Jump to content

Pi

From Rosetta Code
Task
Pi
You are encouraged to solve this task according to the task description, using any language you may know.

Create a program to continually calculate and output the next decimal digit of     (pi).

The program should continue forever (until it is aborted by the user) calculating and outputting each decimal digit in succession.

The output should be a decimal sequence beginning   3.14159265 ...


Note: this task is about   calculating   pi.   For information on built-in pi constants see Real constants and functions.


Related Task Arithmetic-geometric mean/Calculate Pi

11l

Translation of: D
V ndigits = 0
V q = BigInt(1)
V r = BigInt(0)
V t = q
V k = q
V n = BigInt(3)
V l = n

V first = 1B
L ndigits < 1'000
   I 4 * q + r - t < n * t
      print(n, end' ‘’)
      ndigits++
      I ndigits % 70 == 0
         print()
      I first
         first = 0B
         print(‘.’, end' ‘’)
      V nr = 10 * (r - n * t)
      n = ((10 * (3 * q + r)) I/ t) - 10 * n
      q *= 10
      r = nr
   E
      V nr = (2 * q + r) * l
      V nn = (q * (7 * k + 2) + r * l) I/ (t * l)
      q *= k
      t *= l
      l += 2
      k++
      n = nn
      r = nr
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816
4062862089986280348253421170679821480865132823066470938446095505822317
2535940812848111745028410270193852110555964462294895493038196442881097
5665933446128475648233786783165271201909145648566923460348610454326648
2133936072602491412737245870066063155881748815209209628292540917153643
6789259036001133053054882046652138414695194151160943305727036575959195
3092186117381932611793105118548074462379962749567351885752724891227938
1830119491298336733624406566430860213949463952247371907021798609437027
7053921717629317675238467481846766940513200056812714526356082778577134
2757789609173637178721468440901224953430146549585371050792279689258923
5420199561121290219608640344181598136297747713099605187072113499999983
7297804995105973173281609631859502445945534690830264252230825334468503
5261931188171010003137838752886587533208381420617177669147303598253490
4287554687311595628638823537875937519577818577805321712268066130019278
76611195909216420198

360 Assembly

Translation of: FORTRAN

The program uses one ASSIST macro (XPRNT) to keep the code as short as possible.

*        Spigot algorithm do the digits of PI  02/07/2016
PISPIG   CSECT
         USING  PISPIG,R13         base register
         B      72(R15)            skip savearea
         DC     17F'0'             savearea
         STM    R14,R12,12(R13)    prolog
         ST     R13,4(R15)         "
         ST     R15,8(R13)         " 
         LR     R13,R15            "
         SR     R0,R0              0
         ST     R0,MORE            more=0
         LA     R6,1               i=1 
LOOPI1   C      R6,=A(NBUF)        do i=1 to hbound(buf)
         BH     ELOOPI1            "
         SR     R9,R9                karray=0
         L      R7,=A(NVECT)         j=hbound(vect)
         LR     R1,R7                  j
         SLA    R1,2                   .
         LA     R10,VECT-4(R1)       r10=@vect(j)
LOOPJ    EQU    *                    do j=hbound(vect) to 1 by -1
         L      R5,=F'100000'            100000
         M      R4,0(R10)                *vect(j)
         LR     R2,R5                    r2=100000*vect(j)
         LR     R5,R9                    karray
         MR     R4,R7                    karray*j
         AR     R2,R5                    r2+karray*j
         LR     R11,R2                 n=100000*vect(j)+karray*j
         LR     R3,R7                    j
         SLA    R3,1                     2*j
         BCTR   R3,0                     2*j-1)
         LR     R4,R11                   n
         SRDA   R4,32                    .
         DR     R4,R3                    n/(2*j-1)
         LR     R9,R5                  karray=n/(2*j-1)
         LR     R5,R9                    karray
         MR     R4,R3                    karray*(2*j-1)
         LR     R1,R11                   n
         SR     R1,R5                    n-karray*(2*j-1)
         ST     R1,0(R10)              vect(j)=n-karray*(2*j-1)
         SH     R10,=H'4'              r10=@vect(j)
         BCT    R7,LOOPJ             end do j
         LR     R4,R9                karray
         SRDA   R4,32                .
         D      R4,=F'100000'        karray/100000
         LR     R11,R5               k=karray/100000
         L      R2,MORE              more
         AR     R2,R11               +k
         LR     R1,R6                i
         SLA    R1,2                 .
         ST     R2,BUF-4(R1)         buf(i)=more+k
         LR     R5,R11                 k
         M      R4,=F'100000'          *100000
         LR     R1,R9                  karray
         SR     R1,R5                  -k*100000
         ST     R1,MORE              more=karray-k*100000
         LA     R6,1(R6)             i=i+1
         B      LOOPI1             end do i
ELOOPI1  L      R1,BUF             buf(1)
         CVD    R1,PACKED          convert buf(1) to packed decimal
         OI     PACKED+7,X'0F'     prepare unpack
         UNPK   PG(1),PACKED       packed decimal to zoned printable
         MVI    PG+1,C'.'          output '.'
         XPRNT  PG,80              print buffer
         MVC    PG,=CL80' '        clear buffer
         LA     R3,PG              pgi=0
         LA     R6,2               i=2
LOOPI2   C      R6,=A(NBUF)        do i=2 to hbound(buf)
         BH     ELOOPI2            "  
         MVC    0(1,R3),=C' '        output ' '
         LA     R3,1(R3)             pgi=pgi+1
         LR     R1,R6                i
         SLA    R1,2                 .
         L      R2,BUF-4(R1)         buf(i)
         CVD    R2,PACKED            convert v to packed decimal
         OI     PACKED+7,X'0F'       prepare unpack
         UNPK   XDEC,PACKED          packed decimal to zoned printable
         MVC    0(5,R3),XDEC+7       output buf(i) with 5 decimals
         LA     R3,5(R3)             pgi=pgi+5
         LR     R4,R6                i
         BCTR   R4,0                 i-1
         SRDA   R4,32                .
         D      R4,=F'10'            (i-1)/10
         LTR    R4,R4                if (i-1)//10=0
         BNZ    NOSKIP               then
         XPRNT  PG,80                  print buffer
         LA     R3,PG                  pgi=0
         MVC    PG,=CL80' '            clear buffer
NOSKIP   LA     R6,1(R6)             i=i+1
         B      LOOPI2             end do i
ELOOPI2  L      R13,4(0,R13)       epilog 
         LM     R14,R12,12(R13)    "
         XR     R15,R15            "
         BR     R14                exit
         LTORG  
MORE     DS     F                  more
PACKED   DS     0D,PL8             packed decimal
PG       DC     CL80' '            buffer
XDEC     DS     CL12               temp
BUF      DC     (NBUF)F'0'         buf(nbuf)
VECT     DC     (NVECT)F'2'        vect(nvect) init 2
         YREGS
NBUF     EQU    201                number of 5 decimals
NVECT    EQU    3350               nvect=ceil(nbuf*50/3)
         END    PISPIG
Output:
3.
 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128
 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196
 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091
 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273
 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436
 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094
 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548
 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912
 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798
 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132
 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872
 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235
 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960
 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859
 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881
 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303
 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778
 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program calculPi64.s   */
/* for algorithm see a french site : http://www.yann-ollivier.org/pi/pi.php */

/************************************/
/* Constantes                       */
/************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc" 

.equ NBVAL, 8400     //(2400 decimales) or 16800 (4800 décimales) or 33600 (9600 decimales)
.equ BASE, 10000

//.include "../ficmacros32.inc"       // for debugging developper
/************************************/
/* Initialized data                 */
/************************************/
.data

szCarriageReturn:     .asciz "\n"
szMessStart:          .asciz "Program 64 bits start.\n"
szNBZero1:            .asciz "0"
szNBZero2:            .asciz "00"
szNBZero3:            .asciz "000"
.align 2

/************************************/
/* UnInitialized data               */
/************************************/
.bss 
sZoneConv:            .skip 24
ibuffer:              .skip 4 * (NBVAL+1)
/************************************/
/*  code section                    */
/************************************/
.text
.global main 
main:                        // entry of program
    ldr x0,qAdrszMessStart
    bl affichageMess
    ldr x7,iA
    mov x0,x7
    mov x1,#5
    udiv x2,x0,x1           // A / 5
    mov x1,#0
    ldr x8,qAdribuffer
    ldr x9,iC               // C
1:                          // init start array 
    str w2,[x8,x1, lsl #2]  // store A/5
    add x1,x1,#1
    cmp x1,x9
    blt 1b
    
    mov x10,#0              // E
2:                          // begin loop 1
    mov x4,#0               // D
    lsl x5,x9,#1            // G
    mov x6,x9               // B 
3:                          // loop 2
    ldr w1,[x8,x6, lsl #2]
    mul x1,x7,x1            //
    add x4,x4,x1            // new D
    sub x5,x5,#1            // g = g -1
    mov x0,x4               // D
    mov x1,x5               // G
    udiv x2,x0,x1
    msub x3,x1,x2,x0
    str w3,[x8,x6, lsl #2]  // D modulo G
    mov x4,x2
    sub x5,x5,#1            // G=G-1
    subs x6,x6,#1           // B=B-1
    ble 4f                  // end loop 2 ?
    mul x4,x6,x4            // no compute new D
    b 3b                    // and loop 2
4:
    mov x0,x4               // D
    mov x1,x7               // A
    udiv x2,x0,x1
    msub x3,x1,x2,x0
    add x0,x2,x10           // D/A + E
    bl afficherDecimale

    mov x10,x3              // E=D modulo A
    subs x9,x9,#14
    bgt 2b                  // end loop 1 ?
 
100:                         // standard end of the program
    mov x0, #0               // return code
    mov x8,EXIT 
    svc 0                    // perform the system call
qAdrsZoneConv:            .quad sZoneConv

qAdrszCarriageReturn:     .quad szCarriageReturn
qAdrszMessStart:          .quad szMessStart


qAdribuffer:  .quad ibuffer
iA:   .quad BASE
iC:   .quad NBVAL
/******************************************************************/
/*     Display decimales                                   */ 
/******************************************************************/
/* x0 contains decimale  */
afficherDecimale:
    stp x4,lr,[sp,-16]!         // save  registers 
    mov x4,x0
    ldr x1,ival1
    cmp x0,x1
    bgt 3f
    cmp x0,#99
    ble 1f
    ldr x0,qAdrszNBZero1        // display 1 zero
    bl affichageMess
    mov x0,x4
    b 3f
1:
    cmp x0,#9
    ble 2f
    ldr x0,qAdrszNBZero2        // display 2 zeroes
    bl affichageMess
    mov x0,x4
    b 3f
2:
    ldr x0,qAdrszNBZero3        // display 3 zeroes
    bl affichageMess
    mov x0,x4
3:                              // conversion and display
    ldr x1,qAdrsZoneConv
    bl conversion10             // decimal conversion
    mov x2,#0
    strb w2,[x1,x0]
    ldr x0,qAdrsZoneConv
    bl affichageMess

100:
    ldp x4,lr,[sp],16         // restaur  registers 
    ret
ival1:      .quad 999
qAdrszNBZero1:  .quad szNBZero1
qAdrszNBZero2:  .quad szNBZero2
qAdrszNBZero3:  .quad szNBZero3
/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeARM64.inc"
Output:
Program 64 bits start.
314159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548586327886593615338182796823030195203530185296899577362259941389124972177528347913151557485724245415069595082953311686172785588907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559619894676783744944825537977472684710404753464620804668425906949129331367702898915210475216205696602405803815019351125338243003558764024749647326391419927260426992279678235478163600934172164121992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596023648066549911988183479775356636980742654252786255181841757467289097777279380008164706001614524919217321721477235014144197356854816136115735255213347574184946843852332390739414333454776241686251898356948556209921922218427255025425688767179049460165346680498862723279178608578438382796797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009946576407895126946839835259570982582262052248940772671947826848260147699090264013639443745530506820349625245174939965143142980919065925093722169646151570985838741059788595977297549893016175392846813826868386894277415599185592524595395943104997252468084598727364469584865383673622262609912460805124388439045124413654976278079771569143599770012961608944169486855584840635342207222582848864815845602850

Ada

Works with: Ada 2005
Library: GMP

uses same algorithm as Go solution, from http://web.comlab.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf

pi_digits.adb
with Ada.Command_Line;
with Ada.Text_IO;
with GNU_Multiple_Precision.Big_Integers;
with GNU_Multiple_Precision.Big_Rationals;
use GNU_Multiple_Precision;

procedure Pi_Digits is
   type Int is mod 2 ** 64;
   package Int_To_Big is new Big_Integers.Modular_Conversions (Int);

   -- constants
   Zero : constant Big_Integer := Int_To_Big.To_Big_Integer (0);
   One : constant Big_Integer := Int_To_Big.To_Big_Integer (1);
   Two : constant Big_Integer := Int_To_Big.To_Big_Integer (2);
   Three : constant Big_Integer := Int_To_Big.To_Big_Integer (3);
   Four : constant Big_Integer := Int_To_Big.To_Big_Integer (4);
   Ten : constant Big_Integer := Int_To_Big.To_Big_Integer (10);

   -- type LFT = (Integer, Integer, Integer, Integer
   type LFT is record
      Q, R, S, T : Big_Integer;
   end record;

   -- extr :: LFT -> Integer -> Rational
   function Extr (T : LFT; X : Big_Integer) return Big_Rational is
      use Big_Integers;
      Result : Big_Rational;
   begin
      -- extr (q,r,s,t) x = ((fromInteger q) * x + (fromInteger r)) /
      --                    ((fromInteger s) * x + (fromInteger t))
      Big_Rationals.Set_Numerator (Item         => Result,
                                   New_Value    => T.Q * X + T.R,
                                   Canonicalize => False);
      Big_Rationals.Set_Denominator (Item      => Result,
                                     New_Value => T.S * X + T.T);
      return Result;
   end Extr;

   -- unit :: LFT
   function Unit return LFT is
   begin
      -- unit = (1,0,0,1)
      return LFT'(Q => One, R => Zero, S => Zero, T => One);
   end Unit;

   -- comp :: LFT -> LFT -> LFT
   function Comp (T1, T2 : LFT) return LFT is
      use Big_Integers;
   begin
      -- comp (q,r,s,t) (u,v,w,x) = (q*u+r*w,q*v+r*x,s*u+t*w,s*v+t*x)
      return LFT'(Q => T1.Q * T2.Q + T1.R * T2.S,
                  R => T1.Q * T2.R + T1.R * T2.T,
                  S => T1.S * T2.Q + T1.T * T2.S,
                  T => T1.S * T2.R + T1.T * T2.T);
   end Comp;

   -- lfts = [(k, 4*k+2, 0, 2*k+1) | k<-[1..]
   K : Big_Integer := Zero;
   function LFTS return LFT is
      use Big_Integers;
   begin
      K := K + One;
      return LFT'(Q => K,
                  R => Four * K + Two,
                  S => Zero,
                  T => Two * K + One);
   end LFTS;

   -- next z = floor (extr z 3)
   function Next (T : LFT) return Big_Integer is
   begin
      return Big_Rationals.To_Big_Integer (Extr (T, Three));
   end Next;

   -- safe z n = (n == floor (extr z 4)
   function Safe (T : LFT; N : Big_Integer) return Boolean is
   begin
      return N = Big_Rationals.To_Big_Integer (Extr (T, Four));
   end Safe;

   -- prod z n = comp (10, -10*n, 0, 1)
   function Prod (T : LFT; N : Big_Integer) return LFT is
      use Big_Integers;
   begin
      return Comp (LFT'(Q => Ten, R => -Ten * N, S => Zero, T => One), T);
   end Prod;

   procedure Print_Pi (Digit_Count : Positive) is
      Z : LFT := Unit;
      Y : Big_Integer;
      Count : Natural := 0;
   begin
      loop
         Y := Next (Z);
         if Safe (Z, Y) then
            Count := Count + 1;
            Ada.Text_IO.Put (Big_Integers.Image (Y));
            exit when Count >= Digit_Count;
            Z := Prod (Z, Y);
         else
            Z := Comp (Z, LFTS);
         end if;
      end loop;
   end Print_Pi;

   N : Positive := 250;
begin
   if Ada.Command_Line.Argument_Count = 1 then
      N := Positive'Value (Ada.Command_Line.Argument (1));
   end if;
   Print_Pi (N);
end Pi_Digits;

output:

 3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7

ALGOL 68

Translation of: Pascal

Note: This specimen retains the original Pascal coding style of code.

Works with: ALGOL 68 version Revision 1 - no extensions to language used.
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny.

This codes uses 33 decimals places as a test case. Performance is O(2) based on the number of decimal places required.

#!/usr/local/bin/a68g --script #

INT base := 10;

MODE YIELDINT = PROC(INT)VOID;
PROC gen pi digits = (INT decimal places, YIELDINT yield)VOID:
BEGIN
  INT nine = base - 1;
  INT nines := 0, predigit := 0; # First predigit is a 0 #
  [decimal places*10 OVER 3]#LONG# INT digits; # We need 3 times the digits to calculate #
  FOR place FROM LWB digits TO UPB digits DO digits[place] := 2 OD; # Start with 2s #
  FOR place TO decimal places + 1 DO
    INT digit := 0;
    FOR i FROM UPB digits BY -1 TO LWB digits DO # Work backwards #
        INT x := #SHORTEN#(base*digits[i] + #LENG# digit*i);
        digits[i] := x MOD (2*i-1);
        digit := x OVER (2*i-1)
    OD;
    digits[LWB digits] := digit MOD base; digit OVERAB base;
    nines := 
      IF digit = nine THEN 
        nines + 1
      ELSE
        IF digit = base THEN
          yield(predigit+1); predigit := 0 ;
          FOR repeats TO nines DO yield(0) OD # zeros # 
        ELSE
          IF place NE 1 THEN yield(predigit) FI; predigit := digit;
          FOR repeats TO nines DO yield(nine) OD
        FI;
        0
      FI
  OD;
  yield(predigit)
END;

main:(
  INT feynman point = 762; # feynman point + 4 is a good test case #
# the 33rd decimal place is a shorter tricky test case #
  INT test decimal places = UPB "3.1415926.......................502"-2;

  INT width = ENTIER log(base*(1+small real*10)); 

# iterate throught the digits as they are being found #
# FOR INT digit IN # gen pi digits(test decimal places#) DO ( #,
  ## (INT digit)VOID: (
    printf(($n(width)d$,digit))
  )
# OD #);
  print(new line)
)

Output:

3141592653589793238462643383279502

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
/* ARM assembly Raspberry PI  */
/*  program calculPi.s   Spigot algorithm */
/* conversion to Pascal    */

/************************************/
/* Constantes                       */
/************************************/
/* for this file see task include a file in language ARM assembly*/
.include "../constantes.inc"

.equ NBVAL, 3000
.equ LEN, 10 * NBVAL / 3              @ 10000

//.include "../ficmacros32.inc"       @ for debugging developper
/************************************/
/* Initialized data                 */
/************************************/
.data

szCarriageReturn:     .asciz "\n"
szMessStart:          .asciz "Program 32 bits start.\n"
szVal9:               .asciz "9"
szVal0:               .asciz "0"
.align 2

/************************************/
/* UnInitialized data               */
/************************************/
.bss 
sZoneConv:            .skip 24
ibuffer:              .skip 4 * (LEN+1)
/************************************/
/*  code section                    */
/************************************/
.text
.global main 
main:                        @ entry of program
    ldr r0,iAdrszMessStart
    bl affichageMess
    ldr r12,iN
    ldr r10,iLen
 
    mov r1,#0
    ldr r8,iAdribuffer
    mov r2,#2
1:                          @ init start array loop
    str r2,[r8,r1, lsl #2]  @ store 2
    add r1,#1
    cmp r1,r10
    blt 1b
    
    mov r9,#0               @ nine
    mov r7,#0               @ predigit
    mov r6,#0               @ j
2:                          @ begin loop 1
    mov r5,#0               @ q
    sub r4,r10,#1           @ i
3:                          @ loop 2
    ldr r0,[r8,r4, lsl #2]  @ load value 
    mov r1,#10
    mul r0,r1,r0            @ val * 10
    mul r1,r5,r4            @ q *i
    add r0,r1
    lsl r1,r4,#1            @ divisor =i *2   
    sub r1,#1               @ - 1
    bl division
    str r3,[r8,r4, lsl #2]  @  modulo 2i-1
    mov r5,r2               @ q 
    subs r4,#1              @ decremente i
    bgt 3b                  @ end loop 2
    mov r0,r5
    mov r1,#10
    bl division
    str r3,[r8,#4]          @ poste 0 = q mod 10
    mov r5,r2               @ q = q/10
    cmp r5,#9
    beq 7f
    cmp r5,#10
    beq 5f
    mov r0,r7
    bl afficherPredigit
    mov r7,r5               @ predigit=q
    cmp r9,#0               @ nine
    beq 8f
    mov r1,#1               @ else
4:
    cmp r1,r9
    bgt 41f
    ldr r0,iAdrszVal9
    bl affichageMess
    add r1,#1
    b 4b
41:
    mov r9,#0                @ raz nine
    b 8f
5:                      @ q = 10
    add r0,r7,#1
    bl afficherPredigit
    mov r7,#0               @ predigit=0
    mov r1,#1
6:
    cmp r1,r9
    bgt 61f
    ldr r0,iAdrszVal0
    bl affichageMess
    add r1,#1
    b 6b
61:
    mov r9,#0                @ raz nine
    b 8f   
7:   
    add r9,#1
8:  
    add r6,#1
    cmp r6,r12
    ble 2b                  @ end loop 1 ?
    mov r0,r7
    bl afficherPredigit 
 
100:                         @ standard end of the program
    mov r0, #0               @ return code
    mov r7, #EXIT            @ request to exit program
    svc 0                    @ perform the system call
iAdrsZoneConv:            .int sZoneConv
iAdrszCarriageReturn:     .int szCarriageReturn
iAdrszMessStart:          .int szMessStart


iAdribuffer:  .int ibuffer
iN:           .int NBVAL
iLen:         .int LEN
iAdrszVal9:   .int szVal9
iAdrszVal0:   .int szVal0
/******************************************************************/
/*     Display predigit                                   */ 
/******************************************************************/
/* r0 contains decimale  */
afficherPredigit:
    push {r4,lr}                @ save  registers 
    mov r4,r0
    ldr r1,iAdrsZoneConv
    bl conversion10             @ decimal conversion
    mov r2,#0
    strb r2,[r1,r0]
    ldr r0,iAdrsZoneConv
    bl affichageMess

100:
    pop {r4,pc}                 @ restaur registers

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
/* for this file see task include a file in language ARM assembly*/
.include "../affichage.inc"
Output:
Program 32 bits start.
03141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641219924586315030286182974555706749838505494588586926995690927210797509302955321165344987202755960236480665499119881834797753566369807426542527862551818417574672890977772793800081647060016145249192173217214772350141441973568548161361157352552133475741849468438523323907394143334547762416862518983569485562099219222184272550254256887671790494601653466804988627232791786085784383827967976681454100953883786360950680064225125205117392984896084128488626945604241965285022210661186306744278622039194945047123713786960956364371917287467764657573962413890865832645995813390478027590099465764078951269468398352595709825822620522489407726719478268482601476990902640136394437455305068203496252451749399651431429809190659250937221696461515709858387410597885959772975498930161753928468138268683868942774155991855925245953959431049972524680845987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364542858444795265867821051141354735739523113427166102135969536231442952484937187110145765403590279934403742007310578539062198387447808478489683321445713868751943506430218453191048481005370614680674919278191197939952061419663428754440643745123718192179998391015919561814675142691239748940907186494231961

Arturo

q: 1
r: 0
t: 1
k: 1
n: 3
l: 3
d: 0

dotWritten: false

while [true][
    if? (n*t) > (4*q)+r-t [
        d: d+1
        prints n
        unless dotWritten [
            prints "."
            dotWritten: true
            d: d+1
        ]

        if 0 = d%80 -> prints "\n"
        nr: 10*(r - n*t)
        n: ((10*(r + 3*q)) / t) - 10*n
        q: q*10
        r: nr
    ]
    else [
        nr: (r + 2*q) * l
        nn: ((q*(2 + 7*k)) + r*l) / (t*l)
        q: q*k
        t: t*l
        l: l+2
        k: k+1
        n: nn
        r: nr
    ]
]
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
59502445945534690830264252230825334468503526193118817101000313783875288658753320
83814206171776691473035982534904287554687311595628638823537875937519577818577805
32171226806613001927876611195909216420198938095257201065485863278865936153381827
96823030195203530185296899577362259941389124972177528347913151557485724245415069
59508295331168617278558890750983817546374649393192550604009277016711390098488240
12858361603563707660104710181942955596198946767837449448255379774726847104047534
64620804668425906949129331367702898915210475216205696602405803815019351125338243
00355876402474964732639141992726042699227967823547816360093417216412199245863150
30286182974555706749838505494588586926995690927210797509302955321165344987202755
96023648066549911988183479775356636980742654252786255181841757467289097777279380
00816470600161452491921732172147723501414419735685481613611573525521334757418494
68438523323907394143334547762416862518983569485562099219222184272550254256887671
79049460165346680498862723279178608578438382796797668145410095388378636095068006
42251252051173929848960841284886269456042419652850222106611863067442786220391949
45047123713786960956364371917287467764657573962413890865832645995813390478027590
...

AutoHotkey

Library: MPL

Could be optimized with Ipp functions, but runs fast enough for me as-is. Does not work in AHKLx64.

#NoEnv
#SingleInstance, Force
SetBatchLines, -1
#Include mpl.ahk
dot:=".", i:=0
, MP_SET(q, "1")
, MP_SET(r, "0")
, MP_SET(t, "1")
, MP_SET(k, "1")
, MP_SET(n, "3")
, MP_SET(l, "3")
, MP_SET(ONE, "1")
, MP_SET(TWO, "2")
, MP_SET(THREE, "3")
, MP_SET(FOUR, "4")
, MP_SET(SEVEN, "7")
, MP_SET(TEN, "10")

Loop
{
	MP_MUL(q4, q, FOUR)
	, MP_ADD(q4r, q4, r)
	, MP_SUB(q4rt, q4r, t)
	, MP_MUL(tn, t, n)
	If (MP_CMP(q4rt,tn) = -1)
	{
		s := MP_DEC(n) . dot
		OutputDebug %s%
		  dot := ""
		, i++
		, MP_MUL(tn, t, n)
		, MP_SUB(rtn, r, tn)
		, MP_MUL(nr, rtn, TEN)
		, MP_MUL(q3, q, THREE)
		, MP_ADD(q3r, q3, r)
		, MP_DIV(q3rt, remainder, q3r, t)
		, MP_SUB(q3rtn, q3rt, n)
		, MP_MUL(n, q3rtn, TEN)
		, MP_MUL(tmp, q, TEN)
		, MP_CPY(q, tmp)
		, MP_CPY(r, nr)
	}
	Else
	{
		MP_MUL(q2, q, TWO)
		, MP_ADD(q2r, q2, r)
		, MP_MUL(nr, q2r, l)
		, MP_MUL(k7, k, SEVEN)
		, MP_ADD(k72, k7, TWO)
		, MP_MUL(qk, q, k72)
		, MP_MUL(rl, r, l)
		, MP_ADD(qkrl, qk, rl)
		, MP_MUL(tl, t, l)
		, MP_DIV(nn, remainder, qkrl, tl)
		, MP_MUL(tmp, q, k)
		, MP_CPY(q, tmp)
		, MP_MUL(tmp, t, l)
		, MP_CPY(t, tmp)
		, MP_ADD(tmp, l, TWO)
		, MP_CPY(l, tmp)
		, MP_ADD(tmp, k, ONE)
		, MP_CPY(k, tmp)
		, MP_CPY(n, nn)
		, MP_CPY(r, nr)
	}
}

bash

Translation of: ALGOL 68
base=10;

gen_pi_digits(){
    base_places=$1 yield=$2

    ((nine=base - 1));
    local nines=0 predigit=0; # first predigit is_a 0 #
    declare -a digits; # [base_places*10 over 3]#long# ; # we need 3 times the digits to calculate #
    lwb_digits=1;
    ((upb_digits=base_places*10 / 3));
    for((place=lwb_digits; place<=upb_digits; place++)); do digits[$place]=2; done; # start with 2s #
    for((place=1; place<=base_places + 1; place++)); do
        digit=0;
        for((i=upb_digits; i>=lwb_digits; i--)); do # work backwards #
            ((x=base*digits[i] + digit*i));
            ((digits[i]=x%(2*i-1)));
            ((digit=x/(2*i-1)))
        done;
        ((digits[lwb_digits]=digit % base)); ((digit/=base));
#   nines := #
            if((digit == nine)); then
                ((nines=nines + 1))
            else
                if((digit == base)); then
                    ((out=predigit+1));
                    $yield $out; predigit=0;
                    for((repeats=1; repeats<=nines; repeats++)); do $yield 0; done
                else
                    if((place != 1)); then $yield $predigit; fi; predigit=$digit;
                    for((repeats=1; repeats<=nines; repeats++)); do $yield $nine; done
                fi;
                nines=0
            fi
    done;
    $yield $predigit
};

print_digit(){
    echo -n $1
}
# feynman_point=762; # feynman_point + 4 is a good test case
# the 33rd decimal place is a shorter tricky test case #
target="3.1415926.......................502";
((test_decimal_places=${#target}-2)); # upb

# iterate throught the digits as they are being found #
gen_pi_digits $test_decimal_places print_digit
echo # (new_line)

BASIC

Applesoft BASIC

10 REM ADOPTED FROM COMMODORE BASIC
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
100    A(J-1) = 2:REM START WITH 2S
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT PD
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT D;: RETURN
510 IF D=0 THEN RETURN
520  PRINT D;".";
530 ND = 0
550 RETURN

Atari 8-bit

10 REM ADOPTED FROM COMMODORE BASIC
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
100    A(J-1) = 2:REM START WITH 2S
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT PD
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT D;: RETURN
510 IF D=0 THEN RETURN
520 PRINT D;".";
530 ND = 0
550 RETURN


BASIC256

Translation of: Pascal

below, and originally published by Stanley Rabinowitz in [1].

cls

n   =1000
len = 10*n \ 4
needdecimal = true
dim a(len)
nines = 0
predigit = 0	# {First predigit is a 0}

for j = 1 to len
   a[j-1] = 2	# {Start with 2s}
next j

for j = 1 to n
   q = 0
   for i = len to 1 step -1
      #  {Work backwards}
      x   = 10*a[i-1] + q*i
      a[i-1] = x % (2*i - 1)
      q    = x \ (2*i - 1)
   next i
   a[0] = q % 10
   q = q \ 10
   if q = 9 then
      nines = nines + 1
   else
      if q = 10 then
         d = predigit+1: gosub outputd
         if nines > 0 then
            for k = 1 to nines
               d =  0: gosub outputd
            next k
         end if
         predigit = 0
         nines = 0
      else
         d = predigit: gosub outputd
         predigit = q
         if nines <> 0 then
            for k = 1 to nines
               d =  9: gosub outputd
            next k
            nines = 0
         end if
      end if
   end if
next j
print predigit
end

outputd:
if needdecimal then
   if d = 0 then return
   print d + ".";
   needdecimal = false
else
   print d;
end if
return

Output:

3.14159265358979323846264338327950288419716939937510582097494459230781...

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: Applesoft BASIC
Works with: MSX_BASIC
Works with: QBasic
Translation of: Applesoft BASIC
100 REM adopted from Applesoft BASIC
110 n = 100 : rem n may be increased, but will slow execution
120 ln = int(10*n/3)+16
130 nd = 1
140 dim a(ln)
150 n9 = 0
160 pd = 0 : rem First pre-digit is a 0
170 rem
180 for j = 1 to ln
190   a(j-1) = 2 : rem Start wirh 2S
200 next j
210 rem
220 for j = 1 to n
230   q = 0
240   for i = ln to 1 step -1 : rem Work backwards
250     x = 10*a(i-1)+q*i
260     a(i-1) = x-(2*i-1)*int(x/(2*i-1)) : rem X - Int ( X / Y) * Y
270     q = int(x/(2*i-1))
280   next i
290   a(0) = q-10*int(q/10)
300   q = int(q/10)
310   if q = 9 then n9 = n9+1 : goto 510
320   if q <> 10 then goto 440
330   rem Q == 10
340   d = pd+1 : gosub 560
350   if n9 <= 0 then goto 400
360     for k = 1 to n9
370       d = 0 : gosub 560
380     next k
390   rem End If
400   pd = 0
410   n9 = 0
420   goto 510
430   rem Q <> 10
440   d = pd : gosub 560
450   pd = q
460   if n9 = 0 then goto 510
470     for k = 1 to n9
480       d = 9 : gosub 560
490     next k
500     n9 = 0
510 next j
520 print str$(pd)
530 end
540 rem
550 rem Output digits
560 if nd = 0 then print str$(d); : return
570 if d = 0 then return
580 print str$(d);".";
590 nd = 0
600 return

Commodore BASIC

This works with Commodore Basic V2

10 PRINT CHR$(147)
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
100    A(J-1) = 2:REM START WITH 2S
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT RIGHT$(STR$(PD),1)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT RIGHT$(STR$(D),1);: RETURN
510 IF D=0 THEN RETURN
520 PRINT RIGHT$(STR$(D),1);".";
530 ND = 0
550 RETURN

GW-BASIC

Works with: PC-BASIC version any

The Chipmunk Basic solution works without any changes.

Integer Basic

Integer version was derived from the Pascal_spigot without any optimisation. It is more than 33% faster than the Applesoft version since it runs natively with integers.

   10 REM  PI CALCULATION WITH SPIGOT
  100 N=100: REM MAX N=260 TO AVOID OVERFLOW
  110 LEN=(10*N)/3
  120 J=0:K=0:Q=0:NINES=0:PREDIGIT=0
  125 DIM A(LEN)
  130 REM  VARIABLES FOR THE SUB
  140 RESULT=0:I=0:X=0
  200 REM  MAIN
  210 FOR J=1 TO LEN:A(J)=2: NEXT J
  220 REM  START WITH 222...
  230 NINES=0
  240 PREDIGIT=0
  250 REM  FIRST PREDIGIT =0
  260 FOR J=1 TO N
  270 I=N-J: GOSUB 1000:Q=RESULT
  275 A(1)=Q MOD 10
  280 Q=Q/10
  290 IF Q=9 THEN NINES=NINES+1
  300 IF Q=10 THEN GOSUB 800
  310 IF (Q<>9) AND (Q<>10) THEN GOSUB 900
  320 NEXT J
  330 PRINT PREDIGIT
  340 END 
  800 PRINT PREDIGIT+1;
  805 IF NINES=0 THEN GOTO 820
  810 FOR K=1 TO NINES: PRINT 0;: NEXT K
  820 PREDIGIT=0:NINES=0
  830 RETURN 
  900 PRINT PREDIGIT;
  910 PREDIGIT=Q
  920 IF NINES<>0 THEN GOSUB 950
  930 RETURN 
  950 FOR K=1 TO NINES: PRINT 9;: NEXT K
  960 NINES=0
  970 RETURN 
 1000 I=I*10/3+16
 1010 IF I>LEN THEN I=LEN
 1020 RESULT=0
 1030 REM  REPEAT
 1040 X=10*A(I)+RESULT*I
 1050 RESULT=X/(2*I-1)
 1060 A(I)=X MOD (2*I-1)
 1070 I=I-1
 1080 IF I>0 THEN GOTO 1040
 1090 RETURN

IS-BASIC

100 PROGRAM "PI.bas"
110 LET N=100 ! Nuber of digits
120 LET LN=INT(10*N/3)+16
130 DIM A(LN)
140 LET PD,N9=0:LET ND=1
150 FOR J=1 TO LN
160   LET A(J-1)=2
170 NEXT
180 FOR J=1 TO N
190   LET Q=0
200   FOR I=LN TO 1 STEP-1
210     LET X=10*A(I-1)+Q*I
220     LET A(I-1)=X-(2*I-1)*INT(X/(2*I-1))
230     LET Q=INT(X/(2*I-1))
240   NEXT
250   LET A(0)=Q-10*INT(Q/10)
260   LET Q=INT(Q/10)
270   SELECT CASE Q
280   CASE 9
290     LET N9=N9+1
300   CASE 10
310     LET D=PD+1:CALL WRITE
320     IF N9>0 THEN
330       FOR K=1 TO N9
340         LET D=0:CALL WRITE
350       NEXT
360     END IF
370     LET PD,N9=0
380   CASE ELSE
390     LET D=PD:CALL WRITE
400     LET PD=Q
410     IF N9<>0 THEN
420       FOR K=1 TO N9
430         LET D=9:CALL WRITE
440       NEXT
450       LET N9=0
460     END IF
470   END SELECT 
480 NEXT
490 PRINT STR$(PD)(1)
500 END
510 DEF WRITE
520   IF ND=0 THEN
530     PRINT STR$(D)(1);
540   ELSE IF D<>0 THEN
550     PRINT STR$(D)(1);".";
560     LET ND=0
570   END IF
580 END DEF

MSX Basic

The Chipmunk Basic solution works without any changes.

Osborne 1 MBASIC

Osborne 1 program is slightly different to allow it to keep the numbers all on the main screen rather than scrolling off to the right...

10 REM ADOPTED FROM COMMODORE BASIC
15 CR=0
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
100    A(J-1) = 2:REM START WITH 2S
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT STR$(PD)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 AND CR<22 THEN PRINT STR$(D);:CR=CR+1: RETURN
502 IF ND=0 AND CR=22 THEN PRINT STR$(D):CR=0: RETURN
510 IF D=0 THEN RETURN
520 PRINT STR$(D);".";
530 ND = 0
550 RETURN

TRS-80 Model 4 BASIC

 10 REM ADOPTED FROM COMMODORE BASIC
20 N = 100: REM N MAY BE INCREASED, BUT WILL SLOW EXECUTION
30 LN = INT(10*N/3)+16
40 ND = 1
50 DIM A(LN)
60 N9 = 0
70 PD = 0:REM FIRST PRE-DIGIT IS A 0
80 REM
90 FOR J = 1 TO LN
100    A(J-1) = 2:REM START WITH 2S
110 NEXT J
120 REM
130 FOR J = 1 TO N
140     Q = 0
150     FOR I = LN TO 1 STEP -1:REM WORK BACKWARDS
160         X = 10*A(I-1) + Q*I
170         A(I-1) = X - (2*I-1)*INT(X/(2*I-1)):REM X - INT ( X / Y) * Y
180         Q = INT(X/(2*I - 1))
190     NEXT I
200     A(0) = Q-10*INT(Q/10)
210     Q = INT(Q/10)
220     IF Q=9 THEN N9 = N9 + 1: GOTO 450
240     IF Q<>10 THEN GOTO 350
250     REM Q == 10
260        D = PD+1: GOSUB 500
270        IF N9 <= 0 THEN GOTO 320
280           FOR K = 1 TO N9
290              D = 0: GOSUB 500
300           NEXT K
310        REM END IF
320        PD = 0
330        N9 = 0
335        GOTO 450
340     REM Q <> 10
350        D = PD: GOSUB 500
360        PD = Q
370        IF N9 = 0 THEN GOTO 450
380           FOR K = 1 TO N9
390              D = 9: GOSUB 500
400           NEXT K
410           N9 = 0
450 NEXT J
460 PRINT STR$(PD)
470 END
480 REM
490 REM OUTPUT DIGITS
500 IF ND=0 THEN PRINT STR$(D);: RETURN
510 IF D=0 THEN RETURN
520 PRINT STR$(D);".";
530 ND = 0
550 RETURN

BBC BASIC

BASIC version

      WIDTH 80
      M% = (HIMEM-END-1000) / 4
      DIM B%(M%)
      FOR I% = 0 TO M% : B%(I%) = 20 : NEXT
      E% = 0
      L% = 2
      FOR C% = M% TO 14 STEP -7
        D% = 0
        A% = C%*2-1
        FOR P% = C% TO 1 STEP -1
          D% = D%*P% + B%(P%)*&64
          B%(P%) = D% MOD A%
          D% DIV= A%
          A% -= 2
        NEXT
        CASE TRUE OF
          WHEN D% = 99: E% = E% * 100 + D% : L% += 2
          WHEN C% = M%: PRINT ;(D% DIV 100) / 10; : E% = D% MOD 100
          OTHERWISE:
            PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%);
            E% = D% MOD 100 : L% = 2
        ENDCASE
      NEXT

Assembler version

The first 250,000 digits output have been verified.

      DIM P% 32
      [OPT 2 :.pidig mov ebp,eax :.pi1 imul edx,ecx : mov eax,[ebx+ecx*4]
      imul eax,100 : add eax,edx : cdq : div ebp : mov [ebx+ecx*4],edx
      mov edx,eax : sub ebp,2 : loop pi1 : mov eax,edx : ret :]
      
      WIDTH 80
      M% = (HIMEM-END-1000) / 4
      DIM B%(M%) : B% = ^B%(0)
      FOR I% = 0 TO M% : B%(I%) = 20 : NEXT
      E% = 0
      L% = 2
      FOR C% = M% TO 14 STEP -7
        D% = 0
        A% = C%*2-1
        D% = USR(pidig)
        CASE TRUE OF
          WHEN D% = 99: E% = E% * 100 + D% : L% += 2
          WHEN C% = M%: PRINT ;(D% DIV 100) / 10; : E% = D% MOD 100
          OTHERWISE:
            PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%);
            E% = D% MOD 100 : L% = 2
        ENDCASE
      NEXT

Output:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
....

bc

The digits of Pi are printed 20 per line, by successively recomputing pi with higher precision. The computation is not accurate to the entire scale (for example, scale = 4; 4*a(1) prints 3.1412 instead of the expected 3.1415), so the program includes two excess digits in the scale. Fixed number of guarding digits will eventually fail because Pi can contain arbitrarily long sequence of consecutive 9s (or consecutive 0s), though for this task it might not matter in practice. The program proceeds more and more slowly but exploits bc's unlimited precision arithmetic.

The program uses three features of GNU bc: long variable names, # comments (for the #! line), and the print command (for zero padding).

Library: bc -l
Works with: GNU bc
Works with: OpenBSD bc
#!/usr/bin/bc -l

scaleinc= 20

define zeropad ( n ) {
    auto m
    for ( m= scaleinc - 1; m > 0; --m ) {
        if ( n < 10^m ) {
            print "0"
        }
    }
    return ( n )
}

wantscale= scaleinc - 2
scale= wantscale + 2
oldpi= 4*a(1)
scale= wantscale
oldpi= oldpi / 1
oldpi
while( 1 ) {
    wantscale= wantscale + scaleinc
    scale= wantscale + 2
    pi= 4*a(1)
    scale= 0
    digits= ((pi - oldpi) * 10^wantscale) / 1
    zeropad( digits )
    scale= wantscale
    oldpi= pi / 1
}

Output:

3.141592653589793238
46264338327950288419
71693993751058209749
44592307816406286208
99862803482534211706
79821480865132823066
47093844609550582231
72535940812848111745
02841027019385211055
59644622948954930381
96442881097566593344
61284756482337867831
65271201909145648566
92346034861045432664
82133936072602491412
73724587006606315588
17488152092096282925
40917153643678925903
60011330530548820466
52138414695194151160
94330572703657595919
....

Bracmat

Translation of: Icon_and_Unicon
  ( pi
  =   f,q r t k n l,first
    .   !arg:((=?f),?q,?r,?t,?k,?n,?l)
      & yes:?first
      &   whl
        ' (   4*!q+!r+-1*!t+-1*!n*!t:<0
            & f$!n
            & (   !first:yes
                & f$"."
                & no:?first
              | 
              )
            & "compute and update variables for next cycle"
            & 10*(!r+-1*!n*!t):?nr
            & div$(10*(3*!q+!r).!t)+-10*!n:?n
            & !q*10:?q
            & !nr:?r
          |   "compute and update variables for next cycle"
            & (2*!q+!r)*!l:?nr
            & div$(!q*(7*!k+2)+!r*!l.!t*!l):?nn
            & !q*!k:?q
            & !t*!l:?t
            & !l+2:?l
            & !k+1:?k
            & !nn:?n
            & !nr:?r
          )
  )
& pi$((=.put$!arg),1,0,1,1,3,3)

Output:

3.1415926535897932384626433832795028841971693993751058209749445923078164062
862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284
756482337867831652712019091456485669234603486104543266482133936072602491412
73724587006606315588174881520...

C

There are many ways to do this, with quite different performance profiles. A simple measurement of 6 programs:

Digits Spigot 1 Spigot 2 Machin 1 Machin 2 AGM Chudnovsky
1,000 0.008 0.009 0.001 0.001 0.000 0.000
10,000 0.402 0.589 0.020 0.016 0.003 0.002
100,000 39.400 85.600 1.740 1.480 0.084 0.002
1,000,000 177.900 156.800 1.474 0.333
10,000,000 25.420 5.715


Using Machin's formula. The "continuous printing" part is silly: the algorithm really calls for a preset number of digits, so the program repeatedly calculates Pi digits with increasing length and chop off leading digits already displayed. But it's still faster than the unbounded Spigot method by an order of magnitude, at least for the first 100k digits.

#include <stdio.h>
#include <stdlib.h>
#include <gmp.h>

mpz_t tmp1, tmp2, t5, t239, pows;
void actan(mpz_t res, unsigned long base, mpz_t pows)
{
	int i, neg = 1;
	mpz_tdiv_q_ui(res, pows, base);
	mpz_set(tmp1, res);
	for (i = 3; ; i += 2) {
		mpz_tdiv_q_ui(tmp1, tmp1, base * base);
		mpz_tdiv_q_ui(tmp2, tmp1, i);
		if (mpz_cmp_ui(tmp2, 0) == 0) break;
		if (neg) mpz_sub(res, res, tmp2);
		else	  mpz_add(res, res, tmp2);
		neg = !neg;
	}
}

char * get_digits(int n, size_t* len)
{
	mpz_ui_pow_ui(pows, 10, n + 20);

	actan(t5, 5, pows);
	mpz_mul_ui(t5, t5, 16);

	actan(t239, 239, pows);
	mpz_mul_ui(t239, t239, 4);

	mpz_sub(t5, t5, t239);
	mpz_ui_pow_ui(pows, 10, 20);
	mpz_tdiv_q(t5, t5, pows);

	*len = mpz_sizeinbase(t5, 10);
	return mpz_get_str(0, 0, t5);
}

int main(int c, char **v)
{
	unsigned long accu = 16384, done = 0;
	size_t got;
	char *s;

	mpz_init(tmp1);
	mpz_init(tmp2);
	mpz_init(t5);
	mpz_init(t239);
	mpz_init(pows);

	while (1) {
		s = get_digits(accu, &got);

		/* write out digits up to the last one not preceding a 0 or 9*/
		got -= 2; /* -2: length estimate may be longer than actual */
		while (s[got] == '0' || s[got] == '9') got--;

		printf("%.*s", (int)(got - done), s + done);
		free(s);

		done = got;

		/* double the desired digits; slows down at least cubically */
		accu *= 2;
	}

	return 0;
}

C#

Translation of: Java
using System;
using System.Numerics;

namespace PiCalc {
    internal class Program {
        private readonly BigInteger FOUR = new BigInteger(4);
        private readonly BigInteger SEVEN = new BigInteger(7);
        private readonly BigInteger TEN = new BigInteger(10);
        private readonly BigInteger THREE = new BigInteger(3);
        private readonly BigInteger TWO = new BigInteger(2);

        private BigInteger k = BigInteger.One;
        private BigInteger l = new BigInteger(3);
        private BigInteger n = new BigInteger(3);
        private BigInteger q = BigInteger.One;
        private BigInteger r = BigInteger.Zero;
        private BigInteger t = BigInteger.One;

        public void CalcPiDigits() {
            BigInteger nn, nr;
            bool first = true;
            while (true) {
                if ((FOUR*q + r - t).CompareTo(n*t) == -1) {
                    Console.Write(n);
                    if (first) {
                        Console.Write(".");
                        first = false;
                    }
                    nr = TEN*(r - (n*t));
                    n = TEN*(THREE*q + r)/t - (TEN*n);
                    q *= TEN;
                    r = nr;
                } else {
                    nr = (TWO*q + r)*l;
                    nn = (q*(SEVEN*k) + TWO + r*l)/(t*l);
                    q *= k;
                    t *= l;
                    l += TWO;
                    k += BigInteger.One;
                    n = nn;
                    r = nr;
                }
            }
        }

        private static void Main(string[] args) {
            new Program().CalcPiDigits();
        }
    }
}

Adopted Version:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

namespace EnumeratePi {
  class Program {
    private const int N = 60;
    private const string ZS = " +-";
    static void Main() {
      Console.WriteLine("Digits of PI");
      Console.WriteLine(new string('=', N + 13));

      Console.WriteLine("Decimal    : {0}", string.Concat(PiDigits(10).Take(N).Select(_ => _.ToString("d"))));
      Console.WriteLine("Binary     : {0}", string.Concat(PiDigits(2).Take(N).Select(_ => _.ToString("d"))));
      Console.WriteLine("Quaternary : {0}", string.Concat(PiDigits(4).Take(N).Select(_ => _.ToString("d"))));
      Console.WriteLine("Octal      : {0}", string.Concat(PiDigits(8).Take(N).Select(_ => _.ToString("d"))));
      Console.WriteLine("Hexadecimal: {0}", string.Concat(PiDigits(16).Take(N).Select(_ => _.ToString("x"))));
      Console.WriteLine("Alphabetic : {0}", string.Concat(PiDigits(26).Take(N).Select(_ => (char) ('A' + _))));
      Console.WriteLine("Fun        : {0}", string.Concat(PiDigits(ZS.Length).Take(N).Select(_ => ZS[(int)_])));

      Console.WriteLine("Nibbles    : {0}", string.Concat(PiDigits(0x10).Take(N/2).Select(_ => string.Format("{0:x1} ", _))));
      Console.WriteLine("Bytes      : {0}", string.Concat(PiDigits(0x100).Take(N/3).Select(_ => string.Format("{0:x2} ", _))));
      Console.WriteLine("Words      : {0}", string.Concat(PiDigits(0x10000).Take(N/5).Select(_ => string.Format("{0:x4} ", _))));
      Console.WriteLine("Dwords     : {0}", string.Concat(PiDigits(0x100000000).Take(N/9).Select(_ => string.Format("{0:x8} ", _))));

      Console.WriteLine(new string('=', N + 13));
      Console.WriteLine("* press any key to exit *");
      Console.ReadKey();
    }

    /// <summary>Enumerates the digits of PI.</summary>
    /// <param name="b">Base of the Numeral System to use for the resulting digits (default = Base.Decimal (10)).</param>
    /// <returns>The digits of PI.</returns>
    static IEnumerable<long> PiDigits(long b = 10) {
      BigInteger
        k = 1,
        l = 3,
        n = 3,
        q = 1,
        r = 0,
        t = 1
        ;

      // skip integer part
      var nr = b * (r - t * n);
      n = b * (3 * q + r) / t - b * n;
      q *= b;
      r = nr;

      for (; ; ) {
        var tn = t * n;
        if (4 * q + r - t < tn) {
          yield return (long)n;
          nr = b * (r - tn);
          n = b * (3 * q + r) / t - b * n;
          q *= b;
        } else {
          t *= l;
          nr = (2 * q + r) * l;
          var nn = (q * (7 * k) + 2 + r * l) / t;
          q *= k;
          l += 2;
          ++k;
          n = nn;
        }
        r = nr;
      }
    }
  }
}
Output:
Digits of PI
=========================================================================
Decimal    : 141592653589793238462643383279502884197169399375105820974944
Binary     : 001001000011111101101010100010001000010110100011000010001101
Quaternary : 021003331222202020112203002031030103012120220232000313001303
Octal      : 110375524210264302151423063050560067016321122011160210514763
Hexadecimal: 243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e
Alphabetic : DRSQLOLYRTRODNLHNQTGKUDQGTUIRXNEQBCKBSZIVQQVGDMELMUEXROIQIYA
Fun        :  + -++ +---- + -++  -+++++ --+----- +++- +-+-+-+-  +-++  +
Nibbles    : 2 4 3 f 6 a 8 8 8 5 a 3 0 8 d 3 1 3 1 9 8 a 2 e 0 3 7 0 7 3
Bytes      : 24 3f 6a 88 85 a3 08 d3 13 19 8a 2e 03 70 73 44 a4 09 38 22
Words      : 243f 6a88 85a3 08d3 1319 8a2e 0370 7344 a409 3822 299f 31d0
Dwords     : 243f6a88 85a308d3 13198a2e 03707344 a4093822 299f31d0
=========================================================================
* press any key to exit *

C++

#include <iostream>
#include <boost/multiprecision/cpp_int.hpp>

using namespace boost::multiprecision;

class Gospers
{
    cpp_int q, r, t, i, n;

public:    

    // use Gibbons spigot algorith based on the Gospers series
    Gospers() : q{1}, r{0}, t{1}, i{1}
    {
        ++*this; // move to the first digit
    }

    // the ++ prefix operator will move to the next digit
    Gospers& operator++()
    {
        n = (q*(27*i-12)+5*r) / (5*t);

        while(n != (q*(675*i-216)+125*r)/(125*t))
        {
            r = 3*(3*i+1)*(3*i+2)*((5*i-2)*q+r);
            q = i*(2*i-1)*q;
            t = 3*(3*i+1)*(3*i+2)*t;
            i++;

            n = (q*(27*i-12)+5*r) / (5*t);
        }

        q = 10*q;
        r = 10*r-10*n*t;

        return *this;
    }

    // the dereference operator will give the current digit
    int operator*()
    {
        return (int)n;
    }
};

int main()
{
    Gospers g;

    std::cout << *g << ".";  // print the first digit and the decimal point

    for(;;) // run forever
    {
        std::cout << *++g;  // increment to the next digit and print
    }
}
Output:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862 . . . 

Clojure

Translation of: Python
(ns pidigits
  (:gen-class))

(def calc-pi
        ;  integer division rounding downwards to -infinity
  (let [div (fn [x y] (long (Math/floor (/ x y))))

          ; Computations performed after yield clause in Python code
          update-after-yield (fn [[q r t k n l]]
                         (let [nr (* 10 (- r (* n t)))
                               nn (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n))
                               nq (* 10 q)]
                           [nq nr t k nn l]))

          ; Update of else clause in Python code: if (< (- (+ (* 4 q) r) t) (* n t))
          update-else (fn [[q r t k n l]]
                        (let [nr (* (+ (* 2 q) r) l)
                              nn (div (+ (* q 7 k) 2 (* r l)) (* t l))
                              nq (* k q)
                              nt (* l t)
                              nl (+ 2 l)
                              nk (+ 1 k)]
                          [nq nr nt nk nn nl]))

          ; Compute the lazy sequence of pi digits translating the Python code
          pi-from (fn pi-from [[q r t k n l]]
                    (if (< (- (+ (* 4 q) r) t) (* n t))
                      (lazy-seq (cons n (pi-from (update-after-yield [q r t k n l]))))
                      (recur (update-else [q r t k n l]))))]

      ; Use Clojure big numbers to perform the math (avoid integer overflow)
      (pi-from [1N 0N 1N 1N 3N 3N])))

;; Indefinitely Output digits of pi, with 40 characters per line
(doseq [[i q] (map-indexed vector calc-pi)]
  (when (= (mod i 40) 0)
    (println))
  (print q))
Output:
3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
...

Common Lisp

(defun pi-spigot ()
  (labels
      ((g (q r t1 k n l)
         (cond
           ((< (- (+ (* 4 q) r) t1)
               (* n t1))
            (princ n)
            (g (* 10 q)
               (* 10 (- r (* n t1)))
               t1
               k
               (- (floor (/ (* 10 (+ (* 3 q) r))
                            t1))
                  (* 10 n))
               l))
           (t
            (g (* q k)
               (* (+ (* 2 q) r) l)
               (* t1 l)
               (+ k 1)
               (floor (/ (+ (* q (+ (* 7 k) 2))
                            (* r l))
                         (* t1 l)))
               (+ l 2))))))
    (g 1 0 1 1 3 3)))
Output:
CL-USER> (pi-spigot)
3141592653589793238462643383279502884197169399375105820974944592307816406286 ...

Crystal

Translation of: Ruby
require "big"

def pi
  q, r, t, k, n, l = [1, 0, 1, 1, 3, 3].map { |n| BigInt.new(n) }
  dot_written = false
  loop do
    if 4*q + r - t < n*t
      yield n
      unless dot_written
        yield '.'
        dot_written = true
      end
      nr = 10*(r - n*t)
      n = ((10*(3*q + r)) / t) - 10*n
      q *= 10
      r = nr
    else
      nr = (2*q + r) * l
      nn = (q*(7*k + 2) + r*l) / (t*l)
      q *= k
      t *= l
      l += 2
      k += 1
      n = nn
      r = nr
    end
  end
end

pi { |digit_or_dot| print digit_or_dot; STDOUT.flush }
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286 ...

D

This modified Spigot algorithm does not continue infinitely, because its required memory grow as the number of digits need to print.

import std.stdio, std.conv, std.string;

struct PiDigits {
    immutable uint nDigits;

    int opApply(int delegate(ref string /*chunk of pi digit*/) dg){
        // Maximum width for correct output, for type ulong.
        enum size_t width = 9;

        enum ulong scale = 10UL ^^ width;
        enum ulong initDigit = 2UL * 10UL ^^ (width - 1);
        enum string formatString = "%0" ~ text(width) ~ "d";

        immutable size_t len = 10 * nDigits / 3;
        auto arr = new ulong[len];
        arr[] = initDigit;
        ulong carry;

        foreach (i; 0 .. nDigits / width) {
            ulong sum;
            foreach_reverse (j; 0 .. len) {
                auto quo = sum * (j + 1) + scale * arr[j];
                arr[j] = quo % (j*2 + 1);
                sum = quo / (j*2 + 1);
            }
            auto yield = format(formatString, carry + sum/scale);
            if (dg(yield))
                break;
            carry = sum % scale;
        }
        return 0;
    }
}

void main() {
    foreach (d; PiDigits(100))
        writeln(d);
}
Output:
314159265
358979323
846264338
327950288
419716939
937510582
097494459
230781640
628620899
862803482
534211706

Alternative version

import std.stdio, std.bigint;

void main() {
    int ndigits = 0;
    auto q = BigInt(1);
    auto r = BigInt(0);
    auto t = q;
    auto k = q;
    auto n = BigInt(3);
    auto l = n;

    bool first = true;
    while (ndigits < 1_000) {
        if (4 * q + r - t < n * t) {
            write(n); ndigits++;
            if (ndigits % 70 == 0) writeln();
            if (first) { first = false; write('.'); }
            auto nr = 10 * (r - n * t);
            n = ((10 * (3 * q + r)) / t) - 10 * n;
            q *= 10;
            r = nr;
        } else {
            auto nr = (2    * q + r) * l;
            auto nn = (q * (7 * k + 2) + r * l) / (t * l);
            q *= k;
            t *= l;
            l += 2;
            k++;
            n = nn;
            r = nr;
        }
    }
}
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816
4062862089986280348253421170679821480865132823066470938446095505822317
2535940812848111745028410270193852110555964462294895493038196442881097
5665933446128475648233786783165271201909145648566923460348610454326648
2133936072602491412737245870066063155881748815209209628292540917153643
6789259036001133053054882046652138414695194151160943305727036575959195
3092186117381932611793105118548074462379962749567351885752724891227938
1830119491298336733624406566430860213949463952247371907021798609437027
7053921717629317675238467481846766940513200056812714526356082778577134
2757789609173637178721468440901224953430146549585371050792279689258923
5420199561121290219608640344181598136297747713099605187072113499999983
7297804995105973173281609631859502445945534690830264252230825334468503
5261931188171010003137838752886587533208381420617177669147303598253490
4287554687311595628638823537875937519577818577805321712268066130019278
76611195909216420198

Delphi

Translation of: BBC BASIC

250,000 digits of pi on a BBC micro is pretty impressive, so a translation of the BBC code has been used for this Delphi 7 solution. A Delphi TMemo replaces the BBC screen, and the output is copied from the TMemo to a disk file at the end of the program.

The number of digits written depends on the variable M, and is found by experiment to be very close to 2*M/7. The value of M is limited by the danger of overflow in D, which can approach (but doesn't exceed) 400*M.

With M = floor( (2^31 - 1)/400 ), the Delphi version writes 1,533,913 decimal places, which have been verified against [sorry, defeated by the captcha as usual]

introcs dot cs dot princeton dot edu slash java slash data slash pi-10million.txt

unit Pi_BBC_Main;

interface

uses
  Classes, Controls, Forms, Dialogs, StdCtrls;

type
  TForm1 = class(TForm)
    btnRunSpigotAlgo: TButton;
    memScreen: TMemo;
    procedure btnRunSpigotAlgoClick(Sender: TObject);
    procedure FormCreate(Sender: TObject);
  private
    fScreenWidth : integer;
    fLineBuffer : string;
    procedure ClearText();
    procedure AddText( const s : string);
    procedure FlushText();
  end;

var
  Form1: TForm1;

implementation

{$R *.dfm}

uses SysUtils;

// Button clicked to run algorithm
procedure TForm1.btnRunSpigotAlgoClick(Sender: TObject);
var
  // BBC Basic variables. Delphi longint is 32 bits.
  B : array of longint;
  A, C, D, E, I, L, M, P : longint;
  // Added for Delphi version
  temp : string;
  h, j, t : integer;
begin
  fScreenWidth := 80;
  ClearText();
  M := 5368709; // floor( (2^31 - 1)/400 )

  // DIM B%(M%) in BBC Basic declares an array [0..M%], i.e. M% + 1 elements
  SetLength( B, M + 1);
  for I := 0 to M do B[I] := 20;
  E := 0;
  L := 2;

  // FOR C% = M% TO 14 STEP -7
  // In Delphi (or at least Delphi 7) the step size in a for loop has to be 1.
  // So the BBC Basic FOR loop has been replaced by a repeat loop.
  C := M;
  repeat
    D := 0;
    A := C*2 - 1;
    for P := C downto 1 do begin
      D := D*P + B[P]*$64; // hex notation copied from BBC version
      B[P] := D mod A;
      D := D div A;
      dec( A, 2);
    end;

    // The BBC CASE statement here amounts to a series of if ... else
    if (D = 99) then begin
      E := E*100 + D;
      inc( L, 2);
    end
    else if (C = M) then begin
      AddText( SysUtils.Format( '%2.1f', [1.0*(D div 100) / 10.0] ));
      E := D mod 100;
    end
    else begin
      // PRINT RIGHT$(STRING$(L%,"0") + STR$(E% + D% DIV 100),L%);
      // This can't be done so concisely in Delphi 7
      SetLength( temp, L);
      for j := 1 to L do temp[j] := '0';
      temp := temp + SysUtils.IntToStr( E + D div 100);
      t := Length( temp);
      AddText( Copy( temp, t - L + 1, L));
      E := D mod 100;
      L := 2;
    end;
    dec( C, 7);
  until (C < 14);
  FlushText();

  // Delphi addition: Write screen output to a file for checking
  h := SysUtils.FileCreate( 'C:\Delphi\PiDigits.txt'); // h = file handle
  for j := 0 to memScreen.Lines.Count - 1 do
    SysUtils.FileWrite( h, memScreen.Lines[j][1], Length( memScreen.Lines[j]));
  SysUtils.FileClose( h);
end;

{=========================== Auxiliary routines ===========================}

// Form created
procedure TForm1.FormCreate(Sender: TObject);
begin
  fScreenWidth := 80; // in case not set by the algotithm
  ClearText();
end;

// This Delphi version builds each screen line in a buffer and puts
//   the line into the TMemo when the buffer is full.
// This is faster than writing to the TMemo a few characters at a time,
//   but note that the buffer must be flushed at the end of the program.
procedure TForm1.ClearText();
begin
  memScreen.Lines.Clear();
  fLineBuffer := '';
end;

procedure TForm1.AddText( const s : string);
var
  nrChars, nrLeft : integer;
begin
  nrChars := Length( s);
  nrLeft := fScreenWidth - Length( fLineBuffer); // nr chars left in line
  if (nrChars <= nrLeft) then fLineBuffer := fLineBuffer + s
  else begin
    fLineBuffer := fLineBuffer + Copy( s, 1, nrLeft);
    memScreen.Lines.Add( fLineBuffer);
    fLineBuffer := Copy( s, nrLeft + 1, nrChars - nrLeft);
  end;
end;

procedure TForm1.FlushText();
begin
  if (Length(fLineBuffer) > 0) then begin
    memScreen.Lines.Add( fLineBuffer);
    fLineBuffer := '';
  end;
end;

end.
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
...

EDSAC order code

The task is impossible if taken literally, because a program with finite memory cannot generate a non-repeating infinite sequence.

Like many of the solutions posted here, this program implements the spigot algorithm of Rabinowitz and Wagon. The code takes up 192 EDSAC locations, leaving 832 for storage, which is enough for 252 correct digits of pi.

With only a few changes (noted in the comments), the same code can be used to output the first 2070 digits of e.

[EDSAC program, Initial Orders 2.
 Calculates digits of pi by spigot algorithm.
 Easily edited to calculate digits of e (see "if pi" and "if e" in comments).
 Based on http://pi314.net/eng/goutte.php
 See also https://www.cut-the-knot.org/Curriculum/Algorithms/SpigotForPi.shtml

 Uses 17-bit values throughout.
 Array index and counters are stored in the address field,
   i.e. with the least significant bit in bit 1.
 For integer arithmetic, the least significant bit is bit 0.

 Variables don't need to be initialized at load time, so they overwrite
 locations 6..12 of initial orders to save space.]
      [6]   P      F  [index into remainder array]
      [7]   P      F  [carry in the spigot algorithm]
      [8]   P      F  [negative count of digits]
      [9]   P      F  [pending digit, always < 9]
     [10]   P      F  [negative count of pending 9's]
     [11]   P      F  [9 or 0 in top 5 bits, for printing]
     [12]   P      F  [negative count of characters in current line]

[Array corresponding to Remainder row on http://pi314.net/eng/goutte.php]
            T   53 K  [refer to array via B parameter]
            P   13 F  [start array immediately after variables]

 [Subroutine for short (17-bit) integer division.
  Input:  dividend at 4F, divisor at 5F.
  Output: remainder at 4F, quotient at 5F.
  Working locations 0F, 1F.  37 locations.]
            T  987 K
  GKA3FT34@A5FUFT35@A4FRDS35@G13@T1FA35@LDE4@T1FT5FA4FS35@G22@
  T4FA5FA36@T5FT1FAFS35@E34@T1FA35@RDT35@A5FLDT5FE15@EFPFPD

            T  845 K
            G      K
 [Constants]
 [Enter the editable numbers as addresses, e.g. P 100 F for 100.
  Reducing the maximum array index will make the program take less time.
  A maximum index of 831 (i.e. using all available memory) will give
  252 correct digits of pi, or 2070 correct digits of e.]
      [0]   P  831 F  [maximum array index <-- EDIT HERE, don't exceed 831]
      [1]   P  252 F  [number of digits    <-- EDIT HERE]
      [2]   P   72 F  [digits per line     <-- EDIT HERE]
      [3]   P      D  [short-value 1]
      [4]   P    5 F  [short-value 10]
      [5]   J      F  [10*(2^12)]
      [6]   X      F  [add to T order to make V order]
      [7]   M      F  [used to convert T order to A order]
      [8]   #      F  [figures shift (for printer)]
      [9]   @      F  [carriage return]
     [10]   &      F  [line feed]

 [Main routine. Enter with acc = 0.]
     [11]   O    8 @  [set printer to figures; also used to print '9']
            S    2 @  [load negative characters per line]
            T   12 F  [initialize character count]
            S    1 @  [load negated number of digits]
            T    8 F  [initialize digit count]
            T   10 F  [clear negative count of 9's]
            S    2 F  [load -2 (any value < -1 would do)]
            T    9 F  [initialize digit buffer]
       [Start algorithm: fill the remainder array with 2's (or 1's for e)
        The code is a bit neater if we work backwards.]
            A      @  [maximum index]
     [20]   A   81 @  [make T order for array entry]
            T   23 @  [plant in code]
[if pi]     A    2 F  [acc := 2]
[if e]     [A    3 @] [acc := 1]
     [23]   T      F  [store in array entry]
            A   23 @  [dec address in array]
            S    2 F
            S   81 @  [finished array?]
            E   20 @  [loop back if not

        Outer loop. Here for next digit.]
     [28]   T      F  [clear acc]
        [Multiply remainder array by 10.
         NB To preserve integer scaling, we need product times 2^16.]
            H    5 @  [mult reg := 10*(2^12)]
            A      @  [acc := maximum index]
     [31]   A   81 @  [make T order for array entry]
            U   37 @  [plant in code]
            A    6 @  [convert to V order, same address]
            T   35 @  [plant in code]
     [35]   V      F  [acc := array entry * 10*(2^12)]
            L    4 F  [shift to complete mult by 10*(2^16)]
     [37]   T      F  [store result in array]
            A   37 @  [load T order]
            S    2 F  [dec address]
            S   81 @  [test for done]
            E   31 @  [loop back if not]
            T      F  [clear acc]
            T    7 F  [clear carry]
            A      @  [acc := maximum index]
            T    6 F  [initialize array index]
       [Inner loop to get next digit.
        Work backwards through remainder array.]
     [46]   T      F  [clear acc]
            A    6 F  [load index]
            A   81 @  [make T order for array entry]
            U   61 @  [plant in code]
            A    7 @  [convert to A order]
            T   52 @  [plant in code]
     [52]   A      F  [load array element]
            A    7 F  [add carry from last time round loop]
            T    4 F  [sum to 4F for division routine]
            A    6 F  [acc := index as address = 2*(index as integer)]
[if pi]     A    3 @  [plus 1]
[if e]     [R      D] [shift right, address --> integer]
            T    5 F  [to 5F for division routine (for e, 5F = index/2)]
     [58]   A   58 @  [call routine to divide 4F by 5F]
            G  987 F
            A    4 F  [load remainder]
     [61]   T      F  [update element of remainder array]
[if pi: 4 orders]
            H    5 F  [mult reg := quotient]
            V    6 F  [multiply by index
                         NB need to shift 15 left to preserve integer scaling]
            L      F  [shift 13 left]
            L    1 F  [shift 2 more left (for e, just use quotient)
[if e: 1 order, plus 3 no-ops to keep addresses the same]
           [A    5 F] [load quotient]
           [XF XF XF]
            T    7 F  [update carry for next time round loop]
            A    6 F  [load index]
            S    2 F  [decrement]
            U    6 F  [store back]
       [We want to terminate after doing index = 1]
            S    2 F  [dec again]
            E   46 @  [jump back if index >= 1]
       [Treatment of index = 0 is different]
            T      F  [clear acc]
            A      B  [load rem{0)]
            A    7 F  [add carry]
            T    4 F  [sum to 4F for division routine]
            A    4 @  [load 10]
            T    5 F  [to 5F for division routine]
     [78]   A   78 @  [call division routine]
            G  987 F
            A    4 F  [load remainder]
     [81]   T      B  [store in rem{0}; also used to manufacture orders]
     [82]   A   82 @  [call subroutine to deal with quotient (clears acc)]
            G   93 @
            A    8 F  [load negative digit count]
            A    2 F  [increment]
            U    8 F  [store back]
            G   28 @  [if not yet 0, loop for next digit]
       [Fake a zero digit to flush the last genuine digit(s)]
            T    5 F  [store fake digit 0 in 5F]
     [89]   A   89 @  [call subroutine to deal with digit]
            G   93 @
            O    8 @  [set figures: dummy character to flush print buffer]
            Z      F  [stop]

       [Subroutine to handle buffering and printing of digits.
        Here with quotient from spigot algorithm still in 5F.
        The quotient at 5F is usually the new decimal digit.
        But the quotient can be 10, in which case we must treat it as 0
          and ripple a carry through the previously-computed digits.
        Hence the need for buffering.]
     [93]   A    3 F  [make and plant return link]
            T  130 @
            A    5 F  [load quotient]
            S    4 @  [subtract 10]
            E  105 @  [jump if quotient >= 10]
            A    3 @  [add 1]
            G  109 @  [jump if quotient < 9]
       [Here if quotient = 9. Update count of 9's,
        don't do anything with the buffer.]
            T      F  [clear acc]
            A   10 F  [load negative count of 9's]
            S    2 F  [subtract 1]
            T   10 F  [update count]
            E  130 @  [exit with acc = 0]
       [Here if quotient >= 10. Take digit = quotient - 10,
        and ripple a carry through the buffered digits.]
    [105]   T    5 F  [store (quotient - 10) formed above]
            T   11 F  [store 0 to print '0' not '9']
            A    3 @  [add 1 to buffered digit]
            E  112 @  [join common code]
       [Here if quotient < 9. Flush the stored digits.]
    [109]   T      F  [clear acc]
            A   11 @  [load any O order (code for O is 9)]
            T   11 F  [store to print '9']
    [112]   A    9 F  [load buffered digit, plus 1 if quotient >= 10]
            G  118 @  [skip printing if buffer is empty]
            L 1024 F  [shift digits to top 5 bits]
            T    1 F  [store in 1F for printing]
    [116]   A  116 @  [call print routine]
            G  131 @
    [118]   T      F  [clear acc]
            A    5 F  [load quotient (possibly modified as above)]
            T    9 F  [store in buffer]
    [121]   A   10 F  [load negative count of 9's]
            E  130 @  [if none, exit with acc = 0]
            A    2 F  [inc count]
            T   10 F
            A   11 F  [load 9 (or 0 if there's a carry)]
            T    1 F  [to 1F for printing]
    [127]   A  127 @  [call print routine  (clears acc)]
            G  131 @
            E  121 @  [jump back (always)]
    [130]   E      F  [return to caller]

       [Subroutine to print character at 1F.
        Also prints CR LF if necessary.]
    [131]   A    3 F [make and plant link for return]
            T  141 @
            A   12 F  [load negative character count]
            G  138 @  [jump if not end of line]
            S    2 @  [reset character count]
            O    9 @  [print CR LF]
            O   10 @
    [138]   O    1 F  [print character]
            A    2 F  [add 1]
            T   12 F
    [141]   E      F
            E   11 Z  [define entry point]
            P      F  [acc = 0 on entry]
Output:
314159265358979323846264338327950288419716939937510582097494459230781640
628620899862803482534211706798214808651328230664709384460955058223172535
940812848111745028410270193852110555964462294895493038196442881097566593
344612847564823378678316527120190914

Elixir

Translation of: Erlang
defmodule Pi do
  def calc, do: calc(1,0,1,1,3,3,0)
  
  defp calc(q,r,t,k,n,l,c) when c==50 do
    IO.write "\n"
    calc(q,r,t,k,n,l,0)
  end
  defp calc(q,r,t,k,n,l,c) when (4*q + r - t) < n*t do
    IO.write n
    calc(q*10, 10*(r-n*t), t, k, div(10*(3*q+r), t) - 10*n, l, c+1)
  end
  defp calc(q,r,t,k,_n,l,c) do
    calc(q*k, (2*q+r)*l, t*l, k+1, div(q*7*k+2+r*l, t*l), l+2, c)
  end
end

Pi.calc
Output:

Hit Ctrl-C to stop it.

C:\Elixir>elixir pi.exs
31415926535897932384626433832795028841971693993751
05820974944592307816406286208998628034825342117067
98214808651328230664709384460955058223172535940812
84811174502841027019385211055596446229489549303819
64428810975665933446128475648233786783165271201909
14564856692346034861045432664821339360726024914127
37245870066063155881748815209209628292540917153643
67892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854
80744623799627495673518857527248912279381830119491
29833673362440656643086021394946395224737190702179
86094370277053921717629317675238467481846766940513
20005681271452635608277857713427577896091736371787
214684409012249534301

Erlang

% Implemented by Arjun Sunel
-module(pi_calculation).
-export([main/0]).

main() ->
	pi(1,0,1,1,3,3,0).

pi(Q,R,T,K,N,L,C)   ->
	
	if C=:=50 ->
		io:format("\n"),
		pi(Q,R,T,K,N,L,0)  ;

	true ->

		if 
			(4*Q + R-T) < (N*T) -> 
			io:format("~p",[N]),
	 		P = 10*(R-N*T),
	 		pi(Q*10 , P, T , K , ((10*(3*Q+R)) div T)-10*N , L,C+1);

		true ->
			P = (2*Q+R)*L,
			M = (Q*(7*K)+2+(R*L)) div (T*L),
			H  = L+2,
			J =K+ 1,
			pi(Q*K, P , T*L ,J,M,H,C)
	 	end
 	end.
Output:
31415926535897932384626433832795028841971693993751
05820974944592307816406286208998628034825342117067
98214808651328230664709384460955058223172535940812
84811174502841027019385211055596446229489549303819
64428810975665933446128475648233786783165271201909
14564856692346034861045432664821339360726024914127
37245870066063155881748815209209628292540917153643
67892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854
80744623799627495673518857527248912279381830119491
29833673362440656643086021394946395224737190702179
86094370277053921717629317675238467481846766940513
20005681271452635608277857713427577896091736371787
21468440901224953430146549585371050792279689258923
54201995611212902196086403441815981362977477130996
05187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188
17101000313783875288658753320838142061717766914730
35982534904287554687311595628638823537875937519577
81857780532171226806613001927876611195909216420198
93809525720106548586327886593615338182796823030195
20353018529689957736225994138912497217752834791315
15574857242454150695950829533116861727855889075098
38175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374
4944825537977472684710404753464620

F#

Translation of Haskell

Translation of: Haskell
let rec g q r t k n l = seq {
    if 4I*q+r-t < n*t
    then
        yield n
        yield! (g (10I*q) (10I*(r-n*t)) t k ((10I*(3I*q+r))/t - 10I*n) l)
    else
        yield! (g (q*k) ((2I*q+r)*l) (t*l) (k+1I) ((q*(7I*k+2I)+r*l)/(t*l)) (l+2I))
}

let π = (g 1I 0I 1I 1I 3I 3I)

Seq.take 1 π |> Seq.iter (printf "%A.")
// 6 digits beginning at position 762 of π are '9'
Seq.take 767 (Seq.skip 1 π) |> Seq.iter (printf "%A")
Output:
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344612847564823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999

As an Unfold

Haskell can probably do this as an unfold, it has not so I shall in F#

// Generate Pi as above using unfold. Nigel Galloway: March 15th., 2022
let π()=Seq.unfold(fun(q,r,t,k,n,l)->Some(if 4I*q+r-t < n*t then(Some(int n),((10I*q),(10I*(r-n*t)),t,k,((10I*(3I*q+r))/t-10I*n),l)) else (None,((q*k),((2I*q+r)*l),(t*l),(k+1I),((q*(7I*k+2I)+r*l)/(t*l)),(l+2I)))))(1I,0I,1I,1I,3I,3I)|>Seq.choose id
π()|>Seq.take 767|>Seq.iter(printf "%d")

Factor

Translation of: Oforth
USING: combinators.extras io kernel locals math prettyprint ;
IN: rosetta-code.pi

:: calc-pi-digits ( -- )
    1 0 1 1 3 3 :> ( q! r! t! k! n! l! ) [
        4 q * r + t - n t * < [
            n pprint flush
            r n t * - 10 *
            3 q * r + 10 * t /i n 10 * - n! r!
            q 10 * q!
        ] [
            2 q * r + l *
            7 k * q * 2 + r l * + t l * /i n! r!
            k q * q!
            t l * t!
            l 2 + l!
            k 1 + k!
        ] if
    ] forever ;

MAIN: calc-pi-digits

Fortran

This is a modernized version of the example Fortran programme written by S. Rabinowitz in 1991. It works in base 100000 and the key step is the initialisation of all elements of VECT to 2. The format code of I5.5 means I5 output but with all leading spaces made zero so that 66 comes out as "00066", not " 66".

program pi
  implicit none
  integer,dimension(3350) :: vect
  integer,dimension(201) :: buffer
  integer :: more,karray,num,k,l,n
  more = 0
  vect = 2
  do n = 1,201
    karray = 0
    do l = 3350,1,-1
      num = 100000*vect(l) + karray*l
      karray = num/(2*l - 1)
      vect(l) = num - karray*(2*l - 1)
    end do
    k = karray/100000
    buffer(n) = more + k
    more = karray - k*100000
  end do
  write (*,'(i2,"."/(1x,10i5.5))') buffer
end program pi

The output is accumulated in BUFFER then written in one go at the end, but it could be written as successive values as each is calculated without much extra nitpickery: instead of BUFFER(N) = MORE + K for example just WRITE (*,"(I5.5)") MORE + K and no need for array BUFFER.

3.
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

This is an alternate version using an unbounded spigot. Higher precision is accomplished by using the Fortran Multiple Precision Library, FMLIB (http://myweb.lmu.edu/dmsmith/fmlib.html), provided by Dr. David M. Smith (dsmith@lmu.edu), Mathematics Professor (Emeritus) at Loyola Marymount University. We use the default precision which is about 50 significant digits.

!================================================
        program pi_spigot_unbounded
!================================================
          do 
            call print_next_pi_digit()
          end do

        contains

!------------------------------------------------
          subroutine print_next_pi_digit()
!------------------------------------------------
            use fmzm
            type (im) :: q, r, t, k, n, l, nr
            logical   :: dot=.false., init=.false.
            save      :: q, r, t, k, n, l
            if (.not.init) then
              q=to_im(1)
              r=to_im(0)
              t=to_im(1)
              k=to_im(1)
              n=to_im(3)
              l=to_im(3)
              init=.true.
            end if
            if (4*q+r-t < n*t) then
              write(6,fmt='(i1)',advance='no') to_int(n)
              if (.not.dot) then
                write(6,fmt='(a1)',advance='no') '.'
                dot=.true.
              end if
              flush(6)
              nr = 10 * (        r      - n*t )
              n  = 10 * ( (3*q + r) / t - n   )
              q  = 10 *      q
              r  = nr
            else
              nr = (2*q + r) * l
              n  = ( (q * (7*k + 2) + r*l) / (t*l) )
              q  = q * k
              t  = t * l
              l  = l + 2
              k  = k + 1
              r  = nr
            end if
          end subroutine

        end program

FreeBASIC

Library: GMP
' version 05-07-2018
' compile with: fbc -s console

' unbounded spigot
' Ctrl-c to end program or close console window

#Include "gmp.bi"

Dim As UInteger num, ndigit, fp = Not 0
Dim As mpz_ptr q,r,t,k,n,l,tmp1,tmp2
   q = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(q,1)
   r = Allocate(Len(__Mpz_struct)) : Mpz_init(r)
   t = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(t,1)
   k = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(k,1)
   n = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(n,3)
   l = Allocate(Len(__Mpz_struct)) : Mpz_init_set_ui(l,3)
tmp1 = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp1)
tmp2 = Allocate(Len(__Mpz_struct)) : Mpz_init(tmp2)

Do
    mpz_mul_2exp(tmp1, q, 2)
    mpz_add(tmp1,tmp1,r)
    mpz_sub(tmp1,tmp1,t)
    mpz_mul(tmp2, n, t)
    If mpz_cmp(tmp1, tmp2) < 0 Then 
        Print mpz_get_ui(n); : ndigit += 1 : If ndigit Mod 50 = 0 Then Print " :";ndigit 
        If fp Then Print "."; : fp = Not fp : Print :ndigit = 0
        mpz_sub(tmp1, r, tmp2)
        mpz_mul_ui(tmp1, tmp1, 10)
        mpz_mul_ui(tmp2, q, 3)
        mpz_add(tmp2, tmp2, r)
        mpz_mul_ui(tmp2, tmp2, 10)
        mpz_set(r, tmp1)
        mpz_mul_ui(tmp1, n, 10)
        mpz_tdiv_q(tmp2, tmp2, t)
        mpz_sub(n, tmp2, tmp1)
        mpz_mul_ui(q, q, 10)
    Else
        mpz_mul(tmp2, r, l)
        mpz_mul(tmp1, q, k)
        mpz_mul_ui(tmp1, tmp1, 7)
        mpz_add(tmp1, tmp1, tmp2)
        mpz_mul_2exp(tmp2, q, 1)
        mpz_add(tmp2, tmp2, r)
        mpz_mul(tmp2, tmp2, l)
        mpz_mul(t, t, l)
        mpz_tdiv_q(tmp1, tmp1, t)
        mpz_mul(q, q, k)
        mpz_add_ui(k, k, 1)
        mpz_add_ui(l, l, 2)
        mpz_set(n, tmp1)
        mpz_set(r, tmp2)     
    End If
Loop
Output:
3.
14159265358979323846264338327950288419716939937510 :50
58209749445923078164062862089986280348253421170679 :100
82148086513282306647093844609550582231725359408128 :150
48111745028410270193852110555964462294895493038196 :200
44288109756659334461284756482337867831652712019091 :250
......
59284936959414340814685298150539471789004518357551 :20300
54125223590590687264878635752541911288877371766374 :20350
86027660634960353679470269232297186832771739323619 :20400
20077745221262475186983349515101986426988784717193 :20450
96649769070825217423365662725928440620430214113719 :20500

FunL

The code for compute_pi() is from [2]. The number of digits may be given on the command line as an argument. If there's no argument, the program will run until interrupted.

def compute_pi =
  def g( q, r, t, k, n, l ) =
    if 4*q + r - t < n*t
      n # g( 10*q, 10*(r - n*t), t, k, (10*(3*q + r))\t - 10*n, l )
    else
      g( q*k, (2*q + r)*l, t*l, k + 1, (q*(7*k + 2) + r*l)\(t*l), l + 2 )

  g( 1, 0, 1, 1, 3, 3 )

if _name_ == '-main-'
  print( compute_pi().head() + '.' )

  if args.isEmpty()
    for d <- compute_pi().tail()
      print( d )
  else
    for d <- compute_pi().tail().take( int(args(0)) )
      print( d )

    println()

FutureBasic

This old-school code still works on Mac OS Monterey and is expected to work on Ventura, but it needs a modern refactoring.

_maxlong = 0x7fffffff

begin globals
long kf, ks
xref mf(_maxLong - 1) as long
xref ms(_maxLong - 1) as long
long cnt, n, temp, nd
long col, col1
long lloc, stor(50)
end globals

local mode
local fn FmtStr( nn as long, s as Str255 ) as Str255
  long l
  Str255 f
  l = s[0]
  select case
    case (  nn => l ) : f = string$( nn-l, 32 ) + s
    case ( -nn  > l ) : f = s + string$( -nn-l, 32 )
    case else : f = s
  end select
end fn = f

local mode
local fn FmtInt( nn as long, s as Str255 ) as Str255
  if ( left$( s, 1 ) = " " ) then s = mid$( s, 2 )
end fn = fn FmtStr( nn, s )


local fn yprint( m as long )
  if ( cnt < n )
    col++
    if ( col == 11 )
      col = 1
      col1++
      if ( col1 == 6 )
        col1 = 0
        print
        print fn FmtInt( 4, str$( m mod 10) );
      else
        print fn FmtInt( 3, str$ (m mod 10) );
      end if
    else
      print mid$( str$( m ), 2 ) ;
    end if
  end if
  cnt++
end fn


local fn xprint( m as long )
  long ii, wk, wk1
  
  if ( m < 8 )
    ii = 1
    while ( ii <= lloc )
      fn yprint( stor(ii) )
      ii++
    wend
    lloc = 0
  else
    if ( m > 9 )
      wk = m / 10
      m = m mod 10
      wk1 = lloc
      while ( wk1 >= 1 )
        wk += stor(wk1)
        stor(wk1) = wk mod 10
        wk = wk/10
        wk1--
      wend
    end if
  end if
  lloc++
  stor(lloc) = m
end fn


local mode
local fn shift( l1 as ^long, l2 as ^long, lp as long, lmod as long )
  long k
  
  if ( l2.nil& > 0 )
    k = ( l2.nil& ) / lmod
  else
    k =  -( -l2.nil&  / lmod ) - 1
  end if
  l2.nil& = l2.nil& - k*lmod
  l1.nil& = l1.nil& + k*lp
end fn


local fn Main( nDig as long )
  long i
  
  n = nDig
  stor(0) = 0
  
  mf = fn malloc( ( n + 10 ) * sizeof(long) )
  if ( 0 == mf ) then stop "Out of memory"
  
  ms = fn malloc( ( n + 10 ) * sizeof(long) )
  if ( 0 == ms ) then stop "Out of memory"
  
  print : printf @"Approximation of π to %ld digits", n
  
  cnt = 0
  kf  = 25
  ks  = 57121
  mf(1) = 1
  
  i = 2
  while ( i <= n )
    mf(i)     = -16
    mf(i + 1) =  16
    i += 2
  wend
  
  i = 1
  while ( i <= n )
    ms(i)     = -4
    ms(i + 1) =  4
    i += 2
  wend
  
  print : print " 3.";
  
  while ( cnt < n )
    i = 0
    i++
    while ( i <= n - cnt )
      mf(i) = mf(i) * 10
      ms(i) = ms(i) * 10
      i++
    wend
    
    i = ( n - cnt + 1 )
    i--
    while ( i >= 2 )
      temp = 2 * i - 1
      fn shift( @mf(i - 1), @mf(i), temp - 2, temp * kf )
      fn shift( @ms(i - 1), @ms(i), temp - 2, temp * ks )
      i--
    wend
    
    nd = 0
    
    fn shift( @nd, @mf(1), 1, 5 )
    fn shift( @nd, @ms(1), 1, 239 )
    fn xprint( nd )
    
  wend
  
  print : print "Done"
  fn free( ms )
  fn free( mf )
end fn

window 1

CFTimeInterval t

t = fn CACurrentMediaTime
// Here we specify the number of decimal places
fn Main( 4000 )
print : printf @"Compute time: %.3f ms",(fn CACurrentMediaTime-t)*1000

HandleEvents

Output:


Approximation of π to 4000 digits

 3.1415926535  8979323846  2643383279  5028841971  6939937510  5820974944
   5923078164  0628620899  8628034825  3421170679  8214808651  3282306647
   0938446095  5058223172  5359408128  4811174502  8410270193  8521105559
   6446229489  5493038196  4428810975  6659334461  2847564823  3786783165
   2712019091  4564856692  3460348610  4543266482  1339360726  0249141273
   7245870066  0631558817  4881520920  9628292540  9171536436  7892590360
   0113305305  4882046652  1384146951  9415116094  3305727036  5759591953
   0921861173  8193261179  3105118548  0744623799  6274956735  1885752724
   8912279381  8301194912  9833673362  4406566430  8602139494  6395224737
   1907021798  6094370277  0539217176  2931767523  8467481846  7669405132
   0005681271  4526356082  7785771342  7577896091  7363717872  1468440901
   2249534301  4654958537  1050792279  6892589235  4201995611  2129021960
   8640344181  5981362977  4771309960  5187072113  4999999837  2978049951
   0597317328  1609631859  5024459455  3469083026  4252230825  3344685035
   2619311881  7101000313  7838752886  5875332083  8142061717  7669147303
   5982534904  2875546873  1159562863  8823537875  9375195778  1857780532
   1712268066  1300192787  6611195909  2164201989  3809525720  1065485863
   2788659361  5338182796  8230301952  0353018529  6899577362  2599413891
   2497217752  8347913151  5574857242  4541506959  5082953311  6861727855
   8890750983  8175463746  4939319255  0604009277  0167113900  9848824012
   8583616035  6370766010  4710181942  9555961989  4676783744  9448255379
   7747268471  0404753464  6208046684  2590694912  9331367702  8989152104
   7521620569  6602405803  8150193511  2533824300  3558764024  7496473263
   9141992726  0426992279  6782354781  6360093417  2164121992  4586315030
   2861829745  5570674983  8505494588  5869269956  9092721079  7509302955
   3211653449  8720275596  0236480665  4991198818  3479775356  6369807426
   5425278625  5181841757  4672890977  7727938000  8164706001  6145249192
   1732172147  7235014144  1973568548  1613611573  5255213347  5741849468
   4385233239  0739414333  4547762416  8625189835  6948556209  9219222184
   2725502542  5688767179  0494601653  4668049886  2723279178  6085784383
   8279679766  8145410095  3883786360  9506800642  2512520511  7392984896
   0841284886  2694560424  1965285022  2106611863  0674427862  2039194945
   0471237137  8696095636  4371917287  4677646575  7396241389  0865832645
   9958133904  7802759009  9465764078  9512694683  9835259570  9825822620
   5224894077  2671947826  8482601476  9909026401  3639443745  5305068203
   4962524517  4939965143  1429809190  6592509372  2169646151  5709858387
   4105978859  5977297549  8930161753  9284681382  6868386894  2774155991
   8559252459  5395943104  9972524680  8459872736  4469584865  3836736222
   6260991246  0805124388  4390451244  1365497627  8079771569  1435997700
   1296160894  4169486855  5848406353  4220722258  2848864815  8456028506
   0168427394  5226746767  8895252138  5225499546  6672782398  6456596116
   3548862305  7745649803  5593634568  1743241125  1507606947  9451096596
   0940252288  7971089314  5669136867  2287489405  6010150330  8617928680
   9208747609  1782493858  9009714909  6759852613  6554978189  3129784821
   6829989487  2265880485  7564014270  4775551323  7964145152  3746234364
   5428584447  9526586782  1051141354  7357395231  1342716610  2135969536
   2314429524  8493718711  0145765403  5902799344  0374200731  0578539062
   1983874478  0847848968  3321445713  8687519435  0643021845  3191048481
   0053706146  8067491927  8191197939  9520614196  6342875444  0643745123
   7181921799  9839101591  9561814675  1426912397  4894090718  6494231961
   5679452080  9514655022  5231603881  9301420937  6213785595  6638937787
   0830390697  9207734672  2182562599  6615014215  0306803844  7734549202
   6054146659  2520149744  2850732518  6660021324  3408819071  0486331734
   6496514539  0579626856  1005508106  6587969981  6357473638  4052571459
   1028970641  4011097120  6280439039  7595156771  5770042033  7869936007
   2305587631  7635942187  3125147120  5329281918  2618612586  7321579198
   4148488291  6447060957  5270695722  0917567116  7229109816  9091528017
   3506712748  5832228718  3520935396  5725121083  5791513698  8209144421
   0067510334  6711031412  6711136990  8658516398  3150197016  5151168517
   1437657618  3515565088  4909989859  9823873455  2833163550  7647918535
   8932261854  8963213293  3089857064  2046752590  7091548141  6549859461
   6371802709  8199430992  4488957571  2828905923  2332609729  9712084433
   5732654893  8239119325  9746366730  5836041428  1388303203  8249037589
   8524374417  0291327656  1809377344  4030707469  2112019130  2033038019
   7621101100  4492932151  6084244485  9637669838  9522868478  3123552658
   2131449576  8572624334  4189303968  6426243410  7732269780  2807318915
   4411010446  8232527162  0105265227  2111660396
Done
Elapsed time: 729.405 ms

Go

Code below is a simplistic translation of Haskell code in Unbounded Spigot Algorithms for the Digits of Pi. This is the algorithm specified for the pidigits benchmark of the Computer Language Benchmarks Game. (The standard Go distribution includes source submitted to the benchmark site, and that code runs stunning faster than the code below.)

package main

import (
    "fmt"
    "math/big"
)

type lft struct {
    q,r,s,t big.Int
}

func (t *lft) extr(x *big.Int) *big.Rat {
    var n, d big.Int
    var r big.Rat
    return r.SetFrac(
        n.Add(n.Mul(&t.q, x), &t.r),
        d.Add(d.Mul(&t.s, x), &t.t))
}

var three = big.NewInt(3)
var four = big.NewInt(4)

func (t *lft) next() *big.Int {
    r := t.extr(three)
    var f big.Int
    return f.Div(r.Num(), r.Denom())
}

func (t *lft) safe(n *big.Int) bool {
    r := t.extr(four)
    var f big.Int
    if n.Cmp(f.Div(r.Num(), r.Denom())) == 0 {
        return true
    }
    return false
}

func (t *lft) comp(u *lft) *lft {
    var r lft
    var a, b big.Int
    r.q.Add(a.Mul(&t.q, &u.q), b.Mul(&t.r, &u.s))
    r.r.Add(a.Mul(&t.q, &u.r), b.Mul(&t.r, &u.t))
    r.s.Add(a.Mul(&t.s, &u.q), b.Mul(&t.t, &u.s))
    r.t.Add(a.Mul(&t.s, &u.r), b.Mul(&t.t, &u.t))
    return &r
}

func (t *lft) prod(n *big.Int) *lft {
    var r lft
    r.q.SetInt64(10)
    r.r.Mul(r.r.SetInt64(-10), n)
    r.t.SetInt64(1)
    return r.comp(t)
}

func main() {
    // init z to unit
    z := new(lft)
    z.q.SetInt64(1)
    z.t.SetInt64(1)

    // lfts generator
    var k int64
    lfts := func() *lft {
        k++
        r := new(lft)
        r.q.SetInt64(k)
        r.r.SetInt64(4*k+2)
        r.t.SetInt64(2*k+1)
        return r
    }

    // stream
    for {
        y := z.next()
        if z.safe(y) {
            fmt.Print(y)
            z = z.prod(y)
        } else {
            z = z.comp(lfts())
        }
    }
}

Groovy

Translation of: Java

Solution:

BigInteger q = 1, r = 0, t = 1, k = 1, n = 3, l = 3
String nn
boolean first = true

while (true) {
    (nn, first, q, r, t, k, n, l) = (4*q + r - t < n*t) \
        ? ["${n}${first?'.':''}", false, 10*q, 10*(r - n*t), t  , k    , 10*(3*q + r)/t - 10*n    , l    ] \
        : [''                   , first, q*k , (2*q + r)*l , t*l, k + 1, (q*(7*k + 2) + r*l)/(t*l), l + 2]
    print nn
}

Output (thru first 1000 iterations):

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337

Haskell

The code from [3]:

pi_ = g (1, 0, 1, 1, 3, 3)
  where
    g (q, r, t, k, n, l) =
      if 4 * q + r - t < n * t
        then n :
             g
               ( 10 * q
               , 10 * (r - n * t)
               , t
               , k
               , div (10 * (3 * q + r)) t - 10 * n
               , l)
        else g
               ( q * k
               , (2 * q + r) * l
               , t * l
               , k + 1
               , div (q * (7 * k + 2) + r * l) (t * l)
               , l + 2)

Complete command-line program

Works with: GHC version 7.4.1
#!/usr/bin/runhaskell

import Control.Monad
import System.IO

pi_ = g(1,0,1,1,3,3) where
  g (q,r,t,k,n,l) =
   if 4*q+r-t < n*t
    then n : g (10*q, 10*(r-n*t), t, k, div (10*(3*q+r)) t - 10*n, l)
    else g (q*k, (2*q+r)*l, t*l, k+1, div (q*(7*k+2)+r*l) (t*l), l+2)

digs = insertPoint digs'
  where insertPoint (x:xs) = x:'.':xs
        digs' = map (head . show) pi_

main = do
  hSetBuffering stdout $ BlockBuffering $ Just 80
  forM_ digs putChar
Output:
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198

Quicker, Unverified Algorithm

Snippet verbatim from source .pdf:

piG3 = g(1,180,60,2) where
  g(q,r,t,i) = let (u,y)=(3*(3*i+1)*(3*i+2),div(q*(27*i-12)+5*r)(5*t))
    in y : g(10*q*i*(2*i-1),10*u*(q*(5*i-2)+r-y*t),t*u,i+1)

This is more efficient because each term converges in less than one step, so no checking needs to be done partway through the iteration. Only caveat is that the convergence is on average slightly over one digit, so there is a chance that, if one checked enough digits, one may find a gap where a digit would be incorrect. Though it seems to be OK for the first 100k digits, or so.

Output is the same. link to complete program at tio.run

Icon and Unicon

Translation of: PicoLisp

based on Jeremy Gibbons' Haskell solution.

procedure pi (q, r, t, k, n, l)
  first := "yes"
  repeat { # infinite loop
    if (4*q+r-t < n*t) then {
      suspend n
      if (\first) := &null then suspend "."
      # compute and update variables for next cycle
      nr := 10*(r-n*t)
      n := ((10*(3*q+r)) / t) - 10*n
      q *:= 10
      r := nr
    } else {
      # compute and update variables for next cycle
      nr := (2*q+r)*l
      nn := (q*(7*k+2)+r*l) / (t*l)
      q *:= k
      t *:= l
      l +:= 2
      k +:= 1
      n := nn
      r := nr
    }
  }
end

procedure main ()
  every (writes (pi (1,0,1,1,3,3)))
end

J

pi=: 3 :0
  echo"0 '3.1'
  i=. 0
  while. i=. i + 1 do.
    echo -/ 1 10 * <.@o. 10x ^ 1 0 + i
  end.
)

Example use:

   pi''
3
.
1
4
1
5
9
2
6
5
3
...

Java

Translation of: Icon
import java.math.BigInteger ;

public class Pi {
  final BigInteger TWO = BigInteger.valueOf(2) ;
  final BigInteger THREE = BigInteger.valueOf(3) ;
  final BigInteger FOUR = BigInteger.valueOf(4) ;
  final BigInteger SEVEN = BigInteger.valueOf(7) ;

  BigInteger q = BigInteger.ONE ;
  BigInteger r = BigInteger.ZERO ;
  BigInteger t = BigInteger.ONE ;
  BigInteger k = BigInteger.ONE ;
  BigInteger n = BigInteger.valueOf(3) ;
  BigInteger l = BigInteger.valueOf(3) ;

  public void calcPiDigits(){
    BigInteger nn, nr ;
    boolean first = true ;
    while(true){
        if(FOUR.multiply(q).add(r).subtract(t).compareTo(n.multiply(t)) == -1){
          System.out.print(n) ;
          if(first){System.out.print(".") ; first = false ;}
          nr = BigInteger.TEN.multiply(r.subtract(n.multiply(t))) ;
          n = BigInteger.TEN.multiply(THREE.multiply(q).add(r)).divide(t).subtract(BigInteger.TEN.multiply(n)) ;
          q = q.multiply(BigInteger.TEN) ;
          r = nr ;
          System.out.flush() ;
        }else{
          nr = TWO.multiply(q).add(r).multiply(l) ;
          nn = q.multiply((SEVEN.multiply(k))).add(TWO).add(r.multiply(l)).divide(t.multiply(l)) ;
          q = q.multiply(k) ;
          t = t.multiply(l) ;
          l = l.add(TWO) ;
          k = k.add(BigInteger.ONE) ;
          n = nn ;
          r = nr ;
        }
    }
  }

  public static void main(String[] args) {
    Pi p = new Pi() ;
    p.calcPiDigits() ;
  }
}

Output :

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480 ...

JavaScript

Spigot Algorithm

Calculate one digit of π at a time and write it out. process.stdout.write will work in Node.js; to make this work in a browser, change it to document.body.textContent += .

let q = 1n, r = 180n, t = 60n, i = 2n;
for (;;) {
  let y = (q*(27n*i-12n)+5n*r)/(5n*t);
  let u = 3n*(3n*i+1n)*(3n*i+2n);
  r = 10n*u*(q*(5n*i-2n)+r-y*t);
  q = 10n*q*i*(2n*i-1n);
  t = t*u;
  i = i+1n;
  process.stdout.write(y.toString());
  if (i === 3n) { process.stdout.write('.'); }
}

Web Page version

This shows how to load the previous code into a webpage that writes digits out without freezing the browser

<html><head><script src='https://rawgit.com/andyperlitch/jsbn/v1.1.0/index.js'></script></head>
<body style="width: 100%"><tt id="pi"></tt><tt>...</tt>
<script async defer>
function bi(n, b) { return new jsbn.BigInteger(n.toString(), b ? b : 10); };
var one=bi(1), two=bi(2), three=bi(3), four=bi(4), seven=bi(7), ten=bi(10);
function calcPi() {
    var q=bi(1), r=bi(0), t=bi(1), k=bi(1), n=bi(3), l=bi(3);
    var digit=0, firstrun=1;
    var p=document.getElementById('pi');
    function w(s) { p.appendChild(document.createTextNode(s));}
    function continueCalcPi(q, r, t, k, n, l) {
        while (true) {
            if (q.multiply(four).add(r).subtract(t).compareTo(n.multiply(t)) < 0) {
                w(n.toString());
                if (digit==0 && firstrun==1) { w('.'); firstrun=0; };
                digit = (digit+1) % 256;
                var nr = (r.subtract(n.multiply(t))).multiply(ten);
                n  = (q.multiply(three).add(r)).multiply(ten).divide(t).subtract(n.multiply(ten));
                q  = q.multiply(ten);
                r  = nr;
                if (digit%8==0) {
                    if (digit%64==0) {
                     p.appendChild(document.createElement('br'));
                    }
                    w(' ');
                    return setTimeout(function() { continueCalcPi(q, r, t, k, n, l); }, 50);
                };
            } else {
                var nr = q.shiftLeft(1).add(r).multiply(l);
                var nn = q.multiply(k).multiply(seven).add(two).add(r.multiply(l)).divide(t.multiply(l));
                q = q.multiply(k);
                t = t.multiply(l);
                l = l.add(two);
                k = k.add(one);
                n  = nn;
                r  = nr;
            }
        }
    }
    continueCalcPi(q, r, t, k, n, l);
}
calcPi();
</script>
</body></html>

Web Page using BigInt

Above converted to use BigInt

<html>
 <head>
 </head>
 <body style="width: 100%">
  <tt id="pi"></tt>
  <tt>...</tt>
  <script async defer>
function calcPi() {
    let q=1n, r=0n, t=1n, k=1n, n=3n, l=3n, nr, nn, digit=0, firstrun=1;
    const p=document.getElementById('pi');
    function w(s) { p.appendChild(document.createTextNode(s));}
//  function continueCalcPi(q, r, t, k, n, l) {  // (see note)
    function continueCalcPi() {
        while (true) {
            if (q*4n+r-t < n*t) {
                w(n.toString());
                if (digit==0 && firstrun==1) { w('.'); firstrun=0; };
                digit = (digit+1) % 256;
                nr = (r-n*t)*10n;
                n  = (q*3n+r)*10n/t-n*10n;
                q *= 10n;
                r  = nr;
                if (digit%8==0) {
                    if (digit%64==0) {
                     p.appendChild(document.createElement('br'));
                    }
                    w('\xA0');
//                  return setTimeout(function() { continueCalcPi(q, r, t, k, n, l); }, 50);
                    return setTimeout(continueCalcPi, 50);
                };
            } else {
                nr = (q*2n+r)*l;
                nn = (q*k*7n+2n+r*l)/(t*l);
                q *= k;
                t *= l;
                l += 2n;
                k += 1n;
                n  = nn;
                r  = nr;
            }
        }
    }
    continueCalcPi(q, r, t, k, n, l);
}
calcPi();
  </script>
 </body>
</html>

Note: removing the parameters to continueCalcPi() as shown may eat (even) more memory, not entirely sure about that.

Simple Approximation

Returns an approximation of Pi.

var calcPi = function() {
  var n = 20000;
  var pi = 0;
  for (var i = 0; i < n; i++) {
    var temp = 4 / (i*2+1);
    if (i % 2 == 0) {
      pi += temp;
    }
    else {
      pi -= temp;
    }
  }
  return pi;
}

jq

Works with: jq version 1.4

The focus in this section is on the Gibbons spigot algorithm as it is relatively simple and therefore provides a gentle introduction to how such algorithms can be implemented in jq.

Since the Gibbons algorithm quickly fails in the absence of support for large integers, we shall assume BigInt support, such as provided by BigInt.jq.

The jq program presented here closely follows the Groovy and Python examples on this page. The spigot generator is named "next", and is driven by an annotation function, "decorate"; thus the main program is just "S0 | decorate(next)" where S0 is the initial state. One advantage of this approach is that the generator's state is exposed, thus making it easy to restart the stream at any point.

The annotation defined here results in a triple for each digit of pi: [index, digit, space], where "space" is the sum of the lengths of the strings in the six-dimensional state vector, [q, r, t, k, n, l]. The output shows that the space requirements of the Gibbons spigot grow very slightly more than linearly.

# The Gibbons spigot, in the mold of the [[#Groovy]] and [[#Python]] programs shown on this page.  
# The "bigint" functions needed are:
# long_minus long_add long_multiply long_div

def pi_spigot:

  # S is the sixtuple:
  # q      r      t      k      n      l
  # 0      1      2      3      4      5

  def long_lt(x;y): if x == y then false else lessOrEqual(x;y) end;

  def check: 
     long_lt(long_minus(long_add(long_multiply("4"; .[0]); .[1]) ; .[2]);
             long_multiply(.[4]; .[2]));

  # state: [d, S] where digit is null or a digit ready to be printed
  def next:
    .[1] as $S
    | $S[0] as $q | $S[1] as $r | $S[2] as $t | $S[3] as $k | $S[4] as $n | $S[5] as $l
    | if $S|check
      then [$n,
             [long_multiply("10"; $q),
              long_multiply("10"; long_minus($r; long_multiply($n;$t))),
              $t,
              $k,
              long_minus( long_div(long_multiply("10";long_add(long_multiply("3"; $q); $r)); $t );
                          long_multiply("10";$n)),
              $l ]]
      else [null,
             [long_multiply($q;$k),
              long_multiply( long_add(long_multiply("2";$q); $r); $l),
              long_multiply($t;$l),
              long_add($k; "1"),
              long_div( long_add(long_multiply($q; long_add(long_multiply("7";$k); "2")) ; long_multiply($r;$l)); 
                        long_multiply($t;$l) ),
              long_add($l; "2") ]]
      end;

  # Input: input to the filter "nextstate"
  # Output:  [count, space, digit] for successive digits produced by "nextstate"
  def decorate( nextstate ):

     # For efficiency it is important that the recursive 
     # function have arity 0 and be tail-recursive:
     def count:
       .[0] as $count
       | .[1] as $state
       | $state[0] as $value
       | ($state[1] | map(length) | add) as $space
       | (if $value then [$count, $space, $value] else empty end),
         ( [if $value then $count+1 else $count end, ($state | nextstate)] | count);
  [0, .] | count;     
     
  #       q=1, r=0, t=1, k=1, n=3, l=3
  [null, ["1", "0", "1", "1", "3", "3"]] | decorate(next)
;

pi_spigot
Output:
$ jq -M -n -c -f pi.bigint.jq
[0,9,"3"]
[1,14,"1"]
[2,29,"4"]
[3,36,"1"]
[4,51,"5"]
[5,69,"9"]
[6,80,"2"]
[7,95,"6"]
[8,115,"5"]
[9,125,"3"]
[10,142,"5"]
[11,167,"8"]
[12,181,"9"]
[13,197,"7"]
[14,226,"9"]
[15,245,"3"]
[16,263,"2"]
[17,276,"3"]
[18,300,"8"]
[19,320,"4"]
[20,350,"6"]
[21,363,"2"]
[22,383,"6"]
[23,408,"4"]
[24,429,"3"]
[25,442,"3"]
[26,475,"8"]
[27,502,"3"]
[28,510,"2"]
[29,531,"7"]
[30,563,"9"]
[31,611,"5"]
[32,613,"0"]
[33,628,"2"]
[34,649,"8"]
[35,676,"8"]
[36,711,"4"]
[37,720,"1"]
[38,748,"9"]
[39,783,"7"]
[40,792,"1"]
[41,814,"6"]
[42,849,"9"]
[43,870,"3"]
[44,886,"9"]
[45,923,"9"]
[46,939,"3"]
[47,967,"7"]
[48,1004,"5"]
[49,1041,"1"]
[50,1043,"0"]
[51,1059,"5"]
[52,1103,"8"]
[53,1133,"2"]
[54,1135,"0"]
[55,1165,"9"]
[56,1195,"7"]
[57,1212,"4"]
[58,1242,"9"]
[59,1273,"4"]
[60,1297,"4"]
[61,1313,"5"]
[62,1358,"9"]
[63,1375,"2"]
[64,1421,"3"]
[65,1423,"0"]
[66,1447,"7"]
[67,1493,"8"]
[68,1501,"1"]
[69,1533,"6"]
[70,1579,"4"]
[71,1581,"0"]
[72,1613,"6"]
[73,1630,"2"]
[74,1662,"8"]
[75,1701,"6"]
[76,1733,"2"]
[77,1735,"0"]
[78,1781,"8"]
[79,1792,"9"]
[80,1816,"9"]
[81,1849,"8"]
[82,1889,"6"]
[83,1898,"2"]
[84,1961,"8"]
[85,1963,"0"]
[86,1988,"3"]
[87,2013,"4"]
[88,2054,"8"]
[89,2071,"2"]
[90,2104,"5"]
[91,2129,"3"]
[92,2162,"4"]
[93,2195,"2"]
[94,2220,"1"]
[95,2230,"1"]
[96,2287,"7"]
[97,2289,"0"]
[98,2314,"6"]
[99,2340,"7"]
[100,2373,"9"]
[101,2414,"8"]
[102,2448,"2"]
[103,2458,"1"]
[104,2484,"4"]
[105,2534,"8"]
[106,2536,"0"]
[107,2569,"8"]
[108,2602,"6"]
[109,2645,"5"]
[110,2662,"1"]
[111,2696,"3"]
[112,2707,"2"]
[113,2756,"8"]
[114,2775,"2"]
[115,2825,"3"]
[116,2827,"0"]
[117,2853,"6"]
[118,2887,"6"]
[119,2914,"4"]
[120,2964,"7"]
[121,2966,"0"]
[122,3008,"9"]
[123,3027,"3"]
[124,3061,"8"]
[125,3088,"4"]
[126,3114,"4"]
[127,3165,"6"]
[128,3167,"0"]
[129,3202,"9"]
[130,3237,"5"]
[131,3287,"5"]
[132,3289,"0"]
[133,3316,"5"]
[134,3360,"8"]
[135,3387,"2"]
[136,3414,"2"]
[137,3456,"3"]
[138,3466,"1"]
[139,3510,"7"]
[140,3529,"2"]
[141,3564,"5"]
[142,3583,"3"]
[143,3610,"5"]
[144,3653,"9"]
[145,3697,"4"]
[146,3699,"0"]
[147,3752,"8"]
[148,3770,"1"]
[149,3789,"2"]
[150,3825,"8"]
[151,3852,"4"]
[152,3905,"8"]
[153,3933,"1"]
[154,3960,"1"]
[155,3970,"1"]
[156,4006,"7"]
[157,4033,"4"]
[158,4102,"5"]
[159,4104,"0"]
[160,4124,"2"]
[161,4159,"8"]
[162,4203,"4"]
[163,4248,"1"]
[164,4250,"0"]
[165,4269,"2"]
[166,4348,"7"]
[167,4350,"0"]
[168,4361,"1"]
[169,4405,"9"]
[170,4424,"3"]
[171,4460,"8"]
[172,4497,"5"]
[173,4542,"2"]
[174,4569,"1"]
[175,4605,"1"]
[176,4607,"0"]
[177,4644,"5"]
[178,4672,"5"]
[179,4691,"5"]
[180,4727,"9"]
[181,4764,"6"]
[182,4792,"4"]
[183,4820,"4"]
[184,4865,"6"]
[185,4893,"2"]
[186,4913,"2"]
[187,4949,"9"]
[188,4968,"4"]
[189,5005,"8"]
[190,5042,"9"]
[191,5070,"5"]
[192,5098,"4"]
[193,5144,"9"]
[194,5198,"3"]
[195,5200,"0"]
[196,5219,"3"]
[197,5266,"8"]
[198,5276,"1"]
[199,5313,"9"]
[200,5350,"6"]
[201,5387,"4"]
[202,5416,"4"]
[203,5435,"2"]
[204,5471,"8"]
[205,5526,"8"]
[206,5556,"1"]
[207,5558,"0"]
[208,5594,"9"]
[209,5632,"7"]
[210,5660,"5"]
[211,5689,"6"]
[212,5726,"6"]
[213,5746,"5"]
[214,5792,"9"]
[215,5821,"3"]
[216,5849,"3"]
[217,5887,"4"]
[218,5906,"4"]
[219,5961,"6"]
[220,5981,"1"]
[221,6002,"2"]
[222,6038,"8"]
[223,6068,"4"]
[224,6096,"7"]
[225,6134,"5"]
[226,6163,"6"]
[227,6191,"4"]
[228,6238,"8"]
[229,6267,"2"]
[230,6296,"3"]
[231,6316,"3"]
[232,6344,"7"]
[233,6383,"8"]
[234,6411,"6"]
[235,6440,"7"]
[236,6487,"8"]
[237,6525,"3"]
[238,6545,"1"]
[239,6574,"6"]
[240,6621,"5"]
[241,6641,"2"]
[242,6688,"7"]
[243,6717,"1"]
[244,6782,"2"]
[245,6784,"0"]
[246,6795,"1"]
[247,6852,"9"]
[248,6854,"0"]
[249,6910,"9"]
[250,6929,"1"]
[251,6959,"4"]
[252,6988,"5"]
[253,7027,"6"]
[254,7046,"4"]
[255,7085,"8"]
[256,7115,"5"]
[257,7153,"6"]
[258,7181,"6"]
[259,7229,"9"]
[260,7258,"2"]
[261,7288,"3"]
[262,7317,"4"]
[263,7383,"6"]
[264,7385,"0"]
[265,7415,"3"]
[266,7435,"4"]
[267,7474,"8"]
[268,7530,"6"]
[269,7569,"1"]
[270,7571,"0"]
[271,7609,"4"]
[272,7639,"5"]
[273,7678,"4"]
[274,7716,"3"]
[275,7736,"2"]
[276,7766,"6"]
[277,7805,"6"]
[278,7826,"4"]
[279,7873,"8"]
[280,7912,"2"]
[281,7933,"1"]
[282,7971,"3"]
[283,7991,"3"]
[284,8030,"9"]
[285,8060,"3"]
[286,8118,"6"]
[287,8120,"0"]
[288,8168,"7"]
[289,8189,"2"]
[290,8264,"6"]
[291,8266,"0"]
[292,8287,"2"]
[293,8317,"4"]
[294,8374,"9"]
[295,8395,"1"]
[296,8443,"4"]
[297,8464,"1"]
[298,8485,"2"]
[299,8524,"7"]
[300,8544,"3"]
[301,8593,"7"]
[302,8623,"2"]
...

Julia

Julia comes with built-in support for computing π in arbitrary precision (using the GNU MPFR library). This implementation computes π at precisions that are repeatedly doubled as more digits are needed, printing one digit at a time and never terminating (until it runs out of memory) as specified:

let prec = precision(BigFloat), spi = "", digit = 1
    while true
      if digit > lastindex(spi)
        prec *= 2
        setprecision(prec)
        spi = string(big(π))
      end
      print(spi[digit])
      digit += 1
    end
end

Output:

3.141592653589793238462643383279502884195e69399375105820974944592307816406286198e9862803482534211706798214808651328230664709384460955058223172535940812848115e450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724586997e0631558817488152092096282925409171536436789259036001133053054882046652138414695194151160943305727036575959195309218611738193261179310511854807446237996274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526357e8277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201...

Kotlin

Translation of: Java
// version 1.1.2

import java.math.BigInteger

val ZERO  = BigInteger.ZERO
val ONE   = BigInteger.ONE 
val TWO   = BigInteger.valueOf(2L)
val THREE = BigInteger.valueOf(3L)
val FOUR  = BigInteger.valueOf(4L)
val SEVEN = BigInteger.valueOf(7L)
val TEN   = BigInteger.TEN

fun calcPi() {
    var nn: BigInteger
    var nr: BigInteger
    var q = ONE
    var r = ZERO
    var t = ONE
    var k = ONE
    var n = THREE
    var l = THREE     
    var first = true
    while (true) {
        if (FOUR * q + r - t < n * t) {
            print(n)
            if (first) { print ("."); first = false }
            nr = TEN * (r - n * t)
            n = TEN * (THREE * q + r) / t - TEN * n
            q *= TEN
            r = nr
        }
        else {
            nr = (TWO * q + r) * l
            nn = (q * SEVEN * k + TWO + r * l) / (t * l)
            q *= k
            t *= l
            l += TWO
            k += ONE
            n = nn
            r = nr
        }
    }
}

fun main(args: Array<String>) = calcPi()
Output:
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798214808651328230664709384460955058223172535940812848111745...

Lambdatalk

1) We can build a lambdatalk function using the lib_BN javascript library.

{require lib_BN}

{def genpi
 {def genpi.loop
  {lambda {:n :pi :q :r :t :i :z}
   {if {> :z :n}
    then :pi
    else {let { {:n :n} {:pi :pi} {:q :q} {:r :r} {:t :t} {:i :i} {:z :z}
                {:digit {BN./ {BN.+ {BN.* {BN.- {BN.* :i 27} 12} :q} 
                                    {BN.* :r 5} }  
                              {BN.* :t 5} } }
                {:u {BN.* {BN.+ {BN.* :i 3} 1} 
                          {BN.* 3 {BN.+ {BN.* :i 3} 2} } } }
              } {genpi.loop :n
                            {BN.+ :pi :digit}
                            {BN.* {BN.* :q 1} 
                                  {BN.* :i {BN.- {BN.* :i 2} 1} }} 
                            {BN.* {BN.* :u 1}
                                  {BN.+ {BN.* :q {BN.- {BN.* :i 5} 2} } 
                                        {BN.- :r {BN.* :t :digit} }}}
                            {BN.* :t :u} 
                            {BN.+ :i 1}
                            {+ :z 1}} }}}}
 {lambda {:n}
  {genpi.loop :n # 1 180 60 2 0} }}
-> genpi

We can generate π with 72 digits in about 500ms.

{BN.DEC 72}
->  72 digits
{genpi 60}
-> 3.141592653589793238462643383279502884197169399375105820974944592307816406

To go further the best is to build a javascript primitive using the script special form.

{script 
LAMBDATALK.DICT["spigot"] = function() {
  function generateDigitsOfPi(max) {
    var pi = "";
    var z = 0;
    var q = 1n;
    var r = 180n;
    var t = 60n;
    var i = 2n;
    while (z < max) {
        var digit = ((i * 27n - 12n) * q + r * 5n) / (t * 5n);
        pi += digit;
        var  u = (i * 3n + 1n) * 3n * (i * 3n + 2n);
        r = u * 10n * (q * (i * 5n - 2n) + (r - t * digit));
        q = q * 10n * i * (i * 2n - 1n); 
        i = i + 1n;
        t = t * u; 
        z++;
    }
    return pi 
  }
  var args = arguments[0].trim();
  return generateDigitsOfPi( args ); 
};
}

We can generate 1000 digits of π in about 70ms

3.{W.rest {spigot 100}}
-> 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198

Lasso

Based off Dik T. Winter's C implementation of Beeler et al. 1972, Item 120.

#!/usr/bin/lasso9
 
define generatePi => {
  yield currentCapture
 
  local(r = array(), i, k, b, d, c = 0, x)
  with i in generateSeries(1, 2800)
  do #r->insert(2000)
  with k in generateSeries(2800, 1, -14)
  do {
    #d = 0
    #i = #k
    while(true) => {
      #d += #r->get(#i) * 10000
      #b = 2 * #i - 1
      #r->get(#i) = #d % #b
      #d /= #b
      #i--
      !#i ? loop_abort
      #d *= #i
    }
    #x = (#c + #d / 10000)
    yield (#k == 2800 ? ((#x * 0.001)->asstring(-precision = 3)) | #x->asstring(-padding=4, -padChar='0'))
    #c = #d % 10000
  }
}
 
local(pi_digits) = generatePi
loop(200) => {
    stdout(#pi_digits())
}

Output (first 100 places):

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067

Liberty BASIC

Pretty slow if you run for over 100 digits...

    ndigits = 0

    q       = 1
    r       = 0
    t       = q
    k       = q
    n       = 3
    L       = n

   first = 666  '   ANY non-zero =='true' in LB.

    while ndigits <100
        if ( 4 *q +r -t) <( n *t) then
            print n;
            ndigits =ndigits +1
            if not( ndigits mod 40) then print: print "  ";
            if first =666 then first = 0: print ".";
            nr =10 *( r -n *t)
            n  =int( ( (10 *( 3 *q +r)) /t) -10 *n)
            q  =q *10
            r  =nr
        else
            nr =( 2 *q +r) *L
            nn =(q *( 7 *k +2) +r *L) /( t *L)
            q  =q *k
            t  =t *L
            L  =L +2
            k  =k +1
            n  =int( nn)
            r  =nr
        end if
        scan
wend

end
3.141592653589793238462643383279502884197
1693993751058209749445923078164062862089
98628034825342117067

Lua

Translation of: Pascal
a = {}
n = 1000
len = math.modf( 10 * n / 3 )

for j = 1, len do
    a[j] = 2
end
nines = 0
predigit = 0
for j = 1, n do
    q = 0
    for i = len, 1, -1 do
        x = 10 * a[i] + q * i
        a[i] = math.fmod( x, 2 * i - 1 )
        q = math.modf( x / ( 2 * i - 1 ) )
    end
    a[1] = math.fmod( q, 10 )
    q = math.modf( q / 10 )
    if q == 9 then
        nines = nines + 1
    else
        if q == 10 then
            io.write( predigit + 1 )
            for k = 1, nines do
                io.write(0)
            end
            predigit = 0
            nines = 0
        else
            io.write( predigit )
            predigit = q
            if nines ~= 0 then
                for k = 1, nines do
                    io.write( 9 )
                end
                nines = 0
            end
        end
    end
end
print( predigit )
03141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086 ...

M2000 Interpreter

We can ask for 200 digits, but we can remove Digits-- in While Digits {} to print endless number of digits (without good precision). Algorithm developed after reading [4] and [5]

A Faster version handling console refresh time (and os shared time). M2000 run on an environment, which is loop event, and console is actual a form, a window. We can stop execution using Esc, Ctrl+C and Break keys, without stopping the interpreter (which is an application for Windows Os, written in Visual Basic 6,a s an ActiveX dll with a window manager on top of Vb forms).


Module Checkpi {
      Module FindPi(Digits){ 
            Digits++
            n=Int(3.32*Digits)
            PlusOne=Lambda N=0% -> {
                  =N
                  N++
            }
            PlusTwo=Lambda N=1% -> {
                  =N
                  N+=2
            }
            Dim A(n)<<PlusOne(), B(n)<<PlusTwo()
            Dim Ten(n),  CarrierOver(n), Sum(n),Remainder(n)=2
            OutPutDigits=Digits
            Predigits=Stack
            CallBack=lambda fl=true, Chars=0 (x)->{
                  Print x;
                  Chars++
                  If fl then Print "." : Print " "; : fl=false : Chars=0 : exit
                  If Chars=50 then { 
                        Print
                        Print " ";
                        Chars=0 
                        Refresh
                  } else.if (Chars mod 5)=0 then {
                         Print " ";
                         Refresh
                  }
                  \\ explicitly refresh output layer, using Fast ! mode of speed
            }
            Print "Pi=";
             While Digits {
                  NextDigit(&CallBack, &Digits)
            }
            print
            Refresh
            Sub NextDigit(&f, &D)
                CarrierOver=0
                  For k=n-1 to 1 {
                  Ten(k)=Remainder(k)*10%
                  CarrierOver(k)=CarrierOver
                  Sum(k)=Ten(k)+CarrierOver(k)
                  q=Sum(k) div  B(k)
                  Remainder(k)=Sum(k)-B(k)*q
                  CarrierOver=A(k)*q
                  }
                  Ten(0)=Remainder(0)*10%
                  CarrierOver(0)=CarrierOver
                  Sum(0)=Ten(0)+CarrierOver(0)
                  q=Sum(0) div  10%
                  Remainder(0)=Sum(0)-10%*q
                  if q<>9 and q<>10 then {
                        Stack Predigits {
                              While not empty {
                                Call f(Number)
                                if D>0 then D--
                                If D=0 then flush ' empty stack
                              }      
                              Push q
                        }       
                  } else.if q=9 Then {
                        Stack Predigits { Data q }
                  } else {
                        Stack Predigits {
                        While not empty {
                              Call f((Number+1) mod 10)
                              if D>0 then D--
                              If D=0 then flush ' empty stack
                        }      
                        Push 0
                        }
                  }
            End Sub     
      }
      \\ reduce time to share with OS
      \\ Need explicitly use of refresh output layer (M2000 console)
      \\ Slow for a screen refresh per statement and give more time to OS
      Rem Set Slow 
      \\ Fast is normal screen refresh, per Refresh time, and give standard time to OS
      Rem Set Fast
      \\ Fast ! use Refresh for screen refresh, and give less time o OS than standard
      \\ Esc key work when Refresh executed (and OS get little time)
      Set Fast !  
      FindPi 4
      FindPi 28
      Print Pi  ' pi in M2000 is Decimal type with 29 digits (1 plus 28 after dot, is same as FindPi 28)
      Refresh
      FindPi 50     
}
Flush ' empty stack of values
CheckPi
List  ' no variables exist
Modules ? ' current module exist
Stack ' Stack of values  ' has to be empty, we didn't use current stack for values.

Mathematica / Wolfram Language

User can interrupt computation using "Alt+." or "Cmd+." on a Mac.

WriteString[$Output, "3."];
For[i = -1, True, i--, 
  WriteString[$Output, RealDigits[Pi, 10, 1, i][[1, 1]]]; Pause[.05]];

MATLAB

Requires the Variable Precision Integer (vpi) Toolbox

function pi_str = piSpigot(N)
% Return N digits of pi using Gibbons's first spigot algorithm.
% If N is omitted, the digits are printed ad infinitum.
% Uses the expansion
%   pi = sum_{i=0} (i!)^2 2^{i+1} /(2i+1)!
%      = 2 + 1/3 * ( 2 + 2/5 * (2 + 3/7 * ( 2 + 4/9 * ( ..... )))))
%      = (2 + 1/3 *)(2 + 2/5 *)(2 + 3/7 *)...
% where the terms in the last expression represent Linear Fractional 
% Transforms (LFTs).
%
% Requires the Variable Precision Integer (vpi) Toolbox
%
% Reference:
% "Unbounded Spigot Algorithms for the Digits of Pi" by J. Gibbons, 2004
% American Mathematical Monthly, vol. 113. 
if nargin < 1
    N = Inf;
    lineLength = 50;
else
    pi_str = repmat(' ',1,N);
end

q = vpi(1);
r = vpi(0);
t = vpi(1);
k = 1; % If printing more than 3E15 digits, use k = vpi(1);

i = 1;
first_digit = true;
while i <= N
    threeQplusR = 3*q + r;
    n = double(threeQplusR / t);
    if q+threeQplusR < (n+1)*t
        d = num2str(n);
        if isinf(N)
            fprintf(1,'%s', d);
            if first_digit
                fprintf(1,'.');
                first_digit = false;
                i = i+1;
            end
            if i == lineLength 
                fprintf(1,'\n');
                i = 0;
            end
        else
            pi_str(i) = d;
        end
        q = 10*q;
        r = 10*(r-n*t);
        i = i + 1;
    else
        t = (2*k+1)*t;
        r = (4*k+2)*q + (2*k+1)*r;
        q = k*q;
        k = k + 1;
    end
end
end
>> piSpigot
3.141592653589793238462643383279502884197169399375
10582097494459230781640628620899862803482534211706
79821480865132823066470938446095505822317253594081
28481117450284102701938521105559644622948954930381
96442881097566593344612847564823378678316527120190
91456485669234603486104543266482133936072602491412

MiniScript

Calculate pi using the Rabinowitz-Wagon algorithm

digits = input("Enter number of digits to calculate after decimal point: ").val
// I've seen variations of this "precision" calculation from 
//    10 * digits
// to
//    floor(10 * digits / 3) + 16
// A larger value provides a more precise calculation but also 
// takes longer to run. Based on my testing, this calculation 
// below for precision produces accurate output for inputs
// from 1 to 4000 - haven't tried larger than this.
precision = floor(10 * digits / 3) + 4
A = [2] *  precision
nines = 0
predigit = 0
cnt = 0
while cnt <= digits
	carry = 0
	for i in range(precision - 1, 1, -1)
		temp = 10 * A[i] + carry * i
		A[i] = temp % (2 * i - 1)
		carry = floor(temp/(2 * i - 1))
	end for
	A[1] = carry % 10
	carry = floor(carry / 10)
	current = carry
	if current == 9 then
		nines += 1
	else if current == 10 then
		print (predigit+1), ""
		cnt += 1
		if nines > 0 then 
			print "9" * nines, ""
			cnt += nines
		end if
		predigit = 0
		nines = 0
	else
		// the first digit produced is always a zero
		// don't need to see that
		if cnt != 0 then print predigit, ""
		cnt += 1
		predigit = current
		if nines > 0 then
			print "9" * nines, ""
			cnt += nines
		end if
		nines = 0
	end if
	if cnt == 2 then print ".", ""
end while
print str(predigit) * (cnt < digits + 2)
Output:
Enter number of digits to calculate after decimal point: 1000
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903690113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051329005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710199031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066139019278766111959092164201989

Nanoquery

Translation of: Java
q = 1; r = 0; t = 1
k = 1; n = 3; l = 3

nn = null; nr = null
first = true

while true
	if (((4 * q) + r) - t) < (n * t)
		print n
		if first
			print "."
			first = false
		end
		nr = int(10 * (r - (n * t)))
		n = int((10 * ((3 * q) + r)) / t) - (10 * n)
		q *= 10
		r = nr
	else
		nr = int(((2 * q) + r) * l)
		nn = int((((q * (7 * k)) + 2) + (r * l)) / (t * l))
		q *= k
		t *= l
		l += 2
		k += 1
		n = nn
		r = nr
	end if
end while
Output:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...

NetRexx

Translation of: Java
/* NetRexx */
options replace format comments java crossref symbols binary
import java.math.BigInteger

runSample(arg)
return

-- 07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)07:11, 27 August 2022 (UTC)~~
method runSample(arg) private static
  parse arg places .
  if places = '' then places = -1

  TWO   = BigInteger.valueOf(2)
  THREE = BigInteger.valueOf(3)
  FOUR  = BigInteger.valueOf(4)
  SEVEN = BigInteger.valueOf(7)

  q_ = BigInteger.ONE
  r_ = BigInteger.ZERO
  t_ = BigInteger.ONE
  k_ = BigInteger.ONE
  n_ = BigInteger.valueOf(3)
  l_ = BigInteger.valueOf(3)

  nn = BigInteger
  nr = BigInteger

  first = isTrue()
  digitCt = 0
  loop forever
    if FOUR.multiply(q_).add(r_).subtract(t_).compareTo(n_.multiply(t_)) == -1 then do
      digitCt = digitCt + 1
      if places > 0 & digitCt - 1 > places then leave
      say n_'\-'
      if first then do
        say '.\-'
        first = isFalse()
        end
      nr = BigInteger.TEN.multiply(r_.subtract(n_.multiply(t_)))
      n_ = BigInteger.TEN.multiply(THREE.multiply(q_).add(r_)).divide(t_).subtract(BigInteger.TEN.multiply(n_))
      q_ = q_.multiply(BigInteger.TEN)
      r_ = nr
      end
    else do
      nr = TWO.multiply(q_).add(r_).multiply(l_)
      nn = q_.multiply((SEVEN.multiply(k_))).add(TWO).add(r_.multiply(l_)).divide(t_.multiply(l_))
      q_ = q_.multiply(k_)
      t_ = t_.multiply(l_)
      l_ = l_.add(TWO)
      k_ = k_.add(BigInteger.ONE)
      n_ = nn
      r_ = nr
      end
    end
  say

  return

method isTrue() private static returns boolean
  return (1 == 1)
method isFalse() private static returns boolean
  return \isTrue()
Output:
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679...

Nim

Library: bigints
import bigints

var
  tmp1, tmp2, tmp3, acc, k = initBigInt(0)
  den, num, k2 = initBigInt(1)

proc extractDigit(): int32 =
  if num > acc:
    return -1

  tmp3 = num shl 1 + num + acc
  tmp1 = tmp3 div den
  tmp2 = tmp3 mod den + num

  if tmp2 >= den:
    return -1

  result = int32(tmp1.limbs[0])

proc eliminateDigit(d: int32) =
  acc -= den * d
  acc *= 10
  num *= 10

proc nextTerm() =
  k += 1
  k2 += 2
  acc += num shl 1
  acc *= k2
  den *= k2
  num *= k

var i = 0

while true:
  var d: int32 = -1
  while d < 0:
    nextTerm()
    d = extractDigit()

  stdout.write chr(ord('0') + d)
  inc i
  if i == 40:
    echo ""
    i = 0
  eliminateDigit d
Output:
3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
...

Another version which avoids to access the internals of big integers:

Translation of: D
Library: bignum
import bignum

proc calcPi() =
  var
    q = newInt(1)
    r = newInt(0)
    t = newInt(1)
    k = newInt(1)
    n = newInt(3)
    l = newInt(3)

  var count = 0
  while true:
    if 4 * q + r - t < n * t:
      stdout.write n
      inc count
      if count == 40: (echo ""; count = 0)
      let nr = 10 * (r - n * t)
      n = 10 * (3 * q + r) div t - 10 * n
      q *= 10
      r = nr
    else:
      let nr = (2 * q + r) * l
      let nn = (7 * q * k + 2 + r * l) div (t * l)
      q *= k
      t *= l
      l += 2
      k += 1
      n = nn
      r = nr

calcPi()
Output:
3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
...

OCaml

The Constructive Real library Creal contains an infinite-precision Pi, so we can just print out its digits.

open Creal;;

let block = 100 in
let segment n =
   let s = to_string pi (n*block) in
   String.sub s ((n-1)*block) block in
let counter = ref 1 in
while true do
   print_string (segment !counter);
   flush stdout;
   incr counter
done

However that is cheating if you want to see an algorithm to generate Pi. Since the Spigot algorithm is already used in the pidigits program, this implements Machin's formula.

open Num

(* series for: c*atan(1/k) *)
class atan_sum c k = object
   val kk = k*/k
   val mutable n = 0
   val mutable kpow = k
   val mutable pterm = c*/k
   val mutable psum = Int 0
   val mutable sum = c*/k
   method next =
      n <- n+1; kpow <- kpow*/kk;
      let t = c*/kpow//(Int (2*n+1)) in
      pterm <- if n mod 2 = 0 then t else minus_num t;
      psum <- sum;
      sum <- sum +/ pterm
   method error = abs_num pterm
   method bounds = if pterm </ Int 0 then (sum, psum) else (psum, sum)
end;;

let inv i = (Int 1)//(Int i) in
let t1 = new atan_sum (Int 16) (inv 5) in
let t2 = new atan_sum (Int (-4)) (inv 239) in
let base = Int 10 in
let npr = ref 0 in
let shift = ref (Int 1) in
let d_acc = inv 10000 in
let acc = ref d_acc in
let shown = ref (Int 0) in
while true do
   while t1#error >/ !acc do t1#next done;
   while t2#error >/ !acc do t2#next done;
   let (lo1, hi1), (lo2, hi2) = t1#bounds, t2#bounds in
   let digit x = int_of_num (floor_num ((x -/ !shown) */ !shift)) in
   let d, d' = digit (lo1+/lo2), digit (hi1+/hi2) in
   if d = d' then (
      print_int d;
      if !npr = 0 then print_char '.';
      flush stdout;
      shown := !shown +/ ((Int d) // !shift);
      incr npr; shift := !shift */ base;
   ) else (acc := !acc */ d_acc);
done

Oforth

: calcPiDigits 
| q r t k n l |
   1 ->q 0 ->r 1 ->t 1 ->k 3 ->n 3 -> l

   while( true ) [
      4 q * r + t - n t * < ifTrue: [
         n print
         r n t * - 10 *
         3 q * r + 10 * t / n 10 * - ->n ->r
         q 10 * ->q
         ]
      else: [
         2 q * r + l * 
         7 k * q * 2 + r l * + t l * / ->n ->r
         k q * ->q
         t l * ->t
         l 2 + ->l
         k 1+  ->k
         ]
       ] ;

Ol

Translation of: Scheme
; 'numbers' is count of numbers or #false for eternal pleasure.
(define (pi numbers)
   (let loop ((q 1) (r 0) (t 1) (k 1) (n 3) (l 3) (numbers numbers))
      (unless (eq? numbers 0)
         (if (< (- (+ (* 4 q) r) t) (* n t))
            (begin
               (display n)
               (loop (* q  10)
                     (* 10 (- r (* n t)))
                     t
                     k
                     (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n))
                     l
                     (if numbers (- numbers 1))))
            (begin
               (loop (* q k)
                     (* (+ (* 2 q) r) l)
                     (* t l)
                     (+ k 1)
                     (div (+ (* q (* 7 k)) 2 (* r l)) (* t l))
                     (+ l 2)
                     (if numbers (- numbers 1))))))))

(pi #false)
Output:
31415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132
82306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475
64823378678316527120190914564856692346034861045432664821339360726024914127372458700660631558817488152092096282925
40917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480
74462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539
21717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958
53710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328
16096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598
25349042875546873115956286388235378759375195778185778053217122680661300192787661119590921642019893809525720106548
58632788659361533818279682303019520353018529689957736225994138912497217752834791315155748572424541506959508295331
1686172785588907509838175463

PARI/GP

Uses the built-in Brent-Salamin arithmetic-geometric mean iteration.

pi()={
  my(x=Pi,n=0,t);
  print1("3.");
  while(1,
    if(n>=default(realprecision),
      default(realprecision,default(realprecision)*2);
      x=Pi
    );
    print1(floor(x*10^n++)%10)
  )
};

Swift

Works with: Swift 4.2
//
//  main.swift
//  pi digits
//
//  Created by max goren on 11/11/21.
//  Copyright © 2021 maxcodes. All rights reserved.
//

import Foundation

var r = [Int]()
var i = 0
var k = 2800
var b = 0
var c = 0
var d = 0

for _ in 0...2800 {
    r.append(2000);
}
while k > 0 {
    d = 0;
    i = k;
    while (true) {
        d = d + r[i] * 10000
        b = 2 * i - 1
        r[i] = d % b
        d = d / b
        i = i - 1
        if i == 0 {
            break;
        }
        d = d * i;
    }
    print(c +  d / 10000, "")
    c = d % 10000
    k = k - 14
}

Pascal

Works with: Free_Pascal

With minor editing changes as published by Stanley Rabinowitz in [6]. Minor improvement of <user>Mischi</user> { speedup ~2 ( n=10000 , rumtime 4s-> 1,44s fpc 2.6.4 -O3 }, by calculating only necessary digits up to n.

Program Pi_Spigot;
const
  n   = 1000;
  len = 10*n div 3;

var
  j, k, q, nines, predigit: integer;
  a: array[0..len] of longint;

function OneLoop(i:integer):integer;
var
  x: integer;
begin
  {Only calculate as far as needed }
  {+16 for security digits ~5 decimals}
  i := i*10 div 3+16;
  IF i > len then
    i := len;
  result := 0;
  repeat   {Work backwards}
    x  := 10*a[i] + result*i;
    result := x div (2*i - 1);
    a[i]   := x - result*(2*i - 1);//x mod (2*i - 1)
    dec(i);
  until i<= 0 ;
end;

begin

  for j := 1 to len do
    a[j] := 2;                 {Start with 2s}
  nines := 0;
  predigit := 0;               {First predigit is a 0}

  for j := 1 to n do
  begin
    q := OneLoop(n-j);
    a[1] := q mod 10;
    q := q div 10;
    if q = 9 then
      nines := nines + 1
    else
      if q = 10 then
      begin
        write(predigit+1);
        for k := 1 to nines do
          write(0);            {zeros}
        predigit := 0;
        nines := 0
      end
      else
      begin
        write(predigit);
        predigit := q;
        if nines <> 0 then
        begin
          for k := 1 to nines do
            write(9);
          nines := 0
        end
      end
  end;
  writeln(predigit);
end.

Output:

% ./Pi_Spigot
03141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176293176752384674818467669405132000568127145263560827785771342757789609173637178721468440901224953430146549585371050792279689258923542019956112129021960864034418159813629774771309960518707211349999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010003137838752886587533208381420617177669147303598253490428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198

Perl

Perl being what it is, there are many ways to do this with many variations. With a fixed number of digits and the Math::BigInt::GMP library installed, the [[Arithmetic-geometric mean/Calculate Pi code will be much faster than any of these methods other than some of the modules. If Math::GMP is installed, then replacing "use bigint" with "use Math::GMP qw/:constant/" in either the Raku spigot or Machin methods below will be pretty fast. They are not too bad if the Math::BigInt::GMP library is installed. With the default Math::BigInt backend, the AGM code isn't very fast and the Raku spigot and Machin methods are very slow.

Simple Spigot

This takes a numer-of-digits argument, but we can make it large (albeit using memory and some startup time). Unlike the other two, this uses no modules and does not require bigints so is worth showing.

sub pistream {
  my $digits = shift;
  my(@out, @a);
  my($b, $c, $d, $e, $f, $g, $i, $d4, $d3, $d2, $d1);
  my $outi = 0;

  $digits++;
  $b = $d = $e = $g = $i = 0;
  $f = 10000;
  $c = 14 * (int($digits/4)+2);
  @a = (20000000) x $c;
  print "3.";
  while (($b = $c -= 14) > 0 && $i < $digits) {
    $d = $e = $d % $f;
    while (--$b > 0) {
      $d = $d * $b + $a[$b];
      $g = ($b << 1) - 1;
      $a[$b] = ($d % $g) * $f;
      $d = int($d / $g);
    }
    $d4 = $e + int($d/$f);
    if ($d4 > 9999) {
      $d4 -= 10000;
      $out[$i-1]++;
      for ($b = $i-1; $out[$b] == 1; $b--) {
        $out[$b] = 0;
        $out[$b-1]++;
      }
    }
    $d3 = int($d4/10);
    $d2 = int($d3/10);
    $d1 = int($d2/10);
    $out[$i++] = $d1;
    $out[$i++] = $d2-$d1*10;
    $out[$i++] = $d3-$d2*10;
    $out[$i++] = $d4-$d3*10;
    print join "", @out[$i-15 .. $i-15+3]  if $i >= 16;
  }
  # We've closed the spigot.  Print the remainder without rounding.
  print join "", @out[$i-15+4 .. $digits-2], "\n";
}

Raku spigot

As mentioned earlier, replacing "use bigint" with "use Math::GMP qw/:constant/" will result in many orders of magnitude faster performance.

Translation of: Raku
use bigint try=>"GMP";
sub stream { 
    my ($next, $safe, $prod, $cons, $z, $x) = @_;
    $x = $x->();
    sub {
        while (1) {
            my $y = $next->($z);
            if ($safe->($z, $y)) {
                $z = $prod->($z, $y);
                return $y;
            } else {
                $z = $cons->($z, $x->());
            }
        }
    }
}
 
sub extr {
    use integer;
    my ($q, $r, $s, $t) = @{shift()};
    my $x = shift;
    ($q * $x + $r) / ($s * $x + $t);
}
 
sub comp {
    my ($q, $r, $s, $t) = @{shift()};
    my ($u, $v, $w, $x) = @{shift()};
    [$q * $u + $r * $w,
     $q * $v + $r * $x,
     $s * $u + $t * $w,
     $s * $v + $t * $x];
}
 
my $pi_stream = stream
    sub { extr shift, 3 },
    sub { my ($z, $n) = @_; $n == extr $z, 4 },
    sub { my ($z, $n) = @_; comp([10, -10*$n, 0, 1], $z) },
    \&comp,
    [1, 0, 0, 1],
    sub { my $n = 0; sub { $n++; [$n, 4 * $n + 2, 0, 2 * $n + 1] } },
;
$|++;
print $pi_stream->(), '.';
print $pi_stream->() while 1;

Machin's Formula

Here is an original Perl 5 code, using Machin's formula. Not the fastest program in the world. As with the previous code, using either Math::GMP or Math::BigInt::GMP instead of the default bigint Calc backend will make it run thousands of times faster.

use bigint try=>"GMP";

# Pi/4 = 4 arctan 1/5 - arctan 1/239
# expanding it with Taylor series with what's probably the dumbest method

my ($ds, $ns) = (1, 0);
my ($n5, $d5) = (16 * (25 * 3 - 1), 3 * 5**3);
my ($n2, $d2) = (4 * (239 * 239 * 3 - 1), 3 * 239**3);

sub next_term {
	my ($coef, $p) = @_[1, 2];
	$_[0] /= ($p - 4) * ($p - 2);
	$_[0] *= $p * ($p + 2) * $coef**4;
}

my $p2 = 5;
my $pow = 1;

$| = 1;
for (my $x = 5; ; $x += 4) {
	($ns, $ds) = ($ns * $d5 + $n5 * $pow * $ds, $ds * $d5);

	next_term($d5, 5, $x);
	$n5 = 16 * (5 * 5 * ($x + 2) - $x);

	while ($d5 > $d2) {
		($ns, $ds) = ($ns * $d2 - $n2 * $pow * $ds, $ds * $d2);
		$n2 = 4 * (239 * 239 * ($p2 + 2) - $p2);
		next_term($d2, 239, $p2);
		$p2 += 4;
	}

	my $ppow = 1;
	while ($pow * $n5 * 5**4 < $d5 && $pow * $n2 * $n2 * 239**4 < $d2) {
		$pow *= 10;
		$ppow *= 10;
	}

	if ($ppow > 1) {
		$ns *= $ppow;
	#FIX?	my $out = $ns->bdiv($ds);   # bugged?
		my $out = $ns / $ds;
		$ns %= $ds;

		$out = ("0" x (length($ppow) - length($out) - 1)) . $out;
		print $out;
	}

	if ( $p2 % 20 == 1) {
		my $g = Math::BigInt::bgcd($ds, $ns);
		$ds /= $g;
		$ns /= $g;
	}
}

Modules

While no current CPAN module does continuous printing, there are (usually fast) ways to get digits of Pi. Examples include:

Library: ntheory
use ntheory qw/Pi/;
say Pi(10000);

use Math::Pari qw/setprecision Pi/;
setprecision(10000);
say Pi;

use Math::MPFR;
my $pi = Math::MPFR->new();
Math::MPFR::Rmpfr_set_prec($pi, int(10000 * 3.322)+40);
Math::MPFR::Rmpfr_const_pi($pi, 0);
say Math::MPFR::Rmpfr_get_str($pi, 10, 10000, 0);

use Math::BigFloat try=>"GMP";    # Slow without Math::BigInt::GMP installed
say Math::BigFloat::bpi(10000);   # For over ~2k digits, slower than AGM

use Math::Big qw/pi/;    # Very slow
say pi(10000);

Phix

I already had this golf entry to hand. Prints 2400 places, change the 8400 (derived from 2400*14/4) as needed, but I've not tested > that.

with javascript_semantics 
integer a=10000,b,c=8400,d,e=0,g sequence f=repeat(floor(a/5),c+1) while c>0 do g=2*c d=0 
b=c while b>0 do d+=f[b]*a g-=1 f[b]=remainder(d, g) d=floor(d/g) g-=1 b-=1 if b!=0 then 
d*=b end if end while printf(1,"%04d",e+floor(d/a)) c-=14 e = remainder(d,a) end while

Someone was benchmarking the above against Lua, so I translated the Lua entry, and upped it to 2400 places, for a fairer test.

with javascript_semantics 
integer n = 2400, 
        len = floor(10*n/3) 
sequence a = repeat(2,len) 
integer nines = 0, 
        predigit = 0 
string res = "" 
for j=1 to n do 
    integer q = 0 
    for i=len to 1 by -1 do 
        integer x = 10*a[i]+q*i, 
                d = 2*i-1 
        a[i] = remainder(x,d) 
        q = floor(x/d) 
    end for 
    a[1] = remainder(q,10) 
    q = floor(q/10) 
    if q==9 then 
        nines = nines+1 
    else 
        integer nine = '9' 
        if q==10 then 
            predigit += 1 
            q = 0 
            nine = '0' 
        end if 
        res &= predigit+'0'&repeat(nine,nines)
        predigit = q 
        nines = 0 
    end if 
end for 
res &= predigit+'0' 
puts(1,res)

Picat

Translation of: Erlang
go =>
  pi2(1,0,1,1,3,3,0),
  nl.

pi2(Q,R,T,K,N,L,C) =>
   if C == 50 then
      nl,
      pi2(Q,R,T,K,N,L,0)
   else
     if (4*Q + R-T) < (N*T) then
       print(N),
       P := 10*(R-N*T),
       pi2(Q*10, P, T, K, ((10*(3*Q+R)) div T)-10*N, L,C+1)
     else 
       P := (2*Q+R)*L,
       M := (Q*(7*K)+2+(R*L)) div (T*L),
       H := L+2,
       J := K+ 1,
       pi2(Q*K, P, T*L, J, M, H, C)
     end
   end,
   nl.
Output:
31415926535897932384626433832795028841971693993751
05820974944592307816406286208998628034825342117067
98214808651328230664709384460955058223172535940812
84811174502841027019385211055596446229489549303819
64428810975665933446128475648233786783165271201909
14564856692346034861045432664821339360726024914127
37245870066063155881748815209209628292540917153643
67892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854
80744623799627495673518857527248912279381830119491
29833673362440656643086021394946395224737190702179
86094370277053921717629317675238467481846766940513
[Ctrl-C]


PicoLisp

The following script uses the spigot algorithm published by Jeremy Gibbons. Hit Ctrl-C to stop it.

#!/usr/bin/picolisp /usr/lib/picolisp/lib.l

(de piDigit ()
   (job '((Q . 1) (R . 0) (S . 1) (K . 1) (N . 3) (L . 3))
      (while (>= (- (+ R (* 4 Q)) S) (* N S))
         (mapc set '(Q R S K N L)
            (list
               (* Q K)
               (* L (+ R (* 2 Q)))
               (* S L)
               (inc K)
               (/ (+ (* Q (+ 2 (* 7 K))) (* R L)) (* S L))
               (+ 2 L) ) ) )
      (prog1 N
         (let M (- (/ (* 10 (+ R (* 3 Q))) S) (* 10 N))
            (setq Q (* 10 Q)  R (* 10 (- R (* N S)))  N M) ) ) ) )

(prin (piDigit) ".")
(loop
   (prin (piDigit))
   (flush) )

Output:

3.14159265358979323846264338327950288419716939937510582097494459 ...

PL/I

/* Uses the algorithm of S. Rabinowicz and S. Wagon, "A Spigot Algorithm */
/* for the Digits of Pi".                                                */
(subrg, fofl, size):
Pi_Spigot: procedure options (main);                 /* 21 January 2012. */
   declare (n, len) fixed binary;

   n = 1000;
   len = 10*n / 3;
   begin;
      declare ( i, j, k, q, nines, predigit ) fixed binary;
      declare x fixed binary (31);
      declare a(len) fixed binary (31);

      a = 2; /* Start with 2s */
      nines, predigit = 0; /* First predigit is a 0 */
      do j = 1 to n;
         q = 0;
         do i = len to 1 by -1; /* Work backwards */
            x = 10*a(i) + q*i;
            a(i) = mod (x, (2*i-1));
            q = x / (2*i-1);
         end;
         a(1) = mod(q, 10); q = q / 10;
         if q = 9 then nines = nines + 1;
         else if q = 10 then
            do;
               put edit(predigit+1) (f(1));
               do k = 1 to nines;
                  put edit ('0')(a(1)); /* zeros */
               end;
               predigit, nines = 0;
            end;
         else
            do;
               put edit(predigit) (f(1)); predigit = q;
               do k = 1 to nines; put edit ('9')(a(1)); end;
               nines = 0;
            end;
      end;
      put edit(predigit) (f(1));
   end; /* of begin block */
end Pi_Spigot;

output:

03141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
59502445945534690830264252230825334468503526193118817101000313783875288658753320
83814206171776691473035982534904287554687311595628638823537875937519577818577805
32171226806613001927876611195909216420198

Powershell

Translation of: D

With some tweaking. Prints 100 digits a time. Total possible output limited by available memory.

Function Get-Pi ( $Digits )
    {
    $Big = [bigint[]](0..10)
 
    $ndigits = 0
    $Output = ""
 
    $q = $t = $k = $Big[1]
    $r =           $Big[0]
    $l = $n =      $Big[3]
    # Calculate first digit
    $nr = ( $Big[2] * $q + $r ) * $l
    $nn = ( $q * ( $Big[7] * $k + $Big[2] ) + $r * $l ) / ( $t * $l )
    $q *= $k
    $t *= $l
    $l += $Big[2]
    $k = $k + $Big[1]
    $n = $nn
    $r = $nr
 
    $Output += [string]$n + '.'
    $ndigits++
 
    $nr = $Big[10] * ( $r - $n * $t )
    $n = ( ( $Big[10] * ( 3 * $q + $r ) ) / $t ) - 10 * $n
    $q *= $Big[10]
    $r = $nr
 
    While ( $ndigits -lt $Digits )
        {
        While ( $ndigits % 100 -ne 0 -or -not $Output )
            {
            If ( $Big[4] * $q + $r - $t -lt $n * $t )
                {
                $Output += [string]$n
                $ndigits++
                $nr = $Big[10] * ( $r - $n * $t )
                $n = ( ( $Big[10] * ( 3 * $q + $r ) ) / $t ) - 10 * $n
                $q *= $Big[10]
                $r = $nr
                }
            Else
                {
                $nr = ( $Big[2] * $q + $r ) * $l
                $nn = ( $q * ( $Big[7] * $k + $Big[2] ) + $r * $l ) / ( $t * $l )
                $q *= $k
                $t *= $l
                $l += $Big[2]
                $k = $k + $Big[1]
                $n = $nn
                $r = $nr
                }
            }
        $Output
        $Output = ""
        }
    }

Alternate version using .Net classes

[math]::pi

Outputs:

.Net digits of pi
3.14159265358979

Prolog

Using coroutine with freeze/2 predicate:

pi_spigot :-
    pi(X),
    forall(member(Y, X), write(Y)).

pi(OUT) :-
    pi(1, 180, 60, 2, OUT).

pi(Q, R, T, I, OUT) :-
    freeze(OUT,
           (   OUT = [Digit | OUT_]
           ->  U is 3 * (3 * I + 1) * (3 * I + 2),
               Y is (Q * (27 * I - 12) + 5 * R) // (5 * T),
               Digit is Y,
               Q2 is 10 * Q * I * (2 * I - 1),
               R2 is 10 * U * (Q * (5 * I - 2) + R - Y * T),
               T2 is T * U,
               I2 is I + 1,
               pi(Q2, R2, T2, I2, OUT_)
           ;   true)).

PureBasic

Calculate Pi, limited to ~24 M-digits for memory and speed reasons.

#SCALE = 10000
#ARRINT=  2000

Procedure Pi(Digits)
  Protected First=#True, Text$
  Protected Carry, i, j, sum
  Dim Arr(Digits)
  For i=0 To Digits
    Arr(i)=#ARRINT
  Next
  i=Digits
  While i>0
    sum=0
    j=i
    While j>0
      sum*j+#SCALE*arr(j)
      Arr(j)=sum%(j*2-1)
      sum/(j*2-1)
      j-1
    Wend
    Text$ = RSet(Str(Carry+sum/#SCALE),4,"0")
    If First
      Text$ = ReplaceString(Text$,"3","3.")
      First = #False
    EndIf
    Print(Text$)
    Carry=sum%#SCALE
    i-14
  Wend
EndProcedure

If OpenConsole()
  SetConsoleCtrlHandler_(?Ctrl,#True) 
  Pi(24*1024*1024)
EndIf
End

Ctrl:
PrintN(#CRLF$+"Ctrl-C was pressed")
End

Python

def calcPi():
    q, r, t, k, n, l = 1, 0, 1, 1, 3, 3
    while True:
        if 4*q+r-t < n*t:
            yield n
            nr = 10*(r-n*t)
            n  = ((10*(3*q+r))//t)-10*n
            q  *= 10
            r  = nr
        else:
            nr = (2*q+r)*l
            nn = (q*(7*k)+2+(r*l))//(t*l)
            q  *= k
            t  *= l
            l  += 2
            k += 1
            n  = nn
            r  = nr

import sys
pi_digits = calcPi()
i = 0
for d in pi_digits:
    sys.stdout.write(str(d))
    i += 1
    if i == 40: print(""); i = 0

output

3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
...

Quackery

Translation of: Oforth

Quackery does not have variables, it has ancillary stacks. To expedite translation from Oforth, the first two definitions implement words equivalent to the Forth words VALUE and TO.

  [ immovable
    ]this[ share ]done[ ] is value     (   --> x )
   
  [ ]'[ replace ]         is to        ( x -->   )
  
  [ value 1 ]             is Q         (   --> x )
  [ value 0 ]             is R         (   --> x )
  [ value 1 ]             is T         (   --> x )
  [ value 1 ]             is K         (   --> x )
  [ value 3 ]             is N         (   --> x )
  [ value 3 ]             is L         (   --> x )
  
  [ value 0 ]             is chcount   (   --> x )
  
  [ echo 
    chcount dup 79 = 
    if cr
    1+ 80 mod to chcount ] is printch

  [ 4 Q *  R  + T - N T * < iff
      [ N printch
        R N T * - 10 *
        3 Q * R + 10 * T / N 10 * - to N to R
        Q 10 * to Q ]
    else
      [ 2 Q  * R + L * 
        7 K * Q * 2 + R L * + T L * / to N to R
        K Q * to Q
        T L * to T
        L 2 + to L
        K 1+  to K ]
    chcount again ]
Output:
31415926535897932384626433832795028841971693993751058209749445923078164062862089
98628034825342117067982148086513282306647093844609550582231725359408128481117450
28410270193852110555964462294895493038196442881097566593344612847564823378678316
52712019091456485669234603486104543266482133936072602491412737245870066063155881
74881520920962829254091715364367892590360011330530548820466521384146951941511609
43305727036575959195309218611738193261179310511854807446237996274956735188575272
48912279381830119491298336733624406566430860213949463952247371907021798609437027
70539217176293176752384674818467669405132000568127145263560827785771342757789609
17363717872146844090122495343014654958537105079227968925892354201995611212902196
08640344181598136297747713099605187072113499999983729780499510597317328160963185
95024459455346908302642522308253344685035261931188171010003137838752886587533208
38142061717766914730359825349042875546873115956286388235378759375195778185778053
21712268066130019278766111959092164201989380952572010654858632788659361533818279
68230301952035301852968995773622599413891249721775283479131515574857242454150695
95082953311686172785588907509838175463746493931925506040092770167113900984882401
28583616035637076601047101819429555961989467678374494482553797747268471040475346

… and so on.

R

suppressMessages(library(gmp))
ONE <- as.bigz("1")
TWO <- as.bigz("2")
THREE <- as.bigz("3")
FOUR <- as.bigz("4")
SEVEN <- as.bigz("7")
TEN <- as.bigz("10")

q <- as.bigz("1")
r <- as.bigz("0")
t <- as.bigz("1")
k <- as.bigz("1")
n <- as.bigz("3")
l <- as.bigz("3")

char_printed <- 0

how_many <- 1000

first <- TRUE
while (how_many > 0) {
  if ((FOUR * q + r - t) < (n * t)) {
    if (char_printed == 80) {
      cat("\n")
      char_printed <- 0
    }
    how_many <- how_many - 1
    char_printed <- char_printed + 1
    cat(as.integer(n))
    if (first) {
      cat(".")
      first <- FALSE
      char_printed <- char_printed + 1
    }
    nr <- as.bigz(TEN * (r - n * t))
    n <- as.bigz(((TEN * (THREE * q + r)) %/% t) - (TEN * n))
    q <- as.bigz(q * TEN)
    r <- as.bigz(nr)
  } else {
    nr <- as.bigz((TWO * q + r) * l)
    nn <- as.bigz((q * (SEVEN * k + TWO) + r * l) %/% (t * l))
    q <- as.bigz(q * k)
    t <- as.bigz(t * l)
    l <- as.bigz(l + TWO)
    k <- as.bigz(k + ONE)
    n <- as.bigz(nn)
    r <- as.bigz(nr)
  }
}
cat("\n")

Output:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208
99862803482534211706798214808651328230664709384460955058223172535940812848111745
02841027019385211055596446229489549303819644288109756659334461284756482337867831
65271201909145648566923460348610454326648213393607260249141273724587006606315588
17488152092096282925409171536436789259036001133053054882046652138414695194151160
94330572703657595919530921861173819326117931051185480744623799627495673518857527
24891227938183011949129833673362440656643086021394946395224737190702179860943702
77053921717629317675238467481846766940513200056812714526356082778577134275778960
91736371787214684409012249534301465495853710507922796892589235420199561121290219
60864034418159813629774771309960518707211349999998372978049951059731732816096318
59502445945534690830264252230825334468503526193118817101000313783875288658753320
83814206171776691473035982534904287554687311595628638823537875937519577818577805
32171226806613001927876611195909216420198

Racket

Utilizing Jeremy Gibbons spigot algorithm and racket generator:

#lang racket
(require racket/generator)

(define pidig
  (generator ()
    (let loop ([q 1] [r 0] [t 1] [k 1] [n 3] [l 3])
      (if (< (- (+ r (* 4 q)) t) (* n t))
        (begin (yield n)
               (loop (* q 10) (* 10 (- r (* n t))) t k
                     (- (quotient (* 10 (+ (* 3 q) r)) t) (* 10 n))
                     l))
        (loop (* q k) (* (+ (* 2 q) r) l) (* t l) (+ 1 k)
              (quotient (+ (* (+ 2 (* 7 k)) q) (* r l)) (* t l))
              (+ l 2))))))

(for ([i (in-naturals)])
  (display (pidig))
  (when (zero? i) (display "." ))
  (when (zero? (modulo i 80)) (newline)))

Output:

3.14159265358979323846264338327950288419716939937510...

Raku

(formerly Perl 6)

Works with: rakudo version 2018.10
# based on http://www.mathpropress.com/stan/bibliography/spigot.pdf

sub stream(&next, &safe, &prod, &cons, $z is copy, @x) {
    gather loop {
        $z = safe($z, my $y = next($z)) ??
             prod($z, take $y)          !!
             cons($z, @x[$++])  
    }
}

sub extr([$q, $r, $s, $t], $x) {
    ($q * $x + $r) div ($s * $x + $t)
}

sub comp([$q,$r,$s,$t], [$u,$v,$w,$x]) {
    [$q * $u + $r * $w,
     $q * $v + $r * $x,
     $s * $u + $t * $w,
     $s * $v + $t * $x]
}

my $pi := 
    stream -> $z { extr($z, 3) },
           -> $z, $n { $n == extr($z, 4) },
           -> $z, $n { comp([10, -10*$n, 0, 1], $z) },
           &comp,
           <1 0 0 1>,
           (1..*).map: { [$_, 4 * $_ + 2, 0, 2 * $_ + 1] }

for ^Inf -> $i {
    print $pi[$i];
    once print '.'
}

REXX

version 1

This REXX program calculates decimal digits of     using John Machin's formula.

It should be noted that the program's mechanism spits out the next (new) decimal digit(s) of   .

The REXX program uses the following formula to calculate   :

                    ┌─   ─┐                ┌─     ─┐
  π                 │  1  │                │   1   │           John
 ───  =   4 ∙ arctan│ ─── │     -    arctan│ ───── │             Machin's
  4                 │  5  │                │  239  │               formula
                    └─   ─┘                └─     ─┘

 which expands into:

     ┌─                                                                      ─┐
     │    1         1          1          1          1           1            │
4 ∙  │   ───  -  ──────  +  ──────  -  ──────  +  ──────  -  ────────  +  ... │
     │     1         3          5          7          9           11          │
     │  1∙5       3∙5        5∙5        7∙5        9∙5        11∙5            │
     └─                                                                      ─┘


     ┌─                                                                      ─┐
     │    1         1          1          1          1           1            │
 -   │   ───  -  ──────  +  ──────  -  ──────  +  ──────  -  ────────  +  ... │
     │      1         3          5          7          9           11         │
     │ 1∙239     3∙239      5∙239      7∙239      9∙239      11∙239           │
     └─                                                                      ─┘
/*REXX program spits out decimal digits of pi  (one digit at a time)  until  Ctrl─Break.*/
parse arg digs oFID .                            /*obtain optional argument from the CL.*/
if digs=='' | digs==","  then digs= 1e6          /*Not specified?  Then use the default.*/
if oFID=='' | oFID==","  then oFID='PI_SPIT.OUT' /* "      "         "   "   "      "   */
write= digs<0                                    /*if ODIGS is <0, also spit pi to file.*/
numeric digits abs(digs) + 4                     /*with bigger digs, spitting is slower.*/
call time 'Reset'                                /*reset the wall─clock (elapsed) timer.*/
signal on halt                                   /*───► HALT when Ctrl─Break is pressed.*/
spit= 0                                          /*the index of the spitted pi dec. digs*/
pi=0;  v=5;   vv=v*v;   g=239;   gg=g*g;  s= 16  /*assign some values to some variables.*/
r= 4                                             /*calculate π with increasing accuracy */
      do n=1  by 2  until  old=pi;      old= pi  /*just calculate  pi  with odd integers*/
      pi= pi   +   s / (n*v)    -    r / (n*g)   /*    ···  using John Machin's formula.*/
      s= -s;    r= -r;    v= v * vv;   g= g * gg /*compute some variables for shortcuts.*/
      if n>3     then spit= spit + 1             /*maintain a lag for pi digits rounding*/
      if spit<4  then iterate                    /*Not enough digs yet?  Then don't show*/
      $= substr(pi, spit-3, 1)                   /*lag behind the true pi calculation.  */
                    call charout     , $         /*write the spitted digits to the term.*/
      if write then call charout oFID, $         /*  "    "     "      "     "  a  file?*/
      end   /*n*/

$= substr(pi, spit - 2);   L= length($) - 4      /*handle any residual decimal digits.  */
if L>0  then do                                  /*if any residual digits, then show 'em*/
                           call charout     , substr($, 1, L)         /*write to term.  */
             if write then call charout oFID, substr($, 1, L)         /*  "    " file?  */
             end
say                                              /*stick a fork in it,  we're all done. */
exit: say;  say n%2+1  'iterations took'  format(time("Elapsed"),,2)  'seconds.';   exit 0
halt: say;  say 'PI_SPIT halted via use of Ctrl─Break.';  signal exit /*show iterations.*/
output   [until the   Ctrl─Break   key (or equivalent) was pressed]:


(Shown at four-fifth size.)

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081
284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185
480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051
320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099
605187072113499999983729780499
PI_SPIT halted via use of Ctrl─Break.

447 iterations took 4.30 seconds.

version 2

This REXX version is a translation of   Icon   with some speed optimizations.

This algorithm is limited to the number of decimal digits as specified with the   numeric digits ddd     (line or statement six).

/*REXX program spits out decimal digits of pi  (one digit at a time)  until  Ctrl-Break.*/
signal on halt                                   /*───► HALT when Ctrl─Break is pressed.*/
parse arg digs oFID .                            /*obtain optional argument from the CL.*/
if digs=='' | digs==","  then digs= 300          /*Not specified?  Then use the default.*/
if oFID=='' | oFID==","  then oFID='PI_SPIT2.OUT' /* "     "         "   "   "      "   */
numeric digits digs                              /*with bigger digs, spitting is slower.*/
q=1;   r=0;   t=1;   k=1;   n=3;   L=3;   z=0    /*define some REXX variables.          */
dot=1                                            /*DOT≡a flag when a dot in pi is shown.*/
      do until z==digs;            qq= q+q       /*  qq     is a fast version of:  q*2  */
      tn= t*n                                    /*  t*n    is used twice  (below).     */
      if qq+qq+r-t < tn  then do;  z= z+1        /*  qq+qq  is faster than   qq*2       */
                                   call charout     , n
                                   call charout oFID, n
                                   if dot  then do;    dot=0;    call charout     , .
                                                                 call charout oFID, .
                                                end
                                   nr= (r - tn) * 10
                                   n = ((( (qq+q+r) * 10) / t) - n*10)  %1
                                   q = q*10
                              end
                         else do;  nr= (qq+r) * L
                                   tL= t*L
                                   n = (q * (k*7 + 2)  +  r*L) / tL  %1
                                   q = q*k
                                   t = tL
                                   L = L+2
                                   k = k+1
                              end                /* %1≡fast way doing TRUNC of a number.*/
      r=nr
      end   /*forever*/
exit                                             /*stick a fork in it,  we're all done. */
halt: say;     say  'PI_SPIT2 halted via use of Ctrl-Break.';           exit



RPL

It is not easy to print character by character with RPL. Something could be done with the DISP instruction, but it would require to manage the cursor position - and anyway the emulator does not emulate DISP !

Rabinowitz & Wagon algorithm

Translation of: BBC Basic

There is probably a way to translate the BBC BASIC approach into something that uses only the stack, but it has been preferred here to use 'global' variables with the names used by the BBC BASIC program - except for e, which represents the Euler constant in RPL.

Works with: Halcyon Calc version 4.2.7
IF 1 FS?C THEN "π = " 'output' STO END 
  SWAP →STR WHILE DUP2 SIZE > REPEAT "0" SWAP + END
  output SWAP + 'output' STO DROP 
≫
'PRINT' STO

≪ → m  
  ≪ 1 SF {} 1 m START #20d + NEXT
     #0d 'ee' STO #2d 'l' STO
     m 14 FOR c
        #0 'd' STO c 2 * 1 - R→B 'a' STO
        c 1 FOR p
           DUP p GET 100 * d p * + 'd' STO
           p d a / LAST ROT * - PUT
           'd' a STO/ 'a' 2 STO-
        -1 STEP         
        IF d #99d ==
        THEN  ee 100 * d + 'ee' STO #2h 'l' STO+
        ELSE
          IF c m ==
          THEN 
              d 100 / B→R 10 / 0 PRINT 
              d 100 / LAST ROT * - 'ee' STO
          ELSE
              ee d 100 / + B→R l B→R PRINT
              d 100 / LAST ROT * - 'ee' STO #2h 'l' STO
          END
        END
     -7 STEP
     DROP output
≫ ≫
'M→π' STO
200 M→π
Output:
1: "π = 3.14159265358979323846264338327950288419716939937510582"

Faster Rabinowitz & Wagon implementation

Translation of: Fortran

This much faster version favors the stack to local variables.

≪ SWAP →STR
  IF 1 FS?C THEN "." + ELSE WHILE DUP2 SIZE > REPEAT "0" SWAP + END output SWAP + END 
  'output' STO DROP 
≫
'WRITE' STO

≪ DUP 50 * 3 / IP → n m  
  ≪ 1 SF 0 {} m + 2 CON 0
     1 n START
        DROP 0 
        m 1 FOR p
           p * OVER p GET 100000 * +
           p DUP + 1 - MOD LAST / IP
           ROT p 4 ROLL PUT SWAP             
        -1 STEP         
        DUP 100000 MOD LAST / IP
        5 ROLL + 5 WRITE
        ROT ROT
     NEXT
     3 DROPN output
≫ ≫
'N→π' STO
100 N→π
Output:
"3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067982148086513282306647093844609550582231725359408128481117450284102701938521105559644622948954930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393607260249141273724587006606315588174881520920962829254091715364367892590360011330530548820466521384146951941511609433057270365759591953092186117381932611793105118548074462379962749567351885752724891227938183011" 

Ruby

Translation of: Icon
pi_digits = Enumerator.new do |y|
  q, r, t, k, n, l = 1, 0, 1, 1, 3, 3
  loop do
    if 4*q+r-t < n*t
      y << n 
      nr = 10*(r-n*t)
      n = ((10*(3*q+r)) / t) - 10*n
      q *= 10
      r = nr
    else
      nr = (2*q+r) * l
      nn = (q*(7*k+2)+r*l) / (t*l)
      q *= k
      t *= l
      l += 2
      k += 1
      n = nn
      r = nr
    end
  end
end

print pi_digits.next, "."
loop { print pi_digits.next }

Rust

Translation of: Kotlin
use num_bigint::BigInt;

fn main() {
    calc_pi();
}

fn calc_pi() {
    let mut q = BigInt::from(1);
    let mut r = BigInt::from(0);
    let mut t = BigInt::from(1);
    let mut k = BigInt::from(1);
    let mut n = BigInt::from(3);
    let mut l = BigInt::from(3);
    let mut first = true;
    loop {
        if &q * 4 + &r - &t < &n * &t {
            print!("{}", n);
            if first {
                print!(".");
                first = false;
            }
            let nr = (&r - &n * &t) * 10;
            n = (&q * 3 + &r) * 10 / &t - &n * 10;
            q *= 10;
            r = nr;
        } else {
            let nr = (&q * 2 + &r) * &l;
            let nn = (&q * &k * 7 + 2 + &r * &l) / (&t * &l);
            q *= &k;
            t *= &l;
            l += 2;
            k += 1;
            n = nn;
            r = nr;
        }
    }
}

Scala

object Pi {
  class PiIterator extends Iterable[BigInt] {
    var r: BigInt = 0
    var q, t, k: BigInt = 1
    var n, l: BigInt = 3

    def iterator: Iterator[BigInt] = new Iterator[BigInt] {
      def hasNext = true

      def next(): BigInt = {
        while ((4 * q + r - t) >= (n * t)) {
          val nr = (2 * q + r) * l
          val nn = (q * (7 * k) + 2 + (r * l)) / (t * l)
          q = q * k
          t = t * l
          l = l + 2
          k = k + 1
          n = nn
          r = nr
        }
        val ret = n
        val nr = 10 * (r - n * t)
        n = ((10 * (3 * q + r)) / t) - (10 * n)
        q = q * 10
        r = nr
        ret
      }
    }
  }

  def main(args: Array[String]): Unit = {
    val it = new PiIterator
    println("" + (it.head) + "." + (it.take(300).mkString))
  }

}

Output:

3.141592653589793238462643383279502884197169399375105820974944592307816406286208998
62803482534211706798214808651328230664709384460955058223172535940812848111745028410
27019385211055596446229489549303819644288109756659334461284756482337867831652712019
09145648566923460348610454326648213393607260249141273

Scheme

(import (rnrs))

(define (calc-pi yield)
  (let loop ((q 1) (r 0) (t 1) (k 1) (n 3) (l 3))
    (if (< (- (+ (* 4 q) r) t) (* n t))
        (begin
          (yield n)
          (loop (* q  10)
                (* 10 (- r (* n t)))
                t
                k
                (- (div (* 10 (+ (* 3 q) r)) t) (* 10 n))
                l))
        (begin
          (loop (* q k)
                (* (+ (* 2 q) r) l)
                (* t l)
                (+ k 1)
                (div (+ (* q (* 7 k)) 2 (* r l)) (* t l))
                (+ l 2))))))

(let ((i 0))
  (calc-pi
    (lambda (d)
      (display d)
      (set! i (+ i 1))
      (if (= 40 i)
          (begin
            (newline)
            (set! i 0))))))

Output:

3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
9310511854807446237996274956735188575272
4891227938183011949129833673362440656643
0860213949463952247371907021798609437027
7053921717629317675238467481846766940513
2000568127145263560827785771342757789609
...

Seed7

$ include "seed7_05.s7i";
  include "bigint.s7i";

const proc: main is func
  local
    var bigInteger: q is 1_;
    var bigInteger: r is 0_;
    var bigInteger: t is 1_;
    var bigInteger: k is 1_;
    var bigInteger: n is 3_;
    var bigInteger: l is 3_;
    var bigInteger: nn is 0_;
    var bigInteger: nr is 0_;
    var boolean: first is TRUE;
  begin
    while TRUE do
      if 4_ * q + r - t < n * t then
        write(n);
        if first then
          write(".");
          first := FALSE;
        end if;
        nr := 10_ * (r - n * t);
        n := 10_ * (3_ * q + r) div t - 10_ * n;
        q *:= 10_;
        r := nr;
        flush(OUT);
      else
        nr := (2_ * q + r) * l;
        nn := (q * (7_ * k + 2_) + r * l) div (t * l);
        q *:= k;
        t *:= l;
        l +:= 2_;
        incr(k);
        n := nn;
        r := nr;
      end if;
    end while;
  end func;

Original source: [7]

Sidef

Classical Algorithm

func pi(callback) {
    var (q, r, t, k, n, l) = (1, 0, 1, 1, 3, 3)
    loop {
        if ((4*q + r - t) < n*t) {
            callback(n)
            static _dot = callback('.')
            var nr = 10*(r - n*t)
            n = ((10*(3*q + r)) // t - 10*n)
            q *= 10
            r = nr
        }
        else {
            var nr = ((2*q + r) * l)
            var nn = ((q*(7*k + 2) + r*l) // (t*l))
            q *= k
            t *= l
            l += 2
            k += 1
            n = nn
            r = nr
        }
    }
}
 
STDOUT.autoflush(true)
pi(func(digit){ print digit })

Quicker, Unverified Algorithm

Translation of: Haskell

From the same .pdf mentioned throughout this task, from the last page. The original algorithm was written in Haskell, this is a translation which has also been optimized to avoid redundant multiplications. Same output, but the algorithm is based on one of Gosper’s series that yields more than one digit per term on average, so no test is made partway through the iteration. This is capable of producing approximately 100,000 digits at tio.run in the maximum 60 seconds allowed.

func p(c) { var(q,r,t,g,j,h,k,a,b,y) = (1,180,60,60,54,10,10,15,3)
  loop { c(y=(q*(a+=27) +5*r)//5*t); static _ = c('.')
    r=10*(g+=j+=54)*(q*(b+=5) +r -y*t); q*=h+=k+=40; t*=g } }
STDOUT.autoflush(1):p(func(d){print d})

Simula

CLASS BIGNUM;
BEGIN

    BOOLEAN PROCEDURE TISZERO(T); TEXT T;
        TISZERO := T = "0";

    TEXT PROCEDURE TSHL(T); TEXT T;
        TSHL :- IF TISZERO(T) THEN T ELSE T & "0";

    TEXT PROCEDURE TSHR(T); TEXT T;
        TSHR :- IF T.LENGTH = 1 THEN "0" ELSE T.SUB(1, T.LENGTH - 1);

    INTEGER PROCEDURE TSIGN(T); TEXT T;
        TSIGN := IF TISZERO(T) THEN 0
            ELSE IF T.SUB(1, 1) = "-" THEN -1
            ELSE 1;

    TEXT PROCEDURE TABS(T); TEXT T;
        TABS :- IF TSIGN(T) < 0 THEN T.SUB(2, T.LENGTH - 1) ELSE T;

    TEXT PROCEDURE TNEGATE(T); TEXT T;
        TNEGATE :- IF TSIGN(T) <= 0 THEN TABS(T) ELSE ("-" & T);

    TEXT PROCEDURE TREVERSE(T); TEXT T;
    BEGIN
        INTEGER I, J;
        I := 1; J := T.LENGTH;
        WHILE I < J DO
        BEGIN CHARACTER C1, C2;
            T.SETPOS(I); C1 := T.GETCHAR;
            T.SETPOS(J); C2 := T.GETCHAR;
            T.SETPOS(I); T.PUTCHAR(C2);
            T.SETPOS(J); T.PUTCHAR(C1);
            I := I + 1;
            J := J - 1;
        END;
        TREVERSE :- T;
    END TREVERSE;

    INTEGER PROCEDURE TCMPUNSIGNED(A, B); TEXT A, B;
    BEGIN
        INTEGER ALEN, BLEN, RESULT;
        ALEN := A.LENGTH; BLEN := B.LENGTH;
        IF ALEN < BLEN THEN
            RESULT := -1
        ELSE IF ALEN > BLEN THEN
            RESULT := 1
        ELSE BEGIN
            INTEGER CMP, I; BOOLEAN DONE;
            A.SETPOS(1);
            B.SETPOS(1);
            I := 1;
            WHILE I <= ALEN AND NOT DONE DO
            BEGIN
                I := I + 1;
                CMP := RANK(A.GETCHAR) - RANK(B.GETCHAR);
                IF NOT (CMP = 0) THEN
                    DONE := TRUE;
            END;
            RESULT := CMP;
        END;
        TCMPUNSIGNED := RESULT;
    END TCMPUNSIGNED;

    INTEGER PROCEDURE TCMP(A, B); TEXT A, B;
    BEGIN
        BOOLEAN ANEG, BNEG;
        ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0;
        IF ANEG AND BNEG THEN
           TCMP := -TCMPUNSIGNED(TABS(A), TABS(B))
        ELSE IF NOT ANEG AND BNEG THEN
           TCMP := 1
        ELSE IF ANEG AND NOT BNEG THEN
           TCMP := -1
        ELSE
           TCMP := TCMPUNSIGNED(A, B);
    END TCMP;

    TEXT PROCEDURE TADDUNSIGNED(A, B); TEXT A, B;
    BEGIN
        INTEGER CARRY, I, J;
        TEXT BF;
        I := A.LENGTH;
        J := B.LENGTH;
        BF :- BLANKS(MAX(I, J) + 1);
        WHILE I >= 1 OR J >= 1 DO BEGIN
            INTEGER X, Y, Z;
            IF I >= 1 THEN BEGIN
                A.SETPOS(I); I := I - 1; X := RANK(A.GETCHAR) - RANK('0');
            END;
            IF J >= 1 THEN BEGIN
                B.SETPOS(J); J := J - 1; Y := RANK(B.GETCHAR) - RANK('0');
            END;
            Z := X + Y + CARRY;
            IF Z < 10 THEN
            BEGIN BF.PUTCHAR(CHAR(Z + RANK('0'))); CARRY := 0;
            END ELSE
            BEGIN BF.PUTCHAR(CHAR(MOD(Z, 10) + RANK('0'))); CARRY := 1;
            END;
        END;
        IF CARRY > 0 THEN
            BF.PUTCHAR(CHAR(CARRY + RANK('0')));
        BF :- TREVERSE(BF.STRIP);
        TADDUNSIGNED :- BF;
    END TADDUNSIGNED;

    TEXT PROCEDURE TADD(A, B); TEXT A, B;
    BEGIN
        BOOLEAN ANEG, BNEG;
        ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0;
        IF NOT ANEG AND BNEG THEN          ! (+7)+(-5) =  (7-5) =   2 ;
            TADD :- TSUBUNSIGNED(A, TABS(B))
        ELSE IF ANEG AND NOT BNEG THEN     ! (-7)+(+5) =  (5-7) =  -2 ;
            TADD :- TSUBUNSIGNED(B, TABS(A))
        ELSE IF ANEG AND BNEG THEN         ! (-7)+(-5) = -(7+5) = -12 ;
            TADD :- TNEGATE(TADDUNSIGNED(TABS(A), TABS(B)))
        ELSE                               ! (+7)+(+5) =  (7+5) =  12 ;
            TADD :- TADDUNSIGNED(A, B);
    END TADD;

    TEXT PROCEDURE TSUBUNSIGNED(A, B); TEXT A, B;
    BEGIN
        INTEGER I, J, CARRY;
        I := A.LENGTH; J := B.LENGTH;
        IF I < J OR I = J AND A < B THEN
            TSUBUNSIGNED :- TNEGATE(TSUBUNSIGNED(B, A)) ELSE
        BEGIN
            TEXT BF;
            BF :- BLANKS(MAX(I, J) + 1);
            WHILE I >= 1 OR J >= 1 DO
            BEGIN
                INTEGER X, Y, Z;
                IF I >= 1 THEN
                BEGIN A.SETPOS(I); I := I - 1;
                    X := RANK(A.GETCHAR) - RANK('0');
                END;
                IF J >= 1 THEN
                BEGIN B.SETPOS(J); J := J - 1;
                    Y := RANK(B.GETCHAR) - RANK('0');
                END;
                Z := X - Y - CARRY;
                IF Z >= 0 THEN
                BEGIN
                    BF.PUTCHAR(CHAR(RANK('0') + Z));
                    CARRY := 0;
                END ELSE
                BEGIN
                    BF.PUTCHAR(CHAR(RANK('0') + MOD(10 + Z, 10)));
                    CARRY := 1; ! (Z / 10);
                END;
            END;
            BF :- BF.STRIP;
            BF :- TREVERSE(BF);
            BF.SETPOS(1);
            WHILE BF.LENGTH > 1 AND THEN BF.GETCHAR = '0' DO
            BEGIN
                BF :- BF.SUB(2, BF.LENGTH - 1);
                BF.SETPOS(1);
            END;
            TSUBUNSIGNED :- BF;
        END;
    END TSUBUNSIGNED;

    TEXT PROCEDURE TSUB(A, B); TEXT A, B;
    BEGIN
        BOOLEAN ANEG, BNEG;
        ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0;
        IF ANEG AND BNEG THEN              ! (-7)-(-5) = -(7-5) =  -2 ;
            TSUB :- TNEGATE(TSUBUNSIGNED(TABS(A), TABS(B)))
        ELSE IF NOT ANEG AND BNEG THEN     ! (+7)-(-5) =  (7+5) =  12 ;
            TSUB :- TADDUNSIGNED(A, TABS(B))
        ELSE IF ANEG AND NOT BNEG THEN     ! (-7)-(+5) = -(7+5) = -12 ;
            TSUB :- TNEGATE(TADDUNSIGNED(TABS(A), B))
        ELSE                               ! (+7)-(+5) =  (7-5) =   2 ;
            TSUB :- TSUBUNSIGNED(A, B);
    END TSUB;

    TEXT PROCEDURE TMULUNSIGNED(A, B); TEXT A, B;
    BEGIN
        INTEGER ALEN, BLEN;
        ALEN := A.LENGTH; BLEN := B.LENGTH;
        IF ALEN < BLEN THEN
            TMULUNSIGNED :- TMULUNSIGNED(B, A)
        ELSE BEGIN
            TEXT PRODUCT; INTEGER J;
            PRODUCT :- "0";
            FOR J := 1 STEP 1 UNTIL BLEN DO BEGIN
                TEXT PART; INTEGER I, Y, CARRY;
                B.SETPOS(J); Y := RANK(B.GETCHAR) - RANK('0');
                PART :- BLANKS(ALEN + BLEN + 1); PART.SETPOS(1);
                FOR I := ALEN STEP -1 UNTIL 1 DO BEGIN
                    INTEGER X, Z;
                    A.SETPOS(I); X := RANK(A.GETCHAR) - RANK('0');
                    Z := X * Y + CARRY;
                    IF Z < 10 THEN BEGIN
                        PART.PUTCHAR(CHAR(RANK('0') + Z));
                        CARRY := 0;
                    END ELSE BEGIN
                        PART.PUTCHAR(CHAR(RANK('0') + MOD(Z, 10)));
                        CARRY := Z // 10;
                    END;
                END;
                IF CARRY > 0 THEN
                    PART.PUTCHAR(CHAR(RANK('0') + CARRY));
                PART :- PART.SUB(1, PART.POS - 1);
                PART :- TREVERSE(PART);
                PART.SETPOS(1);
                WHILE PART.LENGTH > 1 AND THEN PART.GETCHAR = '0' DO
                BEGIN
                    PART :- PART.SUB(2, PART.LENGTH - 1);
                    PART.SETPOS(1);
                END;
                PRODUCT :- TADDUNSIGNED(TSHL(PRODUCT), PART);
            END;
            TMULUNSIGNED :- PRODUCT;
        END;
    END TMULUNSIGNED;

    TEXT PROCEDURE TMUL(A, B); TEXT A, B;
    BEGIN
        BOOLEAN ANEG, BNEG;
        ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0;
        IF ANEG AND BNEG THEN              ! (-7)*(-5) =  (7*5) =>  35 ;
           TMUL :- TMULUNSIGNED(TABS(A), TABS(B))
        ELSE IF NOT ANEG AND BNEG THEN     ! (+7)*(-5) = -(7*5) => -35 ;
           TMUL :- TNEGATE(TMULUNSIGNED(A, TABS(B)))
        ELSE IF ANEG AND NOT BNEG THEN     ! (-7)*(+5) = -(7*5) => -35 ;
           TMUL :- TNEGATE(TMULUNSIGNED(TABS(A), B))
        ELSE                               ! (+7)*(+5) =  (7*5) =>  35 ;
           TMUL :- TMULUNSIGNED(A, B);
    END TMUL;

    CLASS DIVMOD(DIV,MOD); TEXT DIV,MOD;;

    REF(DIVMOD) PROCEDURE TDIVMODUNSIGNED(A, B); TEXT A, B;
    BEGIN
        INTEGER CC;
        REF(DIVMOD) RESULT;
        IF TISZERO(B) THEN
            ERROR("DIVISION BY ZERO");
        CC := TCMPUNSIGNED(A, B);
        IF CC < 0 THEN
            RESULT :- NEW DIVMOD("0", A)
        ELSE IF CC = 0 THEN
            RESULT :- NEW DIVMOD("1", "0")
        ELSE BEGIN
            INTEGER ALEN, BLEN, AIDX;
            TEXT Q, R;
            ALEN := A.LENGTH; BLEN := B.LENGTH;
            Q :- BLANKS(ALEN); Q.SETPOS(1);
            R :- BLANKS(ALEN); R.SETPOS(1);
            R := A.SUB(1, BLEN - 1); R.SETPOS(BLEN);
            FOR AIDX := BLEN STEP 1 UNTIL ALEN DO
            BEGIN
                INTEGER COUNT; BOOLEAN DONE;
                IF TISZERO(R.STRIP) THEN
                    R.SETPOS(1);
                A.SETPOS(AIDX); R.PUTCHAR(A.GETCHAR);
                WHILE NOT DONE DO
                BEGIN
                    TEXT DIFF;
                    DIFF :- TSUBUNSIGNED(R.STRIP, B);
                    IF TSIGN(DIFF) < 0 THEN
                        DONE := TRUE
                    ELSE BEGIN
                        R := DIFF; R.SETPOS(DIFF.LENGTH + 1);
                        COUNT := COUNT + 1;
                    END;
                END;
                IF (NOT (COUNT = 0)) OR (NOT (Q.POS = 1)) THEN
                    Q.PUTCHAR(CHAR(COUNT + RANK('0')));
            END;
            RESULT :- NEW DIVMOD(Q.STRIP, R.STRIP);
        END;
        TDIVMODUNSIGNED :- RESULT;
    END TDIVMODUNSIGNED;

    REF(DIVMOD) PROCEDURE TDIVMOD(A, B); TEXT A, B;
    BEGIN
        BOOLEAN ANEG, BNEG; REF(DIVMOD) RESULT;
        ANEG := TSIGN(A) < 0; BNEG := TSIGN(B) < 0;
        IF ANEG AND BNEG THEN
            BEGIN
                RESULT :- TDIVMOD(TABS(A), TABS(B));
                RESULT.MOD :- TNEGATE(RESULT.MOD);
            END
        ELSE IF NOT ANEG AND BNEG THEN
            BEGIN
                RESULT :- TDIVMOD(A, TABS(B));
                RESULT.DIV :- TNEGATE(RESULT.DIV);
            END
        ELSE IF ANEG AND NOT BNEG THEN
            BEGIN
                RESULT :- TDIVMOD(TABS(A), B);
                RESULT.DIV :- TNEGATE(RESULT.DIV);
                RESULT.MOD :- TNEGATE(RESULT.MOD);
            END
        ELSE
            RESULT :- TDIVMODUNSIGNED(A, B);
        TDIVMOD :- RESULT;
    END TDIVMOD;

    TEXT PROCEDURE TDIV(A, B); TEXT A, B;
        TDIV :- TDIVMOD(A, B).DIV;

    TEXT PROCEDURE TMOD(A, B); TEXT A, B;
        TMOD :- TDIVMOD(A, B).MOD;

END BIGNUM;
EXTERNAL CLASS BIGNUM;
BIGNUM
BEGIN

    PROCEDURE CALCPI;
    BEGIN
        INTEGER I;
        TEXT Q, R, T, K, N, L;
        COMMENT
        !  q, r, t, k, n, l = 1, 0, 1, 1, 3, 3
        ;
        Q :- COPY("1");
        R :- COPY("0");
        T :- COPY("1");
        K :- COPY("1");
        N :- COPY("3");
        L :- COPY("3");
        WHILE TRUE DO
        BEGIN
           COMMENT
           !  if 4*q+r-t < n*t
           ;
           IF TCMP(TSUB(TADD(TMUL("4",Q),R),T),TMUL(N,T)) < 0 THEN
           BEGIN
               TEXT NR;
               OUTTEXT(N);
               I := I + 1;
               IF I = 40 THEN
               BEGIN
                   OUTIMAGE;
                   I := 0;
               END;
               COMMENT
               !  nr = 10*(r-n*t)
               !  n  = ((10*(3*q+r))//t)-10*n
               !  q  *= 10
               !  r  = nr
               ;
               NR :- TMUL("10",TSUB(R,TMUL(N,T)));
               N  :- TSUB(TDIV(TMUL("10",TADD(TMUL("3",Q),R)),T),TMUL("10",N));
               Q  :- TMUL("10",Q);
               R  :- NR;
           END
           ELSE
           BEGIN
               TEXT NR, NN;
               COMMENT
               !  nr = (2*q+r)*l
               !  nn = (q*(7*k)+2+(r*l))//(t*l)
               !  q  *= k
               !  t  *= l
               !  l  += 2
               !  k += 1
               !  n  = nn
               !  r  = nr
               ;
               NR :- TMUL(TADD(TMUL("2",Q),R),L);
               NN :- TDIV(TADD(TADD(TMUL(Q,TMUL("7",K)),"2"),TMUL(R,L)),TMUL(T,L));
               Q  :- TMUL(Q,K);
               T  :- TMUL(T,L);
               L  :- TADD(L,"2");
               K  :- TADD(K,"1");
               N  :- NN;
               R  :- NR;
           END;
        END;
    END CALCPI;

    CALCPI;
END.

Output:

3141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
9310511854807446237996274956735188575272
4891227938183011949129833673362440656643
0860213949463952247371907021798609437027
7053921717629317675238467481846766940513
2000568127145263560827785771342757789609
...

Standard ML

Works with: Poly/ML
Works with: SML/NJ
Works with: MLton
(* https://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf *)

fun gibbons _ _ _ _ _ _ 0 = ()
  | gibbons q r t k n l count =
  let
    val (q',r',t',k',n',l',count') =
      if 4*q+r-t < n*t
      then (10*q,10*(r-n*t),t,k,(10*(3*q+r)) div t-10*n,l,count-1) before print (IntInf.toString n)
      else (q*k,(2*q+r)*l,t*l,k+1,(q*(7*k+2)+r*l) div (t*l),l+2,count)
  in
    gibbons q' r' t' k' n' l' count'
  end

fun doGibbons n = gibbons 1 0 1 1 3 3 n

fun timeGibbons n =
  let
    val timer1 = Timer.startCPUTimer ()
    val () = doGibbons n
    val {usr=usr, sys=sys} = Timer.checkCPUTimer timer1
  in
    print "\n----------------------\n";
    print ("usr: " ^ Time.toString usr ^ "\n");
    print ("sys: " ^ Time.toString sys ^ "\n")
  end

fun main () = timeGibbons 5000

Tailspin

Used the compact algorithm from Gibbons paper. Tailspin will at some point have arbitrary precision integers, currently we have to link into java and use BigInteger. Using java code can be slightly awkward as the argument in Tailspin comes before the method, so divide and subtract read backwards.

use 'java:java.math' stand-alone

def zero: 0 -> math/BigInteger::valueOf;
def one: 1 -> math/BigInteger::valueOf;
def two: 2 -> math/BigInteger::valueOf;
def three: 3 -> math/BigInteger::valueOf;
def four: 4 -> math/BigInteger::valueOf;
def seven: 7 -> math/BigInteger::valueOf;
def ten: 10 -> math/BigInteger::valueOf;

templates g&{q:, r:, t:, k:, n:, l:}
  def u: $four -> q::multiply -> r::add;
  def nt: $n -> t::multiply;
  $ -> #
  when <?($t -> u::subtract <..~$nt>)> do
    $n -> !OUT::write
    $ -> \(<=1> $!\) -> '.' -> !OUT::write
    def v: $three -> q::multiply -> r::add -> ten::multiply;
    def quot: $t -> v::divide;
    0 -> g&{q: $ten -> q::multiply,
      r: $nt -> r::subtract -> ten::multiply,
      t: $t,
      k: $k,
      n: $ten -> n::multiply -> quot::subtract,
      l: $l } !
  otherwise
    def tl: $t -> l::multiply;
    def rl: $r -> l::multiply;
    def term: $q -> seven::multiply -> k::multiply -> two::add -> rl::add;
    $ -> g&{q: $q -> k::multiply,
      r: $two -> q::multiply -> r::add -> l::multiply,
      t: $tl,
      k: $k -> one::add,
      n: $tl -> term::divide,
      l: $l -> two::add} !
end g

1 -> g&{q:$one, r:$zero, t:$one, k:$one, n:$three, l:$three} -> !VOID
Output:
3.141592653589793238462643383279502884197169399375105820974...keeps going until stopped.

Tcl

Based on the reference in the D code.

Works with: Tcl version 8.6
package require Tcl 8.6

# http://www.cut-the-knot.org/Curriculum/Algorithms/SpigotForPi.shtml
# http://www.mathpropress.com/stan/bibliography/spigot.pdf
proc piDigitsBySpigot n {
    yield [info coroutine]
    set A [lrepeat [expr {int(floor(10*$n/3.)+1)}] 2]
    set Alen [llength $A]
    set predigits {}
    while 1 {
	set carry 0
	for {set i $Alen} {[incr i -1] > 0} {} {
	    lset A $i [expr {
		[set val [expr {[lindex $A $i] * 10 + $carry}]]
		% [set modulo [expr {2*$i + 1}]]
	    }]
	    set carry [expr {$val / $modulo * $i}]
	}
	lset A 0 [expr {[set val [expr {[lindex $A 0]*10 + $carry}]] % 10}]
	set predigit [expr {$val / 10}]
	if {$predigit < 9} {
	    foreach p $predigits {yield $p}
	    set predigits [list $predigit]
	} elseif {$predigit == 9} {
	    lappend predigits $predigit
	} else {
	    foreach p $predigits {yield [incr p]}
	    set predigits [list 0]
	}
    }
}

The pi digit generation requires picking a limit to the number of digits; the bigger the limit, the more digits can be safely computed. A value of 10k yields values relatively rapidly.

coroutine piDigit piDigitsBySpigot 10000
fconfigure stdout -buffering none
while 1 {
    puts -nonewline [piDigit]
}

TypeScript

type AnyWriteableObject={write:((textToOutput:string)=>any)};

function calcPi(pipe:AnyWriteableObject) {
    let q = 1n, r=0n, t=1n, k=1n, n=3n, l=3n;
    while (true) {
        if (q * 4n + r - t < n* t) {
            pipe.write(n.toString());
            let nr = (r - n * t) * 10n;
            n  = (q * 3n + r) * 10n / t - n * 10n ;
            q  = q * 10n;
            r  = nr;
        } else {
            let nr = (q * 2n + r) * l;
            let nn = (q * k * 7n + 2n + r * l) / (t * l);
            q = q * k;
            t = t * l;
            l = l + 2n;
            k = k + 1n;
            n  = nn;
            r  = nr;
        }
    }
}

calcPi(process.stdout);

Notes:

1. Typescript has bigint support https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-2.html#bigint Literals are write with a n sufix: 10n

2. Pi function receives any object that has a write function. Using node.js we can pass to it process.stdout

Async version

type AnyWriteableObject = {write:((textToOutput:string)=>Promise<any>)};

async function calcPi<T extends AnyWriteableObject>(pipe:T) {
    let q = 1n, r=0n, t=1n, k=1n, n=3n, l=3n;
    while (true) {
        if (q * 4n + r - t < n* t) {
            await pipe.write(n.toString());
            let nr = (r - n * t) * 10n;
            n  = (q * 3n + r) * 10n / t - n * 10n ;
            q  = q * 10n;
            r  = nr;
        } else {
            let nr = (q * 2n + r) * l;
            let nn = (q * k * 7n + 2n + r * l) / (t * l);
            q = q * k;
            t = t * l;
            l = l + 2n;
            k = k + 1n;
            n  = nn;
            r  = nr;
        }
    }
}

setInterval(function(){
    console.log(); // put a new line every second
},1000);

var x = calcPi({
    write: async function(phrase:string){
        return new Promise(function(resolve){
            setTimeout(function(){
                process.stdout.write(phrase);
                resolve();
            },1);
        });
    }
});

console.log('.'); //start!

Here the calculation does not continue if the consumer does not consume the character.

Visual Basic

Works with: Visual Basic version 5
Works with: Visual Basic version 6
Works with: VBA version Access 97
Works with: VBA version 6.5
Works with: VBA version 7.1
Option Explicit

Sub Main()
Const VECSIZE As Long = 3350
Const BUFSIZE As Long = 201
Dim buffer(1 To BUFSIZE) As Long
Dim vect(1 To VECSIZE) As Long
Dim more As