Almost prime

From Rosetta Code
Task
Almost prime
You are encouraged to solve this task according to the task description, using any language you may know.

A   k-Almost-prime   is a natural number     that is the product of     (possibly identical) primes.


Example

1-almost-primes,   where   ,   are the prime numbers themselves.
2-almost-primes,   where   ,   are the   semiprimes.


Task

Write a function/method/subroutine/... that generates k-almost primes and use it to create a table here of the first ten members of k-Almost primes for   .


Related tasks



11l

Translation of: Kotlin
F k_prime(k, =n)
   V f = 0
   V p = 2
   L f < k & p * p <= n
      L n % p == 0
         n /= p
         f++
      p++
   R f + (I n > 1 {1} E 0) == k

F primes(k, n)
   V i = 2
   [Int] list
   L list.len < n
      I k_prime(k, i)
         list [+]= i
      i++
   R list

L(k) 1..5
   print(‘k = ’k‘: ’primes(k, 10))
Output:
k = 1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
k = 2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
k = 3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
k = 4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
k = 5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Action!

BYTE FUNC IsAlmostPrime(INT num BYTE k)
  INT f,p,v

  f=0 p=2 v=num
  WHILE f<k AND p*p<=num
  DO
    WHILE v MOD p=0
    DO
      v==/p f==+1
    OD
    p==+1
  OD
  IF v>1 THEN
    f==+1
  FI
  IF f=k THEN
    RETURN (1)
  FI
RETURN (0)

PROC Main()
  BYTE count,k
  INT i

  FOR k=1 TO 5
  DO
    PrintF("k=%B:",k)
    count=0 i=2
    WHILE count<10
    DO
      IF IsAlmostPrime(i,k) THEN
        PrintF(" %I",i)
        count==+1
      FI
      i==+1
    OD
    PutE()
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

k=1: 2 3 5 7 11 13 17 19 23 29
k=2: 4 6 9 10 14 15 21 22 25 26
k=3: 8 12 18 20 27 28 30 42 44 45
k=4: 16 24 36 40 54 56 60 81 84 88
k=5: 32 48 72 80 108 112 120 162 168 176

Ada

This imports the package Prime_Numbers from Prime decomposition#Ada.

with Prime_Numbers, Ada.Text_IO; 
 
procedure Test_Kth_Prime is
   
   package Integer_Numbers is new 
     Prime_Numbers (Natural, 0, 1, 2); 
   use Integer_Numbers;
   
   Out_Length: constant Positive := 10; -- 10 k-th almost primes
   N: Positive; -- the "current number" to be checked
   
begin
   for K in 1 .. 5 loop
      Ada.Text_IO.Put("K =" & Integer'Image(K) &":  ");
      N := 2;
      for I in 1 .. Out_Length loop
	 while Decompose(N)'Length /= K loop
	    N := N + 1;
	 end loop; -- now N is Kth almost prime;
	 Ada.Text_IO.Put(Integer'Image(Integer(N)));
	 N := N + 1;
      end loop;
      Ada.Text_IO.New_Line;
   end loop;
end Test_Kth_Prime;
Output:
K = 1:   2 3 5 7 11 13 17 19 23 29
K = 2:   4 6 9 10 14 15 21 22 25 26
K = 3:   8 12 18 20 27 28 30 42 44 45
K = 4:   16 24 36 40 54 56 60 81 84 88
K = 5:   32 48 72 80 108 112 120 162 168 176

ALGOL 68

Worth noticing is the n(...)(...) picture in the printf and the WHILE ... DO SKIP OD idiom which is quite common in ALgol 68.

BEGIN
   INT examples=10, classes=5;
   MODE SEMIPRIME = STRUCT ([examples]INT data, INT count);
   [classes]SEMIPRIME semi primes;
   PROC num facs = (INT n) INT :
COMMENT
   Return number of not necessarily distinct prime factors of n.
   Not very efficient for large n ...
COMMENT
   BEGIN
      INT tf := 2, residue := n, count := 1;
      WHILE tf < residue DO
	 INT remainder = residue MOD tf;
	 ( remainder = 0 | count +:= 1; residue %:= tf | tf +:= 1 )
      OD;
      count
   END;
   PROC update table = (REF []SEMIPRIME table, INT i) BOOL :
COMMENT
   Add i to the appropriate row of the table, if any, unless that row
   is already full. Return a BOOL which is TRUE when all of the table
   is full.
COMMENT
   BEGIN
      INT k := num facs(i);
      IF k <= classes
      THEN
	 INT c = 1 + count OF table[k];
	 ( c <= examples | (data OF table[k])[c] := i; count OF table[k] := c )
      FI;
      INT sum := 0;
      FOR i TO classes DO sum +:= count OF table[i] OD;
      sum < classes * examples
   END;
   FOR i TO classes DO count OF semi primes[i] := 0 OD;
   FOR i FROM 2 WHILE update table (semi primes, i) DO SKIP OD;
   FOR i TO classes
   DO
      printf (($"k = ", d, ":", n(examples)(xg(0))l$, i, data OF semi primes[i]))
   OD
END
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

ALGOL-M

begin

integer function mod(a, b);
integer a, b;
mod := a-(a/b)*b;

integer function kprime(n, k);
integer n, k;
begin
    integer p, f;
    f := 0;
    p := 2;
    while f < k and p*p <= n do
    begin
        while mod(n,p) = 0 do
        begin
            n := n / p;
            f := f + 1;
        end;
        p := p + 1;
    end;
    if n > 1 then f := f + 1;
    if f = k then kprime := 1 else kprime := 0;
end;

integer i, c, k;
for k := 1 step 1 until 5 do
begin
    write("k =");
    writeon(k);
    writeon(": ");
    c := 0;
    i := 2;
    while c < 10 do
    begin
        if kprime(i, k) <> 0 then
        begin
            writeon(i);
            c := c + 1;
        end;
        i := i + 1;
    end;
end;
end
Output:
k =     1:      2     3     5     7    11    13    17    19    23    29
k =     2:      4     6     9    10    14    15    21    22    25    26
k =     3:      8    12    18    20    27    28    30    42    44    45
k =     4:     16    24    36    40    54    56    60    81    84    88
k =     5:     32    48    72    80   108   112   120   162   168   176

ALGOL W

Translation of: C

with tweaks to the factorisation routine.

begin
    logical procedure kPrime( integer value nv, k ) ;
    begin
        integer p, f, n;
        n := nv;
        f := 0;
        while f <= k and not odd( n ) do begin
            n := n div 2;
            f := f + 1
        end while_not_odd_n ;
        p := 3;
        while f <= k and p * p <= n do begin
            while n rem p = 0 do begin
                n := n div p;
                f := f + 1
            end while_n_rem_p_eq_0 ;
            p := p + 2
        end while_f_le_k_and_p_is_a_factor ;
        if n > 1 then f := f + 1;
        f = k
    end kPrime ;
    begin
        for k := 1 until 5 do begin
            integer c, i;
            write( i_w := 1, s_w := 0, "k = ", k , ": " );
            c := 0;
            i := 2;
            while c < 10 do begin
                if kPrime( i, k ) then begin
                    writeon( i_w := 3, s_w := 0, " ", i );
                    c := c + 1
                end if_kPrime_i_k ;
                i := i + 1
            end while_c_lt_10
        end for_k
    end
end.
Output:
k = 1:    2   3   5   7  11  13  17  19  23  29
k = 2:    4   6   9  10  14  15  21  22  25  26
k = 3:    8  12  18  20  27  28  30  42  44  45
k = 4:   16  24  36  40  54  56  60  81  84  88
k = 5:   32  48  72  80 108 112 120 162 168 176

APL

Library: pco

Works in Dyalog APL

f{r{r,↑∪{[]},f∘.×}(-1)rfpco¨}
Output:
      5 f 10
 2  3  5  7  11  13  17  19  23  29
 4  6  9 10  14  15  21  22  25  26
 8 12 18 20  27  28  30  42  44  45
16 24 36 40  54  56  60  81  84  88
32 48 72 80 108 112 120 162 168 176

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program kprime.s   */
 
/************************************/
/* Constantes                       */
/************************************/
.equ STDOUT, 1     @ Linux output console
.equ EXIT,   1     @ Linux syscall
.equ WRITE,  4     @ Linux syscall

.equ MAXI,  10
.equ MAXIK,  5
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessDeb:           .ascii "k="
sMessValeurDeb:     .fill 11, 1, ' '            @ size => 11

sMessResult:        .ascii " "
sMessValeur:        .fill 11, 1, ' '            @ size => 11

szCarriageReturn:   .asciz "\n"


/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                             @ entry of program 
    mov r3,#1                                     @ k
1:                                                @ start loop k
    mov r0,r3
    ldr r1,iAdrsMessValeurDeb
    bl conversion10                               @ call conversion decimal
    ldr r0,iAdrsMessValeurDeb
    mov r1,#':'
    strb r1,[r0,#2]                               @ write : after k value
    mov r1,#0
    strb r1,[r0,#3]                               @ final zéro
    ldr r0,iAdrsMessDeb
    bl affichageMess                              @ display message
    mov r4,#2                                     @ n
    mov r5,#0                                     @ result counter
2:                                                @ start loop n
    mov r0,r4
    mov r1,r3
    bl kprime                                     @ is kprine ?
    cmp r0,#0
    beq 3f                                        @ no 
    mov r0,r4
    ldr r1,iAdrsMessValeur
    bl conversion10                               @ call conversion decimal
    ldr r0,iAdrsMessValeur
    mov r1,#0
    strb r1,[r0,#4]                               @ final zéro
    ldr r0,iAdrsMessResult
    bl affichageMess                              @ display message
    add r5,#1                                     @ increment counter
3:
    add r4,#1                                     @ increment n
    cmp r5,#MAXI                                  @ maxi ?
    blt 2b                                        @ no -> loop
    ldr r0,iAdrszCarriageReturn
    bl affichageMess                              @ display carriage return
    add r3,#1                                     @ increment k
    cmp r3,#MAXIK                                 @ maxi ?
    ble 1b                                        @ no -> loop

100:                                              @ standard end of the program 
    mov r0, #0                                    @ return code
    mov r7, #EXIT                                 @ request to exit program
    svc #0                                        @ perform the system call
 
iAdrsMessValeur:          .int sMessValeur
iAdrszCarriageReturn:     .int szCarriageReturn
iAdrsMessResult:          .int sMessResult
iAdrsMessValeurDeb:       .int sMessValeurDeb
iAdrsMessDeb:             .int sMessDeb
/******************************************************************/
/*     compute kprime (n,k)                                       */ 
/******************************************************************/
/* r0 contains n */
/* r1 contains k */
kprime:
    push {r1-r7,lr}                                   @ save  registers
    mov r5,r0                                         @ save n
    mov r7,r1                                         @ save k
    mov r4,#0                                         @ counter product
    mov r1,#2                                         @ divisor 
1:                                                    @ start loop
    cmp r4,r7                                         @ counter >= k
    bge 4f                                            @ yes -> end
    mul r6,r1,r1                                      @ compute product
    cmp r6,r5                                         @ > n
    bgt 4f                                            @ yes -> end
2:                                                    @ start loop division
    mov r0,r5                                         @ dividende
    bl division                                       @ by r1
    cmp r3,#0                                         @ remainder = 0 ?
    bne 3f                                            @ no 
    mov r5,r2                                         @ yes -> n = n / r1
    add r4,#1                                         @ increment counter
    b 2b                                              @ and loop
3:
    add r1,#1                                         @ increment divisor
    b 1b                                              @ and loop 
4:                                                    @ end compute
    cmp r5,#1                                         @ n > 1
    addgt r4,#1                                       @ yes increment counter
    cmp r4,r7                                         @ counter = k ?
    movne r0,#0                                       @ no -> no kprime
    moveq r0,#1                                       @ yes -> kprime
100:
    pop {r1-r7,lr}                                    @ restaur registers 
    bx lr                                             @return
/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {r0,r1,r2,r7,lr}                          @ save  registres
    mov r2,#0                                      @ counter length 
1:                                                 @ loop length calculation 
    ldrb r1,[r0,r2]                                @ read octet start position + index 
    cmp r1,#0                                      @ if 0 its over 
    addne r2,r2,#1                                 @ else add 1 in the length 
    bne 1b                                         @ and loop 
                                                   @ so here r2 contains the length of the message 
    mov r1,r0                                      @ address message in r1 
    mov r0,#STDOUT                                 @ code to write to the standard output Linux 
    mov r7, #WRITE                                 @ code call system "write" 
    svc #0                                         @ call systeme 
    pop {r0,r1,r2,r7,lr}                           @ restaur des  2 registres */ 
    bx lr                                          @ return  
/******************************************************************/
/*     Converting a register to a decimal unsigned                */ 
/******************************************************************/
/* r0 contains value and r1 address area   */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes          */
.equ LGZONECAL,   10
conversion10:
    push {r1-r4,lr}                                 @ save registers 
    mov r3,r1
    mov r2,#LGZONECAL
1:                                                  @ start loop
    bl divisionpar10U                               @ unsigned  r0 <- dividende. quotient ->r0 reste -> r1
    add r1,#48                                      @ digit
    strb r1,[r3,r2]                                 @ store digit on area
    cmp r0,#0                                       @ stop if quotient = 0 
    subne r2,#1                                     @ else previous position
    bne 1b                                          @ and loop
                                                    @ and move digit from left of area
    mov r4,#0
2:
    ldrb r1,[r3,r2]
    strb r1,[r3,r4]
    add r2,#1
    add r4,#1
    cmp r2,#LGZONECAL
    ble 2b
                                                      @ and move spaces in end on area
    mov r0,r4                                         @ result length 
    mov r1,#' '                                       @ space
3:
    strb r1,[r3,r4]                                   @ store space in area
    add r4,#1                                         @ next position
    cmp r4,#LGZONECAL
    ble 3b                                            @ loop if r4 <= area size
 
100:
    pop {r1-r4,lr}                                    @ restaur registres 
    bx lr                                             @return
 
/***************************************************/
/*   division par 10   unsigned                    */
/***************************************************/
/* r0 dividende   */
/* r0 quotient    */
/* r1 remainder   */
divisionpar10U:
    push {r2,r3,r4, lr}
    mov r4,r0                                          @ save value
    ldr r3,iMagicNumber                                @ r3 <- magic_number    raspberry 1 2
    umull r1, r2, r3, r0                               @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0) 
    mov r0, r2, LSR #3                                 @ r2 <- r2 >> shift 3
    add r2,r0,r0, lsl #2                               @ r2 <- r0 * 5 
    sub r1,r4,r2, lsl #1                               @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
    pop {r2,r3,r4,lr}
    bx lr                                              @ leave function 
iMagicNumber:  	.int 0xCCCCCCCD
/***************************************************/
/* integer division unsigned                       */
/***************************************************/
division:
    /* r0 contains dividend */
    /* r1 contains divisor */
    /* r2 returns quotient */
    /* r3 returns remainder */
    push {r4, lr}
    mov r2, #0                                         @ init quotient
    mov r3, #0                                         @ init remainder
    mov r4, #32                                        @ init counter bits
    b 2f
1:                                                     @ loop 
    movs r0, r0, LSL #1                                @ r0 <- r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1)
    adc r3, r3, r3                                     @ r3 <- r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C 
    cmp r3, r1                                         @ compute r3 - r1 and update cpsr 
    subhs r3, r3, r1                                   @ if r3 >= r1 (C=1) then r3 <- r3 - r1 
    adc r2, r2, r2                                     @ r2 <- r2 + r2 + C. This is equivalent to r2 <- (r2 << 1) + C 
2:
    subs r4, r4, #1                                    @ r4 <- r4 - 1 
    bpl 1b                                             @ if r4 >= 0 (N=0) then loop
    pop {r4, lr}
    bx lr

Output:

k=1 : 2    3    5    7    11   13   17   19   23   29
k=2 : 4    6    9    10   14   15   21   22   25   26
k=3 : 8    12   18   20   27   28   30   42   44   45
k=4 : 16   24   36   40   54   56   60   81   84   88
k=5 : 32   48   72   80   108  112  120  162  168  176

Arturo

almostPrime: function [k, listLen][
    result: new []
    test: 2
    c: 0

    while [c < listLen][
        i: 2
        m: 0
        n: test

        while [i =< n][
            if? zero? n % i [
                n: n / i
                m: m + 1
            ]
            else -> i: i + 1
        ]
        if m = k [
            'result ++ test
            c: c + 1
        ]
        test: test + 1
    ]
    return result
]

loop 1..5 'x ->
    print ["k:" x "=>" almostPrime x 10]
Output:
k: 1 => [2 3 5 7 11 13 17 19 23 29] 
k: 2 => [4 6 9 10 14 15 21 22 25 26] 
k: 3 => [8 12 18 20 27 28 30 42 44 45] 
k: 4 => [16 24 36 40 54 56 60 81 84 88] 
k: 5 => [32 48 72 80 108 112 120 162 168 176]

AutoHotkey

Translation of the C Version

kprime(n,k) {
	p:=2, f:=0
	while( (f<k) && (p*p<=n) ) {
		while ( 0==mod(n,p) ) {
			n/=p
			f++
		}
		p++
	}
	return f + (n>1) == k
}

k:=1, results:=""
while( k<=5 ) {
	i:=2, c:=0, results:=results "k =" k ":"
	while( c<10 ) {
		if (kprime(i,k)) {
			results:=results " " i
			c++
		}
		i++
	}
	results:=results "`n"
	k++
}

MsgBox % results

Output (Msgbox):

k =1: 2 3 5 7 11 13 17 19 23 29
k =2: 4 6 9 10 14 15 21 22 25 26
k =3: 8 12 18 20 27 28 30 42 44 45
k =4: 16 24 36 40 54 56 60 81 84 88
k =5: 32 48 72 80 108 112 120 162 168 176

AWK

# syntax: GAWK -f ALMOST_PRIME.AWK
BEGIN {
    for (k=1; k<=5; k++) {
      printf("%d:",k)
      c = 0
      i = 1
      while (c < 10) {
        if (kprime(++i,k)) {
          printf(" %d",i)
          c++
        }
      }
      printf("\n")
    }
    exit(0)
}
function kprime(n,k,  f,p) {
    for (p=2; f<k && p*p<=n; p++) {
      while (n % p == 0) {
        n /= p
        f++
      }
    }
    return(f + (n > 1) == k)
}

Output:

1: 2 3 5 7 11 13 17 19 23 29
2: 4 6 9 10 14 15 21 22 25 26
3: 8 12 18 20 27 28 30 42 44 45
4: 16 24 36 40 54 56 60 81 84 88
5: 32 48 72 80 108 112 120 162 168 176

BASIC

10 DEFINT A-Z
20 FOR K=1 TO 5
30 PRINT USING "K = #:";K;
40 I=2: C=0
50 F=0: P=2: N=I
60 IF F >= K OR P*P > N THEN 100
70 IF N MOD P = 0 THEN N = N/P: F = F+1: GOTO 70
80 P = P+1
90 GOTO 60
100 IF N > 1 THEN F = F+1
110 IF F = K THEN C = C+1: PRINT USING " ###";I;
120 I = I+1
130 IF C < 10 THEN 50
140 PRINT
150 NEXT K
Output:
K = 1:   2   3   5   7  11  13  17  19  23  29
K = 2:   4   6   9  10  14  15  21  22  25  26
K = 3:   8  12  18  20  27  28  30  42  44  45
K = 4:  16  24  36  40  54  56  60  81  84  88
K = 5:  32  48  72  80 108 112 120 162 168 176

ASIC

ASIC has both FOR and WHILE loops, but it had better not go out from the loop. So, in the subroutine CHECKKPRIME they are simulated by the constructs with GOTO statements.

REM Almost prime
FOR K = 1 TO 5
  S$ = STR$(K)
  S$ = LTRIM$(S$)
  S$ = "k = " + S$
  S$ = S$ + ":"
  PRINT S$;
  I = 2
  C = 0
  WHILE C < 10
    AN = I
    GOSUB CHECKKPRIME:
    IF ISKPRIME <> 0 THEN
      PRINT I;
      C = C + 1
    ENDIF
    I = I + 1
  WEND
  PRINT
NEXT K
END

CHECKKPRIME:
REM Check if N (AN) is a K prime (result: ISKPRIME)
F = 0
J = 2
LOOPFOR:  
  ANMODJ = AN MOD J
  LOOPWHILE:
    IF ANMODJ <> 0 THEN AFTERWHILE:
    IF F = K THEN FEQK:
    F = F + 1
    AN = AN / J
    ANMODJ = AN MOD J
    GOTO LOOPWHILE:
  AFTERWHILE: 
  J = J + 1
  IF J <= AN THEN LOOPFOR:
IF F = K THEN
  ISKPRIME = -1
ELSE
  ISKPRIME = 0
ENDIF
RETURN
FEQK:
ISKPRIME = 0
RETURN
Output:
k = 1:     2     3     5     7    11    13    17    19    23    29
k = 2:     4     6     9    10    14    15    21    22    25    26
k = 3:     8    12    18    20    27    28    30    42    44    45
k = 4:    16    24    36    40    54    56    60    81    84    88
k = 5:    32    48    72    80   108   112   120   162   168   176

BASIC256

Translation of: FreeBASIC
function kPrime(n, k)
    f = 0
    for i = 2 to n
        while n mod i = 0
            if f = k then return False 
            f += 1
            n /= i
        end while
    next i
    return f = k
end function

for k = 1 to 5
    print "k = "; k; " :";
    i = 2
    c = 0
    while c < 10  
        if kPrime(i, k) then
            print rjust (string(i), 4);
            c += 1
        end if
        i += 1
    end while
    print
next k
end

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: GW-BASIC
Works with: QBasic
10  'Almost prime
20  FOR k = 1 TO 5
30  PRINT "k = "; k; ":";
40  LET i = 2
50  LET c = 0
60  WHILE c < 10
70   LET an = i: GOSUB 150
80   IF iskprime <> 0 THEN PRINT USING " ###"; i; : LET c = c + 1
90   LET i = i + 1
100 WEND
110 PRINT
120 NEXT k
130 END
140 ' Check if n (AN) is a k (K) prime
150 LET f = 0
160 FOR j = 2 TO an
170 WHILE an MOD j = 0
180   IF f = k THEN LET iskprime = 0: RETURN
190   LET f = f + 1
200   LET an = INT(an / j)
210 WEND
220 NEXT j
230 LET iskprime = (f = k)
240 RETURN

Craft Basic

for k = 1 to 5

	print "k = ", k, ": ",

	let e = 2
	let c = 0

	do

		if c < 10 then

			let n = e
			gosub kprime

			if r then

				print tab, e,
				let c = c + 1

			endif

			let e = e + 1

		endif

	loop c < 10

	print

next k

end

sub kprime

	let f = 0

	for i = 2 to n

		do

			if n mod i = 0 then

				if f = k then

					let r = 0
					return

				endif

				let f = f + 1
				let n = n / i

				wait

			endif

		loop n mod i = 0

	next i

    let r = f = k

return
Output:
k = 1: 	2	3	5	7	11	13	17	19	23	29
k = 2: 	4	6	9	10	14	15	21	22	25	26
k = 3: 	8	12	18	20	27	28	30	42	44	45
k = 4: 	16	24	36	40	54	56	60	81	84	88
k = 5: 	32	48	72	80	108	112	120	162	168	176

FreeBASIC

' FB 1.05.0 Win64

Function kPrime(n As Integer, k As Integer) As Boolean
   Dim f As Integer = 0
   For i As Integer = 2 To n
     While n Mod i = 0
       If f = k Then Return false 
       f += 1
       n \= i
     Wend
   Next
   Return f = k
End Function
   
Dim As Integer i, c, k
For k = 1 To 5
  Print "k = "; k; " : ";
  i = 2
  c = 0
  While c < 10  
    If kPrime(i, k) Then
      Print Using "### "; i;
      c += 1
    End If
    i += 1
  Wend
  Print
Next

Print
Print "Press any key to quit"
Sleep
Output:
k =  1 :   2   3   5   7  11  13  17  19  23  29
k =  2 :   4   6   9  10  14  15  21  22  25  26
k =  3 :   8  12  18  20  27  28  30  42  44  45
k =  4 :  16  24  36  40  54  56  60  81  84  88
k =  5 :  32  48  72  80 108 112 120 162 168 176

Gambas

Public Sub Main()
  
  Dim i As Integer, c As Integer, k As Integer

  For k = 1 To 5 
    Print "k = "; k; " : "; 
    i = 2 
    c = 0 
    While c < 10   
      If kPrime(i, k) Then 
        Print Format$(Str$(i), "### ");
        c += 1 
      End If 
      i += 1 
    Wend 
    Print 
  Next
  
End

Function kPrime(n As Integer, k As Integer) As Boolean 

  Dim f As Integer = 0 
  For i As Integer = 2 To n 
    While n Mod i = 0 
      If f = k Then Return False  
      f += 1 
      n \= i 
    Wend 
  Next
  Return f = k 

End Function
Output:
Same as FreeBASIC entry.

GW-BASIC

Translation of: FreeBASIC
Works with: PC-BASIC version any
10  'Almost prime
20  FOR K% = 1 TO 5
30   PRINT "k = "; K%; ":";
40   LET I% = 2
50   LET C% = 0
60   WHILE C% < 10  
70    LET AN% = I%: GOSUB 1000
80    IF ISKPRIME <> 0 THEN PRINT USING " ###"; I%;: LET C% = C% + 1
90    LET I% = I% + 1
100  WEND
110  PRINT
120 NEXT K%
130 END 

995  ' Check if n (AN%) is a k (K%) prime
1000 LET F% = 0
1010 FOR J% = 2 TO AN%
1020  WHILE AN% MOD J% = 0
1030   IF F% = K% THEN LET ISKPRIME = 0: RETURN
1040   LET F% = F% + 1
1050   LET AN% = AN% \ J%
1060  WEND
1070 NEXT J%
1080 LET ISKPRIME = (F% = K%)
1090 RETURN
Output:
k =  1 :   2   3   5   7  11  13  17  19  23  29                               
k =  2 :   4   6   9  10  14  15  21  22  25  26                               
k =  3 :   8  12  18  20  27  28  30  42  44  45                               
k =  4 :  16  24  36  40  54  56  60  81  84  88                               
k =  5 :  32  48  72  80 108 112 120 162 168 176 

Liberty BASIC

Translation of: FreeBASIC
Works with: Just BASIC
' Almost prime
for k = 1 to 5
    print "k = "; k; ":";
    i = 2
    c = 0
    while c < 10
        if kPrime(i, k) then
            print " "; using("###", i);
            c = c + 1
        end if
        i = i + 1
    wend
    print
next k
end

function kPrime(n, k)
    f = 0
    for i = 2 to n
    while n mod i = 0
        if f = k then kPrime = 0: exit function
        f = f + 1
        n = int(n / i)
    wend
    next i
    kPrime = abs(f = k)
end function
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Nascom BASIC

Translation of: GW-BASIC
Works with: Nascom ROM BASIC version 4.7
10 REM Almost prime
20 FOR K=1 TO 5
30 PRINT "k =";STR$(K);":";
40 I=2
50 C=0
60 IF C>=10 THEN 110
70 AN=I:GOSUB 1000
80 IF ISKPRIME=0 THEN 90
82 REM Print I in 4 fields
84 S$=STR$(I)
86 PRINT SPC(4-LEN(S$));S$;
88 C=C+1
90 I=I+1
100 GOTO 60
110 PRINT
120 NEXT K
130 END
995 REM Check if N (AN) is a K prime
1000 F=0
1010 FOR J=2 TO AN
1020 IF INT(AN/J)*J<>AN THEN 1070
1030 IF F=K THEN ISKPRIME=0:RETURN
1040 F=F+1
1050 AN=INT(AN/J)
1060 GOTO 1020
1070 NEXT J
1080 ISKPRIME=(F=K)
1090 RETURN
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

PureBasic

Translation of: C
EnableExplicit

Procedure.b kprime(n.i, k.i)
  Define p.i = 2,
         f.i = 0
  
  While f < k And p*p <= n
    While n % p = 0
      n / p
      f + 1      
    Wend    
    p + 1
  Wend
  
  ProcedureReturn Bool(f + Bool(n > 1) = k)
  
EndProcedure

;___main____
If Not OpenConsole("Almost prime")
  End -1
EndIf

Define i.i,
       c.i,
       k.i

For k = 1 To 5
  Print("k = " + Str(k) + ":")
  
  i = 2
  c = 0
  While c < 10    
    If kprime(i, k)
      Print(RSet(Str(i),4))
      c + 1
    EndIf
    i + 1
  Wend  
  PrintN("")
Next

Input()
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
Translation of: Liberty BASIC
for k = 1 to 5
    print "k = "; k; " :";
    i = 2
    c = 0
    while c < 10
        if kPrime(i, k) then
            print " "; using("###", i);
            c = c +1
        end if
        i = i +1
    wend
    print
next k
end

function kPrime(n, k)
    f = 0
    for i = 2 to n
        while n mod i = 0
            if f = k then kPrime = 0
            f = f +1
            n = int(n / i)
        wend
    next i
    kPrime = abs(f = k)
end function

Tiny BASIC

    REM Almost prime
    LET K=1
10  IF K>5 THEN END
    PRINT "k = ",K,":"
    LET I=2
    LET C=0
20  IF C>=10 THEN GOTO 40
    LET N=I
    GOSUB 500
    IF P=0 THEN GOTO 30
    PRINT I
    LET C=C+1
30  LET I=I+1
    GOTO 20
40  LET K=K+1
    GOTO 10

    REM Check if N is a K prime (result: P)
500 LET F=0
    LET J=2
510 IF (N/J)*J<>N THEN GOTO 520
    IF F=K THEN GOTO 530
    LET F=F+1
    LET N=N/J
    GOTO 510
520 LET J=J+1
    IF J<=N THEN GOTO 510
    LET P=0
    IF F=K THEN LET P=-1
    RETURN
530 LET P=0
    RETURN
Output:
k = 1:
2
3
5
7
11
13
17
19
23
29
k = 2:
4
6
9
10
14
15
21
22
25
26
k = 3:
8
12
18
20
27
28
30
42
44
45
k = 4:
16
24
36
40
54
56
60
81
84
88
k = 5:
32
48
72
80
108
112
120
162
168
176

True BASIC

FUNCTION iskprime(n, k)
    ! Check if n (AN) is a k (K) prime
    LET f = 0
    FOR j = 2 TO an
        DO WHILE REMAINDER(an, j) = 0
           IF f = k THEN LET iskprime = 0
           LET f = f + 1
           LET an = INT(an / j)
        LOOP
    NEXT j
    IF (f = k) THEN LET iskprime = 1
END FUNCTION

!ALMOST prime
FOR k = 1 TO 5
    PRINT "k = "; k; ":";
    LET i = 2
    LET c = 0
    DO WHILE c < 10
       LET an = i
       IF iskprime(i,k) <> 0 THEN
          PRINT USING " ###": i;
          LET c = c + 1
       END IF
       LET i = i + 1
    LOOP
    PRINT
NEXT k
END

uBasic/4tH

Translation of: C
Local(3)

For c@ = 1 To 5
  Print "k = ";c@;": ";

  b@=0

  For a@ = 2 Step 1 While b@ < 10
    If FUNC(_kprime (a@,c@)) Then
       b@ = b@ + 1
       Print " ";a@;
    EndIf
  Next

  Print
Next

End

_kprime Param(2)
  Local(2)

  d@ = 0
  For c@ = 2 Step 1 While (d@ < b@) * ((c@ * c@) < (a@ + 1))
    Do While (a@ % c@) = 0
      a@ = a@ / c@
      d@ = d@ + 1
    Loop
  Next
Return (b@ = (d@ + (a@ > 1)))
Translation of: FreeBASIC
For k = 1 To 5
  Print "k = "; k; " : ";
  i = 2
  c = 0
  Do While c < 10
    If FUNC(_kPrime(i, k)) Then Print Using "__# "; i; : c = c + 1
    i = i + 1
  Loop
  Print
Next
End

_kPrime
  Param (2)
  Local (2)
  
  c@ = 0

  For d@ = 2 To a@
    Do While (a@ % d@) = 0
      If c@ = b@ Then Unloop: Unloop: Return (0)
      c@ = c@ + 1
      a@ = a@ / d@
    Loop
  Next
Return (c@ = b@)
Output:
k = 1:  2 3 5 7 11 13 17 19 23 29
k = 2:  4 6 9 10 14 15 21 22 25 26
k = 3:  8 12 18 20 27 28 30 42 44 45
k = 4:  16 24 36 40 54 56 60 81 84 88
k = 5:  32 48 72 80 108 112 120 162 168 176

0 OK, 0:200

Visual Basic .NET

Translation of: C#
Module Module1

    Class KPrime
        Public K As Integer

        Public Function IsKPrime(number As Integer) As Boolean
            Dim primes = 0
            Dim p = 2
            While p * p <= number AndAlso primes < K
                While number Mod p = 0 AndAlso primes < K
                    number = number / p
                    primes = primes + 1
                End While
                p = p + 1
            End While
            If number > 1 Then
                primes = primes + 1
            End If
            Return primes = K
        End Function

        Public Function GetFirstN(n As Integer) As List(Of Integer)
            Dim result As New List(Of Integer)
            Dim number = 2
            While result.Count < n
                If IsKPrime(number) Then
                    result.Add(number)
                End If
                number = number + 1
            End While
            Return result
        End Function
    End Class

    Sub Main()
        For Each k In Enumerable.Range(1, 5)
            Dim kprime = New KPrime With {
                .K = k
            }
            Console.WriteLine("k = {0}: {1}", k, String.Join(" ", kprime.GetFirstN(10)))
        Next
    End Sub

End Module
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

XBasic

Translation of: FreeBASIC
Works with: Windows XBasic
' Almost prime
PROGRAM "almostprime"
VERSION "0.0002"
 
DECLARE FUNCTION Entry()
INTERNAL FUNCTION KPrime(n%%, k%%)
 
FUNCTION Entry()
  FOR k@@ = 1 TO 5
    PRINT "k ="; k@@; ":";
    i%% = 2
    c%% = 0
    DO WHILE c%% < 10
      IFT KPrime(i%%, k@@) THEN
        PRINT FORMAT$(" ###", i%%);
        INC c%%
      END IF
      INC i%%
    LOOP
    PRINT
  NEXT k@@
END FUNCTION
 
FUNCTION KPrime(n%%, k%%)
  f%% = 0
  FOR i%% = 2 TO n%%
    DO WHILE n%% MOD i%% = 0
      IF f%% = k%% THEN RETURN $$FALSE
      INC f%%
      n%% = n%% \ i%%
    LOOP
  NEXT i%%
  RETURN f%% = k%%
END FUNCTION
 
END PROGRAM
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Yabasic

Translation of: Lua
// Returns boolean indicating whether n is k-almost prime
sub almostPrime(n, k)
    local divisor, count
    
    divisor = 2
    
    while(count < (k + 1) and n <> 1)
        if not mod(n, divisor) then
            n = n / divisor
            count = count + 1
        else
            divisor = divisor + 1
        end if
    wend
    return count = k
end sub

// Generates table containing first ten k-almost primes for given k
sub kList(k, kTab())
    local n, i
    
    n = 2^k : i = 1
    while(i < 11)
        if almostPrime(n, k) then
            kTab(i) = n
            i = i + 1
        end if
        n = n + 1
    wend
end sub

// Main procedure, displays results from five calls to kList()
dim kTab(10)
for k = 1 to 5
    print "k = ", k, " : ";
    kList(k, kTab())
    for n = 1 to 10
        print kTab(n), ", ";
    next
    print "..."
next

ZX Spectrum Basic

Translation of: AWK
10 FOR k=1 TO 5
20 PRINT k;":";
30 LET c=0: LET i=1
40 IF c=10 THEN GO TO 100
50 LET i=i+1
60 GO SUB 1000
70 IF r THEN PRINT " ";i;: LET c=c+1
90 GO TO 40
100 PRINT 
110 NEXT k
120 STOP 
1000 REM kprime
1010 LET p=2: LET n=i: LET f=0
1020 IF f=k OR (p*p)>n THEN GO TO 1100
1030 IF n/p=INT (n/p) THEN LET n=n/p: LET f=f+1: GO TO 1030
1040 LET p=p+1: GO TO 1020
1100 LET r=(f+(n>1)=k)
1110 RETURN
Output:
1: 2 3 5 7 11 13 17 19 23 29
2: 4 6 9 10 14 15 21 22 25 26
3: 8 12 18 20 27 28 30 42 44 45
4: 16 24 36 40 54 56 60 81 84 88
5: 32 48 72 80 108 112 120 162 168 176

BCPL

Translation of: C
get "libhdr"

let kprime(n, k) = valof
$(  let f, p = 0, 2
    while f<k & p*p<=n do
    $(  while n rem p = 0 do
        $(  n := n/p
            f := f+1
        $)
        p := p+1
    $)
    if n > 1 then f := f + 1
    resultis f = k
$)

let start() be
$(  for k=1 to 5 do
    $(  let i, c = 2, 0
        writef("k = %N:", k)
        while c < 10 do
        $(  if kprime(i, k) then
            $(  writed(i, 4)
                c := c+1
            $)
            i := i+1
        $)
        wrch('*N')
    $)
$)
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Befunge

Translation of: C

The extra spaces are to ensure it's readable on buggy interpreters that don't include a space after numeric output.

1>::48*"= k",,,,02p.":",01v
|^ v0!`\*:g40:<p402p300:+1<
K| >2g03g`*#v_ 1`03g+02g->|
F@>/03g1+03p>vpv+1\.:,*48 <
P#|!\g40%g40:<4>:9`>#v_\1^|
|^>#!1#`+#50#:^#+1,+5>#5$<|
Output:
k = 1 : 2  3  5  7  11  13  17  19  23  29
k = 2 : 4  6  9  10  14  15  21  22  25  26
k = 3 : 8  12  18  20  27  28  30  42  44  45
k = 4 : 16  24  36  40  54  56  60  81  84  88
k = 5 : 32  48  72  80  108  112  120  162  168  176

C

#include <stdio.h>

int kprime(int n, int k)
{
	int p, f = 0;
	for (p = 2; f < k && p*p <= n; p++)
		while (0 == n % p)
			n /= p, f++;

	return f + (n > 1) == k;
}

int main(void)
{
	int i, c, k;

	for (k = 1; k <= 5; k++) {
		printf("k = %d:", k);

		for (i = 2, c = 0; c < 10; i++)
			if (kprime(i, k)) {
				printf(" %d", i);
				c++;
			}

		putchar('\n');
	}

	return 0;
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

C#

using System;
using System.Collections.Generic;
using System.Linq;

namespace AlmostPrime
{
    class Program
    {
        static void Main(string[] args)
        {
            foreach (int k in Enumerable.Range(1, 5))
            {
                KPrime kprime = new KPrime() { K = k };
                Console.WriteLine("k = {0}: {1}",
                    k, string.Join<int>(" ", kprime.GetFirstN(10)));
            }
        }
    }

    class KPrime
    {
        public int K { get; set; }

        public bool IsKPrime(int number)
        {
            int primes = 0;
            for (int p = 2; p * p <= number && primes < K; ++p)
            {
                while (number % p == 0 && primes < K)
                {
                    number /= p;
                    ++primes;
                }
            }
            if (number > 1)
            {
                ++primes;
            }
            return primes == K;
        }

        public List<int> GetFirstN(int n)
        {
            List<int> result = new List<int>();
            for (int number = 2; result.Count < n; ++number)
            {
                if (IsKPrime(number))
                {
                    result.Add(number);
                }
            }
            return result;
        }
    }
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

C++

Translation of: Kotlin
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <list>

bool k_prime(unsigned n, unsigned k) {
    unsigned f = 0;
    for (unsigned p = 2; f < k && p * p <= n; p++)
        while (0 == n % p) { n /= p; f++; }
    return f + (n > 1 ? 1 : 0) == k;
}

std::list<unsigned> primes(unsigned k, unsigned n)  {
    std::list<unsigned> list;
    for (unsigned i = 2;list.size() < n;i++)
        if (k_prime(i, k)) list.push_back(i);
    return list;
}

int main(const int argc, const char* argv[]) {
    using namespace std;
    for (unsigned k = 1; k <= 5; k++) {
        ostringstream os("");
        const list<unsigned> l = primes(k, 10);
        for (list<unsigned>::const_iterator i = l.begin(); i != l.end(); i++)
            os << setw(4) << *i;
        cout << "k = " << k << ':' << os.str() << endl;
    }

	return EXIT_SUCCESS;
}
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Clojure

(ns clojure.examples.almostprime
	(:gen-class))

(defn divisors [n]
    " Finds divisors by looping through integers 2, 3,...i.. up to sqrt (n) [note: rather than compute sqrt(), test with i*i <=n] "
    (let [div (some #(if (= 0 (mod n %)) % nil) (take-while #(<= (* % %) n) (iterate inc 2)))]
        (if div                                                         ; div = nil (if no divisor found else its the divisor) 
            (into [] (concat (divisors div) (divisors (/ n div))))      ; Concat the two divisors of the two divisors
            [n])))                                                      ; Number is prime so only itself as a divisor
            
(defn divisors-k [k n]
    " Finds n numbers with k divisors.  Does this by looping through integers 2, 3, ... filtering (passing) ones with k divisors and 
      taking the first n "
    (->> (iterate inc 2)            ; infinite sequence of numbers starting at 2
         (map divisors)             ; compute divisor of each element of sequence
         (filter #(= (count %) k))  ; filter to take only elements with k divisors
         (take n)                   ; take n elements from filtered sequence
         (map #(apply * %))))       ; compute number by taking product of divisors
         
(println (for [k (range 1 6)]
          (println "k:" k (divisors-k k 10))))
 
}
Output:
(k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176)
nil

CLU

kprime = proc (n,k: int) returns (bool)
    f: int := 0
    p: int := 2
    while f<k & p*p<=n do
        while n//p=0 do
            n := n/p
            f := f+1
        end
        p := p+1
    end
    if n>1 then f:=f+1 end
    return(f=k)
end kprime

start_up = proc ()
    po: stream := stream$primary_output()
    for k: int in int$from_to(1,5) do
        i: int := 2
        c: int := 0
        stream$puts(po, "k = " || int$unparse(k) || ":")
        while c<10 do  
            if kprime(i,k) then
                stream$putright(po, int$unparse(i), 4)
                c := c+1
            end
            i := i+1
        end
        stream$putl(po, "")
    end
end start_up
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

COBOL

Translation of: C
       IDENTIFICATION DIVISION.
       PROGRAM-ID. ALMOST-PRIME.
       
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01 CONTROL-VARS.
          03 K              PIC 9.
          03 I              PIC 999.
          03 SEEN           PIC 99.
          03 N              PIC 999.
          03 P              PIC 99.
          03 P-SQUARED      PIC 9(4).
          03 F              PIC 99.
          03 N-DIV-P        PIC 999V999.
          03 FILLER         REDEFINES N-DIV-P.
             05 NEXT-N      PIC 999.
             05 FILLER      PIC 999.
                88 N-DIVS-P VALUE ZERO.
          
       01 OUT-VARS.
          03 K-LN           PIC X(70).
          03 K-LN-PTR       PIC 99.
          03 LN-HDR.
             05 FILLER      PIC X(4) VALUE "K = ".
             05 K-OUT       PIC 9.
             05 FILLER      PIC X VALUE ":".
          03 I-FMT.
             05 FILLER      PIC X VALUE SPACE.
             05 I-OUT       PIC ZZ9.
       
       PROCEDURE DIVISION.
       BEGIN.
           PERFORM K-ALMOST-PRIMES VARYING K FROM 1 BY 1
               UNTIL K IS GREATER THAN 5.
           STOP RUN.
           
       K-ALMOST-PRIMES.
           MOVE SPACES TO K-LN.
           MOVE 1 TO K-LN-PTR.
           MOVE ZERO TO SEEN.
           MOVE K TO K-OUT.
           STRING LN-HDR DELIMITED BY SIZE INTO K-LN 
               WITH POINTER K-LN-PTR.
           PERFORM I-K-ALMOST-PRIME VARYING I FROM 2 BY 1
               UNTIL SEEN IS EQUAL TO 10.
           DISPLAY K-LN.
       
       I-K-ALMOST-PRIME.
           MOVE ZERO TO F, P-SQUARED.
           MOVE I TO N.
           PERFORM PRIME-FACTOR VARYING P FROM 2 BY 1
               UNTIL F IS NOT LESS THAN K 
               OR P-SQUARED IS GREATER THAN N. 
           IF N IS GREATER THAN 1, ADD 1 TO F.
           IF F IS EQUAL TO K,
               MOVE I TO I-OUT,
               ADD 1 TO SEEN,
               STRING I-FMT DELIMITED BY SIZE INTO K-LN
                   WITH POINTER K-LN-PTR.
       
       PRIME-FACTOR.
           MULTIPLY P BY P GIVING P-SQUARED.
           DIVIDE N BY P GIVING N-DIV-P.
           PERFORM DIVIDE-FACTOR UNTIL NOT N-DIVS-P.
           
       DIVIDE-FACTOR.
           MOVE NEXT-N TO N.
           ADD 1 TO F.
           DIVIDE N BY P GIVING N-DIV-P.
Output:
K = 1:   2   3   5   7  11  13  17  19  23  29
K = 2:   4   6   9  10  14  15  21  22  25  26
K = 3:   8  12  18  20  27  28  30  42  44  45
K = 4:  16  24  36  40  54  56  60  81  84  88
K = 5:  32  48  72  80 108 112 120 162 168 176

Common Lisp

(defun start ()
  (loop for k from 1 to 5
    do (format t "k = ~a: ~a~%" k (collect-k-almost-prime k))))

(defun collect-k-almost-prime (k &optional (d 2) (lst nil))
  (cond ((= (length lst) 10) (reverse lst))
        ((= (?-primality d) k) (collect-k-almost-prime k (+ d 1) (cons d lst)))
        (t (collect-k-almost-prime k (+ d 1) lst))))

(defun ?-primality (n &optional (d 2) (c 0))
  (cond ((> d (isqrt n)) (+ c 1))
        ((zerop (rem n d)) (?-primality (/ n d) d (+ c 1)))
        (t (?-primality n (+ d 1) c))))
Output:
k = 1: (2 3 5 7 11 13 17 19 23 29)
k = 2: (4 6 9 10 14 15 21 22 25 26)
k = 3: (8 12 18 20 27 28 30 42 44 45)
k = 4: (16 24 36 40 54 56 60 81 84 88)
k = 5: (32 48 72 80 108 112 120 162 168 176)
NIL

Cowgol

Translation of: C
include "cowgol.coh";

sub kprime(n: uint8, k: uint8): (kp: uint8) is
    var p: uint8 := 2;
    var f: uint8 := 0;
    while f < k and p*p <= n loop
        while 0 == n % p loop
            n := n / p;
            f := f + 1;
        end loop;
        p := p + 1;
    end loop;
    if n > 1 then
        f := f + 1;
    end if;
    if f == k then
        kp := 1;
    else
        kp := 0;
    end if;
end sub;

var k: uint8 := 1;
while k <= 5 loop
    print("k = ");
    print_i8(k);
    print(":");
    
    var i: uint8 := 2;
    var c: uint8 := 0;
    while c < 10 loop
        if kprime(i,k) != 0 then
            print(" ");
            print_i8(i);
            c := c + 1;
        end if;
        i := i + 1;
    end loop;
    print_nl();
    k := k + 1;
end loop;
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

D

This contains a copy of the function decompose from the Prime decomposition task.

Translation of: Ada
import std.stdio, std.algorithm, std.traits;

Unqual!T[] decompose(T)(in T number) pure nothrow
in {
    assert(number > 1);
} body {
    typeof(return) result;
    Unqual!T n = number;

    for (Unqual!T i = 2; n % i == 0; n /= i)
        result ~= i;
    for (Unqual!T i = 3; n >= i * i; i += 2)
        for (; n % i == 0; n /= i)
            result ~= i;

    if (n != 1)
        result ~= n;
    return result;
}

void main() {
    enum outLength = 10; // 10 k-th almost primes.

    foreach (immutable k; 1 .. 6) {
        writef("K = %d: ", k);
        auto n = 2; // The "current number" to be checked.
        foreach (immutable i; 1 .. outLength + 1) {
            while (n.decompose.length != k)
                n++;
            // Now n is K-th almost prime.
            write(n, " ");
            n++;
        }
        writeln;
    }
}
Output:
K = 1: 2 3 5 7 11 13 17 19 23 29
K = 2: 4 6 9 10 14 15 21 22 25 26
K = 3: 8 12 18 20 27 28 30 42 44 45
K = 4: 16 24 36 40 54 56 60 81 84 88
K = 5: 32 48 72 80 108 112 120 162 168 176

Delphi

Translation of: C
program AlmostPrime;

{$APPTYPE CONSOLE}

function IsKPrime(const n, k: Integer): Boolean;
var
  p, f, v: Integer;
begin
  f := 0;
  p := 2;
  v := n;
  while (f < k) and (p*p <= n) do begin
    while (v mod p) = 0 do begin
      v := v div p;
      Inc(f);
    end;
    Inc(p);
  end;
  if v > 1 then Inc(f);
  Result := f = k;
end;

var
  i, c, k: Integer;

begin
  for k := 1 to 5 do begin
    Write('k = ', k, ':');
    c := 0;
    i := 2;
    while c < 10 do begin
      if IsKPrime(i, k) then begin
        Write(' ', i);
        Inc(c);
      end;
      Inc(i);
    end;
    WriteLn;
  end;
end.
Output:
K = 1: 2 3 5 7 11 13 17 19 23 29
K = 2: 4 6 9 10 14 15 21 22 25 26
K = 3: 8 12 18 20 27 28 30 42 44 45
K = 4: 16 24 36 40 54 56 60 81 84 88
K = 5: 32 48 72 80 108 112 120 162 168 176

Draco

proc nonrec kprime(word n, k) bool:
    word f, p;
    f := 0;
    p := 2;
    while f < k and p*p <= n do
        while n%p = 0 do
            n := n/p;
            f := f+1
        od;
        p := p+1
    od;
    if n>1 then f+1 = k
    else f = k
    fi
corp

proc nonrec main() void:
    byte k, i, c;
    for k from 1 upto 5 do
        write("k = ", k:1, ":");
        i := 2;
        c := 0;
        while c < 10 do
            if kprime(i,k) then
                write(i:4);
                c := c+1
            fi;
            i := i+1
        od;
        writeln()
    od
corp
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

EasyLang

Translation of: FreeBASIC
func kprime n k .
   i = 2
   while i <= n
      while n mod i = 0
         if f = k
            return 0
         .
         f += 1
         n /= i
      .
      i += 1
   .
   if f = k
      return 1
   .
   return 0
.
for k = 1 to 5
   write "k=" & k & " : "
   i = 2
   c = 0
   while c < 10
      if kprime i k = 1
         write i & " "
         c += 1
      .
      i += 1
   .
   print ""
.

EchoLisp

Small numbers : filter the sequence [ 2 .. n]

(define (almost-prime? p k)
	(= k (length (prime-factors p))))
	
(define (almost-primes k nmax)
	(take (filter (rcurry almost-prime? k) [2 ..]) nmax))
	
(define (task (kmax 6) (nmax 10))
	(for ((k [1 .. kmax]))
		(write 'k= k '|)
		(for-each write (almost-primes k nmax))
		(writeln)))
Output:
(task)

k= 1 | 2 3 5 7 11 13 17 19 23 29
k= 2 | 4 6 9 10 14 15 21 22 25 26
k= 3 | 8 12 18 20 27 28 30 42 44 45
k= 4 | 16 24 36 40 54 56 60 81 84 88
k= 5 | 32 48 72 80 108 112 120 162 168 176

Large numbers : generate - combinations with repetitions - k-almost-primes up to pmax.

(lib 'match)
(define-syntax-rule (: v i) (vector-ref v i))
(reader-infix ':) ;; abbrev (vector-ref v i) === [v : i]


(lib 'bigint)
(define cprimes (list->vector (primes 10000)))

;; generates next k-almost-prime < pmax
;; c = vector of k primes indices c[i] <= c[j]
;; p = vector of intermediate products prime[c[0]]*prime[c[1]]*..
;; p[k-1] is the generated k-almost-prime
;; increment one c[i] at each step

(define (almost-next pmax k c p)
    (define almost-prime #f)
    (define cp 0)

    (for ((i (in-range (1- k) -1 -1))) ;; look backwards for c[i] to increment
        (vector-set! c i (1+ [c : i])) ;; increment c[i]
        (set! cp [cprimes : [c : i]]) 
        (vector-set! p i (if (> i 0) (* [ p : (1- i)] cp) cp)) ;; update partial product
			
        (when (< [p : i) pmax)
	    (set! almost-prime
            (and  ;; set followers to c[i] value
	       (for ((j (in-range (1+ i) k)))
	       (vector-set! c j [c : i])
	       (vector-set! p j (*  [ p : (1- j)] cp))
	       #:break (>= [p : j] pmax) => #f )
	       [p  : (1- k)]
	  ) ;; // and
	  ) ;; set!
	  ) ;; when
    #:break almost-prime 
    ) ;; // for i
    almost-prime )

;; not sorted list of k-almost-primes < pmax
(define (almost-primes k nmax)
    (define base (expt 2 k)) ;; first one is 2^k
    (define pmax (* base nmax))
    (define c (make-vector k #0))
    (define p (build-vector k (lambda(i) (expt #2 (1+ i)))))
		
    (cons base
	(for/list 
	((almost-prime (in-producer almost-next pmax k c p )))
	 almost-prime)))
Output:
;; we want  500-almost-primes from the 10000-th.
(take (drop (list-sort < (almost-primes 500 10000)) 10000 ) 10)

(7241149198492252834202927258094752774597239286103014697435725917649659974371690699721153852986
440733637405206125678822081264723636566725108094369093648384 
etc ...

;; The first one is 2^497 * 3 * 17 * 347 , same result as Haskell.

Elixir

Translation of: Erlang
defmodule Factors do
  def factors(n), do: factors(n,2,[])
  
  defp factors(1,_,acc), do: acc
  defp factors(n,k,acc) when rem(n,k)==0, do: factors(div(n,k),k,[k|acc])
  defp factors(n,k,acc)                 , do: factors(n,k+1,acc)
  
  def kfactors(n,k), do: kfactors(n,k,1,1,[])
  
  defp kfactors(_tn,tk,_n,k,_acc) when k == tk+1, do: IO.puts "done! "
  defp kfactors(tn,tk,_n,k,acc) when length(acc) == tn do
    IO.puts "K: #{k} #{inspect acc}"
    kfactors(tn,tk,2,k+1,[])
  end
  defp kfactors(tn,tk,n,k,acc) do
    case length(factors(n)) do
      ^k -> kfactors(tn,tk,n+1,k,acc++[n])
      _  -> kfactors(tn,tk,n+1,k,acc)
    end
  end
end

Factors.kfactors(10,5)
Output:
K: 1 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
K: 2 [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
K: 3 [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
K: 4 [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
K: 5 [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]
done!

Erlang

Using the factors function from Prime_decomposition#Erlang.

-module(factors).                                         
-export([factors/1,kfactors/0,kfactors/2]).               
                                                          
factors(N) ->                                             
     factors(N,2,[]).                                     
                                                          
factors(1,_,Acc) -> Acc;                                  
factors(N,K,Acc) when N rem K == 0 ->                     
    factors(N div K,K, [K|Acc]);                          
factors(N,K,Acc) ->                                       
    factors(N,K+1,Acc).                                   
                                                          
kfactors() -> kfactors(10,5,1,1,[]).                      
kfactors(N,K) -> kfactors(N,K,1,1,[]).                    
kfactors(_Tn,Tk,_N,K,_Acc) when K == Tk+1 ->  io:fwrite("Done! ");            
kfactors(Tn,Tk,N,K,Acc) when length(Acc) == Tn  ->        
    io:format("K: ~w ~w ~n", [K, Acc]),                   
    kfactors(Tn,Tk,2,K+1,[]);                             
                     
kfactors(Tn,Tk,N,K,Acc) ->                                
    case length(factors(N)) of K ->                       
     kfactors(Tn,Tk, N+1,K, Acc ++ [ N ] );               
      _ ->                                                
      kfactors(Tn,Tk, N+1,K, Acc) end.
Output:
9> factors:kfactors(10,5). 
K: 1 [2,3,5,7,11,13,17,19,23,29] 
K: 2 [4,6,9,10,14,15,21,22,25,26] 
K: 3 [8,12,18,20,27,28,30,42,44,45] 
K: 4 [16,24,36,40,54,56,60,81,84,88] 
K: 5 [32,48,72,80,108,112,120,162,168,176] 
Done! ok
10> factors:kfactors(15,10).
K: 1 [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47] 
K: 2 [4,6,9,10,14,15,21,22,25,26,33,34,35,38,39] 
K: 3 [8,12,18,20,27,28,30,42,44,45,50,52,63,66,68] 
K: 4 [16,24,36,40,54,56,60,81,84,88,90,100,104,126,132] 
K: 5 [32,48,72,80,108,112,120,162,168,176,180,200,208,243,252] 
K: 6 [64,96,144,160,216,224,240,324,336,352,360,400,416,486,504] 
K: 7 [128,192,288,320,432,448,480,648,672,704,720,800,832,972,1008] 
K: 8 [256,384,576,640,864,896,960,1296,1344,1408,1440,1600,1664,1944,2016] 
K: 9 [512,768,1152,1280,1728,1792,1920,2592,2688,2816,2880,3200,3328,3888,4032] 
K: 10 [1024,1536,2304,2560,3456,3584,3840,5184,5376,5632,5760,6400,6656,7776,8064] 
Done! ok

ERRE

PROGRAM ALMOST_PRIME

!
! for rosettacode.org
!

!$INTEGER

PROCEDURE KPRIME(N,K->KP)
  LOCAL P,F
  FOR P=2 TO 999 DO
      EXIT IF NOT((F<K) AND (P*P<=N))
      WHILE (N MOD P)=0 DO
         N/=P
         F+=1
      END WHILE
  END FOR
  KP=(F-(N>1)=K)
END PROCEDURE

BEGIN
  PRINT(CHR$(12);)  !CLS
  FOR K=1 TO 5 DO
     PRINT("k =";K;":";)
     C=0
     FOR I=2 TO 999 DO
        EXIT IF NOT(C<10)
        KPRIME(I,K->KP)
        IF KP THEN
            PRINT(I;)
            C+=1
        END IF
     END FOR
     PRINT
  END FOR
END PROGRAM
Output:
K = 1: 2  3  5  7  11  13  17  19  23  29
K = 2: 4  6  9  10  14  15  21  22  25  26
K = 3: 8  12  18  20  27  28  30  42  44  45
K = 4: 16  24  36  40  54  56  60  81  84  88
K = 5: 32  48  72  80  108  112  120  162  168  176

F#

let rec genFactor (f, n) =
    if f > n then None
    elif n % f = 0 then Some (f, (f, n/f))
    else genFactor (f+1, n)


let factorsOf (num) =
    Seq.unfold (fun (f, n) -> genFactor (f, n)) (2, num)

let kFactors k = Seq.unfold (fun n ->
    let rec loop m =
        if Seq.length (factorsOf m) = k then m
        else loop (m+1)
    let next = loop n
    Some(next, next+1)) 2

[1 .. 5]
|> List.iter (fun k ->
        printfn "%A" (Seq.take 10 (kFactors k) |> Seq.toList))
Output:
[2; 3; 5; 7; 11; 13; 17; 19; 23; 29]
[4; 6; 9; 10; 14; 15; 21; 22; 25; 26]
[8; 12; 18; 20; 27; 28; 30; 42; 44; 45]
[16; 24; 36; 40; 54; 56; 60; 81; 84; 88]
[32; 48; 72; 80; 108; 112; 120; 162; 168; 176]

Factor

USING: formatting fry kernel lists lists.lazy locals
math.combinatorics math.primes.factors math.ranges sequences ;
IN: rosetta-code.almost-prime

: k-almost-prime? ( n k -- ? )
    '[ factors _ <combinations> [ product ] map ]
    [ [ = ] curry ] bi any? ;
    
:: first10 ( k -- seq )
    10 0 lfrom [ k k-almost-prime? ] lfilter ltake list>array ;
    
5 [1,b] [ dup first10 "K = %d: %[%3d, %]\n" printf ] each
Output:
K = 1: {   2,   3,   5,   7,  11,  13,  17,  19,  23,  29 }
K = 2: {   4,   6,   9,  10,  14,  15,  21,  22,  25,  26 }
K = 3: {   8,  12,  18,  20,  27,  28,  30,  42,  44,  45 }
K = 4: {  16,  24,  36,  40,  54,  56,  60,  81,  84,  88 }
K = 5: {  32,  48,  72,  80, 108, 112, 120, 162, 168, 176 }


FOCAL

01.10 F K=1,5;D 3
01.20 Q

02.10 S N=I;S P=1;S G=0
02.20 S P=P+1
02.30 I (K-G)2.7,2.7;I (N-P*P)2.7
02.40 S Z=FITR(N/P)
02.50 I (Z*P-N)2.2
02.60 S N=Z;S G=G+1;G 2.4
02.70 I (1-N)2.8;R
02.80 S G=G+1

03.10 T "K",%1,K,":"
03.20 S I=2;S C=0
03.30 D 2;I (G-K)3.6,3.4,3.6
03.40 T " ",%3,I
03.50 S C=C+1
03.60 S I=I+1
03.70 I (C-10)3.3
03.80 T !
Output:
K= 1: =   2 =   3 =   5 =   7 =  11 =  13 =  17 =  19 =  23 =  29
K= 2: =   4 =   6 =   9 =  10 =  14 =  15 =  21 =  22 =  25 =  26
K= 3: =   8 =  12 =  18 =  20 =  27 =  28 =  30 =  42 =  44 =  45
K= 4: =  16 =  24 =  36 =  40 =  54 =  56 =  60 =  81 =  84 =  88
K= 5: =  32 =  48 =  72 =  80 = 108 = 112 = 120 = 162 = 168 = 176

Fortran

program almost_prime
    use iso_fortran_env, only: output_unit
    implicit none

    integer :: i, c, k

    do k = 1, 5
        write(output_unit,'(A3,x,I0,x,A1,x)', advance="no") "k =", k, ":"
        i = 2
        c = 0
        do
            if (c >= 10) exit

            if (kprime(i, k)) then
                write(output_unit,'(I0,x)', advance="no") i
                c = c + 1
            end if
            i = i + 1
        end do
        write(output_unit,*)
    end do
contains
    pure function kprime(n, k)
        integer, intent(in) :: n, k
        logical             :: kprime
        integer             :: p, f, i

        kprime = .false.

        f = 0
        i = n

        do p = 2, n
            do
                if (modulo(i, p) /= 0) exit

                if (f == k) return
                f = f + 1
                i = i / p
            end do
        end do

        kprime = f==k
    end function kprime
end program almost_prime
Output:
k = 1 : 2 3 5 7 11 13 17 19 23 29 
k = 2 : 4 6 9 10 14 15 21 22 25 26 
k = 3 : 8 12 18 20 27 28 30 42 44 45 
k = 4 : 16 24 36 40 54 56 60 81 84 88 
k = 5 : 32 48 72 80 108 112 120 162 168 176 

Frink

for k = 1 to 5
{
   n=2
   count = 0
   print["k=$k:"]
   do
   {
      if length[factorFlat[n]] == k
      {
         print[" $n"]
         count = count + 1
      }
      n = n + 1
   } while count < 10

   println[]
}

Output:

k=1: 2 3 5 7 11 13 17 19 23 29
k=2: 4 6 9 10 14 15 21 22 25 26
k=3: 8 12 18 20 27 28 30 42 44 45
k=4: 16 24 36 40 54 56 60 81 84 88
k=5: 32 48 72 80 108 112 120 162 168 176

Futhark

let kprime(n: i32, k: i32): bool =
  let (p,f) = (2, 0)
  let (n,_,f) = loop (n, p, f) while f < k && p*p <= n do
    let (n,f) = loop (n, f) while 0 == n % p do
      (n/p, f+1)
    in (n, p+1, f)
  in f + (if n > 1 then 1 else 0) == k

let main(m: i32): [][]i32 =
  let f k =
    let ps = replicate 10 0
    let (_,_,ps) = loop (i,c,ps) = (2,0,ps) while c < 10 do
      if kprime(i,k) then
        unsafe let ps[c] = i
               in (i+1, c+1, ps)
      else (i+1, c, ps)
    in ps
  in map f (1...m)


FutureBasic

local fn K_Prime( n as long, k as long ) as BOOL
  long f = 0, i = 0
  BOOL result
  
  for i = 2 to n
    while ( n mod i == 0 )
      if f = k then exit fn = NO
      f += 1
      n /= i
    wend
  next
  result = f = k
end fn = result


long i, c, k

for k = 1 to 5
  printf @"k = %ld:\b", k
  i = 2
  c = 0
  while ( c < 10 )
    if ( fn K_Prime( i, k ) )
      printf @"%4ld\b", i
      c++
    end if
    i++
  wend
  print
next

HandleEvents
Output:
k =  1 :   2   3   5   7  11  13  17  19  23  29
k =  2 :   4   6   9  10  14  15  21  22  25  26
k =  3 :   8  12  18  20  27  28  30  42  44  45
k =  4 :  16  24  36  40  54  56  60  81  84  88
k =  5 :  32  48  72  80 108 112 120 162 168 176

Go

package main

import "fmt"

func kPrime(n, k int) bool {
    nf := 0
    for i := 2; i <= n; i++ {
        for n%i == 0 {
            if nf == k {
                return false
            }
            nf++
            n /= i
        }
    }
    return nf == k
}

func gen(k, n int) []int {
    r := make([]int, n)
    n = 2
    for i := range r {
        for !kPrime(n, k) {
            n++
        }
        r[i] = n
        n++
    }
    return r
}

func main() {
    for k := 1; k <= 5; k++ {
        fmt.Println(k, gen(k, 10))
    }
}
Output:
1 [2 3 5 7 11 13 17 19 23 29]
2 [4 6 9 10 14 15 21 22 25 26]
3 [8 12 18 20 27 28 30 42 44 45]
4 [16 24 36 40 54 56 60 81 84 88]
5 [32 48 72 80 108 112 120 162 168 176]

Groovy

 
 public class almostprime
{
public static boolean kprime(int n,int k)
  {
    int i,div=0;
     for(i=2;(i*i <= n) && (div<k);i++)
      {
        while(n%i==0)
          {
            n = n/i;
            div++;
          }
      }
   return div + ((n > 1)?1:0) == k;
  }
  public static void main(String[] args)
    {
      int i,l,k;
       for(k=1;k<=5;k++)
        {
          println("k = " + k + ":");
           l = 0;
            for(i=2;l<10;i++)
              {
                if(kprime(i,k))
                {
                  print(i + " ");
                  l++;
                }
              }
          println();
        }
     }
}
Output:
k = 1:
2 3 5 7 11 13 17 19 23 29 
k = 2:
4 6 9 10 14 15 21 22 25 26 
k = 3:
8 12 18 20 27 28 30 42 44 45 
k = 4:
16 24 36 40 54 56 60 81 84 88 
k = 5:
32 48 72 80 108 112 120 162 168 176 

Haskell

isPrime :: Integral a => a -> Bool
isPrime n = not $ any ((0 ==) . (mod n)) [2..(truncate $ sqrt $ fromIntegral n)]

primes :: [Integer]
primes = filter isPrime [2..]

isKPrime :: (Num a, Eq a) => a -> Integer -> Bool
isKPrime 1 n = isPrime n
isKPrime k n = any (isKPrime (k - 1)) sprimes
  where
    sprimes = map fst $ filter ((0 ==) . snd) $ map (divMod n) $ takeWhile (< n) primes

kPrimes :: (Num a, Eq a) => a -> [Integer]
kPrimes k = filter (isKPrime k) [2..]

main :: IO ()
main = flip mapM_ [1..5] $ \k ->
  putStrLn $ "k = " ++ show k ++ ": " ++ (unwords $ map show (take 10 $ kPrimes k))
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

Larger ks require more complicated methods:

primes = 2:3:[n | n <- [5,7..], foldr (\p r-> p*p > n || rem n p > 0 && r) 
	True (drop 1 primes)]

merge aa@(a:as) bb@(b:bs)
	| a < b = a:merge as bb
	| otherwise = b:merge aa bs

-- n-th item is all k-primes not divisible by any of the first n primes
notdivs k = f primes $ kprimes (k-1) where
	f (p:ps) s = map (p*) s : f ps (filter ((/=0).(`mod`p)) s)

kprimes k
	| k == 1 = primes
	| otherwise = f (head ndk) (tail ndk) (tail $ map (^k) primes) where
		ndk = notdivs k
		-- tt is the thresholds for merging in next sequence
		-- it is equal to "map head seqs", but don't do that
		f aa@(a:as) seqs tt@(t:ts)
			| a < t = a : f as seqs tt
			| otherwise = f (merge aa $ head seqs) (tail seqs) ts

main = do 
	-- next line is for task requirement:
	mapM_ (\x->print (x, take 10 $ kprimes x)) [1 .. 5]

	putStrLn "\n10000th to 10100th 500-amost primes:"
	mapM_ print $ take 100 $ drop 10000 $ kprimes 500
Output:
(1,[2,3,5,7,11,13,17,19,23,29])
(2,[4,6,9,10,14,15,21,22,25,26])
(3,[8,12,18,20,27,28,30,42,44,45])
(4,[16,24,36,40,54,56,60,81,84,88])
(5,[32,48,72,80,108,112,120,162,168,176])

10000th to 10100th 500-amost primes:
7241149198492252834202927258094752774597239286103014697435725917649659974371690699721153852986440733637405206125678822081264723636566725108094369093648384
        <...snipped 99 more equally unreadable numbers...>

Icon and Unicon

Works in both languages.

link "factors"

procedure main()
    every writes(k := 1 to 5,": ") do
        every writes(right(genKap(k),5)\10|"\n")
end

procedure genKap(k)
    suspend (k = *factors(n := seq(q)), n)
end

Output:

->ap
1:     2    3    5    7   11   13   17   19   23   29
2:     4    6    9   10   14   15   21   22   25   26
3:     8   12   18   20   27   28   30   42   44   45
4:    16   24   36   40   54   56   60   81   84   88
5:    32   48   72   80  108  112  120  162  168  176
->

Insitux

(function prime-sieve search siever sieved
  (return-when (empty? siever) (.. vec sieved search))
  (let [p ps] ((juxt 0 (skip 1)) siever))
  (recur (remove #(div? % p) search)
         (remove #(div? % p) ps)
         (append p sieved)))

(function primes n
  (prime-sieve (range 2 (inc n)) (range 2 (ceil (sqrt n))) []))

(function decompose n ps factors
  (return-when (= n 1) factors)
  (let div (find (div? n) ps))
  (recur (/ n div) ps (append div factors)))

(function almost-prime up-to n k
  (return-when (zero? up-to) [])
  (let ps (primes n))
  (if (= k (len (decompose n ps [])))
      (prepend n (almost-prime (dec up-to) (inc n) k))
      (almost-prime up-to (inc n) k)))

(function row n
  (-> n
     @(almost-prime 10 1)
      (join " ")
     @(str n (match n 1 "st" 2 "nd" 3 "rd" "th") " almost-primes: " )))

(join "\n" (map row (range 1 6)))
Output:
1st almost-primes: 2 3 5 7 11 13 17 19 23 29
2nd almost-primes: 4 6 9 10 14 15 21 22 25 26
3rd almost-primes: 8 12 18 20 27 28 30 42 44 45
4th almost-primes: 16 24 36 40 54 56 60 81 84 88
5th almost-primes: 32 48 72 80 108 112 120 162 168 176

J

   (10 {. [:~.[:/:~[:,*/~)^:(i.5)~p:i.10
 2  3  5  7  11  13  17  19  23  29
 4  6  9 10  14  15  21  22  25  26
 8 12 18 20  27  28  30  42  44  45
16 24 36 40  54  56  60  81  84  88
32 48 72 80 108 112 120 162 168 176

Explanation:

  1. Generate 10 primes.
  2. Multiply each of them by the first ten primes
  3. Sort and find unique values, take the first ten of those
  4. Multiply each of them by the first ten primes
  5. Sort and find unique values, take the first ten of those
...

The results of the odd steps in this procedure are the desired result.

Java

public class AlmostPrime {
    public static void main(String[] args) {
        for (int k = 1; k <= 5; k++) {
            System.out.print("k = " + k + ":");

            for (int i = 2, c = 0; c < 10; i++) {
                if (kprime(i, k)) {
                    System.out.print(" " + i);
                    c++;
                }
            }

            System.out.println("");
        }
    }

    public static boolean kprime(int n, int k) {
        int f = 0;
        for (int p = 2; f < k && p * p <= n; p++) {
            while (n % p == 0) {
                n /= p;
                f++;
            }
        }
        return f + ((n > 1) ? 1 : 0) == k;
    }
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

JavaScript

function almostPrime (n, k) {
    var divisor = 2, count = 0
    while(count < k + 1 && n != 1) {
        if (n % divisor == 0) {
            n = n / divisor
            count = count + 1
        } else {
            divisor++
        }
    }
    return count == k
}

for (var k = 1; k <= 5; k++) {
    document.write("<br>k=", k, ": ")
    var count = 0, n = 0
    while (count <= 10) {
        n++
        if (almostPrime(n, k)) {
            document.write(n, " ")
            count++
        }
    }
}
Output:
k=1: 2 3 5 7 11 13 17 19 23 29 31
k=2: 4 6 9 10 14 15 21 22 25 26 33
k=3: 8 12 18 20 27 28 30 42 44 45 50
k=4: 16 24 36 40 54 56 60 81 84 88 90
k=5: 32 48 72 80 108 112 120 162 168 176 180 

jq

Works with: jq version 1.4

Infrastructure:

# Recent versions of jq (version > 1.4) have the following definition of "until":
def until(cond; next):
  def _until:
    if cond then . else (next|_until) end;
  _until;

# relatively_prime(previous) tests whether the input integer is prime
# relative to the primes in the array "previous":
def relatively_prime(previous):
  . as $in
  | (previous|length) as $plen
  # state: [found, ix]
  |  [false, 0]
  | until( .[0] or .[1] >= $plen;
           [ ($in % previous[.[1]]) == 0, .[1] + 1] )
  | .[0] | not ;

# Emit a stream in increasing order of all primes (from 2 onwards)
# that are less than or equal to mx:
def primes(mx):

  # The helper function, next, has arity 0 for tail recursion optimization;
  # it expects its input to be the array of previously found primes:
  def next:
     . as $previous
     | ($previous | .[length-1]) as $last
     | if ($last >= mx) then empty
       else ((2 + $last)
       | until( relatively_prime($previous) ; . + 2)) as $nextp
       | if $nextp <= mx
         then $nextp, (( $previous + [$nextp] ) | next)
	 else empty
         end
       end;
  if mx <= 1 then empty
  elif mx == 2 then 2
  else (2, 3, ( [2,3] | next))
  end
;

# Return an array of the distinct prime factors of . in increasing order
def prime_factors:

  # Return an array of prime factors of . given that "primes"
  # is an array of relevant primes:
  def pf(primes):
    if . <= 1 then []
    else . as $in
    | if ($in | relatively_prime(primes)) then [$in]
      else reduce primes[] as $p
             ([];
              if ($in % $p) != 0 then .
 	      else . + [$p] +  (($in / $p) | pf(primes))
	      end)
      end
      | unique
    end;
    
  if . <= 1 then []
  else . as $in
  | pf( [ primes( (1+$in) | sqrt | floor)  ] )
  end;

# Return an array of prime factors of . repeated according to their multiplicities:
def prime_factors_with_multiplicities:
  # Emit p according to the multiplicity of p
  # in the input integer assuming p > 1
  def multiplicity(p):
    if   .  < p     then empty
    elif . == p     then p
    elif (. % p) == 0 then
       ((./p) | recurse( if (. % p) == 0 then (. / p) else empty end) | p)
    else empty
    end;

  if . <= 1 then []
  else . as $in
  | prime_factors as $primes
  | if ($in|relatively_prime($primes)) then [$in]
    else reduce $primes[]  as $p
           ([];
            if ($in % $p) == 0 then . + [$in|multiplicity($p)] else . end )
    end
  end;

isalmostprime

def isalmostprime(k): (prime_factors_with_multiplicities | length) == k;

# Emit a stream of the first N almost-k primes
def almostprimes(N; k):
  if N <= 0 then empty
  else
    # state [remaining, candidate, answer]
    [N, 1, null]
    | recurse( if .[0] <= 0 then empty
	       elif (.[1] | isalmostprime(k)) then [.[0]-1, .[1]+1, .[1]]
	       else [.[0], .[1]+1, null]
               end)
    | .[2] | select(. != null)
  end;
The task:
range(1;6) as $k | "k=\($k): \([almostprimes(10;$k)])"
Output:
$ jq -c -r -n -f Almost_prime.jq
k=1: [2,3,5,7,11,13,17,19,23,29]
k=2: [4,6,9,10,14,15,21,22,25,26]
k=3: [8,12,18,20,27,28,30,42,44,45]
k=4: [16,24,36,40,54,56,60,81,84,88]
k=5: [32,48,72,80,108,112,120,162,168,176]

Julia

Works with: Julia version 1.1
using Primes

isalmostprime(n::Integer, k::Integer) = sum(values(factor(n))) == k

function almostprimes(N::Integer, k::Integer) # return first N almost-k primes
    P = Vector{typeof(k)}(undef,N)
    i = 0; n = 2
    while i < N
        if isalmostprime(n, k) P[i += 1] = n end
        n += 1
    end
    return P
end

for k in 1:5
    println("$k-Almost-primes: ", join(almostprimes(10, k), ", "), "...")
end
Output:
1-Almost-primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29...
2-Almost-primes: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26...
3-Almost-primes: 8, 12, 18, 20, 27, 28, 30, 42, 44, 45...
4-Almost-primes: 16, 24, 36, 40, 54, 56, 60, 81, 84, 88...
5-Almost-primes: 32, 48, 72, 80, 108, 112, 120, 162, 168, 176...

Kotlin

Translation of: Java
fun Int.k_prime(x: Int): Boolean {
    var n = x
    var f = 0
    var p = 2
    while (f < this && p * p <= n) {
        while (0 == n % p) { n /= p; f++ }
        p++
    }
    return f + (if (n > 1) 1 else 0) == this
}

fun Int.primes(n : Int) : List<Int> {
    var i = 2
    var list = mutableListOf<Int>()
    while (list.size < n) {
        if (k_prime(i)) list.add(i)
        i++
    }
    return list
}

fun main(args: Array<String>) {
    for (k in 1..5)
        println("k = $k: " + k.primes(10))
}
Output:
k = 1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
k = 2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
k = 3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
k = 4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
k = 5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Lua

-- Returns boolean indicating whether n is k-almost prime
function almostPrime (n, k)
    local divisor, count = 2, 0
    while count < k + 1 and n ~= 1 do
        if n % divisor == 0 then
            n = n / divisor
            count = count + 1
        else
            divisor = divisor + 1
        end
    end
    return count == k
end
 
-- Generates table containing first ten k-almost primes for given k
function kList (k)
    local n, kTab = 2^k, {}
    while #kTab < 10 do
        if almostPrime(n, k) then
            table.insert(kTab, n)
        end
        n = n + 1
    end
    return kTab
end

-- Main procedure, displays results from five calls to kList()
for k = 1, 5 do
    io.write("k=" .. k .. ": ")
    for _, v in pairs(kList(k)) do
        io.write(v .. ", ")
    end
    print("...")
end
Output:
k=1: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...
k=2: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, ...
k=3: 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, ...
k=4: 16, 24, 36, 40, 54, 56, 60, 81, 84, 88, ...
k=5: 32, 48, 72, 80, 108, 112, 120, 162, 168, 176, ...

Maple

AlmostPrimes:=proc(k, numvalues::posint:=10)
    local aprimes, i, intfactors;
    aprimes := Array([]);
    i := 0;
    
    do
        i := i + 1;
        intfactors := ifactors(i)[2];
        intfactors := [seq(seq(intfactors[i][1], j=1..intfactors[i][2]),i = 1..numelems(intfactors))];
        if numelems(intfactors) = k then
            ArrayTools:-Append(aprimes,i);
        end if;
    until numelems(aprimes) = 10:
    aprimes;
end proc:
<seq( AlmostPrimes(i), i = 1..5 )>;
Output:
[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29], 
 [4, 6, 9, 10, 14, 15, 21, 22, 25, 26], 
 [8, 12, 18, 20, 27, 28, 30, 42, 44, 45], 
 [16, 24, 36, 40, 54, 56, 60, 81, 84, 88], 
 [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]]

MAD

            NORMAL MODE IS INTEGER
            
            INTERNAL FUNCTION(NN,KK)
            ENTRY TO KPRIME.
            F = 0
            N = NN
            THROUGH SCAN, FOR P=2, 1, F.GE.KK .OR. P*P.G.N
DIV         WHENEVER N.E.N/P*P
                N = N/P
                F = F+1
                TRANSFER TO DIV
            END OF CONDITIONAL
SCAN        CONTINUE
            WHENEVER N.G.1, F = F+1
            FUNCTION RETURN F.E.KK
            END OF FUNCTION
            
            VECTOR VALUES KFMT = $5(S1,2HK=,I1,S1)*$
            VECTOR VALUES PFMT = $5(I4,S1)*$            
            PRINT FORMAT KFMT, 1, 2, 3, 4, 5
            
            DIMENSION KPR(50)            
            THROUGH FNDKPR, FOR K=1, 1, K.G.5
            C=0
            THROUGH FNDKPR, FOR I=2, 1, C.GE.10
            WHENEVER KPRIME.(I,K)
                KPR(C*5+K) = I
                C = C+1
            END OF CONDITIONAL
FNDKPR      CONTINUE

            THROUGH OUT, FOR C=0, 1, C.GE.10
OUT         PRINT FORMAT PFMT, KPR(C*5+1), KPR(C*5+2), KPR(C*5+3),
          0                    KPR(C*5+4), KPR(C*5+5)

            END OF PROGRAM
Output:
 K=1  K=2  K=3  K=4  K=5
   2    4    8   16   32
   3    6   12   24   48
   5    9   18   36   72
   7   10   20   40   80
  11   14   27   54  108
  13   15   28   56  112
  17   21   30   60  120
  19   22   42   81  162
  23   25   44   84  168
  29   26   45   88  176

Mathematica / Wolfram Language

kprimes[k_,n_] :=
  (* generates a list of the n smallest k-almost-primes *)
  Module[{firstnprimes, runningkprimes = {}},
  firstnprimes = Prime[Range[n]];
  runningkprimes = firstnprimes;
  Do[
   runningkprimes = 
     Outer[Times, firstnprimes , runningkprimes ] // Flatten // Union  // Take[#, n] & ; 
   (* only keep lowest n numbers in our running list *)
   , {i, 1, k - 1}];
  runningkprimes
  ]
(* now to create table with n=10 and k ranging from 1 to 5 *)
Table[Flatten[{"k = " <> ToString[i] <> ": ", kprimes[i, 10]}], {i,1,5}] // TableForm
Output:
k = 1: 	2	3	5	7	11	13	17	19	23	29
k = 2: 	4	6	9	10	14	15	21	22	25	26
k = 3: 	8	12	18	20	27	28	30	42	44	45
k = 4: 	16	24	36	40	54	56	60	81	84	88
k = 5: 	32	48	72	80	108	112	120	162	168	176

Maxima

/* Predicate function that checks k-almost primality for given integer n and parameter k */
k_almost_primep(n,k):=if integerp((n)^(1/k)) and primep((n)^(1/k)) then true else 
lambda([x],(length(ifactors(x))=k and unique(map(second,ifactors(x)))=[1]) or (length(ifactors(x))<k and apply("+",map(second,ifactors(x)))=k))(n)$

/* Function that given a parameter k1 returns the first len k1-almost primes */
k_almost_prime_count(k1,len):=block(
    count:len,
    while length(sublist(makelist(i,i,count),lambda([x],k_almost_primep(x,k1))))<len do (count:count+1),
    sublist(makelist(i,i,count),lambda([x],k_almost_primep(x,k1))))$

/* Test cases */
 k_almost_prime_count(1,10);
 k_almost_prime_count(2,10);
 k_almost_prime_count(3,10);
 k_almost_prime_count(4,10);
 k_almost_prime_count(5,10);
Output:
[2,3,5,7,11,13,17,19,23,29]
[4,6,9,10,14,15,21,22,25,26]
[8,12,18,20,27,28,30,42,44,45]
[16,24,36,40,54,56,60,81,84,88]
[32,48,72,80,108,112,120,162,168,176]

MiniScript

primeFactory = function(n=2)
	if n < 2 then return ""
	for i in range(2, n)
		p = floor(n / i)
		q = n % i
		if not q then return str(i) + " " + str(primeFactory(p))
	end for
	return n
end function

getAlmostPrimes = function(k)
	almost = []
	n = 2
	while almost.len < 10
		primes = primeFactory(n).trim.split
		if primes.len == k then almost.push(n)
		n += 1
	end while
	return almost
end function

for i in range(1, 5)
	print i + ": " + getAlmostPrimes(i)
end for
Output:
]run
1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Modula-2

MODULE AlmostPrime;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

PROCEDURE KPrime(n,k : INTEGER) : BOOLEAN;
VAR p,f : INTEGER;
BEGIN
    f := 0;
    p := 2;
    WHILE (f<k) AND (p*p<=n) DO
        WHILE n MOD p = 0 DO
            n := n DIV p;
            INC(f)
        END;
        INC(p)
    END;
    IF n>1 THEN
        RETURN f+1 = k
    END;
    RETURN f = k
END KPrime;

VAR
    buf : ARRAY[0..63] OF CHAR;
    i,c,k : INTEGER;
BEGIN
    FOR k:=1 TO 5 DO
        FormatString("k = %i:", buf, k);
        WriteString(buf);

        i:=2;
        c:=0;
        WHILE c<10 DO
            IF KPrime(i,k) THEN
                FormatString(" %i", buf, i);
                WriteString(buf);
                INC(c)
            END;
            INC(i)
        END;

        WriteLn;
    END;

    ReadChar;
END AlmostPrime.

Nim

proc prime(k: int, listLen: int): seq[int] =
 result = @[]
 var
  test: int = 2
  curseur: int = 0
 while curseur < listLen:
  var
   i: int = 2
   compte = 0
   n = test
  while i <= n:
   if (n mod i)==0:
    n = n div i
    compte += 1
   else:
    i += 1
  if compte == k:
   result.add(test)
   curseur += 1
  test += 1
 
for k in 1..5:
 echo "k = ",k," : ",prime(k,10)
Output:
k = 1 : @[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
k = 2 : @[4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
k = 3 : @[8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
k = 4 : @[16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
k = 5 : @[32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Objeck

Translation of: C
class Kth_Prime {
  function : native : kPrime(n : Int, k : Int) ~ Bool {
    f := 0;
    for (p := 2; f < k & p*p <= n; p+=1;) {
      while (0 = n % p) {
        n /= p; f+=1;
      };
    };
    
    return f + ((n > 1) ? 1 : 0) = k;
  }
  
  function : Main(args : String[]) ~ Nil {
    for (k := 1; k <= 5; k+=1;) {
      "k = {$k}:"->Print();
      
      c := 0;
      for (i := 2; c < 10; i+=1;) {
        if (kPrime(i, k)) {
          " {$i}"->Print();
          c+=1;
        };
      };
      '\n'->Print();
    };
  }
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

Odin

package almostprime
import "core:fmt"
main :: proc() {
	i, c, k: int
	for k in 1 ..= 5 {
		fmt.printf("k = %d:", k)
		for i, c := 2, 0; c < 10; i += 1 {
			if kprime(i, k) {
				fmt.printf(" %v", i)
				c += 1
			}
		}
		fmt.printf("\n")
	}
}
kprime :: proc(n: int, k: int) -> bool {
	p, f: int = 0, 0
	n := n
	for p := 2; f < k && p * p <= n; p += 1 {
		for (0 == n % p) {
			n /= p
			f += 1
		}
	}
	return f + (n > 1 ? 1 : 0) == k
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

Oforth

: kprime?( n k -- b )
| i |
   0 2 n for: i [ 
      while( n i /mod swap 0 = ) [ ->n 1+ ] drop 
      ] 
   k == 
;
 
: table( k -- [] )
| l |
   Array new dup ->l
   2 while (l size 10 <>) [ dup k kprime? if dup l add then 1+ ]
   drop 
;
Output:
>#[ table .cr ] 5 each
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
[8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
[16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
[32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Onyx (wasm)

procedural

package main
use core {printf}
main :: () -> void {
    printf("\n");
    for k in 1..6 {
        printf("k = {}:", k);
        i := 2;
        c: i32;
        while c < 10 {
            if kprime(i, k) {
                printf(" {}", i);
                c += 1;
            }
            i += 1;
        }
        printf("\n");
    }
}
kprime :: (n: i32, k: i32) -> bool {
    f: i32;
    while p := 2; f < k && p * p <= n {
        while n % p == 0 {
            n /= p;
            f += 1;
        }
        p += 1;
    }
    return f + (1 if n > 1 else 0) == k;
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

functional

//+optional-semicolons
use core {printf}
use core.iter

main :: () {
    generator :=
        iter.counter(1)
        |> iter.map(k => .{
            k = k, kprimes = kprime_iter(k)->take(10)
        })
        |> iter.take(5)

    for val in generator {
        printf("k = {}:", val.k)
        for p in val.kprimes do printf(" {}", p)
        printf("\n")
    }
}

kprime_iter :: k =>
       iter.counter(2)
    |> iter.filter((i, [k]) => kprime(i, k))

kprime :: (n, k) => {
    f := 0
    for p in iter.counter(2) {
        if f >= k    do break
        if p * p > n do break

        while n % p == 0 {
            n /= p
            f += 1
        }
    }

    return f + (1 if n > 1 else 0) == k
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

PARI/GP

almost(k)=my(n); for(i=1,10,while(bigomega(n++)!=k,); print1(n", "));
for(k=1,5,almost(k);print)
Output:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
4, 6, 9, 10, 14, 15, 21, 22, 25, 26,
8, 12, 18, 20, 27, 28, 30, 42, 44, 45,
16, 24, 36, 40, 54, 56, 60, 81, 84, 88,
32, 48, 72, 80, 108, 112, 120, 162, 168, 176,

Pascal

Library: primTrial
Works with: Free Pascal
program AlmostPrime;
{$IFDEF FPC}
  {$Mode Delphi}
{$ENDIF}
uses
  primtrial;
var
  i,K,cnt : longWord;
BEGIN
  K := 1;
  repeat
    cnt := 0;
    i := 2;
    write('K=',K:2,':');
    repeat
      if isAlmostPrime(i,K) then
      Begin
        write(i:6,' ');
        inc(cnt);
      end;
      inc(i);
    until cnt = 9;
    writeln;
    inc(k);
  until k > 10;
END.
output
K= 1 :    2     3     5     7    11    13    17    19    23    29
K= 2 :    4     6     9    10    14    15    21    22    25    26
K= 3 :    8    12    18    20    27    28    30    42    44    45
K= 4 :   16    24    36    40    54    56    60    81    84    88
K= 5 :   32    48    72    80   108   112   120   162   168   176
K= 6 :   64    96   144   160   216   224   240   324   336   352
K= 7 :  128   192   288   320   432   448   480   648   672   704
K= 8 :  256   384   576   640   864   896   960  1296  1344  1408
K= 9 :  512   768  1152  1280  1728  1792  1920  2592  2688  2816
K=10 : 1024  1536  2304  2560  3456  3584  3840  5184  5376  5632

Perl

Using a CPAN module, which is simple and fast:

Library: ntheory
use ntheory qw/factor/;
sub almost {
  my($k,$n) = @_;
  my $i = 1;
  map { $i++ while scalar factor($i) != $k; $i++ } 1..$n;
}
say "$_ : ", join(" ", almost($_,10)) for 1..5;
Output:
1 : 2 3 5 7 11 13 17 19 23 29
2 : 4 6 9 10 14 15 21 22 25 26
3 : 8 12 18 20 27 28 30 42 44 45
4 : 16 24 36 40 54 56 60 81 84 88
5 : 32 48 72 80 108 112 120 162 168 176

or writing everything by hand:

use strict;
use warnings;

sub k_almost_prime;

for my $k ( 1 .. 5 ) {
	my $almost = 0;
	print join(", ", map {
		1 until k_almost_prime ++$almost, $k;
		"$almost";
	} 1 .. 10), "\n";
}

sub nth_prime;

sub k_almost_prime {
	my ($n, $k) = @_;
	return if $n <= 1 or $k < 1;
	my $which_prime = 0;
	for my $count ( 1 .. $k ) {
		while( $n % nth_prime $which_prime ) {
			++$which_prime;
		}
		$n /= nth_prime $which_prime;
		return if $n == 1 and $count != $k;
	}
	($n == 1) ? 1 : ();
}

BEGIN {
	# This is loosely based on one of the python solutions
	# to the RC Sieve of Eratosthenes task.
	my @primes = (2, 3, 5, 7);
	my $p_iter = 1;
	my $p = $primes[$p_iter];
	my $q = $p*$p;
	my %sieve;
	my $candidate = $primes[-1] + 2;
	sub nth_prime {
		my $n = shift;
		return if $n < 0;
		OUTER: while( $#primes < $n ) {
			while( my $s = delete $sieve{$candidate} ) {
				my $next = $s + $candidate;
				$next += $s while exists $sieve{$next};
				$sieve{$next} = $s;
				$candidate += 2;
			}
			while( $candidate < $q ) {
				push @primes, $candidate;
				$candidate += 2;
				next OUTER if exists $sieve{$candidate};
			}
			my $twop = 2 * $p;
			my $next = $q + $twop;
			$next += $twop while exists $sieve{$next};
			$sieve{$next} = $twop;
			$p = $primes[++$p_iter];
			$q = $p * $p;	
			$candidate += 2;
		}
		return $primes[$n];
	}
}
Output:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
4, 6, 9, 10, 14, 15, 21, 22, 25, 26
8, 12, 18, 20, 27, 28, 30, 42, 44, 45
16, 24, 36, 40, 54, 56, 60, 81, 84, 88
32, 48, 72, 80, 108, 112, 120, 162, 168, 176

Phixmonti

Translation of: OForth
/# Rosetta Code problem: http://rosettacode.org/wiki/Almost_prime
by Galileo, 06/2022 #/

include ..\Utilitys.pmt

def test tps over mod not enddef

def kprime?
    >ps >ps
    0 ( 2 tps ) for     
        test while
            tps over / int ps> drop >ps 
            swap 1 + swap
        test endwhile
        drop
    endfor
    ps> drop
    ps> ==  
enddef

5 for >ps
    2 ( )
    len 10 < while over tps kprime? if over 0 put endif swap 1 + swap len 10 < endwhile
    nip ps> drop
endfor

pstack
Output:
[[2, 3, 5, 7, 11, 13, 17, 19, 23, 29], [4, 6, 9, 10, 14, 15, 21, 22, 25, 26], [8, 12, 18, 20, 27, 28, 30, 42, 44, 45], [16, 24, 36, 40, 54, 56, 60, 81, 84, 88], [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]]

=== Press any key to exit ===

PHP

Translation of: FreeBASIC
<?php
// Almost prime

function isKPrime($n, $k)
{
    $f = 0;
    for ($j = 2; $j <= $n; $j++) {
        while ($n % $j == 0) {
            if ($f == $k)
                return false;
            $f++;
            $n = floor($n / $j);
        } // while
    } // for $j
    return ($f == $k);
}

for ($k = 1; $k <= 5; $k++) {
    echo "k = ", $k, ":";
    $i = 2;
    $c = 0;
    while ($c < 10) {
        if (isKPrime($i, $k)) {
            echo " ", str_pad($i, 3, ' ', STR_PAD_LEFT);
            $c++;
        } 
        $i++;
    }
    echo PHP_EOL;
}
?>
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

Picat

Translation of: J
go =>
  N = 10,
  Ps = primes(100).take(N),
  println(1=Ps),
  T = Ps,
  foreach(K in 2..5)
    T := mul_take(Ps,T,N),
    println(K=T)
  end,
  nl,
  foreach(K in 6..25)
    T := mul_take(Ps,T,N),
    println(K=T)
  end,
  nl.

% take first N values of L1 x L2 
mul_take(L1,L2,N) = [I*J : I in L1, J in L2, I<=J].sort_remove_dups().take(N).

take(L,N) = [L[I] : I in 1..N].
Output:
1 = [2,3,5,7,11,13,17,19,23,29]
2 = [4,6,9,10,14,15,21,22,25,26]
3 = [8,12,18,20,27,28,30,42,44,45]
4 = [16,24,36,40,54,56,60,81,84,88]
5 = [32,48,72,80,108,112,120,162,168,176]

6 = [64,96,144,160,216,224,240,324,336,352]
7 = [128,192,288,320,432,448,480,648,672,704]
8 = [256,384,576,640,864,896,960,1296,1344,1408]
9 = [512,768,1152,1280,1728,1792,1920,2592,2688,2816]
10 = [1024,1536,2304,2560,3456,3584,3840,5184,5376,5632]
11 = [2048,3072,4608,5120,6912,7168,7680,10368,10752,11264]
12 = [4096,6144,9216,10240,13824,14336,15360,20736,21504,22528]
13 = [8192,12288,18432,20480,27648,28672,30720,41472,43008,45056]
14 = [16384,24576,36864,40960,55296,57344,61440,82944,86016,90112]
15 = [32768,49152,73728,81920,110592,114688,122880,165888,172032,180224]
16 = [65536,98304,147456,163840,221184,229376,245760,331776,344064,360448]
17 = [131072,196608,294912,327680,442368,458752,491520,663552,688128,720896]
18 = [262144,393216,589824,655360,884736,917504,983040,1327104,1376256,1441792]
19 = [524288,786432,1179648,1310720,1769472,1835008,1966080,2654208,2752512,2883584]
20 = [1048576,1572864,2359296,2621440,3538944,3670016,3932160,5308416,5505024,5767168]
21 = [2097152,3145728,4718592,5242880,7077888,7340032,7864320,10616832,11010048,11534336]
22 = [4194304,6291456,9437184,10485760,14155776,14680064,15728640,21233664,22020096,23068672]
23 = [8388608,12582912,18874368,20971520,28311552,29360128,31457280,42467328,44040192,46137344]
24 = [16777216,25165824,37748736,41943040,56623104,58720256,62914560,84934656,88080384,92274688]
25 = [33554432,50331648,75497472,83886080,113246208,117440512,125829120,169869312,176160768,184549376]

PL/I

Translation of: C
almost_prime: procedure options(main);
    kprime: procedure(nn, k) returns(bit);
        declare (n, nn, k, p, f) fixed;
        f = 0;
        n = nn;
        do p=2 repeat(p+1) while(f<k & p*p <= n);
            do n=n repeat(n/p) while(mod(n,p) = 0);
                f = f+1;
            end;
        end;
        return(f + (n>1) = k);
    end kprime;
    
    declare (i, c, k) fixed;
    do k=1 to 5;
        put edit('k = ',k,':') (A,F(1),A);
        c = 0;
        do i=2 repeat(i+1) while(c<10);
            if kprime(i,k) then do;
                put edit(i) (F(4));
                c = c+1;
            end;
        end;
        put skip;
    end;
end almost_prime;
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

PL/M

Translation of: C
100H:
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

PRINT$NUMBER: PROCEDURE (N);
    DECLARE S (4) BYTE INITIAL ('...$');
    DECLARE P ADDRESS, (N, C BASED P) BYTE;
    P = .S(3);
DIGIT:
    P = P - 1;
    C = N MOD 10 + '0';
    N = N / 10;
    IF N > 0 THEN GO TO DIGIT;
    CALL PRINT(P);
END PRINT$NUMBER;

KPRIME: PROCEDURE (N, K) BYTE;
    DECLARE (N, K, P, F) BYTE;
    F = 0;
    P = 2;
    DO WHILE F < K AND P*P <= N;
        DO WHILE N MOD P = 0;
            N = N/P;
            F = F+1;
        END;
        P = P+1;
    END;
    IF N > 1 THEN F = F + 1;
    RETURN F = K;
END KPRIME;

DECLARE (I, C, K) BYTE;
DO K=1 TO 5;
    CALL PRINT(.'K = $');
    CALL PRINT$NUMBER(K);
    CALL PRINT(.':$');
    
    C = 0;
    I = 2;
    DO WHILE C < 10;
        IF KPRIME(I, K) THEN DO;
            CALL PRINT(.' $');
            CALL PRINT$NUMBER(I);
            C = C+1;
        END;
        I = I+1;
    END;
    CALL PRINT(.(13,10,'$'));
END;
CALL EXIT;
EOF
Output:
K = 1: 2 3 5 7 11 13 17 19 23 29
K = 2: 4 6 9 10 14 15 21 22 25 26
K = 3: 8 12 18 20 27 28 30 42 44 45
K = 4: 16 24 36 40 54 56 60 81 84 88
K = 5: 32 48 72 80 108 112 120 162 168 176

Phix

sequence res = columnize({tagset(5)}) -- ie {{1},{2},{3},{4},{5}}
integer n = 2, found = 0
while found<50 do
    integer l = length(prime_factors(n,true))
    if l<=5 and length(res[l])<=10 then
        res[l] &= n
        found += 1
    end if
    n += 1
end while
string fmt = "k = %d: "&join(repeat("%4d",10))&"\n"
for i=1 to 5 do
    printf(1,fmt,res[i])
end for
Output:
k = 1:    2    3    5    7   11   13   17   19   23   29
k = 2:    4    6    9   10   14   15   21   22   25   26
k = 3:    8   12   18   20   27   28   30   42   44   45
k = 4:   16   24   36   40   54   56   60   81   84   88
k = 5:   32   48   72   80  108  112  120  162  168  176

PicoLisp

(de factor (N)
   (make
      (let
         (D 2
            L (1 2 2 . (4 2 4 2 4 6 2 6 .))
            M (sqrt N) )
         (while (>= M D)
            (if (=0 (% N D))
               (setq M 
                  (sqrt (setq N (/ N (link D)))) )
               (inc 'D (pop 'L)) ) )
         (link N) ) ) )

(de almost (N)
   (let (X 2  Y 0)
      (make
         (loop
            (when (and (nth (factor X) N) (not (cdr @)))
               (link X)
               (inc 'Y) )
            (T (= 10 Y) 'done)
            (inc 'X) ) ) ) )
            
(for I 5
   (println I '-> (almost I) ) )

(bye)

Potion

# Converted from C
kprime = (n, k):
  p = 2, f = 0
  while (f < k && p*p <= n):
    while (0 == n % p):
      n /= p
      f++.
    p++.
  n = if (n > 1): 1.
      else: 0.
  f + n == k.

1 to 5 (k):
  "k = " print, k print, ":" print
  i = 2, c = 0
  while (c < 10):
    if (kprime(i, k)): " " print, i print, c++.
    i++
  .
  "" say.

C and Potion take 0.006s, Perl5 0.028s

Prolog

% almostPrime(K, +Take, List) succeeds if List can be unified with the
% first Take K-almost-primes.
% Notice that K need not be specified.
% To avoid having to cache or recompute the first Take primes, we define
% almostPrime/3 in terms of almostPrime/4 as follows:
%
almostPrime(K, Take, List) :-
  % Compute the list of the first Take primes:
  nPrimes(Take, Primes),   
  almostPrime(K, Take, Primes, List).

almostPrime(1, Take, Primes, Primes).

almostPrime(K, Take, Primes, List) :- 
  generate(2, K),  % generate K >= 2
  K1 is K - 1,
  almostPrime(K1, Take, Primes, L),
  multiplylist( Primes, L, Long),
  sort(Long, Sorted), % uniquifies
  take(Take, Sorted, List).

That's it. The rest is machinery. For portability, a compatibility section is included below.

nPrimes( M, Primes) :- nPrimes( [2], M, Primes).

nPrimes( Accumulator, I, Primes) :-
	next_prime(Accumulator, Prime),
	append(Accumulator, [Prime], Next),
	length(Next, N),
	( N = I -> Primes = Next; nPrimes( Next, I, Primes)).

% next_prime(+Primes, NextPrime) succeeds if NextPrime is the next
% prime after a list, Primes, of consecutive primes starting at 2.
next_prime([2], 3).
next_prime([2|Primes], P) :-
	last(Primes, PP),
	P2 is PP + 2,
	generate(P2, N),
	1 is N mod 2,		        % odd
	Max is floor(sqrt(N+1)),	% round-off paranoia 
	forall( (member(Prime, [2|Primes]),
		 (Prime =< Max -> true
		 ; (!, fail))), N mod Prime > 0 ),
	!,
        P = N.

% multiply( +A, +List, Answer )
multiply( A, [], [] ).
multiply( A, [X|Xs], [AX|As] ) :-
  AX is A * X, 
  multiply(A, Xs, As).

% multiplylist( L1, L2, List ) succeeds if List is the concatenation of X * L2
% for successive elements X of L1.
multiplylist( [], B, [] ).
multiplylist( [A|As], B, List ) :-
   multiply(A, B, L1),
   multiplylist(As, B, L2),
   append(L1, L2, List).

take(N, List, Head) :- 
  length(Head, N), 
  append(Head,X,List).
%%%%% compatibility section %%%%%

:- if(current_prolog_flag(dialect, yap)).
generate(Min, I) :- between(Min, inf, I).

append([],L,L).
append([X|Xs], L, [X|Ls]) :- append(Xs,L,Ls).

:- endif.

:- if(current_prolog_flag(dialect, swi)).
generate(Min, I) :- between(Min, inf, I).
:- endif.

:- if(current_prolog_flag(dialect, yap)).
append([],L,L).
append([X|Xs], L, [X|Ls]) :- append(Xs,L,Ls).

last([X], X).
last([_|Xs],X) :- last(Xs,X).
    
:- endif.

:- if(current_prolog_flag(dialect, gprolog)).
generate(Min, I) :- 
  current_prolog_flag(max_integer, Max),
  between(Min, Max, I).
:- endif.

Example using SWI-Prolog:

?- between(1,5,I),
   (almostPrime(I, 10, L) -> writeln(L)), fail.

[2,3,5,7,11,13,17,19,23,29]
[4,6,9,10,14,15,21,22,25,26]
[8,12,18,20,27,28,30,42,44,45]
[16,24,36,40,54,56,60,81,84,88]
[32,48,72,80,108,112,120,162,168,176]

?- time( (almostPrime(5, 10, L), writeln(L))).
[32,48,72,80,108,112,120,162,168,176]
% 1,906 inferences, 0.001 CPU in 0.001 seconds (84% CPU, 2388471 Lips)

Processing

void setup() {
  for (int i = 1; i <= 5; i++) {
    int count = 0;
    print("k = " + i + ": ");
    int n = 2;
    while (count < 10) {
      if (isAlmostPrime(i, n)) {
        count++;
        print(n + " ");
      }
      n++;
    }
    println();
  }
}

boolean isAlmostPrime(int k, int n) {
  if (countPrimeFactors(n) == k) {
    return true;
  } else {
    return false;
  }
}

int countPrimeFactors(int n) {
  int count = 0;
  int i = 2;
  while (n > 1) {
    if (n % i == 0) {
      n /= i;
      count++;
    } else {
      i++;
    }
  }
  return count;
}
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29 
k = 2: 4 6 9 10 14 15 21 22 25 26 
k = 3: 8 12 18 20 27 28 30 42 44 45 
k = 4: 16 24 36 40 54 56 60 81 84 88 
k = 5: 32 48 72 80 108 112 120 162 168 176

Python

This imports Prime decomposition#Python

from prime_decomposition import decompose
from itertools import islice, count
try: 
    from functools import reduce
except: 
    pass


def almostprime(n, k=2):
    d = decompose(n)
    try:
        terms = [next(d) for i in range(k)]
        return reduce(int.__mul__, terms, 1) == n
    except:
        return False

if __name__ == '__main__':
    for k in range(1,6):
        print('%i: %r' % (k, list(islice((n for n in count() if almostprime(n, k)), 10))))
Output:
1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

An updated version with no import dependencies.

# k-Almost-primes
# Python 3.6.3
# no imports
# author: manuelcaeiro | https://github.com/manuelcaeiro 

def prime_factors(m=2):
    
    for i in range(2, m):
        r, q = divmod(m, i)
        if not q:
            return [i] + prime_factors(r)
    return [m]

def k_almost_primes(n, k=2):
    multiples = set()
    lists = list()
    for x in range(k+1):
        lists.append([])

    for i in range(2, n+1):
        if i not in multiples:
            if len(lists[1]) < 10:
                lists[1].append(i)
            multiples.update(range(i*i, n+1, i))
    print("k=1: {}".format(lists[1]))

    for j in range(2, k+1):
        for m in multiples:
            l = prime_factors(m)
            ll = len(l)
            if ll == j and len(lists[j]) < 10:
                lists[j].append(m)

        print("k={}: {}".format(j, lists[j]))

k_almost_primes(200, 5)
# try:
#k_almost_primes(6000, 10)
Output:
>>> %Run k_almost_primes.py
k=1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
k=2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
k=3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
k=4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
k=5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Quackery

primefactors is defined at Prime decomposition#Quackery.

  [ stack ]                    is quantity     (     --> s )
  [ stack ]                    is factors      (     --> s )

  [ factors put
    quantity put
    [] 1
    [ over size
      quantity share != while
      1+ dup primefactors
      size factors share = if
        [ tuck join swap ]
      again ]
    drop
    factors release
    quantity release ]         is almostprimes ( n n --> [ )

  5 times
    [ 10 i^ 1+ dup echo sp
      almostprimes echo cr ]
Output:
1 [ 2 3 5 7 11 13 17 19 23 29 ]
2 [ 4 6 9 10 14 15 21 22 25 26 ]
3 [ 8 12 18 20 27 28 30 42 44 45 ]
4 [ 16 24 36 40 54 56 60 81 84 88 ]
5 [ 32 48 72 80 108 112 120 162 168 176 ]

R

This uses the function from Prime decomposition#R

#===============================================================
# Find k-Almost-primes
# R implementation
#===============================================================
#---------------------------------------------------------------
# Function for prime factorization from Rosetta Code
#---------------------------------------------------------------

findfactors <- function(n) {
  d <- c()
  div <- 2; nxt <- 3; rest <- n
  while( rest != 1 ) {
    while( rest%%div == 0 ) {
      d <- c(d, div)
      rest <- floor(rest / div)
    }
    div <- nxt
    nxt <- nxt + 2
  }
  d
}

#---------------------------------------------------------------
# Find k-Almost-primes
#---------------------------------------------------------------

almost_primes <- function(n = 10, k = 5) {

  # Set up matrix for storing of the results
  
  res <- matrix(NA, nrow = k, ncol = n)
  rownames(res) <- paste("k = ", 1:k, sep = "")
  colnames(res) <- rep("", n)
  
  # Loop over k
  
  for (i in 1:k) {
    
    tmp <- 1 
    
    while (any(is.na(res[i, ]))) { # Keep looping if there are still missing entries in the result-matrix
      if (length(findfactors(tmp)) == i) { # Check number of factors
        res[i, which.max(is.na(res[i, ]))] <- tmp
      }
      tmp <- tmp + 1
    }
  }
  print(res)
}
Output:
k = 1  2  3  5  7  11  13  17  19  23  29
k = 2  4  6  9 10  14  15  21  22  25  26
k = 3  8 12 18 20  27  28  30  42  44  45
k = 4 16 24 36 40  54  56  60  81  84  88
k = 5 32 48 72 80 108 112 120 162 168 176

Racket

#lang racket
(require (only-in math/number-theory factorize))

(define ((k-almost-prime? k) n)
  (= k (for/sum ((f (factorize n))) (cadr f))))

(define KAP-table-values
  (for/list ((k (in-range 1 (add1 5))))
    (define kap? (k-almost-prime? k))
    (for/list ((j (in-range 10)) (i (sequence-filter kap? (in-naturals 1))))
      i)))

(define (format-table t)
  (define longest-number-length
    (add1 (order-of-magnitude (argmax order-of-magnitude (cons (length t) (apply append t))))))
  (define (fmt-val v) (~a v #:width longest-number-length #:align 'right))
  (string-join
   (for/list ((r t) (k (in-naturals 1)))
     (string-append
      (format "║ k = ~a║ " (fmt-val k))
      (string-join (for/list ((c r)) (fmt-val c)) "| ")
      "║"))
   "\n"))

(displayln (format-table KAP-table-values))
Output:
║ k =   1║   2|   3|   5|   7|  11|  13|  17|  19|  23|  29║
║ k =   2║   4|   6|   9|  10|  14|  15|  21|  22|  25|  26║
║ k =   3║   8|  12|  18|  20|  27|  28|  30|  42|  44|  45║
║ k =   4║  16|  24|  36|  40|  54|  56|  60|  81|  84|  88║
║ k =   5║  32|  48|  72|  80| 108| 112| 120| 162| 168| 176║

Raku

(formerly Perl 6)

Translation of: C
Works with: Rakudo version 2015.12
sub is-k-almost-prime($n is copy, $k) returns Bool {
    loop (my ($p, $f) = 2, 0; $f < $k && $p*$p <= $n; $p++) {
        $n /= $p, $f++ while $n %% $p;
    }
    $f + ($n > 1) == $k;
}

for 1 .. 5 -> $k {
    say ~.[^10]
        given grep { is-k-almost-prime($_, $k) }, 2 .. *
}
Output:
2 3 5 7 11 13 17 19 23 29
4 6 9 10 14 15 21 22 25 26
8 12 18 20 27 28 30 42 44 45
16 24 36 40 54 56 60 81 84 88
32 48 72 80 108 112 120 162 168 176

Here is a solution with identical output based on the factors routine from Count_in_factors#Raku (to be included manually until we decide where in the distribution to put it).

constant @primes = 2, |(3, 5, 7 ... *).grep: *.is-prime;

multi sub factors(1) { 1 }
multi sub factors(Int $remainder is copy) {
    gather for @primes -> $factor {
        # if remainder < factor², we're done
        if $factor * $factor > $remainder {
            take $remainder if $remainder > 1;
            last;
        }
        # How many times can we divide by this prime?
        while $remainder %% $factor {
            take $factor;
            last if ($remainder div= $factor) === 1;
        }
    }
}

constant @factory = lazy 0..* Z=> flat (0, 0, map { +factors($_) }, 2..*);

sub almost($n) { map *.key, grep *.value == $n, @factory }

put almost($_)[^10] for 1..5;

REXX

Version 1 naive solution

The method used is to count the number of factors in the number to determine the K-primality.

The first three   k-almost   primes for each   K   group are computed directly   (rather than found).

/*REXX program  computes and displays  the  first  N  K─almost  primes  from   1 ──► K. */
parse arg N K .                                  /*get optional arguments from the C.L. */
if N=='' | N==","  then N=10                     /*N  not specified?   Then use default.*/
if K=='' | K==","  then K= 5                     /*K   "      "          "   "     "    */
                                                 /*W: is the width of K, used for output*/
    do m=1  for  K;     $=2**m;  fir=$           /*generate & assign 1st K─almost prime.*/
    #=1;                if #==N  then leave      /*#: K─almost primes; Enough are found?*/
    #=2;                $=$  3*(2**(m-1))        /*generate & append 2nd K─almost prime.*/
    if #==N  then leave                          /*#: K─almost primes; Enough are found?*/
    if m==1  then _=fir + fir                    /* [↓]  gen & append 3rd K─almost prime*/
             else do;  _=9 * (2**(m-2));    #=3;    $=$  _;    end
        do j=_ + m - 1   until #==N              /*process an  K─almost prime  N  times.*/
        if factr()\==m  then iterate             /*not the correct  K─almost  prime?    */
        #=# + 1;         $=$ j                   /*bump K─almost counter; append it to $*/
        end   /*j*/                              /* [↑]   generate  N  K─almost  primes.*/
    say right(m, length(K))"─almost ("N') primes:'     $
    end       /*m*/                              /* [↑]  display a line for each K─prime*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
factr: z=j;                    do f=0  while z// 2==0;  z=z% 2;  end  /*divisible by  2.*/
                               do f=f  while z// 3==0;  z=z% 3;  end  /*divisible  "  3.*/
                               do f=f  while z// 5==0;  z=z% 5;  end  /*divisible  "  5.*/
                               do f=f  while z// 7==0;  z=z% 7;  end  /*divisible  "  7.*/
                               do f=f  while z//11==0;  z=z%11;  end  /*divisible  " 11.*/
                               do f=f  while z//13==0;  z=z%13;  end  /*divisible  " 13.*/
         do p=17  by 6  while  p<=z              /*insure  P  isn't divisible by three. */
         parse var  p   ''  -1  _                /*obtain the right─most decimal digit. */
                                                 /* [↓]  fast check for divisible by 5. */
         if _\==5  then do; do f=f+1  while z//p==0; z=z%p; end;  f=f-1; end  /*÷ by P? */
         if _ ==3  then iterate                  /*fast check for  X  divisible by five.*/
         x=p+2;             do f=f+1  while z//x==0; z=z%x; end;  f=f-1       /*÷ by X? */
         end   /*i*/                             /* [↑]  find all the factors in  Z.    */

       if f==0  then return 1                    /*if  prime (f==0),  then return unity.*/
                     return f                    /*return to invoker the number of divs.*/
output   when using the default input:
1─almost (10) primes: 2 3 5 7 11 13 17 19 23 29
2─almost (10) primes: 4 6 9 10 14 15 21 22 25 26
3─almost (10) primes: 8 12 18 20 27 28 30 42 44 45
4─almost (10) primes: 16 24 36 40 54 56 60 81 84 88
5─almost (10) primes: 32 48 72 80 108 112 120 162 168 176
0.006 seconds (Regina)
output   when using the input of:     20   12
 1─almost (20) primes: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
 2─almost (20) primes: 4 6 9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57
 3─almost (20) primes: 8 12 18 20 27 28 30 42 44 45 50 52 63 66 68 70 75 76 78 92
 4─almost (20) primes: 16 24 36 40 54 56 60 81 84 88 90 100 104 126 132 135 136 140 150 152
 5─almost (20) primes: 32 48 72 80 108 112 120 162 168 176 180 200 208 243 252 264 270 272 280 300
 6─almost (20) primes: 64 96 144 160 216 224 240 324 336 352 360 400 416 486 504 528 540 544 560 600
 7─almost (20) primes: 128 192 288 320 432 448 480 648 672 704 720 800 832 972 1008 1056 1080 1088 1120 1200
 8─almost (20) primes: 256 384 576 640 864 896 960 1296 1344 1408 1440 1600 1664 1944 2016 2112 2160 2176 2240 2400
 9─almost (20) primes: 512 768 1152 1280 1728 1792 1920 2592 2688 2816 2880 3200 3328 3888 4032 4224 4320 4352 4480 4800
10─almost (20) primes: 1024 1536 2304 2560 3456 3584 3840 5184 5376 5632 5760 6400 6656 7776 8064 8448 8640 8704 8960 9600
11─almost (20) primes: 2048 3072 4608 5120 6912 7168 7680 10368 10752 11264 11520 12800 13312 15552 16128 16896 17280 17408 17920 19200
12─almost (20) primes: 4096 6144 9216 10240 13824 14336 15360 20736 21504 22528 23040 25600 26624 31104 32256 33792 34560 34816 35840 38400
22.380 seconds (Regina)

Version 2: optimized

This optimized REXX version can be   over a hundred times   faster than the naive version.

Some of the optimizations are:

  •   calculating the first   2(K-1)   K─almost primes for each   K   group
  •   generating the primes (up to the limit) instead of dividing by (most) divisors.
  •   extending the   up-front   prime divisors in the factr function.

The 1st optimization (bullet) allows the direct computation   (instead of searching)   of all K─almost primes up to the first   odd   prime in the list.

Once the required primes are generated, the finding of the K─almost primes is almost instantaneous.

/*REXX program  computes and displays  the first    N    K─almost primes from  1 ──► K. */
parse arg N K .                                  /*obtain optional arguments from the CL*/
if N=='' | N==','  then N=10                     /*N  not specified?   Then use default.*/
if K=='' | K==','  then K= 5                     /*K   "      "          "   "     "    */
nn=N;  N=abs(N);   w=length(K)                   /*N positive? Then show K─almost primes*/
limit= (2**K) * N / 2                            /*this is the limit for most K-primes. */
if N==1  then limit=limit * 2                    /*  "   "  "    "    "  a    N    of 1.*/
if K==1  then limit=limit * 4                    /*  "   "  "    "    "  a K─prime  " 2.*/
if K==2  then limit=limit * 2                    /*  "   "  "    "    "  "    "     " 4.*/
if K==3  then limit=limit * 3 % 2                /*  "   "  "    "    "  "    "     " 8.*/
call genPrimes  limit + 1                        /*generate primes up to the  LIMIT + 1.*/
say 'The highest prime computed: '        @.#        " (under the limit of " limit').'
say                                              /* [↓]  define where 1st K─prime is odd*/
d.=0;  d.2=  2;  d.3 =  4;  d.4 =  7;  d.5 = 13;  d.6 = 22;  d.7 =  38;   d.8=63
       d.9=102;  d.10=168;  d.11=268;  d.12=426;  d.13=673;  d.14=1064
d!=0
    do m=1  for  K;    d!=max(d!,d.m)            /*generate & assign 1st K─almost prime.*/
    mr=right(m,w);     mm=m-1

    $=;           do #=1  to min(N, d!)          /*assign some doubled K─almost primes. */
                  $=$  d.mm.# * 2
                  end   /*#*/
    #=#-1
    if m==1  then from=2
             else from=1 + word($, words($) )

        do j=from   until  #==N                  /*process an  K─almost prime  N  times.*/
        if factr()\==m  then iterate             /*not the correct  K─almost  prime?    */
        #=#+1;   $=$ j                           /*bump K─almost counter; append it to $*/
        end   /*j*/                              /* [↑]   generate  N  K─almost  primes.*/

    if nn>0  then say mr"─almost ("N') primes:'     $
             else say '    the last'  mr  "K─almost prime: "   word($, words($))
                                               /* [↓]  assign K─almost primes.*/
          do q=1  for #;     d.m.q=word($,q)             ;   end  /*q*/
          do q=1  for #;  if d.m.q\==d.mm.q*2  then leave;   end  /*q*/
                                               /* [↑]  count doubly-duplicates*/
/*──── say copies('─',40)  'for '   m", "   q-1   'numbers were doubly─duplicated.' ────*/
/*──── say                                                                          ────*/
    end       /*m*/                              /* [↑]  display a line for each K─prime*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
factr: if #.j\==.  then return #.j
       z=j;                                do f=0 while z// 2==0; z=z% 2; end   /*÷ by 2*/
                                           do f=f while z// 3==0; z=z% 3; end   /*÷ "  3*/
                                           do f=f while z// 5==0; z=z% 5; end   /*÷ "  5*/
                                           do f=f while z// 7==0; z=z% 7; end   /*÷ "  7*/
                                           do f=f while z//11==0; z=z%11; end   /*÷ " 11*/
                                           do f=f while z//13==0; z=z%13; end   /*÷ " 13*/
                                           do f=f while z//17==0; z=z%17; end   /*÷ " 17*/
                                           do f=f while z//19==0; z=z%19; end   /*÷ " 19*/

         do i=9    while  @.i<=z;       d=@.i    /*divide by some higher primes.        */
           do f=f  while z//d==0;   z=z%d;  end  /*is  Z  divisible by the  prime  D ?  */
         end   /*i*/                             /* [↑]  find all factors in  Z.        */

       if f==0  then f=1;   #.j=f;   return f    /*Is prime (f≡0)?   Then return unity. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
genPrimes: arg x;             @.=;      @.1=2;     @.2=3;    #.=.;     #=2;     s.#=@.#**2
             do j=@.# +2  by 2  to x             /*only find odd primes from here on.   */
                do p=2  while s.p<=j             /*divide by some known low odd primes. */
                if j//@.p==0  then iterate j     /*Is  J  divisible by X?  Then ¬ prime.*/
                end   /*p*/                      /* [↓]  a prime  (J)  has been found.  */
             #=#+1;    @.#=j;   #.j=1;   s.#=j*j /*bump prime count, and also assign ···*/
             end      /*j*/                      /* ··· the # of factors, prime, prime².*/
           return                                /* [↑]  not an optimal prime generator.*/
output   when using the input of:     20   16
The highest prime computed:  655357  (under the limit of  655360).

 1─almost (20) primes:  2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
 2─almost (20) primes:  4 6 9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57
 3─almost (20) primes:  8 12 18 20 27 28 30 42 44 45 50 52 63 66 68 70 75 76 78 92
 4─almost (20) primes:  16 24 36 40 54 56 60 81 84 88 90 100 104 126 132 135 136 140 150 152
 5─almost (20) primes:  32 48 72 80 108 112 120 162 168 176 180 200 208 243 252 264 270 272 280 300
 6─almost (20) primes:  64 96 144 160 216 224 240 324 336 352 360 400 416 486 504 528 540 544 560 600
 7─almost (20) primes:  128 192 288 320 432 448 480 648 672 704 720 800 832 972 1008 1056 1080 1088 1120 1200
 8─almost (20) primes:  256 384 576 640 864 896 960 1296 1344 1408 1440 1600 1664 1944 2016 2112 2160 2176 2240 2400
 9─almost (20) primes:  512 768 1152 1280 1728 1792 1920 2592 2688 2816 2880 3200 3328 3888 4032 4224 4320 4352 4480 4800
10─almost (20) primes:  1024 1536 2304 2560 3456 3584 3840 5184 5376 5632 5760 6400 6656 7776 8064 8448 8640 8704 8960 9600
11─almost (20) primes:  2048 3072 4608 5120 6912 7168 7680 10368 10752 11264 11520 12800 13312 15552 16128 16896 17280 17408 17920 19200
12─almost (20) primes:  4096 6144 9216 10240 13824 14336 15360 20736 21504 22528 23040 25600 26624 31104 32256 33792 34560 34816 35840 38400
13─almost (20) primes:  8192 12288 18432 20480 27648 28672 30720 41472 43008 45056 46080 51200 53248 62208 64512 67584 69120 69632 71680 76800
14─almost (20) primes:  16384 24576 36864 40960 55296 57344 61440 82944 86016 90112 92160 102400 106496 124416 129024 135168 138240 139264 143360 153600
15─almost (20) primes:  32768 49152 73728 81920 110592 114688 122880 165888 172032 180224 184320 204800 212992 248832 258048 270336 276480 278528 286720 307200
16─almost (20) primes:  65536 98304 147456 163840 221184 229376 245760 331776 344064 360448 368640 409600 425984 497664 516096 540672 552960 557056 573440 614400
0.088 seconds (Regina)

Yes, this is very fast. But both Version 1 and Version 2 are highly optimized for this specific task. They take advantage from the fact that we calculate for k = 1,2,3 and so on, thus use patterns in the generated primes and can pre generate and use a list of primes. In Version 2 you see also several several hardcoded numbers, specific for this task. And by the way, both programs are rather complicated.

A more standard approach, using a procedure Factors (see Prime decomposition), follows.

Version 4 Standard procedures

Libraries: How to use
Library: Numbers
Library: Functions
Library: Settings
Library: Abend

include Settings

say version; say 'k-Almost primes'; say
arg n k m
say 'Direct approach using Factors'
numeric digits 16
if n = '' then
   n = 10
if k = '' then
   k = 5
/* Maximum number to examine */
if m = '' then
   m = 180
call Time('r')
/* Collect almost primes */
ap. = 0
do i = 2 to m
   f = Factors(i); ap.f.0 = ap.f.0+1
   ap = ap.f.0; ap.f.ap = i
end
/* Show results */
do i = 1 to k
   call Charout ,'k='i': '
   do j = 1 to n
      if ap.i.j > 0 then do
         call Charout ,ap.i.j' '
      end
   end
   say
end
say Format(Time('e'),,3) 'seconds'
exit

include Numbers
include Functions
include Abend

The maximum number is parameter here, but may be estimated from n and k, as in Versions 1 and 2.

Output default parameters:
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024
k-Almost primes
Direct approach using Factors
k=1: 2 3 5 7 11 13 17 19 23 29
k=2: 4 6 9 10 14 15 21 22 25 26
k=3: 8 12 18 20 27 28 30 42 44 45
k=4: 16 24 36 40 54 56 60 81 84 88
k=5: 32 48 72 80 108 112 120 162 168 176
0.003 seconds
Output parameters 20 12 39000:
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024 16 digits
k-Almost primes
Direct approach using Factors
k=1: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
k=2: 4 6 9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57
k=3: 8 12 18 20 27 28 30 42 44 45 50 52 63 66 68 70 75 76 78 92
k=4: 16 24 36 40 54 56 60 81 84 88 90 100 104 126 132 135 136 140 150 152
k=5: 32 48 72 80 108 112 120 162 168 176 180 200 208 243 252 264 270 272 280 300
k=6: 64 96 144 160 216 224 240 324 336 352 360 400 416 486 504 528 540 544 560 600
k=7: 128 192 288 320 432 448 480 648 672 704 720 800 832 972 1008 1056 1080 1088 1120 1200
k=8: 256 384 576 640 864 896 960 1296 1344 1408 1440 1600 1664 1944 2016 2112 2160 2176 2240 2400
k=9: 512 768 1152 1280 1728 1792 1920 2592 2688 2816 2880 3200 3328 3888 4032 4224 4320 4352 4480 4800
k=10: 1024 1536 2304 2560 3456 3584 3840 5184 5376 5632 5760 6400 6656 7776 8064 8448 8640 8704 8960 9600
k=11: 2048 3072 4608 5120 6912 7168 7680 10368 10752 11264 11520 12800 13312 15552 16128 16896 17280 17408 17920 19200
k=12: 4096 6144 9216 10240 13824 14336 15360 20736 21504 22528 23040 25600 26624 31104 32256 33792 34560 34816 35840 38400
0.885 seconds
Output parameters 20 16 615000:
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024 16 digits
k-Almost primes
Direct approach using Factors
k=1: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
k=2: 4 6 9 10 14 15 21 22 25 26 33 34 35 38 39 46 49 51 55 57
k=3: 8 12 18 20 27 28 30 42 44 45 50 52 63 66 68 70 75 76 78 92
k=4: 16 24 36 40 54 56 60 81 84 88 90 100 104 126 132 135 136 140 150 152
k=5: 32 48 72 80 108 112 120 162 168 176 180 200 208 243 252 264 270 272 280 300
k=6: 64 96 144 160 216 224 240 324 336 352 360 400 416 486 504 528 540 544 560 600
k=7: 128 192 288 320 432 448 480 648 672 704 720 800 832 972 1008 1056 1080 1088 1120 1200
k=8: 256 384 576 640 864 896 960 1296 1344 1408 1440 1600 1664 1944 2016 2112 2160 2176 2240 2400
k=9: 512 768 1152 1280 1728 1792 1920 2592 2688 2816 2880 3200 3328 3888 4032 4224 4320 4352 4480 4800
k=10: 1024 1536 2304 2560 3456 3584 3840 5184 5376 5632 5760 6400 6656 7776 8064 8448 8640 8704 8960 9600
k=11: 2048 3072 4608 5120 6912 7168 7680 10368 10752 11264 11520 12800 13312 15552 16128 16896 17280 17408 17920 19200
k=12: 4096 6144 9216 10240 13824 14336 15360 20736 21504 22528 23040 25600 26624 31104 32256 33792 34560 34816 35840 38400
k=13: 8192 12288 18432 20480 27648 28672 30720 41472 43008 45056 46080 51200 53248 62208 64512 67584 69120 69632 71680 76800
k=14: 16384 24576 36864 40960 55296 57344 61440 82944 86016 90112 92160 102400 106496 124416 129024 135168 138240 139264 143360 153600
k=15: 32768 49152 73728 81920 110592 114688 122880 165888 172032 180224 184320 204800 212992 248832 258048 270336 276480 278528 286720 307200
k=16: 65536 98304 147456 163840 221184 229376 245760 331776 344064 360448 368640 409600 425984 497664 516096 540672 552960 557056 573440 614400
25.129 seconds

Not too bad! By the way, Version 3 can also generate lists of almost prime over other number ranges. Say you change the first do in 'do 1000000 to m' and run as follows, you get

Output parameters 10 10 1002000:
REXX-Regina_3.9.6(MT) 5.00 29 Apr 2024 16 digits
k-Almost primes
Direct approach using Factors
k=1: 1000003 1000033 1000037 1000039 1000081 1000099 1000117 1000121 1000133 1000151
k=2: 1000001 1000007 1000009 1000011 1000015 1000018 1000019 1000021 1000023 1000031
k=3: 1000002 1000006 1000013 1000014 1000022 1000028 1000029 1000030 1000043 1000046
k=4: 1000005 1000010 1000012 1000017 1000024 1000027 1000034 1000038 1000041 1000042
k=5: 1000004 1000016 1000025 1000035 1000036 1000044 1000056 1000060 1000062 1000072
k=6: 1000020 1000026 1000040 1000048 1000050 1000065 1000076 1000090 1000096 1000100
k=7: 1000125 1000152 1000176 1000200 1000256 1000352 1000368 1000404 1000428 1000431
k=8: 1000008 1000032 1000128 1000272 1000296 1000400 1000416 1000440 1000500 1000560
k=9: 1000064 1000080 1000160 1000192 1000224 1000350 1000480 1000640 1000832 1000896
k=10: 1000320 1000384 1000704 1000800 1001160 1001280 1001376 1001600 1001664 1001952
0.116 seconds

Ring

for ap = 1 to 5
    see "k = " + ap + ":" 
    aList = []
    for n = 1 to 200
        num = 0
        for nr = 1 to n
            if n%nr=0 and isPrime(nr)=1
               num = num + 1 
               pr = nr
               while true
                     pr = pr * nr
                     if n%pr = 0
                        num = num + 1
                     else exit ok
               end ok
        next  
        if (ap = 1 and isPrime(n) = 1) or (ap > 1 and num = ap)
           add(aList, n)
           if len(aList)=10 exit ok ok
     next
     for m = 1 to len(aList)
           see " " + aList[m]
     next 
     see nl
next

func isPrime num
     if (num <= 1) return 0 ok
     if (num % 2 = 0 and num != 2) return 0 ok
     for i = 3 to floor(num / 2) -1 step 2
         if (num % i = 0) return 0 ok
     next
     return 1

Output:

k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

RPL

Translation of: FreeBASIC
Works with: Halcyon Calc version 4.2.8
RPL code Comment
 ≪ → k
  ≪ 0 1 SF
     2 3 PICK FOR j
        WHILE OVER j MOD NOT REPEAT
           IF DUP k == THEN 1 CF OVER 'j' STO END
           1 +
           SWAP j / SWAP
        END
     NEXT
     k == 1 FS? AND SWAP DROP
≫ ≫ 'KPRIM' STO

≪ 5 1 FOR k
     { } 2
     WHILE OVER SIZE 10 < REPEAT
        IF DUP k KPRIM THEN SWAP OVER + SWAP END
        1 + END DROP
    -1 STEP
≫ 'TASK' STO
KPRIM ( n k → boolean ) 
Dim f As Integer = 0
  For i As Integer = 2 To n
    While n Mod i = 0
      If f = k Then Return false 
      f += 1
      n \= i
    Wend
  Next
  Return f = k
End Function








Output:
5 : { 32 48 72 80 108 112 120 162 168 176 }
4 : { 16 24 36 40 54 56 60 81 84 88 }
3 : { 8 12 18 20 27 28 30 42 44 45 }
2 : { 4 6 9 10 14 15 21 22 25 26 }
1 : { 2 3 5 7 9 11 13 17 19 23 29 }

Ruby

require 'prime'

def almost_primes(k=2)
  return to_enum(:almost_primes, k) unless block_given?
  1.step {|n| yield n if n.prime_division.sum( &:last ) == k }
end

(1..5).each{|k| puts almost_primes(k).take(10).join(", ")}
Output:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
4, 6, 9, 10, 14, 15, 21, 22, 25, 26
8, 12, 18, 20, 27, 28, 30, 42, 44, 45
16, 24, 36, 40, 54, 56, 60, 81, 84, 88
32, 48, 72, 80, 108, 112, 120, 162, 168, 176
Translation of: J
require 'prime'

p ar = pr = Prime.take(10)
4.times{p ar = ar.product(pr).map{|(a,b)| a*b}.uniq.sort.take(10)}
Output:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
[8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
[16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
[32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Rust

fn is_kprime(n: u32, k: u32) -> bool {
    let mut primes = 0;
    let mut f = 2;
    let mut rem = n;
    while primes < k && rem > 1{
        while (rem % f) == 0 && rem > 1{
            rem /= f;
            primes += 1;
        }
        f += 1;
    }
    rem == 1 && primes == k
}

struct KPrimeGen {
    k: u32,
    n: u32,
}

impl Iterator for KPrimeGen {
    type Item = u32;
    fn next(&mut self) -> Option<u32> {
        self.n += 1;
        while !is_kprime(self.n, self.k) {
            self.n += 1;
        }
        Some(self.n)
    }
}

fn kprime_generator(k: u32) -> KPrimeGen {
    KPrimeGen {k: k, n: 1}
}

fn main() {
    for k in 1..6 {
        println!("{}: {:?}", k, kprime_generator(k).take(10).collect::<Vec<_>>());
    }
}
Output:
1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Scala

def isKPrime(n: Int, k: Int, d: Int = 2): Boolean = (n, k, d) match {
    case (n, k, _) if n == 1 => k == 0
    case (n, _, d) if n % d == 0 => isKPrime(n / d, k - 1, d)
    case (_, _, _) => isKPrime(n, k, d + 1)
}

def kPrimeStream(k: Int): Stream[Int] = {
    def loop(n: Int): Stream[Int] =
        if (isKPrime(n, k)) n #:: loop(n+ 1)
        else loop(n + 1)
    loop(2)
}

for (k <- 1 to 5) {
    println( s"$k: [${ kPrimeStream(k).take(10) mkString " " }]" )
}
Output:
1: [2 3 5 7 11 13 17 19 23 29]
2: [4 6 9 10 14 15 21 22 25 26]
3: [8 12 18 20 27 28 30 42 44 45]
4: [16 24 36 40 54 56 60 81 84 88]
5: [32 48 72 80 108 112 120 162 168 176]

Seed7

$ include "seed7_05.s7i";

const func boolean: kprime (in var integer: number, in integer: k) is func
  result
    var boolean: kprime is FALSE;
  local
    var integer: p is 2;
    var integer: f is 0;
  begin
    while f < k and p * p <= number do
      while number rem p = 0 do
        number := number div p;
        incr(f);
      end while;
      incr(p);
    end while;
    kprime := f + ord(number > 1) = k;
  end func;

const proc: main is func
  local
    var integer: k is 0;
    var integer: number is 0;
    var integer: count is 0;
  begin
    for k range 1 to 5 do
      write("k = " <& k <& ":");
      count := 0;
      for number range 2 to integer.last until count >= 10 do
        if kprime(number, k) then
          write(" " <& number);
          incr(count);
        end if;
      end for;
      writeln;
    end for;
  end func;
Output:
k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176

SequenceL

import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;

main(args(2)) :=
	let
		result := firstNKPrimes(1 ... 5, 10);
		
		output[i] := "k = " ++ intToString(i) ++ ": " ++ delimit(intToString(result[i]), ' ');
	in
		delimit(output, '\n');
		
firstNKPrimes(k, N) := firstNKPrimesHelper(k, N, 2, []);

firstNKPrimesHelper(k, N, current, result(1)) :=
	let
		newResult := result when not isKPrime(k, current) else result ++ [current]; 
	in
		result when size(result) = N
	else
		firstNKPrimesHelper(k, N, current + 1, newResult);

isKPrime(k, n) := size(primeFactorization(n)) = k;

Using Prime Decomposition Solution [1]

Output:
main.exe
"k = 1: 2 3 5 7 11 13 17 19 23 29
k = 2: 4 6 9 10 14 15 21 22 25 26
k = 3: 8 12 18 20 27 28 30 42 44 45
k = 4: 16 24 36 40 54 56 60 81 84 88
k = 5: 32 48 72 80 108 112 120 162 168 176"

Sidef

Efficient algorithm for generating all the k-almost prime numbers in a given range [a,b]:

func almost_primes(a, b, k) {

    a = max(2**k, a)
    var arr = []

    func (m, lo, k) {

        var hi = idiv(b,m).iroot(k)

        if (k == 1) {

            lo = max(lo, idiv_ceil(a, m))

            each_prime(lo, hi, {|p|
                arr << m*p
            })

            return nil
        }

        each_prime(lo, hi, {|p|

            var t = m*p
            var u = idiv_ceil(a, t)
            var v = idiv(b, t)

            next if (u > v)

            __FUNC__(t, p, k-1)
        })
    }(1, 2, k)

    return arr.sort
}

for k in (1..5) {
    var (x=10, lo=1, hi=2)
    var arr = []
    loop {
        arr += almost_primes(lo, hi, k)
        break if (arr.len >= x)
        lo = hi+1
        hi = 2*lo
    }
    say arr.first(x)
}
Output:
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
[4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
[8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
[16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
[32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Also built-in:

for k in (1..5) {
    var x = 10
    say k.almost_primes(x.nth_almost_prime(k))
}

(same output as above)

Swift

struct KPrimeGen: Sequence, IteratorProtocol {
  let k: Int
  private(set) var n: Int

  private func isKPrime() -> Bool {
    var primes = 0
    var f = 2
    var rem = n

    while primes < k && rem > 1 {
      while rem % f == 0 && rem > 1 {
        rem /= f
        primes += 1
      }

      f += 1
    }

    return rem == 1 && primes == k
  }

  mutating func next() -> Int? {
    n += 1

    while !isKPrime() {
      n += 1
    }

    return n
  }
}

for k in 1..<6 {
  print("\(k): \(Array(KPrimeGen(k: k, n: 1).lazy.prefix(10)))")
}
Output:
1: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
2: [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
3: [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
4: [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
5: [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

Tcl

Works with: Tcl version 8.6
Library: Tcllib (Package: math::numtheory)
package require Tcl 8.6
package require math::numtheory

proc firstNprimes n {
    for {set result {};set i 2} {[llength $result] < $n} {incr i} {
	if {[::math::numtheory::isprime $i]} {
	    lappend result $i
	}
    }
    return $result
}

proc firstN_KalmostPrimes {n k} {
    set p [firstNprimes $n]
    set i [lrepeat $k 0]
    set c {}

    while true {
	dict set c [::tcl::mathop::* {*}[lmap j $i {lindex $p $j}]] ""
	for {set x 0} {$x < $k} {incr x} {
	    lset i $x [set xx [expr {([lindex $i $x] + 1) % $n}]]
	    if {$xx} break
	}
	if {$x == $k} break
    }
    return [lrange [lsort -integer [dict keys $c]] 0 [expr {$n - 1}]]
}

for {set K 1} {$K <= 5} {incr K} {
    puts "$K => [firstN_KalmostPrimes 10 $K]"
}
Output:
1 => 2 3 5 7 11 13 17 19 23 29
2 => 4 6 9 10 14 15 21 22 25 26
3 => 8 12 18 20 27 28 30 42 44 45
4 => 16 24 36 40 54 56 60 81 84 88
5 => 32 48 72 80 108 112 120 162 168 176

TypeScript

Translation of: FreeBASIC
// Almost prime

function isKPrime(n: number, k: number): bool {
  var f = 0;
  for (var i = 2; i <= n; i++)
    while (n % i == 0) {
      if (f == k) 
        return false;
      ++f;
      n = Math.floor(n / i);
    }
  return f == k;
}
   
for (var k = 1; k <= 5; k++) {
  process.stdout.write(`k = ${k}:`);
  var i = 2, c = 0;
  while (c < 10) {
    if (isKPrime(i, k)) {
      process.stdout.write(" " + i.toString().padStart(3, ' '));
      ++c;
    }
    ++i;
  }
  console.log();
}
Output:
k = 1:   2   3   5   7  11  13  17  19  23  29
k = 2:   4   6   9  10  14  15  21  22  25  26
k = 3:   8  12  18  20  27  28  30  42  44  45
k = 4:  16  24  36  40  54  56  60  81  84  88
k = 5:  32  48  72  80 108 112 120 162 168 176

VBA

Translation of: Phix
Private Function kprime(ByVal n As Integer, k As Integer) As Boolean
    Dim p As Integer, factors As Integer
    p = 2
    factors = 0
    Do While factors < k And p * p <= n
        Do While n Mod p = 0
            n = n / p
            factors = factors + 1
        Loop
        p = p + 1
    Loop
    factors = factors - (n > 1) 'true=-1
    kprime = factors = k
End Function
 
Private Sub almost_primeC()
    Dim nextkprime As Integer, count As Integer
    Dim k As Integer
    For k = 1 To 5
        Debug.Print "k ="; k; ":";
        nextkprime = 2
        count = 0
        Do While count < 10
            If kprime(nextkprime, k) Then
                Debug.Print " "; Format(CStr(nextkprime), "@@@@@");
                count = count + 1
            End If
            nextkprime = nextkprime + 1
        Loop
        Debug.Print
    Next k
End Sub
Output:
k = 1 :     2     3     5     7    11    13    17    19    23    29
k = 2 :     4     6     9    10    14    15    21    22    25    26
k = 3 :     8    12    18    20    27    28    30    42    44    45
k = 4 :    16    24    36    40    54    56    60    81    84    88
k = 5 :    32    48    72    80   108   112   120   162   168   176

VBScript

Repurposed the VBScript code for the Prime Decomposition task.

For k = 1 To 5
	count = 0
	increment = 1
	WScript.StdOut.Write "K" & k & ": "
	Do Until count = 10
		If PrimeFactors(increment) = k Then
			WScript.StdOut.Write increment & " "
			count = count + 1
		End If
		increment = increment + 1
	Loop
	WScript.StdOut.WriteLine
Next

Function PrimeFactors(n)
	PrimeFactors = 0
	arrP = Split(ListPrimes(n)," ")
	divnum = n
	Do Until divnum = 1
		For i = 0 To UBound(arrP)-1
			If divnum = 1 Then
				Exit For
			ElseIf divnum Mod arrP(i) = 0 Then
				divnum = divnum/arrP(i) 
				PrimeFactors = PrimeFactors + 1
			End If
		Next
	Loop
End Function
 
Function IsPrime(n)
	If n = 2 Then
		IsPrime = True
	ElseIf n <= 1 Or n Mod 2 = 0 Then
		IsPrime = False
	Else
		IsPrime = True
		For i = 3 To Int(Sqr(n)) Step 2
			If n Mod i = 0 Then
				IsPrime = False
				Exit For
			End If
		Next
	End If
End Function
 
Function ListPrimes(n)
	ListPrimes = ""
	For i = 1 To n
		If IsPrime(i) Then
			ListPrimes = ListPrimes & i & " "
		End If
	Next
End Function
Output:
K1: 2 3 5 7 11 13 17 19 23 29 
K2: 4 6 9 10 14 15 21 22 25 26 
K3: 8 12 18 20 27 28 30 42 44 45 
K4: 16 24 36 40 54 56 60 81 84 88 
K5: 32 48 72 80 108 112 120 162 168 176 

V (Vlang)

Translation of: Go
fn k_prime(n int, k int) bool {
    mut nf := 0
    mut nn := n
    for i in 2..nn + 1 {
        for nn % i == 0 {
            if nf == k {return false}
            nf++
            nn /= i
        }
    }
    return nf == k
}

fn gen(k int, n int) []int {
    mut r := []int{len:n}
    mut nx := 2
    for i in 0..n {
        for !k_prime(nx, k) {nx++}
        r[i] = nx
        nx++
    }
    return r
}

fn main(){
    for k in 1..6 {println('$k ${gen(k,10)}')}
}
Output:
1 [2 3 5 7 11 13 17 19 23 29]
2 [4 6 9 10 14 15 21 22 25 26]
3 [8 12 18 20 27 28 30 42 44 45]
4 [16 24 36 40 54 56 60 81 84 88]
5 [32 48 72 80 108 112 120 162 168 176]

Wren

Translation of: Go
var kPrime = Fn.new { |n, k|
    var nf = 0
    var i = 2
    while (i <= n) {
        while (n%i == 0) {
            if (nf == k) return false
            nf = nf + 1
            n = (n/i).floor
        }
        i = i + 1
    }
    return nf == k
}

var gen = Fn.new { |k, n|
    var r = List.filled(n, 0)
    n = 2
    for (i in 0...r.count) {
        while (!kPrime.call(n, k)) n = n + 1
        r[i] = n
        n = n + 1
    }
    return r
}

for (k in 1..5) System.print("%(k) %(gen.call(k, 10))")
Output:
1 [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
2 [4, 6, 9, 10, 14, 15, 21, 22, 25, 26]
3 [8, 12, 18, 20, 27, 28, 30, 42, 44, 45]
4 [16, 24, 36, 40, 54, 56, 60, 81, 84, 88]
5 [32, 48, 72, 80, 108, 112, 120, 162, 168, 176]

XPL0

func Factors(N);        \Return number of (prime) factors in N
int  N, F, C;
[C:= 0;  F:= 2;
repeat  if rem(N/F) = 0 then
                [C:= C+1;
                N:= N/F;
                ]
        else    F:= F+1;
until   F > N;
return C;
];

int K, C, N;
[for K:= 1 to 5 do
    [C:= 0;
    N:= 2;
    IntOut(0, K);  Text(0, ": ");
    loop [if Factors(N) = K then
            [IntOut(0, N);  ChOut(0, ^ );
            C:= C+1;
            if C >= 10 then quit;
            ];
            N:= N+1;
         ];
         CrLf(0);
    ];
]
Output:
1: 2 3 5 7 11 13 17 19 23 29 
2: 4 6 9 10 14 15 21 22 25 26 
3: 8 12 18 20 27 28 30 42 44 45 
4: 16 24 36 40 54 56 60 81 84 88 
5: 32 48 72 80 108 112 120 162 168 176 

zkl

Translation of: Ruby
Translation of: J

Using the prime generator from task Extensible prime generator#zkl.

Can't say I entirely understand this algorithm. Uses list comprehension to calculate the outer/tensor product (p10 ⊗ ar).

primes:=Utils.Generator(Import("sieve").postponed_sieve);
(p10:=ar:=primes.walk(10)).println();
do(4){
   (ar=([[(x,y);ar;p10;'*]] : Utils.Helpers.listUnique(_).sort()[0,10])).println();
}
Output:
L(2,3,5,7,11,13,17,19,23,29)
L(4,6,9,10,14,15,21,22,25,26)
L(8,12,18,20,27,28,30,42,44,45)
L(16,24,36,40,54,56,60,81,84,88)
L(32,48,72,80,108,112,120,162,168,176)