Zero to the zero power
You are encouraged to solve this task according to the task description, using any language you may know.
Some computer programming languages are not exactly consistent (with other computer programming languages)
when raising zero to the zeroth power: 00
- Task
Show the results of raising zero to the zeroth power.
If your computer language objects to 0**0 or 0^0 at compile time, you may also try something like:
x = 0 y = 0 z = x**y say 'z=' z
Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.
- See also
- The Wiki entry: Zero to the power of zero.
- The Wiki entry: Zero to the power of zero: History.
- The MathWorld™ entry: exponent laws.
- Also, in the above MathWorld™ entry, see formula (9): .
- The OEIS entry: The special case of zero to the zeroth power
11l
print(0 ^ 0)
- Output:
1
8th
0 0 ^ .
- Output:
1
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
PROC Main()
REAL z,res
Put(125) PutE() ;clear the screen
IntToReal(0,z)
Power(z,z,res)
PrintR(z) Print("^")
PrintR(z) Print("=")
PrintRE(res)
RETURN
- Output:
Screenshot from Atari 8-bit computer
0^0=.9999999998
Ada
with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Long_Integer_Text_IO,
Ada.Long_Long_Integer_Text_IO, Ada.Float_Text_IO, Ada.Long_Float_Text_IO,
Ada.Long_Long_Float_Text_IO;
use Ada.Text_IO, Ada.Integer_Text_IO, Ada.Long_Integer_Text_IO,
Ada.Long_Long_Integer_Text_IO, Ada.Float_Text_IO, Ada.Long_Float_Text_IO,
Ada.Long_Long_Float_Text_IO;
procedure Test5 is
I : Integer := 0;
LI : Long_Integer := 0;
LLI : Long_Long_Integer := 0;
F : Float := 0.0;
LF : Long_Float := 0.0;
LLF : Long_Long_Float := 0.0;
Zero : Natural := 0;
begin
Put ("Integer 0^0 = ");
Put (I ** Zero, 2); New_Line;
Put ("Long Integer 0^0 = ");
Put (LI ** Zero, 2); New_Line;
Put ("Long Long Integer 0^0 = ");
Put (LLI ** Zero, 2); New_Line;
Put ("Float 0.0^0 = ");
Put (F ** Zero); New_Line;
Put ("Long Float 0.0^0 = ");
Put (LF ** Zero); New_Line;
Put ("Long Long Float 0.0^0 = ");
Put (LLF ** Zero); New_Line;
end Test5;
- Output:
Integer 0^0 = 1 Long Integer 0^0 = 1 Long Long Integer 0^0 = 1 Float 0.0^0 = 1.00000E+00 Long Float 0.0^0 = 1.00000000000000E+00 Long Long Float 0.0^0 = 1.00000000000000000E+00
ALGOL 68
print( ( 0 ^ 0, newline ) )
- Output:
+1
APL
0*0
1
AppleScript
return 0 ^ 0
- Output:
1.0
Applesoft BASIC
]? 0^0 1
Arturo
print 0 ^ 0
print 0.0 ^ 0
- Output:
1 1.0
Asymptote
write("0 ^ 0 = ", 0 ** 0);
AutoHotkey
MsgBox % 0 ** 0
- Output:
1
AWK
# syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK
BEGIN {
print(0 ^ 0)
exit(0)
}
- Output:
1
BaCon
PRINT POW(0, 0)
- Output:
prompt$ ./zerotothezero 1
BASIC
BASIC256
print "0 ^ 0 = "; 0 ^ 0
Chipmunk Basic
10 print "0 ^ 0 = ";0^0
MSX Basic
10 PRINT "0 ^ 0 = "; 0 ^ 0
QBasic
PRINT "0 ^ 0 ="; 0 ^ 0
Run BASIC
print "0 ^ 0 = "; 0 ^ 0
True BASIC
PRINT "0 ^ 0 ="; 0 ^ 0
END
XBasic
PROGRAM "progname"
VERSION "0.0000"
IMPORT "xma" 'required for POWER
DECLARE FUNCTION Entry ()
FUNCTION Entry ()
PRINT "0 ^ 0 = "; 0 ** 0
PRINT "0 ^ 0 = "; POWER(0, 0)
END FUNCTION
END PROGRAM
ZX Spectrum Basic
PRINT 0↑0
- Output:
1 0 OK, 0:1
BBC BASIC
PRINT 0^0
- Output:
1
Bc
0 ^ 0
- Output:
1
Befunge
Befunge-93 doesn't have explicit support for exponentiation, but there are a couple of fingerprint extensions for Befunge-98 which add that functionality. The example below makes use of the FPDP fingerprint (double precision floating point).
Note that the result is potentially dependent on the underlying language of the interpreter, but all those tested so far have returned 1. Interpreters that don't support Befunge-98, or don't support this fingerprint, should just terminate (possibly with a warning).
"PDPF"4#@(0F0FYP)@
- Output:
1.000000
Binary Lambda Calculus
In lambda calculus, \n. n n
is a function mapping a Church numeral n to the Church numeral n^n. The following BLC program computes this for n=0 by using its empty input as a Church numeral (since nil coincides with Church numeral 0), and outputting in unary (i.e as a string of 0^0 1s), as generated from https://github.com/tromp/AIT/blob/master/rosetta/exp00.lam :
0001010110100000010110111011010
Output:
1
BQN
BQN doesn't specify the details of arithmetic functions; existing implementations use IEEE doubles and the pow
function, giving a result of 1.
0⋆0
- Output:
1
Bracmat
0^0
- Output:
1
Burlesque
blsq ) 0.0 0.0?^
1.0
blsq ) 0 0?^
1
C
This example uses the standard pow
function in the math library.
0^0 is given as 1.
#include <stdio.h>
#include <math.h>
#include <complex.h>
int main()
{
printf("0 ^ 0 = %f\n", pow(0,0));
double complex c = cpow(0,0);
printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c));
return 0;
}
- Output:
0 ^ 0 = 1.000000 0+0i ^ 0+0i = nan+nani
C#
using System;
namespace ZeroToTheZeroeth
{
class Program
{
static void Main(string[] args)
{
double k = Math.Pow(0, 0);
Console.Write("0^0 is {0}", k);
}
}
}
- Output:
0^0 is 1
C++
#include <iostream>
#include <cmath>
#include <complex>
int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}
- Output:
0 ^ 0 = 1 0+0i ^ 0+0i = (nan,nan)
Caché ObjectScript
ZEROPOW
// default behavior is incorrect:
set (x,y) = 0
w !,"0 to the 0th power (wrong): "_(x**y) ; will output 0
// if one or both of the values is a double, this works
set (x,y) = $DOUBLE(0)
w !,"0 to the 0th power (right): "_(x**y)
quit
- Output:
SAMPLES>do ^ZEROPOW0 to the 0th power (wrong): 0
0 to the 0th power (right): 1
Clojure
user=> (use 'clojure.math.numeric-tower) user=> (expt 0 0) 1 ; alternative java-interop route: user=> (Math/pow 0 0) 1.0
CLU
The CLU reference manual doesn't mention the issue, so the fact that it returns 1 in my case could just be an implementation detail.
start_up = proc ()
zz_int: int := 0 ** 0
zz_real: real := 0.0 ** 0.0
po: stream := stream$primary_output()
stream$putl(po, "integer 0**0: " || int$unparse(zz_int))
stream$putl(po, "real 0**0: " || f_form(zz_real, 1, 1))
end start_up
- Output:
integer 0**0: 1 real 0**0: 1.0
COBOL
identification division.
program-id. zero-power-zero-program.
data division.
working-storage section.
77 n pic 9.
procedure division.
compute n = 0**0.
display n upon console.
stop run.
- Output:
1
ColdFusion
Classic tag based CFML
<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>
- Output:
"1"
Script Based CFML
<cfscript>
zeroPower = 0^0;
writeOutput( zeroPower );
</cfscript>
- Output:
1
Commodore BASIC
Commodore computers use the up arrow key ↑ as the exponent operator.
- Output:
ready. print 0↑0 1 ready. █
Common Lisp
> (expt 0 0) 1
Crystal
puts "Int32: #{0_i32**0_i32}"
puts "Negative Int32: #{-0_i32**-0_i32}"
puts "Float32: #{0_f32**0_f32}"
puts "Negative Float32: #{-0_f32**-0_f32}"
- Output:
Int32: 1 Negative Int32: 1 Float32: 1.0 Negative Float32: 1.0
D
void main() {
import std.stdio, std.math, std.bigint, std.complex;
writeln("Int: ", 0 ^^ 0);
writeln("Ulong: ", 0UL ^^ 0UL);
writeln("Float: ", 0.0f ^^ 0.0f);
writeln("Double: ", 0.0 ^^ 0.0);
writeln("Real: ", 0.0L ^^ 0.0L);
writeln("pow: ", pow(0, 0));
writeln("BigInt: ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
}
- Output:
Int: 1 Ulong: 1 Float: 1 Double: 1 Real: 1 pow: 1 BigInt: 1 Complex: 1+0i
Dart
import 'dart:math';
void main() {
var resul = pow(0, 0);
print("0 ^ 0 = $resul");
}
- Output:
0 ^ 0 = 1
Dc
0 0^p
- Output:
1
Delphi
See Pascal.
DuckDB
select power(0,0);
1
EasyLang
print pow 0 0
- Output:
1
EchoLisp
;; trying the 16 combinations
;; all return the integer 1
(lib 'bigint)
(define zeroes '(integer: 0 inexact=float: 0.000 complex: 0+0i bignum: #0))
(for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2)))
→ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Eiffel
print (0^0)
- Output:
1
Elena
ELENA 6.x
import extensions;
public program()
{
console.printLine("0^0 is ",0.power(0))
}
- Output:
0^0 is 0
Elixir
Elixir uses Erlang's :math
for power operations and can handle zero to the zero power.
:math.pow(0,0)
- Output:
1.0
Emacs Lisp
(expt 0 0)
- Output:
1
EMal
writeLine(0 ** 0) # an integer
writeLine(0.0 ** 0.0) # a real
- Output:
1 1.0
ERRE
.....
PRINT(0^0)
.....
- Output:
1
F#
In the REPL:
> let z = 0.**0.;; val z : float = 1.0
Factor
USING: math.functions.private ; ! ^complex
0 0 ^
C{ 0 0 } C{ 0 0 } ^complex
- Output:
--- Data stack: NAN: 8000000000000 C{ NAN: 8000000000000 NAN: 8000000000000 }
Falcon
VBA/Python programmer's approach not sure if it's the most falconic way
/* created by Aykayayciti Earl Lamont Montgomery
April 9th, 2018 */
x = 0
y = 0
z = x**y
> "z=", z
- Output:
z=1 [Finished in 0.2s]
Fermat
0^0
- Output:
1
Forth
0e 0e f** f.
- Output:
1.
Of course in an embedded program we would be tempted to "pre-calculate" the answer :-)
: ^0 DROP 1 ;
- Output:
0 ^0 . 1 ok
Fortran
program zero
double precision :: i, j
double complex :: z1, z2
i = 0.0D0
j = 0.0D0
z1 = (0.0D0,0.0D0)
z2 = (0.0D0,0.0D0)
write(*,*) 'When integers are used, we have 0^0 = ', 0**0
write(*,*) 'When double precision numbers are used, we have 0.0^0.0 = ', i**j
write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2
end program
- Output:
When integers are used, we have 0^0 = 1 When double precision numbers are used, we have 0.0^0.0 = 1.0000000000000000 When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ( NaN, NaN)
FreeBASIC
' FB 1.05.0 Win64
Print "0 ^ 0 ="; 0 ^ 0
Sleep
- Output:
0 ^ 0 = 1
Frink
println[0^0]
- Output:
1
FutureBasic
window 1
print 0^0
HandleEvents
Output:
1
Fōrmulæ
Taken from the Fōrmulæ reference for exponentiation:
There is not an universal agreement about the result. However, for discrete mathematics is more useful to define it as 1. On the other hand, in real analysis, it is more useful to define it as indefinite.
In Fōrmulæ, there are two zero values, the integer zero (0) typically used for integer arithmetics, and the decimal zero (0.0) for real arithmetics. Therefore the result is 1 if both exponent and base are 0 (integer zero) and ∞ elsewere
Gambas
Click this link to run this code
Public Sub Main()
Print 0 ^ 0
End
Output:
1
GAP
0^0;
- Output:
1
Go
Go does not have an exponentiation operator but has functions in the standard library for three types, float64, complex128, and big.Int. As of Go 1.3, all are documented to return 1.
package main
import (
"fmt"
"math"
"math/big"
"math/cmplx"
)
func main() {
fmt.Println("float64: ", math.Pow(0, 0))
var b big.Int
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex: ", cmplx.Pow(0, 0))
}
- Output:
float64: 1 big integer: 1 complex: (1+0i)
Golfscript
0 0?
- Output:
1
Groovy
Test:
println 0**0
- Output:
1
GW-BASIC
PRINT 0^0
- Output:
1
Haskell
import Data.Complex ( Complex((:+)) )
main :: IO ()
main = mapM_ print [
0 ^ 0,
0.0 ^ 0,
0 ^^ 0,
0 ** 0,
(0 :+ 0) ^ 0,
(0 :+ 0) ** (0 :+ 0)
]
- Output:
1 1.0 1.0 1.0 1.0 :+ 0.0 1.0 :+ 0.0
HolyC
F64 a = 0 ` 0;
Print("0 ` 0 = %5.3f\n", a);
- Output:
0 ` 0 = 1.000
Icon and Unicon
"Works" in both languages:
procedure main()
write(0^0)
end
- Output:
->z2z Run-time error 204 File z2z.icn; Line 2 real overflow, underflow, or division by zero Traceback: main() {0 ^ 0} from line 2 in z2z.icn ->
J
0 ^ 0
1
Note also that this is the multiplicative identity (which means that it's consistent with 1*0
representing 0^1
and with 1*0*0
representing 0^2
and with 1*0*0*0
representing 0^3
and with 1*2*2*2
representing 2^3
and so on. Also, this is the result of finding the product of an empty list:
*/''
1
(In */''
we're finding the product of a list which contains no characters. This is, of course, the same as the product of a list which contains no numbers when both lists contain neither. That said, characters are outside the domain of multiplication in J, so if the list had contained any characters the product would have been an error rather than a result.)
Java
System.out.println(Math.pow(0, 0));
- Output:
1.0
JavaScript
Math.pow
In interactive mode:
> Math.pow(0, 0);
1
exponentiation operator (**)
> 0**0
1
jq
Also works with gojq and fq
$ jq -n 'pow(0;0)' 1
Note that jaq, the Rust implementation, produces`1.0`.
It is also worth noting that in jq, gojq, and fq, `pow(0; infinite)` yields 0.
Jsish
puts(Math.pow(0,0));
- Output:
1
Julia
Try all combinations of complex, float, rational, integer and boolean.
using Printf
const types = (Complex, Float64, Rational, Int, Bool)
for Tb in types, Te in types
zb, ze = zero(Tb), zero(Te)
r = zb ^ ze
@printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r))
end
- Output:
Complex ^ Complex = 0 + 0im ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64}) Complex ^ Float64 = 0 + 0im ^ 0.0 = 1.0 + 0.0im (Complex{Float64}) Complex ^ Rational = 0 + 0im ^ 0//1 = 1.0 + 0.0im (Complex{Float64}) Complex ^ Int64 = 0 + 0im ^ 0 = 1 + 0im (Complex{Int64}) Complex ^ Bool = 0 + 0im ^ false = 1 + 0im (Complex{Int64}) Float64 ^ Complex = 0.0 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64}) Float64 ^ Float64 = 0.0 ^ 0.0 = 1.0 (Float64) Float64 ^ Rational = 0.0 ^ 0//1 = 1.0 (Float64) Float64 ^ Int64 = 0.0 ^ 0 = 1.0 (Float64) Float64 ^ Bool = 0.0 ^ false = 1.0 (Float64) Rational ^ Complex = 0//1 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64}) Rational ^ Float64 = 0//1 ^ 0.0 = 1.0 (Float64) Rational ^ Rational = 0//1 ^ 0//1 = 1.0 (Float64) Rational ^ Int64 = 0//1 ^ 0 = 1//1 (Rational{Int64}) Rational ^ Bool = 0//1 ^ false = 1//1 (Rational{Int64}) Int64 ^ Complex = 0 ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64}) Int64 ^ Float64 = 0 ^ 0.0 = 1.0 (Float64) Int64 ^ Rational = 0 ^ 0//1 = 1.0 (Float64) Int64 ^ Int64 = 0 ^ 0 = 1 (Int64) Int64 ^ Bool = 0 ^ false = 1 (Int64) Bool ^ Complex = false ^ 0 + 0im = 1.0 + 0.0im (Complex{Float64}) Bool ^ Float64 = false ^ 0.0 = 1.0 (Float64) Bool ^ Rational = false ^ 0//1 = 1.0 (Float64) Bool ^ Int64 = false ^ 0 = true (Bool) Bool ^ Bool = false ^ false = true (Bool)
K
0^0
1.0
Klingphix
:mypower
dup not (
[ drop sign dup 0 equal [ drop 1 ] if ]
[ power ]
) if
;
0 0 mypower print nl
"End " input
- Output:
1 End
Kotlin
import kotlin.math.pow
fun main() {
println(0.0.pow(0))
}
- Output:
1.0
Lambdatalk
{pow 0 0}
-> 1
{exp 0 0}
-> 1
LDPL
data:
x is number
procedure:
raise 0 to 0 in x
display x lf
- Output:
1
Liberty BASIC
'********
print 0^0
'********
- Output:
1
Locomotive Basic
print 0🠅0
- Output:
1
Lua
No need to try different data types or with / without decimal points as all numbers in Lua are stored in double-precision floating-point format.
print(0^0)
- Output:
1
M2000 Interpreter
M2000 use ** and ^ for power.
Module Checkit {
x=0
y=0
Print x**y=1, x^y=1 ' True True
}
Checkit
Maple
0^0
- Output:
1
However, for consistency with IEEE-754 numerics, we also have a NaN result for the equivalent floating-point exponentiation:
0^0.0
- Output:
Float(undefined)
Mathematica /Wolfram Language
0^0
- Output:
Indeterminate
MATLAB / Octave
0^0
complex(0,0)^0
- Output:
1 1
Maxima
0^0;
- Output:
0 expt: undefined: 0
Mercury
:- module zero_to_the_zero_power.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
:- import_module float, int, integer, list, string.
main(!IO) :-
io.format(" int.pow(0, 0) = %d\n", [i(pow(0, 0))], !IO),
io.format("integer.pow(zero, zero) = %s\n",
[s(to_string(pow(zero, zero)))], !IO),
io.format(" float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).
:- end_module zero_to_the_zero_power.
- Output:
int.pow(0, 0) = 1 integer.pow(zero, zero) = 1 float.pow(0.0, 0) = 1.0
Microsoft Small Basic
TextWindow.WriteLine(Math.Power(0,0))
- Output:
1
min
0 0 pow puts
- Output:
1.0
MiniScript
print "The result of zero to the zero power is " + 0^0
- Output:
The result of zero to the zero power is 1
МК-61/52
Сx ^ x^y С/П
The result is error message.
Nanoquery
println 0^0
- Output:
1
Neko
Neko uses the C math library for exponentiation, Zero to the zero in math.pow(x, y) is treated as being 1.
/**
Zero to the zeroth power, in Neko
*/
var math_pow = $loader.loadprim("std@math_pow", 2)
$print(math_pow(0, 0), "\n")
- Output:
prompt$ nekoc zero-to-the-zero.neko prompt$ neko zero-to-the-zero.n 1
NetRexx
x=0
Say '0**0='||x**x
- Output:
0**0=1
NewLISP
(pow 0 0)
- Output:
1
Nial
Create an exponentiation table for all type combinations (of integer 0
, float 0.0
and boolean o
):
0 0.0 o outer power 0 0.0 o
+--+--+--+
| 1|1.| 1|
+--+--+--+
|1.|1.|1.|
+--+--+--+
| 1|1.| 1|
+--+--+--+
Nim
import math
echo pow(0.0, 0.0) # Floating point exponentiation.
echo 0 ^ 0 # Integer exponentiation.
- Output:
1.0 1
Nu
0 ** 0 | print
- Output:
1
OCaml
In the interpreter:
# 0.0 ** 0.0;; - : float = 1. # Complex.pow Complex.zero Complex.zero;; - : Complex.t = {Complex.re = nan; Complex.im = nan} # #load "nums.cma";; # open Num;; # Int 0 **/ Int 0;; - : Num.num = Int 1
Oforth
0 0 pow println
- Output:
1
Ol
(print "0^0: " (expt 0 0))
(print "0.0^0: " (expt (inexact 0) 0))
- Output:
0^0: 1 0.0^0: 1
ooRexx
/**********************************************************************
* 21.04.2014 Walter Pachl
**********************************************************************/
Say 'rxCalcpower(0,0) ->' rxCalcpower(0,0)
Say '0**0 ->' 0**0
::requires rxmath library
- Output:
rxCalcpower(0,0) -> 1 0**0 -> 1
Openscad
echo (0^0);
PARI/GP
0 raised to the power of exact 0 is 1, but 0 cannot be raised to the power of an inexact 0:
0^0
0.^0
0^0.
- Output:
%1 = 1 %2 = 1 *** at top-level: 0^0. *** ^--- *** _^_: domain error in gpow(0,n): n <= 0 *** Break loop: type 'break' to go back to GP prompt
Pascal
program ZToZ;
uses
math;
begin
write('0.0 ^ 0 :',IntPower(0.0,0):4:2);
writeln(' 0.0 ^ 0.0 :',Power(0.0,0.0):4:2);
end.
- output
0.0 ^ 0 :1.00 0.0 ^ 0.0 :1.00
PascalABC.NET
##
print(0 ** 0)
- Output:
1
Perl
print 0 ** 0, "\n";
use Math::Complex;
print cplx(0,0) ** cplx(0,0), "\n";
- Output:
1 1
Phix
?power(0,0) requires("0.8.4") -- (now fixed/crashes on earlier versions) include complex.e complex a = complex_new(0,0), b = complex_power(a,a) string sa = complex_sprint(a,true), sb = complex_sprint(b,true) printf(1,"%s ^ %s = %s\n",{sa,sa,sb})
- Output:
1 0+0i ^ 0+0i = 1+0i
Phixmonti
def mypower
dup not if
. sign dup 0 == if . 1 endif
else
power
endif
enddef
0 0 mypower print
- Output:
1
PHP
<?php
echo pow(0,0);
echo 0 ** 0; // PHP 5.6+ only
?>
- Output:
1 1
PicoLisp
(** 0 0)
- Output:
1
Pike
write( pow(0, 0) +"\n" );
- Output:
1
PL/I
zhz: Proc Options(Main);
Dcl a dec float(10) Init(1);
Dcl b dec float(10) Init(0);
Put skip list('1**0=',a**b);
Put skip list('0**1=',b**a);
Put skip list('0**0=',b**b);
End;
- Output:
1**0= 1.000000000E+0000 0**1= 0.000000000E+0000 0**0= IBM0682I ONCODE=1553 X in EXPONENT(X) was invalid. At offset +0000025B in procedure with entry ZHZ
Plain English
To run:
Start up.
Put 0 into a number.
Raise the number to 0.
Convert the number to a string.
Write the string to the console.
Wait for the escape key.
Shut down.
- Output:
1
PowerShell
Write-Host "0 ^ 0 = " ([math]::pow(0,0))
Output :
0 ^ 0 = 1
PureBasic
If OpenConsole()
PrintN("Zero to the zero power is " + Pow(0,0))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
- Output:
Zero to the zero power is 1
Pyret
num-expt(0, 0)
- Output:
1
Python
Python3
from decimal import Decimal
from fractions import Fraction
from itertools import product
zeroes = [0, 0.0, 0j, Decimal(0), Fraction(0, 1), -0.0, -0.0j, Decimal(-0.0)]
for i, j in product(zeroes, repeat=2):
try:
ans = i**j
except:
ans = '<Exception raised>'
print(f'{i!r:>15} ** {j!r:<15} = {ans!r}')
- Output:
0 ** 0 = 1 0 ** 0.0 = 1.0 0 ** 0j = (1+0j) 0 ** Decimal('0') = '<Exception raised>' 0 ** Fraction(0, 1) = 1 0 ** -0.0 = 1.0 0 ** (-0-0j) = (1+0j) 0 ** Decimal('-0') = '<Exception raised>' 0.0 ** 0 = 1.0 0.0 ** 0.0 = 1.0 0.0 ** 0j = (1+0j) 0.0 ** Decimal('0') = '<Exception raised>' 0.0 ** Fraction(0, 1) = 1.0 0.0 ** -0.0 = 1.0 0.0 ** (-0-0j) = (1+0j) 0.0 ** Decimal('-0') = '<Exception raised>' 0j ** 0 = (1+0j) 0j ** 0.0 = (1+0j) 0j ** 0j = (1+0j) 0j ** Decimal('0') = '<Exception raised>' 0j ** Fraction(0, 1) = (1+0j) 0j ** -0.0 = (1+0j) 0j ** (-0-0j) = (1+0j) 0j ** Decimal('-0') = '<Exception raised>' Decimal('0') ** 0 = '<Exception raised>' Decimal('0') ** 0.0 = '<Exception raised>' Decimal('0') ** 0j = '<Exception raised>' Decimal('0') ** Decimal('0') = '<Exception raised>' Decimal('0') ** Fraction(0, 1) = '<Exception raised>' Decimal('0') ** -0.0 = '<Exception raised>' Decimal('0') ** (-0-0j) = '<Exception raised>' Decimal('0') ** Decimal('-0') = '<Exception raised>' Fraction(0, 1) ** 0 = Fraction(1, 1) Fraction(0, 1) ** 0.0 = 1.0 Fraction(0, 1) ** 0j = (1+0j) Fraction(0, 1) ** Decimal('0') = '<Exception raised>' Fraction(0, 1) ** Fraction(0, 1) = Fraction(1, 1) Fraction(0, 1) ** -0.0 = 1.0 Fraction(0, 1) ** (-0-0j) = (1+0j) Fraction(0, 1) ** Decimal('-0') = '<Exception raised>' -0.0 ** 0 = 1.0 -0.0 ** 0.0 = 1.0 -0.0 ** 0j = (1+0j) -0.0 ** Decimal('0') = '<Exception raised>' -0.0 ** Fraction(0, 1) = 1.0 -0.0 ** -0.0 = 1.0 -0.0 ** (-0-0j) = (1+0j) -0.0 ** Decimal('-0') = '<Exception raised>' (-0-0j) ** 0 = (1+0j) (-0-0j) ** 0.0 = (1+0j) (-0-0j) ** 0j = (1+0j) (-0-0j) ** Decimal('0') = '<Exception raised>' (-0-0j) ** Fraction(0, 1) = (1+0j) (-0-0j) ** -0.0 = (1+0j) (-0-0j) ** (-0-0j) = (1+0j) (-0-0j) ** Decimal('-0') = '<Exception raised>' Decimal('-0') ** 0 = '<Exception raised>' Decimal('-0') ** 0.0 = '<Exception raised>' Decimal('-0') ** 0j = '<Exception raised>' Decimal('-0') ** Decimal('0') = '<Exception raised>' Decimal('-0') ** Fraction(0, 1) = '<Exception raised>' Decimal('-0') ** -0.0 = '<Exception raised>' Decimal('-0') ** (-0-0j) = '<Exception raised>' Decimal('-0') ** Decimal('-0') = '<Exception raised>'
Python2
from decimal import Decimal
from fractions import Fraction
for n in (Decimal(0), Fraction(0, 1), complex(0), float(0), int(0)):
try:
n1 = n**n
except:
n1 = '<Raised exception>'
try:
n2 = pow(n, n)
except:
n2 = '<Raised exception>'
print('%8s: ** -> %r; pow -> %r' % (n.__class__.__name__, n1, n2))
- Output:
Decimal: ** -> '<Raised exception>'; pow -> '<Raised exception>' Fraction: ** -> Fraction(1, 1); pow -> Fraction(1, 1) complex: ** -> (1+0j); pow -> (1+0j) float: ** -> 1.0; pow -> 1.0 int: ** -> 1; pow -> 1
QB64
Print 0 ^ 0
- Output:
1
Alternatively:
i% = 0 'Integer
l& = 0 'Long integer
s! = 0.0 'Single precision floating point
d# = 0.0 'Double precision floating point
b` = 0 '_Bit
bb%% = 0 '_Byte
isf&& = 0 '_Integer64
Print i% ^ i%
Print l& ^ l&
Print s! ^ s!
Print d# ^ d#
Print b` ^ b`
Print bb%% ^ bb%%
Print isf&& ^ isf&&
- Output:
NB: Values with 0 decimals are trimmed by Print's casting from number value to String.
1 1 1 1 1 1 1
Quackery
As a dialogue in the Quackery shell.
/O> 0 0 **
...
Stack: 1
R
print(0^0)
- Output:
1
Racket
#lang racket
;; as many zeros as I can think of...
(define zeros (list
0 ; unspecified number type
0. ; hinted as float
#e0 ; explicitly exact
#i0 ; explicitly inexact
0+0i ; exact complex
0.+0.i ; float inexact
))
(for*((z zeros) (p zeros))
(printf "(~a)^(~a) = ~s~%" z p
(with-handlers [(exn:fail:contract:divide-by-zero? exn-message)]
(expt z p))))
- Output:
(0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i" (0.0)^(0) = 1 (0.0)^(0.0) = 1.0 (0.0)^(0) = 1 (0.0)^(0.0) = 1.0 (0.0)^(0) = 1 (0.0)^(0.0+0.0i) = +nan.0+nan.0i (0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i" (0.0)^(0) = 1 (0.0)^(0.0) = 1.0 (0.0)^(0) = 1 (0.0)^(0.0) = 1.0 (0.0)^(0) = 1 (0.0)^(0.0+0.0i) = +nan.0+nan.0i (0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0) = 1.0 (0)^(0) = 1 (0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i" (0.0+0.0i)^(0) = 1 (0.0+0.0i)^(0.0) = 1.0+0.0i (0.0+0.0i)^(0) = 1 (0.0+0.0i)^(0.0) = 1.0+0.0i (0.0+0.0i)^(0) = 1 (0.0+0.0i)^(0.0+0.0i) = +nan.0+nan.0i
Raku
(formerly Perl 6)
say ' type n n**n exp(n,n)';
say '-------- -------- -------- --------';
for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
printf "%8s %8s %8s %8s\n", .^name, $_, $_**$_, exp($_,$_);
}
- Output:
type n n**n exp(n,n) -------- -------- -------- -------- Int 0 1 1 Rat 0 1 1 FatRat 0 1 1 Num 0 1 1 Complex 0+0i 1+0i 1+0i
Red
Shown using the operator, the function, and the math
mini-DSL that uses the order of operations from mathematics:
Red[]
print 0 ** 0
print power 0 0
print math [0 ** 0]
- Output:
1 1 1
Relation
echo pow(0,0)
// 1
REXX
/*REXX program shows the results of raising zero to the zeroth power.*/
say '0 ** 0 (zero to the zeroth power) ───► ' 0**0
using PC/REXX
using Personal REXX
using REGINA
using ooRexx
- Output:
0 ** 0 (zero to the zeroth power) ───► 1
using R4
- Output:
Error 26 : Invalid whole number (SYNTAX) Information: 0 ** 0 is undefined Error occurred in statement# 2 Statement source: say '0 ** 0 (zero to the zeroth power) ───► ' 0**0 Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0
using ROO
- Output:
Error 26 : Invalid whole number (SYNTAX) Information: 0 ** 0 is undefined Error occurred in statement# 2 Statement source: say '0 ** 0 (zero to the zeroth power) ───► ' 0**0 Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0
Ring
x = 0
y = 0
z = pow(x,y)
see "z=" + z + nl # z=1
RPL
0 0 ^
Output for HP-48G and older models
1: 1
Output for HP-49 and newer models
1: ?
Ruby
require 'bigdecimal'
[0, 0.0, Complex(0), Rational(0), BigDecimal("0")].each do |n|
printf "%10s: ** -> %s\n" % [n.class, n**n]
end
- Output:
Integer: ** -> 1 Float: ** -> 1.0 Complex: ** -> 1+0i Rational: ** -> 1/1 BigDecimal: ** -> 0.1e1
Rust
fn main() {
println!("{}",0u32.pow(0));
}
- Output:
1
S-lang
print(0^0);
- Output:
1.0
Scala
assert(math.pow(0, 0) == 1, "Scala blunder, should go back to school !")
Scheme
(display (expt 0 0)) (newline)
(display (expt 0.0 0.0)) (newline)
(display (expt 0+0i 0+0i)) (newline)
- Output:
1 1.0 1.0
Seed7
$ include "seed7_05.s7i";
include "float.s7i";
include "complex.s7i";
const proc: main is func
begin
writeln("0 ** 0 = " <& 0 ** 0);
writeln("0.0 ** 0 = " <& 0.0 ** 0);
writeln("0.0 ** 0.0 = " <& 0.0 ** 0.0);
writeln("0.0+0i ** 0 = " <& complex(0.0) ** 0);
end func;
- Output:
0 ** 0 = 1 0.0 ** 0 = 1.0 0.0 ** 0.0 = 1.0 0.0+0i ** 0 = 1.0+0.0i
SenseTalk
set a to 0
set b to 0
put a to the power of b
// Prints: 1
Sidef
[0, Complex(0, 0)].each {|n|
say n**n
}
- Output:
1 1
Taking the 0'th root of a number and raising it back to the zero power, we also get a 1:
say 0.root(0).pow(0) # => 1
say ((0**(1/0))**0) # => 1
Sinclair ZX81 BASIC
PRINT 0**0
- Output:
1
Smalltalk
0 raisedTo: 0
0.0 raisedTo: 0.0
- Output:
1 1.0
smart BASIC
PRINT 0^0
- Output:
1
SNOBOL4
OUTPUT = (0 ** 0)
END
SQL
SQL> select power(0,0) from dual;
- Output:
POWER(0,0) ---------- 1
Standard ML
In the interpreter:
- Math.pow (0.0, 0.0); val it = 1.0 : real
Stata
. display 0^0
1
Swift
import Darwin
print(pow(0.0,0.0))
- Output:
1.0
Symsyn
(0^0) []
- Output:
1
Tcl
Interactively…
% expr 0**0
1
% expr 0.0**0.0
1.0
TI SR-56
0 Yx 0 =
- Output:
1
TI-83_BASIC
0^0
- Output:
ERROR:DOMAIN
uBasic/4tH
Print 0^0
- Output:
1 0 OK, 0:9
Ursa
Cygnus/X Ursa is written in Java, and as a result returns 1.0 when raising 0 to the 0.
> out (pow 0 0) endl console
1.0
VBA
Public Sub zero()
x = 0
y = 0
z = 0 ^ 0
Debug.Print "z ="; z
End Sub
- Output:
z = 1
VBScript
WScript.Echo 0 ^ 0
- Output:
1
Verilog
module main;
initial begin
$display("0 ^ 0 = ", 0**0);
$finish ;
end
endmodule
- Output:
0 ^ 0 = 1
Visual Basic .NET
Module Program
Sub Main()
Console.Write(0^0)
End Sub
End Module
- Output:
1
V (Vlang)
// Zero to the zero power, in V
// Tectonics: v run zero-to-the-zero-power.v
module main
import math
// starts here
// V does not include an exponentiation operator, but uses a math module
pub fn main() {
println(math.pow(0, 0))
}
- Output:
prompt$ v run rosetta/zero-to-the-zero-power.v 1.
Wren
System.print(0.pow(0))
- Output:
1
XLISP
XLISP 3.3, September 6, 2002 Copyright (c) 1984-2002, by David Betz
[1] (expt 0 0)
1
[2]
XPL0
RlOut(0, Pow(0., 0.))
- Output:
1.00000
Zig
const std = @import("std");
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
try stdout.print("0^0 = {d:.8}\n", .{std.math.pow(f32, 0, 0)});
}
- Output:
0^0 = 1.00000000
zkl
(0.0).pow(0) //--> 1.0
var BN=Import("zklBigNum"); // big ints
BN(0).pow(0) //--> 1
- Programming Tasks
- Solutions by Programming Task
- Simple
- 6502 Assembly/Omit
- 8080 Assembly/Omit
- Computer/zero Assembly/Omit
- Z80 Assembly/Omit
- 68000 Assembly/Omit
- 8086 Assembly/Omit
- MIPS Assembly/Omit
- ARM Assembly/Omit
- 11l
- 8th
- AArch64 Assembly/Omit
- Action!
- Action! Tool Kit
- Ada
- ALGOL 68
- APL
- AppleScript
- Applesoft BASIC
- Arturo
- Asymptote
- AutoHotkey
- AWK
- BaCon
- BASIC
- BASIC256
- Chipmunk Basic
- MSX Basic
- QBasic
- Run BASIC
- True BASIC
- XBasic
- ZX Spectrum Basic
- BBC BASIC
- Bc
- Befunge
- Binary Lambda Calculus
- BQN
- Bracmat
- Burlesque
- C
- C sharp
- C++
- Caché ObjectScript
- Clojure
- CLU
- COBOL
- ColdFusion
- Commodore BASIC
- Common Lisp
- Crystal
- D
- Dart
- Dc
- Delphi
- DuckDB
- EasyLang
- EchoLisp
- Eiffel
- Elena
- Elixir
- Emacs Lisp
- EMal
- ERRE
- F Sharp
- Factor
- Falcon
- Fermat
- Forth
- Fortran
- FreeBASIC
- Frink
- FutureBasic
- Fōrmulæ
- Gambas
- GAP
- Go
- Golfscript
- Groovy
- GW-BASIC
- Haskell
- HolyC
- Icon
- Unicon
- J
- Java
- JavaScript
- Jq
- Jsish
- Julia
- K
- Klingphix
- Kotlin
- Lambdatalk
- LDPL
- Liberty BASIC
- Locomotive Basic
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- Maxima
- Mercury
- Microsoft Small Basic
- Min
- MiniScript
- МК-61/52
- Nanoquery
- Neko
- NetRexx
- NewLISP
- Nial
- Nim
- Nu
- OCaml
- Oforth
- Ol
- OoRexx
- Openscad
- PARI/GP
- Pascal
- Math
- PascalABC.NET
- Perl
- Phix
- Phix/basics
- Phixmonti
- PHP
- PicoLisp
- Pike
- PL/I
- Plain English
- PowerShell
- PureBasic
- Pyret
- Python
- QB64
- Quackery
- R
- Racket
- Raku
- Red
- Relation
- REXX
- Ring
- RPL
- Ruby
- Rust
- S-lang
- Scala
- Scheme
- Seed7
- SenseTalk
- Sidef
- Sinclair ZX81 BASIC
- Smalltalk
- Smart BASIC
- SNOBOL4
- SQL
- Standard ML
- Stata
- Swift
- Symsyn
- Tcl
- TI SR-56
- TI-83 BASIC
- UBasic/4tH
- Ursa
- VBA
- VBScript
- Verilog
- Visual Basic .NET
- V (Vlang)
- Wren
- XLISP
- XPL0
- Zig
- Zkl
- Pages with too many expensive parser function calls