# Least common multiple

Least common multiple
You are encouraged to solve this task according to the task description, using any language you may know.

Compute the   least common multiple   (LCM)   of two integers.

Given   m   and   n,   the least common multiple is the smallest positive integer that has both   m   and   n   as factors.

Example

The least common multiple of   12   and   18   is   36,       because:

•   12   is a factor     (12 × 3 = 36),     and
•   18   is a factor     (18 × 2 = 36),     and
•   there is no positive integer less than   36   that has both factors.

As a special case,   if either   m   or   n   is zero,   then the least common multiple is zero.

One way to calculate the least common multiple is to iterate all the multiples of   m,   until you find one that is also a multiple of   n.

If you already have   gcd   for greatest common divisor,   then this formula calculates   lcm.

${\displaystyle \operatorname {lcm} (m,n)={\frac {|m\times n|}{\operatorname {gcd} (m,n)}}}$

One can also find   lcm   by merging the prime decompositions of both   m   and   n.

## 11l

F gcd(=a, =b)
L b != 0
(a, b) = (b, a % b)
R a

F lcm(m, n)
R m I/ gcd(m, n) * n

print(lcm(12, 18))
Output:
36


## 360 Assembly

Translation of: PASCAL

For maximum compatibility, this program uses only the basic instruction set (S/360) with 2 ASSIST macros (XDECO,XPRNT).

LCM      CSECT
USING  LCM,R15            use calling register
L      R6,A               a
L      R7,B               b
LR     R8,R6              c=a
LOOPW    LR     R4,R8                c
SRDA   R4,32                shift to next reg
DR     R4,R7                c/b
LTR    R4,R4              while c mod b<>0
BZ     ELOOPW               leave while
AR     R8,R6                c+=a
B      LOOPW              end while
ELOOPW   LPR    R9,R6              c=abs(u)
L      R1,A               a
XDECO  R1,XDEC            edit a
MVC    PG+4(5),XDEC+7     move a to buffer
L      R1,B               b
XDECO  R1,XDEC            edit b
MVC    PG+10(5),XDEC+7    move b to buffer
XDECO  R8,XDEC            edit c
MVC    PG+17(10),XDEC+2   move c to buffer
XPRNT  PG,80              print buffer
XR     R15,R15            return code =0
A        DC     F'1764'            a
B        DC     F'3920'            b
PG       DC     CL80'lcm(00000,00000)=0000000000'  buffer
XDEC     DS     CL12               temp for edit
YREGS
END    LCM
Output:
lcm( 1764, 3920)=     35280


## 8th

: gcd \ a b -- gcd
dup 0 n:= if drop ;; then
tuck \ b a b
n:mod \ b a-mod-b
recurse ;

: lcm \ m n
2dup \ m n m n
n:* \ m n m*n
n:abs \ m n abs(m*n)
-rot \ abs(m*n) m n
gcd \ abs(m*n) gcd(m.n)
n:/mod \ abs / gcd
nip \ abs div gcd
;

: demo \ n m --
2dup "LCM of " . . " and " . . " = " . lcm . ;

12 18 demo cr
-6 14 demo cr
35  0 demo cr

bye

Output:
LCM of 18 and 12 = 36
LCM of 14 and -6 = 42
LCM of 0 and 35 = 0


## Action!

CARD FUNC Lcm(CARD a,b)
CARD tmp,c

IF a=0 OR b=0 THEN
RETURN (0)
FI

IF a<b THEN
tmp=a a=b b=tmp
FI

c=0
DO
c==+1
UNTIL a*c MOD b=0
OD
RETURN(a*c)

PROC Test(CARD a,b)
CARD res

res=Lcm(a,b)
PrintF("LCM of %I and %I is %I%E",a,b,res)
RETURN

PROC Main()
Test(4,6)
Test(120,77)
Test(24,8)
Test(1,56)
Test(12,0)
RETURN
Output:
LCM of 4 and 6 is 12
LCM of 120 and 77 is 9240
LCM of 24 and 8 is 24
LCM of 1 and 56 is 56
LCM of 12 and 0 is 0


with Ada.Text_IO; use Ada.Text_IO;

procedure Lcm_Test is
function Gcd (A, B : Integer) return Integer is
M : Integer := A;
N : Integer := B;
T : Integer;
begin
while N /= 0 loop
T := M;
M := N;
N := T mod N;
end loop;
return M;
end Gcd;

function Lcm (A, B : Integer) return Integer is
begin
if A = 0 or B = 0 then
return 0;
end if;
return abs (A) * (abs (B) / Gcd (A, B));
end Lcm;
begin
Put_Line ("LCM of 12, 18 is" & Integer'Image (Lcm (12, 18)));
Put_Line ("LCM of -6, 14 is" & Integer'Image (Lcm (-6, 14)));
Put_Line ("LCM of 35, 0 is" & Integer'Image (Lcm (35, 0)));
end Lcm_Test;


Output:

LCM of 12, 18 is 36
LCM of -6, 14 is 42
LCM of 35, 0 is 0

## ALGOL 68

BEGIN
PROC gcd = (INT m, n) INT :
BEGIN
INT a := ABS m, b := ABS n;
IF a=0 OR b=0 THEN 0 ELSE
WHILE b /= 0 DO INT t = b; b := a MOD b; a := t OD;
a
FI
END;
PROC lcm = (INT m, n) INT : ( m*n = 0 | 0 | ABS (m*n) % gcd (m, n));
INT m=12, n=18;
printf (($gxg(0)3(xgxg(0))l$,
"The least common multiple of", m, "and", n, "is", lcm(m,n),
"and their greatest common divisor is", gcd(m,n)))
END
Output:
The least common multiple of 12 and 18 is 36 and their greatest common divisor is 6



Note that either or both PROCs could just as easily be implemented as OPs but then the operator priorities would also have to be declared.

## ALGOL W

begin
integer procedure gcd ( integer value a, b ) ;
if b = 0 then a else gcd( b, a rem abs(b) );

integer procedure lcm( integer value a, b ) ;
abs( a * b ) div gcd( a, b );

write( lcm( 15, 20  ) );
end.

## APL

APL provides this function.

      12^18
36


If for any reason we wanted to reimplement it, we could do so in terms of the greatest common divisor by transcribing the formula set out in the task specification into APL notation:

      LCM←{(|⍺×⍵)÷⍺∨⍵}
12 LCM 18
36


## AppleScript

------------------ LEAST COMMON MULTIPLE -----------------

-- lcm :: Integral a => a -> a -> a
on lcm(x, y)
if 0 = x or 0 = y then
0
else
abs(x div (gcd(x, y)) * y)
end if
end lcm

--------------------------- TEST -------------------------
on run

lcm(12, 18)

--> 36
end run

-------------------- GENERIC FUNCTIONS -------------------

-- abs :: Num a => a -> a
on abs(x)
if 0 > x then
-x
else
x
end if
end abs

-- gcd :: Integral a => a -> a -> a
on gcd(x, y)
script
on |λ|(a, b)
if 0 = b then
a
else
|λ|(b, a mod b)
end if
end |λ|
end script

result's |λ|(abs(x), abs(y))
end gcd

Output:
36


## Arendelle

For GCD function check out here

< a , b >

( return ,

abs ( @a * @b ) /
!gcd( @a , @b )

)

## Arturo

lcm: function [x,y][
x * y / gcd @[x y]
]

print lcm 12 18

Output:
36

## Assembly

### x86 Assembly

; lcm.asm: calculates the least common multiple
; of two positive integers
;
; nasm x86_64 assembly (linux) with libc
; assemble: nasm -felf64 lcm.asm; gcc lcm.o
; usage: ./a.out [number1] [number2]

global main
extern printf ; c function: prints formatted output
extern strtol ; c function: converts strings to longs

section .text

main:
push rbp    ; set up stack frame

; rdi contains argc
; if less than 3, exit
cmp rdi, 3
jl incorrect_usage

; push first argument as number
push rsi
mov rdi, [rsi+8]
mov rsi, 0
mov rdx, 10 ; base 10
call strtol
pop rsi
push rax

; push second argument as number
push rsi
mov rdi, [rsi+16]
mov rsi, 0
mov rdx, 10 ; base 10
call strtol
pop rsi
push rax

; pop arguments and call get_gcd
pop rdi
pop rsi
call get_gcd

; print value
mov rdi, print_number
mov rsi, rax
call printf

; exit
mov rax, 0  ; 0--exit success
pop rbp
ret

incorrect_usage:
; rsi already contains argv
mov rsi, [rsi]
call printf
mov rax, 0  ; 0--exit success
pop rbp
ret

db "Usage: %s [number1] [number2]",10,0

print_number:
db "%d",10,0

get_gcd:
push rbp    ; set up stack frame
mov rax, 0
jmp loop

loop:
; keep adding the first argument
; to itself until a multiple
; is found. then, return
push rax
mov rdx, 0
div rsi
cmp rdx, 0
pop rax
je gcd_found
jmp loop

gcd_found:
pop rbp
ret


## ATS

Compile with ‘patscc -o lcm lcm.dats’

#define ATS_DYNLOADFLAG 0       (* No initialization is needed. *)

#include "share/atspre_define.hats"

(********************************************************************)
(*                                                                  *)
(* Declarations.                                                    *)
(*                                                                  *)
(* (These could be ported to a .sats file.)                         *)
(*                                                                  *)

(* lcm for unsigned integer types without constraints. *)
extern fun {tk : tkind}
g0uint_lcm (u : g0uint tk,
v : g0uint tk) :<>
g0uint tk

(* The gcd template function to be expanded when g0uint_lcm is
expanded. Set it to your favorite gcd function. *)
extern fun {tk : tkind}
g0uint_lcm$gcd (u : g0uint tk, v : g0uint tk) :<> g0uint tk (* lcm for signed integer types, giving unsigned results. *) extern fun {tk_signed, tk_unsigned : tkind} g0int_lcm (u : g0int tk_signed, v : g0int tk_signed) :<> g0uint tk_unsigned overload lcm with g0uint_lcm overload lcm with g0int_lcm (********************************************************************) (* *) (* The implementations. *) (* *) implement {tk} g0uint_lcm (u, v) = let val d = g0uint_lcm$gcd<tk> (u, v)
in
(* There is no need to take the absolute value, because this
implementation is strictly for unsigned integers. *)
(u * v) / d
end

implement {tk_signed, tk_unsigned}
g0int_lcm (u, v) =
let
extern castfn
unsigned :
g0int tk_signed -<> g0uint tk_unsigned
in
g0uint_lcm (unsigned (abs u), unsigned (abs v))
end

(********************************************************************)
(*                                                                  *)
(* A test that it actually works.                                   *)
(*                                                                  *)

implement
main0 () =
let
implement {tk}
g0uint_lcm$gcd (u, v) = (* An ugly gcd for the sake of demonstrating that it can be done this way: Euclid’s algorithm written an the ‘Algol’ style, which is not a natural style in ATS. Almost always you want to write a tail-recursive function, instead. I did, however find the ‘Algol’ style very useful when I was migrating matrix routines from Fortran. In reality, you would implement g0uint_lcm$gcd by having it
simply call whatever gcd template function you are using in
$effmask_all begin let var x : g0uint tk = u var y : g0uint tk = v in while (y <> 0) let val z = y in y := x mod z; x := z end; x end end in assertloc (lcm (~6, 14) = 42U); assertloc (lcm (2L, 0L) = 0ULL); assertloc (lcm (12UL, 18UL) = 36UL); assertloc (lcm (12, 22) = 132ULL); assertloc (lcm (7ULL, 31ULL) = 217ULL) end ## AutoHotkey LCM(Number1,Number2) { If (Number1 = 0 || Number2 = 0) Return Var := Number1 * Number2 While, Number2 Num := Number2, Number2 := Mod(Number1,Number2), Number1 := Num Return, Var // Number1 } Num1 = 12 Num2 = 18 MsgBox % LCM(Num1,Num2)  ## AutoIt Func _LCM($a, $b) Local$c, $f,$m = $a,$n = $b$c = 1
While $c <> 0$f = Int($a /$b)
$c =$a - $b *$f
If $c <> 0 Then$a = $b$b = $c EndIf WEnd Return$m * $n /$b
EndFunc   ;==>_LCM


Example

ConsoleWrite(_LCM(12,18) & @LF)
ConsoleWrite(_LCM(-5,12) & @LF)
ConsoleWrite(_LCM(13,0)  & @LF)

36
60
0


--BugFix (talk) 14:32, 15 November 2013 (UTC)

## AWK

# greatest common divisor
function gcd(m, n,    t) {
# Euclid's method
while (n != 0) {
t = m
m = n
n = t % n
}
return m
}

# least common multiple
function lcm(m, n,    r) {
if (m == 0 || n == 0)
return 0
r = m * n / gcd(m, n)
return r < 0 ? -r : r
}

# Read two integers from each line of input.
# Print their least common multiple.
{ print lcm($1,$2) }


Example input and output:

$awk -f lcd.awk 12 18 36 -6 14 42 35 0 0  ## BASIC ### Applesoft BASIC ported from BBC BASIC 10 DEF FN MOD(A) = INT((A / B - INT(A / B)) * B + .05) * SGN(A / B) 20 INPUT"M=";M% 30 INPUT"N=";N% 40 GOSUB 100 50 PRINT R 60 END 100 REM LEAST COMMON MULTIPLE M% N% 110 R = 0 120 IF M% = 0 OR N% = 0 THEN RETURN 130 A% = M% : B% = N% : GOSUB 200"GCD 140 R = ABS(M%*N%)/R 150 RETURN 200 REM GCD ITERATIVE EUCLID A% B% 210 FOR B = B% TO 0 STEP 0 220 C% = A% 230 A% = B 240 B = FN MOD(C%) 250 NEXT B 260 R = ABS(A%) 270 RETURN ### BBC BASIC  DEF FN_LCM(M%,N%) IF M%=0 OR N%=0 THEN =0 ELSE =ABS(M%*N%)/FN_GCD_Iterative_Euclid(M%, N%) DEF FN_GCD_Iterative_Euclid(A%, B%) LOCAL C% WHILE B% C% = A% A% = B% B% = C% MOD B% ENDWHILE = ABS(A%) ### IS-BASIC 100 DEF LCM(A,B)=(A*B)/GCD(A,B) 110 DEF GCD(A,B) 120 DO WHILE B>0 130 LET T=B:LET B=MOD(A,B):LET A=T 140 LOOP 150 LET GCD=A 160 END DEF 170 PRINT LCM(12,18) ### Tiny BASIC Works with: TinyBasic 10 PRINT "First number" 20 INPUT A 30 PRINT "Second number" 40 INPUT B 42 LET Q = A 44 LET R = B 50 IF Q<0 THEN LET Q=-Q 60 IF R<0 THEN LET R=-R 70 IF Q>R THEN GOTO 130 80 LET R = R - Q 90 IF Q=0 THEN GOTO 110 100 GOTO 50 110 LET U = (A*B)/R 111 IF U < 0 THEN LET U = - U 112 PRINT U 120 END 130 LET C=Q 140 LET Q=R 150 LET R=C 160 GOTO 70  ## BASIC256 ### Iterative solution function mcm (m, n) if m = 0 or n = 0 then return 0 if m < n then t = m : m = n : n = t end if cont = 0 do cont += 1 until (m * cont) mod n = 0 return m * cont end function print "lcm( 12, 18) = "; mcm( 12, -18) print "lcm( 15, 12) = "; mcm( 15, 12) print "lcm(-10, -14) = "; mcm(-10, -14) print "lcm( 0, 1) = "; mcm( 0, 1) Output: lcm( 12, 18) = 36 lcm( 15, 12) = 60 lcm(-10, -14) = -70 lcm( 0, 1) = 0 ### Recursive solution Reuses code from Greatest_common_divisor#Recursive_solution and correctly handles negative arguments function gcdp(a, b) if b = 0 then return a return gcdp(b, a mod b) end function function gcd(a, b) return gcdp(abs(a), abs(b)) end function function lcm(a, b) return abs(a * b) / gcd(a, b) end function print "lcm( 12, -18) = "; lcm( 12, -18) print "lcm( 15, 12) = "; lcm( 15, 12) print "lcm(-10, -14) = "; lcm(-10, -14) print "lcm( 0, 1) = "; lcm( 0, 1) Output: lcm( 12, -18) = 36.0 lcm( 15, 12) = 60.0 lcm(-10, -14) = 70.0 lcm( 0, 1) = 0.0 ## Batch File @echo off setlocal enabledelayedexpansion set num1=12 set num2=18 call :lcm %num1% %num2% exit /b :lcm <input1> <input2> if %2 equ 0 ( set /a lcm = %num1%*%num2%/%1 echo LCM = !lcm! pause>nul goto :EOF ) set /a res = %1 %% %2 call :lcm %2 %res% goto :EOF  Output: LCM = 36 ## bc Translation of: AWK /* greatest common divisor */ define g(m, n) { auto t /* Euclid's method */ while (n != 0) { t = m m = n n = t % n } return (m) } /* least common multiple */ define l(m, n) { auto r if (m == 0 || n == 0) return (0) r = m * n / g(m, n) if (r < 0) return (-r) return (r) }  ## BCPL get "libhdr" let lcm(m,n) = m=0 -> 0, n=0 -> 0, abs(m*n) / gcd(m,n) and gcd(m,n) = n=0 -> m, gcd(n, m rem n) let start() be writef("%N*N", lcm(12, 18)) Output: 36 ## Befunge Inputs are limited to signed 16-bit integers. &>:02*1-*:&>:#@!#._:02*1v >28*:*:**+:28*>:*:*/\:vv*-< |<:%/*:*:*82\%*:*:*82<<>28v >$/28*:*:*/*.@^82::+**:*:*<

Input:
12345
-23044
Output:
345660

## BQN

Lcm ← ×÷{𝕨(|𝕊⍟(>⟜0)⊣)𝕩}


Example:

12 Lcm 18

36

## Bracmat

We utilize the fact that Bracmat simplifies fractions (using Euclid's algorithm). The function den$number returns the denominator of a number. (gcd= a b . !arg:(?a.?b) & den$(!a*!b^-1)
* (!a:<0&-1|1)
* !a
);
out$(gcd$(12.18) gcd$(-6.14) gcd$(35.0) gcd$(117.18)) Output: 36 42 35 234 ## Brat gcd = { a, b | true? { a == 0 } { b } { gcd(b % a, a) } } lcm = { a, b | a * b / gcd(a, b) } p lcm(12, 18) # 36 p lcm(14, 21) # 42 ## Bruijn Translation of: Haskell :import std/Math . lcm [[=?1 1 (=?0 0 |(1 / (gcd 1 0) ⋅ 0))]] :test ((lcm (+12) (+18)) =? (+36)) ([[1]]) :test ((lcm (+42) (+25)) =? (+1050)) ([[1]]) ## C #include <stdio.h> int gcd(int m, int n) { int tmp; while(m) { tmp = m; m = n % m; n = tmp; } return n; } int lcm(int m, int n) { return m / gcd(m, n) * n; } int main() { printf("lcm(35, 21) = %d\n", lcm(21,35)); return 0; }  ## C# Using System; class Program { static int gcd(int m, int n) { return n == 0 ? Math.Abs(m) : gcd(n, n % m); } static int lcm(int m, int n) { return Math.Abs(m * n) / gcd(m, n); } static void Main() { Console.WriteLine("lcm(12,18)=" + lcm(12,18)); } }  Output: lcm(12,18)=36 ## C++ Library: Boost #include <boost/math/common_factor.hpp> #include <iostream> int main( ) { std::cout << "The least common multiple of 12 and 18 is " << boost::math::lcm( 12 , 18 ) << " ,\n" << "and the greatest common divisor " << boost::math::gcd( 12 , 18 ) << " !" << std::endl ; return 0 ; }  Output: The least common multiple of 12 and 18 is 36 , and the greatest common divisor 6 !  ### Alternate solution Works with: C++11 #include <cstdlib> #include <iostream> #include <tuple> int gcd(int a, int b) { a = abs(a); b = abs(b); while (b != 0) { std::tie(a, b) = std::make_tuple(b, a % b); } return a; } int lcm(int a, int b) { int c = gcd(a, b); return c == 0 ? 0 : a / c * b; } int main() { std::cout << "The least common multiple of 12 and 18 is " << lcm(12, 18) << ",\n" << "and their greatest common divisor is " << gcd(12, 18) << "!" << std::endl; return 0; }  ## Clojure (defn gcd [a b] (if (zero? b) a (recur b, (mod a b)))) (defn lcm [a b] (/ (* a b) (gcd a b))) ;; to calculate the lcm for a variable number of arguments (defn lcmv [& v] (reduce lcm v))  ## CLU gcd = proc (m, n: int) returns (int) m, n := int$abs(m), int$abs(n) while n ~= 0 do m, n := n, m // n end return(m) end gcd lcm = proc (m, n: int) returns (int) if m=0 cor n=0 then return(0) else return(int$abs(m*n) / gcd(m,n))
end
end lcm

start_up = proc ()
po: stream := stream$primary_output() stream$putl(po, int$unparse(lcm(12, 18))) end start_up Output: 36 ## COBOL  IDENTIFICATION DIVISION. PROGRAM-ID. show-lcm. ENVIRONMENT DIVISION. CONFIGURATION SECTION. REPOSITORY. FUNCTION lcm . PROCEDURE DIVISION. DISPLAY "lcm(35, 21) = " FUNCTION lcm(35, 21) GOBACK . END PROGRAM show-lcm. IDENTIFICATION DIVISION. FUNCTION-ID. lcm. ENVIRONMENT DIVISION. CONFIGURATION SECTION. REPOSITORY. FUNCTION gcd . DATA DIVISION. LINKAGE SECTION. 01 m PIC S9(8). 01 n PIC S9(8). 01 ret PIC S9(8). PROCEDURE DIVISION USING VALUE m, n RETURNING ret. COMPUTE ret = FUNCTION ABS(m * n) / FUNCTION gcd(m, n) GOBACK . END FUNCTION lcm. IDENTIFICATION DIVISION. FUNCTION-ID. gcd. DATA DIVISION. LOCAL-STORAGE SECTION. 01 temp PIC S9(8). 01 x PIC S9(8). 01 y PIC S9(8). LINKAGE SECTION. 01 m PIC S9(8). 01 n PIC S9(8). 01 ret PIC S9(8). PROCEDURE DIVISION USING VALUE m, n RETURNING ret. MOVE m to x MOVE n to y PERFORM UNTIL y = 0 MOVE x TO temp MOVE y TO x MOVE FUNCTION MOD(temp, y) TO Y END-PERFORM MOVE FUNCTION ABS(x) TO ret GOBACK . END FUNCTION gcd.  ## Common Lisp Common Lisp provides the lcm function. It can accept two or more (or less) parameters. CL-USER> (lcm 12 18) 36 CL-USER> (lcm 12 18 22) 396  Here is one way to reimplement it. CL-USER> (defun my-lcm (&rest args) (reduce (lambda (m n) (cond ((or (= m 0) (= n 0)) 0) (t (abs (/ (* m n) (gcd m n)))))) args :initial-value 1)) MY-LCM CL-USER> (my-lcm 12 18) 36 CL-USER> (my-lcm 12 18 22) 396  In this code, the lambda finds the least common multiple of two integers, and the reduce transforms it to accept any number of parameters. The reduce operation exploits how lcm is associative, (lcm a b c) == (lcm (lcm a b) c); and how 1 is an identity, (lcm 1 a) == a. ## Cowgol include "cowgol.coh"; sub gcd(m: uint32, n: uint32): (r: uint32) is while n != 0 loop var t := m; m := n; n := t % n; end loop; r := m; end sub; sub lcm(m: uint32, n: uint32): (r: uint32) is if m==0 or n==0 then r := 0; else r := m*n / gcd(m,n); end if; end sub; print_i32(lcm(12, 18)); print_nl(); Output: 36 ## D import std.stdio, std.bigint, std.math; T gcd(T)(T a, T b) pure nothrow { while (b) { immutable t = b; b = a % b; a = t; } return a; } T lcm(T)(T m, T n) pure nothrow { if (m == 0) return m; if (n == 0) return n; return abs((m * n) / gcd(m, n)); } void main() { lcm(12, 18).writeln; lcm("2562047788015215500854906332309589561".BigInt, "6795454494268282920431565661684282819".BigInt).writeln; }  Output: 36 15669251240038298262232125175172002594731206081193527869 ## Dart main() { int x=8; int y=12; int z= gcd(x,y); var lcm=(x*y)/z; print('$lcm');
}

int gcd(int a,int b)
{
if(b==0)
return a;
if(b!=0)
return gcd(b,a%b);
}


See Pascal.

## DWScript

PrintLn(Lcm(12, 18));


Output:

36

## Draco

proc gcd(word m, n) word:
word t;
while n /= 0 do
t := m;
m := n;
n := t % n
od;
m
corp

proc lcm(word m, n) word:
if m=0 or n=0
then 0
else m*n / gcd(m,n)
fi
corp

proc main() void:
writeln(lcm(12, 18))
corp
Output:
36

## EasyLang

func gcd a b .
while b <> 0
h = b
b = a mod b
a = h
.
return a
.
func lcm a b .
return a / gcd a b * b
.
print lcm 12 18

Output:
36


## EchoLisp

(lcm a b) is already here as a two arguments function. Use foldl to find the lcm of a list of numbers.

(lcm 0 9) → 0
(lcm 444 888)→ 888
(lcm 888 999) → 7992

(define (lcm* list) (foldl lcm (first list) list)) → lcm*
(lcm* '(444 888 999)) → 7992


## Elena

Translation of: C#

ELENA 6.x :

import extensions;
import system'math;

gcd = (m,n => (n == 0) ? (m.Absolute) : (gcd(n,n.mod(m))));

lcm = (m,n => (m * n).Absolute / gcd(m,n));

public program()
{
console.printLine("lcm(12,18)=",lcm(12,18))
}
Output:
lcm(12,18)=36


## Elixir

defmodule RC do
def gcd(a,0), do: abs(a)
def gcd(a,b), do: gcd(b, rem(a,b))

def lcm(a,b), do: div(abs(a*b), gcd(a,b))
end

IO.puts RC.lcm(-12,15)

Output:
60


## Erlang

% Implemented by Arjun Sunel
-module(lcm).
-export([main/0]).

main() ->
lcm(-3,4).

gcd(A, 0) ->
A;

gcd(A, B) ->
gcd(B, A rem B).

lcm(A,B) ->
abs(A*B div gcd(A,B)).

Output:
12


## ERRE

PROGRAM LCM

PROCEDURE GCD(A,B->GCD)
LOCAL C
WHILE B DO
C=A
A=B
B=C MOD B
END WHILE
GCD=ABS(A)
END PROCEDURE

PROCEDURE LCM(M,N->LCM)
IF M=0 OR N=0 THEN
LCM=0
EXIT PROCEDURE
ELSE
GCD(M,N->GCD)
LCM=ABS(M*N)/GCD
END IF
END PROCEDURE

BEGIN
LCM(18,12->LCM)
PRINT("LCM of 18 AND 12 =";LCM)
LCM(14,-6->LCM)
PRINT("LCM of 14 AND -6 =";LCM)
LCM(0,35->LCM)
PRINT("LCM of 0 AND 35 =";LCM)
END PROGRAM
Output:
LCM of 18 and 12 = 36
LCM of 14 and -6 = 42
LCM of 0 and 35 = 0


## Euler

Note % is integer division in Euler, not the mod operator.

begin
new gcd; new lcm;
gcd <-  formal a; formal b;
if b = 0 then a else gcd( b, a mod abs b )
'
;
lcm <-  formal a; formal b;
abs [ a * b ] % gcd( a, b )
'
;

out lcm( 15, 20 )
end $ ## Euphoria function gcd(integer m, integer n) integer tmp while m do tmp = m m = remainder(n,m) n = tmp end while return n end function function lcm(integer m, integer n) return m / gcd(m, n) * n end function ## Excel Excel's LCM can handle multiple values. Type in a cell: =LCM(A1:J1) This will get the LCM on the first 10 cells in the first row. Thus : 12 3 5 23 13 67 15 9 4 2 3605940 ## Ezhil ## இந்த நிரல் இரு எண்களுக்கு இடையிலான மீச்சிறு பொது மடங்கு (LCM), மீப்பெரு பொது வகுத்தி (GCD) என்ன என்று கணக்கிடும் நிரல்பாகம் மீபொம(எண்1, எண்2) @(எண்1 == எண்2) ஆனால் ## இரு எண்களும் சமம் என்பதால், மீபொம அந்த எண்ணேதான் பின்கொடு எண்1 @(எண்1 > எண்2) இல்லைஆனால் சிறியது = எண்2 பெரியது = எண்1 இல்லை சிறியது = எண்1 பெரியது = எண்2 முடி மீதம் = பெரியது % சிறியது @(மீதம் == 0) ஆனால் ## பெரிய எண்ணில் சிறிய எண் மீதமின்றி வகுபடுவதால், பெரிய எண்தான் மீபொம பின்கொடு பெரியது இல்லை தொடக்கம் = பெரியது + 1 நிறைவு = சிறியது * பெரியது @(எண் = தொடக்கம், எண் <= நிறைவு, எண் = எண் + 1) ஆக ## ஒவ்வோர் எண்ணாக எடுத்துக்கொண்டு தரப்பட்ட இரு எண்களாலும் வகுத்துப் பார்க்கின்றோம். முதலாவதாக இரண்டாலும் மீதமின்றி வகுபடும் எண்தான் மீபொம மீதம்1 = எண் % சிறியது மீதம்2 = எண் % பெரியது @((மீதம்1 == 0) && (மீதம்2 == 0)) ஆனால் பின்கொடு எண் முடி முடி முடி முடி அ = int(உள்ளீடு("ஓர் எண்ணைத் தாருங்கள் ")) ஆ = int(உள்ளீடு("இன்னோர் எண்ணைத் தாருங்கள் ")) பதிப்பி "நீங்கள் தந்த இரு எண்களின் மீபொம (மீச்சிறு பொது மடங்கு, LCM) = ", மீபொம(அ, ஆ) ## F# let rec gcd x y = if y = 0 then abs x else gcd y (x % y) let lcm x y = x * y / (gcd x y)  ## Factor The vocabulary math.functions already provides lcm. USING: math.functions prettyprint ; 26 28 lcm .  This program outputs 364. One can also reimplement lcm. USING: kernel math prettyprint ; IN: script : gcd ( a b -- c ) [ abs ] [ [ nip ] [ mod ] 2bi gcd ] if-zero ; : lcm ( a b -- c ) [ * abs ] [ gcd ] 2bi / ; 26 28 lcm .  ## Fermat Func Lecm(a,b)=|a|*|b|/GCD(a,b). ## Forth : gcd ( a b -- n ) begin dup while tuck mod repeat drop ; : lcm ( a b -- n ) over 0= over 0= or if 2drop 0 exit then 2dup gcd abs */ ;  ## Fortran This solution is written as a combination of 2 functions, but a subroutine implementation would work great as well.  integer function lcm(a,b) integer:: a,b lcm = a*b / gcd(a,b) end function lcm integer function gcd(a,b) integer :: a,b,t do while (b/=0) t = b b = mod(a,b) a = t end do gcd = abs(a) end function gcd  ## FreeBASIC ### Iterative solution ' FB 1.05.0 Win64 Function lcm (m As Integer, n As Integer) As Integer If m = 0 OrElse n = 0 Then Return 0 If m < n Then Swap m, n '' to minimize iterations needed Var count = 0 Do count +=1 Loop Until (m * count) Mod n = 0 Return m * count End Function Print "lcm(12, 18) ="; lcm(12, 18) Print "lcm(15, 12) ="; lcm(15, 12) Print "lcm(10, 14) ="; lcm(10, 14) Print Print "Press any key to quit" Sleep  Output: lcm(12, 18) = 36 lcm(15, 12) = 60 lcm(10, 14) = 70  ### Recursive solution Reuses code from Greatest_common_divisor#Recursive_solution and correctly handles negative arguments function gcdp( a as uinteger, b as uinteger ) as uinteger if b = 0 then return a return gcdp( b, a mod b ) end function function gcd(a as integer, b as integer) as uinteger return gcdp( abs(a), abs(b) ) end function function lcm(a as integer, b as integer) as uinteger return abs(a*b)/gcd(a,b) end function print "lcm( 12, -18) = "; lcm(12, -18) print "lcm( 15, 12) = "; lcm(15, 12) print "lcm(-10, -14) = "; lcm(-10, -14) print "lcm( 0, 1) = "; lcm(0,1)  Output: lcm( 12, -18) = 36 lcm( 15, 12) = 60 lcm(-10, -14) = 70 lcm( 0, 1) = 0  ## Frink Frink has a built-in LCM function that handles arbitrarily-large integers. println[lcm[2562047788015215500854906332309589561, 6795454494268282920431565661684282819]] ## FunL FunL has function lcm in module integers with the following definition: def lcm( _, 0 ) = 0 lcm( 0, _ ) = 0 lcm( x, y ) = abs( (x\gcd(x, y)) y ) ## GAP # Built-in LcmInt(12, 18); # 36  ## Go package main import ( "fmt" "math/big" ) var m, n, z big.Int func init() { m.SetString("2562047788015215500854906332309589561", 10) n.SetString("6795454494268282920431565661684282819", 10) } func main() { fmt.Println(z.Mul(z.Div(&m, z.GCD(nil, nil, &m, &n)), &n)) }  Output: 15669251240038298262232125175172002594731206081193527869  ## Groovy def gcd gcd = { m, n -> m = m.abs(); n = n.abs(); n == 0 ? m : m%n == 0 ? n : gcd(n, m % n) } def lcd = { m, n -> Math.abs(m * n) / gcd(m, n) } [[m: 12, n: 18, l: 36], [m: -6, n: 14, l: 42], [m: 35, n: 0, l: 0]].each { t -> println "LCD of$t.m, $t.n is$t.l"
assert lcd(t.m, t.n) == t.l
}

Output:
LCD of 12, 18 is 36
LCD of -6, 14 is 42
LCD of 35, 0 is 0

## GW-BASIC

Translation of: C
Works with: PC-BASIC version any
10 PRINT "LCM(35, 21) = ";
20 LET MLCM = 35
30 LET NLCM = 21
40 GOSUB 200: ' Calculate LCM
50 PRINT LCM
60 END

195 ' Calculate LCM
200 LET MGCD = MLCM
210 LET NGCD = NLCM
220 GOSUB 400: ' Calculate GCD
230 LET LCM = MLCM / GCD * NLCM
240 RETURN

395 ' Calculate GCD
400 WHILE MGCD <> 0
410  LET TMP = MGCD
420  LET MGCD = NGCD MOD MGCD
430  LET NGCD = TMP
440 WEND
450 LET GCD = NGCD
460 RETURN


That is already available as the function lcm in the Prelude. Here's the implementation:

lcm :: (Integral a) => a -> a -> a
lcm _ 0 =  0
lcm 0 _ =  0
lcm x y =  abs ((x quot (gcd x y)) * y)


## Icon and Unicon

The lcm routine from the Icon Programming Library uses gcd. The routine is

link numbers
procedure main()
write("lcm of 18, 36 = ",lcm(18,36))
write("lcm of 0, 9 = ",lcm(0,9))
end


numbers provides lcm and gcd and looks like this:

procedure lcm(i, j)		#: least common multiple
if (i =  0) | (j = 0) then return 0
return abs(i * j) / gcd(i, j)
end


## J

J provides the dyadic verb *. which returns the least common multiple of its left and right arguments.

      12 *. 18
36
12 *. 18 22
36 132
*./ 12 18 22
396
0 1 0 1 *. 0 0 1 1  NB. for truth valued arguments (0 and 1) it is equivalent to "and"
0 0 0 1
*./~ 0 1
0 0
0 1


Note: least common multiple is the original boolean multiplication. Constraining the universe of values to 0 and 1 allows us to additionally define logical negation (and boolean algebra was redefined to include this constraint in the early 1900s - the original concept of boolean algebra is now known as a boolean ring (though, talking to some people: there's been some linguistic drift even there)).

## Java

import java.util.Scanner;

public class LCM{
public static void main(String[] args){
Scanner aScanner = new Scanner(System.in);

//prompts user for values to find the LCM for, then saves them to m and n
System.out.print("Enter the value of m:");
int m = aScanner.nextInt();
System.out.print("Enter the value of n:");
int n = aScanner.nextInt();
int lcm = (n == m || n == 1) ? m :(m == 1 ? n : 0);
/* this section increases the value of mm until it is greater
/ than or equal to nn, then does it again when the lesser
/ becomes the greater--if they aren't equal. If either value is 1,
/ no need to calculate*/
if (lcm == 0) {
int mm = m, nn = n;
while (mm != nn) {
while (mm < nn) { mm += m; }
while (nn < mm) { nn += n; }
}
lcm = mm;
}
System.out.println("lcm(" + m + ", " + n + ") = " + lcm);
}
}


## JavaScript

### ES5

Computing the least common multiple of an integer array, using the associative law:

${\displaystyle \operatorname {lcm} (a,b,c)=\operatorname {lcm} (\operatorname {lcm} (a,b),c),}$

${\displaystyle \operatorname {lcm} (a_{1},a_{2},\ldots ,a_{n})=\operatorname {lcm} (\operatorname {lcm} (a_{1},a_{2},\ldots ,a_{n-1}),a_{n}).}$

function LCM(A)  // A is an integer array (e.g. [-50,25,-45,-18,90,447])
{
var n = A.length, a = Math.abs(A[0]);
for (var i = 1; i < n; i++)
{ var b = Math.abs(A[i]), c = a;
while (a && b){ a > b ? a %= b : b %= a; }
a = Math.abs(c*A[i])/(a+b);
}
return a;
}

/* For example:
LCM([-50,25,-45,-18,90,447]) -> 67050
*/


### ES6

(() => {
'use strict';

// gcd :: Integral a => a -> a -> a
let gcd = (x, y) => {
let _gcd = (a, b) => (b === 0 ? a : _gcd(b, a % b)),
abs = Math.abs;
return _gcd(abs(x), abs(y));
}

// lcm :: Integral a => a -> a -> a
let lcm = (x, y) =>
x === 0 || y === 0 ? 0 : Math.abs(Math.floor(x / gcd(x, y)) * y);

// TEST
return lcm(12, 18);

})();

Output:
36

## jq

Direct method

# Define the helper function to take advantage of jq's tail-recursion optimization
def lcm(m; n):
def _lcm:
# state is [m, n, i]
if (.[2] % .[1]) == 0 then .[2] else (.[0:2] + [.[2] + m]) | _lcm end;
[m, n, m] | _lcm;

## Julia

Built-in function:

lcm(m,n)


## K

### K3

Works with: Kona
   gcd:{:[~x;y;_f[y;x!y]]}
lcm:{_abs _ x*y%gcd[x;y]}

lcm .'(12 18; -6 14; 35 0)
36 42 0
lcm/1+!20
232792560


### K6

Works with: ngn/k
   abs:|/-:\
gcd:{$[~x;y;o[x!y;x]]} lcm:{abs[i$x*y%gcd[x;y]]}

lcm .'(12 18; -6 14; 35 0)
36 42 0
lcm/1+!20
232792560


## Klingphix

:gcd { u v -- n }
abs int swap abs int swap

[over over mod rot drop]
[dup]
while
drop
;

:lcm { m n -- n }
over over gcd rot swap div mult
;

12 18 lcm print nl  { 36 }

"End " input

## Kotlin

fun main(args: Array<String>) {
fun gcd(a: Long, b: Long): Long = if (b == 0L) a else gcd(b, a % b)
fun lcm(a: Long, b: Long): Long = a / gcd(a, b) * b
println(lcm(15, 9))
}


## LabVIEW

Requires GCD. This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.

## Lasso

define gcd(a,b) => {
while(#b != 0) => {
local(t = #b)
#b = #a % #b
#a = #t
}
return #a
}
define lcm(m,n) => {
#m == 0 || #n == 0 ? return 0
local(r = (#m * #n) / decimal(gcd(#m, #n)))
return integer(#r)->abs
}

lcm(-6, 14)
lcm(2, 0)
lcm(12, 18)
lcm(12, 22)
lcm(7, 31)

Output:
42
0
36
132
217

## Liberty BASIC

print "Least Common Multiple of 12 and 18 is "; LCM(12, 18)
end

function LCM(m, n)
LCM = abs(m * n) / GCD(m, n)
end function

function GCD(a, b)
while b
c = a
a = b
b = c mod b
wend
GCD = abs(a)
end function

## Logo

to abs :n
output sqrt product :n :n
end

to gcd :m :n
output ifelse :n = 0 [ :m ] [ gcd :n modulo :m :n ]
end

to lcm :m :n
output quotient (abs product :m :n) gcd :m :n
end

Demo code:

print lcm 38 46

Output:

874

## Lua

function gcd( m, n )
while n ~= 0 do
local q = m
m = n
n = q % n
end
return m
end

function lcm( m, n )
return ( m ~= 0 and n ~= 0 ) and m * n / gcd( m, n ) or 0
end

print( lcm(12,18) )


## m4

This should work with any POSIX-compliant m4. I have tested it with OpenBSD m4, GNU m4, and Heirloom Devtools m4.

divert(-1)

define(gcd',
ifelse(eval(0 <= (' $1 )'),0',gcd(eval(-('$1 )'),eval((' $2 )'))', eval(0 <= ('$2 )'),0',gcd(eval((' $1 )'),eval(-('$2 )'))',
eval((' $1 ) == 0'),0',gcd(eval(('$2 ) % (' $1 )'),eval(('$1 )'))',
eval((' $2 )'))') define(lcm', ifelse(eval(0 <= ('$1 )'),0',lcm(eval(-(' $1 )'),eval(('$2 )'))',
eval(0 <= (' $2 )'),0',lcm(eval(('$1 )'),eval(-(' $2 )'))', eval(('$1 ) == 0'),0',eval((' $1 ) * ('$2 ) /' gcd(eval((' $1 )'),eval(('$2 )')))')')

divert'dnl
dnl
lcm(-6, 14) = 42
lcm(2, 0) = 0
lcm(12, 18) = 36
lcm(12, 22) = 132
lcm(7, 31) = 217
Output:
42 = 42
0 = 0
36 = 36
132 = 132
217 = 217

## Maple

The least common multiple of two integers is computed by the built-in procedure ilcm in Maple. This should not be confused with lcm, which computes the least common multiple of polynomials.

> ilcm( 12, 18 );
36

## Mathematica /Wolfram Language

LCM[18,12]
-> 36


## MATLAB / Octave

 lcm(a,b)


## Maxima

lcm(a, b);   /* a and b may be integers or polynomials */

/* In Maxima the gcd of two integers is always positive, and a * b = gcd(a, b) * lcm(a, b),
so the lcm may be negative. To get a positive lcm, simply do */

abs(lcm(a, b))


## Microsoft Small Basic

Translation of: C
Textwindow.Write("LCM(35, 21) = ")
mlcm = 35
nlcm = 21
CalculateLCM()
TextWindow.WriteLine(lcm)

Sub CalculateLCM
mgcd = mlcm
ngcd = nlcm
CalculateGCD()
lcm = mlcm / gcd * nlcm
EndSub

Sub CalculateGCD
While mgcd <> 0
tmp = mgcd
mgcd = Math.Remainder(ngcd, mgcd)
ngcd = tmp
EndWhile
gcd = ngcd
EndSub

## MiniScript

gcd = function(a, b)
while b
temp = b
b = a % b
a = temp
end while
return abs(a)
end function

lcm = function(a,b)
if not a and not b then return 0
return abs(a * b) / gcd(a, b)
end function

print lcm(18,12)

Output:
36

## MiniZinc

function var int: lcm(int: a2,int:b2) =
let {
int:a1 = max(a2,b2);
int:b1 = min(a2,b2);
array[0..a1,0..b1] of var int: gcd;
constraint forall(a in 0..a1)(
forall(b in 0..b1)(
gcd[a,b] ==
if (b == 0) then
a
else
gcd[b, a mod b]
endif
)
)
} in (a1*b1) div gcd[a1,b1];

var int: lcm1 = lcm(18,12);
solve satisfy;
output [show(lcm1),"\n"];
Output:
36

## min

Works with: min version 0.19.6
((0 <) (-1 *) when) :abs
((dup 0 ==) (pop abs) (swap over mod) () linrec) :gcd
(over over gcd '* dip div) :lcm

## МК-61/52

ИПA	ИПB	*	|x|	ПC	ИПA	ИПB	/	[x]	П9
ИПA	ИПB	ПA	ИП9	*	-	ПB	x=0	05	ИПC
ИПA	/	С/П


## ML

### mLite

fun gcd (a, 0) = a
| (0, b) = b
| (a, b) where (a < b)
= gcd (a, b rem a)
| (a, b) = gcd (b, a rem b)

fun lcm (a, b) = let val d = gcd (a, b)
in a * b div d
end


## Modula-2

Translation of: C
Works with: ADW Modula-2 version any (Compile with the linker option Console Application).
MODULE LeastCommonMultiple;

FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;

PROCEDURE GCD(M, N: INTEGER): INTEGER;
VAR
Tmp: INTEGER;
BEGIN
WHILE M <> 0 DO
Tmp := M;
M := N MOD M;
N := Tmp;
END;
RETURN N;
END GCD;

PROCEDURE LCM(M, N: INTEGER): INTEGER;
BEGIN
RETURN M / GCD(M, N) * N;
END LCM;

BEGIN
WriteString("LCM(35, 21) = ");
WriteInt(LCM(35, 21), 1);
WriteLn;
END LeastCommonMultiple.


## Nanoquery

def gcd(a, b)
if (a < 1) or (b < 1)
throw new(InvalidNumberException, "gcd cannot be calculated on values < 1")
end

c = 0
while b != 0
c = a
a = b
b = c % b
end

return a
end

def lcm(m, n)
return (m * n) / gcd(m, n)
end

println lcm(12, 18)
println lcm(6, 14)
println lcm(1,2) = lcm(2,1)
Output:
36
42
true

## NetRexx

/* NetRexx */
options replace format comments java crossref symbols nobinary

numeric digits 3000

runSample(arg)
return

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method lcm(m_, n_) public static
L_ = m_ * n_ % gcd(m_, n_)
return L_

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-- Euclid's algorithm - iterative implementation
method gcd(m_, n_) public static
loop while n_ > 0
c_ = m_ // n_
m_ = n_
n_ = c_
end
return m_

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
parse arg samples
if samples = '' | samples = '.' then
samples = '-6 14 =    42 |' -
'3  4 =    12 |' -
'18 12 =    36 |' -
'2  0 =     0 |' -
'0 85 =     0 |' -
'12 18 =    36 |' -
'5 12 =    60 |' -
'12 22 =   132 |' -
'7 31 =   217 |' -
'117 18 =   234 |' -
'38 46 =   874 |' -
'18 12 -5 =   180 |' -
'-5 18 12 =   180 |' - -- confirm that other permutations work
'12 -5 18 =   180 |' -
'18 12 -5 97 = 17460 |' -
'30 42 =   210 |' -
'30 42 =     . |' - -- 210; no verification requested
'18 12'             -- 36

loop while samples \= ''
parse samples sample '|' samples
loop while sample \= ''
parse sample mnvals '=' chk sample
if chk = '' then chk = '.'
mv = mnvals.word(1)
loop w_ = 2 to mnvals.words mnvals
nv = mnvals.word(w_)
mv = mv.abs
nv = nv.abs
mv = lcm(mv, nv)
end w_
lv = mv
select case chk
when '.' then state = ''
when lv  then state = '(verified)'
otherwise     state = '(failed)'
end
mnvals = mnvals.space(1, ',').changestr(',', ', ')
say 'lcm of' mnvals.right(15.max(mnvals.length)) 'is' lv.right(5.max(lv.length)) state
end
end

return

Output:
lcm of          -6, 14 is    42 (verified)
lcm of            3, 4 is    12 (verified)
lcm of          18, 12 is    36 (verified)
lcm of            2, 0 is     0 (verified)
lcm of           0, 85 is     0 (verified)
lcm of          12, 18 is    36 (verified)
lcm of           5, 12 is    60 (verified)
lcm of          12, 22 is   132 (verified)
lcm of           7, 31 is   217 (verified)
lcm of         117, 18 is   234 (verified)
lcm of          38, 46 is   874 (verified)
lcm of      18, 12, -5 is   180 (verified)
lcm of      -5, 18, 12 is   180 (verified)
lcm of      12, -5, 18 is   180 (verified)
lcm of  18, 12, -5, 97 is 17460 (verified)
lcm of          30, 42 is   210 (verified)
lcm of          30, 42 is   210
lcm of          18, 12 is    36


## Nim

The standard module "math" provides a function "lcm" for two integers and for an open array of integers. If we absolutely want to compute the least common multiple with our own procedure, it can be done this way (less efficient than the function in the standard library which avoids the modulo):

proc gcd(u, v: int): auto =
var
u = u
v = v
while v != 0:
u = u %% v
swap u, v
abs(u)

proc lcm(a, b: int): auto = abs(a * b) div gcd(a, b)

echo lcm(12, 18)
echo lcm(-6, 14)

Output:
36
42

## Objeck

Translation of: C
class LCM {
function : Main(args : String[]) ~ Nil {
IO.Console->Print("lcm(35, 21) = ")->PrintLine(lcm(21,35));
}

function : lcm(m : Int, n : Int) ~ Int {
return m / gcd(m, n) * n;
}

function : gcd(m : Int, n : Int) ~ Int {
tmp : Int;
while(m <> 0) { tmp := m; m := n % m; n := tmp; };
return n;
}
}

## OCaml

let rec gcd u v =
if v <> 0 then (gcd v (u mod v))
else (abs u)

let lcm m n =
match m, n with
| 0, _ | _, 0 -> 0
| m, n -> abs (m * n) / (gcd m n)

let () =
Printf.printf "lcm(35, 21) = %d\n" (lcm 21 35)


## Oforth

lcm is already defined into Integer class :

12 18 lcm

## ooRexx

say lcm(18, 12)

-- calculate the greatest common denominator of a numerator/denominator pair
::routine gcd private
use arg x, y

loop while y \= 0
-- check if they divide evenly
temp = x // y
x = y
y = temp
end
return x

-- calculate the least common multiple of a numerator/denominator pair
::routine lcm private
use arg x, y
return x / gcd(x, y) * y


## Order

Translation of: bc
#include <order/interpreter.h>

#define ORDER_PP_DEF_8gcd ORDER_PP_FN( \
8fn(8U, 8V,                            \
8if(8isnt_0(8V), 8gcd(8V, 8remainder(8U, 8V)), 8U)))

#define ORDER_PP_DEF_8lcm ORDER_PP_FN( \
8fn(8X, 8Y,                            \
8if(8or(8is_0(8X), 8is_0(8Y)),     \
0,                             \
8quotient(8times(8X, 8Y), 8gcd(8X, 8Y)))))
// No support for negative numbers

ORDER_PP( 8to_lit(8lcm(12, 18)) )   // 36


## PARI/GP

Built-in function:

lcm

## Pascal

Program LeastCommonMultiple(output);

{$IFDEF FPC} {$MODE DELPHI}
{$ENDIF} function lcm(a, b: longint): longint; begin result := a; while (result mod b) <> 0 do inc(result, a); end; begin writeln('The least common multiple of 12 and 18 is: ', lcm(12, 18)); end.  Output: The least common multiple of 12 and 18 is: 36  ## PascalABC.NET function GCD(a,b: integer): integer; begin while b > 0 do (a,b) := (b,a mod b); Result := a; end; function LCM(a,b: integer): integer := a = 0 ? 0 : a div GCD(a,b) * b; begin Println(LCM(12,18)); end.  Output: 36  ## Perl Using GCD: sub gcd { my ($x, $y) = @_; while ($x) { ($x,$y) = ($y %$x, $x) }$y
}

sub lcm {
my ($x,$y) = @_;
($x &&$y) and $x / gcd($x, $y) *$y or 0
}

print lcm(1001, 221);


Or by repeatedly increasing the smaller of the two until LCM is reached:

sub lcm {
use integer;
my ($x,$y) = @_;
my ($f,$s) = @_;
while ($f !=$s) {
($f,$s, $x,$y) = ($s,$f, $y,$x) if $f >$s;
$f =$s / $x *$x;
$f +=$x if $f <$s;
}
$f } print lcm(1001, 221);  ## Phix It is a builtin function, defined in builtins\gcd.e and accepting either two numbers or a single sequence of any length. with javascript_semantics ?lcm(12,18) ?lcm({12,18})  Output: 36 36  ## Phixmonti def gcd /# u v -- n #/ abs int swap abs int swap dup while over over mod rot drop dup endwhile drop enddef def lcm /# m n -- n #/ over over gcd rot swap / * enddef 12345 50 lcm print ## PHP Translation of: D echo lcm(12, 18) == 36; function lcm($m, $n) { if ($m == 0 || $n == 0) return 0;$r = ($m *$n) / gcd($m,$n);
return abs($r); } function gcd($a, $b) { while ($b != 0) {
$t =$b;
$b =$a % $b;$a = $t; } return$a;
}


## Picat

Picat has a built-in function gcd/2.

### Function

lcm(X,Y)= abs(X*Y)//gcd(X,Y).

### Predicate

lcm(X,Y,LCM) => LCM = abs(X*Y)//gcd(X,Y).

### Functional (fold/3)

lcm(List) = fold(lcm,1,List).

### Test

go =>
L = [
[12,18],
[-6,14],
[35,0],
[7,10],
[2562047788015215500854906332309589561,6795454494268282920431565661684282819]
],
foreach([X,Y] in L)
println((X,Y)=lcm(X,Y))
end,

println('1..20'=lcm(1..20)),
println('1..50'=lcm(1..50)),
nl.
Output:
(12,18) = 36
(-6,14) = 42
(35,0) = 0
(7,10) = 70
(2562047788015215500854906332309589561,6795454494268282920431565661684282819) = 15669251240038298262232125175172002594731206081193527869
1..20 = 232792560
1..50 = 3099044504245996706400

## PicoLisp

Using 'gcd' from Greatest common divisor#PicoLisp:

(de lcm (A B)
(abs (*/ A B (gcd A B))) )

## PL/I

/* Calculate the Least Common Multiple of two integers. */

LCM: procedure options (main);          /* 16 October 2013 */
declare (m, n) fixed binary (31);

get (m, n);
put edit ('The LCM of ', m, ' and ', n, ' is', LCM(m, n)) (a, x(1));

LCM: procedure (m, n) returns (fixed binary (31));
declare (m, n) fixed binary (31) nonassignable;

if m = 0 | n = 0 then return (0);
return (abs(m*n) / GCD(m, n));
end LCM;

GCD: procedure (a, b) returns (fixed binary (31)) recursive;
declare (a, b) fixed binary (31);

if b = 0 then return (a);

return (GCD (b, mod(a, b)) );

end GCD;
end LCM;
The LCM of              14  and              35  is             70


## PowerShell

### version 1

function gcd ($a,$b)  {
function pgcd ($n,$m)  {
if($n -le$m) {
if($n -eq 0) {$m}
else{pgcd $n ($m-$n)} } else {pgcd$m $n} }$n = [Math]::Abs($a)$m = [Math]::Abs($b) (pgcd$n $m) } function lcm ($a, $b) { [Math]::Abs($a*$b)/(gcd$a $b) } lcm 12 18  ### version 2 version2 is faster than version1 function gcd ($a, $b) { function pgcd ($n, $m) { if($n -le $m) { if($n -eq 0) {$m} else{pgcd$n ($m%$n)}
}
else {pgcd $m$n}
}
$n = [Math]::Abs($a)
$m = [Math]::Abs($b)
(pgcd $n$m)
}
function lcm ($a,$b)  {
[Math]::Abs($a*$b)/(gcd $a$b)
}
lcm 12 18


Output:

36


## Prolog

SWI-Prolog knows gcd.

lcm(X, Y, Z) :-
Z is abs(X * Y) / gcd(X,Y).


Example:

 ?- lcm(18,12, Z).
Z = 36.


## PureBasic

Procedure GCDiv(a, b); Euclidean algorithm
Protected r
While b
r = b
b = a%b
a = r
Wend
ProcedureReturn a
EndProcedure

Procedure LCM(m,n)
Protected t
If m And n
t=m*n/GCDiv(m,n)
EndIf
ProcedureReturn t*Sign(t)
EndProcedure


## Python

### Functional

#### gcd

Using the fractions libraries gcd function:

>>> import fractions
>>> def lcm(a,b): return abs(a * b) / fractions.gcd(a,b) if a and b else 0

>>> lcm(12, 18)
36
>>> lcm(-6, 14)
42
>>> assert lcm(0, 2) == lcm(2, 0) == 0
>>>


Or, for compositional flexibility, a curried lcm, expressed in terms of our own gcd function:

'''Least common multiple'''

from inspect import signature

# lcm :: Int -> Int -> Int
def lcm(x):
'''The smallest positive integer divisible
without remainder by both x and y.
'''
return lambda y: 0 if 0 in (x, y) else abs(
y * (x // gcd_(x)(y))
)

# gcd_ :: Int -> Int -> Int
def gcd_(x):
'''The greatest common divisor in terms of
the divisibility preordering.
'''
def go(a, b):
return go(b, a % b) if 0 != b else a
return lambda y: go(abs(x), abs(y))

# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Tests'''

print(
fTable(
__doc__ + 's of 60 and [12..20]:'
)(repr)(repr)(
lcm(60)
)(enumFromTo(12)(20))
)

pairs = [(0, 2), (2, 0), (-6, 14), (12, 18)]
print(
fTable(
'\n\n' + __doc__ + 's of ' + repr(pairs) + ':'
)(repr)(repr)(
uncurry(lcm)
)(pairs)
)

# GENERIC -------------------------------------------------

# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))

# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
'''A function over a tuple, derived from
a vanilla or curried function.
'''
if 1 < len(signature(f).parameters):
return lambda xy: f(*xy)
else:
return lambda xy: f(xy[0])(xy[1])

# unlines :: [String] -> String
def unlines(xs):
'''A single string derived by the intercalation
of a list of strings with the newline character.
'''
return '\n'.join(xs)

# FORMATTING ----------------------------------------------

# fTable :: String -> (a -> String) ->
#                     (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)

# MAIN ---
if __name__ == '__main__':
main()

Output:
Least common multiples of 60 and [12..20]:
12 -> 60
13 -> 780
14 -> 420
15 -> 60
16 -> 240
17 -> 1020
18 -> 180
19 -> 1140
20 -> 60

Least common multiples of [(0, 2), (2, 0), (-6, 14), (12, 18)]:
(0, 2) -> 0
(2, 0) -> 0
(-6, 14) -> 42
(12, 18) -> 36

### Procedural

#### Prime decomposition

This imports Prime decomposition#Python

from prime_decomposition import decompose
try:
reduce
except NameError:
from functools import reduce

def lcm(a, b):
mul = int.__mul__
if a and b:
da = list(decompose(abs(a)))
db = list(decompose(abs(b)))
merge= da
for d in da:
if d in db: db.remove(d)
merge += db
return reduce(mul, merge, 1)
return 0

if __name__ == '__main__':
print( lcm(12, 18) )    # 36
print( lcm(-6, 14) )    # 42
assert lcm(0, 2) == lcm(2, 0) == 0


#### Iteration over multiples

>>> def lcm(*values):
values = set([abs(int(v)) for v in values])
if values and 0 not in values:
n = n0 = max(values)
values.remove(n)
while any( n % m for m in values ):
n += n0
return n
return 0

>>> lcm(-6, 14)
42
>>> lcm(2, 0)
0
>>> lcm(12, 18)
36
>>> lcm(12, 18, 22)
396
>>>


#### Repeated modulo

Translation of: Tcl
>>> def lcm(p,q):
p, q = abs(p), abs(q)
m = p * q
if not m: return 0
while True:
p %= q
if not p: return m // q
q %= p
if not q: return m // p

>>> lcm(-6, 14)
42
>>> lcm(12, 18)
36
>>> lcm(2, 0)
0
>>>


## Qi

(define gcd
A 0 -> A
A B -> (gcd B (MOD A B)))

(define lcm A B -> (/ (* A B) (gcd A B)))

## Quackery

[ [ dup while
tuck mod again ]
drop abs ]         is gcd ( n n --> n )

[ 2dup and iff
[ 2dup gcd
/ * abs ]
else and ]         is lcm ( n n --> n )

## R

"%gcd%" <- function(u, v) {ifelse(u %% v != 0, v %gcd% (u%%v), v)}

"%lcm%" <- function(u, v) { abs(u*v)/(u %gcd% v)}

print (50 %lcm% 75)


## Racket

Racket already has defined both lcm and gcd funtions:

#lang racket
(lcm 3 4 5 6)        ;returns 60
(lcm 8 108)          ;returns 216
(gcd 8 108)          ;returns 4
(gcd 108 216 432)    ;returns 108


## Raku

(formerly Perl 6) This function is provided as an infix so that it can be used productively with various metaoperators.

say 3 lcm 4;            # infix
say [lcm] 1..20;        # reduction
say ~(1..10 Xlcm 1..10) # cross

Output:
12
232792560
1 2 3 4 5 6 7 8 9 10 2 2 6 4 10 6 14 8 18 10 3 6 3 12 15 6 21 24 9 30 4 4 12 4 20 12 28 8 36 20 5 10 15 20 5 30 35 40 45 10 6 6 6 12 30 6 42 24 18 30 7 14 21 28 35 42 7 56 63 70 8 8 24 8 40 24 56 8 72 40 9 18 9 36 45 18 63 72 9 90 10 10 30 20 10 30 70 40 90 10

## Retro

This is from the math extensions library included with Retro.

: gcd ( ab-n ) [ tuck mod dup ] while drop ;
: lcm ( ab-n ) 2over gcd [ * ] dip / ;

## REXX

### version 1

The   lcm   subroutine can handle any number of integers and/or arguments.

The integers (negative/zero/positive) can be (as per the   numeric digits)   up to ten thousand digits.

Usage note:   the integers can be expressed as a list and/or specified as individual arguments   (or as mixed).

/*REXX program finds the  LCM  (Least Common Multiple)  of any number of integers.      */
numeric digits 10000                             /*can handle 10k decimal digit numbers.*/
say 'the LCM of      19  and   0                   is ───►  '     lcm(19    0            )
say 'the LCM of       0  and  85                   is ───►  '     lcm( 0   85            )
say 'the LCM of      14  and  -6                   is ───►  '     lcm(14,  -6            )
say 'the LCM of      18  and  12                   is ───►  '     lcm(18   12            )
say 'the LCM of      18  and  12  and  -5          is ───►  '     lcm(18   12,   -5      )
say 'the LCM of      18  and  12  and  -5  and  97 is ───►  '     lcm(18,  12,   -5,   97)
say 'the LCM of 2**19-1  and  2**521-1             is ───►  '     lcm(2**19-1    2**521-1)
/* [↑]   7th  &  13th  Mersenne primes.*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
lcm: procedure; parse arg $,_;$=$_; do i=3 to arg();$=$arg(i); end /*i*/ parse var$ x $/*obtain the first value in args. */ x=abs(x) /*use the absolute value of X. */ do while$\==''                       /*process the remainder of args.  */
parse var $!$;    if !<0  then !=-!  /*pick off the next arg (ABS val).*/
if !==0  then return 0                 /*if zero, then LCM is also zero. */
d=x*!                                  /*calculate part of the LCM here. */
do  until !==0;    parse  value   x//!  !     with     !  x
end   /*until*/                 /* [↑]  this is a short & fast GCD*/
x=d%x                                  /*divide the pre─calculated value.*/
end   /*while*/                        /* [↑]  process subsequent args.  */
return x                                         /*return with the LCM of the args.*/


output   when using the (internal) supplied list:

the LCM of      19  and   0                   is ───►   0
the LCM of       0  and  85                   is ───►   0
the LCM of      14  and  -6                   is ───►   42
the LCM of      18  and  12                   is ───►   36
the LCM of      18  and  12  and  -5          is ───►   180
the LCM of      18  and  12  and  -5  and  97 is ───►   17460
the LCM of 2**19-1  and  2**521-1             is ───►   3599124170836896975638715824247986405702540425206233163175195063626010878994006898599180426323472024265381751210505324617708575722407440034562999570663839968526337


### version 2

Translation of: REXX version 0

using different argument handling-

Use as lcm(a,b,c,---)

lcm2: procedure
x=abs(arg(1))
do k=2 to arg() While x<>0
y=abs(arg(k))
x=x*y/gcd2(x,y)
end
return x

gcd2: procedure
x=abs(arg(1))
do j=2 to arg()
y=abs(arg(j))
If y<>0 Then Do
do until z==0
z=x//y
x=y
y=z
end
end
end
return x


## Ring

see lcm(24,36)

func lcm m,n
lcm = m*n / gcd(m,n)
return lcm

func gcd gcd, b
while b
c   = gcd
gcd = b
b   = c % b
end
return gcd


## RPL

For unsigned integers

≪ DUP2 < ≪ SWAP ≫ IFT
WHILE DUP B→R REPEAT
SWAP OVER / LAST ROT * - END DROP
≫ 'GCD' STO

≪ DUP2 * ROT ROT GCD /
≫ 'LCM' STO

#12d #18d LCM

Output:
1: #36d


For usual integers (floating point without decimal part)

≪ WHILE DUP REPEAT
SWAP OVER MOD END DROP ABS
≫ 'GCD' STO

≪ DUP2 * ROT ROT GCD /
≫ 'LCM' STO


## Ruby

Ruby has an Integer#lcm method, which finds the least common multiple of two integers.

irb(main):001:0> 12.lcm 18
=> 36


I can also write my own lcm method. This one takes any number of arguments.

def gcd(m, n)
m, n = n, m % n until n.zero?
m.abs
end

def lcm(*args)
args.inject(1) do |m, n|
return 0 if n.zero?
(m * n).abs / gcd(m, n)
end
end

p lcm 12, 18, 22
p lcm 15, 14, -6, 10, 21

Output:
396
210


## Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
print "lcm( 12, -18) = "; lcm( 12, -18)
print "lcm( 15,  12) = "; lcm( 15,  12)
print "lcm(-10, -14) = "; lcm(-10, -14)
print "lcm(  0,   1) = "; lcm(  0,   1)
end

function lcm(m, n)
lcm = abs(m * n) / GCD(m, n)
end function

function GCD(a, b)
while b
c = a
a = b
b = c mod b
wend
GCD = abs(a)
end function

## Rust

This implementation uses a recursive implementation of Stein's algorithm to calculate the gcd.

use std::cmp::{max, min};

fn gcd(a: usize, b: usize) -> usize {
match ((a, b), (a & 1, b & 1)) {
((x, y), _) if x == y => y,
((0, x), _) | ((x, 0), _) => x,
((x, y), (0, 1)) | ((y, x), (1, 0)) => gcd(x >> 1, y),
((x, y), (0, 0)) => gcd(x >> 1, y >> 1) << 1,
((x, y), (1, 1)) => {
let (x, y) = (min(x, y), max(x, y));
gcd((y - x) >> 1, x)
}
_ => unreachable!(),
}
}

fn lcm(a: usize, b: usize) -> usize {
a * b / gcd(a, b)
}

fn main() {
println!("{}", lcm(6324, 234))
}


## Scala

def gcd(a: Int, b: Int):Int=if (b==0) a.abs else gcd(b, a%b)
def lcm(a: Int, b: Int)=(a*b).abs/gcd(a,b)

lcm(12, 18)   // 36
lcm( 2,  0)   // 0
lcm(-6, 14)   // 42


## Scheme

>(define gcd (lambda (a b)
(if (zero? b)
a
(gcd b (remainder a b)))))
>(define lcm (lambda (a b)
(if (or (zero? a) (zero? b))
0
(abs (* b (floor (/ a (gcd a b))))))))
>(lcm 12 18)
36


## Seed7

$include "seed7_05.s7i"; const func integer: gcd (in var integer: a, in var integer: b) is func result var integer: gcd is 0; local var integer: help is 0; begin while a <> 0 do help := b rem a; b := a; a := help; end while; gcd := b; end func; const func integer: lcm (in integer: a, in integer: b) is return a div gcd(a, b) * b; const proc: main is func begin writeln("lcm(35, 21) = " <& lcm(21, 35)); end func; Original source: [1] ## SenseTalk function gcd m, n repeat while m is greater than 0 put m into temp put n modulo m into m put temp into n end repeat return n end gcd function lcm m, n return m divided by gcd(m, n) times n end lcm ## Sidef Built-in: say Math.lcm(1001, 221)  Using GCD: func gcd(a, b) { while (a) { (a, b) = (b % a, a) } return b } func lcm(a, b) { (a && b) ? (a / gcd(a, b) * b) : 0 } say lcm(1001, 221)  Output: 17017  ## Smalltalk Smalltalk has a built-in lcm method on SmallInteger: 12 lcm: 18  ## Sparkling function factors(n) { var f = {}; for var i = 2; n > 1; i++ { while n % i == 0 { n /= i; f[i] = f[i] != nil ? f[i] + 1 : 1; } } return f; } function GCD(n, k) { let f1 = factors(n); let f2 = factors(k); let fs = map(f1, function(factor, multiplicity) { let m = f2[factor]; return m == nil ? 0 : min(m, multiplicity); }); let rfs = {}; foreach(fs, function(k, v) { rfs[sizeof rfs] = pow(k, v); }); return reduce(rfs, 1, function(x, y) { return x * y; }); } function LCM(n, k) { return n * k / GCD(n, k); } ## Standard ML ### Readable version fun gcd (0,n) = n | gcd (m,n) = gcd(n mod m, m) fun lcm (m,n) = abs(x * y) div gcd (m, n)  ### Alternate version val rec gcd = fn (x, 0) => abs x | p as (_, y) => gcd (y, Int.rem p) val lcm = fn p as (x, y) => Int.quot (abs (x * y), gcd p) ## Swift Using the Swift GCD function. func lcm(a:Int, b:Int) -> Int { return abs(a * b) / gcd_rec(a, b) } ## Tcl proc lcm {p q} { set m [expr {$p * $q}] if {!$m} {return 0}
while 1 {
set p [expr {$p %$q}]
if {!$p} {return [expr {$m / $q}]} set q [expr {$q % $p}] if {!$q} {return [expr {$m /$p}]}
}
}

Demonstration

puts [lcm 12 18]

Output:

36


## TI-83 BASIC

lcm(12,18
36

## TSE SAL

// library: math: get: least: common: multiple <description></description> <version control></version control> <version>1.0.0.0.2</version> <version control></version control> (filenamemacro=getmacmu.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:36:11]
INTEGER PROC FNMathGetLeastCommonMultipleI( INTEGER x1I, INTEGER x2I )
//
RETURN( x1I * x2I / FNMathGetGreatestCommonDivisorI( x1I, x2I ) )
//
END

// library: math: get: greatest: common: divisor <description>greatest common divisor whole numbers. Euclid's algorithm. Recursive version</description> <version control></version control> <version>1.0.0.0.3</version> <version control></version control> (filenamemacro=getmacdi.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:22:41]
INTEGER PROC FNMathGetGreatestCommonDivisorI( INTEGER x1I, INTEGER x2I )
//
IF ( x2I == 0 )
//
RETURN( x1I )
//
ENDIF
//
RETURN( FNMathGetGreatestCommonDivisorI( x2I, x1I MOD x2I ) )
//
END

PROC Main()
//
STRING s1[255] = "10"
STRING s2[255] = "20"
REPEAT
IF ( NOT ( Ask( "math: get: least: common: multiple: x1I = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF
IF ( NOT ( Ask( "math: get: least: common: multiple: x2I = ", s2, _EDIT_HISTORY_ ) ) AND ( Length( s2 ) > 0 ) ) RETURN() ENDIF
Warn( FNMathGetLeastCommonMultipleI( Val( s1 ), Val( s2 ) ) ) // gives e.g. 10
UNTIL FALSE
END

$txr -p '(lcm (expt 2 123) (expt 6 49) 17)' 43259338018880832376582582128138484281161556655442781051813888 ## TypeScript Translation of: C // Least common multiple function gcd(m: number, n: number): number { var tmp: number; while (m != 0) { tmp = m; m = n % m; n = tmp; } return n; } function lcm(m: number, n: number): number { return Math.floor(m / gcd(m, n)) * n; } console.log(LCM(35, 21) =${lcm(35, 21)});
Output:
LCM(35, 21) = 105


## uBasic/4tH

Translation of: BBC BASIC
Print "LCM of 12 : 18 = "; FUNC(_LCM(12,18))

End

_GCD_Iterative_Euclid Param(2)
Local (1)
Do While b@
c@ = a@
a@ = b@
b@ = c@ % b@
Loop
Return (ABS(a@))

_LCM Param(2)
If a@*b@
Return (ABS(a@*b@)/FUNC(_GCD_Iterative_Euclid(a@,b@)))
Else
Return (0)
EndIf
Output:
LCM of 12 : 18 = 36

0 OK, 0:330

## Uiua

# Greatest Common Divisor using Euclidean algorithm
Gcd ← ⊙◌⍢(⟜◿:|±,)
# Least Common Multiple
Lcm ← ÷⊃(Gcd|⌵×)

## UNIX Shell

${\displaystyle \operatorname {lcm} (m,n)=\left|{\frac {m\times n}{\operatorname {gcd} (m,n)}}\right|}$

Works with: Bourne Shell
gcd() {
# Calculate $1 %$2 until $2 becomes zero. until test 0 -eq "$2"; do
# Parallel assignment: set -- 1 2
set -- "$2" "expr "$1" % "$2"" done # Echo absolute value of$1.
test 0 -gt "$1" && set -- "expr 0 - "$1""
echo "$1" } lcm() { set -- "$1" "$2" "gcd "$1" "$2"" set -- "expr "$1" \* "$2" / "$3""
test 0 -gt "$1" && set -- "expr 0 - "$1""
echo "$1" } lcm 30 -42 # => 210 ### C Shell alias gcd eval \''set gcd_args=( \!*:q ) \\ @ gcd_u=$gcd_args[2]			\\
@ gcd_v=$gcd_args[3] \\ while ($gcd_v != 0 )			\\
@ gcd_t = $gcd_u %$gcd_v	\\
@ gcd_u = $gcd_v \\ @ gcd_v =$gcd_t		\\
end					\\
if ( $gcd_u < 0 ) @ gcd_u = -$gcd_u	\\
@ $gcd_args[1]=$gcd_u			\\
'\'

alias lcm eval \''set lcm_args=( \!*:q )	\\
@ lcm_m = $lcm_args[2] \\ @ lcm_n =$lcm_args[3]			\\
gcd lcm_d $lcm_m$lcm_n			\\
@ lcm_r = ( $lcm_m *$lcm_n ) / $lcm_d \\ if ($lcm_r < 0 ) @ lcm_r = - $lcm_r \\ @$lcm_args[1] = $lcm_r \\ '\' lcm result 30 -42 echo$result
# => 210

## Ursa

import "math"
out (lcm 12 18) endl console
Output:
36

## Vala

int lcm(int a, int b){
/*Return least common multiple of two ints*/
// check for 0's
if (a == 0 || b == 0)
return 0;

// Math.abs(x) only works for doubles, Math.absf(x) for floats
if (a < 0)
a *= -1;
if (b < 0)
b *= -1;

int x = 1;
while (true){
if (a * x % b == 0)
return a*x;
x++;
}
}

void main(){
int	a = 12;
int	b = 18;

stdout.printf("lcm(%d, %d) = %d\n",	a, b, lcm(a, b));
}

## VBA

Function gcd(u As Long, v As Long) As Long
Dim t As Long
Do While v
t = u
u = v
v = t Mod v
Loop
gcd = u
End Function
Function lcm(m As Long, n As Long) As Long
lcm = Abs(m * n) / gcd(m, n)
End Function

## VBScript

Function LCM(a,b)
LCM = POS((a * b)/GCD(a,b))
End Function

Function GCD(a,b)
Do
If a Mod b > 0 Then
c = a Mod b
a = b
b = c
Else
GCD = b
Exit Do
End If
Loop
End Function

Function POS(n)
If n < 0 Then
POS = n * -1
Else
POS = n
End If
End Function

i = WScript.Arguments(0)
j = WScript.Arguments(1)

WScript.StdOut.Write "The LCM of " & i & " and " & j & " is " & LCM(i,j) & "."
WScript.StdOut.WriteLine
Output:
C:\>cscript /nologo lcm.vbs 12 18
The LCM of 12 and 18 is 36.

C:\>cscript /nologo lcm.vbs 14 -6
The LCM of 14 and -6 is 42.

C:\>cscript /nologo lcm.vbs 0 35
The LCM of 0 and 35 is 0.

C:\>

## Wortel

Operator

@lcm a b

Number expression

!#~km a b

Function (using gcd)

&[a b] *b /a @gcd a b

## Wren

var gcd = Fn.new { |x, y|
while (y != 0) {
var t = y
y = x % y
x = t
}
return x.abs
}

var lcm = Fn.new { |x, y|
if (x == 0 && y == 0) return 0
return (x*y).abs / gcd.call(x, y)
}

var xys = [[12, 18], [-6, 14], [35, 0]]
for (xy in xys) {
System.print("lcm(%(xy[0]), %(xy[1]))\t%("\b"*5) = %(lcm.call(xy[0], xy[1]))")
}
Output:
lcm(12, 18) = 36
lcm(-6, 14) = 42
lcm(35, 0)  = 0


## XBasic

Translation of: C
Works with: Windows XBasic
' Least common multiple
PROGRAM "leastcommonmultiple"
VERSION "0.0001"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION Gcd(m&, n&)
INTERNAL FUNCTION Lcm(m&, n&)

FUNCTION Entry()
PRINT "LCM(35, 21) ="; Lcm(35, 21)
END FUNCTION

FUNCTION Gcd(m&, n&)
DO WHILE m& <> 0
tmp& = m&
m& = n& MOD m&
n& = tmp&
LOOP
RETURN n&
END FUNCTION

FUNCTION Lcm(m&, n&)
RETURN m& / Gcd(m&, n&) * n&
END FUNCTION

END PROGRAM
Output:
LCM(35, 21) = 105


## XPL0

include c:\cxpl\codes;

func GCD(M,N);  \Return the greatest common divisor of M and N
int  M, N;
int  T;
[while N do     \Euclid's method
[T:= M;  M:= N;  N:= rem(T/N)];
return M;
];

func LCM(M,N);  \Return least common multiple
int  M, N;
return abs(M*N) / GCD(M,N);

\Display the LCM of two integers entered on command line
IntOut(0, LCM(IntIn(8), IntIn(8)))

## Yabasic

sub gcd(u, v)
local t

u = int(abs(u))
v = int(abs(v))
while(v)
t = u
u = v
v = mod(t, v)
wend
return u
end sub

sub lcm(m, n)
return m / gcd(m, n) * n
end sub

print "Least common multiple: ", lcm(12345, 23044)

## zkl

fcn lcm(m,n){ (m*n).abs()/m.gcd(n) }  // gcd is a number method
Output:
zkl: lcm(12,18)
36
zkl: lcm(-6,14)
42
zkl: lcm(35,0)
0