Multifactorial

You are encouraged to solve this task according to the task description, using any language you may know.
The factorial of a number, written as , is defined as .
Multifactorials generalize factorials as follows:
In all cases, the terms in the products are positive integers.
If we define the degree of the multifactorial as the difference in successive terms that are multiplied together for a multifactorial (the number of exclamation marks), then the task is twofold:
- Write a function that given n and the degree, calculates the multifactorial.
- Use the function to generate and display here a table of the first ten members (1 to 10) of the first five degrees of multifactorial.
Note: The wikipedia entry on multifactorials gives a different formula. This task uses the Wolfram mathworld definition.
11l
F multifact(n, d)
R product((n .< 1).step(-d))
L(d) 1..5
print(‘Degree ’d‘: ’(1..10).map(n -> multifact(n, @d)))
- Output:
Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
F multifact(=n, d)
V prod = 1
L n > 1
prod *= n
n -= d
R prod
360 Assembly
For maximum compatibility, this program uses only the basic instruction set (S/360 1964 POP).
* Multifactorial 09/05/2016
MULFACR CSECT
USING MULFACR,13
SAVEAR B STM-SAVEAR(15)
DC 17F'0'
STM STM 14,12,12(13) prolog
ST 13,4(15) "
ST 15,8(13) "
LR 13,15 "
LA I,1 i=1
LOOPI C I,D do i=1 to deg
BH ELOOPI leave i
LA L,W+4 l=@p
LA J,1 j=1
LOOPJ C J,N do j=1 to num
BH ELOOPJ leave j
LA R,1 r=1
LCR S,I s=-i
LR K,J k=j
LOOPK C K,=F'2' do k=j to 2 by s
BL ELOOPK leave k
MR RR,K r=r*k
AR K,S k=k+s
B LOOPK next k
ELOOPK CVD R,Y pack r
MVC X,=XL12'402020202020202020202120' ed mask
ED X,Y+2 edit r
MVC 0(8,L),X+4 output r
LA L,8(L) l=l+8
LA J,1(J) j=j+1
B LOOPJ next j
ELOOPJ WTO MF=(E,W)
LA I,1(I) i=i+1
B LOOPI next i
ELOOPI L 13,4(0,13) epilog
LM 14,12,12(13) "
XR 15,15 "
BR 14 "
N DC F'10' number
D DC F'5' degree
W DC 0F,H'84',H'0',CL80' ' length,zero,text
X DS CL12 temp
Y DS D packed PL8
I EQU 6
J EQU 7
K EQU 8
S EQU 9
RR EQU 10 even reg of R for MR opcode
R EQU 11
L EQU 12
END MULFACR
- Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
PROC Multifactorial(INT n,d REAL POINTER res)
REAL r
IntToReal(1,res)
WHILE n>1
DO
IntToReal(n,r)
RealMult(res,r,res)
n==-d
OD
RETURN
PROC Main()
BYTE n,d
REAL r
Put(125) PutE() ;clear the screen
FOR d=1 TO 5
DO
PrintF("Degree %B:",d)
FOR n=1 TO 10
DO
Multifactorial(n,d,r)
Put(32) PrintR(r)
OD
PutE()
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Mfact is
function MultiFact (num : Natural; deg : Positive) return Natural is
Result, N : Integer := num;
begin
if N = 0 then return 1; end if;
loop
N := N - deg; exit when N <= 0; Result := Result * N;
end loop; return Result;
end MultiFact;
begin
for deg in 1..5 loop
Put("Degree"& Integer'Image(deg) &":");
for num in 1..10 loop Put(Integer'Image(MultiFact(num,deg))); end loop;
New_line;
end loop;
end Mfact;
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Aime
mf(integer a, n)
{
integer o;
o = 1;
do {
o *= a;
} while (0 < (a -= n));
o;
}
main(void)
{
integer i, j;
i = 0;
while ((i += 1) <= 5) {
o_("degree ", i, ":");
j = 0;
while ((j += 1) <= 10) {
o_("\t", mf(j, i));
}
o_("\n");
}
0;
}
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
ALGOL 68
Translation of C.
BEGIN
INT highest degree = 5;
INT largest number = 10;
CO Recursive implementation of multifactorial function CO
PROC multi fact = (INT n, deg) INT :
(n <= deg | n | n * multi fact(n - deg, deg));
CO Iterative implementation of multifactorial function CO
PROC multi fact i = (INT n, deg) INT :
BEGIN
INT result := n, nn := n;
WHILE (nn >= deg + 1) DO
result TIMESAB nn - deg;
nn MINUSAB deg
OD;
result
END;
CO Print out multifactorials CO
FOR i TO highest degree DO
printf (($l, "Degree ", g(0), ":"$, i));
FOR j TO largest number DO
printf (($xg(0)$, multi fact (j, i)))
OD
OD
END
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
ALGOL W
Iterative multifactorial based on Ada, AutoHotkey, etc.
begin
% returns the multifactorial of n with the specified degree %
integer procedure multifactorial ( integer value n, degree ) ;
begin
integer mf, v;
mf := v := n;
while begin
v := v - degree;
v > 1
end do mf := mf * v;
mf
end multifactorial ;
% tests as per task %
for degree := 1 until 5 do begin
i_w := 1; s_w := 0; % output formatting %
write( "Degree: ", degree, ":" );
for v := 1 until 10 do begin
writeon( " ", multifactorial( v, degree ) )
end for_v
end for_degree
end.
- Output:
Degree: 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree: 2: 1 2 3 8 15 48 105 384 945 3840 Degree: 3: 1 2 3 4 10 18 28 80 162 280 Degree: 4: 1 2 3 4 5 12 21 32 45 120 Degree: 5: 1 2 3 4 5 6 14 24 36 50
AppleScript
on multifactorial(n, d)
set f to 1
repeat with n from n to 2 by -d
set f to f * n
end repeat
return f
end multifactorial
on task()
set table to ""
repeat with degree from 1 to 5
set row to linefeed & "Degree " & degree & ":"
repeat with n from 1 to 10
set row to row & (space & multifactorial(n, degree))
end repeat
set table to table & row
end repeat
return table
end task
task()
- Output:
"
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50"
Arturo
multifact: function [n deg][
if? n =< deg -> n
else -> n * multifact n-deg deg
]
loop 1..5 'i [
prints ["Degree" i ":"]
loop 1..10 'j [
prints [multifact j i " "]
]
print ""
]
- Output:
Degree 1 : 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2 : 1 2 3 8 15 48 105 384 945 3840 Degree 3 : 1 2 3 4 10 18 28 80 162 280 Degree 4 : 1 2 3 4 5 12 21 32 45 120 Degree 5 : 1 2 3 4 5 6 14 24 36 50
AutoHotkey
Loop, 5 {
Output .= "Degree " (i := A_Index) ": "
Loop, 10
Output .= MultiFact(A_Index, i) (A_Index = 10 ? "`n" : ", ")
}
MsgBox, % Output
MultiFact(n, d) {
Result := n
while 1 < n -= d
Result *= n
return, Result
}
Output:
Degree 1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 Degree 2: 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840 Degree 3: 1, 2, 3, 4, 10, 18, 28, 80, 162, 280 Degree 4: 1, 2, 3, 4, 5, 12, 21, 32, 45, 120 Degree 5: 1, 2, 3, 4, 5, 6, 14, 24, 36, 50
AWK
# syntax: GAWK -f MULTIFACTORIAL.AWK
# converted from Go
BEGIN {
for (k=1; k<=5; k++) {
printf("degree %d:",k)
for (n=1; n<=10; n++) {
printf(" %d",multi_factorial(n,k))
}
printf("\n")
}
exit(0)
}
function multi_factorial(n,k, r) {
r = 1
for (; n>1; n-=k) {
r *= n
}
return(r)
}
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
BASIC
ANSI BASIC
100 FUNCTION multiFactorial (n, degree)
110 IF n < 2 THEN
120 LET multiFactorial = 1
130 EXIT FUNCTION
140 END IF
150 LET result = n
160 FOR i = n - degree TO 2 STEP -degree
170 LET result = result * i
180 NEXT i
190 LET multiFactorial = result
200 END FUNCTION
210
220 FOR degree = 1 TO 5
230 PRINT "Degree"; degree; " => ";
240 FOR n = 1 TO 10
250 PRINT multiFactorial(n, degree); " ";
260 NEXT n
270 PRINT
280 NEXT degree
290 END
- Output:
Degree 1 => 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2 => 1 2 3 8 15 48 105 384 945 3840 Degree 3 => 1 2 3 4 10 18 28 80 162 280 Degree 4 => 1 2 3 4 5 12 21 32 45 120 Degree 5 => 1 2 3 4 5 6 14 24 36 50
BBC BASIC
REM >multifact
FOR i% = 1 TO 5
PRINT "Degree "; i%; ":";
FOR j% = 1 TO 10
PRINT " ";FNmultifact(j%, i%);
NEXT
PRINT
NEXT
END
:
DEF FNmultifact(n%, degree%)
LOCAL i%, mfact%
mfact% = 1
FOR i% = n% TO 1 STEP -degree%
mfact% = mfact% * i%
NEXT
= mfact%
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
IS-BASIC
100 PROGRAM "MultiFac.bas"
110 FOR I=1 TO 5
120 PRINT "Degree";I;": ";
130 FOR J=1 TO 10
140 PRINT MFACT(J,I);" ";
150 NEXT
160 PRINT
170 NEXT
180 DEF MFACT(N,DEGREE)
190 LET RESULT=1
200 FOR X=N TO 1 STEP-DEGREE
210 LET RESULT=RESULT*X
220 NEXT
230 LET MFACT=RESULT
240 END DEF
BQN
MultiFact ← ×´⊣-↕∘⌈∘÷×⊢
MultiFact⌜⟜(5⊸↑) 1+↕10
- Output:
┌─ ╵ 1 1 1 1 1 2 2 2 2 2 6 3 3 3 3 24 8 4 4 4 120 15 10 5 5 720 48 18 12 6 5040 105 28 21 14 40320 384 80 32 24 362880 945 162 45 36 3628800 3840 280 120 50 ┘
C
/* Include statements and constant definitions */
#include <stdio.h>
#define HIGHEST_DEGREE 5
#define LARGEST_NUMBER 10
/* Recursive implementation of multifactorial function */
int multifact(int n, int deg){
return n <= deg ? n : n * multifact(n - deg, deg);
}
/* Iterative implementation of multifactorial function */
int multifact_i(int n, int deg){
int result = n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
}
return result;
}
/* Test function to print out multifactorials */
int main(void){
int i, j;
for (i = 1; i <= HIGHEST_DEGREE; i++){
printf("\nDegree %d: ", i);
for (j = 1; j <= LARGEST_NUMBER; j++){
printf("%d ", multifact(j, i));
}
}
}
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
C#
namespace RosettaCode.Multifactorial
{
using System;
using System.Linq;
internal static class Program
{
private static void Main()
{
Console.WriteLine(string.Join(Environment.NewLine,
Enumerable.Range(1, 5)
.Select(
degree =>
string.Join(" ",
Enumerable.Range(1, 10)
.Select(
number =>
Multifactorial(number, degree))))));
}
private static int Multifactorial(int number, int degree)
{
if (degree < 1)
{
throw new ArgumentOutOfRangeException("degree");
}
var count = 1 + (number - 1) / degree;
if (count < 1)
{
throw new ArgumentOutOfRangeException("number");
}
return Enumerable.Range(0, count)
.Aggregate(1, (accumulator, index) => accumulator * (number - degree * index));
}
}
}
Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
C++
#include <algorithm>
#include <iostream>
#include <iterator>
/*Generate multifactorials to 9
Nigel_Galloway
November 14th., 2012.
*/
int main(void) {
for (int g = 1; g < 10; g++) {
int v[11], n=0;
generate_n(std::ostream_iterator<int>(std::cout, " "), 10, [&]{n++; return v[n]=(g<n)? v[n-g]*n : n;});
std::cout << std::endl;
}
return 0;
}
- Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50 1 2 3 4 5 6 7 16 27 40 1 2 3 4 5 6 7 8 18 30 1 2 3 4 5 6 7 8 9 20 1 2 3 4 5 6 7 8 9 10
Clojure
(defn !! [m n]
(->> (iterate #(- % m) n) (take-while pos?) (apply *)))
(doseq [m (range 1 6)]
(prn m (map #(!! m %) (range 1 11))))
- Output:
1 (1 2 6 24 120 720 5040 40320 362880 3628800) 2 (1 2 3 8 15 48 105 384 945 3840) 3 (1 2 3 4 10 18 28 80 162 280) 4 (1 2 3 4 5 12 21 32 45 120) 5 (1 2 3 4 5 6 14 24 36 50)
CLU
multifactorial = proc (n, degree: int) returns (int)
result: int := 1
for i: int in int$from_to_by(n, 1, -degree) do
result := result * i
end
return (result)
end multifactorial
start_up = proc ()
po: stream := stream$primary_output()
for n: int in int$from_to(1, 10) do
for d: int in int$from_to(1, 5) do
stream$putright(po, int$unparse(multifactorial(n,d)), 10)
end
stream$putc(po, '\n')
end
end start_up
- Output:
1 1 1 1 1 2 2 2 2 2 6 3 3 3 3 24 8 4 4 4 120 15 10 5 5 720 48 18 12 6 5040 105 28 21 14 40320 384 80 32 24 362880 945 162 45 36 3628800 3840 280 120 50
Common Lisp
(defun mfac (n m)
(reduce #'* (loop for i from n downto 1 by m collect i)))
(loop for i from 1 to 10
do (format t "~2@a: ~{~a~^ ~}~%"
i (loop for j from 1 to 10
collect (mfac j i))))
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50 6: 1 2 3 4 5 6 7 16 27 40 7: 1 2 3 4 5 6 7 8 18 30 8: 1 2 3 4 5 6 7 8 9 20 9: 1 2 3 4 5 6 7 8 9 10 10: 1 2 3 4 5 6 7 8 9 10
Cowgol
include "cowgol.coh";
sub multifac(n: uint32, d: uint32): (r: uint32) is
r := 1;
loop
r := r * n;
if n <= d then break; end if;
n := n - d;
end loop;
end sub;
var d: uint32 := 1;
while d <= 5 loop
print_i32(d);
print(": ");
var n: uint32 := 1;
while n <= 10 loop
print_i32(multifac(n, d));
print(" ");
n := n + 1;
end loop;
print_nl();
d := d + 1;
end loop;
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50
Crystal
def multifact(n, d)
n.step(to: 1, by: -d).product
end
(1..5).each {|d| puts "Degree #{d}: #{(1..10).map{|n| multifact(n, d)}.join "\t"}"}
output
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
D
import std.stdio, std.algorithm, std.range;
T multifactorial(T=long)(in int n, in int m) pure /*nothrow*/ {
T one = 1;
return reduce!q{a * b}(one, iota(n, 0, -m));
}
void main() {
foreach (immutable m; 1 .. 11)
writefln("%2d: %s", m, iota(1, 11)
.map!(n => multifactorial(n, m)));
}
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50 6: 1 2 3 4 5 6 7 16 27 40 7: 1 2 3 4 5 6 7 8 18 30 8: 1 2 3 4 5 6 7 8 9 20 9: 1 2 3 4 5 6 7 8 9 10 10: 1 2 3 4 5 6 7 8 9 10
Dart
main()
{
int n=5,d=3;
int z= fact(n,d);
print('$n factorial of degree $d is $z');
for(var j=1;j<=5;j++)
{
print('first 10 numbers of degree $j :');
for(var i=1;i<=10;i++)
{
int z=fact(i,j);
print('$z');
}
print('\n');
}
}
int fact(int a,int b)
{
if(a<=b||a==0)
return a;
if(a>1)
return a*fact((a-b),b);
}
Draco
proc nonrec multifac(int n, deg) ulong:
ulong result;
result := 1;
while n > 1 do
result := result * n;
n := n - deg
od;
result
corp
proc nonrec main() void:
byte n, d;
for n from 1 upto 10 do
for d from 1 upto 5 do
write(multifac(n,d):10)
od;
writeln()
od
corp
- Output:
1 1 1 1 1 2 2 2 2 2 6 3 3 3 3 24 8 4 4 4 120 15 10 5 5 720 48 18 12 6 5040 105 28 21 14 40320 384 80 32 24 362880 945 162 45 36 3628800 3840 280 120 50
Delphi
function MultiFact(Num,Deg: integer): integer;
{Multifactorial from Degree and Number}
var N: integer;
begin
N:=Num;
Result:=Num;
if N = 0 then Result:=1
else while true do
begin
N := N - deg;
if N<1 then break;
Result:=Result * N;
end;
end;
procedure ShowMultifactorial(Memo: TMemo);
{Show combinations of deg/num of multifactorial}
var Deg,Num: integer;
var S: string;
begin
S:='';
for Deg:=1 to 5 do
begin
S:=S+Format('Degree: %d:',[Deg]);
for Num:=1 to 10 do S:=S+' '+Format('%7d',[MultiFact(Num,Deg)]);
S:=S+#$0D#$0A;
end;
Memo.Lines.Add(S);
end;
- Output:
Degree: 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree: 2: 1 2 3 8 15 48 105 384 945 3840 Degree: 3: 1 2 3 4 10 18 28 80 162 280 Degree: 4: 1 2 3 4 5 12 21 32 45 120 Degree: 5: 1 2 3 4 5 6 14 24 36 50
EasyLang
func mfact n k .
r = 1
while n > 1
r *= n
n -= k
.
return r
.
for k = 1 to 5
write "degree " & k & ":"
for n = 1 to 10
write " " & mfact n k
.
print ""
.
Elixir
defmodule RC do
def multifactorial(n,d) do
Enum.take_every(n..1, d) |> Enum.reduce(1, fn x,p -> x*p end)
end
end
Enum.each(1..5, fn d ->
multifac = for n <- 1..10, do: RC.multifactorial(n,d)
IO.puts "Degree #{d}: #{inspect multifac}"
end)
- Output:
Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Erlang
-module(multifac).
-compile(export_all).
multifac(N,D) ->
lists:foldl(fun (X,P) -> X * P end, 1, lists:seq(N,1,-D)).
main() ->
Ds = lists:seq(1,5),
Ns = lists:seq(1,10),
lists:foreach(fun (D) ->
io:format("Degree ~b: ~p~n",[D, [ multifac(N,D) || N <- Ns]])
end, Ds).
- Output:
5> multifac:main().
Degree 1: [1,2,6,24,120,720,5040,40320,362880,3628800]
Degree 2: [1,2,3,8,15,48,105,384,945,3840]
Degree 3: [1,2,3,4,10,18,28,80,162,280]
Degree 4: [1,2,3,4,5,12,21,32,45,120]
Degree 5: [1,2,3,4,5,6,14,24,36,50]
ok
ERRE
PROGRAM MULTIFACTORIAL
PROCEDURE MULTI_FACT(NUM,DEG->MF)
RESULT=NUM
N=NUM
IF N=0 THEN
MF=1
EXIT PROCEDURE
END IF
LOOP
N-=DEG
EXIT IF N<=0
RESULT*=N
END LOOP
MF=RESULT
END PROCEDURE
BEGIN
PRINT(CHR$(12);)
FOR DEG=1 TO 10 DO
PRINT("Degree";DEG;":";)
FOR NUM=1 TO 10 DO
MULTI_FACT(NUM,DEG->MF)
PRINT(MF;)
END FOR
PRINT
END FOR
END PROGRAM
Degree 1 : 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2 : 1 2 3 8 15 48 105 384 945 3840 Degree 3 : 1 2 3 4 10 18 28 80 162 280 Degree 4 : 1 2 3 4 5 12 21 32 45 120 Degree 5 : 1 2 3 4 5 6 14 24 36 50 Degree 6 : 1 2 3 4 5 6 7 16 27 40 Degree 7 : 1 2 3 4 5 6 7 8 18 30 Degree 8 : 1 2 3 4 5 6 7 8 9 20 Degree 9 : 1 2 3 4 5 6 7 8 9 10 Degree 10 : 1 2 3 4 5 6 7 8 9 10
F#
let rec mfact d = function
| n when n <= d -> n
| n -> n * mfact d (n-d)
[<EntryPoint>]
let main argv =
let (|UInt|_|) = System.UInt32.TryParse >> function | true, v -> Some v | false, _ -> None
let (maxDegree, maxN) =
match argv with
| [| UInt d; UInt n |] -> (int d, int n)
| [| UInt d |] -> (int d, 10)
| _ -> (5, 10)
let showFor d = List.init maxN (fun i -> mfact d (i+1)) |> printfn "%i: %A" d
ignore (List.init maxDegree (fun i -> showFor (i+1)))
0
1: [1; 2; 6; 24; 120; 720; 5040; 40320; 362880; 3628800] 2: [1; 2; 3; 8; 15; 48; 105; 384; 945; 3840] 3: [1; 2; 3; 4; 10; 18; 28; 80; 162; 280] 4: [1; 2; 3; 4; 5; 12; 21; 32; 45; 120] 5: [1; 2; 3; 4; 5; 6; 14; 24; 36; 50]
Factor
USING: formatting io kernel math math.ranges prettyprint
sequences ;
IN: rosetta-code.multifactorial
: multifactorial ( n degree -- m )
neg 1 swap <range> product ;
: mf-row ( degree -- )
dup "Degree %d: " printf
10 [1,b] [ swap multifactorial pprint bl ] with each ;
: main ( -- )
5 [1,b] [ mf-row nl ] each ;
MAIN: main
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Forth
: !n negate swap 1 dup rot do i * over +loop nip ;
: test cr 6 1 ?do 11 1 ?do i j !n . loop cr loop ;
- Output:
test 1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50 ok
Fortran
program test
implicit none
integer :: i, j, n
do i = 1, 5
write(*, "(a, i0, a)", advance = "no") "Degree ", i, ": "
do j = 1, 10
n = multifactorial(j, i)
write(*, "(i0, 1x)", advance = "no") n
end do
write(*,*)
end do
contains
function multifactorial (range, degree)
integer :: multifactorial, range, degree
integer :: k
multifactorial = product((/(k, k=range, 1, -degree)/))
end function multifactorial
end program test
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
FreeBASIC
' FB 1.05.0 Win64
Function multiFactorial (n As UInteger, degree As Integer) As UInteger
If n < 2 Then Return 1
Var result = n
For i As Integer = n - degree To 2 Step -degree
result *= i
Next
Return result
End Function
For degree As Integer = 1 To 5
Print "Degree"; degree; " => ";
For n As Integer = 1 To 10
Print multiFactorial(n, degree); " ";
Next n
Print
Next degree
Print
Print "Press any key to quit"
Sleep
- Output:
Degree 1 => 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2 => 1 2 3 8 15 48 105 384 945 3840 Degree 3 => 1 2 3 4 10 18 28 80 162 280 Degree 4 => 1 2 3 4 5 12 21 32 45 120 Degree 5 => 1 2 3 4 5 6 14 24 36 50
FunL
def multifactorial( n, d ) = product( n..1 by -d )
for d <- 1..5
println( d, [multifactorial(i, d) | i <- 1..10] ))
- Output:
1, [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] 2, [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] 3, [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] 4, [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] 5, [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
GAP
MultiFactorial := function(n, k)
local r;
r := 1;
while n > 1 do
r := r*n;
n := n - k;
od;
return r;
end;
PrintArray(List([1 .. 10], n -> List([1 .. 5], k -> MultiFactorial(n, k))));
[ [ 1, 1, 1, 1, 1 ],
[ 2, 2, 2, 2, 2 ],
[ 6, 3, 3, 3, 3 ],
[ 24, 8, 4, 4, 4 ],
[ 120, 15, 10, 5, 5 ],
[ 720, 48, 18, 12, 6 ],
[ 5040, 105, 28, 21, 14 ],
[ 40320, 384, 80, 32, 24 ],
[ 362880, 945, 162, 45, 36 ],
[ 3628800, 3840, 280, 120, 50 ] ]
Go
package main
import "fmt"
func multiFactorial(n, k int) int {
r := 1
for ; n > 1; n -= k {
r *= n
}
return r
}
func main() {
for k := 1; k <= 5; k++ {
fmt.Print("degree ", k, ":")
for n := 1; n <= 10; n++ {
fmt.Print(" ", multiFactorial(n, k))
}
fmt.Println()
}
}
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
Haskell
mulfac :: (Num a, Enum a) => a -> [a]
mulfac k = 1 : s
where
s = [1 .. k] <> zipWith (*) s [k + 1 ..]
-- For single n:
mulfac1 :: (Num a, Enum a) => a -> a -> a
mulfac1 k n = product [n, n - k .. 1]
main :: IO ()
main =
mapM_
(print . take 10 . tail . mulfac)
[1 .. 5]
- Output:
[1,2,6,24,120,720,5040,40320,362880,3628800] [1,2,3,8,15,48,105,384,945,3840] [1,2,3,4,10,18,28,80,162,280] [1,2,3,4,5,12,21,32,45,120] [1,2,3,4,5,6,14,24,36,50]
Icon and Unicon
The following is Unicon specific but can be readily translated into Icon:
procedure main(A)
l := integer(A[1]) | 10
every writeRow(n := !l, [: mf(!10,n) :])
end
procedure writeRow(n, r)
writes(right(n,3),": ")
every writes(right(!r,8)|"\n")
end
procedure mf(n, m)
if n <= 0 then return 1
return n*mf(n-m, m)
end
Sample run:
->mf 5 1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50 ->
IS-BASIC
100 PROGRAM "Multifac.bas"
110 FOR I=1 TO 5
120 PRINT "Degree";I;":";
130 FOR N=1 TO 10
140 PRINT MFACT(N,I);
150 NEXT
160 PRINT
170 NEXT
180 DEF MFACT(N,D)
190 NUMERIC I,RES
200 IF N<2 THEN LET MFACT=1:EXIT DEF
210 LET RES=N
220 FOR I=N-D TO 2 STEP-D
230 LET RES=RES*I
240 NEXT
250 LET MFACT=RES
260 END DEF
J
NB. n multifact degree
multifact=: */@([ - ] * i.@>.@%)&>
('';' degree'),multifact table >:i.10
┌─────────┬──────────────────────────────────────┐
│ │ degree │
├─────────┼──────────────────────────────────────┤
│multifact│ 1 2 3 4 5 6 7 8 9 10│
├─────────┼──────────────────────────────────────┤
│ 1 │ 1 1 1 1 1 1 1 1 1 1│
│ 2 │ 2 2 2 2 2 2 2 2 2 2│
│ 3 │ 6 3 3 3 3 3 3 3 3 3│
│ 4 │ 24 8 4 4 4 4 4 4 4 4│
│ 5 │ 120 15 10 5 5 5 5 5 5 5│
│ 6 │ 720 48 18 12 6 6 6 6 6 6│
│ 7 │ 5040 105 28 21 14 7 7 7 7 7│
│ 8 │ 40320 384 80 32 24 16 8 8 8 8│
│ 9 │ 362880 945 162 45 36 27 18 9 9 9│
│10 │3628800 3840 280 120 50 40 30 20 10 10│
└─────────┴──────────────────────────────────────┘
Java
public class MultiFact {
private static long multiFact(long n, int deg){
long ans = 1;
for(long i = n; i > 0; i -= deg){
ans *= i;
}
return ans;
}
public static void main(String[] args){
for(int deg = 1; deg <= 5; deg++){
System.out.print("degree " + deg + ":");
for(long n = 1; n <= 10; n++){
System.out.print(" " + multiFact(n, deg));
}
System.out.println();
}
}
}
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
JavaScript
Iterative
function multifact(n, deg){
var result = n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
}
return result;
}
function test (n, deg) {
for (var i = 1; i <= deg; i ++) {
var results = '';
for (var j = 1; j <= n; j ++) {
results += multifact(j, i) + ' ';
}
console.log('Degree ' + i + ': ' + results);
}
}
- Output:
test(10, 5)
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Recursive
function multifact(n, deg){
return n <= deg ? n : n * multifact(n - deg, deg);
}
Test
function test (n, deg) {
for (var i = 1; i <= deg; i ++) {
var results = '';
for (var j = 1; j <= n; j ++) {
results += multifact(j, i) + ' ';
}
console.log('Degree ' + i + ': ' + results);
}
}
- Output:
test(10, 5)
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
jq
# Input: n
# Output: n * (n - d) * (n - 2d) ...
def multifactorial(d):
. as $n
| ($n / d | floor) as $k
| reduce ($n - (d * range(0; $k))) as $i (1; . * $i);
# Print out a d-by-n table of multifactorials neatly:
def table(d; n):
def lpad(i): tostring | (i - length) * " " + .;
def pp(stream): reduce stream as $i (""; . + ($i | lpad(8)));
range(1; d+1) as $d | "Degree \($d): \( pp(range(1; n+1) | multifactorial($d)) )";
The specific task:
table(5; 10)
- Output:
$ jq -n -r -f Multifactorial.jq
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 1 3 4 5 18 28 40 162 280
Degree 4: 1 1 1 4 5 6 7 32 45 60
Degree 5: 1 1 1 1 5 6 7 8 9 50
Julia
using Printf
function multifact(n::Integer, k::Integer)
n > 0 && k > 0 || throw(DomainError())
k > 1 || factorial(n)
return prod(n:-k:2)
end
const khi = 5
const nhi = 10
println("Showing multifactorial for n in [1, $nhi] and k in [1, $khi].")
for k = 1:khi
a = multifact.(1:nhi, k)
lab = "n" * "!" ^ k
@printf(" %-6s → %s\n", lab, a)
end
- Output:
Showing multifactorial for n in [1, 10] and k in [1, 5]. n! → [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] n!! → [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] n!!! → [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] n!!!! → [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] n!!!!! → [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Kotlin
fun multifactorial(n: Long, d: Int) : Long {
val r = n % d
return (1..n).filter { it % d == r } .reduce { i, p -> i * p }
}
fun main(args: Array<String>) {
val m = 5
val r = 1..10L
for (d in 1..m) {
print("%${m}s:".format( "!".repeat(d)))
r.forEach { print(" " + multifactorial(it, d)) }
println()
}
}
- Output:
!: 1 2 6 24 120 720 5040 40320 362880 3628800 !!: 1 2 3 8 15 48 105 384 945 3840 !!!: 1 2 3 4 10 18 28 80 162 280 !!!!: 1 2 3 4 5 12 21 32 45 120 !!!!!: 1 2 3 4 5 6 14 24 36 50
Lambdatalk
{def multifact
{lambda {:n :deg}
{if {<= :n :deg}
then :n
else {* :n {multifact {- :n :deg} :deg}}}}}
-> multifact
{S.map {lambda {:deg} {br} Degree :deg:
{S.map {{lambda {:deg :n} {multifact :n :deg}} :deg}
{S.serie 1 10}}}
{S.serie 1 5}}
->
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800
Degree 2: 1 2 3 8 15 48 105 384 945 3840
Degree 3: 1 2 3 4 10 18 28 80 162 280
Degree 4: 1 2 3 4 5 12 21 32 45 120
Degree 5: 1 2 3 4 5 6 14 24 36 50
Latitude
use 'format importAllSigils.
multiFactorial := {
Range make ($1, 0, - $2) product.
}.
1 upto 6 visit {
takes '[degree].
answers := 1 upto 11 to (Array) map { multiFactorial ($1, degree). }.
$stdout printf: ~fmt "Degree ~S: ~S", degree, answers.
}.
- Output:
Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Lua
function multiFact (n, degree)
local fact = 1
for i = n, 2, -degree do
fact = fact * i
end
return fact
end
print("Degree\t|\tMultifactorials 1 to 10")
print(string.rep("-", 52))
for d = 1, 5 do
io.write(" " .. d, "\t| ")
for n = 1, 10 do
io.write(multiFact(n, d) .. " ")
end
print()
end
- Output:
Degree | Multifactorials 1 to 10 ---------------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50
MAD
NORMAL MODE IS INTEGER
INTERNAL FUNCTION(N,DEG)
ENTRY TO MLTFAC.
RSLT = 1
THROUGH MULT, FOR MPC=N, -DEG, MPC.L.1
MULT RSLT = RSLT * MPC
FUNCTION RETURN RSLT
END OF FUNCTION
THROUGH SHOW, FOR I=1, 1, I.G.10
SHOW PRINT FORMAT OUTP, MLTFAC.(I,1), MLTFAC.(I,2),
0 MLTFAC.(I,3), MLTFAC.(I,4), MLTFAC.(I,5)
VECTOR VALUES OUTP = $5(I10,S1)*$
END OF PROGRAM
- Output:
1 1 1 1 1 2 2 2 2 2 6 3 3 3 3 24 8 4 4 4 120 15 10 5 5 720 48 18 12 6 5040 105 28 21 14 40320 384 80 32 24 362880 945 162 45 36 3628800 3840 280 120 50
Maple
f := proc (n, m)
local fac, i;
fac := 1;
for i from n by -m to 1 do
fac := fac*i;
end do;
return fac;
end proc:
a:=Matrix(5,10):
for i from 1 to 5 do
for j from 1 to 10 do
a[i,j]:=f(j,i);
end do;
end do;
a;
- Output:
[1 , 2 , 6 , 24 , 120 , 720 , 5040 , 40320 , 362880 , 3628800] [ ] [1 , 2 , 3 , 8 , 15 , 48 , 105 , 384 , 945 , 3840] [ ] [1 , 2 , 3 , 4 , 10 , 18 , 28 , 80 , 162 , 280] [ ] [1 , 2 , 3 , 4 , 5 , 12 , 21 , 32 , 45 , 120] [ ] [1 , 2 , 3 , 4 , 5 , 6 , 14 , 24 , 36 , 50]
Mathematica /Wolfram Language
Multifactorial[n_, d_] := Product[x, {x, n, 1, -d}]
Table[Multifactorial[j, i], {i, 5}, {j, 10}]//TableForm
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50
Maxima
Using built-in function genfact
multifactorial(x,n):=genfact(x,x/n,n)$
/* Test case */
makelist(multifactorial(i,1),i,1,10);
makelist(multifactorial(i,2),i,1,10);
block(makelist(mod(i,3),i,1,10),at(%%,0=1),%%*makelist(multifactorial(i,3),i,1,10));
block(makelist(mod(i,4),i,1,10),at(%%,0=1),%%*makelist(multifactorial(i,4),i,1,10));
block(makelist(mod(i,5),i,1,10),at(%%,0=1),%%*makelist(multifactorial(i,5),i,1,10));
- Output:
[1,2,6,24,120,720,5040,40320,362880,3628800] [1,2,3,8,15,48,105,384,945,3840] [1,2,3,4,10,18,28,80,162,280] [1,2,3,4,5,12,21,32,45,120] [1,2,3,4,5,6,14,24,36,50]
min
(:d (dup 0 <=) (pop 1) (dup d -) (*) linrec) :multifactorial
(:d 1 (dup d multifactorial print! " " print! succ) 10 times newline pop) :row
1 (dup "Degree " print! print ": " print! row succ) 5 times
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Miranda
main :: [sys_message]
main = [ Stdout (show deg ++ ": " ++ show (map (multifac deg) [1..10]) ++ "\n")
| deg <- [1..5]]
multifac :: num->num->num
multifac deg = product . takewhile (>1) . iterate sub
where sub n = n - deg
- Output:
1: [1,2,6,24,120,720,5040,40320,362880,3628800] 2: [1,2,3,8,15,48,105,384,945,3840] 3: [1,2,3,4,10,18,28,80,162,280] 4: [1,2,3,4,5,12,21,32,45,120] 5: [1,2,3,4,5,6,14,24,36,50]
МК-61/52
П1 <-> П0 П2 ИП0 ИП1 1 + - x>=0
23 ИП2 ИП0 ИП1 - * П2 ИП0 ИП1 -
П1 БП 04 ИП2 С/П
Instruction: number ^ degree В/О С/П
Nim
# Recursive
proc multifact(n, deg: int): int =
result = (if n <= deg: n else: n * multifact(n - deg, deg))
# Iterative
proc multifactI(n, deg: int): int =
result = n
var n = n
while n >= deg + 1:
result *= n - deg
n -= deg
for i in 1..5:
stdout.write "Degree ", i, ": "
for j in 1..10:
stdout.write multifactI(j, i), " "
stdout.write('\n')
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Objeck
class Multifact {
function : MultiFact(n : Int, deg : Int) ~ Int {
result := n;
while (n >= deg + 1){
result *= (n - deg);
n -= deg;
};
return result;
}
function : Main(args : String[]) ~ Nil {
for (i := 1; i <= 5; i+=1;){
IO.Console->Print("Degree ")->Print(i)->Print(": ");
for (j := 1; j <= 10; j+=1;){
IO.Console->Print(' ')->Print(MultiFact(j, i));
};
IO.Console->PrintLine();
};
}
}
Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
OCaml
let multi_fac d n =
let rec loop a x = if x < 2 then a else loop (a * x) (x - d) in
loop n (n - d)
let () =
for i = 1 to 5 do
Seq.(ints 1 |> take 10 |> map (multi_fac i) |> map string_of_int)
|> List.of_seq |> String.concat " " |> print_endline
done
- Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
Oforth
: multifact(n, deg) 1 while( n 0 > ) [ n * n deg - ->n ] ;
: printMulti
| i |
5 loop: i [ System.Out i << " : " << 10 seq map(#[ i multifact]) << cr ] ;
- Output:
1 : [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] 2 : [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] 3 : [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] 4 : [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] 5 : [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Ol
(define (multifactorial n d)
(fold * 1 (iota (div n d) n (negate d))))
(for-each (lambda (i)
(display "Degree ")
(display i)
(display ":")
(for-each (lambda (n)
(display " ")
(display (multifactorial n i)))
(iota 10 1))
(print))
(iota 5 1))
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 1 3 4 5 18 28 40 162 280 Degree 4: 1 1 1 4 5 6 7 32 45 60 Degree 5: 1 1 1 1 5 6 7 8 9 50
By the way, we can create few multifactorial functions and use them directly or as part of infix math notation (inside "//" macro).
(define (!!!!! n) (multifactorial n 5))
(print (!!!!! 74))
(import (math infix-notation))
; register !!!!! as a postfix function
(define \\postfix-functions (put \\postfix-functions '!!!!! #t))
; now use "\\" as usual
(print (\\
2 + 74!!!!!
))
- Output:
4959435223298761261056 4959435223298761261058
PARI/GP
fac(n,d)=prod(k=0,(n-1)\d,n-k*d)
for(k=1,5,for(n=1,10,print1(fac(n,k)" "));print)
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
PascalABC.NET
##
function mfac(n, m: integer) := range(n, 1, -m).aggregate(1, (p, x) -> p * x);
function mfac2(n, m: integer): integer := if n <= (m + 1) then n else n * mfac2(n - m, m);
foreach var m in (1..5) do
begin
write(#10, m, ': ');
foreach var n in (1..10) do
mfac2(n, m).Print;
end;
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50
Perl
{ # <-- scoping the cache and bigint clause
my @cache;
use bigint;
sub mfact {
my ($s, $n) = @_;
return 1 if $n <= 0;
$cache[$s][$n] //= $n * mfact($s, $n - $s);
}
}
for my $s (1 .. 10) {
print "step=$s: ";
print join(" ", map(mfact($s, $_), 1 .. 10)), "\n";
}
- Output:
step=1: 1 2 6 24 120 720 5040 40320 362880 3628800 step=2: 1 2 3 8 15 48 105 384 945 3840 step=3: 1 2 3 4 10 18 28 80 162 280 step=4: 1 2 3 4 5 12 21 32 45 120 step=5: 1 2 3 4 5 6 14 24 36 50 step=6: 1 2 3 4 5 6 7 16 27 40 step=7: 1 2 3 4 5 6 7 8 18 30 step=8: 1 2 3 4 5 6 7 8 9 20 step=9: 1 2 3 4 5 6 7 8 9 10 step=10: 1 2 3 4 5 6 7 8 9 10
We can also do this iteratively. ntheory's vecprod makes bigint products if needed, so we don't have to worry about it.
use ntheory qw/vecprod/;
sub mfac {
my($n,$d) = @_;
vecprod(map { $n - $_*$d } 0 .. int(($n-1)/$d));
}
for my $degree (1..5) {
say "$degree: ",join(" ",map{mfac($_,$degree)} 1..10);
}
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50
Phix
with javascript_semantics function multifactorial(integer n, order) atom res = 1 if n>0 then res = n*multifactorial(n-order,order) end if return res end function sequence s = repeat(0,10) for i=1 to 5 do for j=1 to 10 do s[j] = multifactorial(j,i) end for pp(s) end for
- Output:
{1,2,6,24,120,720,5040,40320,362880,3628800} {1,2,3,8,15,48,105,384,945,3840} {1,2,3,4,10,18,28,80,162,280} {1,2,3,4,5,12,21,32,45,120} {1,2,3,4,5,6,14,24,36,50}
Picat
Using prod/1
multifactorial(N,Degree) = prod([ I : I in N..-Degree..1]).
Using reduce/2
multifactorial2(N,Degree) = reduce(*, [I : I in N..-Degree..1]).
While loop
multifactorial3(N,Degree) = M =>
M = 1, I = N,
while(I > 0)
M := M*I,
I := I - Degree
end.
Recursive variants
multifactorial4(N,_D) = 1, N <= 0 => true.
multifactorial4(N,D) = N*multifactorial4(N-D,D).
multifactorial5(N,D) = M =>
N <= 0 -> M = 1 ; M = N*multifactorial4(N-D,D).
multifactorial6(N,D) = cond(N <= 0, 1, N*multifactorial6(N-D,D)).
Test
import util.
go =>
foreach(D in 1..15)
println(D=[multifactorial(I,D) : I in 1..15])
end,
nl.
- Output:
1 = [1,2,6,24,120,720,5040,40320,362880,3628800,39916800,479001600,6227020800,87178291200,1307674368000] 2 = [1,2,3,8,15,48,105,384,945,3840,10395,46080,135135,645120,2027025] 3 = [1,2,3,4,10,18,28,80,162,280,880,1944,3640,12320,29160] 4 = [1,2,3,4,5,12,21,32,45,120,231,384,585,1680,3465] 5 = [1,2,3,4,5,6,14,24,36,50,66,168,312,504,750] 6 = [1,2,3,4,5,6,7,16,27,40,55,72,91,224,405] 7 = [1,2,3,4,5,6,7,8,18,30,44,60,78,98,120] 8 = [1,2,3,4,5,6,7,8,9,20,33,48,65,84,105] 9 = [1,2,3,4,5,6,7,8,9,10,22,36,52,70,90] 10 = [1,2,3,4,5,6,7,8,9,10,11,24,39,56,75] 11 = [1,2,3,4,5,6,7,8,9,10,11,12,26,42,60] 12 = [1,2,3,4,5,6,7,8,9,10,11,12,13,28,45] 13 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,30] 14 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 15 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
Constraint modelling
Using constraint modelling for a reversible variant (i.e. all parameters can be inputs or outputs); here shown by identifying all the valid N and the degree given the multifactorial (M).
import cp.
%
% Reversible: find Degree and N given M
%
go2 =>
Ms = [4,20,105], % The multifactorials to identify
foreach(M in Ms)
println(m=M),
Degree :: 1..10, % limit of the degree
N :: 1..100, % limit of N
All = findall([N,Degree,M], (multifactorial_reversible(N,Degree,M),
solve([M,N,Degree]))),
foreach([NN,DD,MM] in All.sort)
printf("n=%d degree=%d m=%d\n",NN,DD,MM)
end,
nl
end,
nl.
% reversible variant (using CP)
multifactorial_reversible(N,_D,M) :-
N #<= 0, M #= 1.
multifactorial_reversible(N,D,M) :-
D #> 0,
N #> 0,
ND #= N-D,
multifactorial_reversible(ND,D,M1),
M #= N*M1.
- Output:
Reversible: find Degree and N given M: m = 4 n=4 degree=3 m=4 n=4 degree=4 m=4 n=4 degree=5 m=4 n=4 degree=6 m=4 n=4 degree=7 m=4 n=4 degree=8 m=4 n=4 degree=9 m=4 n=4 degree=10 m=4 m = 20 n=10 degree=8 m=20 m = 105 n=7 degree=2 m=105 n=15 degree=8 m=105
PicoLisp
(de multifact (N Deg)
(let Res N
(while (> N Deg)
(setq Res (* Res (dec 'N Deg))) )
Res ) )
(for I 5
(prin "Degree " I ":")
(for J 10
(prin " " (multifact J I)) )
(prinl) )
Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
PL/I
multi: procedure options (main); /* 29 October 2013 */
declare (i, j, n) fixed binary;
declare text character (6) static initial ('n!!!!!');
do i = 1 to 5;
put skip edit (substr(text, 1, i+1), '=' ) (A, COLUMN(8));
do n = 1 to 10;
put edit ( trim( multifactorial(n,i) ) ) (X(1), A);
end;
end;
multifactorial: procedure (n, j) returns (fixed(15));
declare (n, j) fixed binary;
declare f fixed (15), m fixed(15);
f, m = n;
do while (m > j); f = f * (m-fixed(j)); m = m - j; end;
return (f);
end multifactorial;
end multi;
Output:
n! = 1 2 6 24 120 720 5040 40320 362880 3628800 n!! = 1 2 3 8 15 48 105 384 945 3840 n!!! = 1 2 3 4 10 18 28 80 162 280 n!!!! = 1 2 3 4 5 12 21 32 45 120 n!!!!! = 1 2 3 4 5 6 14 24 36 50
Plain TeX
Works with an etex engine.
\long\def\antefi#1#2\fi{#2\fi#1}
\def\fornum#1=#2to#3(#4){%
\edef#1{\number\numexpr#2}\edef\fornumtemp{\noexpand\fornumi\expandafter\noexpand\csname fornum\string#1\endcsname
{\number\numexpr#3}{\ifnum\numexpr#4<0 <\else>\fi}{\number\numexpr#4}\noexpand#1}\fornumtemp
}
\long\def\fornumi#1#2#3#4#5#6{\def#1{\unless\ifnum#5#3#2\relax\antefi{#6\edef#5{\number\numexpr#5+(#4)\relax}#1}\fi}#1}
\newcount\result
\def\multifact#1#2{%
\result=1
\fornum\multifactiter=#1 to 1(-#2){\multiply\result\multifactiter}%
\number\result
}
\fornum\degree=1 to 5(+1){Degree \degree: \fornum\ii=1 to 10(+1){\multifact\ii\degree\space\space}\par}
\bye
Output pdf looks like:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Python
Python: Iterative
>>> from functools import reduce
>>> from operator import mul
>>> def mfac(n, m): return reduce(mul, range(n, 0, -m))
>>> for m in range(1, 11): print("%2i: %r" % (m, [mfac(n, m) for n in range(1, 11)]))
1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
6: [1, 2, 3, 4, 5, 6, 7, 16, 27, 40]
7: [1, 2, 3, 4, 5, 6, 7, 8, 18, 30]
8: [1, 2, 3, 4, 5, 6, 7, 8, 9, 20]
9: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
10: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>>
Python: Recursive
>>> def mfac2(n, m): return n if n <= (m + 1) else n * mfac2(n - m, m)
>>> for m in range(1, 6): print("%2i: %r" % (m, [mfac2(n, m) for n in range(1, 11)]))
1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840]
3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280]
4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120]
5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
>>>
Quackery
[ 1 rot times
[ i 1+ *
dip [ over step ] ]
nip ] is m! ( n --> n! )
5 times
[ i^ 1+ 10 times
[ i^ 1+ over m!
echo sp ]
drop cr ]
- Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
R
Recursive solution
#x is Input
#n is Factorial Number
multifactorial=function(x,n){
if(x<=n+1){
return(x)
}else{
return(x*multifactorial(x-n,n))
}
}
Sequence solution
This task doesn't use big enough numbers to need efficient code, so R can solve this very succinctly.
mFact <- function(n, deg) prod(seq(from = n, to = 1, by = -deg))
cat("Simple version:\n")
print(outer(1:10, 1:5, Vectorize(mFact)))
If we really insist on a pretty table, then we can add some names and transpose the output.
mFact <- function(n, deg) prod(seq(from = n, to = 1, by = -deg))
cat("Pretty version:\n")
print(t(outer(setNames(1:10, 1:10), setNames(1:5, paste0("Degree ", 1:5, ":")), Vectorize(mFact))))
- Output:
Simple version: [,1] [,2] [,3] [,4] [,5] [1,] 1 1 1 1 1 [2,] 2 2 2 2 2 [3,] 6 3 3 3 3 [4,] 24 8 4 4 4 [5,] 120 15 10 5 5 [6,] 720 48 18 12 6 [7,] 5040 105 28 21 14 [8,] 40320 384 80 32 24 [9,] 362880 945 162 45 36 [10,] 3628800 3840 280 120 50 Pretty version: 1 2 3 4 5 6 7 8 9 10 Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Racket
#lang racket
(define (multi-factorial-fn m)
(lambda (n)
(let inner ((acc 1) (n n))
(if (<= n m) (* acc n)
(inner (* acc n) (- n m))))))
;; using (multi-factorial-fn m) as a first-class function
(for*/list ([m (in-range 1 (add1 5))] [mf-m (in-value (multi-factorial-fn m))])
(for/list ([n (in-range 1 (add1 10))])
(mf-m n)))
(define (multi-factorial m n) ((multi-factorial-fn m) n))
(for/list ([m (in-range 1 (add1 5))])
(for/list ([n (in-range 1 (add1 10))])
(multi-factorial m n)))
Output:
'((1 2 6 24 120 720 5040 40320 362880 3628800) (1 2 3 8 15 48 105 384 945 3840) (1 2 3 4 10 18 28 80 162 280) (1 2 3 4 5 12 21 32 45 120) (1 2 3 4 5 6 14 24 36 50)) '((1 2 6 24 120 720 5040 40320 362880 3628800) (1 2 3 8 15 48 105 384 945 3840) (1 2 3 4 10 18 28 80 162 280) (1 2 3 4 5 12 21 32 45 120) (1 2 3 4 5 6 14 24 36 50))
Raku
(formerly Perl 6)
for 1 .. 5 -> $degree {
sub mfact($n) { [*] $n, *-$degree ...^ * <= 0 };
say "$degree: ", map &mfact, 1..10
}
- Output:
1: 1 2 6 24 120 720 5040 40320 362880 3628800 2: 1 2 3 8 15 48 105 384 945 3840 3: 1 2 3 4 10 18 28 80 162 280 4: 1 2 3 4 5 12 21 32 45 120 5: 1 2 3 4 5 6 14 24 36 50
REXX
This version also handles zero as well as positive integers.
/*REXX program calculates and displays K-fact (multifactorial) of non-negative integers.*/
numeric digits 1000 /*get ka-razy with the decimal digits. */
parse arg num deg . /*get optional arguments from the C.L. */
if num=='' | num=="," then num=15 /*Not specified? Then use the default.*/
if deg=='' | deg=="," then deg=10 /* " " " " " " */
say '═══showing multiple factorials (1 ──►' deg") for numbers 1 ──►" num
say
do d=1 for deg /*the factorializing (degree) of !'s.*/
_= /*the list of factorials (so far). */
do f=1 for num /* ◄── perform a ! from 1 ───► number.*/
_=_ Kfact(f, d) /*build a list of factorial products.*/
end /*f*/ /* [↑] D can default to unity. */
say right('n'copies("!", d), 1+deg) right('['d"]", 2+length(num) )':' _
end /*d*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
Kfact: procedure; !=1; do j=arg(1) to 2 by -word(arg(2) 1,1); !=!*j; end; return !
output when using the default input:
═══showing multiple factorials (1 ──► 10) for numbers 1 ──► 15 n! [1]: 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000 n!! [2]: 1 2 3 8 15 48 105 384 945 3840 10395 46080 135135 645120 2027025 n!!! [3]: 1 2 3 4 10 18 28 80 162 280 880 1944 3640 12320 29160 n!!!! [4]: 1 2 3 4 5 12 21 32 45 120 231 384 585 1680 3465 n!!!!! [5]: 1 2 3 4 5 6 14 24 36 50 66 168 312 504 750 n!!!!!! [6]: 1 2 3 4 5 6 7 16 27 40 55 72 91 224 405 n!!!!!!! [7]: 1 2 3 4 5 6 7 8 18 30 44 60 78 98 120 n!!!!!!!! [8]: 1 2 3 4 5 6 7 8 9 20 33 48 65 84 105 n!!!!!!!!! [9]: 1 2 3 4 5 6 7 8 9 10 22 36 52 70 90 n!!!!!!!!!! [10]: 1 2 3 4 5 6 7 8 9 10 11 24 39 56 75
Ring
see "Degree " + "|" + " Multifactorials 1 to 10" + nl
see copy("-", 52) + nl
for d = 1 to 5
see "" + d + " " + "| "
for n = 1 to 10
see "" + multiFact(n, d) + " "
next
see nl
next
func multiFact n, degree
fact = 1
for i = n to 2 step -degree
fact = fact * i
next
return fact
Output:
Degree | Multifactorials 1 to 10 ---------------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50
RPL
Recursivity is the simplest way to implement the task in RPL.
Recursive
≪ IF DUP2 > THEN DUP2 - SWAP NFACT * ELSE DROP END ≫ 'NFACT' STO
Iterative
≪ OVER WHILE DUP2 < REPEAT OVER - DUP 4 ROLL * ROT ROT END DROP2 ≫ 'NFACT' STO
≪ 1 5 FOR p { } 1 10 FOR n n p NFACT + NEXT NEXT ≫ EVAL
- Output:
5: { 1 2 6 24 120 720 5040 40320 362880 3628800 } 4: { 1 2 3 8 15 48 105 384 945 3840 } 3: { 1 2 3 4 10 18 28 80 162 280 } 2: { 1 2 3 4 5 12 21 32 45 120 } 1: { 1 2 3 4 5 6 14 24 36 50 }
Ruby
def multifact(n, d)
n.step(1, -d).inject( :* )
end
(1..5).each {|d| puts "Degree #{d}: #{(1..10).map{|n| multifact(n, d)}.join "\t"}"}
output
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Run BASIC
print "Degree " + "|" + " Multifactorials 1 to 10" + nl
print copy("-", 52) + nl
for d = 1 to 5
print "" + d + " " + "| "
for n = 1 to 10
print "" + multiFact(n, d) + " ";
next
print
next
function multiFact(n,degree)
fact = 1
for i = n to 2 step -degree
fact = fact * i
next
multiFact = fact
end function
Degree | Multifactorials 1 to 10 --------|--------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50
Rust
fn multifactorial(n: i32, deg: i32) -> i32 {
if n < 1 {
1
} else {
n * multifactorial(n - deg, deg)
}
}
fn main() {
for i in 1..6 {
for j in 1..11 {
print!("{} ", multifactorial(j, i));
}
println!("");
}
}
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
Scala
def multiFact(n : BigInt, degree : BigInt) = (n to 1 by -degree).product
for{
degree <- 1 to 5
str = (1 to 10).map(n => multiFact(n, degree)).mkString(" ")
} println(s"Degree $degree: $str")
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Scheme
(import (scheme base)
(scheme write)
(srfi 1))
(define (multi-factorial n m)
(fold * 1 (iota (ceiling (/ n m)) n (- m))))
(for-each
(lambda (degree)
(display (string-append "degree "
(number->string degree)
": "))
(for-each
(lambda (num)
(display (string-append (number->string (multi-factorial num degree))
" ")))
(iota 10 1))
(newline))
(iota 5 1))
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
Seed7
$ include "seed7_05.s7i";
const func integer: multiFact (in var integer: num, in integer: degree) is func
result
var integer: multiFact is 1;
begin
while num > 1 do
multiFact *:= num;
num -:= degree;
end while;
end func;
const proc: main is func
local
var integer: degree is 0;
var integer: num is 0;
begin
for degree range 1 to 5 do
write("Degree " <& degree <& ": ");
for num range 1 to 10 do
write(multiFact(num, degree) <& " ");
end for;
writeln;
end for;
end func;
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
SETL
program multifactorial;
loop for d in [1..5] do
print(d, ":", [multifac(n, d) : n in [1..10]]);
end loop;
proc multifac(n, d);
return */{n, (n-d)..1};
end proc;
end program;
- Output:
1 : [1 2 6 24 120 720 5040 40320 362880 3628800] 2 : [1 2 3 8 15 48 105 384 945 3840] 3 : [1 2 3 4 10 18 28 80 162 280] 4 : [1 2 3 4 5 12 21 32 45 120] 5 : [1 2 3 4 5 6 14 24 36 50]
Sidef
func mfact(s, n) {
n > 0 ? (n * mfact(s, n-s)) : 1
}
{ |s|
say "step=#{s}: #{{|n| mfact(s, n)}.map(1..10).join(' ')}"
} << 1..10
- Output:
step=1: 1 2 6 24 120 720 5040 40320 362880 3628800 step=2: 1 2 3 8 15 48 105 384 945 3840 step=3: 1 2 3 4 10 18 28 80 162 280 step=4: 1 2 3 4 5 12 21 32 45 120 step=5: 1 2 3 4 5 6 14 24 36 50 step=6: 1 2 3 4 5 6 7 16 27 40 step=7: 1 2 3 4 5 6 7 8 18 30 step=8: 1 2 3 4 5 6 7 8 9 20 step=9: 1 2 3 4 5 6 7 8 9 10 step=10: 1 2 3 4 5 6 7 8 9 10
Swift
func multiFactorial(_ n: Int, k: Int) -> Int {
return stride(from: n, to: 0, by: -k).reduce(1, *)
}
let multis = (1...5).map({degree in
(1...10).map({member in
multiFactorial(member, k: degree)
})
})
for (i, degree) in multis.enumerated() {
print("Degree \(i + 1): \(degree)")
}
- Output:
Degree 1: [1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800] Degree 2: [1, 2, 3, 8, 15, 48, 105, 384, 945, 3840] Degree 3: [1, 2, 3, 4, 10, 18, 28, 80, 162, 280] Degree 4: [1, 2, 3, 4, 5, 12, 21, 32, 45, 120] Degree 5: [1, 2, 3, 4, 5, 6, 14, 24, 36, 50]
Tcl
package require Tcl 8.6
proc mfact {n m} {
set mm [expr {-$m}]
for {set r $n} {[incr n $mm] > 1} {set r [expr {$r * $n}]} {}
return $r
}
foreach n {1 2 3 4 5 6 7 8 9 10} {
puts $n:[join [lmap m {1 2 3 4 5 6 7 8 9 10} {mfact $m $n}] ,]
}
- Output:
1:1,2,6,24,120,720,5040,40320,362880,3628800 2:1,2,3,8,15,48,105,384,945,3840 3:1,2,3,4,10,18,28,80,162,280 4:1,2,3,4,5,12,21,32,45,120 5:1,2,3,4,5,6,14,24,36,50 6:1,2,3,4,5,6,7,16,27,40 7:1,2,3,4,5,6,7,8,18,30 8:1,2,3,4,5,6,7,8,9,20 9:1,2,3,4,5,6,7,8,9,10 10:1,2,3,4,5,6,7,8,9,10
uBasic/4tH
print "Degree | Multifactorials 1 to 10"
for x = 1 to 53 : print "-"; : next : print
for d = 1 to 5
print d;" ";"| ";
for n = 1 to 10
print FUNC(_multiFact(n, d));" ";
next
print
next
end
_multiFact param (2)
local (2)
c@ = 1
for d@ = a@ to 2 step -b@
c@ = c@ * d@
next
return (c@)
- Output:
Degree | Multifactorials 1 to 10 ----------------------------------------------------- 1 | 1 2 6 24 120 720 5040 40320 362880 3628800 2 | 1 2 3 8 15 48 105 384 945 3840 3 | 1 2 3 4 10 18 28 80 162 280 4 | 1 2 3 4 5 12 21 32 45 120 5 | 1 2 3 4 5 6 14 24 36 50 0 OK, 0:1063
VBScript
Function multifactorial(n,d)
If n = 0 Then
multifactorial = 1
Else
For i = n To 1 Step -d
If i = n Then
multifactorial = n
Else
multifactorial = multifactorial * i
End If
Next
End If
End Function
For j = 1 To 5
WScript.StdOut.Write "Degree " & j & ": "
For k = 1 To 10
If k = 10 Then
WScript.StdOut.Write multifactorial(k,j)
Else
WScript.StdOut.Write multifactorial(k,j) & " "
End If
Next
WScript.StdOut.WriteLine
Next
- Output:
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Wortel
@let {
facd &[d n]?{<= n d n @prod@range[n 1 @-d]}
; tacit implementation
facdt ^(!?(/^> .1 ^(@prod @range ~1jdtShj &^!(@- @id))) @,)
; recursive
facdrec &[n d] ?{<= n d n *n !!facdrec -n d d}
; output
l @to 10
~@each @to 5 &n !console.log "Degree {n}: {@join @s !*\facd n l}"
}
Output
Degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 Degree 2: 1 2 3 8 15 48 105 384 945 3840 Degree 3: 1 2 3 4 10 18 28 80 162 280 Degree 4: 1 2 3 4 5 12 21 32 45 120 Degree 5: 1 2 3 4 5 6 14 24 36 50
Wren
import "./fmt" for Fmt
var mf = Fn.new { |n, d|
var prod = 1
while (n > 1) {
prod = prod * n
n = n - d
}
return prod
}
for (d in 1..5) {
System.write("degree %(d): ")
for (n in 1..10) System.write(Fmt.d(8, mf.call(n, d)))
System.print()
}
- Output:
degree 1: 1 2 6 24 120 720 5040 40320 362880 3628800 degree 2: 1 2 3 8 15 48 105 384 945 3840 degree 3: 1 2 3 4 10 18 28 80 162 280 degree 4: 1 2 3 4 5 12 21 32 45 120 degree 5: 1 2 3 4 5 6 14 24 36 50
XPL0
code ChOut=8, CrLf=9, IntOut=11;
func MultiFac(N, D); \Return multifactorial of N in degree D
int N, D;
int F;
[F:= 1;
repeat F:= F*N;
N:= N-D;
until N <= 1;
return F;
];
int I, J; \generate table of multifactorials
for J:= 1 to 5 do
[for I:= 1 to 10 do
[IntOut(0, MultiFac(I, J)); ChOut(0, 9\tab\)];
CrLf(0);
]
- Output:
1 2 6 24 120 720 5040 40320 362880 3628800 1 2 3 8 15 48 105 384 945 3840 1 2 3 4 10 18 28 80 162 280 1 2 3 4 5 12 21 32 45 120 1 2 3 4 5 6 14 24 36 50
zkl
fcn mfact(n,m){ [n..1,-m].reduce('*,1) }
foreach m in ([1..5]){ println("%d: %s".fmt(m,[1..10].apply(mfact.fp1(m)))) }
- Output:
1: L(1,2,6,24,120,720,5040,40320,362880,3628800) 2: L(1,2,3,8,15,48,105,384,945,3840) 3: L(1,2,3,4,10,18,28,80,162,280) 4: L(1,2,3,4,5,12,21,32,45,120) 5: L(1,2,3,4,5,6,14,24,36,50)
- Programming Tasks
- Solutions by Programming Task
- 11l
- 360 Assembly
- Action!
- Action! Tool Kit
- Ada
- Aime
- ALGOL 68
- ALGOL W
- AppleScript
- Arturo
- AutoHotkey
- AWK
- BASIC
- ANSI BASIC
- BBC BASIC
- IS-BASIC
- BQN
- C
- C Runtime
- C sharp
- C++
- Clojure
- CLU
- Common Lisp
- Cowgol
- Crystal
- D
- Dart
- Draco
- Delphi
- SysUtils,StdCtrls
- EasyLang
- Elixir
- Erlang
- ERRE
- F Sharp
- Factor
- Forth
- Fortran
- FreeBASIC
- FunL
- GAP
- Go
- Haskell
- Unicon
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lambdatalk
- Latitude
- Lua
- MAD
- Maple
- Mathematica
- Wolfram Language
- Maxima
- Min
- Miranda
- МК-61/52
- Nim
- Objeck
- OCaml
- Oforth
- Ol
- PARI/GP
- PascalABC.NET
- Perl
- Ntheory
- Phix
- Picat
- PicoLisp
- PL/I
- PlainTeX
- Python
- Quackery
- R
- Racket
- Raku
- REXX
- Ring
- RPL
- Ruby
- Run BASIC
- Rust
- Scala
- Scheme
- Seed7
- SETL
- Sidef
- Swift
- Tcl
- UBasic/4tH
- VBScript
- Wortel
- Wren
- Wren-fmt
- XPL0
- Zkl