# Zero to the zero power

(Redirected from 0^0)
Zero to the zero power
You are encouraged to solve this task according to the task description, using any language you may know.

Some computer programming languages are not exactly consistent   (with other computer programming languages)
when   raising zero to the zeroth power:     00

Show the results of raising   zero   to the   zeroth   power.

If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like:

```           x = 0
y = 0
z = x**y
say  'z='  z
```

Show the result here.
And of course use any symbols or notation that is supported in your computer programming language for exponentiation.

## 11l

`print(0 ^ 0)`
Output:
```1
```

## 8th

```0 0 ^ .
```
Output:

1

## Action!

```INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

PROC Main()
REAL z,res

Put(125) PutE() ;clear the screen

IntToReal(0,z)
Power(z,z,res)

PrintR(z) Print("^")
PrintR(z) Print("=")
PrintRE(res)
RETURN```
Output:
```0^0=.9999999998
```

```with Ada.Text_IO, Ada.Integer_Text_IO, Ada.Long_Integer_Text_IO,

procedure Test5 is

I    : Integer           := 0;
LI   : Long_Integer      := 0;
LLI  : Long_Long_Integer := 0;
F    : Float             := 0.0;
LF   : Long_Float        := 0.0;
LLF  : Long_Long_Float   := 0.0;
Zero : Natural           := 0;

begin
Put ("Integer           0^0 = ");
Put (I ** Zero, 2);   New_Line;
Put ("Long Integer      0^0 = ");
Put (LI ** Zero, 2);  New_Line;
Put ("Long Long Integer 0^0 = ");
Put (LLI ** Zero, 2); New_Line;
Put ("Float           0.0^0 = ");
Put (F ** Zero);   New_Line;
Put ("Long Float      0.0^0 = ");
Put (LF ** Zero);  New_Line;
Put ("Long Long Float 0.0^0 = ");
Put (LLF ** Zero); New_Line;
end Test5;
```
Output:
```Integer           0^0 =  1
Long Integer      0^0 =  1
Long Long Integer 0^0 =  1
Float           0.0^0 =  1.00000E+00
Long Float      0.0^0 =  1.00000000000000E+00
Long Long Float 0.0^0 =  1.00000000000000000E+00
```

## ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.6.win32
`print( ( 0 ^ 0, newline ) )`
Output:
```         +1
```

## APL

```      0*0
1
```

## AppleScript

``` return 0 ^ 0
```
Output:
```1.0
```

## Applesoft BASIC

```]? 0^0
1```

## Arturo

```print 0 ^ 0
print 0.0 ^ 0
```
Output:
```1
1.0```

## Asymptote

```write("0 ^ 0 = ", 0 ** 0);
```

## AutoHotkey

```MsgBox % 0 ** 0
```
Output:
`1`

## AWK

```# syntax: GAWK -f ZERO_TO_THE_ZERO_POWER.AWK
BEGIN {
print(0 ^ 0)
exit(0)
}
```
Output:
```1
```

## BaCon

```PRINT POW(0, 0)
```
Output:
```prompt\$ ./zerotothezero
1```

## BASIC

### BASIC256

`print "0 ^ 0 = "; 0 ^ 0`

### Chipmunk Basic

```10 print "0 ^ 0 = ";0^0
```

### MSX Basic

```10 PRINT "0 ^ 0 = "; 0 ^ 0
```

### QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
```PRINT "0 ^ 0 ="; 0 ^ 0
```

### Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
`print "0 ^ 0 = "; 0 ^ 0`

### True BASIC

Works with: QBasic
```PRINT "0 ^ 0 ="; 0 ^ 0
END
```

### XBasic

Works with: Windows XBasic
```PROGRAM	"progname"
VERSION	"0.0000"

IMPORT	"xma"   'required for POWER

DECLARE FUNCTION  Entry ()

FUNCTION  Entry ()
PRINT "0 ^ 0 = "; 0 ** 0
PRINT "0 ^ 0 = "; POWER(0, 0)
END FUNCTION
END PROGRAM
```

## BBC BASIC

```      PRINT 0^0
```
Output:
```1
```

```0 ^ 0
```
Output:

1

## Befunge

Befunge-93 doesn't have explicit support for exponentiation, but there are a couple of fingerprint extensions for Befunge-98 which add that functionality. The example below makes use of the FPDP fingerprint (double precision floating point).

Note that the result is potentially dependent on the underlying language of the interpreter, but all those tested so far have returned 1. Interpreters that don't support Befunge-98, or don't support this fingerprint, should just terminate (possibly with a warning).

```"PDPF"4#@(0F0FYP)@
```
Output:
`1.000000`

## BQN

BQN doesn't specify the details of arithmetic functions; existing implementations use IEEE doubles and the `pow` function, giving a result of 1.

`0⋆0`
Output:
`1`

`0^0`
Output:
`1`

## Burlesque

```blsq ) 0.0 0.0?^
1.0
blsq ) 0 0?^
1```

## C

Works with: C99

This example uses the standard `pow` function in the math library. 0^0 is given as 1.

```#include <stdio.h>
#include <math.h>
#include <complex.h>

int main()
{
printf("0 ^ 0 = %f\n", pow(0,0));
double complex c = cpow(0,0);
printf("0+0i ^ 0+0i = %f+%fi\n", creal(c), cimag(c));
return 0;
}
```
Output:
```0 ^ 0 = 1.000000
0+0i ^ 0+0i = nan+nani
```

## C#

```using System;

namespace ZeroToTheZeroeth
{
class Program
{
static void Main(string[] args)
{
double k = Math.Pow(0, 0);
Console.Write("0^0 is {0}", k);
}
}
}
```
Output:
```0^0 is 1
```

## C++

```#include <iostream>
#include <cmath>
#include <complex>

int main()
{
std::cout << "0 ^ 0 = " << std::pow(0,0) << std::endl;
std::cout << "0+0i ^ 0+0i = " <<
std::pow(std::complex<double>(0),std::complex<double>(0)) << std::endl;
return 0;
}
```
Output:
```0 ^ 0 = 1
0+0i ^ 0+0i = (nan,nan)
```

## Caché ObjectScript

```ZEROPOW
// default behavior is incorrect:
set (x,y) = 0
w !,"0 to the 0th power (wrong): "_(x**y)  ; will output 0

// if one or both of the values is a double, this works
set (x,y) = \$DOUBLE(0)
w !,"0 to the 0th power (right): "_(x**y)

quit```
Output:
```SAMPLES>do ^ZEROPOW
0 to the 0th power (wrong): 0

0 to the 0th power (right): 1   ```

## Clojure

```user=> (use 'clojure.math.numeric-tower)
user=> (expt 0 0)
1

; alternative java-interop route:
user=> (Math/pow 0 0)
1.0
```

## CLU

The CLU reference manual doesn't mention the issue, so the fact that it returns 1 in my case could just be an implementation detail.

```start_up = proc ()
zz_int: int := 0 ** 0
zz_real: real := 0.0 ** 0.0

po: stream := stream\$primary_output()
stream\$putl(po, "integer 0**0: " || int\$unparse(zz_int))
stream\$putl(po, "real 0**0: " || f_form(zz_real, 1, 1))
end start_up```
Output:
```integer 0**0: 1
real 0**0: 1.0```

## COBOL

```identification division.
program-id. zero-power-zero-program.
data division.
working-storage section.
77  n                         pic 9.
procedure division.
compute n = 0**0.
display n upon console.
stop run.
```
Output:
`1`

## ColdFusion

### Classic tag based CFML

```<cfset zeroPowerTag = 0^0>
<cfoutput>"#zeroPowerTag#"</cfoutput>
```
Output:
```"1"
```

### Script Based CFML

```<cfscript>
zeroPower = 0^0;
writeOutput( zeroPower );
</cfscript>
```
Output:
```1
```

## Commodore BASIC

Commodore computers use the up arrow key as the exponent operator.

Output:
```ready.
print 0↑0
1

█```

## Common Lisp

```> (expt 0 0)
1```

## Crystal

```puts "Int32:            #{0_i32**0_i32}"
puts "Negative Int32:   #{-0_i32**-0_i32}"
puts "Float32:          #{0_f32**0_f32}"
puts "Negative Float32: #{-0_f32**-0_f32}"
```
Output:
```Int32:            1
Negative Int32:   1
Float32:          1.0
Negative Float32: 1.0```

## D

```void main() {
import std.stdio, std.math, std.bigint, std.complex;

writeln("Int:     ", 0 ^^ 0);
writeln("Ulong:   ", 0UL ^^ 0UL);
writeln("Float:   ", 0.0f ^^ 0.0f);
writeln("Double:  ", 0.0 ^^ 0.0);
writeln("Real:    ", 0.0L ^^ 0.0L);
writeln("pow:     ", pow(0, 0));
writeln("BigInt:  ", 0.BigInt ^^ 0);
writeln("Complex: ", complex(0.0, 0.0) ^^ 0);
}
```
Output:
```Int:     1
Ulong:   1
Float:   1
Double:  1
Real:    1
pow:     1
BigInt:  1
Complex: 1+0i```

## Dart

```import 'dart:math';

void main() {
var resul = pow(0, 0);
print("0 ^ 0 = \$resul");
}
```
Output:
`0 ^ 0 = 1`

`0 0^p`
Output:
```1
```

See Pascal.

## EasyLang

```print pow 0 0
```

## EchoLisp

```;; trying the 16 combinations
;; all return the integer 1

(lib 'bigint)
(define zeroes '(integer: 0 inexact=float: 0.000 complex: 0+0i bignum: #0))
(for* ((z1 zeroes) (z2 zeroes)) (write (expt z1 z2)))
→  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```

## Eiffel

```print (0^0)
```
Output:
`1`

## Elena

ELENA 4.x

```import extensions;

public program()
{
console.printLine("0^0 is ",0.power:0)
}```
Output:
```0^0 is 0
```

## Elixir

Elixir uses Erlang's `:math` for power operations and can handle zero to the zero power.

```:math.pow(0,0)
```
Output:

1.0

## Emacs Lisp

```(expt 0 0)
```
Output:
```1
```

## EMal

```writeLine(0 ** 0) # an integer
writeLine(0.0 ** 0.0) # a real```
Output:
```1
1.0
```

```.....
PRINT(0^0)
.....```
Output:
``` 1
```

## F#

In the REPL:

```> let z = 0.**0.;;

val z : float = 1.0```

## Factor

```USING: math.functions.private ; ! ^complex
0 0 ^
C{ 0 0 } C{ 0 0 } ^complex
```
Output:
```--- Data stack:
NAN: 8000000000000
C{ NAN: 8000000000000 NAN: 8000000000000 }```

## Falcon

VBA/Python programmer's approach not sure if it's the most falconic way

```/* created by Aykayayciti Earl Lamont Montgomery
April 9th, 2018 */

x = 0
y = 0
z = x**y
> "z=", z```
Output:
```z=1
[Finished in 0.2s]
```

`0^0`
Output:
`1`

## Forth

```0e 0e f** f.
```
Output:
`1.`

Of course in an embedded program we would be tempted to "pre-calculate" the answer :-)

```: ^0     DROP  1 ;
```
Output:
```0 ^0 . 1 ok
```

## Fortran

```program zero
double precision :: i, j
double complex :: z1, z2
i = 0.0D0
j = 0.0D0
z1 = (0.0D0,0.0D0)
z2 = (0.0D0,0.0D0)
write(*,*) 'When integers are used, we have 0^0 = ', 0**0
write(*,*) 'When double precision numbers are used, we have 0.0^0.0 = ', i**j
write(*,*) 'When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) = ', z1**z2
end program
```
Output:
``` When integers are used, we have 0^0 =            1
When double precision numbers are used, we have 0.0^0.0 =    1.0000000000000000
When complex numbers are used, we have (0.0+0.0i)^(0.0+0.0i) =  (             NaN,             NaN)
```

## FreeBASIC

```' FB 1.05.0 Win64

Print "0 ^ 0 ="; 0 ^ 0
Sleep
```
Output:
```0 ^ 0 = 1
```

## Frink

`println[0^0]`
Output:
```1
```

## FutureBasic

```window 1

print 0^0

HandleEvents```

Output:

```1
```

## Gambas

```Public Sub Main()

Print 0 ^ 0

End
```

Output:

```1
```

```0^0;
```
Output:
`1`

## Go

Go does not have an exponentiation operator but has functions in the standard library for three types, float64, complex128, and big.Int. As of Go 1.3, all are documented to return 1.

```package main

import (
"fmt"
"math"
"math/big"
"math/cmplx"
)

func main() {
fmt.Println("float64:    ", math.Pow(0, 0))
var b big.Int
fmt.Println("big integer:", b.Exp(&b, &b, nil))
fmt.Println("complex:    ", cmplx.Pow(0, 0))
}
```
Output:
```float64:     1
big integer: 1
complex:     (1+0i)
```

`0 0?`
Output:
`1`

## Groovy

Translation of: Java

Test:

```println 0**0
```
Output:
`1`

## GW-BASIC

```PRINT 0^0
```
Output:
`1`

```import Data.Complex ( Complex((:+)) )

main :: IO ()
main = mapM_ print [
0 ^ 0,
0.0 ^ 0,
0 ^^ 0,
0 ** 0,
(0 :+ 0) ^ 0,
(0 :+ 0) ** (0 :+ 0)
]
```
Output:
```1
1.0
1.0
1.0
1.0 :+ 0.0
1.0 :+ 0.0```

## HolyC

```F64 a = 0 ` 0;
Print("0 ` 0 = %5.3f\n", a);```
Output:
```0 ` 0 = 1.000
```

## Icon and Unicon

"Works" in both languages:

```procedure main()
write(0^0)
end
```
Output:
```->z2z

Run-time error 204
File z2z.icn; Line 2
real overflow, underflow, or division by zero
Traceback:
main()
{0 ^ 0} from line 2 in z2z.icn
->
```

## J

```   0 ^ 0
1
```

Note also that this is the multiplicative identity (which means that it's consistent with `1*0` representing `0^1` and with `1*0*0` representing `0^2` and with `1*0*0*0` representing `0^3` and with `1*2*2*2` representing `2^3` and so on. Also, this is the result of finding the product of an empty list:

```   */''
1
```

(In `*/''` we're finding the product of a list which contains no characters. This is, of course, the same as the product of a list which contains no numbers when both lists contain neither. That said, characters are outside the domain of multiplication in J, so if the list had contained any characters the product would have been an error rather than a result.)

## Java

```System.out.println(Math.pow(0, 0));
```
Output:
`1.0`

## JavaScript

### Math.pow

Works with: Node.js

In interactive mode:

```> Math.pow(0, 0);
1
```

### exponentiation operator (**)

```> 0**0
1
```

## jq

Works with: jq version 1.5

Also works with gojq and fq

```\$ jq -n 'pow(0;0)'
1
```

It is also worth noting that in jq, gojq, and fq, `pow(0; infinite)` yields 0.

## Jsish

```puts(Math.pow(0,0));
```
Output:
`1`

## Julia

Try all combinations of complex, float, rational, integer and boolean.

```using Printf

const types = (Complex, Float64, Rational, Int, Bool)

for Tb in types, Te in types
zb, ze = zero(Tb), zero(Te)
r = zb ^ ze
@printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r))
end
```
Output:
```   Complex ^ Complex    = 0 + 0im ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Float64    = 0 + 0im ^ 0.0     = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Rational   = 0 + 0im ^ 0//1    = 1.0 + 0.0im  (Complex{Float64})
Complex ^ Int64      = 0 + 0im ^ 0       = 1 + 0im      (Complex{Int64})
Complex ^ Bool       = 0 + 0im ^ false   = 1 + 0im      (Complex{Int64})
Float64 ^ Complex    =     0.0 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Float64 ^ Float64    =     0.0 ^ 0.0     = 1.0          (Float64)
Float64 ^ Rational   =     0.0 ^ 0//1    = 1.0          (Float64)
Float64 ^ Int64      =     0.0 ^ 0       = 1.0          (Float64)
Float64 ^ Bool       =     0.0 ^ false   = 1.0          (Float64)
Rational ^ Complex    =    0//1 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Rational ^ Float64    =    0//1 ^ 0.0     = 1.0          (Float64)
Rational ^ Rational   =    0//1 ^ 0//1    = 1.0          (Float64)
Rational ^ Int64      =    0//1 ^ 0       = 1//1         (Rational{Int64})
Rational ^ Bool       =    0//1 ^ false   = 1//1         (Rational{Int64})
Int64 ^ Complex    =       0 ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Int64 ^ Float64    =       0 ^ 0.0     = 1.0          (Float64)
Int64 ^ Rational   =       0 ^ 0//1    = 1.0          (Float64)
Int64 ^ Int64      =       0 ^ 0       = 1            (Int64)
Int64 ^ Bool       =       0 ^ false   = 1            (Int64)
Bool ^ Complex    =   false ^ 0 + 0im = 1.0 + 0.0im  (Complex{Float64})
Bool ^ Float64    =   false ^ 0.0     = 1.0          (Float64)
Bool ^ Rational   =   false ^ 0//1    = 1.0          (Float64)
Bool ^ Int64      =   false ^ 0       = true         (Bool)
Bool ^ Bool       =   false ^ false   = true         (Bool)```

```  0^0
1.0```

## Klingphix

```:mypower
dup not (
[ drop sign dup 0 equal [ drop 1 ] if ]
[ power ]
) if
;

0 0 mypower print nl

"End " input```
Output:
```1
End```

## Kotlin

```import kotlin.math.pow

fun main() {
println(0.0.pow(0))
}
```
Output:
```1.0
```

## Lambdatalk

```{pow 0 0}
-> 1
{exp 0 0}
-> 1
```

## Liberty BASIC

```'********
print 0^0
'********```
Output:
`1`

## Locomotive Basic

```print 0🠅0
```
Output:
` 1`

## Lua

No need to try different data types or with / without decimal points as all numbers in Lua are stored in double-precision floating-point format.

```print(0^0)
```
Output:
`1`

## M2000 Interpreter

M2000 use ** and ^ for power.

```Module Checkit {
x=0
y=0
Print x**y=1, x^y=1    ' True True
}
Checkit```

## Maple

`0^0`
Output:
`1`

However, for consistency with IEEE-754 numerics, we also have a NaN result for the equivalent floating-point exponentiation:

`0^0.0`
Output:
`Float(undefined)`

## Mathematica/Wolfram Language

```0^0
```
Output:
`Indeterminate`

```0^0
complex(0,0)^0
```
Output:
```1
1```

## Maxima

```0^0;
```
Output:
```                  0
expt: undefined: 0```

## Mercury

```:- module zero_to_the_zero_power.
:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module float, int, integer, list, string.

main(!IO) :-
io.format("    int.pow(0, 0) = %d\n", [i(pow(0, 0))], !IO),
io.format("integer.pow(zero, zero) = %s\n",
[s(to_string(pow(zero, zero)))], !IO),
io.format("  float.pow(0.0, 0) = %.1f\n", [f(pow(0.0, 0))], !IO).

:- end_module zero_to_the_zero_power.```
Output:
```    int.pow(0, 0) = 1
integer.pow(zero, zero) = 1
float.pow(0.0, 0) = 1.0```

## Microsoft Small Basic

`TextWindow.WriteLine(Math.Power(0,0))`
Output:
`1`

## min

Works with: min version 0.19.3
`0 0 pow puts`
Output:
```1.0
```

## MiniScript

```print "The result of zero to the zero power is " + 0^0
```
Output:
```The result of zero to the zero power is 1
```

## МК-61/52

```Сx	^	x^y	С/П
```

The result is error message.

## Nanoquery

`println 0^0`
Output:
`1`

## Neko

Neko uses the C math library for exponentiation, Zero to the zero in math.pow(x, y) is treated as being 1.

```/**
Zero to the zeroth power, in Neko
*/

\$print(math_pow(0, 0), "\n")
```
Output:
```prompt\$ nekoc zero-to-the-zero.neko
prompt\$ neko zero-to-the-zero.n
1```

## NetRexx

```x=0
Say '0**0='||x**x
```
Output:
`0**0=1`

## NewLISP

```(pow 0 0)
```
Output:
`1`

## Nial

Create an exponentiation table for all type combinations (of integer `0`, float `0.0` and boolean `o`):

```     0 0.0 o outer power 0 0.0 o
+--+--+--+
| 1|1.| 1|
+--+--+--+
|1.|1.|1.|
+--+--+--+
| 1|1.| 1|
+--+--+--+```

## Nim

```import math

echo pow(0.0, 0.0)  # Floating point exponentiation.
echo 0 ^ 0          # Integer exponentiation.
```
Output:
```1.0
1```

## OCaml

In the interpreter:

```# 0.0 ** 0.0;;
- : float = 1.
# Complex.pow Complex.zero Complex.zero;;
- : Complex.t = {Complex.re = nan; Complex.im = nan}
# open Num;;
# Int 0 **/ Int 0;;
- : Num.num = Int 1
```

## Oforth

`0 0 pow println`
Output:
```1
```

## Ol

```(print "0^0: " (expt 0 0))
(print "0.0^0: " (expt (inexact 0) 0))
```
Output:
```0^0: 1
0.0^0: 1
```

## ooRexx

```/**********************************************************************
* 21.04.2014 Walter Pachl
**********************************************************************/
Say 'rxCalcpower(0,0)  ->' rxCalcpower(0,0)
Say '0**0              ->' 0**0
::requires rxmath library
```
Output:
```rxCalcpower(0,0)  -> 1
0**0              -> 1
```

`echo (0^0);`

## PARI/GP

0 raised to the power of exact 0 is 1, but 0 cannot be raised to the power of an inexact 0:

```0^0
0.^0
0^0.```
Output:
```%1 = 1
%2 = 1
***   at top-level: 0^0.
***                   ^---
*** _^_: domain error in gpow(0,n): n <= 0
***   Break loop: type 'break' to go back to GP prompt```

## Pascal

Works with: Free Pascal
Library: math
```program ZToZ;
uses
math;
begin
write('0.0 ^ 0 :',IntPower(0.0,0):4:2);
writeln('   0.0 ^ 0.0 :',Power(0.0,0.0):4:2);
end.
```
output
`0.0 ^ 0 :1.00   0.0 ^ 0.0 :1.00`

## Perl

```print 0 ** 0, "\n";

use Math::Complex;

print cplx(0,0) ** cplx(0,0), "\n";
```
Output:
```1
1
```

## Phix

Library: Phix/basics
```?power(0,0)
requires("0.8.4") -- (now fixed/crashes on earlier versions)
include complex.e
complex a = complex_new(0,0),
b = complex_power(a,a)
string sa = complex_sprint(a,true),
sb = complex_sprint(b,true)
printf(1,"%s ^ %s = %s\n",{sa,sa,sb})
```
Output:
```1
0+0i ^ 0+0i = 1+0i
```

## Phixmonti

```def mypower
dup not if
. sign dup 0 == if . 1 endif
else
power
endif
enddef

0 0 mypower print```
Output:
`1`

## PHP

```<?php
echo pow(0,0);
echo 0 ** 0; // PHP 5.6+ only
?>
```
Output:
```1
1
```

```
(** 0 0)```
Output:

1

## Pike

```write( pow(0, 0) +"\n" );
```
Output:
```1
```

## PL/I

``` zhz: Proc Options(Main);
Dcl a dec float(10) Init(1);
Dcl b dec float(10) Init(0);
Put skip list('1**0=',a**b);
Put skip list('0**1=',b**a);
Put skip list('0**0=',b**b);
End;```
Output:
```1**0=                    1.000000000E+0000
0**1=                    0.000000000E+0000
0**0=
IBM0682I  ONCODE=1553  X in EXPONENT(X) was invalid.
At offset +0000025B in procedure with entry ZHZ
```

## Plain English

```To run:
Start up.
Put 0 into a number.
Raise the number to 0.
Convert the number to a string.
Write the string to the console.
Wait for the escape key.
Shut down.```
Output:
```1
```

## PowerShell

```Write-Host "0 ^ 0 = " ([math]::pow(0,0))
```

Output :

```0 ^ 0 =  1
```

## PureBasic

```If OpenConsole()
PrintN("Zero to the zero power is " + Pow(0,0))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
```
Output:
```Zero to the zero power is 1
```

## Pyret

`num-expt(0, 0)`
Output:

1

## Python

### Python3

```from decimal import Decimal
from fractions import Fraction
from itertools import product

zeroes = [0, 0.0, 0j, Decimal(0), Fraction(0, 1), -0.0, -0.0j, Decimal(-0.0)]
for i, j in product(zeroes, repeat=2):
try:
ans = i**j
except:
ans = '<Exception raised>'
print(f'{i!r:>15} ** {j!r:<15} = {ans!r}')
```
Output:
```              0 ** 0               = 1
0 ** 0.0             = 1.0
0 ** 0j              = (1+0j)
0 ** Decimal('0')    = '<Exception raised>'
0 ** Fraction(0, 1)  = 1
0 ** -0.0            = 1.0
0 ** (-0-0j)         = (1+0j)
0 ** Decimal('-0')   = '<Exception raised>'
0.0 ** 0               = 1.0
0.0 ** 0.0             = 1.0
0.0 ** 0j              = (1+0j)
0.0 ** Decimal('0')    = '<Exception raised>'
0.0 ** Fraction(0, 1)  = 1.0
0.0 ** -0.0            = 1.0
0.0 ** (-0-0j)         = (1+0j)
0.0 ** Decimal('-0')   = '<Exception raised>'
0j ** 0               = (1+0j)
0j ** 0.0             = (1+0j)
0j ** 0j              = (1+0j)
0j ** Decimal('0')    = '<Exception raised>'
0j ** Fraction(0, 1)  = (1+0j)
0j ** -0.0            = (1+0j)
0j ** (-0-0j)         = (1+0j)
0j ** Decimal('-0')   = '<Exception raised>'
Decimal('0') ** 0               = '<Exception raised>'
Decimal('0') ** 0.0             = '<Exception raised>'
Decimal('0') ** 0j              = '<Exception raised>'
Decimal('0') ** Decimal('0')    = '<Exception raised>'
Decimal('0') ** Fraction(0, 1)  = '<Exception raised>'
Decimal('0') ** -0.0            = '<Exception raised>'
Decimal('0') ** (-0-0j)         = '<Exception raised>'
Decimal('0') ** Decimal('-0')   = '<Exception raised>'
Fraction(0, 1) ** 0               = Fraction(1, 1)
Fraction(0, 1) ** 0.0             = 1.0
Fraction(0, 1) ** 0j              = (1+0j)
Fraction(0, 1) ** Decimal('0')    = '<Exception raised>'
Fraction(0, 1) ** Fraction(0, 1)  = Fraction(1, 1)
Fraction(0, 1) ** -0.0            = 1.0
Fraction(0, 1) ** (-0-0j)         = (1+0j)
Fraction(0, 1) ** Decimal('-0')   = '<Exception raised>'
-0.0 ** 0               = 1.0
-0.0 ** 0.0             = 1.0
-0.0 ** 0j              = (1+0j)
-0.0 ** Decimal('0')    = '<Exception raised>'
-0.0 ** Fraction(0, 1)  = 1.0
-0.0 ** -0.0            = 1.0
-0.0 ** (-0-0j)         = (1+0j)
-0.0 ** Decimal('-0')   = '<Exception raised>'
(-0-0j) ** 0               = (1+0j)
(-0-0j) ** 0.0             = (1+0j)
(-0-0j) ** 0j              = (1+0j)
(-0-0j) ** Decimal('0')    = '<Exception raised>'
(-0-0j) ** Fraction(0, 1)  = (1+0j)
(-0-0j) ** -0.0            = (1+0j)
(-0-0j) ** (-0-0j)         = (1+0j)
(-0-0j) ** Decimal('-0')   = '<Exception raised>'
Decimal('-0') ** 0               = '<Exception raised>'
Decimal('-0') ** 0.0             = '<Exception raised>'
Decimal('-0') ** 0j              = '<Exception raised>'
Decimal('-0') ** Decimal('0')    = '<Exception raised>'
Decimal('-0') ** Fraction(0, 1)  = '<Exception raised>'
Decimal('-0') ** -0.0            = '<Exception raised>'
Decimal('-0') ** (-0-0j)         = '<Exception raised>'
Decimal('-0') ** Decimal('-0')   = '<Exception raised>'```

### Python2

```from decimal import Decimal
from fractions import Fraction
for n in (Decimal(0), Fraction(0, 1), complex(0), float(0), int(0)):
try:
n1 = n**n
except:
n1 = '<Raised exception>'
try:
n2 = pow(n, n)
except:
n2 = '<Raised exception>'
print('%8s: ** -> %r; pow -> %r' % (n.__class__.__name__, n1, n2))
```
Output:
``` Decimal: ** -> '<Raised exception>'; pow -> '<Raised exception>'
Fraction: ** -> Fraction(1, 1); pow -> Fraction(1, 1)
complex: ** -> (1+0j); pow -> (1+0j)
float: ** -> 1.0; pow -> 1.0
int: ** -> 1; pow -> 1
```

## QB64

`Print 0 ^ 0`
Output:
`1`

Alternatively:

```i% = 0 'Integer
l& = 0 'Long integer
s! = 0.0 'Single precision floating point
d# = 0.0 'Double precision floating point
b` = 0 '_Bit
bb%% = 0 '_Byte
isf&& = 0 '_Integer64

Print i% ^ i%
Print l& ^ l&
Print s! ^ s!
Print d# ^ d#
Print b` ^ b`
Print bb%% ^ bb%%
Print isf&& ^ isf&&```
Output:

NB: Values with 0 decimals are trimmed by Print's casting from number value to String.

``` 1
1
1
1
1
1
1```

## Quackery

As a dialogue in the Quackery shell.

```/O> 0 0 **
...

Stack: 1```

## R

```print(0^0)
```
Output:
`1`

## Racket

```#lang racket
;; as many zeros as I can think of...
(define zeros (list
0  ; unspecified number type
0. ; hinted as float
#e0 ; explicitly exact
#i0 ; explicitly inexact
0+0i ; exact complex
0.+0.i ; float inexact
))
(for*((z zeros) (p zeros))
(printf "(~a)^(~a) = ~s~%" z p
(with-handlers [(exn:fail:contract:divide-by-zero? exn-message)]
(expt z p))))
```
Output:
```(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0+0.0i) = +nan.0+nan.0i
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0) = 1.0
(0.0)^(0) = 1
(0.0)^(0.0+0.0i) = +nan.0+nan.0i
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0) = 1.0
(0)^(0) = 1
(0)^(0.0+0.0i) = "expt: undefined for 0 and 0.0+0.0i"
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0) = 1.0+0.0i
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0) = 1.0+0.0i
(0.0+0.0i)^(0) = 1
(0.0+0.0i)^(0.0+0.0i) = +nan.0+nan.0i```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2018.03
```say '    type         n      n**n  exp(n,n)';
say '--------  --------  --------  --------';

for 0, 0.0, FatRat.new(0), 0e0, 0+0i {
printf "%8s  %8s  %8s  %8s\n", .^name, \$_, \$_**\$_, exp(\$_,\$_);
}
```
Output:
```    type         n      n**n  exp(n,n)
--------  --------  --------  --------
Int         0         1         1
Rat         0         1         1
FatRat         0         1         1
Num         0         1         1
Complex      0+0i      1+0i      1+0i
```

## Red

Shown using the operator, the function, and the `math` mini-DSL that uses the order of operations from mathematics:

```Red[]
print 0 ** 0
print power 0 0
print math [0 ** 0]
```
Output:
```1
1
1
```

## Relation

```echo pow(0,0)
// 1```

## REXX

```/*REXX program shows the results of  raising zero  to the  zeroth power.*/
say  '0 ** 0  (zero to the zeroth power) ───► '    0**0
```

using PC/REXX
using Personal REXX
using REGINA
using ooRexx

Output:
```0 ** 0  (zero to the zeroth power) ───►  1
```

using R4

Output:
```Error 26 : Invalid whole number (SYNTAX)
Information: 0 ** 0 is undefined
Error occurred in statement# 2
Statement source: say '0 ** 0  (zero to the zeroth power) ───► ' 0**0
Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0
```

using ROO

Output:
```Error 26 : Invalid whole number (SYNTAX)
Information: 0 ** 0 is undefined
Error occurred in statement# 2
Statement source: say '0 ** 0  (zero to the zeroth power) ───► ' 0**0
Statement context: C:\ZERO_TO0.REX, procedure: ZERO_TO0
```

## Ring

```x = 0
y = 0
z = pow(x,y)
see "z=" + z + nl   # z=1```

```0 0 ^
```
Output:
```1: 1
```

## Ruby

```require 'bigdecimal'

[0, 0.0, Complex(0), Rational(0), BigDecimal("0")].each do |n|
printf "%10s: ** -> %s\n" % [n.class, n**n]
end
```
Output:
```   Integer: ** -> 1
Float: ** -> 1.0
Complex: ** -> 1+0i
Rational: ** -> 1/1
BigDecimal: ** -> 0.1e1
```

## Rust

```fn main() {
println!("{}",0u32.pow(0));
}
```
Output:
`1`

## S-lang

`print(0^0);`
Output:
`1.0`

## Scala

Library: Scala
```  assert(math.pow(0, 0) == 1, "Scala blunder, should go back to school !")
```

## Scheme

```(display (expt 0 0)) (newline)
(display (expt 0.0 0.0)) (newline)
(display (expt 0+0i 0+0i)) (newline)
```
Output:
```1
1.0
1.0```

## Seed7

```\$ include "seed7_05.s7i";
include "float.s7i";
include "complex.s7i";

const proc: main is func
begin
writeln("0      ** 0   = " <& 0 ** 0);
writeln("0.0    ** 0   = " <& 0.0 ** 0);
writeln("0.0    ** 0.0 = " <& 0.0 ** 0.0);
writeln("0.0+0i ** 0   = " <& complex(0.0) ** 0);
end func;```
Output:
```0      ** 0   = 1
0.0    ** 0   = 1.0
0.0    ** 0.0 = 1.0
0.0+0i ** 0   = 1.0+0.0i
```

## SenseTalk

```set a to 0
set b to 0

put a to the power of b
// Prints: 1```

## Sidef

```[0, Complex(0, 0)].each {|n|
say n**n
}
```
Output:
```1
1
```

Taking the 0'th root of a number and raising it back to the zero power, we also get a 1:

```say 0.root(0).pow(0)       # => 1
say ((0**(1/0))**0)        # => 1
```

## Sinclair ZX81 BASIC

```PRINT 0**0
```
Output:
`1`

## Smalltalk

```0 raisedTo: 0
0.0 raisedTo: 0.0
```
Output:
```1
1.0
```

## smart BASIC

```PRINT 0^0
```
Output:
```1
```

## SNOBOL4

```	OUTPUT = (0 ** 0)
END```

## SQL

```SQL> select power(0,0) from dual;
```
Output:
```POWER(0,0)
----------
1
```

## Standard ML

In the interpreter:

```- Math.pow (0.0, 0.0);
val it = 1.0 : real
```

## Stata

```. display 0^0
1
```

## Swift

```import Darwin
print(pow(0.0,0.0))
```
Output:
`1.0`

## Symsyn

` (0^0) []`
Output:
` 1 `

## Tcl

Interactively…

```% expr 0**0
1
% expr 0.0**0.0
1.0
```

## TI SR-56

```0 Yx 0 =
```
Output:
` 1 `

## TI-83_BASIC

`0^0`
Output:
`ERROR:DOMAIN`

## uBasic/4tH

```Print 0^0
```
Output:
```1

0 OK, 0:9```

## Ursa

Cygnus/X Ursa is written in Java, and as a result returns 1.0 when raising 0 to the 0.

```> out (pow 0 0) endl console
1.0```

## VBA

```Public Sub zero()
x = 0
y = 0
z = 0 ^ 0
Debug.Print "z ="; z
End Sub
```
Output:
`z = 1`

## VBScript

```WScript.Echo 0 ^ 0
```
Output:
`1`

## Verilog

```module main;
initial begin
\$display("0 ^ 0 = ", 0**0);
\$finish ;
end
endmodule
```
Output:
`0 ^ 0 =           1`

## Visual Basic .NET

```Module Program
Sub Main()
Console.Write(0^0)
End Sub
End Module
```
Output:
`1`

## V (Vlang)

```// Zero to the zero power, in V
// Tectonics: v run zero-to-the-zero-power.v
module main
import math

// starts here
// V does not include an exponentiation operator, but uses a math module
pub fn main() {
println(math.pow(0, 0))
}
```
Output:
```prompt\$ v run rosetta/zero-to-the-zero-power.v
1.```

## Wren

```System.print(0.pow(0))
```
Output:
```1
```

## XLISP

```XLISP 3.3, September 6, 2002 Copyright (c) 1984-2002, by David Betz
[1] (expt 0 0)

1
[2]
```

## XPL0

`RlOut(0, Pow(0., 0.))`
Output:
`    1.00000`

## Zig

```const std = @import("std");

pub fn main() !void {
const stdout = std.io.getStdOut().writer();
try stdout.print("0^0 = {d:.8}\n", .{std.math.pow(f32, 0, 0)});
}
```
Output:
`0^0 = 1.00000000`

## zkl

```(0.0).pow(0)  //--> 1.0
var BN=Import("zklBigNum"); // big ints
BN(0).pow(0) //--> 1```