = k_.add(BigInteger.ONE) n_ = nn r_ = nr end end say return method isTrue() private static returns boolean return (1 == 1) method isFalse() private static returns boolean return \isTrue() Output: 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...  ## Nim Library: bigints import bigints var tmp1, tmp2, tmp3, acc, k = initBigInt(0) den, num, k2 = initBigInt(1) proc extractDigit(): int32 = if num > acc: return -1 tmp3 = num shl 1 + num + acc tmp1 = tmp3 div den tmp2 = tmp3 mod den + num if tmp2 >= den: return -1 result = int32(tmp1.limbs[0]) proc eliminateDigit(d: int32) = acc -= den * d acc *= 10 num *= 10 proc nextTerm() = k += 1 k2 += 2 acc += num shl 1 acc *= k2 den *= k2 num *= k var i = 0 while true: var d: int32 = -1 while d < 0: nextTerm() d = extractDigit() stdout.write chr(ord('0') + d) inc i if i == 40: echo "" i = 0 eliminateDigit d  Output: 3141592653589793238462643383279502884197 1693993751058209749445923078164062862089 9862803482534211706798214808651328230664 7093844609550582231725359408128481117450 ... Another version which avoids to access the internals of big integers: Translation of: D Library: bignum import bignum proc calcPi() = var q = newInt(1) r = newInt(0) t = newInt(1) k = newInt(1) n = newInt(3) l = newInt(3) var count = 0 while true: if 4 * q + r - t < n * t: stdout.write n inc count if count == 40: (echo ""; count = 0) let nr = 10 * (r - n * t) n = 10 * (3 * q + r) div t - 10 * n q *= 10 r = nr else: let nr = (2 * q + r) * l let nn = (7 * q * k + 2 + r * l) div (t * l) q *= k t *= l l += 2 k += 1 n = nn r = nr calcPi()  Output: 3141592653589793238462643383279502884197 1693993751058209749445923078164062862089 9862803482534211706798214808651328230664 7093844609550582231725359408128481117450 ... ## OCaml The Constructive Real library Creal contains an infinite-precision Pi, so we can just print out its digits. open Creal;; let block = 100 in let segment n = let s = to_string pi (n*block) in String.sub s ((n-1)*block) block in let counter = ref 1 in while true do print_string (segment !counter); flush stdout; incr counter done  However that is cheating if you want to see an algorithm to generate Pi. Since the Spigot algorithm is already used in the pidigits program, this implements Machin's formula. open Num (* series for: c*atan(1/k) *) class atan_sum c k = object val kk = k*/k val mutable n = 0 val mutable kpow = k val mutable pterm = c*/k val mutable psum = Int 0 val mutable sum = c*/k method next = n <- n+1; kpow <- kpow*/kk; let t = c*/kpow//(Int (2*n+1)) in pterm <- if n mod 2 = 0 then t else minus_num t; psum <- sum; sum <- sum +/ pterm method error = abs_num pterm method bounds = if pterm </ Int 0 then (sum, psum) else (psum, sum) end;; let inv i = (Int 1)//(Int i) in let t1 = new atan_sum (Int 16) (inv 5) in let t2 = new atan_sum (Int (-4)) (inv 239) in let base = Int 10 in let npr = ref 0 in let shift = ref (Int 1) in let d_acc = inv 10000 in let acc = ref d_acc in let shown = ref (Int 0) in while true do while t1#error >/ !acc do t1#next done; while t2#error >/ !acc do t2#next done; let (lo1, hi1), (lo2, hi2) = t1#bounds, t2#bounds in let digit x = int_of_num (floor_num ((x -/ !shown) */ !shift)) in let d, d' = digit (lo1+/lo2), digit (hi1+/hi2) in if d = d' then ( print_int d; if !npr = 0 then print_char '.'; flush stdout; shown := !shown +/ ((Int d) // !shift); incr npr; shift := !shift */ base; ) else (acc := !acc */ d_acc); done  ## Oforth : calcPiDigits | q r t k n l | 1 ->q 0 ->r 1 ->t 1 ->k 3 ->n 3 -> l while( true ) [ 4 q * r + t - n t * < ifTrue: [ n print r n t * - 10 * 3 q * r + 10 * t / n 10 * - ->n ->r q 10 * ->q ] else: [ 2 q * r + l * 7 k * q * 2 + r l * + t l * / ->n ->r k q * ->q t l * ->t l 2 + ->l k 1+ ->k ] ] ; ## Ol Translation of: Scheme ; 'numbers' is count of numbers or #false for eternal pleasure. (define (pi numbers) (let loop ((q 1) (r 0) (t 1) (k 1) (n 3) (l 3) (numbers numbers)) (unless (eq? numbers 0) (if (< (- (+ (* 4 q) r) t) (* n t)) (begin (display n) (loop (* q 10) (* 10 (- r (* n t))) t k (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n)) l (if numbers (- numbers 1)))) (begin (loop (* q k) (* (+ (* 2 q) r) l) (* t l) (+ k 1) (div (+ (* q (* 7 k)) 2 (* r l)) (* t l)) (+ l 2) (if numbers (- numbers 1)))))))) (pi #false)  Output: 31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132 82306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475 64823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925 40917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480 74462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539 21717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958 53710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328 16096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598 25349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548 58632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331 1686172785588907509838175463  ## PARI/GP Uses the built-in Brent-Salamin arithmetic-geometric mean iteration. pi()={ my(x=Pi,n=0,t); print1("3."); while(1, if(n>=default(realprecision), default(realprecision,default(realprecision)*2); x=Pi ); print1(floor(x*10^n++)%10) ) }; ## Swift Works with: Swift 4.2 // // main.swift // pi digits // // Created by max goren on 11/11/21. // Copyright © 2021 maxcodes. All rights reserved. // import Foundation var r = [Int]() var i = 0 var k = 2800 var b = 0 var c = 0 var d = 0 for _ in 0...2800 { r.append(2000); } while k > 0 { d = 0; i = k; while (true) { d = d + r[i] * 10000 b = 2 * i - 1 r[i] = d % b d = d / b i = i - 1 if i == 0 { break; } d = d * i; } print(c + d / 10000, "") c = d % 10000 k = k - 14 }  ## Pascal Works with: Free_Pascal With minor editing changes as published by Stanley Rabinowitz in [6]. Minor improvement of <user>Mischi</user> { speedup ~2 ( n=10000 , rumtime 4s-> 1,44s fpc 2.6.4 -O3 }, by calculating only necessary digits up to n. Program Pi_Spigot; const n = 1000; len = 10*n div 3; var j, k, q, nines, predigit: integer; a: array[0..len] of longint; function OneLoop(i:integer):integer; var x: integer; begin {Only calculate as far as needed } {+16 for security digits ~5 decimals} i := i*10 div 3+16; IF i > len then i := len; result := 0; repeat {Work backwards} x := 10*a[i] + result*i; result := x div (2*i - 1); a[i] := x - result*(2*i - 1);//x mod (2*i - 1) dec(i); until i<= 0 ; end; begin for j := 1 to len do a[j] := 2; {Start with 2s} nines := 0; predigit := 0; {First predigit is a 0} for j := 1 to n do begin q := OneLoop(n-j); a[1] := q mod 10; q := q div 10; if q = 9 then nines := nines + 1 else if q = 10 then begin write(predigit+1); for k := 1 to nines do write(0); {zeros} predigit := 0; nines := 0 end else begin write(predigit); predigit := q; if nines <> 0 then begin for k := 1 to nines do write(9); nines := 0 end end end; writeln(predigit); end.  Output: % ./Pi_Spigot 03141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198 ## Perl Perl being what it is, there are many ways to do this with many variations. With a fixed number of digits and the Math::BigInt::GMP library installed, the [[Arithmetic-geometric mean/Calculate Pi code will be much faster than any of these methods other than some of the modules. If Math::GMP is installed, then replacing "use bigint" with "use Math::GMP qw/:constant/" in either the Raku spigot or Machin methods below will be pretty fast. They are not too bad if the Math::BigInt::GMP library is installed. With the default Math::BigInt backend, the AGM code isn't very fast and the Raku spigot and Machin methods are very slow. #### Simple Spigot This takes a numer-of-digits argument, but we can make it large (albeit using memory and some startup time). Unlike the other two, this uses no modules and does not require bigints so is worth showing. sub pistream { my digits = shift; my(@out, @a); my(b, c, d, e, f, g, i, d4, d3, d2, d1); my outi = 0; digits++; b = d = e = g = i = 0; f = 10000; c = 14 * (int(digits/4)+2); @a = (20000000) x c; print "3."; while ((b = c -= 14) > 0 && i < digits) { d = e = d % f; while (--b > 0) { d = d * b + a[b]; g = (b << 1) - 1; a[b] = (d % g) * f; d = int(d / g); } d4 = e + int(d/f); if (d4 > 9999) { d4 -= 10000; out[i-1]++; for (b = i-1; out[b] == 1; b--) { out[b] = 0; out[b-1]++; } } d3 = int(d4/10); d2 = int(d3/10); d1 = int(d2/10); out[i++] = d1; out[i++] = d2-d1*10; out[i++] = d3-d2*10; out[i++] = d4-d3*10; print join "", @out[i-15 .. i-15+3] if i >= 16; } # We've closed the spigot. Print the remainder without rounding. print join "", @out[i-15+4 .. digits-2], "\n"; }  #### Raku spigot As mentioned earlier, replacing "use bigint" with "use Math::GMP qw/:constant/" will result in many orders of magnitude faster performance. Translation of: Raku use bigint try=>"GMP"; sub stream { my (next, safe, prod, cons, z, x) = @_; x = x->(); sub { while (1) { my y = next->(z); if (safe->(z, y)) { z = prod->(z, y); return y; } else { z = cons->(z, x->()); } } } } sub extr { use integer; my (q, r, s, t) = @{shift()}; my x = shift; (q * x + r) / (s * x + t); } sub comp { my (q, r, s, t) = @{shift()}; my (u, v, w, x) = @{shift()}; [q * u + r * w, q * v + r * x, s * u + t * w, s * v + t * x]; } my pi_stream = stream sub { extr shift, 3 }, sub { my (z, n) = @_; n == extr z, 4 }, sub { my (z, n) = @_; comp([10, -10*n, 0, 1], z) }, \&comp, [1, 0, 0, 1], sub { my n = 0; sub { n++; [n, 4 * n + 2, 0, 2 * n + 1] } }, ; |++; print pi_stream->(), '.'; print pi_stream->() while 1;  #### Machin's Formula Here is an original Perl 5 code, using Machin's formula. Not the fastest program in the world. As with the previous code, using either Math::GMP or Math::BigInt::GMP instead of the default bigint Calc backend will make it run thousands of times faster. use bigint try=>"GMP"; # Pi/4 = 4 arctan 1/5 - arctan 1/239 # expanding it with Taylor series with what's probably the dumbest method my (ds, ns) = (1, 0); my (n5, d5) = (16 * (25 * 3 - 1), 3 * 5**3); my (n2, d2) = (4 * (239 * 239 * 3 - 1), 3 * 239**3); sub next_term { my (coef, p) = @_[1, 2]; _[0] /= (p - 4) * (p - 2); _[0] *= p * (p + 2) * coef**4; } my p2 = 5; my pow = 1; | = 1; for (my x = 5; ; x += 4) { (ns, ds) = (ns * d5 + n5 * pow * ds, ds * d5); next_term(d5, 5, x); n5 = 16 * (5 * 5 * (x + 2) - x); while (d5 > d2) { (ns, ds) = (ns * d2 - n2 * pow * ds, ds * d2); n2 = 4 * (239 * 239 * (p2 + 2) - p2); next_term(d2, 239, p2); p2 += 4; } my ppow = 1; while (pow * n5 * 5**4 < d5 && pow * n2 * n2 * 239**4 < d2) { pow *= 10; ppow *= 10; } if (ppow > 1) { ns *= ppow; #FIX? my out = ns->bdiv(ds); # bugged? my out = ns / ds; ns %= ds; out = ("0" x (length(ppow) - length(out) - 1)) . out; print out; } if ( p2 % 20 == 1) { my g = Math::BigInt::bgcd(ds, ns); ds /= g; ns /= g; } }  #### Modules While no current CPAN module does continuous printing, there are (usually fast) ways to get digits of Pi. Examples include: Library: ntheory use ntheory qw/Pi/; say Pi(10000); use Math::Pari qw/setprecision Pi/; setprecision(10000); say Pi; use Math::MPFR; my pi = Math::MPFR->new(); Math::MPFR::Rmpfr_set_prec(pi, int(10000 * 3.322)+40); Math::MPFR::Rmpfr_const_pi(pi, 0); say Math::MPFR::Rmpfr_get_str(pi, 10, 10000, 0); use Math::BigFloat try=>"GMP"; # Slow without Math::BigInt::GMP installed say Math::BigFloat::bpi(10000); # For over ~2k digits, slower than AGM use Math::Big qw/pi/; # Very slow say pi(10000);  ## Phix I already had this golf entry to hand. Prints 2400 places, change the 8400 (derived from 2400*14/4) as needed, but I've not tested > that. with javascript_semantics integer a=10000,b,c=8400,d,e=0,g sequence f=repeat(floor(a/5),c+1) while c>0 do g=2*c d=0 b=c while b>0 do d+=f[b]*a g-=1 f[b]=remainder(d, g) d=floor(d/g) g-=1 b-=1 if b!=0 then d*=b end if end while printf(1,"%04d",e+floor(d/a)) c-=14 e = remainder(d,a) end while  Someone was benchmarking the above against Lua, so I translated the Lua entry, and upped it to 2400 places, for a fairer test. with javascript_semantics integer n = 2400, len = floor(10*n/3) sequence a = repeat(2,len) integer nines = 0, predigit = 0 string res = "" for j=1 to n do integer q = 0 for i=len to 1 by -1 do integer x = 10*a[i]+q*i, d = 2*i-1 a[i] = remainder(x,d) q = floor(x/d) end for a[1] = remainder(q,10) q = floor(q/10) if q==9 then nines = nines+1 else integer nine = '9' if q==10 then predigit += 1 q = 0 nine = '0' end if res &= predigit+'0'&repeat(nine,nines) predigit = q nines = 0 end if end for res &= predigit+'0' puts(1,res)  ## Picat Translation of: Erlang go => pi2(1,0,1,1,3,3,0), nl. pi2(Q,R,T,K,N,L,C) => if C == 50 then nl, pi2(Q,R,T,K,N,L,0) else if (4*Q + R-T) < (N*T) then print(N), P := 10*(R-N*T), pi2(Q*10, P, T, K, ((10*(3*Q+R)) div T)-10*N, L,C+1) else P := (2*Q+R)*L, M := (Q*(7*K)+2+(R*L)) div (T*L), H := L+2, J := K+ 1, pi2(Q*K, P, T*L, J, M, H, C) end end, nl. Output: 31415926535897932384626433832795028841971693993751 05820974944592307816406286208998628034825342117067 98214808651328230664709384460955058223172535940812 84811174502841027019385211055596446229489549303819 64428810975665933446128475648233786783165271201909 14564856692346034861045432664821339360726024914127 37245870066063155881748815209209628292540917153643 67892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854 80744623799627495673518857527248912279381830119491 29833673362440656643086021394946395224737190702179 86094370277053921717629317675238467481846766940513 [Ctrl-C]  ## PicoLisp The following script uses the spigot algorithm published by Jeremy Gibbons. Hit Ctrl-C to stop it. #!/usr/bin/picolisp /usr/lib/picolisp/lib.l (de piDigit () (job '((Q . 1) (R . 0) (S . 1) (K . 1) (N . 3) (L . 3)) (while (>= (- (+ R (* 4 Q)) S) (* N S)) (mapc set '(Q R S K N L) (list (* Q K) (* L (+ R (* 2 Q))) (* S L) (inc K) (/ (+ (* Q (+ 2 (* 7 K))) (* R L)) (* S L)) (+ 2 L) ) ) ) (prog1 N (let M (- (/ (* 10 (+ R (* 3 Q))) S) (* 10 N)) (setq Q (* 10 Q) R (* 10 (- R (* N S))) N M) ) ) ) ) (prin (piDigit) ".") (loop (prin (piDigit)) (flush) ) Output: 3.14159265358979323846264338327950288419716939937510582097494459 ... ## PL/I /* Uses the algorithm of S. Rabinowicz and S. Wagon, "A Spigot Algorithm */ /* for the Digits of Pi". */ (subrg, fofl, size): Pi_Spigot: procedure options (main); /* 21 January 2012. */ declare (n, len) fixed binary; n = 1000; len = 10*n / 3; begin; declare ( i, j, k, q, nines, predigit ) fixed binary; declare x fixed binary (31); declare a(len) fixed binary (31); a = 2; /* Start with 2s */ nines, predigit = 0; /* First predigit is a 0 */ do j = 1 to n; q = 0; do i = len to 1 by -1; /* Work backwards */ x = 10*a(i) + q*i; a(i) = mod (x, (2*i-1)); q = x / (2*i-1); end; a(1) = mod(q, 10); q = q / 10; if q = 9 then nines = nines + 1; else if q = 10 then do; put edit(predigit+1) (f(1)); do k = 1 to nines; put edit ('0')(a(1)); /* zeros */ end; predigit, nines = 0; end; else do; put edit(predigit) (f(1)); predigit = q; do k = 1 to nines; put edit ('9')(a(1)); end; nines = 0; end; end; put edit(predigit) (f(1)); end; /* of begin block */ end Pi_Spigot; output: 03141592653589793238462643383279502884197169399375105820974944592307816406286208 99862803482534211706798214808651328230664709384460955058223172535940812848111745 02841027019385211055596446229489549303819644288109756659334461284756482337867831 65271201909145648566923460348610454326648213393607260249141273724587006606315588 17488152092096282925409171536436789259036001133053054882046652138414695194151160 94330572703657595919530921861173819326117931051185480744623799627495673518857527 24891227938183011949129833673362440656643086021394946395224737190702179860943702 77053921717629317675238467481846766940513200056812714526356082778577134275778960 91736371787214684409012249534301465495853710507922796892589235420199561121290219 60864034418159813629774771309960518707211349999998372978049951059731732816096318 59502445945534690830264252230825334468503526193118817101000313783875288658753320 83814206171776691473035982534904287554687311595628638823537875937519577818577805 32171226806613001927876611195909216420198  ## Powershell Translation of: D With some tweaking. Prints 100 digits a time. Total possible output limited by available memory. Function Get-Pi ( Digits ) { Big = [bigint[]](0..10) ndigits = 0 Output = "" q = t = k = Big[1] r = Big[0] l = n = Big[3] # Calculate first digit nr = ( Big[2] * q + r ) * l nn = ( q * ( Big[7] * k + Big[2] ) + r * l ) / ( t * l ) q *= k t *= l l += Big[2] k = k + Big[1] n = nn r = nr Output += [string]n + '.' ndigits++ nr = Big[10] * ( r - n * t ) n = ( ( Big[10] * ( 3 * q + r ) ) / t ) - 10 * n q *= Big[10] r = nr While ( ndigits -lt Digits ) { While ( ndigits % 100 -ne 0 -or -not Output ) { If ( Big[4] * q + r - t -lt n * t ) { Output += [string]n ndigits++ nr = Big[10] * ( r - n * t ) n = ( ( Big[10] * ( 3 * q + r ) ) / t ) - 10 * n q *= Big[10] r = nr } Else { nr = ( Big[2] * q + r ) * l nn = ( q * ( Big[7] * k + Big[2] ) + r * l ) / ( t * l ) q *= k t *= l l += Big[2] k = k + Big[1] n = nn r = nr } } Output Output = "" } }  Alternate version using .Net classes [math]::pi  Outputs: .Net digits of pi 3.14159265358979  ## Prolog Using coroutine with freeze/2 predicate: pi_spigot :- pi(X), forall(member(Y, X), write(Y)). pi(OUT) :- pi(1, 180, 60, 2, OUT). pi(Q, R, T, I, OUT) :- freeze(OUT, ( OUT = [Digit | OUT_] -> U is 3 * (3 * I + 1) * (3 * I + 2), Y is (Q * (27 * I - 12) + 5 * R) // (5 * T), Digit is Y, Q2 is 10 * Q * I * (2 * I - 1), R2 is 10 * U * (Q * (5 * I - 2) + R - Y * T), T2 is T * U, I2 is I + 1, pi(Q2, R2, T2, I2, OUT_) ; true)).  ## PureBasic Calculate Pi, limited to ~24 M-digits for memory and speed reasons. #SCALE = 10000 #ARRINT= 2000 Procedure Pi(Digits) Protected First=#True, Text Protected Carry, i, j, sum Dim Arr(Digits) For i=0 To Digits Arr(i)=#ARRINT Next i=Digits While i>0 sum=0 j=i While j>0 sum*j+#SCALE*arr(j) Arr(j)=sum%(j*2-1) sum/(j*2-1) j-1 Wend Text = RSet(Str(Carry+sum/#SCALE),4,"0") If First Text = ReplaceString(Text,"3","3.") First = #False EndIf Print(Text) Carry=sum%#SCALE i-14 Wend EndProcedure If OpenConsole() SetConsoleCtrlHandler_(?Ctrl,#True) Pi(24*1024*1024) EndIf End Ctrl: PrintN(#CRLF+"Ctrl-C was pressed") End ## Python def calcPi(): q, r, t, k, n, l = 1, 0, 1, 1, 3, 3 while True: if 4*q+r-t < n*t: yield n nr = 10*(r-n*t) n = ((10*(3*q+r))//t)-10*n q *= 10 r = nr else: nr = (2*q+r)*l nn = (q*(7*k)+2+(r*l))//(t*l) q *= k t *= l l += 2 k += 1 n = nn r = nr import sys pi_digits = calcPi() i = 0 for d in pi_digits: sys.stdout.write(str(d)) i += 1 if i == 40: print(""); i = 0  output 3141592653589793238462643383279502884197 1693993751058209749445923078164062862089 9862803482534211706798214808651328230664 7093844609550582231725359408128481117450 2841027019385211055596446229489549303819 6442881097566593344612847564823378678316 5271201909145648566923460348610454326648 2133936072602491412737245870066063155881 7488152092096282925409171536436789259036 0011330530548820466521384146951941511609 4330572703657595919530921861173819326117 ...  ## Quackery Translation of: Oforth Quackery does not have variables, it has ancillary stacks. To expedite translation from Oforth, the first two definitions implement words equivalent to the Forth words VALUE and TO.  [ immovable ]this[ share ]done[ ] is value ( --> x ) [ ]'[ replace ] is to ( x --> ) [ value 1 ] is Q ( --> x ) [ value 0 ] is R ( --> x ) [ value 1 ] is T ( --> x ) [ value 1 ] is K ( --> x ) [ value 3 ] is N ( --> x ) [ value 3 ] is L ( --> x ) [ value 0 ] is chcount ( --> x ) [ echo chcount dup 79 = if cr 1+ 80 mod to chcount ] is printch [ 4 Q * R + T - N T * < iff [ N printch R N T * - 10 * 3 Q * R + 10 * T / N 10 * - to N to R Q 10 * to Q ] else [ 2 Q * R + L * 7 K * Q * 2 + R L * + T L * / to N to R K Q * to Q T L * to T L 2 + to L K 1+ to K ] chcount again ] Output: 31415926535897932384626433832795028841971693993751058209749445923078164062862089 98628034825342117067982148086513282306647093844609550582231725359408128481117450 28410270193852110555964462294895493038196442881097566593344612847564823378678316 52712019091456485669234603486104543266482133936072602491412737245870066063155881 74881520920962829254091715364367892590360011330530548820466521384146951941511609 43305727036575959195309218611738193261179310511854807446237996274956735188575272 48912279381830119491298336733624406566430860213949463952247371907021798609437027 70539217176293176752384674818467669405132000568127145263560827785771342757789609 17363717872146844090122495343014654958537105079227968925892354201995611212902196 08640344181598136297747713099605187072113499999983729780499510597317328160963185 95024459455346908302642522308253344685035261931188171010003137838752886587533208 38142061717766914730359825349042875546873115956286388235378759375195778185778053 21712268066130019278766111959092164201989380952572010654858632788659361533818279 68230301952035301852968995773622599413891249721775283479131515574857242454150695 95082953311686172785588907509838175463746493931925506040092770167113900984882401 28583616035637076601047101819429555961989467678374494482553797747268471040475346  … and so on. ## R suppressMessages(library(gmp)) ONE <- as.bigz("1") TWO <- as.bigz("2") THREE <- as.bigz("3") FOUR <- as.bigz("4") SEVEN <- as.bigz("7") TEN <- as.bigz("10") q <- as.bigz("1") r <- as.bigz("0") t <- as.bigz("1") k <- as.bigz("1") n <- as.bigz("3") l <- as.bigz("3") char_printed <- 0 how_many <- 1000 first <- TRUE while (how_many > 0) { if ((FOUR * q + r - t) < (n * t)) { if (char_printed == 80) { cat("\n") char_printed <- 0 } how_many <- how_many - 1 char_printed <- char_printed + 1 cat(as.integer(n)) if (first) { cat(".") first <- FALSE char_printed <- char_printed + 1 } nr <- as.bigz(TEN * (r - n * t)) n <- as.bigz(((TEN * (THREE * q + r)) %/% t) - (TEN * n)) q <- as.bigz(q * TEN) r <- as.bigz(nr) } else { nr <- as.bigz((TWO * q + r) * l) nn <- as.bigz((q * (SEVEN * k + TWO) + r * l) %/% (t * l)) q <- as.bigz(q * k) t <- as.bigz(t * l) l <- as.bigz(l + TWO) k <- as.bigz(k + ONE) n <- as.bigz(nn) r <- as.bigz(nr) } } cat("\n") Output: 3.141592653589793238462643383279502884197169399375105820974944592307816406286208 99862803482534211706798214808651328230664709384460955058223172535940812848111745 02841027019385211055596446229489549303819644288109756659334461284756482337867831 65271201909145648566923460348610454326648213393607260249141273724587006606315588 17488152092096282925409171536436789259036001133053054882046652138414695194151160 94330572703657595919530921861173819326117931051185480744623799627495673518857527 24891227938183011949129833673362440656643086021394946395224737190702179860943702 77053921717629317675238467481846766940513200056812714526356082778577134275778960 91736371787214684409012249534301465495853710507922796892589235420199561121290219 60864034418159813629774771309960518707211349999998372978049951059731732816096318 59502445945534690830264252230825334468503526193118817101000313783875288658753320 83814206171776691473035982534904287554687311595628638823537875937519577818577805 32171226806613001927876611195909216420198  ## Racket Utilizing Jeremy Gibbons spigot algorithm and racket generator: #lang racket (require racket/generator) (define pidig (generator () (let loop ([q 1] [r 0] [t 1] [k 1] [n 3] [l 3]) (if (< (- (+ r (* 4 q)) t) (* n t)) (begin (yield n) (loop (* q 10) (* 10 (- r (* n t))) t k (- (quotient (* 10 (+ (* 3 q) r)) t) (* 10 n)) l)) (loop (* q k) (* (+ (* 2 q) r) l) (* t l) (+ 1 k) (quotient (+ (* (+ 2 (* 7 k)) q) (* r l)) (* t l)) (+ l 2)))))) (for ([i (in-naturals)]) (display (pidig)) (when (zero? i) (display "." )) (when (zero? (modulo i 80)) (newline)))  Output: 3.14159265358979323846264338327950288419716939937510...  ## Raku (formerly Perl 6) Works with: rakudo version 2018.10 # based on http://www.mathpropress.com/stan/bibliography/spigot.pdf sub stream(&next, &safe, &prod, &cons, z is copy, @x) { gather loop { z = safe(z, my y = next(z)) ?? prod(z, take y) !! cons(z, @x[++]) } } sub extr([q, r, s, t], x) { (q * x + r) div (s * x + t) } sub comp([q,r,s,t], [u,v,w,x]) { [q * u + r * w, q * v + r * x, s * u + t * w, s * v + t * x] } my pi := stream -> z { extr(z, 3) }, -> z, n { n == extr(z, 4) }, -> z, n { comp([10, -10*n, 0, 1], z) }, &comp, <1 0 0 1>, (1..*).map: { [_, 4 * _ + 2, 0, 2 * _ + 1] } for ^Inf -> i { print pi[i]; once print '.' }  ## REXX ### version 1 This REXX program calculates decimal digits of ${\displaystyle \pi }$ using John Machin's formula. It should be noted that the program's mechanism spits out the next (new) decimal digit(s) of ${\displaystyle \pi }$. The REXX program uses the following formula to calculate ${\displaystyle \pi }$:  ┌─ ─┐ ┌─ ─┐ π │ 1 │ │ 1 │ John ─── = 4 ∙ arctan│ ─── │ - arctan│ ───── │ Machin's 4 │ 5 │ │ 239 │ formula └─ ─┘ └─ ─┘ which expands into: ┌─ ─┐ │ 1 1 1 1 1 1 │ 4 ∙ │ ─── - ────── + ────── - ────── + ────── - ──────── + ... │ │ 1 3 5 7 9 11 │ │ 1∙5 3∙5 5∙5 7∙5 9∙5 11∙5 │ └─ ─┘ ┌─ ─┐ │ 1 1 1 1 1 1 │ - │ ─── - ────── + ────── - ────── + ────── - ──────── + ... │ │ 1 3 5 7 9 11 │ │ 1∙239 3∙239 5∙239 7∙239 9∙239 11∙239 │ └─ ─┘  /*REXX program spits out decimal digits of pi (one digit at a time) until Ctrl─Break.*/ parse arg digs oFID . /*obtain optional argument from the CL.*/ if digs=='' | digs=="," then digs= 1e6 /*Not specified? Then use the default.*/ if oFID=='' | oFID=="," then oFID='PI_SPIT.OUT' /* " " " " " " */ write= digs<0 /*if ODIGS is <0, also spit pi to file.*/ numeric digits abs(digs) + 4 /*with bigger digs, spitting is slower.*/ call time 'Reset' /*reset the wall─clock (elapsed) timer.*/ signal on halt /*───► HALT when Ctrl─Break is pressed.*/ spit= 0 /*the index of the spitted pi dec. digs*/ pi=0; v=5; vv=v*v; g=239; gg=g*g; s= 16 /*assign some values to some variables.*/ r= 4 /*calculate π with increasing accuracy */ do n=1 by 2 until old=pi; old= pi /*just calculate pi with odd integers*/ pi= pi + s / (n*v) - r / (n*g) /* ··· using John Machin's formula.*/ s= -s; r= -r; v= v * vv; g= g * gg /*compute some variables for shortcuts.*/ if n>3 then spit= spit + 1 /*maintain a lag for pi digits rounding*/ if spit<4 then iterate /*Not enough digs yet? Then don't show*/ = substr(pi, spit-3, 1) /*lag behind the true pi calculation. */ call charout , /*write the spitted digits to the term.*/ if write then call charout oFID, /* " " " " " a file?*/ end /*n*/ = substr(pi, spit - 2); L= length() - 4 /*handle any residual decimal digits. */ if L>0 then do /*if any residual digits, then show 'em*/ call charout , substr(, 1, L) /*write to term. */ if write then call charout oFID, substr(, 1, L) /* " " file? */ end say /*stick a fork in it, we're all done. */ exit: say; say n%2+1 'iterations took' format(time("Elapsed"),,2) 'seconds.'; exit 0 halt: say; say 'PI_SPIT halted via use of Ctrl─Break.'; signal exit /*show iterations.*/  output [until the Ctrl─Break key (or equivalent) was pressed]: (Shown at four-fifth size.) 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081 284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412 737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185 480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051 320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099 605187072113499999983729780499 PI_SPIT halted via use of Ctrl─Break. 447 iterations took 4.30 seconds.  ### version 2 This REXX version is a translation of Icon with some speed optimizations. This algorithm is limited to the number of decimal digits as specified with the numeric digits ddd (line or statement six). /*REXX program spits out decimal digits of pi (one digit at a time) until Ctrl-Break.*/ signal on halt /*───► HALT when Ctrl─Break is pressed.*/ parse arg digs oFID . /*obtain optional argument from the CL.*/ if digs=='' | digs=="," then digs= 300 /*Not specified? Then use the default.*/ if oFID=='' | oFID=="," then oFID='PI_SPIT2.OUT' /* " " " " " " */ numeric digits digs /*with bigger digs, spitting is slower.*/ q=1; r=0; t=1; k=1; n=3; L=3; z=0 /*define some REXX variables. */ dot=1 /*DOT≡a flag when a dot in pi is shown.*/ do until z==digs; qq= q+q /* qq is a fast version of: q*2 */ tn= t*n /* t*n is used twice (below). */ if qq+qq+r-t < tn then do; z= z+1 /* qq+qq is faster than qq*2 */ call charout , n call charout oFID, n if dot then do; dot=0; call charout , . call charout oFID, . end nr= (r - tn) * 10 n = ((( (qq+q+r) * 10) / t) - n*10) %1 q = q*10 end else do; nr= (qq+r) * L tL= t*L n = (q * (k*7 + 2) + r*L) / tL %1 q = q*k t = tL L = L+2 k = k+1 end /* %1≡fast way doing TRUNC of a number.*/ r=nr end /*forever*/ exit /*stick a fork in it, we're all done. */ halt: say; say 'PI_SPIT2 halted via use of Ctrl-Break.'; exit  ## RPL It is not easy to print character by character with RPL. Something could be done with the DISP instruction, but it would require to manage the cursor position - and anyway the emulator does not emulate DISP ! ### Rabinowitz & Wagon algorithm Translation of: BBC Basic There is probably a way to translate the BBC BASIC approach into something that uses only the stack, but it has been preferred here to use 'global' variables with the names used by the BBC BASIC program - except for e, which represents the Euler constant in RPL. Works with: Halcyon Calc version 4.2.7 ≪ IF 1 FS?C THEN "π = " 'output' STO END SWAP →STR WHILE DUP2 SIZE > REPEAT "0" SWAP + END output SWAP + 'output' STO DROP ≫ 'PRINT' STO ≪ → m ≪ 1 SF {} 1 m START #20d + NEXT #0d 'ee' STO #2d 'l' STO m 14 FOR c #0 'd' STO c 2 * 1 - R→B 'a' STO c 1 FOR p DUP p GET 100 * d p * + 'd' STO p d a / LAST ROT * - PUT 'd' a STO/ 'a' 2 STO- -1 STEP IF d #99d == THEN ee 100 * d + 'ee' STO #2h 'l' STO+ ELSE IF c m == THEN d 100 / B→R 10 / 0 PRINT d 100 / LAST ROT * - 'ee' STO ELSE ee d 100 / + B→R l B→R PRINT d 100 / LAST ROT * - 'ee' STO #2h 'l' STO END END -7 STEP DROP output ≫ ≫ 'M→π' STO  200 M→π  Output: 1: "π = 3.14159265358979323846264338327950288419716939937510582"  ### Faster Rabinowitz & Wagon implementation Translation of: Fortran This much faster version favors the stack to local variables. ≪ SWAP →STR IF 1 FS?C THEN "." + ELSE WHILE DUP2 SIZE > REPEAT "0" SWAP + END output SWAP + END 'output' STO DROP ≫ 'WRITE' STO ≪ DUP 50 * 3 / IP → n m ≪ 1 SF 0 {} m + 2 CON 0 1 n START DROP 0 m 1 FOR p p * OVER p GET 100000 * + p DUP + 1 - MOD LAST / IP ROT p 4 ROLL PUT SWAP -1 STEP DUP 100000 MOD LAST / IP 5 ROLL + 5 WRITE ROT ROT NEXT 3 DROPN output ≫ ≫ 'N→π' STO  100 N→π  Output: "3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011"  ## Ruby Translation of: Icon pi_digits = Enumerator.new do |y| q, r, t, k, n, l = 1, 0, 1, 1, 3, 3 loop do if 4*q+r-t < n*t y << n nr = 10*(r-n*t) n = ((10*(3*q+r)) / t) - 10*n q *= 10 r = nr else nr = (2*q+r) * l nn = (q*(7*k+2)+r*l) / (t*l) q *= k t *= l l += 2 k += 1 n = nn r = nr end end end print pi_digits.next, "." loop { print pi_digits.next }  ## Rust Translation of: Kotlin use num_bigint::BigInt; fn main() { calc_pi(); } fn calc_pi() { let mut q = BigInt::from(1); let mut r = BigInt::from(0); let mut t = BigInt::from(1); let mut k = BigInt::from(1); let mut n = BigInt::from(3); let mut l = BigInt::from(3); let mut first = true; loop { if &q * 4 + &r - &t < &n * &t { print!("{}", n); if first { print!("."); first = false; } let nr = (&r - &n * &t) * 10; n = (&q * 3 + &r) * 10 / &t - &n * 10; q *= 10; r = nr; } else { let nr = (&q * 2 + &r) * &l; let nn = (&q * &k * 7 + 2 + &r * &l) / (&t * &l); q *= &k; t *= &l; l += 2; k += 1; n = nn; r = nr; } } }  ## Scala object Pi { class PiIterator extends Iterable[BigInt] { var r: BigInt = 0 var q, t, k: BigInt = 1 var n, l: BigInt = 3 def iterator: Iterator[BigInt] = new Iterator[BigInt] { def hasNext = true def next(): BigInt = { while ((4 * q + r - t) >= (n * t)) { val nr = (2 * q + r) * l val nn = (q * (7 * k) + 2 + (r * l)) / (t * l) q = q * k t = t * l l = l + 2 k = k + 1 n = nn r = nr } val ret = n val nr = 10 * (r - n * t) n = ((10 * (3 * q + r)) / t) - (10 * n) q = q * 10 r = nr ret } } } def main(args: Array[String]): Unit = { val it = new PiIterator println("" + (it.head) + "." + (it.take(300).mkString)) } }  Output: 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998 62803482534211706798214808651328230664709384460955058223172535940812848111745028410 27019385211055596446229489549303819644288109756659334461284756482337867831652712019 09145648566923460348610454326648213393607260249141273 ## Scheme (import (rnrs)) (define (calc-pi yield) (let loop ((q 1) (r 0) (t 1) (k 1) (n 3) (l 3)) (if (< (- (+ (* 4 q) r) t) (* n t)) (begin (yield n) (loop (* q 10) (* 10 (- r (* n t))) t k (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n)) l)) (begin (loop (* q k) (* (+ (* 2 q) r) l) (* t l) (+ k 1) (div (+ (* q (* 7 k)) 2 (* r l)) (* t l)) (+ l 2)))))) (let ((i 0)) (calc-pi (lambda (d) (display d) (set! i (+ i 1)) (if (= 40 i) (begin (newline) (set! i 0))))))  Output: 3141592653589793238462643383279502884197 1693993751058209749445923078164062862089 9862803482534211706798214808651328230664 7093844609550582231725359408128481117450 2841027019385211055596446229489549303819 6442881097566593344612847564823378678316 5271201909145648566923460348610454326648 2133936072602491412737245870066063155881 7488152092096282925409171536436789259036 0011330530548820466521384146951941511609 4330572703657595919530921861173819326117 9310511854807446237996274956735188575272 4891227938183011949129833673362440656643 0860213949463952247371907021798609437027 7053921717629317675238467481846766940513 2000568127145263560827785771342757789609 ... ## Seed7  include "seed7_05.s7i"; include "bigint.s7i"; const proc: main is func local var bigInteger: q is 1_; var bigInteger: r is 0_; var bigInteger: t is 1_; var bigInteger: k is 1_; var bigInteger: n is 3_; var bigInteger: l is 3_; var bigInteger: nn is 0_; var bigInteger: nr is 0_; var boolean: first is TRUE; begin while TRUE do if 4_ * q + r - t < n * t then write(n); if first then write("."); first := FALSE; end if; nr := 10_ * (r - n * t); n := 10_ * (3_ * q + r) div t - 10_ * n; q *:= 10_; r := nr; flush(OUT); else nr := (2_ * q + r) * l; nn := (q * (7_ * k + 2_) + r * l) div (t * l); q *:= k; t *:= l; l +:= 2_; incr(k); n := nn; r := nr; end if; end while; end func; Original source: [7] ## Sidef ### Classical Algorithm func pi(callback) { var (q, r, t, k, n, l) = (1, 0, 1, 1, 3, 3) loop { if ((4*q + r - t) < n*t) { callback(n) static _dot = callback('.') var nr = 10*(r - n*t) n = ((10*(3*q + r)) // t - 10*n) q *= 10 r = nr } else { var nr = ((2*q + r) * l) var nn = ((q*(7*k + 2) + r*l) // (t*l)) q *= k t *= l l += 2 k += 1 n = nn r = nr } } } STDOUT.autoflush(true) pi(func(digit){ print digit })  ### Quicker, Unverified Algorithm Translation of: Haskell From the same .pdf mentioned throughout this task, from the last page. The original algorithm was written in Haskell, this is a translation which has also been optimized to avoid redundant multiplications. Same output, but the algorithm is based on one of Gosper’s series that yields more than one digit per term on average, so no test is made partway through the iteration. This is capable of producing approximately 100,000 digits at tio.run in the maximum 60 seconds allowed. func p(c) { var(q,r,t,g,j,h,k,a,b,y) = (1,180,60,60,54,10,10,15,3) loop { c(y=(q*(a+=27) +5*r)//5*t); static _ = c('.') r=10*(g+=j+=54)*(q*(b+=5) +r -y*t); q*=h+=k+=40; t*=g } } STDOUT.autoflush(1):p(func(d){print d})  ## Simula CLASS BIGNUM; BEGIN BOOLEAN PROCEDURE TISZERO(T); TEXT T; TISZERO := T = "0"; TEXT PROCEDURE TSHL(T); TEXT T; TSHL :- IF TISZERO(T) THEN T ELSE T & "0"; TEXT PROCEDURE TSHR(T); TEXT T; TSHR :- IF T.LENGTH = 1 THEN "0" ELSE T.SUB(1, T.LENGTH - 1); INTEGER PROCEDURE TSIGN(T); TEXT T; TSIGN := IF TISZERO(T) THEN 0 ELSE IF T.SUB(1, 1) = "-" THEN -1 ELSE 1; TEXT PROCEDURE TABS(T); TEXT T; TABS :- IF TSIGN(T) < 0 THEN T.SUB(2, T.LENGTH - 1) ELSE T; TEXT PROCEDURE TNEGATE(T); TEXT T; TNEGATE :- IF TSIGN(T) <= 0 THEN TABS(T) ELSE ("-" & T); TEXT PROCEDURE TREVERSE(T); TEXT T; BEGIN INTEGER I, J; I := 1; J := T.LENGTH; WHILE I < J DO BEGIN CHARACTER C1, C2; T.SETPOS(I); C1 := T.GETCHAR; T.SETPOS(J); C2 := T.GETCHAR; T.SETPOS(I); T.PUTCHAR(C2); T.SETPOS(J); T.PUTCHAR(C1); I := I + 1; J := J - 1; END; TREVERSE :- T; END TREVERSE; INTEGER PROCEDURE TCMPUNSIGNED(A, B); TEXT A, B; BEGIN INTEGER ALEN, BLEN, RESULT; ALEN := A.LENGTH; BLEN := B.LENGTH; IF ALEN < BLEN THEN RESULT := -1 ELSE IF ALEN > BLEN THEN RESULT := 1 ELSE BEGIN INTEGER CMP, I; BOOLEAN DONE; A.SETPOS(1); B.SETPOS(1); I := 1; WHILE I <= ALEN AND NOT DONE DO BEGIN I := I + 1; CMP := RANK(A.GETCHAR) - RANK(B.GETCHAR); IF NOT (CMP = 0) THEN DONE := TRUE; END; RESULT := CMP; END; TCMPUNSIGNED := RESULT; END TCMPUNSIGNED; INTEGER PROCEDURE TCMP(A, B); TEXT A, B; BEGIN BOOLEAN ANEG, BNEG; ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0; IF ANEG AND BNEG THEN TCMP := -TCMPUNSIGNED(TABS(A), TABS(B)) ELSE IF NOT ANEG AND BNEG THEN TCMP := 1 ELSE IF ANEG AND NOT BNEG THEN TCMP := -1 ELSE TCMP := TCMPUNSIGNED(A, B); END TCMP; TEXT PROCEDURE TADDUNSIGNED(A, B); TEXT A, B; BEGIN INTEGER CARRY, I, J; TEXT BF; I := A.LENGTH; J := B.LENGTH; BF :- BLANKS(MAX(I, J) + 1); WHILE I >= 1 OR J >= 1 DO BEGIN INTEGER X, Y, Z; IF I >= 1 THEN BEGIN A.SETPOS(I); I := I - 1; X := RANK(A.GETCHAR) - RANK('0'); END; IF J >= 1 THEN BEGIN B.SETPOS(J); J := J - 1; Y := RANK(B.GETCHAR) - RANK('0'); END; Z := X + Y + CARRY; IF Z < 10 THEN BEGIN BF.PUTCHAR(CHAR(Z + RANK('0'))); CARRY := 0; END ELSE BEGIN BF.PUTCHAR(CHAR(MOD(Z, 10) + RANK('0'))); CARRY := 1; END; END; IF CARRY > 0 THEN BF.PUTCHAR(CHAR(CARRY + RANK('0'))); BF :- TREVERSE(BF.STRIP); TADDUNSIGNED :- BF; END TADDUNSIGNED; TEXT PROCEDURE TADD(A, B); TEXT A, B; BEGIN BOOLEAN ANEG, BNEG; ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0; IF NOT ANEG AND BNEG THEN ! (+7)+(-5) = (7-5) = 2 ; TADD :- TSUBUNSIGNED(A, TABS(B)) ELSE IF ANEG AND NOT BNEG THEN ! (-7)+(+5) = (5-7) = -2 ; TADD :- TSUBUNSIGNED(B, TABS(A)) ELSE IF ANEG AND BNEG THEN ! (-7)+(-5) = -(7+5) = -12 ; TADD :- TNEGATE(TADDUNSIGNED(TABS(A), TABS(B))) ELSE ! (+7)+(+5) = (7+5) = 12 ; TADD :- TADDUNSIGNED(A, B); END TADD; TEXT PROCEDURE TSUBUNSIGNED(A, B); TEXT A, B; BEGIN INTEGER I, J, CARRY; I := A.LENGTH; J := B.LENGTH; IF I < J OR I = J AND A < B THEN TSUBUNSIGNED :- TNEGATE(TSUBUNSIGNED(B, A)) ELSE BEGIN TEXT BF; BF :- BLANKS(MAX(I, J) + 1); WHILE I >= 1 OR J >= 1 DO BEGIN INTEGER X, Y, Z; IF I >= 1 THEN BEGIN A.SETPOS(I); I := I - 1; X := RANK(A.GETCHAR) - RANK('0'); END; IF J >= 1 THEN BEGIN B.SETPOS(J); J := J - 1; Y := RANK(B.GETCHAR) - RANK('0'); END; Z := X - Y - CARRY; IF Z >= 0 THEN BEGIN BF.PUTCHAR(CHAR(RANK('0') + Z)); CARRY := 0; END ELSE BEGIN BF.PUTCHAR(CHAR(RANK('0') + MOD(10 + Z, 10))); CARRY := 1; ! (Z / 10); END; END; BF :- BF.STRIP; BF :- TREVERSE(BF); BF.SETPOS(1); WHILE BF.LENGTH > 1 AND THEN BF.GETCHAR = '0' DO BEGIN BF :- BF.SUB(2, BF.LENGTH - 1); BF.SETPOS(1); END; TSUBUNSIGNED :- BF; END; END TSUBUNSIGNED; TEXT PROCEDURE TSUB(A, B); TEXT A, B; BEGIN BOOLEAN ANEG, BNEG; ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0; IF ANEG AND BNEG THEN ! (-7)-(-5) = -(7-5) = -2 ; TSUB :- TNEGATE(TSUBUNSIGNED(TABS(A), TABS(B))) ELSE IF NOT ANEG AND BNEG THEN ! (+7)-(-5) = (7+5) = 12 ; TSUB :- TADDUNSIGNED(A, TABS(B)) ELSE IF ANEG AND NOT BNEG THEN ! (-7)-(+5) = -(7+5) = -12 ; TSUB :- TNEGATE(TADDUNSIGNED(TABS(A), B)) ELSE ! (+7)-(+5) = (7-5) = 2 ; TSUB :- TSUBUNSIGNED(A, B); END TSUB; TEXT PROCEDURE TMULUNSIGNED(A, B); TEXT A, B; BEGIN INTEGER ALEN, BLEN; ALEN := A.LENGTH; BLEN := B.LENGTH; IF ALEN < BLEN THEN TMULUNSIGNED :- TMULUNSIGNED(B, A) ELSE BEGIN TEXT PRODUCT; INTEGER J; PRODUCT :- "0"; FOR J := 1 STEP 1 UNTIL BLEN DO BEGIN TEXT PART; INTEGER I, Y, CARRY; B.SETPOS(J); Y := RANK(B.GETCHAR) - RANK('0'); PART :- BLANKS(ALEN + BLEN + 1); PART.SETPOS(1); FOR I := ALEN STEP -1 UNTIL 1 DO BEGIN INTEGER X, Z; A.SETPOS(I); X := RANK(A.GETCHAR) - RANK('0'); Z := X * Y + CARRY; IF Z < 10 THEN BEGIN PART.PUTCHAR(CHAR(RANK('0') + Z)); CARRY := 0; END ELSE BEGIN PART.PUTCHAR(CHAR(RANK('0') + MOD(Z, 10))); CARRY := Z // 10; END; END; IF CARRY > 0 THEN PART.PUTCHAR(CHAR(RANK('0') + CARRY)); PART :- PART.SUB(1, PART.POS - 1); PART :- TREVERSE(PART); PART.SETPOS(1); WHILE PART.LENGTH > 1 AND THEN PART.GETCHAR = '0' DO BEGIN PART :- PART.SUB(2, PART.LENGTH - 1); PART.SETPOS(1); END; PRODUCT :- TADDUNSIGNED(TSHL(PRODUCT), PART); END; TMULUNSIGNED :- PRODUCT; END; END TMULUNSIGNED; TEXT PROCEDURE TMUL(A, B); TEXT A, B; BEGIN BOOLEAN ANEG, BNEG; ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0; IF ANEG AND BNEG THEN ! (-7)*(-5) = (7*5) => 35 ; TMUL :- TMULUNSIGNED(TABS(A), TABS(B)) ELSE IF NOT ANEG AND BNEG THEN ! (+7)*(-5) = -(7*5) => -35 ; TMUL :- TNEGATE(TMULUNSIGNED(A, TABS(B))) ELSE IF ANEG AND NOT BNEG THEN ! (-7)*(+5) = -(7*5) => -35 ; TMUL :- TNEGATE(TMULUNSIGNED(TABS(A), B)) ELSE ! (+7)*(+5) = (7*5) => 35 ; TMUL :- TMULUNSIGNED(A, B); END TMUL; CLASS DIVMOD(DIV,MOD); TEXT DIV,MOD;; REF(DIVMOD) PROCEDURE TDIVMODUNSIGNED(A, B); TEXT A, B; BEGIN INTEGER CC; REF(DIVMOD) RESULT; IF TISZERO(B) THEN ERROR("DIVISION BY ZERO"); CC := TCMPUNSIGNED(A, B); IF CC < 0 THEN RESULT :- NEW DIVMOD("0", A) ELSE IF CC = 0 THEN RESULT :- NEW DIVMOD("1", "0") ELSE BEGIN INTEGER ALEN, BLEN, AIDX; TEXT Q, R; ALEN := A.LENGTH; BLEN := B.LENGTH; Q :- BLANKS(ALEN); Q.SETPOS(1); R :- BLANKS(ALEN); R.SETPOS(1); R := A.SUB(1, BLEN - 1); R.SETPOS(BLEN); FOR AIDX := BLEN STEP 1 UNTIL ALEN DO BEGIN INTEGER COUNT; BOOLEAN DONE; IF TISZERO(R.STRIP) THEN R.SETPOS(1); A.SETPOS(AIDX); R.PUTCHAR(A.GETCHAR); WHILE NOT DONE DO BEGIN TEXT DIFF; DIFF :- TSUBUNSIGNED(R.STRIP, B); IF TSIGN(DIFF) < 0 THEN DONE := TRUE ELSE BEGIN R := DIFF; R.SETPOS(DIFF.LENGTH + 1); COUNT := COUNT + 1; END; END; IF (NOT (COUNT = 0)) OR (NOT (Q.POS = 1)) THEN Q.PUTCHAR(CHAR(COUNT + RANK('0'))); END; RESULT :- NEW DIVMOD(Q.STRIP, R.STRIP); END; TDIVMODUNSIGNED :- RESULT; END TDIVMODUNSIGNED; REF(DIVMOD) PROCEDURE TDIVMOD(A, B); TEXT A, B; BEGIN BOOLEAN ANEG, BNEG; REF(DIVMOD) RESULT; ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0; IF ANEG AND BNEG THEN BEGIN RESULT :- TDIVMOD(TABS(A), TABS(B)); RESULT.MOD :- TNEGATE(RESULT.MOD); END ELSE IF NOT ANEG AND BNEG THEN BEGIN RESULT :- TDIVMOD(A, TABS(B)); RESULT.DIV :- TNEGATE(RESULT.DIV); END ELSE IF ANEG AND NOT BNEG THEN BEGIN RESULT :- TDIVMOD(TABS(A), B); RESULT.DIV :- TNEGATE(RESULT.DIV); RESULT.MOD :- TNEGATE(RESULT.MOD); END ELSE RESULT :- TDIVMODUNSIGNED(A, B); TDIVMOD :- RESULT; END TDIVMOD; TEXT PROCEDURE TDIV(A, B); TEXT A, B; TDIV :- TDIVMOD(A, B).DIV; TEXT PROCEDURE TMOD(A, B); TEXT A, B; TMOD :- TDIVMOD(A, B).MOD; END BIGNUM; EXTERNAL CLASS BIGNUM; BIGNUM BEGIN PROCEDURE CALCPI; BEGIN INTEGER I; TEXT Q, R, T, K, N, L; COMMENT ! q, r, t, k, n, l = 1, 0, 1, 1, 3, 3 ; Q :- COPY("1"); R :- COPY("0"); T :- COPY("1"); K :- COPY("1"); N :- COPY("3"); L :- COPY("3"); WHILE TRUE DO BEGIN COMMENT ! if 4*q+r-t < n*t ; IF TCMP(TSUB(TADD(TMUL("4",Q),R),T),TMUL(N,T)) < 0 THEN BEGIN TEXT NR; OUTTEXT(N); I := I + 1; IF I = 40 THEN BEGIN OUTIMAGE; I := 0; END; COMMENT ! nr = 10*(r-n*t) ! n = ((10*(3*q+r))//t)-10*n ! q *= 10 ! r = nr ; NR :- TMUL("10",TSUB(R,TMUL(N,T))); N :- TSUB(TDIV(TMUL("10",TADD(TMUL("3",Q),R)),T),TMUL("10",N)); Q :- TMUL("10",Q); R :- NR; END ELSE BEGIN TEXT NR, NN; COMMENT ! nr = (2*q+r)*l ! nn = (q*(7*k)+2+(r*l))//(t*l) ! q *= k ! t *= l ! l += 2 ! k += 1 ! n = nn ! r = nr ; NR :- TMUL(TADD(TMUL("2",Q),R),L); NN :- TDIV(TADD(TADD(TMUL(Q,TMUL("7",K)),"2"),TMUL(R,L)),TMUL(T,L)); Q :- TMUL(Q,K); T :- TMUL(T,L); L :- TADD(L,"2"); K :- TADD(K,"1"); N :- NN; R :- NR; END; END; END CALCPI; CALCPI; END. Output: 3141592653589793238462643383279502884197 1693993751058209749445923078164062862089 9862803482534211706798214808651328230664 7093844609550582231725359408128481117450 2841027019385211055596446229489549303819 6442881097566593344612847564823378678316 5271201909145648566923460348610454326648 2133936072602491412737245870066063155881 7488152092096282925409171536436789259036 0011330530548820466521384146951941511609 4330572703657595919530921861173819326117 9310511854807446237996274956735188575272 4891227938183011949129833673362440656643 0860213949463952247371907021798609437027 7053921717629317675238467481846766940513 2000568127145263560827785771342757789609 ... ## Tailspin Used the compact algorithm from Gibbons paper. Tailspin will at some point have arbitrary precision integers, currently we have to link into java and use BigInteger. Using java code can be slightly awkward as the argument in Tailspin comes before the method, so divide and subtract read backwards. use 'java:java.math' stand-alone def zero: 0 -> math/BigInteger::valueOf; def one: 1 -> math/BigInteger::valueOf; def two: 2 -> math/BigInteger::valueOf; def three: 3 -> math/BigInteger::valueOf; def four: 4 -> math/BigInteger::valueOf; def seven: 7 -> math/BigInteger::valueOf; def ten: 10 -> math/BigInteger::valueOf; templates g&{q:, r:, t:, k:, n:, l:} def u: four -> q::multiply -> r::add; def nt: n -> t::multiply; -> # when <?(t -> u::subtract <..~nt>)> do n -> !OUT::write -> \(<=1> !$$ -> '.' -> !OUT::write def v:$three -> q::multiply -> r::add -> ten::multiply;
def quot: $t -> v::divide; 0 -> g&{q:$ten -> q::multiply,
r: $nt -> r::subtract -> ten::multiply, t:$t,
k: $k, n:$ten -> n::multiply -> quot::subtract,
l: $l } ! otherwise def tl:$t -> l::multiply;
def rl: $r -> l::multiply; def term:$q -> seven::multiply -> k::multiply -> two::add -> rl::add;
$-> g&{q:$q -> k::multiply,
r: $two -> q::multiply -> r::add -> l::multiply, t:$tl,
k: $k -> one::add, n:$tl -> term::divide,
l: $l -> two::add} ! end g 1 -> g&{q:$one, r:$zero, t:$one, k:$one, n:$three, l:$three} -> !VOID Output: 3.141592653589793238462643383279502884197169399375105820974...keeps going until stopped.  ## Tcl Based on the reference in the D code. Works with: Tcl version 8.6 package require Tcl 8.6 # http://www.cut-the-knot.org/Curriculum/Algorithms/SpigotForPi.shtml # http://www.mathpropress.com/stan/bibliography/spigot.pdf proc piDigitsBySpigot n { yield [info coroutine] set A [lrepeat [expr {int(floor(10*$n/3.)+1)}] 2]
set Alen [llength $A] set predigits {} while 1 { set carry 0 for {set i$Alen} {[incr i -1] > 0} {} {
lset A $i [expr { [set val [expr {[lindex$A $i] * 10 +$carry}]]
% [set modulo [expr {2*$i + 1}]] }] set carry [expr {$val / $modulo *$i}]
}
lset A 0 [expr {[set val [expr {[lindex $A 0]*10 +$carry}]] % 10}]
set predigit [expr {$val / 10}] if {$predigit < 9} {
foreach p $predigits {yield$p}
set predigits [list $predigit] } elseif {$predigit == 9} {
lappend predigits $predigit } else { foreach p$predigits {yield [incr p]}
set predigits [list 0]
}
}
}


The pi digit generation requires picking a limit to the number of digits; the bigger the limit, the more digits can be safely computed. A value of 10k yields values relatively rapidly.

coroutine piDigit piDigitsBySpigot 10000
fconfigure stdout -buffering none
while 1 {
puts -nonewline [piDigit]
}


## TypeScript

type AnyWriteableObject={write:((textToOutput:string)=>any)};

function calcPi(pipe:AnyWriteableObject) {
let q = 1n, r=0n, t=1n, k=1n, n=3n, l=3n;
while (true) {
if (q * 4n + r - t < n* t) {
pipe.write(n.toString());
let nr = (r - n * t) * 10n;
n  = (q * 3n + r) * 10n / t - n * 10n ;
q  = q * 10n;
r  = nr;
} else {
let nr = (q * 2n + r) * l;
let nn = (q * k * 7n + 2n + r * l) / (t * l);
q = q * k;
t = t * l;
l = l + 2n;
k = k + 1n;
n  = nn;
r  = nr;
}
}
}

calcPi(process.stdout);


Notes:

1. Typescript has bigint support https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-2.html#bigint Literals are write with a n sufix: 10n

2. Pi function receives any object that has a write function. Using node.js we can pass to it process.stdout

### Async version

type AnyWriteableObject = {write:((textToOutput:string)=>Promise<any>)};

async function calcPi<T extends AnyWriteableObject>(pipe:T) {
let q = 1n, r=0n, t=1n, k=1n, n=3n, l=3n;
while (true) {
if (q * 4n + r - t < n* t) {
await pipe.write(n.toString());
let nr = (r - n * t) * 10n;
n  = (q * 3n + r) * 10n / t - n * 10n ;
q  = q * 10n;
r  = nr;
} else {
let nr = (q * 2n + r) * l;
let nn = (q * k * 7n + 2n + r * l) / (t * l);
q = q * k;
t = t * l;
l = l + 2n;
k = k + 1n;
n  = nn;
r  = nr;
}
}
}

setInterval(function(){
console.log(); // put a new line every second
},1000);

var x = calcPi({
write: async function(phrase:string){
return new Promise(function(resolve){
setTimeout(function(){
process.stdout.write(phrase);
resolve();
},1);
});
}
});

console.log('.'); //start!


Here the calculation does not continue if the consumer does not consume the character.

## Visual Basic

Works with: Visual Basic version 5
Works with: Visual Basic version 6
Works with: VBA version Access 97
Works with: VBA version 6.5
Works with: VBA version 7.1
Option Explicit

Sub Main()
Const VECSIZE As Long = 3350
Const BUFSIZE As Long = 201
Dim buffer(1 To BUFSIZE) As Long
Dim vect(1 To VECSIZE) As Long
Dim more As Long, karray As Long, num As Long, k As Long, l As Long, n As Long

For n = 1 To VECSIZE
vect(n) = 2
Next n
For n = 1 To BUFSIZE
karray = 0
For l = VECSIZE To 1 Step -1
num = 100000 * vect(l) + karray * l
karray = num \ (2 * l - 1)
vect(l) = num - karray * (2 * l - 1)
Next l
k = karray \ 100000
buffer(n) = more + k
more = karray - k * 100000
Next n
Debug.Print CStr(buffer(1));
Debug.Print "."
l = 0
For n = 2 To BUFSIZE
Debug.Print Format\$(buffer(n), "00000");
l = l + 1
If l = 10 Then
l = 0
Debug.Print 'line feed
End If
Next n
End Sub
Output:
3.
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

## Visual Basic .NET

Translation of: C#

Don't forget to use the "Project" tab, "Add Reference..." for System.Numerics (in case you get compiler errors in the Visual Studio IDE)

Imports System
Imports System.Numerics

Public Module Module1
Public Sub Main()
Dim two, three, four, seven, ten, k, q, t, l, n, r, nn, nr As BigInteger,
first As Boolean = True
two = New BigInteger(2) : three = New BigInteger(3) : four = two + two
seven = three + four : ten = three + seven : k = BigInteger.One
q = k : t = k : l = three : n = three : r = BigInteger.Zero
While True
If four * q + r - t < n * t Then
Console.Write(n) : If first Then Console.Write(".") : first = False
nr = ten * (r - n * t) : n = ten * (three * q + r) / t - ten * n
q *= ten
Else
nr = (two * q + r) * l : nn = (q * seven * k + two + r * l) / (t * l)
q *= k : t *= l : l += two : k += BigInteger.One : n = nn
End If
r = nr
End While
End Sub

End Module

Output:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331168617278558890750983817546374649393192550604009277016711390098488240128583616035637076601047101819429555961989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569660240580381501935112533824300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279679766814541009538837863609506800642251252051173929848960841284886269456042419652850222106611863067442786220391949450471237137869609563643719172874677646575739624138908658326459958133904780275900994657640789512694683983525957098258226205224894077267194782684826014769909026401363944374553050682034962524517493996514314298091906592509372216964615157098583874105978859597729754989301617539284681382686838689427741559918559252459539594310499725246808459872736446958486538367362226260991246080512438843904512441365497627807977156914359977001296160894416948685558484063534220722258284886481584560285060168427394522674676788952521385225499546667278239864565961163548862305774564980355936345681743241125150760694794510965960940252288797108931456691368672287489405601015033086179286809208747609178249385890097149096759852613655497818931297848216829989487226588048575640142704775551323796414515237462343645428584447952658678210511413547357395231134271661021359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910484810053706146806749192781911979399520614196634287544406437451237181921799983910159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492026054146659252014974428507325186660021324340881907104863317346496514539057962685610055081066587969981635747363840525714591028970641401109712062804390397595156771577004203378699360072305587631763594218731251471205329281918261861258673215791984148488291644706095752706957220917567116722910981690915280173506712748583222871835209353965725121083579151369882091444210067510334671103141267111369908658516398315019701651511685171437657618351556508849099898599823873455283316355076479185358932261854896321329330898570642046752590709154814165498594616371802709819943099244889575712828905923233260972997120844335732654893823911932597463667305836041428138830320382490375898524374417029132765618093773444030707469211201913020330380197621101100449293215160842444859637669838952286847831235526582131449576857262433441893039686426243410773226978028073189154411010446823252716201052652272111660396665573092547110557853763466820653109896526918620564769312570586356620185581007293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699390814546646458807972708266830634328587856983052358089330657574067954571637752542021149557615814002501262285941302164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437518957359614589019389713111790429782856475032031986915140287080859904801094121472213179476477726224142548545403321571853061422881375850430633217518297986622371721591607716692547487389866549494501146540628433663937900397692656721463853067360965712091807638327166416274888800786925602902284721040317211860820419000422966171196377921337575114959501566049631862947265473642523081770367515906735023507283540567040386743513622224771589150495309844489333096340878076932599397805419341447377441842631298608099888687413260472156951623965864573021631598193195167353812974167729478672422924654366800980676928238280689964004824354037014163149658979409243237896907069779422362508221688957383798623001593776471651228935786015881617557829735233446042815126272037343146531977774160319906655418763979293344195215413418994854447345673831624993419131814809277771038638773431772075456545322077709212019051660962804909263601975988281613323166636528619326686336062735676303544776280350450777235547105859548702790814356240145171806246436267945612753181340783303362542327839449753824372058353114771199260638133467768796959703098339130771098704085913374641442822772634659470474587847787201927715280731767907707157213444730605700733492436931138350493163128404251219256517980694113528013147013047816437885185290928545201165839341965621349143415956258658655705526904965209858033850722426482939728584783163057777560688876446248246857926039535277348030480290058760758251047470916439613626760449256274204208320856611906254543372131535958450687724602901618766795240616342522577195429162991930645537799140373404328752628889639958794757291746426357455254079091451357111369410911939325191076020825202618798531887705842972591677813149699009019211697173727847684726860849003377024242916513005005168323364350389517029893922334517220138128069650117844087451960121228599371623130171144484640903890644954440061986907548516026327505298349187407866808818338510228334508504860825039302133219715518430635455007668282949304137765527939751754613953984683393638304746119966538581538420568533862186725233402830871123282789212507712629463229563989898935821167456270102183564622013496715188190973038119800497340723961036854066431939509790190699639552453005450580685501956730229219139339185680344903982059551002263535361920419947455385938102343955449597783779023742161727111


### Quicker, unverified algo

There seems to be another algorithm in the original reference article (see the Ada entry), which produces output a bit faster. However, the math behind the algorithm has not been completely proven. It's faster because it doesn't calculate whether each digit is accumulated properly before squirting it out. When using (slow) arbitrary precision libraries, this avoids a lot of computation time.

Imports System, System.Numerics, System.Text

Module Module1

Sub RunPiF(ByVal msg As String)
If msg.Length > 0 Then Console.WriteLine(msg)
Dim first As Boolean = True, stp As Integer = 360,
res As StringBuilder = New StringBuilder(),
rc As Integer = -1, y As Byte, et As TimeSpan,
st As DateTime = DateTime.Now,
q, r, t, g, j, h, k, a, b As BigInteger
q = 1 : r = 180 : t = 60 : g = 60 : j = 54
h = 10 : k = 10 : a = 15 : b = 3
While True ' use this to stop after a keypress
' While rc < 20000 ' use this to stop after some fixed point
While res.Length < stp
a += 27 : y = CByte((q * a + 5 * r) / (5 * t))
res.Append(y) : b += 5 : j += 54 : g += j
r = 10 * g * (q * b + r - y * t)
k += 40 : h += k : q *= h : t *= g
End While
If first Then res.Insert(1, "."c) : first = False
Console.Write(res.ToString())
rc += res.Length : res.Clear()
If Console.KeyAvailable Then Exit While
End While
et = DateTime.Now - st : Console.ReadKey()
Console.Write(res.ToString()) : rc += res.Length
Console.WriteLine(vbLf & "Produced {0} digits in {1:n4} seconds.", rc, et.TotalSeconds)
End Sub

Sub Main(args As String())
RunPiF("Press a key to exit...")
End Sub
End Module

Output:

The First several thousand digits verified the same as the conventional spigot algorithm, haven't detected any differences yet.

Press a key to exit...
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364542858444795265867821051141354735739523113427166102135969536231442952484937187110145765403590279934403742007310578539062198387447808478489683321445713868751943506430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961567945208095146550225231603881930142093762137855956638937787083039069792077346722182562599661501421503068038447734549202605414665925201497442850732518666002132434088190710486331734649651453905796268561005508106658796998163574736384052571459102897064140110971206280439039759515677157700420337869936007230558763176359421873125147120532928191826186125867321579198414848829164470609575270695722091756711672291098169091528017350671274858322287183520935396572512108357915136988209144421006751033467110314126711136990865851639831501970165151168517143765761835155650884909989859982387345528331635507647918535893226185489632132933089857064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730583604142813883032038249037589852437441702913276561809377344403070746921120191302033038019762110110044929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077322697802807318915441101044682325271620105265227211166039666557309254711055785376346682065310989652691862056476931257058635662018558100729360659876486117910453348850346113657686753249441668039626579787718556084552965412665408530614344431858676975145661406800700237877659134401712749470420562230538994561314071127000407854733269939081454664645880797270826683063432858785698305235808933065757406795457163775254202114955761581400250126228594130216471550979259230990796547376125517656751357517829666454779174501129961489030463994713296210734043751895735961458901938971311179042978285647503203198691514028708085990480109412147221317947647772622414254854540332157185306142288137585043063321751829798662237172159160771669254748738986654949450114654062843366393790039769265672146385306736096571209180763832716641627488880078692560290228472104031721186082041900042296617119637792133757511495950156604963186294726547364252308177036751590673502350728354056704038674351362222477158915049530984448933309634087807693259939780541934144737744184263129860809988868741326047215695162396586457302163159819319516735
Produced 5038 digits in 0.3391 seconds.

## Wren

Translation of: Kotlin
Library: Wren-big
import "./big" for BigInt
import "io" for Stdout

var calcPi = Fn.new {
var nn = BigInt.zero
var nr = BigInt.zero
var q  = BigInt.one
var r  = BigInt.zero
var t  = BigInt.one
var k  = BigInt.one
var n  = BigInt.three
var l  = BigInt.three
var first = true
while (true) {
if (q * BigInt.four + r - t < n * t) {
System.write(n)
if (first) {
System.write(".")
first = false
}
Stdout.flush()
nr = (r - n * t) * BigInt.ten
n = (q * BigInt.three + r) * BigInt.ten / t  - n * BigInt.ten
q =  q * BigInt.ten
r = nr
} else {
nr = (q * BigInt.two + r) * l
nn = (q * BigInt.new(7) * k + BigInt.two + r * l) / (t * l)
q  = q * k
t  = t * l
l  = l + BigInt.two
k  = k + BigInt.one
n = nn.copy()
r = nr
}
}
}

calcPi.call()

Output:
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745...


## Yabasic

Translation of: BASIC256
n = 1000
long = 10 * int(n / 4)
needdecimal = 1 //true
dim a(long)
nines = 0
predigit = 0  // {First predigit is a 0}

for j = 1 to long
next j

for j = 1 to n
q = 0
for i = long to 1 step -1
//  {Work backwards}
x   = 10*a(i-1) + q*i
a(i-1) = mod(x, (2*i - 1))
q  = int(x / (2*i - 1))
next i
a(0) = mod(q, 10)
q = int(q / 10)
if q = 9 then
nines = nines + 1
else
if q = 10 then
d = predigit+1
gosub outputd
if nines > 0 then
for k = 1 to nines
d =  0
gosub outputd
next k
end if
predigit = 0
nines = 0
else
d = predigit
gosub outputd
predigit = q
if nines <> 0 then
for k = 1 to nines
d =  9
gosub outputd
next k
nines = 0
end if
end if
end if
next j
print predigit
end

label outputd
if needdecimal then
if d = 0 then return : fi
print d;
print ".";
needdecimal = 0 //false
else
print "", d;
endif
return

## zkl

Uses the GMP big int library. Same algorithm as many of the others on this page. Uses in place ops to cut down on big int generation (eg add vs +). Unless GC is given some hints, it will use up 16 gig quickly as it outruns the garbage collector.

var [const] BN=Import("zklBigNum"),
one=BN(1), two=BN(2), three=BN(3), four=BN(4), seven=BN(7), ten=BN(10);

fcn calcPiDigits{
reg q=BN(1), r=BN(0), t=BN(1), k=BN(1), n=BN(3), l=BN(3);
first:=True; N:=0;
while(True){ if((N+=1)==1000){ GarbageMan.collect(); N=0; } // take a deep breath ...
if(four*q + r - t < n*t){
n.print(); if(first){ print("."); first=False; }
nr:=(r - n*t).mul(ten);	// 10 * (r - n * t);
n=(three*q).add(r).mul(ten)	// ((10*(3*q + r))/t) - 10*n;
.div(t).sub(ten*n);
q.mul(ten);			// q *= 10;
r=nr;
}else{
}();
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745