# Sorting algorithms/Bogosort

Sorting algorithms/Bogosort
You are encouraged to solve this task according to the task description, using any language you may know.

Sorting Algorithm
This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or:

O(n logn) sorts

O(n log2n) sorts
Shell Sort

Bogosort a list of numbers.

Bogosort simply shuffles a collection randomly until it is sorted.

"Bogosort" is a perversely inefficient algorithm only used as an in-joke.

Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence.

Its best case is   O(n)   since a single pass through the elements may suffice to order them.

Pseudocode:

```while not InOrder(list) do
Shuffle(list)
done
```

The Knuth shuffle may be used to implement the shuffle part of this algorithm.

## 11l

```F is_sorted(data)
R all((0 .< data.len - 1).map(i -> @data[i] <= @data[i + 1]))

F bogosort(&data)
L !is_sorted(data)
random:shuffle(&data)

V arr = [2, 1, 3]
bogosort(&arr)
print(arr)```
Output:
```[1, 2, 3]
```

## AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
```/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program bogosort64.s   */

/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:      .asciz "Value  : @ \n"
szCarriageReturn: .asciz "\n"

.align 4
.equ NBELEMENTS, (. - TableNumber) / 8

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:          .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                                           // entry of program

1:
mov x1,#NBELEMENTS                          // number of élements
bl knuthShuffle
// table  display elements
mov x1,#NBELEMENTS                          // number of élements
bl displayTable

mov x1,#NBELEMENTS                          // number of élements
bl isSorted                                 // control sort
cmp x0,#1                                   // sorted ?
bne 1b                                      // no -> loop

100:                                            // standard end of the program
mov x0, #0                                  // return code
mov x8, #EXIT                               // request to exit program
svc #0                                      // perform the system call

/******************************************************************/
/*     control sorted table                                   */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the number of elements  > 0  */
/* x0 return 0  if not sorted   1  if sorted */
isSorted:
stp x2,lr,[sp,-16]!          // save  registers
stp x3,x4,[sp,-16]!          // save  registers
mov x2,#0
ldr x4,[x0,x2,lsl #3]        // load A[0]
1:
cmp x2,x1                    // end ?
bge 99f
ldr x3,[x0,x2, lsl #3]       // load A[i]
cmp x3,x4                    // compare A[i],A[i-1]
blt 98f                      // smaller -> error -> return
mov x4,x3                    // no -> A[i-1] = A[i]
b 1b                         // and loop
98:
mov x0,#0                    // error
b 100f
99:
mov x0,#1                    // ok -> return
100:
ldp x2,x3,[sp],16            // restaur  2 registers
ldp x1,lr,[sp],16            // restaur  2 registers
/******************************************************************/
/*      Display table elements                                */
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains elements number  */
displayTable:
stp x1,lr,[sp,-16]!          // save  registers
stp x2,x3,[sp,-16]!          // save  registers
mov x4,x1                    // elements number
mov x3,#0
1:                               // loop display table
ldr x0,[x2,x3,lsl #3]
bl conversion10              // décimal conversion
bl strInsertAtCharInc
bl affichageMess             // display message
cmp x3,x4                    // end ?
blt 1b                       // no -> loop
bl affichageMess
100:
ldp x2,x3,[sp],16            // restaur  2 registers
ldp x1,lr,[sp],16            // restaur  2 registers
/******************************************************************/
/*     shuffle game                                       */
/******************************************************************/
/* x0 contains boxs address           */
/* x1 contains elements number        */
knuthShuffle:
stp x1,lr,[sp,-16]!            // save  registers
stp x2,x3,[sp,-16]!            // save  registers
stp x4,x5,[sp,-16]!            // save  registers
mov x5,x0                      // save table address
mov x2,#0                      // start index
1:
mov x0,x2                      // generate aleas
bl genereraleas
ldr x3,[x5,x2,lsl #3]          // swap number on the table
ldr x4,[x5,x0,lsl #3]
str x4,[x5,x2,lsl #3]
str x3,[x5,x0,lsl #3]
cmp x2,x1                                         // end ?
blt 1b                                            // no -> loop

100:
ldp x4,x5,[sp],16              // restaur  2 registers
ldp x2,x3,[sp],16              // restaur  2 registers
ldp x1,lr,[sp],16              // restaur  2 registers
/***************************************************/
/*   Generation random number                  */
/***************************************************/
/* x0 contains limit  */
genereraleas:
stp x1,lr,[sp,-16]!            // save  registers
stp x2,x3,[sp,-16]!            // save  registers
ldr x2,[x1]
ldr x3,qNbDep1
mul x2,x3,x2
ldr x3,qNbDep2
str x2,[x1]                    // maj de la graine pour l appel suivant
cmp x0,#0
beq 100f
udiv x3,x2,x0
msub x0,x3,x0,x2               // résult = remainder

100:                               // end function
ldp x2,x3,[sp],16              // restaur  2 registers
ldp x1,lr,[sp],16              // restaur  2 registers
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"```

## Action!

```PROC PrintArray(INT ARRAY a INT size)
INT i

Put('[)
FOR i=0 TO size-1
DO
IF i>0 THEN Put(' ) FI
PrintI(a(i))
OD
Put(']) PutE()
RETURN

PROC KnuthShuffle(INT ARRAY tab BYTE size)
BYTE i,j
INT tmp

i=size-1
WHILE i>0
DO
j=Rand(i+1)
tmp=tab(i)
tab(i)=tab(j)
tab(j)=tmp
i==-1
OD
RETURN

BYTE FUNC IsSorted(INT ARRAY tab BYTE size)
BYTE i

IF size<2 THEN
RETURN (1)
FI
FOR i=0 TO size-2
DO
IF tab(i)>tab(i+1) THEN
RETURN (0)
FI
OD
RETURN (1)

PROC BogoSort(INT ARRAY a INT size)
WHILE IsSorted(a,size)=0
DO
KnuthShuffle(a,size)
OD
RETURN

PROC Test(INT ARRAY a INT size)
PrintE("Array before sort:")
PrintArray(a,size)
BogoSort(a,size)
PrintE("Array after sort:")
PrintArray(a,size)
PutE()
RETURN

PROC Main()
INT ARRAY
a(10)=[1 4 65535 0 7 4 20 65530],
b(21)=[3 2 1 0 65535 65534 65533],
c(8)=[101 102 103 104 105 106 107 108],
d(12)=[1 65535 1 65535 1 65535 1
65535 1 65535 1 65535]

Test(a,8)
Test(b,7)
Test(c,8)
Test(d,12)
RETURN```
Output:
```Array before sort:
[1 4 -1 0 7 4 20 -6]
Array after sort:
[-6 -1 0 1 4 4 7 20]

Array before sort:
[3 2 1 0 -1 -2 -3]
Array after sort:
[-3 -2 -1 0 1 2 3]

Array before sort:
[101 102 103 104 105 106 107 108]
Array after sort:
[101 102 103 104 105 106 107 108]

Array before sort:
[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1]
Array after sort:
[-1 -1 -1 -1 -1 -1 1 1 1 1 1 1]
```

## ActionScript

```public function bogoSort(arr:Array):Array
{
while (!sorted(arr))
{
shuffle(arr);
}

return arr;
}

public function shuffle(arr:Array):void
{
for (var i:int = 0; i < arr.length; i++)
{
var rand:int = Math.floor(Math.random() * arr.length);
var tmp:* = arr[i];
arr[i] = arr[rand];
arr[rand] = tmp;
}
}

public function sorted(arr:Array):Boolean
{
var last:int = arr[0];

for (var i:int = 1; i < arr.length; i++)
{
if (arr[i] < last)
{
return false;
}

last = arr[i];
}

return true;
}
```

```with Ada.Text_IO;  use Ada.Text_IO;

procedure Test_Bogosort is
generic
type Ordered is private;
type List is array (Positive range <>) of Ordered;
with function "<" (L, R : Ordered) return Boolean is <>;
procedure Bogosort (Data : in out List);

procedure Bogosort (Data : in out List) is
function Sorted return Boolean is
begin
for I in Data'First..Data'Last - 1 loop
if not (Data (I) < Data (I + 1)) then
return False;
end if;
end loop;
return True;
end Sorted;
subtype Index is Integer range Data'Range;
package Dices is new Ada.Numerics.Discrete_Random (Index);
use Dices;
Dice : Generator;
procedure Shuffle is
J    : Index;
Temp : Ordered;
begin
for I in Data'Range loop
J := Random (Dice);
Temp := Data (I);
Data (I) := Data (J);
Data (J) := Temp;
end loop;
end Shuffle;
begin
while not Sorted loop
Shuffle;
end loop;
end Bogosort;

type List is array (Positive range <>) of Integer;
procedure Integer_Bogosort is new Bogosort (Integer, List);
Sequence : List := (7,6,3,9);
begin
Integer_Bogosort (Sequence);
for I in Sequence'Range loop
Put (Integer'Image (Sequence (I)));
end loop;
end Test_Bogosort;
```

The solution is generic. The procedure Bogosort can be instantiated with any copyable comparable type. In the example given it is the standard Integer type.

Output:
``` 3 6 7 9
```

## ALGOL 68

Translation of: python
Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8.8d.fc9.i386
```MODE TYPE = INT;

PROC random shuffle = (REF[]TYPE l)VOID: (
INT range = UPB l - LWB l + 1;
FOR index FROM LWB l TO UPB l DO
TYPE tmp := l[index];
INT other := ENTIER (LWB l + random * range);
l[index] := l[other];
l[other] := tmp
OD
);

PROC in order = (REF[]TYPE l)BOOL: (
IF LWB l >= UPB l THEN
TRUE
ELSE
TYPE last := l[LWB l];
FOR index FROM LWB l + 1 TO UPB l DO
IF l[index] < last THEN
GO TO return false
FI;
last := l[index]
OD;
TRUE EXIT
return false: FALSE
FI
);

PROC bogo sort = (REF[]TYPE l)REF[]TYPE: (
WHILE NOT in order(l) DO
random shuffle(l)
OD;
l
);

[6]TYPE sample := (61, 52, 63, 94, 46, 18);
print((bogo sort(sample), new line))```
Output:
```       +18        +46        +52        +61        +63        +94
```

## ARM Assembly

Works with: as version Raspberry Pi
```/* ARM assembly Raspberry PI  */
/*  program bogosort.s   */

/************************************/
/* Constantes                       */
/************************************/
.equ STDOUT, 1     @ Linux output console
.equ EXIT,   1     @ Linux syscall
.equ WRITE,  4     @ Linux syscall
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:      .ascii "Value  : "
sMessValeur:       .fill 11, 1, ' '            @ size => 11
szCarriageReturn: .asciz "\n"

.align 4
iGraine:  .int 123456
.equ NBELEMENTS,      6
TableNumber:	     .int   1,2,3,4,5,6,7,8,9,10

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                                           @ entry of program

1:
mov r1,#NBELEMENTS                          @ number of élements
bl knuthShuffle

@ table  display elements
mov r3,#0
2:                                              @ loop display table
ldr r0,[r2,r3,lsl #2]
bl conversion10                             @ call function
bl affichageMess                            @ display message
cmp r3,#NBELEMENTS - 1
ble 2b
bl affichageMess

mov r1,#NBELEMENTS                          @ number of élements
bl isSorted                                 @ control sort
cmp r0,#1                                   @ sorted ?
bne 1b                                      @ no -> loop

100:                                            @ standard end of the program
mov r0, #0                                  @ return code
mov r7, #EXIT                               @ request to exit program
svc #0                                      @ perform the system call

/******************************************************************/
/*     control sorted table                                   */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the number of elements  > 0  */
/* r0 return 0  if not sorted   1  if sorted */
isSorted:
push {r2-r4,lr}                                    @ save registers
mov r2,#0
ldr r4,[r0,r2,lsl #2]
1:
cmp r2,r1
movge r0,#1
bge 100f
ldr r3,[r0,r2, lsl #2]
cmp r3,r4
movlt r0,#0
blt 100f
mov r4,r3
b 1b
100:
pop {r2-r4,lr}
bx lr                                              @ return
/******************************************************************/
/*     knuthShuffle Shuffle                                  */
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the number of elements */
knuthShuffle:
push {r2-r5,lr}                                    @ save registers
mov r5,r0                                          @ save table address
mov r2,#0                                          @ start index
1:
mov r0,r2                                          @ generate aleas
bl genereraleas
ldr r3,[r5,r2,lsl #2]                              @ swap number on the table
ldr r4,[r5,r0,lsl #2]
str r4,[r5,r2,lsl #2]
str r3,[r5,r0,lsl #2]
cmp r2,r1                                          @ end ?
blt 1b                                             @ no -> loop

100:
pop {r2-r5,lr}
bx lr                                              @ return

/******************************************************************/
/*     display text with size calculation                         */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr}                          @ save  registres
mov r2,#0                                      @ counter length
1:                                                 @ loop length calculation
ldrb r1,[r0,r2]                                @ read octet start position + index
cmp r1,#0                                      @ if 0 its over
bne 1b                                         @ and loop
@ so here r2 contains the length of the message
mov r1,r0                                      @ address message in r1
mov r0,#STDOUT                                 @ code to write to the standard output Linux
mov r7, #WRITE                                 @ code call system "write"
svc #0                                         @ call systeme
pop {r0,r1,r2,r7,lr}                           @ restaur des  2 registres */
bx lr                                          @ return
/******************************************************************/
/*     Converting a register to a decimal unsigned                */
/******************************************************************/
/* r0 contains value and r1 address area   */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes          */
.equ LGZONECAL,   10
conversion10:
push {r1-r4,lr}                                 @ save registers
mov r3,r1
mov r2,#LGZONECAL

1:	                                            @ start loop
bl divisionpar10U                               @ unsigned  r0 <- dividende. quotient ->r0 reste -> r1
strb r1,[r3,r2]                                 @ store digit on area
cmp r0,#0                                       @ stop if quotient = 0
subne r2,#1                                     @ else previous position
bne 1b	                                    @ and loop
@ and move digit from left of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4]
cmp r2,#LGZONECAL
ble 2b
@ and move spaces in end on area
mov r0,r4                                         @ result length
mov r1,#' '                                       @ space
3:
strb r1,[r3,r4]                                   @ store space in area
cmp r4,#LGZONECAL
ble 3b                                            @ loop if r4 <= area size

100:
pop {r1-r4,lr}                                    @ restaur registres
bx lr                                             @return

/***************************************************/
/*   division par 10   unsigned                    */
/***************************************************/
/* r0 dividende   */
/* r0 quotient */
/* r1 remainder  */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0                                          @ save value
//mov r3,#0xCCCD                                   @ r3 <- magic_number lower  raspberry 3
//movt r3,#0xCCCC                                  @ r3 <- magic_number higter raspberry 3
ldr r3,iMagicNumber                                @ r3 <- magic_number    raspberry 1 2
umull r1, r2, r3, r0                               @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3                                 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2                               @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1                               @ r1 <- r4 - (r2 * 2)  = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr                                              @ leave function
iMagicNumber:  	.int 0xCCCCCCCD
/***************************************************/
/*   Generation random number                  */
/***************************************************/
/* r0 contains limit  */
genereraleas:
push {r1-r4,lr}                                    @ save registers
ldr r2,[r4]
ldr r3,iNbDep1
mul r2,r3,r2
ldr r3,iNbDep1
str r2,[r4]                                        @ maj de la graine pour l appel suivant
cmp r0,#0
beq 100f
mov r1,r0                                          @ divisor
mov r0,r2                                          @ dividende
bl division
mov r0,r3                                          @ résult = remainder

100:                                                   @ end function
pop {r1-r4,lr}                                     @ restaur registers
bx lr                                              @ return
/*****************************************************/
iNbDep1: .int 0x343FD
iNbDep2: .int 0x269EC3
/***************************************************/
/* integer division unsigned                       */
/***************************************************/
division:
/* r0 contains dividend */
/* r1 contains divisor */
/* r2 returns quotient */
/* r3 returns remainder */
push {r4, lr}
mov r2, #0                                         @ init quotient
mov r3, #0                                         @ init remainder
mov r4, #32                                        @ init counter bits
b 2f
1:                                                     @ loop
movs r0, r0, LSL #1                                @ r0 <- r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1)
adc r3, r3, r3                                     @ r3 <- r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C
cmp r3, r1                                         @ compute r3 - r1 and update cpsr
subhs r3, r3, r1                                   @ if r3 >= r1 (C=1) then r3 <- r3 - r1
adc r2, r2, r2                                     @ r2 <- r2 + r2 + C. This is equivalent to r2 <- (r2 << 1) + C
2:
subs r4, r4, #1                                    @ r4 <- r4 - 1
bpl 1b                                             @ if r4 >= 0 (N=0) then loop
pop {r4, lr}
bx lr```

## Arturo

```bogoSort: function [items][
a: new items
while [not? sorted? a]-> shuffle 'a
return a
]

print bogoSort [3 1 2 8 5 7 9 4 6]
```
Output:
`1 2 3 4 5 6 7 8 9`

## AutoHotkey

```MsgBox % Bogosort("987654")
MsgBox % Bogosort("319208")
MsgBox % Bogosort("fedcba")
MsgBox % Bogosort("gikhjl")

Bogosort(sequence) {
While !Sorted(sequence)
sequence := Shuffle(sequence)
Return sequence
}

Sorted(sequence) {
Loop, Parse, sequence
{
current := A_LoopField
rest := SubStr(sequence, A_Index)
Loop, Parse, rest
{
If (current > A_LoopField)
Return false
}
}
Return true
}

Shuffle(sequence) {
Max := StrLen(sequence) + 1
Loop % StrLen(sequence) {
Random, Num, 1, % Max - A_Index
Found .= SubStr(sequence, Num, 1)
sequence := SubStr(sequence, 1, Num-1) . SubStr(sequence, Num+1)
}
Return Found
}
```

## AWK

Sort standard input and output to the standard output

```function randint(n)
{
return int(n * rand())
}

function sorted(sa, sn)
{
for(si=1; si < sn; si++) {
if ( sa[si] > sa[si+1] ) return 0;
}
return 1
}

{
line[NR] = \$0
}
END { # sort it with bogo sort
while ( sorted(line, NR) == 0 ) {
for(i=1; i <= NR; i++) {
r = randint(NR) + 1
t = line[i]
line[i] = line[r]
line[r] = t
}
}
#print it
for(i=1; i <= NR; i++) {
print line[i]
}
}
```

## BASIC256

Translation of: FreeBASIC
```global array
dim array = {10, 1, 2, -6, 3}
lb = array[?,]-1 : ub = array[?]-1

print "unsort ";
for i = lb to ub
print rjust(array[i], 4);
next i

call Bogosort(array)  # ordenar el array

print chr(10); "  sort ";
for i = lb to ub
print rjust(array[i], 4);
next i
end

subroutine shuffle(array)
n = array[?] : m = array[?]*2

for k = 1 to m
i = int(Rand*n)
j = int(Rand*n)
tmp = array[i]		#swap lb(i), lb(j)
array[i] = array[j]
array[j] = tmp
next k
end subroutine

function inorder(array)
n = array[?]
for i = 0 to n-2
if array[i] > array[i+1] then return false
next i
return true
end function

subroutine Bogosort(array)
while not inorder(array)
call shuffle(array)
end while
end subroutine```

## BBC BASIC

```      DIM test(9)
test() = 4, 65, 2, 31, 0, 99, 2, 83, 782, 1

shuffles% = 0
WHILE NOT FNsorted(test())
shuffles% += 1
PROCshuffle(test())
ENDWHILE
PRINT ;shuffles% " shuffles required to sort "; DIM(test(),1)+1 " items."
END

DEF PROCshuffle(d())
LOCAL I%
FOR I% = DIM(d(),1)+1 TO 2 STEP -1
SWAP d(I%-1), d(RND(I%)-1)
NEXT
ENDPROC

DEF FNsorted(d())
LOCAL I%
FOR I% = 1 TO DIM(d(),1)
IF d(I%) < d(I%-1) THEN = FALSE
NEXT
= TRUE
```
Output:
```383150 shuffles required to sort 10 items.
```

## BQN

Requires the `_while_` idiom because the recursive version `{(𝕊𝕩⊏˜•rand.Deal∘≠)⍟(𝕩≢∧𝕩)𝕩}` quickly runs out of stack depth.

```_while_←{𝔽⍟𝔾∘𝔽_𝕣_𝔾∘𝔽⍟𝔾𝕩}
Bogo←{𝕩⊏˜•rand.Deal≠𝕩}_while_(≢⟜∧)
```

## Brat

```bogosort = { list |
sorted = list.sort #Kinda cheating here
while { list != sorted } { list.shuffle! }
list
}

p bogosort [15 6 2 9 1 3 41 19]```

## C

```#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

bool is_sorted(int *a, int n)
{
while ( --n >= 1 ) {
if ( a[n] < a[n-1] ) return false;
}
return true;
}

void shuffle(int *a, int n)
{
int i, t, r;
for(i=0; i < n; i++) {
t = a[i];
r = rand() % n;
a[i] = a[r];
a[r] = t;
}
}

void bogosort(int *a, int n)
{
while ( !is_sorted(a, n) ) shuffle(a, n);
}

int main()
{
int numbers[] = { 1, 10, 9,  7, 3, 0 };
int i;

bogosort(numbers, 6);
for (i=0; i < 6; i++) printf("%d ", numbers[i]);
printf("\n");
}
```

## C#

Works with: C# version 3.0+
```using System;
using System.Collections.Generic;

namespace RosettaCode.BogoSort
{
public static class BogoSorter
{
public static void Sort<T>(List<T> list) where T:IComparable
{
while (!list.isSorted())
{
list.Shuffle();
}
}

private static bool isSorted<T>(this IList<T> list) where T:IComparable
{
if(list.Count<=1)
return true;
for (int i = 1 ; i < list.Count; i++)
if(list[i].CompareTo(list[i-1])<0) return false;
return true;
}

private static void Shuffle<T>(this IList<T> list)
{
Random rand = new Random();
for (int i = 0; i < list.Count; i++)
{
int swapIndex = rand.Next(list.Count);
T temp = list[swapIndex];
list[swapIndex] = list[i];
list[i] = temp;
}
}
}

class TestProgram
{
static void Main()
{
List<int> testList = new List<int> { 3, 4, 1, 8, 7, 4, -2 };
BogoSorter.Sort(testList);
foreach (int i in testList) Console.Write(i + " ");
}

}
}
```

## C++

Uses C++11. Compile with

```g++ -std=c++11 bogo.cpp
```
```#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>

template <typename RandomAccessIterator, typename Predicate>
void bogo_sort(RandomAccessIterator begin, RandomAccessIterator end,
Predicate p) {
std::random_device rd;
std::mt19937 generator(rd());
while (!std::is_sorted(begin, end, p)) {
std::shuffle(begin, end, generator);
}
}

template <typename RandomAccessIterator>
void bogo_sort(RandomAccessIterator begin, RandomAccessIterator end) {
bogo_sort(
begin, end,
std::less<
typename std::iterator_traits<RandomAccessIterator>::value_type>());
}

int main() {
int a[] = {100, 2, 56, 200, -52, 3, 99, 33, 177, -199};
bogo_sort(std::begin(a), std::end(a));
copy(std::begin(a), std::end(a), std::ostream_iterator<int>(std::cout, " "));
std::cout << "\n";
}
```
Output:
```-199 -52 2 3 33 56 99 100 177 200
```

## Clojure

```(defn in-order? [order xs]
(or (empty? xs)
(apply order xs)))

(defn bogosort [order xs]
(if (in-order? order xs) xs
(recur order (shuffle xs))))

(println (bogosort < [7 5 12 1 4 2 23 18]))
```

## COBOL

This program generates an array of ten pseudo-random numbers in the range 0 to 999 and then sorts them into ascending order. Eventually.

```identification division.
program-id. bogo-sort-program.
data division.
working-storage section.
01  array-to-sort.
05 item-table.
10 item          pic 999
occurs 10 times.
01  randomization.
05 random-seed       pic 9(8).
05 random-index      pic 9.
01  flags-counters-etc.
05 array-index       pic 99.
05 temporary-storage pic 999.
05 shuffles          pic 9(8)
value zero.
05 sorted            pic 9.
05 item-no-zeros     pic z(4).
05 shuffles-no-zeros pic z(8).
procedure division.
control-paragraph.
accept random-seed from time.
move function random(random-seed) to item(1).
perform random-item-paragraph varying array-index from 2 by 1
until array-index is greater than 10.
display 'BEFORE SORT:' with no advancing.
perform show-array-paragraph varying array-index from 1 by 1
until array-index is greater than 10.
display ''.
perform shuffle-paragraph through is-it-sorted-paragraph
until sorted is equal to 1.
display 'AFTER SORT: ' with no advancing.
perform show-array-paragraph varying array-index from 1 by 1
until array-index is greater than 10.
display ''.
move shuffles to shuffles-no-zeros.
display shuffles-no-zeros ' SHUFFLES PERFORMED.'
stop run.
random-item-paragraph.
move function random to item(array-index).
show-array-paragraph.
move item(array-index) to item-no-zeros.
shuffle-paragraph.
perform shuffle-items-paragraph,
varying array-index from 1 by 1
until array-index is greater than 10.
is-it-sorted-paragraph.
move 1 to sorted.
perform item-in-order-paragraph varying array-index from 1 by 1,
until sorted is equal to zero
or array-index is equal to 10.
shuffle-items-paragraph.
move function random to random-index.
move item(array-index) to temporary-storage.
item-in-order-paragraph.
if item(array-index) is greater than item(adjusted-index)
then move zero to sorted.
```
Output:
```BEFORE SORT: 141 503 930 105  78 518 180 907 791 361
AFTER SORT:   78 105 141 180 361 503 518 791 907 930
237262 SHUFFLES PERFORMED.```

## Common Lisp

Sortedp checks that each element of a list is related by predicate to the next element of the list. I.e., `(sortedp (x1 x2 … xn) pred)` is true when each of `(pred x1 x2)`, …, `(pred xn-1 xn)` is true.

`nshuffle` is the same code as in Knuth shuffle.

```(defun nshuffle (sequence)
(loop for i from (length sequence) downto 2
do (rotatef (elt sequence (random i))
(elt sequence (1- i ))))
sequence)

(defun sortedp (list predicate)
(every predicate list (rest list)))

(defun bogosort (list predicate)
(do ((list list (nshuffle list)))
((sortedp list predicate) list)))
```

## Crystal

```def knuthShuffle(items : Array)
i = items.size-1
while i > 1
j = Random.rand(0..i)
items.swap(i, j)

i -= 1
end
end

def sorted?(items : Array)
prev = items[0]
items.each do |item|
if item < prev
return false
end
prev = item
end
return true
end

def bogoSort(items : Array)
while !sorted?(items)
knuthShuffle(items)
end
end
```

## D

```import std.stdio, std.algorithm, std.random;

void bogoSort(T)(T[] data) {
while (!isSorted(data))
randomShuffle(data);
}

void main() {
auto array = [2, 7, 41, 11, 3, 1, 6, 5, 8];
bogoSort(array);
writeln(array);
}
```
Output:
`[1, 2, 3, 5, 6, 7, 8, 11, 41]`

See Pascal.

## E

Using the shuffle from Knuth shuffle#E.

```def isSorted(list) {
if (list.size() == 0) { return true }
var a := list[0]
for i in 1..!(list.size()) {
var b := list[i]
if (a > b) { return false }
a := b
}
return true
}

def bogosort(list, random) {
while (!isSorted(list)) {
shuffle(list, random)
}
}```

## EasyLang

```proc shuffle . l[] .
for i = len l[] downto 2
r = randint i
swap l[i] l[r]
.
.
proc issorted . l[] r .
for i = 2 to len l[]
if l[i] < l[i - 1]
r = 0
return
.
.
r = 1
.
proc bogosort . l[] .
repeat
issorted l[] r
until r = 1
shuffle l[]
.
.
list[] = [ 2 7 41 11 3 1 6 5 8 ]
bogosort list[]
print list[]```
Output:
```[ 1 2 3 5 6 7 8 11 41 ]
```

## Eiffel

```class
BOGO_SORT

feature

bogo_sort (ar: ARRAY [INTEGER]): ARRAY [INTEGER]
-- Sorted array in ascending order.
do
from
until
is_sorted (ar) = True
loop
Result := shuffel (ar)
end
end

feature {NONE}

is_sorted (ar: ARRAY [INTEGER]): BOOLEAN
-- Is 'ar' sorted in ascending order?
require
not_void: ar /= Void
local
i: INTEGER
do
Result := True
from
i := 1 + 1
invariant
i >= 1 + 1 and i <= ar.count + 1
until
i > ar.count
loop
Result := Result and ar [i - 1] <= ar [i]
i := i + 1
variant
ar.count + 1 - i
end
end

shuffle (ar: ARRAY [INTEGER]): ARRAY [INTEGER]
-- Array containing the same elements as 'ar' in a shuffled order.
require
more_than_one_element: ar.count > 1
local
count, j, ith: INTEGER
random: V_RANDOM
do
create random
create Result.make_empty
Result.deep_copy (ar)
count := ar.count
across
1 |..| count as c
loop
j := random.bounded_item (c.item, count)
ith := Result [c.item]
Result [c.item] := Result [j]
Result [j] := ith
random.forth
end
ensure
same_elements: across ar as a all Result.has (a.item) end
end

end
```

TEST:

```class
APPLICATION

create
make

feature {NONE}

make
do
test := <<3, 2, 5, 7, 1>>
io.put_string ("Unsorted: ")
across
test as t
loop
io.put_string (t.item.out + " ")
end
create sorter
test := sorter.bogo_sort (test)
io.put_string ("%NSorted: ")
across
test as t
loop
io.put_string (t.item.out + " ")
end
end

test: ARRAY [INTEGER]

sorter: BOGO_SORT

end
```
Output:
```Unsorted: 3 2 5 7 1
Sorted: 1 2 3 5 7
```

## Elena

ELENA 5.0 :

```import extensions;
import system'routines;

extension op
{
bogoSorter()
{
var list := self;

until (list.isAscendant())
{
list := list.randomize(list.Length)
};

^ list
}
}

public program()
{
var list := new int[]{3, 4, 1, 8, 7, -2, 0};

console.printLine("before:", list.asEnumerable());
console.printLine("after :", list.bogoSorter().asEnumerable())
}```
Output:
```before:3,4,1,8,7,-2,0
after :-2,0,1,3,4,7,8
```

## Elixir

```defmodule Sort do
def bogo_sort(list) do
if sorted?(list) do
list
else
bogo_sort(Enum.shuffle(list))
end
end

defp sorted?(list) when length(list)<=1, do: true
defp sorted?([x, y | _]) when x>y, do: false
defp sorted?([_, y | rest]), do: sorted?([y | rest])
end
```

Example:

```iex(114)> Sort.bogo_sort([5,3,9,4,1,6,8,2,7])
[1, 2, 3, 4, 5, 6, 7, 8, 9]
```

## Euphoria

```function shuffle(sequence s)
object temp
integer j
for i = length(s) to 1 by -1 do
j = rand(i)
if i != j then
temp = s[i]
s[i] = s[j]
s[j] = temp
end if
end for
return s
end function

function inOrder(sequence s)
for i = 1 to length(s)-1 do
if compare(s[i],s[i+1]) > 0 then
return 0
end if
end for
return 1
end function

function bogosort(sequence s)
while not inOrder(s) do
? s
s = shuffle(s)
end while
return s
end function

? bogosort(shuffle({1,2,3,4,5,6}))```
Output:
```{1,2,5,4,6,3}
{5,1,3,6,2,4}
{4,6,1,2,5,3}
.............
{1,2,6,5,4,3}
{5,3,1,2,6,4}
{1,2,3,4,5,6}
```

## Factor

```USING: grouping kernel math random sequences ;

: sorted? ( seq -- ? ) 2 <clumps> [ first2 <= ] all? ;
: bogosort ( seq -- newseq ) [ dup sorted? ] [ randomize ] until ;
```

## Fantom

```class Main
{
Bool in_order (Int[] items)
{
(0..<(items.size-1)).toList.all |Int i -> Bool|
{
items[i] <= items[i+1]
}
}

Int[] bogosort (Int[] items)
{
while (!in_order(items))
{
items.shuffle
}
return items
}

Void main ()
{
// example
echo ("Sorting [3,4,2,1] gives " + bogosort ([3,4,2,1]))
}
}```

## Fortran

Works with: Fortran version 90 and later
```MODULE BOGO
IMPLICIT NONE
CONTAINS
FUNCTION Sorted(a)
LOGICAL :: Sorted
INTEGER, INTENT(IN) :: a(:)
INTEGER :: i

Sorted = .TRUE.
DO i = 1, SIZE(a)-1
IF(a(i) > a(i+1)) THEN
Sorted = .FALSE.
EXIT
END IF
END DO
END FUNCTION Sorted

SUBROUTINE SHUFFLE(a)
INTEGER, INTENT(IN OUT) :: a(:)
INTEGER :: i, rand, temp
REAL :: x

DO i = SIZE(a), 1, -1
CALL RANDOM_NUMBER(x)
rand = INT(x * i) + 1
temp = a(rand)
a(rand) = a(i)
a(i) = temp
END DO
END SUBROUTINE
END MODULE

PROGRAM BOGOSORT

USE BOGO
IMPLICIT NONE
INTEGER :: iter = 0
INTEGER :: array(8) = (/2, 7, 5, 3, 4, 8, 6, 1/)
LOGICAL :: s

DO
s = Sorted(array)
IF (s) EXIT
CALL SHUFFLE(array)
iter = iter + 1
END DO
WRITE (*,*) "Array required", iter, " shuffles to sort"

END PROGRAM BOGOSORT
```

## FreeBASIC

```sub shuffle( a() as long )
dim as ulong n = ubound(a), i, j, k, m = ubound(a)*2
dim as ulong tmp
randomize timer
for k=1 to m
i=int(rnd*n)
j=int(rnd*n)
tmp = a(i)
a(i) = a(j)
a(j) = tmp
next k
end sub

function inorder( a() as long ) as boolean
dim as ulong i, n = ubound(a)
for i = 0 to n-2
if a(i)>a(i+1) then
return false
end if
next i
return true
end function

sub bogosort( a() as long )
while not inorder(a())
shuffle(a())
wend
end sub

dim as long a(5) = {10, 1, 2, -6, 3}
dim as long i

bogosort(a())

for i=0 to ubound(a) - 1
print a(i)
next i```

## Gambas

```Public Sub Main()
Dim sSorted As String = "123456789"                       'The desired outcome
Dim sTest, sChr As String                                 'Various strings
Dim iCounter As Integer                                   'Loop counter

Do
Inc iCounter                                            'Increase counter value
Repeat                                                  'Repeat
sChr = Chr(Rand(49, 57))                              'Get a random number and convert it to a character e.g. 49="1"
If Not InStr(sTest, sChr) Then sTest &= sChr          'If the random character is not in sTest then add it
Until Len(sTest) = 9                                    'Loop until sTest has 9 characters
Print sTest                                             'Print the string to test
If sTest = sSorted Then Break                           'If sTest = sSorted then get out of the loop
sTest = ""                                              'Empty sTest and try again
Loop

Print "Solved in " & Str(iCounter) & " loops"             'Print the result

End```

Output: (This example was completed in under 2 seconds)

```.........
129536487
345218769
482713659
286745931
123456789
Solved in 155283 loops
```

## Go

```package main

import (
"fmt"
"math/rand"
"sort"
"time"
)

func main() {
list := []int{31, 41, 59, 26, 53, 58, 97, 93, 23, 84}
rand.Seed(time.Now().UnixNano())
fmt.Println("unsorted:", list)
temp := make([]int, len(list))
copy(temp, list)
for !sort.IntsAreSorted(temp) {
for i, v := range rand.Perm(len(list)) {
temp[i] = list[v]
}
}
fmt.Println("sorted!  ", temp)
}
```
Output:

(sometimes takes a few seconds)

```unsorted: [31 41 59 26 53 58 97 93 23 84]
sorted!   [23 26 31 41 53 58 59 84 93 97]
```

## Groovy

Solution (also implicitly tracks the number of shuffles required):

```def bogosort = { list ->
def n = list.size()
while (n > 1 && (1..<n).any{ list[it-1] > list[it] }) {
print '.'*n
Collections.shuffle(list)
}
list
}
```

Test Program:

```println (bogosort([3,1,2]))
```
Output:

trial 1

`..............................[1, 2, 3]`
Output:

trial 2

`...................................................[1, 2, 3]`

```import System.Random
import Data.Array.IO

isSortedBy :: (a -> a -> Bool) -> [a] -> Bool
isSortedBy _ [] = True
isSortedBy f xs = all (uncurry f) . (zip <*> tail) \$ xs

shuffle :: [a] -> IO [a]
shuffle xs = do
ar <- newArray n xs
forM [1..n] \$ \i -> do
j <- randomRIO (i,n)
writeArray ar j vi
return vj
where
n = length xs
newArray :: Int -> [a] -> IO (IOArray Int a)
newArray n xs =  newListArray (1,n) xs

bogosortBy :: (a -> a -> Bool) -> [a] -> IO [a]
bogosortBy f xs | isSortedBy f xs = return xs
| otherwise       = shuffle xs >>= bogosortBy f

bogosort :: Ord a => [a] -> IO [a]
bogosort = bogosortBy (<)
```

Example:

```*Main> bogosort [7,5,12,1,4,2,23,18]
[1,2,4,5,7,12,18,23]
```

## Icon and Unicon

```procedure shuffle(l)
repeat {
!l :=: ?l
suspend l
}
end

procedure sorted(l)
local i
if (i := 2 to *l & l[i] >= l[i-1]) then return &fail else return 1
end

procedure main()
local l
l := [6,3,4,5,1]
|( shuffle(l) & sorted(l)) \1 & every writes(" ",!l)
end
```

## Inform 6

```[ shuffle a n i j tmp;
for(i = n - 1: i > 0: i--)
{
j = random(i + 1) - 1;

tmp = a->j;
a->j = a->i;
a->i = tmp;
}
];

[ is_sorted a n i;
for(i = 0: i < n - 1: i++)
{
if(a->i > a->(i + 1)) rfalse;
}

rtrue;
];

[ bogosort a n;
while(~~is_sorted(a, n))
{
shuffle(a, n);
}
];```

## Insitux

Translation of: Clojure
```(function bogo-sort order list
(return-unless (1 list) [])
(if (... order list)
list
(recur order (shuffle list))))

(bogo-sort < [7 5 12 1 4 2 23 18])```

Even with this small list the web REPL sometimes exceeds its default recur budget (1e4 - 10000):

```4:6     (recur order (shuffle list))))
Budget Error: recurred too many times.```

## Io

```List do(
isSorted := method(
slice(1) foreach(i, x,
if (x < at(i), return false)
)
return true;
)

bogoSortInPlace := method(
while(isSorted not,
shuffleInPlace()
)
)
)

lst := list(2, 1, 4, 3)
lst bogoSortInPlace println # ==> list(1, 2, 3, 4), hopefully :)
```

## J

Generally, this task should be accomplished in J using `/:~`. Here we take an approach that's more comparable with the other examples on this page.
```bogo=: monad define
whilst.  +./ 2 >/\ Ry  do. Ry=. (A.~ ?@!@#) y  end. Ry
)
```

## Java

Without Collections, Lists or Iterators. With a counter.

```public class BogoSort
{
public static void main(String[] args)
{
//Enter array to be sorted here
int[] arr={4,5,6,0,7,8,9,1,2,3};

BogoSort now=new BogoSort();
System.out.print("Unsorted: ");
now.display1D(arr);

now.bogo(arr);

System.out.print("Sorted: ");
now.display1D(arr);
}
void bogo(int[] arr)
{
//Keep a track of the number of shuffles
int shuffle=1;
for(;!isSorted(arr);shuffle++)
shuffle(arr);
//Boast
System.out.println("This took "+shuffle+" shuffles.");
}
void shuffle(int[] arr)
{
//Standard Fisher-Yates shuffle algorithm
int i=arr.length-1;
while(i>0)
swap(arr,i--,(int)(Math.random()*i));
}
void swap(int[] arr,int i,int j)
{
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
boolean isSorted(int[] arr)
{

for(int i=1;i<arr.length;i++)
if(arr[i]<arr[i-1])
return false;
return true;
}
void display1D(int[] arr)
{
for(int i=0;i<arr.length;i++)
System.out.print(arr[i]+" ");
System.out.println();
}

}
```
Output:
```Unsorted: 4 5 6 0 7 8 9 1 2 3
This took 23104714 shuffles.
Sorted: 0 1 2 3 4 5 6 7 8 9 ```

Works with: Java version 1.5+

This implementation works for all comparable types (types with compareTo defined).

```import java.util.Collections;
import java.util.List;
import java.util.Iterator;

public class Bogosort {
private static <T extends Comparable<? super T>> boolean isSorted(List<T> list) {
if (list.isEmpty())
return true;
Iterator<T> it = list.iterator();
T last = it.next();
while (it.hasNext()) {
T current = it.next();
if (last.compareTo(current) > 0)
return false;
last = current;
}
return true;
}

public static <T extends Comparable<? super T>> void bogoSort(List<T> list) {
while (!isSorted(list))
Collections.shuffle(list);
}
}```

## JavaScript

```shuffle = function(v) {
for(var j, x, i = v.length; i; j = Math.floor(Math.random() * i), x = v[--i], v[i] = v[j], v[j] = x);
return v;
};

isSorted = function(v){
for(var i=1; i<v.length; i++) {
if (v[i-1] > v[i]) { return false; }
}
return true;
}

bogosort = function(v){
var sorted = false;
while(sorted == false){
v = shuffle(v);
sorted = isSorted(v);
}
return v;
}
```

## Julia

Works with: Julia version 0.6
```function bogosort!(arr::AbstractVector)
while !issorted(arr)
shuffle!(arr)
end
return arr
end

v = rand(-10:10, 10)
println("# unordered: \$v\n -> ordered: ", bogosort!(v))
```
Output:
```# unordered: [-7, 0, -6, -1, -6, -1, -3, -1, 4, 8]
-> ordered: [-7, -6, -6, -3, -1, -1, -1, 0, 4, 8]```

## Kotlin

Translation of: C
```// version 1.1.2

const val RAND_MAX = 32768 // big enough for this

val rand = java.util.Random()

fun isSorted(a: IntArray): Boolean {
val n = a.size
if (n < 2) return true
for (i in 1 until n) {
if (a[i] < a[i - 1]) return false
}
return true
}

fun shuffle(a: IntArray) {
val n = a.size
if (n < 2) return
for (i in 0 until n) {
val t = a[i]
val r = rand.nextInt(RAND_MAX) % n
a[i] = a[r]
a[r] = t
}
}

fun bogosort(a: IntArray) {
while (!isSorted(a)) shuffle(a)
}

fun main(args: Array<String>) {
val a = intArrayOf(1, 10, 9,  7, 3, 0)
println("Before sorting : \${a.contentToString()}")
bogosort(a)
println("After sorting  : \${a.contentToString()}")
}
```
Output:
```Before sorting : [1, 10, 9, 7, 3, 0]
After sorting  : [0, 1, 3, 7, 9, 10]
```

## Lua

```function bogosort (list)
if type (list) ~= 'table' then return list end

-- Fisher-Yates Knuth shuffle
local function shuffle ()
local rand = math.random(1,#list)
for i=1,#list do
list[i],list[rand] = list[rand],list[i]
rand = math.random(1,#list)
end
end

-- Returns true only if list is now sorted
local function in_order ()
local last = list[1]
for i,v in next,list do
if v < last then return false end
last = v
end
return true
end

while not in_order() do shuffle() end

return list
end
```

## M4

```divert(-1)
define(`randSeed',141592653)
define(`setRand',
`define(`randSeed',ifelse(eval(\$1<10000),1,`eval(20000-\$1)',`\$1'))')
define(`rand_t',`eval(randSeed^(randSeed>>13))')
define(`random',
`define(`randSeed',eval((rand_t^(rand_t<<18))&0x7fffffff))randSeed')
define(`for',
`ifelse(\$#,0,``\$0'',
`ifelse(eval(\$2<=\$3),1,
`pushdef(`\$1',\$2)\$4`'popdef(`\$1')\$0(`\$1',incr(\$2),\$3,`\$4')')')')
define(`set',`define(`\$1[\$2]',`\$3')')
define(`new',`set(\$1,size,0)')
define(`get',`defn(\$1[\$2])')
define(`append',
`set(\$1,size,incr(get(\$1,size)))`'set(\$1,get(\$1,size),\$2)')
define(`deck',
`new(\$1)for(`x',1,\$2,
`append(`\$1',random)')')
define(`show',
`for(`x',1,get(\$1,size),`get(\$1,x)`'ifelse(x,get(\$1,size),`',`, ')')')
define(`swap',`set(\$1,\$2,get(\$1,\$4))`'set(\$1,\$4,\$3)')
define(`shuffle',
`for(`x',1,get(\$1,size),
`swap(\$1,x,get(\$1,x),eval(1+random%get(\$1,size)))')')
define(`inordern',
`ifelse(eval(\$2>=get(\$1,size)),1,
1,
`ifelse(eval(get(\$1,\$2)>get(\$1,incr(\$2))),1,
0,
`inordern(`\$1',incr(\$2))')')')
define(`inorder',`inordern(\$1,1)')
define(`bogosort',
`ifelse(inorder(`\$1'),0,`nope shuffle(`\$1')`'bogosort(`\$1')')')
divert

deck(`b',6)
show(`b')
bogosort(`b')
show(`b')```

## Maple

```arr := Array([2,3,1]):
len := numelems(arr):
#Translation of C, random swapping
shuffle_arr := proc(arr, len)
local i, r, temp:
for i from 1 to len do
temp := arr[i]:
r := rand(1..len)():
arr[i] := arr[r]:
arr[r] := temp:
end do:
end proc:
while(not ListTools:-Sorted(convert(arr, list))) do
shuffle_arr(arr, len):
end do:
arr;```
Output:
`[1 2 3]`

## Mathematica/Wolfram Language

```Bogosort[x_List] := Block[{t=x},While[!OrderedQ[t],t=RandomSample[x]]; t]
Bogosort[{1, 2, 6, 4, 0, -1, Pi, 3, 5}]
=> {-1, 0, 1, 2, 3, Pi, 4, 5, 6}
```

## MATLAB / Octave

```function list = bogoSort(list)
while( ~issorted(list) ) %Check to see if it is sorted
list = list( randperm(numel(list)) ); %Randomly sort the list
end
end
```
Output:
```bogoSort([5 3 8 4 9 7 6 2 1])

ans =

1     2     3     4     5     6     7     8     9
```

## MAXScript

```fn notSorted arr =
(
if arr.count > 0 then
(
local current = arr[1]
for i in 2 to arr.count do
(
if current > arr[i] then
(
return true
)
current = arr[i]
)
)
false
)

fn randSort x y =
(
random -1 1
)

fn shuffle arr =
(
qsort arr randSort
arr
)

fn bogosort arr =
(
while notSorted arr do
(
arr = shuffle arr
)
arr
)```

## Modula-3

```MODULE Bogo EXPORTS Main;

IMPORT IO, Fmt, Random;

VAR a := ARRAY [1..5] OF INTEGER {1, 2, 3, 4, 5};
count := 0;

PROCEDURE Shuffle(VAR a: ARRAY OF INTEGER) =
VAR temp: INTEGER;
BEGIN
WITH rand = NEW(Random.Default).init() DO
FOR i := FIRST(a) TO LAST(a) - 1 DO
WITH j = rand.integer(i, LAST(a)) DO
temp := a[i];
a[i] := a[j];
a[j] := temp;
END;
END;
END;
END Shuffle;

PROCEDURE Sorted(VAR a: ARRAY OF INTEGER): BOOLEAN =
BEGIN
IF NUMBER(a) <= 1 THEN
RETURN TRUE;
END;
FOR i := FIRST(a) + 1 TO LAST(a) DO
IF (a[i] < a[i - 1]) THEN
RETURN FALSE;
END;
END;
RETURN TRUE;
END Sorted;

BEGIN
Shuffle(a);
WHILE NOT Sorted(a) DO
Shuffle(a);
INC(count);
END;
FOR i := FIRST(a) TO LAST(a) DO
IO.PutInt(a[i]);
IO.Put(" ");
END;
IO.Put("\nRequired " & Fmt.Int(count) & " shuffles\n");
END Bogo.```

## Nanoquery

```def sorted(list)
if len(list) = 0
return true
end

for i in range(0, len(list) - 2)
if list[i] > list[i + 1]
return false
end
end

return true
end

def bogosort(list)
while not sorted(list)
list = list.shuffle()
end

return list
end```

## Nemerle

```using System;
using System.Console;
using Nemerle.Imperative;

module Bogosort
{
public static Bogosort[T] (this x : array[T]) : void
where T : IComparable
{
def rnd = Random();
def shuffle(a)
{
foreach (i in [0 .. (a.Length - 2)])
a[i] <-> a[(rnd.Next(i, a.Length))];
}

def isSorted(b)
{
when (b.Length <= 1) return true;
foreach (i in [1 .. (b.Length - 1)])
when (b[i].CompareTo(b[i - 1]) < 0) return false;
true;
}

def loop()
{
unless (isSorted(x)) {shuffle(x); loop();};
}

loop()
}

Main() : void
{
def sortme = array[1, 5, 3, 6, 7, 3, 8, -2];
sortme.Bogosort();
foreach (i in sortme) Write(\$"\$i  ");
}
}
```

## NetRexx

Translation of: Java
```/* NetRexx */
options replace format comments java crossref savelog symbols nobinary

import java.util.List

method isSorted(list = List) private static returns boolean

if list.isEmpty then
return isTrue

it = list.iterator
last = Comparable it.next
loop label i_ while it.hasNext
current = Comparable it.next
if last.compareTo(current) > 0 then
return isFalse
last = current
end i_

return isTrue

method bogoSort(list = List) private static
loop label s_ while \isSorted(list)
Collections.shuffle(list)
end s_

return

method main(args = String[]) public constant
samples = [int 31, 41, 59, 26, 53, 58, 97, 93, 23, 84]
alst = ArrayList(samples.length)
loop iv = 0 to samples.length - 1
end iv

say 'unsorted:' alst.toString
bogoSort(alst)
say 'sorted:  ' alst.toString

return

method isTrue public static returns boolean
return 1 == 1

method isFalse public static returns boolean
return \isTrue```
Output:
```unsorted: [31, 41, 59, 26, 53, 58, 97, 93, 23, 84]
sorted:   [23, 26, 31, 41, 53, 58, 59, 84, 93, 97]
```

## Nim

```import random

randomize()

proc isSorted[T](s: openarray[T]): bool =
var last = low(T)
for c in s:
if c < last:
return false
last = c
return true

proc bogoSort[T](a: var openarray[T]) =
while not isSorted a: shuffle a

var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782]
bogoSort a
echo a
```
Output:
`@[-31, 0, 2, 2, 4, 65, 83, 99, 782]`

## Oberon-2

```MODULE Bogo;

IMPORT Out, Random;

VAR a: ARRAY 10 OF INTEGER;

PROCEDURE Init;
VAR i: INTEGER;
BEGIN
FOR i := 0 TO LEN(a) - 1 DO
a[i] := i + 1;
END;
END Init;

PROCEDURE Sorted(VAR a: ARRAY OF INTEGER): BOOLEAN;
VAR i: INTEGER;
BEGIN
IF LEN(a) <= 1 THEN
RETURN TRUE;
END;
FOR i := 1 TO LEN(a) - 1 DO
IF (a[i] < a[i - 1]) THEN
RETURN FALSE;
END;
END;
RETURN TRUE;
END Sorted;

PROCEDURE Shuffle*(VAR a: ARRAY OF INTEGER);
VAR n, t, r: INTEGER;
BEGIN
FOR n := 0 TO LEN(a) - 1 DO
r := Random.Roll(n);
t := a[n];
a[n] := a[r];
a[r] := t;
END;
END Shuffle;

BEGIN
Init;
Shuffle(a);
WHILE ~Sorted(a) DO
Shuffle(a);
END;
FOR i := 0 TO LEN(a) - 1 DO
Out.Int(a[i], 0);
Out.String(" ");
END;
Out.Ln;
END Bogo.```

Init initializes the array as 1 thru 10, then it is shuffled, and then the while loop continually shuffles until Sorted returns true.

## OCaml

```let rec is_sorted comp = function
| e1 :: e2 :: r -> comp e1 e2 <= 0 && is_sorted comp (e2 :: r)
| _             -> true

(* Fisher-Yates shuffle on lists; uses temp array *)
let shuffle l =
let ar = Array.of_list l in
for n = Array.length ar - 1 downto 1 do
let k = Random.int (n+1) in
let temp = ar.(k) in (* swap ar.(k) and ar.(n) *)
ar.(k) <- ar.(n);
ar.(n) <- temp
done;
Array.to_list ar

let rec bogosort li =
if is_sorted compare li then
li
else
bogosort (shuffle li)
```

Example:

```# bogosort [7;5;12;1;4;2;23;18] ;;
- : int list = [1; 2; 4; 5; 7; 12; 18; 23]
```

## Oz

We use an array because that made most sense for the Knuth Shuffle task. Usually you would use lists for stuff like this in Oz.

```declare
proc {BogoSort Arr}
for while:{Not {InOrder Arr}} do
{Shuffle Arr}
end
end

fun {InOrder Arr}
for I in {Array.low Arr}+1..{Array.high Arr}
return:Return default:true
do
if Arr.(I-1) > Arr.I then {Return false} end
end
end

proc {Shuffle Arr}
Low = {Array.low Arr}
High = {Array.high Arr}
in
for I in High..Low;~1 do
J = Low + {OS.rand} mod (I - Low + 1)
OldI = Arr.I
in
Arr.I := Arr.J
Arr.J := OldI
end
end

X = {Tuple.toArray unit(3 1 4 1 5 9 2 6 5)}
in
{BogoSort X}
{Show {Array.toRecord unit X}}```

## PARI/GP

This implementation sorts 9 distinct elements in only 600 milliseconds.

```bogosort(v)={
while(1,
my(u=vecextract(v,numtoperm(#v,random((#v)!))));
for(i=2,#v,if(u[i]<u[i-1], next(2)));
return(u)
);
};```

## Pascal

```program bogosort;

const
max = 5;
type
list = array [1..max] of integer;

{ Print a list }
procedure printa(a: list);
var
i: integer;
begin
for i := 1 to max do
write(a[i], ' ');
writeln
end;

{ Knuth shuffle }
procedure shuffle(var a: list);
var
i,k,tmp: integer;
begin
for i := max downto 2 do begin
k := random(i) + 1;
if (a[i] <> a[k]) then begin
tmp := a[i]; a[i] := a[k]; a[k] := tmp
end
end
end;

{ Check for sorted list }
function sorted(a: list): boolean;
var
i: integer;
begin
sorted := True;
for i := 2 to max do
if (a[i - 1] > a[i]) then begin
sorted := False; exit
end
end;

{ Bogosort }
procedure bogo(var a: list);
var
i: integer;
begin
i := 1; randomize;
write(i,': '); printa(a);
while not sorted(a) do begin
shuffle(a);
i := i + 1; write(i,': '); printa(a)
end
end;

{ Test and display }
var
a: list;
i: integer;

begin
for i := 1 to max do
a[i] := (max + 1) - i;
bogo(a);
end.
```
Output:
```1: 5 4 3 2 1
2: 3 5 4 1 2
. . . . . .
22: 3 2 1 5 4
23: 1 2 3 4 5```

## Perl

```use List::Util qw(shuffle);

sub bogosort
{my @l = @_;
@l = shuffle(@l) until in_order(@l);
return @l;}

sub in_order
{my \$last = shift;
foreach (@_)
{\$_ >= \$last or return 0;
\$last = \$_;}
return 1;}
```

## Phix

```with javascript_semantics

function inOrder(sequence s)
return s==sort(deep_copy(s))    -- <snigger>
end function

function bogosort(sequence s)
while not inOrder(s) do
? s
s = shuffle(s)
end while
return s
end function

? bogosort(shuffle({1,2,3,4,5,6}))
```
Output:
```...
{4,3,1,5,2,6}
{1,3,4,6,5,2}
{2,3,4,1,5,6}
{1,2,3,4,5,6}
```

## PHP

```function bogosort(\$l) {
while (!in_order(\$l))
shuffle(\$l);
return \$l;
}

function in_order(\$l) {
for (\$i = 1; \$i < count(\$l); \$i++)
if (\$l[\$i] < \$l[\$i-1])
return FALSE;
return TRUE;
}
```

## PicoLisp

```(de bogosort (Lst)
(loop
(map
'((L) (rot L (rand 1 (length L))))
Lst )
(T (apply <= Lst) Lst) ) )```
Output:
```: (bogosort (make (do 9 (link (rand 1 999)))))
-> (1 167 183 282 524 556 638 891 902)

: (bogosort (make (do 9 (link (rand 1 999)))))
-> (20 51 117 229 671 848 883 948 978)

: (bogosort (make (do 9 (link (rand 1 999)))))
-> (1 21 72 263 391 476 794 840 878)```

## PL/I

Translation of: REXX
```*process source xref;
bogosort: Proc Options(main);
Dcl SYSPRINT Print;
Dcl (HBOUND,RANDOM,TIME) Builtin;
Dcl tim Pic'(9)9';
Dcl timms Pic'(3)9' def tim pos(7);
tim=time();
x=random(timms);
Dcl a(5)       Dec Fixed(5,1) Init(-21,333,0,444.4,1);
Dcl (x,y,temp) Dec Fixed(5,1);
Dcl (n,bogo,j,u,v) Bin Fixed(31);
n=hbound(a);
Call tell('un-bogoed');
loop:
Do bogo=1 By 1;
Do j=1 To n-1;
jp=j+1;
x=a(j);
y=a(jp);
if y>=x Then
Iterate;
u=rand(1,n);
Do Until v^=u
v=rand(1,n);
End;
Temp=a(u);
a(u)=a(v);
a(v)=temp;
Iterate loop;
End;
Leave;
End;

Put Edit('number of bogo sorts performed =',bogo)(Skip,a,f(4));
call tell('   bogoed');
Return;

tell: Proc(txt);
Dcl txt Char(*);
Dcl t Bin Fixed(31);
Put Edit(txt)(skip,a);
Do t=1 to n;
Put Edit(a(t))(Skip,f(6,1));
End;
End;

rand: Proc(lo,hi) Returns(Bin Fixed(31));
Dcl (lo,hi,res) Bin Fixed(31);
Dcl r Bin Float(31);
r=random();
res=r*(hi-lo+1)+lo;
Return(res);
End;
End;```
Output:
```un-bogoed
-21.0
333.0
0.0
444.4
1.0
number of bogo sorts performed =   8
bogoed
-21.0
0.0
1.0
333.0
444.4 ```

## PowerShell

Shuffle taken from Knuth Shuffle

```function shuffle (\$a) {
\$c = \$a.Clone()  # make copy to avoid clobbering \$a
1..(\$c.Length - 1) | ForEach-Object {
\$i = Get-Random -Minimum \$_ -Maximum \$c.Length
\$c[\$_-1],\$c[\$i] = \$c[\$i],\$c[\$_-1]
\$c[\$_-1]  # return newly-shuffled value
}
\$c[-1]  # last value
}

function isSorted( [Array] \$data )
{
\$sorted = \$true
for( \$i = 1; ( \$i -lt \$data.length ) -and \$sorted; \$i++ )
{
\$sorted = \$data[ \$i - 1 ] -le \$data[ \$i ]
}
\$sorted
}

function BogoSort ( [Array] \$indata ) {
\$data = \$indata.Clone()
while( -not ( isSorted \$data ) ) {
\$data = shuffle \$indata
}
\$data
}

\$l = 7; BogoSort ( 1..\$l | ForEach-Object { \$Rand = New-Object Random }{ \$Rand.Next( 0, \$l - 1 ) } )
```

## Prolog

```bogo_sort(L,Rl) :-
min_list(L,Min),
repeat,
random_permutation(L,Rl),
is_sorted(Rl,Min),
!.

is_sorted([],_).
is_sorted([N|T],P) :-
N >= P,
is_sorted(T,N).
```
Output:
```
?- bogo_sort( [703,931,12,713,894,232,778,86,700,26] ,Sorted).
Sorted = [12,26,86,232,700,703,713,778,894,931] .
```

## PureBasic

```Procedure KnuthShuffle (Array a(1))
Protected i, Size = ArraySize(a())
For i = 0 To Size
Swap a(i), a(Random(Size))
Next
EndProcedure

Procedure isSorted(Array a(1))
Protected i, Size = ArraySize(a())
For i = 1 To Size
If a(i) < a(i - 1)
ProcedureReturn #False
EndIf
Next
ProcedureReturn #True
EndProcedure

Procedure BogoSort(Array a(1))
Protected Size = ArraySize(a()) + 1, iter

While Not isSorted(a())
iter + 1
KnuthShuffle(a())
Wend
MessageRequester("Results","Array of " + Str(Size) + " integers required " + Str(iter) + " shuffles To SORT.")
EndProcedure

Dim b(10)
For i = 0 To 10
b(i) = Random(100)
Next

BogoSort(b())```
Output:
`Array of 10 integers required 2766901 shuffles To SORT.`

## Python

```import random

def bogosort(l):
while not in_order(l):
random.shuffle(l)
return l

def in_order(l):
if not l:
return True
last = l[0]
for x in l[1:]:
if x < last:
return False
last = x
return True
```

Alternative definition for in_order (Python 2.5)

```def in_order(l):
return all( l[i] <= l[i+1] for i in xrange(0,len(l)-1))
```

An alternative implementation for Python 2.5 or later:

```import random
def bogosort(lst):
random.shuffle(lst)  # must shuffle it first or it's a bug if lst was pre-sorted! :)
while lst != sorted(lst):
random.shuffle(lst)
return lst
```

Another alternative implementation, using iterators for maximum efficiency:

```import operator
import random
from itertools import dropwhile, imap, islice, izip, repeat, starmap

def shuffled(x):
x = x[:]
random.shuffle(x)
return x

bogosort = lambda l: next(dropwhile(
lambda l: not all(starmap(operator.le, izip(l, islice(l, 1, None)))),
imap(shuffled, repeat(l))))
```

## Qi

```(define remove-element
0   [_ | R] -> R
Pos [A | R] -> [A | (remove-element (1- Pos) R)])

(define get-element
Pos R -> (nth (1+ Pos) R))

(define shuffle-0
Pos R -> [(get-element Pos R) | (shuffle (remove-element Pos R))])

(define shuffle
[] -> []
R  -> (shuffle-0 (RANDOM (length R)) R))

(define in-order?
[]        -> true
[A]       -> true
[A B | R] -> (in-order? [B | R]) where (<= A B)
_         -> false)

(define bogosort
Suggestion -> Suggestion where (in-order? Suggestion)
Suggestion -> (bogosort (shuffle Suggestion)))```

## Quackery

```[ true swap
dup [] != if
[ tuck > if
[ dip not
conclude ] ] ]
drop ]                                is inorder  ( [ --> b )

[ dup inorder not while shuffle again ] is bogosort ( [ --> [ )```

## R

```bogosort <- function(x) {
while(is.unsorted(x)) x <- sample(x)
x
}

n <- c(1, 10, 9, 7, 3, 0)
bogosort(n)
```

## Racket

Only the first line is needed to implement the bogo sort, the rest is unit tests and an example.

```#lang racket
(define (bogo-sort l) (if (apply <= l) l (bogo-sort (shuffle l))))

(require rackunit)
(check-equal? (bogo-sort '(6 5 4 3 2 1)) '(1 2 3 4 5 6))
(check-equal? (bogo-sort (shuffle '(1 1 1 2 2 2))) '(1 1 1 2 2 2))

(let ((unsorted (for/list ((i 10)) (random 1000))))
(displayln unsorted)
(displayln (bogo-sort unsorted)))
```
Output:

(chances are you won't get quite this!)

```(703 931 12 713 894 232 778 86 700 26)
(12 26 86 232 700 703 713 778 894 931)
```

## Raku

(formerly Perl 6)

```sub bogosort (@list is copy) {
@list .= pick(*) until [<=] @list;
return @list;
}

my @nums = (^5).map: { rand };
say @nums.sort.Str eq @nums.&bogosort.Str ?? 'ok' !! 'not ok';
```

## REXX

### true bogo sort

```/*REXX program performs a type of  bogo sort  on  numbers in an array.  */
parse arg list                         /*obtain optional list from C.L. */
if list=''  then list=-21 333 0 444.4  /*Not defined?  Then use default.*/
#=words(list)                          /*the number of numbers in list. */
do i=1  for words(list);  @.i=word(list,i);  end   /*create an array.*/
call tell 'before bogo sort'

do bogo=1

do j=1  for #-1;   jp=j+1          /* [↓]  compare a # with the next*/
if @.jp>=@.j  then iterate         /*so far, so good;  keep looking.*/
/*get 2 unique random #s for swap*/
do  until a\==b;  a=random(1, #);     b=random(1, #);    end

parse value @.a @.b  with  @.b @.a /*swap 2 random numbers in array.*/
iterate bogo                       /*go and try another bogo sort.  */
end     /*j*/

leave                                /*we're finished with bogo sort. */
end       /*bogo*/                   /* [↓]  show the # of bogo sorts.*/

say 'number of bogo sorts performed =' bogo
call tell ' after bogo sort'
exit                                   /*stick a fork in it, we're done.*/
/*──────────────────────────────────TELL subroutine─────────────────────*/
tell:  say;  say center(arg(1), 50, '─')
do t=1  for #
say arg(1)  'element'right(t, length(#))'='right(@.t, 18)
end   /*t*/
say
return
```
Output:

using the default input

```─────────────────before bogo sort─────────────────
before bogo sort element   1=               -21
before bogo sort element   2=               333
before bogo sort element   3=                 0
before bogo sort element   4=             444.4

number of bogo sorts performed = 6

───────────────── after bogo sort─────────────────
after bogo sort element   1=               -21
after bogo sort element   2=                 0
after bogo sort element   3=               333
after bogo sort element   4=             444.4
```

### modified bogo sort

When a number is found out of order, two random numbers between the first number's position and
the position of the last number checked are swapped (in other words, swap two numbers within what
has already been sorted and including the number out-of-order.   The search then starts over.
This is repeated as often as it takes to finally get the array in order.

```/*REXX program performs a type of  bogo sort  on numbers in an array.   */
@.1 =   0  ;     @.11=    -64  ;     @.21=     4096  ;    @.31=    6291456
@.2 =   0  ;     @.12=     64  ;     @.22=    40960  ;    @.32=    5242880
@.3 =   1  ;     @.13=    256  ;     @.23=    16384  ;    @.33=  -15728640
@.4 =   2  ;     @.14=      0  ;     @.24=  -114688  ;    @.34=  -27262976
@.5 =   0  ;     @.15=   -768  ;     @.25=  -131072  ;    @.35=   29360128
@.6 =  -4  ;     @.16=   -512  ;     @.26=   262144  ;    @.36=  104857600
@.7 =   0  ;     @.17=   2048  ;     @.27=   589824  ;    @.37=  -16777216
@.8 =  16  ;     @.18=   3072  ;     @.28=  -393216  ;    @.38= -335544320
@.9 =  16  ;     @.19=  -4096  ;     @.29= -2097152  ;    @.39= -184549376
@.10= -32  ;     @.20= -12288  ;     @.30=  -262144  ;    @.40=  905969664
/* [↑]   @.1  is really the 0th Berstel number*/
#=40                      /*we have a list of two score Berstel numbers.*/
call tell 'before bogo sort'

do bogo=1

do j=1  for #;   ?=@.j             /*?  is the next number in array.*/

do k=j+1  to #
if @.k>=?  then iterate          /*is this # in order?  Get next. */
/*get 2 unique random #s for swap*/
do  until a\==b;  a=random(j, k);     b=random(j, k);    end

parse value @.a @.b  with  @.b @.a    /*swap 2 random #s in array.*/
iterate bogo                     /*go and try another bogo sort.  */
end   /*k*/
end     /*j*/

leave                                /*we're finished with bogo sort. */
end       /*bogo*/                   /* [↓]  show the # of bogo sorts.*/

say 'number of bogo sorts performed =' bogo
call tell ' after bogo sort'
exit                                   /*stick a fork in it, we're done.*/
/*──────────────────────────────────TELL subroutine─────────────────────*/
tell:  say;  say center(arg(1), 50, '─')
do t=1  for #
say arg(1)  'element'right(t, length(#))'='right(@.t, 18)
end   /*t*/
say
return
```
Output:
```─────────────────before bogo sort─────────────────
before bogo sort element 1=                 0
before bogo sort element 2=                 0
before bogo sort element 3=                 1
before bogo sort element 4=                 2
before bogo sort element 5=                 0
before bogo sort element 6=                -4
before bogo sort element 7=                 0
before bogo sort element 8=                16
before bogo sort element 9=                16
before bogo sort element10=               -32
before bogo sort element11=               -64
before bogo sort element12=                64
before bogo sort element13=               256
before bogo sort element14=                 0
before bogo sort element15=              -768
before bogo sort element16=              -512
before bogo sort element17=              2048
before bogo sort element18=              3072
before bogo sort element19=             -4096
before bogo sort element20=            -12288
before bogo sort element21=              4096
before bogo sort element22=             40960
before bogo sort element23=             16384
before bogo sort element24=           -114688
before bogo sort element25=           -131072
before bogo sort element26=            262144
before bogo sort element27=            589824
before bogo sort element28=           -393216
before bogo sort element29=          -2097152
before bogo sort element30=           -262144
before bogo sort element31=           6291456
before bogo sort element32=           5242880
before bogo sort element33=         -15728640
before bogo sort element34=         -27262976
before bogo sort element35=          29360128
before bogo sort element36=         104857600
before bogo sort element37=         -16777216
before bogo sort element38=        -335544320
before bogo sort element39=        -184549376
before bogo sort element40=         905969664

number of bogo sorts performed = 1891

───────────────── after bogo sort─────────────────
after bogo sort element 1=        -335544320
after bogo sort element 2=        -184549376
after bogo sort element 3=         -27262976
after bogo sort element 4=         -16777216
after bogo sort element 5=         -15728640
after bogo sort element 6=          -2097152
after bogo sort element 7=           -393216
after bogo sort element 8=           -262144
after bogo sort element 9=           -131072
after bogo sort element10=           -114688
after bogo sort element11=            -12288
after bogo sort element12=             -4096
after bogo sort element13=              -768
after bogo sort element14=              -512
after bogo sort element15=               -64
after bogo sort element16=               -32
after bogo sort element17=                -4
after bogo sort element18=                 0
after bogo sort element19=                 0
after bogo sort element20=                 0
after bogo sort element21=                 0
after bogo sort element22=                 0
after bogo sort element23=                 1
after bogo sort element24=                 2
after bogo sort element25=                16
after bogo sort element26=                16
after bogo sort element27=                64
after bogo sort element28=               256
after bogo sort element29=              2048
after bogo sort element30=              3072
after bogo sort element31=              4096
after bogo sort element32=             16384
after bogo sort element33=             40960
after bogo sort element34=            262144
after bogo sort element35=            589824
after bogo sort element36=           5242880
after bogo sort element37=           6291456
after bogo sort element38=          29360128
after bogo sort element39=         104857600
after bogo sort element40=         905969664
```

More tests showed that:

```number of bogo sorts performed = 2583
number of bogo sorts performed = 2376
number of bogo sorts performed = 1791
number of bogo sorts performed = 2537
number of bogo sorts performed = 1856
number of bogo sorts performed = 2339
number of bogo sorts performed = 2511
number of bogo sorts performed = 2652
number of bogo sorts performed = 1697
number of bogo sorts performed = 1782
number of bogo sorts performed = 2074
number of bogo sorts performed = 4017
number of bogo sorts performed = 2469
number of bogo sorts performed = 3707
number of bogo sorts performed = 1729
number of bogo sorts performed = 1705
number of bogo sorts performed = 4071
```

## Ring

```# Project : Sorting algorithms/Bogosort

test = [4, 65, 2, 31, 0, 99, 2, 83, 782, 1]
shuffles = 0
while ! sorted(test)
shuffles = shuffles + 1
shuffle(test)
end
see "" + shuffles + " shuffles required to sort " + len(test)  + " items:" + nl
showarray(test)

func shuffle(d)
for i = len(d) to 2 step -1
item = random(i) + 1
if item <= len(d)
temp = d[i-1]
d[i-1] = d[item]
d[item] = temp
else
i = i -1
ok
next

func sorted(d)
for j = 2 to len(d)
if d[j] < d[j-1]
return false
ok
next
return true

func showarray(vect)
see "["
svect = ""
for n = 1 to len(vect)
svect = svect + vect[n] + ", "
next
svect = left(svect, len(svect) - 2)
see svect
see "]" + nl```

Output:

```508888 shuffles required to sort 10 items:
[0, 1, 2, 2, 4, 31, 65, 83, 99, 782]
```

## RPL

`KNUTH` is defined at Knuth shuffle

Works with: HP version 48G
```≪ WHILE DUP ΔLIST ≪ MIN ≫ STREAM 0 < REPEAT
KNUTH
END
≫ 'BOGOSORT' STO
```

## Ruby

```def shuffle(l)
l.sort_by { rand }
end

def bogosort(l)
l = shuffle(l) until in_order(l)
l
end

def in_order(l)
(0..l.length-2).all? {|i| l[i] <= l[i+1] }
end
```

An alternative implementation:

```def shuffle(l)
l.sort_by { rand }
end

def bogosort(l)
l = shuffle(l) until l == l.sort
l
end
```
Works with: Ruby version 1.8.7+
```def in_order(l)
(0..l.length-2).all? {|i| l[i] <= l[i+1] }
end

def bogosort(l)
l.shuffle! until in_order(l)
l
end
```

## Rust

Works with Rust 1.11+, requires rand module

Library: rand
```extern crate rand;
use rand::Rng;

fn bogosort_by<T,F>(order: F, coll: &mut [T])
where F: Fn(&T, &T) -> bool
{
while !is_sorted_by(&order, coll) {
rng.shuffle(coll);
}
}

#[inline]
fn is_sorted_by<T,F>(order: F, coll: &[T]) -> bool
where F: Fn(&T,&T) -> bool,
{
coll[..].iter().zip(&coll[1..]).all(|(x,y)| order(x,y))
}

fn main() {
let mut testlist = [1,55,88,24,990876,312,67,0,854,13,4,7];
bogosort_by(|x,y| x < y, &mut testlist);
println!("{:?}", testlist);
bogosort_by(|x,y| x > y, &mut testlist);
println!("{:?}", testlist);
}
```

## Scala

Works with: Scala version 2.8
```def isSorted(l: List[Int]) = l.iterator sliding 2 forall (s => s.head <= s.last)
def bogosort(l: List[Int]): List[Int] = if (isSorted(l)) l else bogosort(scala.util.Random.shuffle(l))
```

## Sidef

```func in_order(a) {
return true if (a.len <= 1)
var first = a[0]
a.last(-1).all { |elem| first <= elem  ? do { first = elem; true } : false }
}

func bogosort(a) {
a.shuffle! while !in_order(a)
return a
}

var arr = 5.of { 100.irand }
say "Before: #{arr}"
say "After:  #{bogosort(arr)}"
```
Output:
```Before: 57 45 83 85 33
After:  33 45 57 83 85
```

## Scheme

Uses Knuth shuffle to shuffle the list.

```(import (rnrs base (6))
(srfi :27 random-bits))

(define (shuffle lst)
(define (swap! vec i j)
(let ((tmp (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j tmp)))
(define vec (list->vector lst))
(let loop ((i (sub1 (vector-length vec))))
(unless (zero? i)
(swap! vec i (random-integer (add1 i)))
(loop (sub1 i))))
(vector->list vec))

(define (sorted? lst pred?)
(cond
((null? (cdr lst)) #t)
((pred? (car lst) (cadr lst)) (sorted? (cdr lst) pred?))
(else #f)))

(define (bogosort lst)
(if (sorted? lst <)
lst
(bogosort (shuffle lst))))

(let ((input '(5 4 3 2 1)))
(display "Input: ")
(display input)
(newline)
(display "Output: ")
(display (bogosort input))
(newline))
```
Output:
```Input: (5 4 3 2 1)
Output: (1 2 3 4 5)```

## Smalltalk

Works with: GNU Smalltalk

This implementation uses closures rather than extending collections to provide a bogosort method.

```Smalltalk at: #isItSorted put: [ :c |
|isit|
isit := false.
(2 to: (c size)) detect: [ :i |
( (c at: ( i - 1 )) > (c at: i) )
] ifNone: [ isit := true ].
isit
].
Smalltalk at: #bogosort put: [ :c |
[ isItSorted value: c ] whileFalse: [
1 to: (c size) do: [ :i |
|r t|
r := (Random between: 1 and: (c size)).
t := (c at: i).
c at: i put: (c at: r).
c at: r put: t
]
]
].

|tobesorted|
tobesorted := { 2 . 7 . 5 . 3 . 4 . 8 . 6 . 1 }.
bogosort value: tobesorted.
tobesorted displayNl.
```

## SNOBOL4

```* Library for random()
-include 'Random.sno'

*       # String -> array
define('s2a(str,n)i') :(s2a_end)
s2a     s2a = array(n); str = str ' '
sa1     str break(' ') . s2a<i = i + 1> span(' ') = :s(sa1)f(return)
s2a_end

*       # Array -> string
define('a2s(a)i') :(a2s_end)
a2s     a2s = a2s a<i = i + 1> ' ' :s(a2s)f(return)
a2s_end

*       # Knuth shuffle in-place
define('shuffle(a)alen,n,k,tmp') :(shuffle_end)
shuffle n = alen = prototype(a);
sh1     k = convert(random() * alen,'integer') + 1
eq(a<n>,a<k>) :s(sh2)
tmp = a<n>; a<n> = a<k>; a<k> = tmp
sh2     n = gt(n,1) n - 1 :s(sh1)
shuffle = a :(return)
shuffle_end

*       # sorted( ) predicate -> Succeed/Fail
define('sorted(a)alen,i') :(sorted_end)
sorted  alen = prototype(a); i = 1
std1    i = lt(i,alen) i + 1 :f(return)
gt(a<i - 1>,a<i>) :s(freturn)f(std1)
sorted_end

*       # Bogosort
define('bogo(a)') :(bogo_end)
bogo    output = (i = i + 1) ': ' a2s(a)
bogo = sorted(a) a :s(return)
shuffle(a) :(bogo)
bogo_end

*       # Test and display
bogo(s2a('5 4 3 2 1',5))
end```
Output:
```1: 5 4 3 2 1
2: 2 1 4 3 5
. . . . . .
117: 3 2 1 5 4
118: 1 2 3 4 5```

## Swift

```import Darwin

func shuffle<T>(inout array: [T]) {
for i in 1..<array.count {
let j = Int(arc4random_uniform(UInt32(i)))
(array[i], array[j]) = (array[j], array[i])
}
}

func issorted<T:Comparable>(ary: [T]) -> Bool {
for i in 0..<(ary.count-1) {
if ary[i] > ary[i+1] {
return false
}
}
return true
}

func bogosort<T:Comparable>(inout ary: [T]) {
while !issorted(ary) {
shuffle(&ary)
}
}
```

## Tcl

```package require Tcl 8.5

proc shuffleInPlace {listName} {
upvar 1 \$listName list
set len [set len2 [llength \$list]]
for {set i 0} {\$i < \$len-1} {incr i; incr len2 -1} {
# Pick cell to swap with
set n [expr {int(\$i + \$len2 * rand())}]
# Perform swap
set temp [lindex \$list \$i]
lset list \$i [lindex \$list \$n]
lset list \$n \$temp
}
}
proc inOrder {list} {
set prev [lindex \$list 0]
foreach item [lrange \$list 1 end] {
if {\$prev > \$item} {
return false
}
set prev \$item
}
return true
}
proc bogosort {list} {
while { ! [inOrder \$list]} {
shuffleInPlace list
}
return \$list
}
```

## TI-83 BASIC

Same IO as BozoSort (below).

```:"BOGO"
:L1→L2
:Lbl A
:dim(L2)→A
:For(B,1,dim(L2)-1)
:randInt(1,A)→C
:L2(C)→D
:L2(A)→L2(C)
:D→L2(A)
:A-1→A
:End
:For(D,1,dim(L2)-1)
:If L2(D)>L2(D+1)
:Goto A
:End
:DelVar A
:DelVar B
:DelVar C
:DelVar D
:Return
```

This isn't a bogosort, but a bozosort. Store input into L1, run prgmSORTBOZO, outputs to L2

```:L1→L2
:Lbl T
:0→B
:For(A,1,dim(L2)-1)
:If L2(A)>L2(A+1)
:1→B
:End
:If B=0
:Goto E
:randInt(1,dim(L2))→C
:randInt(1,dim(L2))→D
:L2(C)→E
:L2(C+1)→L2(C)
:E→L2(C+1)
:Goto T
:Lbl E
:DelVar A
:DelVar B
:DelVar C
:DelVar D
:DelVar E
:Stop
```

## Ursala

```#import std
#import nat

shuffle = @iNX ~&l->r ^jrX/~&l ~&lK8PrC

bogosort = (not ordered nleq)-> shuffle

#cast %nL

example = bogosort <8,50,0,12,47,51>```
Output:
`<0,8,12,47,50,51>`

## VBA

Translation of: Phix
```Private Function Knuth(a As Variant) As Variant
Dim t As Variant, i As Integer
If Not IsMissing(a) Then
For i = UBound(a) To LBound(a) + 1 Step -1
j = Int((UBound(a) - LBound(a) + 1) * Rnd + LBound(a))
t = a(i)
a(i) = a(j)
a(j) = t
Next i
End If
Knuth = a
End Function

Private Function inOrder(s As Variant)
i = 2
Do While i <= UBound(s)
If s(i) < s(i - 1) Then
inOrder = False
Exit Function
End If
i = i + 1
Loop
inOrder = True
End Function

Private Function bogosort(ByVal s As Variant) As Variant
Do While Not inOrder(s)
Debug.Print Join(s, ", ")
s = Knuth(s)
Loop
bogosort = s
End Function

Public Sub main()
Debug.Print Join(bogosort(Knuth([{1,2,3,4,5,6}])), ", ")
End Sub```
```...
1, 3, 2, 5, 6, 4
6, 2, 1, 3, 4, 5
2, 6, 5, 4, 1, 3
2, 6, 3, 4, 1, 5
1, 2, 3, 4, 5, 6```

## VBScript

##### Implementation
```sub swap( byref a, byref b )
dim tmp
tmp = a
a = b
b = tmp
end sub

'knuth shuffle (I think)
function shuffle( a )
dim i
dim r
randomize timer
for i = lbound( a ) to ubound( a )
r = int( rnd * ( ubound( a ) + 1 )  )
if r <> i then
swap a(i), a(r)
end if
next
shuffle = a
end function

function inOrder( a )
dim res
dim i
for i = 0 to ubound( a ) - 1
res = ( a(i) <= a(i+1) )
if res = false then exit for
next
inOrder = res
end function```
##### Invocation
```dim a
a = array(11, 1, 2, 3, 4, 4, 6, 7, 8)

dim t
t = timer
while not inorder( a )
shuffle a
wend
wscript.echo timer-t, "seconds"
wscript.echo join( a, ", " )```
##### A few outputs (timed)
```10.34766 seconds
1, 2, 3, 4, 4, 6, 7, 8, 11

0.5039063 seconds
1, 2, 3, 4, 4, 6, 7, 8, 11

1.980469 seconds
1, 2, 3, 4, 4, 6, 7, 8, 11
```

## V (Vlang)

Updated for V (Vlang) version 0.2.2

```import rand

fn shuffle_array(mut arr []int) {
for i := arr.len - 1; i >= 0; i-- {
j := rand.intn(i + 1)
arr[i], arr[j] = arr[j], arr[i]
}
}

fn is_sorted(arr []int) bool {
for i := 0; i < arr.len - 1; i++ {
if arr[i] > arr[i + 1] {
return false
}
}
return true
}

fn sort_array(mut arr []int) {
for !is_sorted(arr) {
shuffle_array(mut arr)
println('After Shuffle: \$arr')
}
}

fn main() {
mut array := [6, 9, 1, 4]
println('Input: \$array')
sort_array(mut array)
println('Output: \$array')
}
```
Output:
```Input: [6, 9, 1, 4]
After Shuffle: [1, 9, 6, 4]
After Shuffle: [4, 1, 6, 9]
After Shuffle: [1, 9, 4, 6]
After Shuffle: [9, 1, 4, 6]
After Shuffle: [9, 6, 1, 4]
After Shuffle: [1, 4, 6, 9]
Output: [1, 4, 6, 9]```

## Wren

Library: Wren-sort
```import "random" for Random
import "./sort" for Sort

var bogoSort = Fn.new { |a|
var rand = Random.new()
while (!Sort.isSorted(a)) rand.shuffle(a)
}

var a = [31, 41, 59, 26, 53, 58, 97, 93, 23, 84]
System.print("Before: %(a)")
bogoSort.call(a)
System.print("After : %(a)")
```
Output:
```Before: [31, 41, 59, 26, 53, 58, 97, 93, 23, 84]
After : [23, 26, 31, 41, 53, 58, 59, 84, 93, 97]
```

## XPL0

```code Ran=1, ChOut=8, IntOut=11;

proc BogoSort(A, L);    \Sort array A of length L
int  A, L;
int  I, J, T;
[loop   [I:= 0;
loop    [if A(I) > A(I+1) then quit;
I:= I+1;
if I >= L-1 then return;
];
I:= Ran(L);  J:= Ran(L);
T:= A(I);  A(I):= A(J);  A(J):= T;
];
];

int A, I;
[A:= [3, 1, 4, 1, -5, 9, 2, 6, 5, 4];
BogoSort(A, 10);
for I:= 0 to 10-1 do [IntOut(0, A(I));  ChOut(0, ^ )];
]```
Output:
```-5 1 1 2 3 4 4 5 6 9
```

## Yabasic

Translation of: FreeBASIC
```dim a(5)
a (0) = 10: a (1) = 1: a (2) = 2: a (3) = -6: a (4) = 3

Bogosort(a())

for i = 0 to arraysize(a(),1) - 1
print a(i), "  ";
next i
end

sub shuffle(a())
n = arraysize(a(),1)
m = arraysize(a(),1)*2

for k = 1 to m
i = int(Ran(n))
j = int(Ran(n))
tmp = a(i)        //swap a(i), a(j)
a(i) = a(j)
a(j) = tmp
next k
end sub

sub inorder(a())
n = arraysize(a(),1)

for i = 0 to n-2
if a(i) > a(i+1)  return false
next i
return true
end sub

sub Bogosort(a())
while not inorder(a())
shuffle(a())
wend
end sub```

## zkl

```fcn increasing(list){
list.len()<2 or
list.reduce(fcn(a,b){ if(b<a) return(Void.Stop,False); b }).toBool()
}

ns:=L(5,23,1,6,123,7,23);
while(not increasing(ns)){ ns=ns.shuffle() }
ns.println();```
Output:
`L(1,5,6,7,23,23,123)`