Langton's ant
You are encouraged to solve this task according to the task description, using any language you may know.
Langton's ant is a cellular automaton that models an ant sitting on a plane of cells, all of which are white initially, the ant facing in one of four directions.
Each cell can either be black or white.
The ant moves according to the color of the cell it is currently sitting in, with the following rules:
- If the cell is black, it changes to white and the ant turns left;
- If the cell is white, it changes to black and the ant turns right;
- The ant then moves forward to the next cell, and repeat from step 1.
This rather simple ruleset leads to an initially chaotic movement pattern, and after about 10000 steps, a cycle appears where the ant moves steadily away from the starting location in a diagonal corridor about 10 cells wide.
Conceptually the ant can then walk infinitely far away.
- Task
Start the ant near the center of a 100x100 field of cells, which is about big enough to contain the initial chaotic part of the movement.
Follow the movement rules for the ant, terminate when it moves out of the region, and show the cell colors it leaves behind.
The problem has received some analysis; for more details, please take a look at the Wikipedia article (a link is below)..
- See also
- Wikipedia: Langton's ant.
- Related task
11l
T.enum Dir
UP
RIGHT
DOWN
LEFT
-V color_WHITE = Char(‘ ’)
-V color_BLACK = Char(‘#’)
F invert_color(&grid, x, y)
‘Invert the color of grid at x, y coordinate.’
I grid[y][x] == :color_BLACK
grid[y][x] = :color_WHITE
E
grid[y][x] = :color_BLACK
F next_direction(grid, x, y, =direction)
‘Compute next direction according to current position and direction.’
V turn_right = grid[y][x] != :color_BLACK
V direction_index = Int(direction)
I turn_right
direction_index = (direction_index + 1) % 4
E
direction_index = (direction_index + 4 - 1) % 4
V directions = [Dir.UP, Dir.RIGHT, Dir.DOWN, Dir.LEFT]
direction = directions[direction_index]
R direction
F next_position(=x, =y, direction)
‘Compute next position according to direction.’
I direction == UP
y--
E I direction == RIGHT
x--
E I direction == DOWN
y++
E I direction == LEFT
x++
R (x, y)
F print_grid(grid)
‘Display grid.’
print(80 * ‘#’)
print(grid.map(row -> row.join(‘’)).join("\n"))
F ant(width, height, max_nb_steps)
‘Langton's ant.’
V grid = [[:color_WHITE] * width] * height
V x = width I/ 2
V y = height I/ 2
V direction = Dir.UP
V i = 0
L i < max_nb_steps & x C 0 .< width & y C 0 .< height
invert_color(&grid, x, y)
direction = next_direction(grid, x, y, direction)
(x, y) = next_position(x, y, direction)
i++
print_grid(grid)
ant(width' 75, height' 52, max_nb_steps' 12000)
- Output:
################################################################################ ## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # ## # # # # # # ## ## ## #### ## # ## ## # ## ## # # ### # # # # # ## #### #### ### #### #### ## ## #### ## # ## # # # # ## # ## ## ## ### ## ##### #### # ## # #### ## ## ## ## ## # ## #### # # # ### ### # ## # # # ## ## ##
Action!
DEFINE DIRN="0"
DEFINE DIRE="1"
DEFINE DIRS="2"
DEFINE DIRW="3"
DEFINE BLACK="1"
DEFINE WHITE="2"
DEFINE MAXX="159"
DEFINE MAXY="95"
BYTE FUNC TurnLeft(BYTE dir)
IF dir=DIRN THEN
RETURN (DIRW)
FI
RETURN (dir-1)
BYTE FUNC TurnRight(BYTE dir)
IF dir=DIRW THEN
RETURN (DIRN)
FI
RETURN (dir+1)
PROC DrawAnt(INT x,y)
BYTE c,dir
dir=DIRN
DO
c=Locate(x,y)
IF c=BLACK THEN
Color=WHITE
Plot(x,y)
dir=TurnLeft(dir)
ELSE
Color=BLACK
Plot(x,y)
dir=TurnRight(dir)
FI
IF dir=DIRN THEN
y==-1
IF y<0 THEN EXIT FI
ELSEIF dir=DIRE THEN
x==+1
IF X>MAXX THEN EXIT FI
ELSEIF dir=DIRS THEN
y==+1
IF Y>MAXY THEN EXIT FI
ELSE
x==-1
IF x<0 THEN EXIT FI
FI
OD
RETURN
PROC Main()
BYTE CH=$02FC
BYTE y
Graphics(7+16)
SetColor(0,0,2)
SetColor(1,0,12)
Color=2
FOR y=0 TO MAXY
DO
Plot(0,y) DrawTo(MAXX,y)
OD
DrawAnt(80,48)
DO UNTIL CH#$FF OD
CH=$FF
RETURN
- Output:
Screenshot from Atari 8-bit computer
Ada
with Ada.Text_IO;
procedure Langtons_Ant is
Size: constant Positive := 100; -- change this to extend the playground
subtype Step is Integer range -1 .. +1;
procedure Right(N, W: in out Step) is
Tmp: Step := W;
begin
W := - N;
N := Tmp;
end Right;
procedure Left(N, W: in out Step) is
begin
for I in 1 .. 3 loop
Right(N, W);
end loop;
end Left;
Color_Character: array(Boolean) of Character :=
(False => ' ', True => '#');
Is_Black: array (1 .. Size, 1 .. Size) of Boolean :=
(others => (others => False)); -- initially, the world is white;
Ant_X, Ant_Y: Natural := Size/2; -- Position of Ant;
Ant_North: Step := 1; Ant_West: Step := 0; -- initially, Ant looks northward
Iteration: Positive := 1;
begin
loop -- iterate the loop until an exception is raised
if Is_Black(Ant_X, Ant_Y) then
Left(Ant_North, Ant_West);
else
Right(Ant_North, Ant_West);
end if;
Is_Black(Ant_X, Ant_Y) := not Is_Black(Ant_X, Ant_Y);
Ant_X := Ant_X - Ant_North; -- this may raise an exception
Ant_Y := Ant_Y - Ant_West; -- this may raise an exception
Iteration := Iteration + 1;
end loop;
exception
when Constraint_Error => -- Ant has left its playground ... now output
for X in 1 .. Size loop
for Y in 1 .. Size loop
Ada.Text_IO.Put(Color_Character(Is_Black(X, Y)));
end loop;
Ada.Text_IO.New_Line;
end loop;
Ada.Text_IO.Put_Line("# Iteration:" & Integer'Image(Iteration));
end Langtons_Ant;
Ouptut (to save space, I have removed the all-blank lines):
## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # # ### # # # # # # ## ## ## #### ### # ## ## # ## ## # # ### # ### # # # ## #### #### ### #### ### # ## ## #### ## # ## # # # # ### # # ## ## ## ### ## ##### ### # ## # ## # #### # ### # # ## ## ## ### # ## ## # ### # # # ## #### # ### # ## # # ### ### # ### # # # ## # # # ### # ## ## ## ## # # ## ## # ## # # # # #### ## # ## # #### ## # Iteration: 11656
Aime
void
ant(integer x, y, d, list map)
{
while (-1 < x && x < 100 && -1 < y && y < 100) {
integer e, p, w;
data b;
b = map[y];
w = b[x >> 3];
p = 1 << (7 - (x & 7));
b[x >> 3] = w ^ p;
d += w & p ? 1 : 3;
e = d & 1;
set(e, $e + ((d & 2) - 1) * (2 * e - 1));
}
}
integer
main(void)
{
file f;
list l;
call_n(100, lb_p_data, l, data().run(13, 0));
ant(50, 50, 2, l);
f.create("ant.pbm", 00644).text("P4\n100 100\n");
l.ucall(f_data, 1, f);
0;
}
ALGOL 68
BEGIN
# size of board for Langton's ant #
INT max board = 100;
[ 1 : max board, 1 : max board ]CHAR board;
# start with the board all white #
CHAR white = " ", black = "#";
FOR r TO 1 UPB board DO FOR c TO 2 UPB board DO board[ r, c ] := white OD OD;
# possible ant directions #
INT head left = 0, head up = 1, head right = 2, head down = 3;
# returns the new direction if we turn left from curr direction #
OP LEFT = ( INT curr direction )INT:
IF curr direction = head left THEN head down
ELIF curr direction = head down THEN head right
ELIF curr direction = head right THEN head up
ELSE head left
FI ; # LEFT #
# returns the new direction if we turn right from curr direction #
OP RIGHT = ( INT curr direction )INT:
IF curr direction = head left THEN head up
ELIF curr direction = head up THEN head right
ELIF curr direction = head right THEN head down
ELSE head left
FI ; # RIGHT #
# move the ant until it leaves the board #
INT ant row := max board OVER 2;
INT ant col := max board OVER 2;
INT ant direction := head up;
INT max row := 1;
INT max col := 1;
INT min row := max board;
INT min col := max board;
INT moves := 0;
WHILE ant row >= 1 LWB board AND ant row <= 1 UPB board
AND ant col >= 2 LWB board AND ant col <= 2 UPB board
DO
moves +:= 1;
IF ant row > max row THEN max row := ant row FI;
IF ant col > max col THEN max col := ant col FI;
IF ant row < min row THEN min row := ant row FI;
IF ant col < min col THEN min col := ant col FI;
IF board[ ant row, ant col ] = white THEN
# ant turns right on a white square #
ant direction := RIGHT ant direction;
board[ ant row, ant col ] := black
ELSE
# ant turns left on a black square #
ant direction := LEFT ant direction;
board[ ant row, ant col ] := white
FI;
# move the ant #
IF ant direction = head up THEN ant row -:= 1
ELIF ant direction = head down THEN ant row +:= 1
ELIF ant direction = head left THEN ant col -:= 1
ELSE # ant direction = head right # ant col +:= 1
FI
OD;
# show resultant position #
print( ( "After ", whole( moves, 0 ), " moves."
, " Showing rows ", whole( min row,0 ), " to ", whole( max row, 0 )
, " columns ", whole( min col,0 ), " to ", whole( max col, 0 )
, newline
)
);
FOR r FROM min row TO max row DO
print( ( board[ r, min col : max col ], newline ) )
OD
END
- Output:
After 11655 moves. Showing rows 28 to 78 columns 1 to 79 ## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # # ### # # # # # # ## ## ## #### ### # ## ## # ## ## # # ### # ### # # # ## #### #### ### #### ### # ## ## #### ## # ## # # # # ### # # ## ## ## ### ## ##### ### # ## # ## # #### # ### # # ## ## ## ### # ## ## # ### # # # ## #### # ### # ## # # ### ### # ### # # # ## # # # ### # ## ## ## ## # # ## ## # ## # # # # #### ## # ## # #### ##
APL
⍝ initialize a Langton's Ant setup with a grid of size left x right (square by default)
langton ← {
⍝ If rows not specified, set equal to columns
⍺ ← ⍵
⍝ 0=white, 1=black. Start with all white
grid ← ⍺ ⍵ ⍴ 0
⍝ Start the ant in the middle
ant ← 2 ÷⍨ ⍺ ⍵
⍝ Aimed in a random direction
dir ← ?4
⍝ return everything in a tuple
grid ant dir
}
⍝ iterate one step: takes and returns state as created by langton function
step ← {
grid ant dir ← ⍵
⍝ Turn left or right based on grid cell
dir ← 1 + 4|dir+2×grid[⊂ant]
⍝ Toggle cell color
grid[⊂ant] ← 1 - grid[⊂ant]
⍝ Advance along dir. Since coordinates are matrix order (row,col),
⍝ up is -1 0, right is 0 1, down is 1 0, and left is 0 -1
ant +← (4 2 ⍴ ¯1 0, 0 1, 1 0, 0 ¯1)[dir;]
grid ant dir
}
⍝ to watch it run, open the variable pic in the monitor before executing this step
{} { state ∘← ⍵ ⋄ pic ∘← '.⌺'[1+⊃1⌷⍵] ⋄ _←⎕dl ÷200 ⋄ step ⍵} ⍣≡ langton 100
- Output:
The final contents of pic (eliding trailing blank lines)
.......................⌺⌺.⌺.⌺....................................................................... ......................⌺.⌺⌺⌺.⌺⌺...................................................................... .....................⌺⌺⌺⌺...⌺.⌺..................................................................... .....................⌺⌺⌺⌺⌺.⌺..⌺⌺.................................................................... ......................⌺...⌺⌺.⌺⌺.⌺................................................................... .......................⌺⌺⌺...⌺..⌺⌺.................................................................. ........................⌺...⌺⌺.⌺⌺.⌺................................................................. .........................⌺⌺⌺...⌺..⌺⌺................................................................ ..........................⌺...⌺⌺.⌺⌺.⌺............................................................... ...........................⌺⌺⌺...⌺..⌺⌺.............................................................. ............................⌺...⌺⌺.⌺⌺.⌺............................................................. .............................⌺⌺⌺...⌺..⌺⌺............................................................ ..............................⌺...⌺⌺.⌺⌺.⌺........................................................... ...............................⌺⌺⌺...⌺..⌺⌺.......................................................... ................................⌺...⌺⌺.⌺⌺.⌺......................................................... .................................⌺⌺⌺...⌺..⌺⌺........................................................ ..................................⌺...⌺⌺.⌺⌺.⌺....................................................... ...................................⌺⌺⌺...⌺..⌺⌺...................................................... ....................................⌺...⌺⌺.⌺⌺.⌺..................................................... .....................................⌺⌺⌺...⌺..⌺⌺.................................................... ......................................⌺...⌺⌺.⌺⌺.⌺................................................... .......................................⌺⌺⌺...⌺..⌺⌺.................................................. ........................................⌺...⌺⌺.⌺⌺.⌺................................................. .........................................⌺⌺⌺...⌺..⌺⌺................................................ ..........................................⌺...⌺⌺.⌺⌺.⌺............................................... ...........................................⌺⌺⌺...⌺..⌺⌺.............................................. ............................................⌺...⌺⌺.⌺⌺.⌺............................................. .............................................⌺⌺⌺...⌺..⌺⌺............................................ ..............................................⌺...⌺⌺.⌺⌺.⌺........................................... ...............................................⌺⌺⌺...⌺..⌺⌺.......................................... ................................................⌺...⌺⌺.⌺⌺.⌺..⌺⌺..................................... .................................................⌺⌺⌺...⌺..⌺⌺..⌺⌺.................................... ..................................................⌺...⌺⌺.⌺⌺..⌺⌺...⌺................................. ............................................⌺⌺⌺⌺...⌺⌺⌺...⌺...⌺..⌺⌺⌺................................. ...........................................⌺....⌺...⌺...⌺⌺.⌺⌺⌺⌺...⌺................................. ..........................................⌺⌺⌺....⌺...⌺.⌺......⌺.⌺⌺.⌺................................ ..........................................⌺⌺⌺....⌺.⌺⌺.....⌺.⌺⌺..⌺.⌺⌺................................ ...........................................⌺....⌺...⌺⌺.⌺.⌺.....⌺⌺................................... ...........................................⌺.⌺......⌺.⌺⌺⌺⌺⌺..⌺...⌺.................................. ..........................................⌺...⌺⌺⌺⌺⌺..........⌺⌺.⌺⌺⌺⌺⌺⌺.............................. ..........................................⌺⌺⌺..⌺⌺..⌺.⌺⌺.⌺.⌺.⌺...⌺⌺.⌺.⌺⌺............................. ........................................⌺⌺..⌺.⌺⌺⌺⌺⌺⌺⌺.⌺...⌺..⌺⌺⌺....⌺⌺.⌺............................ .......................................⌺..⌺..⌺⌺⌺⌺⌺⌺.⌺⌺...⌺..⌺.⌺⌺...⌺...⌺............................ ......................................⌺....⌺.⌺.⌺⌺.⌺..⌺⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺...⌺............................. ......................................⌺.⌺⌺⌺⌺.⌺⌺.⌺.⌺⌺⌺⌺....⌺⌺..⌺⌺.⌺.⌺⌺.⌺............................. .......................................⌺....⌺⌺⌺⌺...⌺..⌺.⌺⌺⌺⌺⌺⌺.⌺⌺....⌺⌺⌺............................ ..........................................⌺...⌺.⌺⌺.⌺.⌺⌺⌺.⌺..⌺⌺..⌺⌺...⌺⌺⌺............................ .............................................⌺⌺⌺⌺⌺⌺⌺....⌺..⌺⌺.⌺⌺.⌺.....⌺............................ .....................................⌺⌺⌺⌺..⌺⌺.⌺⌺..⌺⌺⌺⌺.⌺⌺.⌺⌺.⌺⌺..⌺.....⌺............................ ....................................⌺....⌺.⌺...⌺⌺⌺.⌺⌺.⌺⌺⌺....⌺.⌺⌺⌺⌺....⌺............................ ...................................⌺⌺⌺.......⌺⌺⌺.⌺.⌺.⌺⌺⌺⌺⌺....⌺.⌺......⌺............................ ...................................⌺.⌺...⌺⌺⌺.⌺⌺⌺⌺.⌺⌺.⌺...⌺⌺.⌺⌺⌺.⌺⌺.....⌺............................ .........................................⌺⌺.⌺⌺..⌺⌺⌺⌺....⌺⌺⌺⌺.⌺.⌺.⌺.....⌺............................ ....................................⌺....⌺..⌺⌺...⌺⌺⌺..⌺⌺⌺.....⌺⌺⌺......⌺............................ ....................................⌺⌺...⌺⌺.⌺⌺⌺.⌺⌺⌺⌺..⌺......⌺⌺⌺...⌺⌺..⌺............................ ....................................⌺⌺.⌺.⌺⌺⌺⌺.....⌺...⌺..⌺.⌺⌺.⌺⌺⌺.⌺⌺...⌺............................ ...................................⌺⌺⌺⌺.⌺⌺...⌺⌺.⌺⌺⌺⌺..⌺.⌺..⌺..⌺..⌺⌺⌺...⌺............................ ...................................⌺.⌺⌺.⌺⌺⌺..⌺.⌺.⌺⌺.⌺.⌺.....⌺.⌺.....⌺.⌺............................. .......................................⌺.⌺..⌺....⌺⌺.⌺⌺..⌺.⌺..⌺⌺⌺.⌺⌺................................. .......................................⌺⌺.⌺....⌺..⌺⌺⌺⌺⌺.⌺....⌺....⌺..⌺.⌺............................ ......................................⌺.⌺⌺.⌺..⌺....⌺⌺.⌺⌺.⌺..⌺⌺⌺......⌺⌺⌺............................ ....................................⌺.⌺...⌺..⌺..⌺..⌺..⌺⌺⌺...⌺⌺..⌺⌺....⌺............................. ...................................⌺⌺⌺.⌺.⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺.⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺.⌺.⌺⌺.............................. ...................................⌺.⌺.⌺....⌺⌺⌺⌺⌺...⌺⌺..⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺................................. .....................................⌺..⌺⌺...⌺......⌺..⌺.⌺⌺..⌺⌺⌺.⌺⌺⌺................................ ..................................⌺⌺⌺⌺...⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺⌺⌺...⌺.⌺...................................... .............................⌺⌺....⌺..⌺.....⌺⌺⌺.⌺.⌺...⌺.⌺⌺⌺..⌺⌺⌺.................................... ............................⌺..⌺..⌺⌺⌺⌺.⌺⌺...⌺⌺⌺.⌺⌺...⌺⌺⌺.⌺⌺.....⌺⌺.................................. ...........................⌺⌺⌺....⌺.⌺⌺.⌺.⌺⌺⌺⌺⌺...⌺....⌺..⌺..⌺⌺.⌺⌺⌺.................................. ...........................⌺.⌺⌺⌺⌺⌺.⌺.⌺...⌺⌺..⌺⌺.....⌺....⌺...⌺..⌺................................... ...............................⌺⌺⌺⌺⌺⌺.⌺⌺⌺⌺..⌺⌺.⌺...⌺..⌺⌺..⌺.⌺.⌺⌺.................................... .............................⌺⌺......⌺.⌺⌺⌺.⌺⌺..⌺⌺⌺⌺...⌺...⌺⌺⌺....................................... ..............................⌺..⌺.⌺⌺⌺⌺⌺..⌺...⌺.⌺⌺...⌺..⌺..⌺........................................ ..............................⌺⌺.⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺.....⌺.....⌺.⌺⌺......................................... .............................⌺.⌺..⌺⌺.⌺⌺......⌺...⌺⌺....⌺............................................ ............................⌺..⌺.⌺⌺⌺⌺........⌺⌺⌺..⌺⌺..⌺............................................. ............................⌺.⌺⌺.⌺⌺⌺............⌺⌺..⌺⌺.............................................. .............................⌺⌺..................................................................... ..............................⌺⌺....................................................................
Applesoft BASIC
0 IF T THEN FOR Q = 0 TO T STEP 0: XDRAW T AT X * S,H - Y * S:D = FN M(D + D( PEEK (234)) + F):X = X + X(D):Y = Y + Y(D):Q = X > M OR X < 0 OR Y > M OR Y < 0: NEXT Q: END : DATA 100,50,50,3,220,1,4,-1,1,1,1,-1,-1
1 HGR : SCALE= 1: ROT= 0
2 LET S$ = CHR$ (1) + CHR$ (0) + CHR$ (4) + CHR$ (0) + "5'" + CHR$ (0)
3 POKE 236, PEEK (131): POKE 237, PEEK (132)
4 LET S = PEEK (236) + PEEK (237) * 256 + 1
5 POKE 232, PEEK (S)
6 POKE 233, PEEK (S + 1)
7 READ M,X,Y,S,H,T,F,D(0),D(4),Y(0),X(1),Y(2),X(3)
8 DEF FN M(N) = N - INT (N / F) * F
9 GOTO
AutoHotkey
ahk forum: discussion
(Fixed by just me)
#NoEnv
SetBatchLines, -1
; Directions
Directions := {0: "North", 1: "East", 2: "South", 3: "West"}
; Initialize the plane (set all cells to white)
White := 0xFFFFFF
Plane := []
PW := PH := 100
loop, % PH {
I := A_Index
loop, % PW
Plane[I, A_Index] := White
}
; Let it run
DI := D := 0 ; initial direction
X := Y := 50 ; initial coordinates
while (X > 0) && (X <= PW) && (Y > 0) && (Y <= PH) {
D := (D + ((Plane[X, Y] ^= White) ? 1 : 3)) & 3
if (D & 1)
X += -(D = 3) + (D = 1)
else
Y += -(D = 0) + (D = 2)
}
; Show the result
HBM := CreateDIB(Plane, PW, PH, 400, 400, 0)
Gui, Margin, 0, 0
Gui, Add, Text, x0 y0 w20 h440 Center 0x200, W
Gui, Add, Text, x20 y0 w400 h20 Center 0x200, N
Gui, Add, Picture, x20 y20 w400 h400 0x4E hwndHPIC ; SS_REALSIZECONTROL = 0x40 | SS_BITMAP = 0xE
DllCall("User32.dll\SendMessage", "Ptr", HPIC, "UInt", 0x172, "Ptr", 0, "Ptr", HBM) ; STM_SETIMAGE = 0x172
Gui, Add, Text, xp+5 yp h20 0x200 BackgroundTrans, % "Initial direction: " . Directions[DI]
Gui, Add, Text, x20 y420 w400 h20 Center 0x200, S
Gui, Add, Text, x420 y0 w20 h440 Center 0x200, E
Gui, Show, , Langton's ant (%PW%x%PH%)
Return
GuiClose:
ExitApp
CreateDIB(PixelArray, PAW, PAH, BMW := 0, BMH := 0, Gradient := 1) { ; SKAN, 01-Apr-2014 / array version by just me
SLL := (PAW * 3) + (PAW & 1)
VarSetCapacity(BMBITS, SLL * PAH, 0)
P := &BMBITS
loop, % PAH {
R := A_Index
loop, % PAW
P := Numput(PixelArray[R, A_Index], P + 0, "UInt") - 1
P += (PAW & 1)
}
HBM := DllCall("Gdi32.dll\CreateBitmap", "Int", PAW, "Int", PAH, "UInt", 1, "UInt", 24, "Ptr", 0, "UPtr")
HBM := DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", 0, "Int", 0, "UInt", 0x2008, "UPtr")
DllCall( "Gdi32.dll\SetBitmapBits", "Ptr", HBM, "UInt", SLL * PAH, "Ptr", &BMBITS)
if (!Gradient)
HBM := DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", 0, "Int", 0, "Int", 8, "UPtr")
return DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", BMW, "Int", BMH, "UInt", 0x200C, "UPtr")
} ; http://ahkscript.org/boards/viewtopic.php?f=6&t=3203
AutoIt
Global $iCountMax = 100000
Global $aFields[100][100][2]
Global $iDelayStep = 10 ; stop between steps in msec
Global $aDirection[4][4] = [ _ ; [ direction 0-3 ][ left change x, y, right change x, y ]
[-1, 0, +1, 0], _ ; == direction 0
[ 0, -1, 0, +1], _ ; == direction 1
[+1, 0, -1, 0], _ ; == direction 2
[ 0, +1, 0, -1]] ; == direction 3
Global $hGui = GUICreate("Langton's ant", 100*8, 100*8)
GUISetBkColor(0xFFFFFF)
For $i = 0 To 99
For $j = 0 To 99
$aFields[$i][$j][0] = GUICtrlCreateLabel('', $j*8, $i*8)
GUICtrlSetColor(-1, 0xFF0000)
$aFields[$i][$j][1] = 0
Next
Next
GUISetState()
GUICtrlSetData($aFields[49][49][0], '#')
Do
Sleep($iDelayStep)
Until Not _SetAnt()
Do
Until GUIGetMsg() = -3
Func _SetAnt()
Local Static $iRowLast = 49, $iColLast = 49, $iCount = 0
Local Static $aCol[2] = [0xFFFFFF,0x000000], $iDirection = 0
Local $iRow, $iCol, $fRight = False
If $iCount = $iCountMax Then Return 0
; == get current color
Local $iLastColor = $aFields[$iRowLast][$iColLast][1]
; == go to left/right
If $iLastColor = 0 Then $fRight = True
; == set the ant to the next field
Local $indexX = 0, $indexY = 1
If $fRight Then
$indexX = 2
$indexY = 3
EndIf
$iRow = $iRowLast + ($aDirection[$iDirection][$indexX])
$iCol = $iColLast + ($aDirection[$iDirection][$indexY])
If $iRow < 0 Or $iRow > 99 Or $iCol < 0 Or $iCol > 99 Then Return 0
GUICtrlSetData($aFields[$iRowLast][$iColLast][0], '')
GUICtrlSetData($aFields[$iRow][$iCol][0], '#')
; == direction for next step
If $fRight Then
$iDirection += 1
If $iDirection = 4 Then $iDirection = 0
Else
$iDirection -= 1
If $iDirection = -1 Then $iDirection = 3
EndIf
; == change the color of the current field
GUICtrlSetBkColor($aFields[$iRowLast][$iColLast][0], $aCol[(Not $iLastColor)*1])
$aFields[$iRowLast][$iColLast][1] = (Not $iLastColor)*1
$iRowLast = $iRow
$iColLast = $iCol
$iCount += 1
WinSetTitle($hGui, '', "Langton's ant [ step: " & StringFormat('%06d', $iCount) & " ]")
Return 1
EndFunc ;==>_SetAnt
To see the GUI output, click here. --BugFix (talk) 14:48, 16 November 2013 (UTC)
AWK
# usage: awk -v debug=0 -f langton.awk
# Simulates the cellular automaton "Langton's ant",
# see http://en.wikipedia.org/wiki/Langton%27s_ant
function turnRight() {
dir++
if( dir>4 ) { dir=1 }
}
function turnLeft() {
dir--
if( dir<1 ) { dir=4 }
}
function move() {
if (dir==1) { y--; z="^" }
if (dir==3) { y++; z="v" }
if (dir==2) { x++; z=">" }
if (dir==4) { x--; z="<" }
}
function ant() {
if( debug ) AntStat() ##
if( grid[x,y]==0 ) { turnLeft() } else { turnRight() }
if( grid[x,y]==0 ) { color=1 } else { color=0 }
if( debug ) print( "# action", color, dir, z ) ##
grid[x,y] = color
move()
}
###
function AntStat() {
printf( "Move# %d : Ant @ x=%d y=%d dir=%d %s color=%d\n",
moveNr, x,y, dir,z, grid[x,y] )
}
function dumpGrid() {
AntStat()
printf( "Grid:" )
for(xx=1; xx<=limit/10; xx++) {
printf( "....+....%s", xx )
}
printf "\n"
cSum=0
for(yy=1; yy <= limit; yy++) {
printf( "%4d:",yy )
for(xx=1; xx <= limit; xx++) {
c = grid[xx,yy]
if( c ) cSum++
c1++
c2+=grid[xx,yy]
if( (xx==x)&&(yy==y) ) { c=z } # Ant
printf( c )
}
printf( "\n" )
}
printf( "Cells: %d 'black' cells: %d Moves: %d\n\n", limit*limit, cSum, moveNr )
}
BEGIN {
print( "Langton's ant\n" )
limit = 72
for(x=1; x <= limit; x++) {
for(y=1; y <= limit; y++) {
grid[x,y] = 0
}
}
moveNr = 0
x = 36
y = 28
dir = 1 # 1=up/north 2=right/east 3=down/south 4=left/west
z = "!"
while( moveNr < 11200 ) {
moveNr++
ant()
if(x<0 || x>limit) break
if(y<0 || y>limit) break
# Snapshots:
if (moveNr==163 || moveNr==1297 || moveNr==10095 ) dumpGrid()
if (y<=5 ) break
}
dumpGrid()
}
END { print("END.") }
BBC BASIC
REM Implementation of Langton's ant for Rosetta Code
fieldsize%=100
REM Being pedantic, this will actually result in a field of 101 square,
REM since arrays start at 0, and my implementation allows them to use it
DIM field&(fieldsize%,fieldsize%) : REM variables with an & suffix are byte variables
x%=fieldsize%/2
y%=fieldsize%/2
d%=0
REPEAT
IF field&(x%,y%)=0 THEN field&(x%,y%)=1:d%-=1 ELSE field&(x%,y%)=0:d%+=1
GCOL 15*field&(x%,y%)
PLOT 69,x%*2,y%*2 :REM for historical reasons there are two "plot points" per pixel
d%=(d%+4) MOD 4 :REM ensure direction is always between 0 and 3
CASE d% OF
WHEN 0:y%+=1
WHEN 1:x%+=1
WHEN 2:y%-=1
WHEN 3:x%-=1
ENDCASE
UNTIL x%>fieldsize% OR x%<0 OR y%>fieldsize% OR y%<0
END
bc
The output function o
prints the resulting image (as a PBM image) to stdout
. One can either store it into a file or pipe it through an image viewer (e.g. bc langton.bc | display
).
define o() {
auto i, j
"P1 "
w
h
for (j = 0; j < h; j++) {
for (i = 0; i < w; i++) {
a[j * w + i]
}
}
}
define l(w, h, x, y) {
auto a[], d, i, x[], y[]
/* d represents one of the four possible directions:
* 0
* ⇑
* 3⇐ ⇒1
* ⇓
* 2
* The arrays x[] and y[] contain the changes to the x and y direction for
* each value of d.
*/
x[1] = 1
x[3] = -1
y[0] = -1
y[2] = 1
while (1) {
i = y * w + x
if (a[i] == 0) d += 1 /* turn right if white */
if (a[i] == 1) d -= 1 /* turn left if black */
if (d < 0) d = 3
if (d > 3) d = 0
x += x[d]
y += y[d]
a[i] = 1 - a[i] /* toggle cell colour */
if (x < 0) break
if (x == w) break
if (y < 0) break
if (y == h) break
}
o()
}
l(100, 100, 50, 50)
quit
Befunge
"22222 -"*>>>1-:0\:"P"%\v>\7%1g48*-/2%3*48*+,1+:20g`!v1g01+55p03:_$$$>@
!"$(0@`vp00_^#!:p+7/"P"<<^g+7/*5"p"\%"P"/7::+g03*"d":_$,1+>:40g`!^1g03<
_::10g\v>00g+4%:00p::3\`\1-*50g+50p:2\-\0`*+::0\`\"c"`+50g:0\`\"c"`++#^
-*84g1<v^+1*2g09pg08g07-*g06-1*2p09:%2/g06:gp08:+7/*5"p"\p07:%"P"/7:p06
0p+:7%^>>-:0`!*+10p::20g\-:0`*+20p:"d"*50g::30g\-:0`!*+30p::40g\-:0`*+4
- Output:
## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # # ### # # # # # # ## ## ## #### ### # ## ## # ## ## # # ### # ### # # # ## #### #### ### #### ### # ## ## #### ## # ## # # # # ### # # ## ## ## ### ## ##### ### # ## # ## # #### # ### # # ## ## ## ### # ## ## # ### # # # ## #### # ### # ## # # ### ### # ### # # # ## # # # ### # ## ## ## # ### # # ## ### # ## # # # # # #### ## # ## # #### ##
BQN
Ant
is the main function, which runs the ant simulation given a starting point, direction and grid of zeros.
Fmt
then formats into hashes and spaces.
_while_
is an idiom from BQNcrate which helps with conditional looping.
Rot ← ¬⊸{-⌾(𝕨⊸⊑)⌽𝕩}
Fmt ← ⊏⟜" #"
_while_ ← {𝔽⍟𝔾∘𝔽_𝕣_𝔾∘𝔽⍟𝔾𝕩}
Ant ← 2⊑{ # Generator Block
p‿d‿g:
r ← d Rot˜ p⊑g
⟨
p + r
r
¬⌾(p⊸⊑)g
⟩
} _while_ { # Condition Block
p‿d‿g:
∧´(p≥0‿0)∧p<≢g
}
•Show Fmt Ant ⟨50‿50, 0‿1, 100‿100⥊0⟩
Try It! (Running will take some time due to JS, ≈40 secs on my machine)
C
Requires ANSI terminal.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
int w = 0, h = 0;
unsigned char *pix;
void refresh(int x, int y)
{
int i, j, k;
printf("\033[H");
for (i = k = 0; i < h; putchar('\n'), i++)
for (j = 0; j < w; j++, k++)
putchar(pix[k] ? '#' : ' ');
}
void walk()
{
int dx = 0, dy = 1, i, k;
int x = w / 2, y = h / 2;
pix = calloc(1, w * h);
printf("\033[H\033[J");
while (1) {
i = (y * w + x);
if (pix[i]) k = dx, dx = -dy, dy = k;
else k = dy, dy = -dx, dx = k;
pix[i] = !pix[i];
printf("\033[%d;%dH%c", y + 1, x + 1, pix[i] ? '#' : ' ');
x += dx, y += dy;
k = 0;
if (x < 0) {
memmove(pix + 1, pix, w * h - 1);
for (i = 0; i < w * h; i += w) pix[i] = 0;
x++, k = 1;
}
else if (x >= w) {
memmove(pix, pix + 1, w * h - 1);
for (i = w-1; i < w * h; i += w) pix[i] = 0;
x--, k = 1;
}
if (y >= h) {
memmove(pix, pix + w, w * (h - 1));
memset(pix + w * (h - 1), 0, w);
y--, k = 1;
}
else if (y < 0) {
memmove(pix + w, pix, w * (h - 1));
memset(pix, 0, w);
y++, k = 1;
}
if (k) refresh(x, y);
printf("\033[%d;%dH\033[31m@\033[m", y + 1, x + 1);
fflush(stdout);
usleep(10000);
}
}
int main(int c, char **v)
{
if (c > 1) w = atoi(v[1]);
if (c > 2) h = atoi(v[2]);
if (w < 40) w = 40;
if (h < 25) h = 25;
walk();
return 0;
}
C#
using System;
namespace LangtonAnt
{
public struct Point
{
public int X;
public int Y;
public Point(int x, int y)
{
X = x;
Y = y;
}
}
enum Direction
{
North, East, West, South
}
public class Langton
{
public readonly bool [,] IsBlack;
private Point _origin;
private Point _antPosition = new Point(0, 0);
public bool OutOfBounds { get; set;}
// I don't see any mention of what direction the ant is supposed to start out in
private Direction _antDirection = Direction.East;
private readonly Direction[] _leftTurn = new[] { Direction.West, Direction.North, Direction.South, Direction.East };
private readonly Direction[] _rightTurn = new[] { Direction.East, Direction.South, Direction.North, Direction.West };
private readonly int[] _xInc = new[] { 0, 1,-1, 0};
private readonly int[] _yInc = new[] {-1, 0, 0, 1};
public Langton(int width, int height, Point origin)
{
_origin = origin;
IsBlack = new bool[width, height];
OutOfBounds = false;
}
public Langton(int width, int height) : this(width, height, new Point(width / 2, height / 2)) {}
private void MoveAnt()
{
_antPosition.X += _xInc[(int)_antDirection];
_antPosition.Y += _yInc[(int)_antDirection];
}
public Point Step()
{
if (OutOfBounds)
{
throw new InvalidOperationException("Trying to step after ant is out of bounds");
}
Point ptCur = new Point(_antPosition.X + _origin.X, _antPosition.Y + _origin.Y);
bool leftTurn = IsBlack[ptCur.X, ptCur.Y];
int iDirection = (int) _antDirection;
_antDirection = leftTurn ? _leftTurn[iDirection] : _rightTurn[iDirection];
IsBlack[ptCur.X, ptCur.Y] = !IsBlack[ptCur.X, ptCur.Y];
MoveAnt();
ptCur = new Point(_antPosition.X + _origin.X, _antPosition.Y + _origin.Y);
OutOfBounds =
ptCur.X < 0 ||
ptCur.X >= IsBlack.GetUpperBound(0) ||
ptCur.Y < 0 ||
ptCur.Y >= IsBlack.GetUpperBound(1);
return _antPosition;
}
}
class Program
{
static void Main()
{
Langton ant = new Langton(100, 100);
while (!ant.OutOfBounds) ant.Step();
for (int iRow = 0; iRow < 100; iRow++)
{
for (int iCol = 0; iCol < 100; iCol++)
{
Console.Write(ant.IsBlack[iCol, iRow] ? "#" : " ");
}
Console.WriteLine();
}
Console.ReadKey();
}
}
}
Output:
<Blank lines eliminated for efficiency> # # ## # # # ### ## #### ### # ##### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ## ### # ## ## # ## ## ## # #### ### # # ### # # # ## #### # ### # # # # ## # ### # ## # ## # ## # # ## # # ## # # # ##### # # # ##### ## ###### ### ## # ## # # # ## # ## ## # ####### # # ### ## # # # ###### ## # # ## # # # # # ## # ###### ####### # # #### ## # #### ## ## # ## # # #### # # ###### ## ### # # ## # ### # ## ## ### ####### # ## ## # # #### ## ## #### ## ## ## # # # # # ### ## ### # #### # ### ### # # ##### # # # # # ### #### ## # ## ### ## # ## ## #### #### # # # # # # ## ### ### ### # ## ## ### #### # ### ## # ## # #### # # # ## ### ## # #### ## ## #### # # # # ### # # ## ### # # ## # # # # # # # # # ## ## # # ### ## ## # # ##### # # # # # # ## # # ## ## # ### ### # # # # # # ### ## ## # ### # ##### ###### ### ####### # ## # # # ##### ## ##### ##### # ## # # # ## ### ### #### ##### ######### # # ## # # ### # # # ### ### # # #### ## ### ## ### ## ## ### # ## # ##### # # # ## ### # ##### # # ## ## # # # # ###### #### ## # # ## # # ## ## # ### ## #### # ### # # ##### # # ## # # # ## ### ####### # # ## # # ## ## # ## # # # #### ### ## # # ## ### ## ## ## ##
C++
If you want to see it running infinitely, set the const bool INFINIT_RUN = true
#include <windows.h>
#include <string>
//--------------------------------------------------------------------------------------------------
using namespace std;
//--------------------------------------------------------------------------------------------------
const int BMP_SIZE = 600, CELL_SIZE = 4, GRID_SIZE = BMP_SIZE / CELL_SIZE;
const bool INFINIT_RUN = false;
enum cellState { WHITE, BLACK, ANT };
enum facing { NOR, EAS, SOU, WES };
enum state { RUNNING, RESTING };
//--------------------------------------------------------------------------------------------------
class myBitmap
{
public:
myBitmap() : pen( NULL ) {}
~myBitmap()
{
DeleteObject( pen );
DeleteDC( hdc );
DeleteObject( bmp );
}
bool create( int w, int h )
{
BITMAPINFO bi;
ZeroMemory( &bi, sizeof( bi ) );
bi.bmiHeader.biSize = sizeof( bi.bmiHeader );
bi.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
bi.bmiHeader.biCompression = BI_RGB;
bi.bmiHeader.biPlanes = 1;
bi.bmiHeader.biWidth = w;
bi.bmiHeader.biHeight = -h;
HDC dc = GetDC( GetConsoleWindow() );
bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
if( !bmp ) return false;
hdc = CreateCompatibleDC( dc );
SelectObject( hdc, bmp );
ReleaseDC( GetConsoleWindow(), dc );
width = w; height = h;
return true;
}
void clear()
{
ZeroMemory( pBits, width * height * sizeof( DWORD ) );
}
void setPenColor( DWORD clr )
{
if( pen ) DeleteObject( pen );
pen = CreatePen( PS_SOLID, 1, clr );
SelectObject( hdc, pen );
}
void saveBitmap( string path )
{
BITMAPFILEHEADER fileheader;
BITMAPINFO infoheader;
BITMAP bitmap;
DWORD wb;
GetObject( bmp, sizeof( bitmap ), &bitmap );
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );
infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
infoheader.bmiHeader.biCompression = BI_RGB;
infoheader.bmiHeader.biPlanes = 1;
infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
infoheader.bmiHeader.biHeight = bitmap.bmHeight;
infoheader.bmiHeader.biWidth = bitmap.bmWidth;
infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );
fileheader.bfType = 0x4D42;
fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;
GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );
HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
CloseHandle( file );
delete [] dwpBits;
}
HDC getDC() const { return hdc; }
int getWidth() const { return width; }
int getHeight() const { return height; }
private:
HBITMAP bmp;
HDC hdc;
HPEN pen;
void *pBits;
int width, height;
};
//--------------------------------------------------------------------------------------------------
class Ant
{
public:
Ant()
{
_bmp.create( BMP_SIZE, BMP_SIZE );
ZeroMemory( _grid, sizeof( _grid ) );
RED_BRUSH = CreateSolidBrush( 255 );
_antState = RUNNING;
}
~Ant()
{
DeleteObject( RED_BRUSH );
}
void setPosition( int x, int y )
{
_sx = x; _sy = y;
_facing = WES;
}
void mainLoop()
{
switch( _antState )
{
case RUNNING:
simulate();
// fall thru
case RESTING:
display();
}
}
void setHWND( HWND hwnd ) { _hwnd = hwnd; }
private:
void simulate()
{
switch( _grid[_sx][_sy] )
{
case BLACK:
_grid[_sx][_sy] = WHITE;
if( --_facing < NOR ) _facing = WES;
break;
case WHITE:
_grid[_sx][_sy] = BLACK;
if( ++_facing > WES ) _facing = NOR;
}
switch( _facing )
{
case NOR:
if( --_sy < 0 )
{
if( INFINIT_RUN ) _sy = GRID_SIZE - 1;
else _antState = RESTING;
}
break;
case EAS:
if( ++_sx >= GRID_SIZE )
{
if( INFINIT_RUN ) _sx = 0;
else _antState = RESTING;
}
break;
case SOU:
if( ++_sy >= GRID_SIZE )
{
if( INFINIT_RUN ) _sy = 0;
else _antState = RESTING;
}
break;
case WES:
if( --_sx < 0 )
{
if( INFINIT_RUN ) _sx = GRID_SIZE - 1;
else _antState = RESTING;
}
}
}
void display()
{
_bmp.clear();
HBRUSH br; RECT rc;
int xx, yy; HDC dc = _bmp.getDC();
for( int y = 0; y < GRID_SIZE; y++ )
for( int x = 0; x < GRID_SIZE; x++ )
{
switch( _grid[x][y] )
{
case BLACK: br = static_cast<HBRUSH>( GetStockObject( BLACK_BRUSH ) ); break;
case WHITE: br = static_cast<HBRUSH>( GetStockObject( WHITE_BRUSH ) );
}
if( x == _sx && y == _sy ) br = RED_BRUSH;
xx = x * CELL_SIZE; yy = y * CELL_SIZE;
SetRect( &rc, xx, yy, xx + CELL_SIZE, yy + CELL_SIZE );
FillRect( dc, &rc, br );
}
HDC wdc = GetDC( _hwnd );
BitBlt( wdc, 0, 0, BMP_SIZE, BMP_SIZE, dc, 0, 0, SRCCOPY );
ReleaseDC( _hwnd, wdc );
}
myBitmap _bmp;
HWND _hwnd;
HBRUSH RED_BRUSH;
BYTE _grid[GRID_SIZE][GRID_SIZE];
int _sx, _sy, _facing;
state _antState;
};
//--------------------------------------------------------------------------------------------------
class wnd
{
public:
int wnd::Run( HINSTANCE hInst )
{
_hInst = hInst;
_hwnd = InitAll();
_ant.setHWND( _hwnd );
_ant.setPosition( GRID_SIZE / 2, GRID_SIZE / 2 );
ShowWindow( _hwnd, SW_SHOW );
UpdateWindow( _hwnd );
MSG msg;
ZeroMemory( &msg, sizeof( msg ) );
while( msg.message != WM_QUIT )
{
if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) != 0 )
{
TranslateMessage( &msg );
DispatchMessage( &msg );
}
else
{
_ant.mainLoop();
}
}
return UnregisterClass( "_LANGTONS_ANT_", _hInst );
}
private:
static int WINAPI wnd::WndProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch( msg )
{
case WM_DESTROY: PostQuitMessage( 0 ); break;
default:
return DefWindowProc( hWnd, msg, wParam, lParam );
}
return 0;
}
HWND InitAll()
{
WNDCLASSEX wcex;
ZeroMemory( &wcex, sizeof( wcex ) );
wcex.cbSize = sizeof( WNDCLASSEX );
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = ( WNDPROC )WndProc;
wcex.hInstance = _hInst;
wcex.hCursor = LoadCursor( NULL, IDC_ARROW );
wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 );
wcex.lpszClassName = "_LANGTONS_ANT_";
RegisterClassEx( &wcex );
return CreateWindow( "_LANGTONS_ANT_", ".: Langton's Ant -- PJorente :.", WS_SYSMENU, CW_USEDEFAULT, 0, BMP_SIZE, BMP_SIZE, NULL, NULL, _hInst, NULL );
}
HINSTANCE _hInst;
HWND _hwnd;
Ant _ant;
};
//--------------------------------------------------------------------------------------------------
int APIENTRY _tWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow )
{
wnd myWnd;
return myWnd.Run( hInstance );
}
//--------------------------------------------------------------------------------------------------
Chapel
config const gridHeight: int = 100;
config const gridWidth: int = 100;
class PBMWriter {
var imgDomain: domain(2);
var imgData: [imgDomain] int;
proc PBMWriter( height: int, width: int ){
imgDomain = { 1..#height, 1..#width };
}
proc this( i : int, j : int) ref : int{
return this.imgData[ i, j ];
}
proc writeImage( fileName: string ){
var file = open(fileName, iomode.cw);
var writingChannel = file.writer();
writingChannel.write("P1\n", imgDomain.dim(1).size, " " ,imgDomain.dim(2).size,"\n");
for px in imgData {
writingChannel.write( px, " " );
}
writingChannel.write( "\n" );
writingChannel.flush();
writingChannel.close();
}
}
enum Color { white, black };
inline proc nextDirection( position: 2*int, turnLeft: bool ): 2*int {
return ( (if turnLeft then 1 else -1 ) * position[2], (if turnLeft then -1 else 1 ) * position[1] );
}
proc <( left: 2*int, right: 2*int ){
return left[1] < right[1] && left[2] < right[2];
}
proc <=( left: 2*int, right: 2*int ){
return left[1] <= right[1] && left[2] <= right[2];
}
proc main{
const gridDomain: domain(2) = {1..#gridHeight, 1..#gridWidth};
var grid: [gridDomain] Color;
var antPos = ( gridHeight / 2, gridWidth / 2 );
var antDir = (1,0); // start up;
while (0,0) < antPos && antPos <= (gridHeight, gridWidth ) {
var currColor = grid[ antPos ];
grid[antPos] = if currColor == Color.white then Color.black else Color.white ;
antDir = nextDirection( antDir, currColor == Color.black );
antPos = antPos + antDir;
}
var image = new PBMWriter( height = gridHeight, width = gridWidth );
for (i, j) in gridDomain {
image[i,j] = if grid[gridHeight-j+1,gridHeight-i+1] == Color.black then 0 else 1;
}
image.writeImage( "output.png" );
}
Clojure
In keeping with the spirit of Clojure, this program eschews mutable state entirely. Instead, all computation occurs within a single recursive loop whose "variables" are "adjusted" at each iteration, a natural fit for this particular execution model.
(let [bounds (set (range 100))
xs [1 0 -1 0] ys [0 -1 0 1]]
(loop [dir 0 x 50 y 50
grid {[x y] false}]
(if (and (bounds x) (bounds y))
(let [cur (not (grid [x y]))
dir (mod (+ dir (if cur -1 1)) 4)]
(recur dir (+ x (xs dir)) (+ y (ys dir))
(merge grid {[x y] cur})))
(doseq [col (range 100)]
(println
(apply str
(map #(if (grid [% col]) \# \.)
(range 100))))))))
COBOL
The following program displays the simulation in the console, and a very small font size (~4pt) will be needed to fit it into the window.
IDENTIFICATION DIVISION.
PROGRAM-ID. langtons-ant.
DATA DIVISION.
WORKING-STORAGE SECTION.
78 Grid-Size VALUE 100.
01 grid-area.
03 grid-x OCCURS Grid-Size TIMES.
05 grid-y OCCURS Grid-Size TIMES.
07 cell-colour PIC X VALUE "W".
88 black VALUE "B".
88 white VALUE "W".
01 ant-x PIC 999.
01 ant-y PIC 999.
01 ant-direction PIC 9.
88 upward VALUE 0.
88 rightward VALUE 1.
88 downward VALUE 2.
88 leftward VALUE 3.
78 Pause-Time-Ns VALUE 10000000.
01 display-y PIC 999.
78 Black-Background VALUE 0.
78 White-Background VALUE 7.
01 i PIC 999.
01 j PIC 999.
01 pause PIC X.
PROCEDURE DIVISION.
main-line.
DIVIDE Grid-Size BY 2 GIVING ant-x, ant-y
PERFORM display-initial-grid
PERFORM UNTIL (ant-x = Grid-Size OR 0)
OR (ant-y = Grid-Size OR 0)
PERFORM step-simulation
CALL "CBL_OC_NANOSLEEP" USING Pause-Time-Ns
END-PERFORM
DISPLAY "Press enter to quit." AT LINE 1 COLUMN 1
ACCEPT pause
GOBACK
.
step-simulation.
IF black (ant-x, ant-y)
SET white (ant-x, ant-y) TO TRUE
PERFORM display-ant-cell
COMPUTE ant-direction =
FUNCTION MOD(ant-direction + 1, 4)
ELSE
SET black (ant-x, ant-y) TO TRUE
PERFORM display-ant-cell
COMPUTE ant-direction =
FUNCTION MOD(ant-direction - 1, 4)
END-IF
EVALUATE TRUE
WHEN upward
ADD 1 TO ant-y
WHEN rightward
ADD 1 TO ant-x
WHEN downward
SUBTRACT 1 FROM ant-y
WHEN leftward
SUBTRACT 1 FROM ant-x
END-EVALUATE
.
display-ant-cell.
SUBTRACT ant-y FROM Grid-Size GIVING display-y
IF black (ant-x, ant-y)
DISPLAY SPACE AT LINE display-y COLUMN ant-x
WITH BACKGROUND-COLOR Black-Background
ELSE
DISPLAY SPACE AT LINE display-y COLUMN ant-x
WITH BACKGROUND-COLOR White-Background
END-IF
.
display-initial-grid.
PERFORM VARYING i FROM 1 BY 1 UNTIL i > Grid-Size
AFTER j FROM 1 BY 1 UNTIL j > Grid-Size
DISPLAY SPACE AT LINE i COLUMN j
WITH BACKGROUND-COLOR White-Background
END-PERFORM
.
CoffeeScript
class Ant
constructor: (@world) ->
@location = [0, 0]
@direction = 'E'
move: =>
[x, y] = @location
if @world.is_set x, y
@world.unset x, y
@direction = Directions.left @direction
else
@world.set x, y
@direction = Directions.right @direction
@location = Directions.forward(x, y, @direction)
# Model a theoretically infinite 2D world with a hash, allowing squares
# to be black or white (independent of any ants.)
class BlackWhiteWorld
constructor: ->
@bits = {}
set: (x, y) ->
@bits["#{x},#{y}"] = true
unset: (x, y) ->
delete @bits["#{x},#{y}"]
is_set: (x, y) ->
@bits["#{x},#{y}"]
draw: ->
# Most of this code just involves finding the extent of the world.
# Always include the origin, even if it's not set.
@min_x = @max_x = @min_y = @max_y = 0
for key of @bits
[xx, yy] = (coord for coord in key.split ',')
x = parseInt xx
y = parseInt yy
@min_x = x if x < @min_x
@max_x = x if x > @max_x
@min_y = y if y < @min_y
@max_y = y if y > @max_y
console.log "top left: #{@min_x}, #{@max_y}, bottom right: #{@max_x}, #{@min_y}"
for y in [@max_y..@min_y] by -1
s = ''
for x in [@min_x..@max_x]
if @bits["#{x},#{y}"]
s += '#'
else
s += '_'
console.log s
# Simple code for directions, independent of ants.
Directions =
left: (dir) ->
return 'W' if dir == 'N'
return 'S' if dir == 'W'
return 'E' if dir == 'S'
'N'
right: (dir) ->
return 'E' if dir == 'N'
return 'S' if dir == 'E'
return 'W' if dir == 'S'
'N'
forward: (x, y, dir) ->
return [x, y+1] if dir == 'N'
return [x, y-1] if dir == 'S'
return [x+1, y] if dir == 'E'
return [x-1, y] if dir == 'W'
world = new BlackWhiteWorld()
ant = new Ant(world)
for i in [1..11500]
ant.move()
console.log "Ant is at #{ant.location}, direction #{ant.direction}"
world.draw()
output
> coffee langstons_ant.coffee
Ant is at -24,46, direction W
top left: -25, 47, bottom right: 22, -29
_##__##_________________________________________
##_#####________________________________________
#____##_#_______________________________________
____#_#_##______________________________________
_####_###_#_____________________________________
_#####_#__##____________________________________
__#___##_##_#___________________________________
___###___#__##__________________________________
____#___##_##_#_________________________________
_____###___#__##________________________________
______#___##_##_#_______________________________
_______###___#__##______________________________
________#___##_##_#_____________________________
_________###___#__##____________________________
__________#___##_##_#___________________________
___________###___#__##__________________________
____________#___##_##_#_________________________
_____________###___#__##________________________
______________#___##_##_#_______________________
_______________###___#__##______________________
________________#___##_##_#_____________________
_________________###___#__##____________________
__________________#___##_##_#___________________
___________________###___#__##__________________
____________________#___##_##_#_________________
_____________________###___#__##________________
______________________#___##_##_#_______________
_______________________###___#__##______________
________________________#___##_##_#__##_________
_________________________###___#__##__##________
__________________________#___##_##__##___#_____
____________________####___###___#___#__###_____
___________________#____#___#___##_####___#_____
__________________###____#___#_#______#_##_#____
__________________###____#_##_____#_##__#_##____
___________________#____#___##_#_#_____##_______
___________________#_#______#_#####__#___#______
__________________#___#####__________##_######__
__________________###__##__#_##_#_#_#___##_#_##_
________________##__#_#######_#___#__###____##_#
_______________#__#__######_##___#__#_##___#___#
______________#____#_#_##_#__######_#######___#_
______________#_####_##_#_####____##__##_#_##_#_
_______________#____####___#__#_######_##____###
__________________#___#_##_#_###_#__##__##___###
_____________________#######____#__##_##_#_____#
_____________####__##_##__####_##_##_##__#_____#
____________#____#_#___###_##_###____#_####____#
___________###_______###_#_#_#####____#_#______#
___________#_#___###_####_##_#___##_###_##_____#
_________________##_##__####____####_#_#_#_____#
____________#____#__##___###__###_____###______#
____________##___##_###_####__#______###___##__#
____________##_#_####_____#___#__#_##_###_##___#
___________####_##___##_####__#_#__#__#__###___#
___________#_##_###__#_#_##_#_#_____#_#_____#_#_
_______________#_#__#____##_##__#_#__###_##_____
_______________##_#____#__#####_#____#____#__#_#
______________#_##_#__#____##_##_#__###______###
____________#_#___#__#__#__#__###___##__##____#_
___________###_#_#####_######_###_#######_#_##__
___________#_#_#____#####___##__#####_#####_____
_____________#__##___#______#__#_##__###_###____
__________####___#####_#########___#_#__________
_____##____#__#_____###_#_#___#_###__###________
____#__#__####_##___###_##___###_##_____##______
___###____#_##_#_#####___#____#__#__##_###______
___#_#####_#_#___##__##_____#____#___#__#_______
_______######_####__##_#___#__##__#_#_##________
_____##______#_###_##__####___#___###___________
______#__#_#####__#___#_##___#__#__#____________
______##_###_#######_____#_____#_##_____________
_____#_#__##_##______#___##____#________________
____#__#_####________###__##__#_________________
____#_##_###____________##__##__________________
_____##_________________________________________
______##________________________________________
Common Lisp
(defmacro toggle (gv) `(setf ,gv (not ,gv)))
(defun langtons-ant (width height start-x start-y start-dir)
(let ( (grid (make-array (list width height)))
(x start-x)
(y start-y)
(dir start-dir) )
(loop while (and (< -1 x width) (< -1 y height)) do
(if (toggle (aref grid x y))
(setq dir (mod (1+ dir) 4))
(setq dir (mod (1- dir) 4)))
(case dir
(0 (decf y))
(1 (incf x))
(2 (incf y))
(3 (decf x)))
)
grid
)
)
(defun show-grid (grid)
(destructuring-bind (width height) (array-dimensions grid)
(dotimes (y height)
(dotimes (x width)
(princ (if (aref grid x y) "#" ".")))
(princ #\Newline))
)
)
(setf *random-state* (make-random-state t))
(show-grid (langtons-ant 100 100 (+ 45 (random 10)) (+ 45 (random 10)) (random 4)))
D
Textual Version
void main() @safe {
import std.stdio, std.traits;
enum width = 75, height = 52;
enum maxSteps = 12_000;
enum Direction { up, right, down, left }
enum Color : char { white = '.', black = '#' }
uint x = width / 2, y = height / 2;
Color[width][height] M;
auto dir = Direction.up;
with (Color)
for (int i = 0; i < maxSteps && x < width && y < height; i++) {
immutable turn = M[y][x] == black;
dir = [EnumMembers!Direction][(dir + (turn ? 1 : -1)) & 3];
M[y][x] = (M[y][x] == black) ? white : black;
final switch(dir) with (Direction) {
case up: y--; break;
case right: x--; break;
case down: y++; break;
case left: x++; break;
}
}
writefln("%(%-(%c%)\n%)", M);
}
- Output:
........................................................................... ........................................................................... ........................................................................... ........................................................................... .............................##..############..##.......................... ............................#..####..........#..##......................... ...........................###...##............##.#........................ ...........................#.#..#.........#..#....#........................ .......................##..##.#.#.........###.......#...................... ....................###.#..#...#.....#.....##.##..###...................... .....................#.#..###..##.####.##...#.#..#.##..##.................. .....................#.###.##..#.##..###.#.#.....###...###................. ...................#.....#...#####.#.#..####..#...###.#.#.#................ ..................###.##...#.####..##.##.######.#.###.#...#................ ..................#.###.#.##.#.#.##.##.##.#...#####.###.##................. ......................#.#...#.##.###...#...#.#..####....#.##............... ...................#..#.........##.##...#..##.....##.#.....##.............. ..................###...#.#.##.###..#..##.....#...###.##..##.#............. .................#..###..##...##.##...###..#....#..##.####...#............. ................###...#...#.#..#.#.####.##..#.##.###..#.....#.............. ...............#..###..#.##....#..#.###..#......###.##.#..#..##............ ..............###...#.....#.##.#.##..##..#####.####..####.##...#........... .............#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#.......... ............###...#..##.###..##.#...##.......####.####...#......#.......... ...........#..###..#.#..#...##..###########.#..####..#....#....#........... ..........###...#..##......#.####..##..#########..#..##....#..##........... .........#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#.......... ........###...#..##...#..#.######.##.#.##.#.#....###.###...##...#.......... .......#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#........... ......###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#........... .....#..###..#.#.....#....#...####.#..#####.##...##########...##........... ....###...#..##......#.##...##...#..#...####..#...##.####.##............... ...#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#............. ..###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##............. .#..###..#.#.................#..#....#.########.#.#.##..####.#............. ###...#..##..................#..#...#.......##.##...#..#..##.#............. ...##..#.#....................#..#..#......#..##..##...##.####............. ##..#..##......................##...#.......##..##....#...#.###............ .#.#.#.#............................#.##..####....####.###.####............ ####.##..............................##..####....##..#.##.#.#..#........... #.##.#................................##....##....##.###.##.#####.......... .####................................................#.##.#..####.......... ..##.....................................................##.##.##.......... .........................................................##................ .......................................................#.##..####.#........ ......................................................#..#.###..###........ ......................................................#.##.#..#..#......... .......................................................##......##.......... ........................................................##................. ........................................................................... ........................................................................... ...........................................................................
Image Version
This similar version requires the module from the Grayscale Image Task to generate and save a PGM image.
import std.stdio, std.algorithm, std.traits, grayscale_image;
void main() {
enum width = 100, height = 100;
enum nSteps = 12_000;
enum Direction { up, right, down, left }
auto M = new Image!Gray(width, height);
M.clear(Gray.white);
uint x = width / 2, y = height / 2;
auto dir = Direction.up;
for (int i = 0; i < nSteps && x < width && y < height; i++) {
immutable turn = M[x, y] == Gray.black;
dir = [EnumMembers!Direction][(dir + (turn ? 1 : -1)) & 3];
M[x, y] = (M[x, y] == Gray.black) ? Gray.white : Gray.black;
final switch(dir) with (Direction) {
case up: y--; break;
case right: x--; break;
case down: y++; break;
case left: x++; break;
}
}
M.savePGM("langton_ant.pgm");
}
Dyalect
let xInc = [0, 1, -1, 0]
let yInc = [-1, 0, 0, 1]
let north = 0
let east = 1
let west = 2
let south = 3
let leftTurns = [ west, north, south, east ]
let rightTurns = [ east, south, north, west ]
func move(ant) {
ant.position.x += xInc[ant.direction]
ant.position.y += yInc[ant.direction]
}
func Array.Step(ant) {
var ptCur = (var x: ant.position.x + ant.origin.x, var y: ant.position.y + ant.origin.y)
var leftTurn = this[ptCur.x][ptCur.y]
ant.direction =
if leftTurn {
leftTurns[ant.direction]
} else {
rightTurns[ant.direction]
}
this[ptCur.x][ptCur.y] = !this[ptCur.x][ptCur.y]
move(ant)
ptCur = (x: ant.position.x + ant.origin.x, y: ant.position.y + ant.origin.y)
ant.outOfBounds =
ptCur.x < 0 ||
ptCur.x >= ant.width ||
ptCur.y < 0 ||
ptCur.y >= ant.height
ant.position
}
func newAnt(width, height) {
(
var position: (var x: 0, var y: 0),
var origin: (x: width / 2, y: height / 2),
var outOfBounds: false,
var isBlack: [],
var direction: east,
var width: width,
var height: height
)
}
func run() {
let w = 100
let h = 100
let blacks = Array.Empty(w, () => Array.Empty(h, false))
let ant = newAnt(w, h)
while !ant.outOfBounds {
blacks.Step(ant)
}
var iRow = 0;
while iRow < w {
var iCol = 0;
var ln = ""
while iCol < h {
ln += if blacks[iCol][iRow] {
"#"
} else {
" "
}
iCol += 1
}
print(ln)
iRow += 1
}
}
run()
- Output:
Empty lines are omitted.
# # ## # # # ### ## #### ### # ##### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ## ### # ## ## # ## ## ## # #### ### # # ### # # # ## #### # ### # # # # ## # ### # ## # ## # ## # # ## # # ## # # # ##### # # # ##### ## ###### ### ## # ## # # # ## # ## ## # ####### # # ### ## # # # ###### ## # # ## # # # # # ## # ###### ####### # # #### ## # #### ## ## # ## # # #### # # ###### ## ### # # ## # ### # ## ## ### ####### # ## ## # # #### ## ## #### ## ## ## # # # # # ### ## ### # #### # ### ### # # ##### # # # # # ### #### ## # ## ### ## # ## ## #### #### # # # # # # ## ### ### ### # ## ## ### #### # ### ## # ## # #### # # # ## ### ## # #### ## ## #### # # # # ### # # ## ### # # ## # # # # # # # # # ## ## # # ### ## ## # # ##### # # # # # # ## # # ## ## # ### ### # # # # # # ### ## ## # ### # ##### ###### ### ####### # ## # # # ##### ## ##### ##### # ## # # # ## ### ### #### ##### ######### # # ## # # ### # # # ### ### # # #### ## ### ## ### ## ## ### # ## # ##### # # # ## ### # ##### # # ## ## # # # # ###### #### ## # # ## # # ## ## # ### ## #### # ### # # ##### # # ## # # # ## ### ####### # # ## # # ## ## # ## # # # #### ### ## # # ## ### ## ## ## ##
EasyLang
len f[] 100 * 100
proc show . .
for y = 0 to 99
for x = 0 to 99
if f[y * 100 + x + 1] = 1
move x y
rect 1 1
.
.
.
.
proc run x y dir . .
dx[] = [ 0 1 0 -1 ]
dy[] = [ -1 0 1 0 ]
while x >= 0 and x < 100 and y >= 0 and y < 100
v = f[y * 100 + x + 1]
f[y * 100 + x + 1] = 1 - v
dir = (dir + 2 * v) mod 4 + 1
x += dx[dir]
y += dy[dir]
.
.
run 70 40 0
show
EchoLisp
We implement multi-colored ants, as depicted in the article. An ant is described using L(eft)R(ight) patterns. LR is the basic black and white ant, other are RRLLLRRL or RRLLLRLLLRRR. See results for s black-and-white or colored ants.
(lib 'plot)
(lib 'types)
(define (move iter x dir constant: plane turns cmax width xmax (cidx 0))
(while (> iter 0)
;; get color index of current square
(set! cidx (vector-ref plane x))
;; turn
(if (vector-ref turns cidx)
(set! dir (if (= dir 3) 0 (1+ dir))) ;; right is #t
(set! dir (if (= dir 0) 3 (1- dir))))
;; rotate colors
(set! cidx (if (= cidx cmax) 0 (1+ cidx)))
(vector-set! plane x cidx)
;; move
;; x = v + h*width for a pixel at (h,v)
(set! x
(cond
((= dir 0) (1+ x))
((= dir 1) (+ x width))
((= dir 2) (1- x))
((= dir 3) (- x width))))
(when (or (< x 0) (>= x xmax)) (set! iter -666)) ;; out of bounds
(set! iter (1- iter)))
iter)
;; a color table of 16 colors
(define colors
(list 0 (rgb 1 1 1) (rgb 1 0 0) (rgb 0 1 0) (rgb 0 0 1) (rgb 1 1 0) (rgb 1 0 1) (rgb 0 1 1)))
(define colors (list->vector (append colors colors)))
;; transform color index into rgb color, using colors table.
(define (colorize plane xmax)
(for ((x xmax))
(vector-set! plane x (vector-ref colors (vector-ref plane x))))
(vector->pixels plane)
xmax )
;; ant's patterns
(define turns #(#t #t #f #f #f #t #f #f #f #t #t #t)) ;; RRLLLRLLLRRR
;;(define turns #(#t #t #f #f #f #t #t #f)) ; RRLLLRRL
;;(define turns #(#t #f)) ; RL : basic ant
(define (ant (iter 100000))
(plot-clear)
(define width (first (pixels-dim))) ;; plane dimensions
(define height (rest (pixels-dim)))
(define plane (pixels->uint32-vector))
(define x (+ (quotient width 2) (* width (quotient height 2)))) ;; middle of plane
(define xmax (* width height))
(move iter x 0 plane turns (1- (vector-length turns)) width xmax)
(colorize plane xmax))
(ant) ;; run
Ela
A straightforward implementation (assumes that we start with ant looking forward):
open list core generic
type Field = Field a
type Color = White | Black
type Direction = Lft | Fwd | Rgt | Bwd
field s = Field [[White \\ _ <- [1..s]] \\ _ <- [1..s]]
isBlack Black = true
isBlack _ = false
newfield xc yc (Field xs) = Field (newfield' 0 xs)
where newfield' _ [] = []
newfield' n (x::xs)
| n == yc = row 0 x :: xs
| else = x :: newfield' (n+1) xs
where row _ [] = []
row n (x::xs)
| n == xc = toggle x :: xs
| else = x :: row (n+1) xs
where toggle White = Black
toggle Black = White
showPath (Field xs) = toString <| show' "" xs
where show' sb [] = sb +> ""
show' sb (x::xs) = show' (showRow sb x +> "\r\n") xs
where showRow sb [] = sb +> ""
showRow sb (x::xs) = showRow (sb +> s) xs
where s | isBlack x = "#"
| else = "_"
move s xc yc = move' (Fwd,xc,yc) (field s)
where move' (pos,xc,yc)@coor fld
| xc >= s || yc >= s || xc < 0 || yc < 0 = fld
| else = fld |> newfield xc yc |> move' (matrix (dir fld) coor)
where dir (Field xs)
| `isBlack` (xs:yc):xc = Lft
| else = Rgt
matrix Lft (pos,x,y) = go (left pos,x,y)
matrix Rgt (pos,x,y) = go (right pos,x,y)
go (Lft,x,y) = (Lft,x - 1,y)
go (Rgt,x,y) = (Rgt,x+1,y)
go (Fwd,x,y) = (Fwd,x,y - 1)
go (Bwd,x,y) = (Bwd,x,y+1)
right Lft = Fwd
right Fwd = Rgt
right Rgt = Bwd
right Bwd = Lft
left Lft = Bwd
left Bwd = Rgt
left Rgt = Fwd
left Fwd = Lft
This implementation is pure (doesn't produce side effects).
Testing:
showPath <| move 100 50 50
Output (empty lines are skipped to save space):
__________________________________________##__############__##______________________________________ _________________________________________#__####__________#__##_____________________________________ ________________________________________###___##____________##_#____________________________________ ________________________________________#_#__#_________#__#____#____________________________________ ____________________________________##__##_#_#_________###_______#__________________________________ _________________________________###_#__#___#_____#_____##_##__###__________________________________ __________________________________#_#__###__##_####_##___#_#__#_##__##______________________________ __________________________________#_###_##__#_##__###_#_#_____###___###_____________________________ ________________________________#_____#___#####_#_#__####__#___###_#_#_#____________________________ _______________________________###_##___#_####__##_##_######_#_###_#___#____________________________ _______________________________#_###_#_##_#_#_##_##_##_#___#####_###_##_____________________________ ___________________________________#_#___#_##_###___#___#_#__####____#_##___________________________ ________________________________#__#_________##_##___#__##_____##_#_____##__________________________ _______________________________###___#_#_##_###__#__##_____#___###_##__##_#_________________________ ______________________________#__###__##___##_##___###__#____#__##_####___#_________________________ _____________________________###___#___#_#__#_#_####_##__#_##_###__#_____#__________________________ ____________________________#__###__#_##____#__#_###__#______###_##_#__#__##________________________ ___________________________###___#_____#_##_#_##__##__#####_####__####_##___#_______________________ __________________________#__###__#_#_#__#_###_#_#_##______##___#_#_#____#___#______________________ _________________________###___#__##_###__##_#___##_______####_####___#______#______________________ ________________________#__###__#_#__#___##__###########_#__####__#____#____#_______________________ _______________________###___#__##______#_####__##__#########__#__##____#__##_______________________ ______________________#__###__#_#___##__#_##___##_##_###_###___#__#_##__####_#______________________ _____________________###___#__##___#__#_######_##_#_##_#_#____###_###___##___#______________________ ____________________#__###__#_#___#_____#####_#_#####_____#_#__##_#____##___#_______________________ ___________________###___#__##____#_____#_##_#####_##__#_#___#__#__##_#__#__#_______________________ __________________#__###__#_#_____#____#___####_#__#####_##___##########___##_______________________ _________________###___#__##______#_##___##___#__#___####__#___##_####_##___________________________ ________________#__###__#_#________#####_#__##___##_#___#____#_#__#__#__#_#_________________________ _______________###___#__##__________##__##_#_#_#____##_##_#_#_##__#__##__##_________________________ ______________#__###__#_#_________________#__#____#_########_#_#_##__####_#_________________________ _____________###___#__##__________________#__#___#_______##_##___#__#__##_#_________________________ ____________#__###__#_#____________________#__#__#______#__##__##___##_####_________________________ ___________###___#__##______________________##___#_______##__##____#___#_###________________________ __________#__###__#_#____________________________#_##__####____####_###_####________________________ _________###___#__##______________________________##__####____##__#_##_#_#__#_______________________ ________#__###__#_#________________________________##____##____##_###_##_#####______________________ _______###___#__##________________________________________________#_##_#__####______________________ ______#__###__#_#_____________________________________________________##_##_##______________________ _____###___#__##______________________________________________________##____________________________ ____#__###__#_#_____________________________________________________#_##__####_#____________________ ___###___#__##_____________________________________________________#__#_###__###____________________ __#__###__#_#______________________________________________________#_##_#__#__#_____________________ _###___#__##________________________________________________________##______##______________________ #__###__#_#__________________________________________________________##_____________________________ _###_#__##__________________________________________________________________________________________ #_#_#_#_#___________________________________________________________________________________________ _####_##____________________________________________________________________________________________ _#_##_#_____________________________________________________________________________________________ __####______________________________________________________________________________________________ ___##_______________________________________________________________________________________________
Elixir
defmodule Langtons do
def ant(sizex, sizey) do
{px, py} = {div(sizex,2), div(sizey,2)} # start position
move(MapSet.new, sizex, sizey, px, py, {1,0}, 0)
end
defp move(plane, sx, sy, px, py, _, step) when px<0 or sx<px or py<0 or sy<py, do:
print(plane, sx, sy, px, py, step)
defp move(plane, sx, sy, px, py, dir, step) do
{plane2, {dx,dy}} = if {px,py} in plane,
do: {MapSet.delete(plane, {px,py}), turn_right(dir)},
else: {MapSet.put(plane, {px,py}), turn_left(dir)}
move(plane2, sx, sy, px+dx, py+dy, {dx,dy}, step+1)
end
defp turn_right({dx, dy}), do: {dy, -dx}
defp turn_left({dx, dy}), do: {-dy, dx}
defp print(plane, sx, sy, px, py, step) do
IO.puts "out of bounds after #{step} moves: (#{px}, #{py})"
Enum.each(0..sy, fn j ->
IO.puts Enum.map(0..sx, fn i -> if {i,j} in plane, do: "#", else: "." end)
end)
end
end
Langtons.ant(100, 100)
- Output:
out of bounds after 11669 moves: (26, -1) ..........................#.#........................................................................ ........................##.#.#....................................................................... .......................#.###.##...................................................................... ......................####.###.#..................................................................... ......................#####.#..##.................................................................... .......................#...##.##.#................................................................... ........................###...#..##.................................................................. .........................#...##.##.#................................................................. ..........................###...#..##................................................................ ...........................#...##.##.#............................................................... ............................###...#..##.............................................................. .............................#...##.##.#............................................................. ..............................###...#..##............................................................ ...............................#...##.##.#........................................................... ................................###...#..##.......................................................... .................................#...##.##.#......................................................... ..................................###...#..##........................................................ ...................................#...##.##.#....................................................... ....................................###...#..##...................................................... .....................................#...##.##.#..................................................... ......................................###...#..##.................................................... .......................................#...##.##.#................................................... ........................................###...#..##.................................................. .........................................#...##.##.#................................................. ..........................................###...#..##................................................ ...........................................#...##.##.#............................................... ............................................###...#..##.............................................. .............................................#...##.##.#............................................. ..............................................###...#..##............................................ ...............................................#...##.##.#........................................... ................................................###...#..##.......................................... .................................................#...##.##.#..##..................................... ..................................................###...#..##..##.................................... ...................................................#...##.##..##...#................................. .............................................####...###...#...#..###................................. ............................................#....#...#...##.####...#................................. ...........................................###....#...#.#......#.##.#................................ ...........................................###....#.##.....#.##..#.##................................ ............................................#....#...##.#.#.....##................................... ............................................#.#......#.#####..#...#.................................. ...........................................#...#####..........##.######.............................. ...........................................###..##..#.##.#.#.#...##.#.##............................. .........................................##..#.#######.#...#..###....##.#............................ ........................................#..#..######.##...#..#.##...#...#............................ .......................................#....#.#.##.#..######.#######...#............................. .......................................#.####.##.#.####....##..##.#.##.#............................. ........................................#....####...#..#.######.##....###............................ ...........................................#...#.##.#.###.#..##..##...###............................ ..............................................#######....#..##.##.#.....#............................ ......................................####..##.##..####.##.##.##..#.....#............................ .....................................#....#.#...###.##.###....#.####....#............................ ....................................###.......###.#.#.#####....#.#......#............................ ....................................#.#...###.####.##.#...##.###.##.....#............................ ..........................................##.##..####....####.#.#.#.....#............................ .....................................#....#..##...###..###.....###......#............................ .....................................##...##.###.####..#......###...##..#............................ .....................................##.#.####.....#...#..#.##.###.##...#............................ ....................................####.##...##.####..#.#..#..#..###...#............................ ....................................#.##.###..#.#.##.#.#.....#.#.....#.#............................. ........................................#.#..#....##.##..#.#..###.##................................. ........................................##.#....#..#####.#....#....#..#.#............................ .......................................#.##.#..#....##.##.#..###......###............................ .....................................#.#...#..#..#..#..###...##..##....#............................. ....................................###.#.#####.######.###.#######.#.##.............................. ....................................#.#.#....#####...##..#####.#####................................. ......................................#..##...#......#..#.##..###.###................................ ...................................####...#####.#########...#.#...................................... ..............................##....#..#.....###.#.#...#.###..###.................................... .............................#..#..####.##...###.##...###.##.....##.................................. ............................###....#.##.#.#####...#....#..#..##.###.................................. ............................#.#####.#.#...##..##.....#....#...#..#................................... ................................######.####..##.#...#..##..#.#.##.................................... ..............................##......#.###.##..####...#...###....................................... ...............................#..#.#####..#...#.##...#..#..#........................................ ...............................##.###.#######.....#.....#.##......................................... ..............................#.#..##.##......#...##....#............................................ .............................#..#.####........###..##..#............................................. .............................#.##.###............##..##.............................................. ..............................##..................................................................... ...............................##.................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... ..................................................................................................... .....................................................................................................
Elm
import Maybe as M
import Matrix
import Time exposing (Time, every, second)
import List exposing (..)
import String exposing (join)
import Html exposing (div, h1, text)
import Html.App exposing (program)
import Svg
import Svg.Attributes exposing (version, viewBox, cx, cy, r, x, y, x1, y1, x2, y2, fill,style, width, height, preserveAspectRatio)
w = 700
h = 700
dt = 0.0001
type Direction = North | West | South | East
type alias Model =
{ rows : Int
, cols : Int
, boxes : Matrix.Matrix Bool
, location : Matrix.Location
, direction : Direction
}
initModel : Int -> Int -> Model
initModel cols rows =
{ rows = rows
, cols = cols
, boxes = Matrix.matrix rows cols (\location -> False)
, location = (rows//2,cols//2)
, direction = North
}
view model =
let
borderLineStyle = style "stroke:black;stroke-width:0.3"
x1Min = x1 <| toString 0
y1Min = y1 <| toString 0
x1Max = x1 <| toString model.cols
y1Max = y1 <| toString model.rows
x2Min = x2 <| toString 0
y2Min = y2 <| toString 0
x2Max = x2 <| toString model.cols
y2Max = y2 <| toString model.rows
borders = [ Svg.line [ x1Min, y1Min, x2Max, y2Min, borderLineStyle ] []
, Svg.line [ x1Max, y1Min, x2Max, y2Max, borderLineStyle ] []
, Svg.line [ x1Max, y1Max, x2Min, y2Max, borderLineStyle ] []
, Svg.line [ x1Min, y1Max, x2Min, y2Min, borderLineStyle ] []
]
circleInBox (row,col) color =
Svg.circle [ r "0.25"
, fill (color)
, cx (toString (toFloat col + 0.5))
, cy (toString (toFloat row + 0.5))
] []
showUnvisited location box =
if box then [circleInBox location "black" ]
else []
unvisited = model.boxes
|> Matrix.mapWithLocation showUnvisited
|> Matrix.flatten
|> concat
maze = [ Svg.g [] <| borders ++ unvisited ]
in
div
[]
[ h1 [] [text "Langton's Ant"]
, Svg.svg
[ version "1.1"
, width (toString w)
, height (toString h)
, viewBox (join " "
[ 0 |> toString
, 0 |> toString
, model.cols |> toString
, model.rows |> toString ])
]
maze
]
updateModel : Model -> Model
updateModel model =
let current = model.location
inBox = snd current >= 0 && snd current < model.cols
&& fst current >= 0 && fst current < model.rows
in if not inBox then
model
else
let currentValue = Matrix.get current model.boxes |> M.withDefault False
dir = case (model.direction, currentValue) of
(North, True) -> East
(East, True) -> South
(South, True) -> West
(West, True) -> North
(North, False) -> West
(East, False) -> North
(South, False) -> East
(West, False) -> South
next = case dir of
North -> (fst current+1, snd current)
South -> (fst current-1, snd current)
East -> (fst current, snd current+1)
West -> (fst current, snd current-1)
boxes = Matrix.set current (not currentValue) model.boxes
in {model | boxes=boxes, location=next, direction=dir}
type Msg = Tick Time
subscriptions model = every (dt * second) Tick
main =
let
update msg model = (updateModel model, Cmd.none)
init = (initModel 100 100 , Cmd.none)
in program
{ init = init
, view = view
, update = update
, subscriptions = subscriptions
}
Link to live demo: https://dc25.github.io/langtonsAntElm/
Erlang
Over-engineered sine I have summer vacation. Ex: Display function only display lines with black cells.
-module( langtons_ant ).
-export( [task/0] ).
-record( neighbour, {north, south, east, west} ).
-record( state, {colour=white, controller, max_x, max_y, neighbour, position} ).
task() ->
Controller = erlang:self(),
Max_x = Max_y = 100,
Pid_positions = plane_create( Controller, Max_x, Max_y ),
Pids = [X || {X, _} <- Pid_positions],
[X ! {pid_positions, Pid_positions} || X <- Pids],
{Pid, _Position} = lists:keyfind( {Max_x div 2, Max_y div 2}, 2, Pid_positions ),
Pid ! {ant_start, north, Controller},
receive
{ant_arrives, _Pid} -> ok
end,
display( Controller, Max_x, Max_y, Pids ),
[X ! {stop, Controller} || X <- Pids].
display( Controller, Max_x, Max_y, Pids ) ->
Positions_colours = display_positions_colours( Pids, Controller ),
All_lines = [display_line( Max_x, Positions_colours, Y ) || Y <- lists:seq(Max_y, 1, -1)],
Lines_with_black = [X || X <- All_lines, lists:member(black, X)],
[io:fwrite( "~s~n", [[display_on_screen(X) || X <- Lines]] ) || Lines <- Lines_with_black].
display_line( Max_x, Positions_colours, Y ) -> [proplists:get_value({X,Y}, Positions_colours, white) || X <- lists:seq(1, Max_x)].
display_on_screen( white ) -> $_;
display_on_screen( black ) -> $#.
display_positions_colours( Pids, Controller ) ->
[X ! {position_colour, Controller} || X <- Pids],
[display_positions_colours_receive() || _X <- Pids].
display_positions_colours_receive( ) ->
receive
{position_colour, Position, Colour} -> {Position, Colour}
end.
loop( State ) ->
receive
{pid_positions, Pid_positions} ->
{_My_position, Neighbour} = lists:foldl( fun loop_neighbour/2, {State#state.position, #neighbour{}}, Pid_positions ),
erlang:garbage_collect(), % Shrink process after using large Pid_positions. For memory starved systems.
loop( State#state{neighbour=Neighbour} );
{ant_start, Direction, Controller} when Controller =:= State#state.controller ->
{Pid, New_state} = loop_ant_departs( Direction, State ),
Pid ! {ant_arrives, erlang:self()},
loop( New_state );
{ant_arrives, From} ->
{Direction, New_state} = loop_ant_arrives( From, State ),
{To, Newest_state} = loop_ant_departs( Direction, New_state ),
To ! {ant_arrives, erlang:self()},
loop( Newest_state );
{position_colour, Controller} when Controller =:= State#state.controller ->
Controller ! {position_colour, State#state.position, State#state.colour},
loop( State );
{stop, Controller} when Controller =:= State#state.controller -> ok
end.
loop_ant_arrives( Pid, State ) ->
Neighbour = State#state.neighbour,
From = loop_ant_arrives_direction( Pid, Neighbour ),
{loop_ant_arrives_new_direction(From, State), State}.
loop_ant_arrives_direction( Pid, #neighbour{north=Pid} ) -> north;
loop_ant_arrives_direction( Pid, #neighbour{south=Pid} ) -> south;
loop_ant_arrives_direction( Pid, #neighbour{east=Pid} ) -> east;
loop_ant_arrives_direction( Pid, #neighbour{west=Pid} ) -> west.
loop_ant_arrives_new_direction( north, #state{colour=white} ) -> west;
loop_ant_arrives_new_direction( north, #state{colour=black} ) -> east;
loop_ant_arrives_new_direction( south, #state{colour=white} ) -> east;
loop_ant_arrives_new_direction( south, #state{colour=black} ) -> west;
loop_ant_arrives_new_direction( east, #state{colour=white} ) -> north;
loop_ant_arrives_new_direction( east, #state{colour=black} ) -> south;
loop_ant_arrives_new_direction( west, #state{colour=white} ) -> south;
loop_ant_arrives_new_direction( west, #state{colour=black} ) -> north.
loop_ant_departs( north, #state{position={_X,Y}, max_y=Y}=State ) ->
{State#state.controller, State};
loop_ant_departs( south, #state{position={_X,1}}=State ) ->
{State#state.controller, State};
loop_ant_departs( east, #state{position={X,_Y}, max_x=X}=State ) ->
{State#state.controller, State};
loop_ant_departs( west, #state{position={1,_Y}}=State ) ->
{State#state.controller, State};
loop_ant_departs( Direction, State ) ->
Neighbour = State#state.neighbour,
Pid = loop_ant_departs_pid( Direction, Neighbour ),
{Pid, State#state{colour=other_colour(State)}}.
loop_ant_departs_pid( north, #neighbour{north=Pid} ) -> Pid;
loop_ant_departs_pid( south, #neighbour{south=Pid} ) -> Pid;
loop_ant_departs_pid( east, #neighbour{east=Pid} ) -> Pid;
loop_ant_departs_pid( west, #neighbour{west=Pid} ) -> Pid.
loop_neighbour( {Pid, {X, Y}}, {{X, My_y}, Neighbour} ) when Y =:= My_y + 1 -> {{X, My_y}, Neighbour#neighbour{north=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{X, My_y}, Neighbour} ) when Y =:= My_y - 1 -> {{X, My_y}, Neighbour#neighbour{south=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{My_x, Y}, Neighbour} ) when X =:= My_x + 1 -> {{My_x, Y}, Neighbour#neighbour{east=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{My_x, Y}, Neighbour} ) when X =:= My_x - 1 -> {{My_x, Y}, Neighbour#neighbour{west=Pid}};
loop_neighbour( _Pid_position, Acc ) -> Acc.
other_colour( #state{colour=white} ) -> black;
other_colour( #state{colour=black} ) -> white.
plane_create( Controller, Max_x, Max_y ) -> [{plane_create_cell(Controller, Max_x, Max_y, {X, Y}), {X,Y}} || X <- lists:seq(1, Max_x), Y<- lists:seq(1, Max_y)].
plane_create_cell( Controller, Max_x, Max_y, Position ) -> erlang:spawn_link( fun() -> loop( #state{controller=Controller, max_x=Max_x, max_y=Max_y, position=Position} ) end ).
- Output:
___________________________________________________________________##_______________________________ ____________________________________________________________________##______________________________ _____________________________________________##__##____________###_##_#_____________________________ ____________________________________________#__##__###________####_#__#_____________________________ ___________________________________________#____##___#______##_##__#_#______________________________ ________________________________________##_#_____#_____#######_###_##_______________________________ _______________________________________#__#__#___##_#___#__#####_#__#_______________________________ ______________________________________###___#___####__##_###_#______##______________________________ ___________________________________##_#_#__##__#___#_##__####_######________________________________ __________________________________#__#___#____#_____##__##___#_#_#####_#____________________________ _________________________________###_##__#__#____#___#####_#_##_#____###____________________________ _________________________________##_____##_###___##_###___##_####__#__#_____________________________ ___________________________________###__###_#___#_#_###_____#__#____##______________________________ _____________________________________#_#___#########_#####___####___________________________________ _______________________________###_###__##_#__#______#___##__#______________________________________ ________________________________#####_#####__##___#####____#_#_#____________________________________ _____________________________##_#_#######_###_######_#####_#_###____________________________________ ____________________________#____##__##___###__#__#__#__#___#_#_____________________________________ ___________________________###______###__#_##_##____#__#_##_#_______________________________________ ___________________________#_#__#____#____#_#####__#____#_##________________________________________ ________________________________##_###__#_#__##_##____#__#_#________________________________________ ____________________________#_#_____#_#_____#_#_##_#_#__###_##_#____________________________________ ___________________________#___###__#__#__#_#__####_##___##_####____________________________________ ___________________________#___##_###_##_#__#___#_____####_#_##_____________________________________ ___________________________#__##___###______#__####_###_##___##_____________________________________ ___________________________#______###_____###__###___##__#____#_____________________________________ ___________________________#_____#_#_#_####____####__##_##__________________________________________ ___________________________#_____##_###_##___#_##_####_###___#_#____________________________________ ___________________________#______#_#____#####_#_#_###_______###____________________________________ ___________________________#____####_#____###_##_###___#_#____#_____________________________________ ___________________________#_____#__##_##_##_####__##_##__####______________________________________ ___________________________#_____#_##_##__#____#######______________________________________________ ___________________________###___##__##__#_###_#_##_#___#___________________________________________ ___________________________###____##_######_#__#___####____#________________________________________ ____________________________#_##_#_##__##____####_#_##_####_#_______________________________________ ____________________________#___#######_######__#_##_#_#____#_______________________________________ ___________________________#___#___##_#__#___##_######__#__#________________________________________ ___________________________#_##____###__#___#_#######_#__##_________________________________________ ____________________________##_#_##___#_#_#_##_#__##__###___________________________________________ _____________________________######_##__________#####___#___________________________________________ _________________________________#___#__#####_#______#_#____________________________________________ __________________________________##_____#_#_##___#____#____________________________________________ _______________________________##_#__##_#_____##_#____###___________________________________________ _______________________________#_##_#______#_#___#____###___________________________________________ ________________________________#___####_##___#___#____#____________________________________________ ________________________________###__#___#___###___####_____________________________________________ ________________________________#___##__##_##___#___________________________________________________ ___________________________________##__##__#___###__________________________________________________ ____________________________________##__#_##_##___#_________________________________________________ _________________________________________##__#___###________________________________________________ __________________________________________#_##_##___#_______________________________________________ ___________________________________________##__#___###______________________________________________ ____________________________________________#_##_##___#_____________________________________________ _____________________________________________##__#___###____________________________________________ ______________________________________________#_##_##___#___________________________________________ _______________________________________________##__#___###__________________________________________ ________________________________________________#_##_##___#_________________________________________ _________________________________________________##__#___###________________________________________ __________________________________________________#_##_##___#_______________________________________ ___________________________________________________##__#___###______________________________________ ____________________________________________________#_##_##___#_____________________________________ _____________________________________________________##__#___###____________________________________ ______________________________________________________#_##_##___#___________________________________ _______________________________________________________##__#___###__________________________________ ________________________________________________________#_##_##___#_________________________________ _________________________________________________________##__#___###________________________________ __________________________________________________________#_##_##___#_______________________________ ___________________________________________________________##__#___###______________________________ ____________________________________________________________#_##_##___#_____________________________ _____________________________________________________________##__#___###____________________________ ______________________________________________________________#_##_##___#___________________________ _______________________________________________________________##__#___###__________________________ ________________________________________________________________#_##_##___#_________________________ _________________________________________________________________##__#___###________________________ __________________________________________________________________#_##_##___#_______________________ ___________________________________________________________________##__#_#####______________________ ____________________________________________________________________#_#___####______________________ _____________________________________________________________________##_###_#_______________________ ______________________________________________________________________#___##________________________
Euphoria
include std\console.e
include std\graphics.e
sequence grid = repeat(repeat(1,100),100) --fill 100 by 100 grid with white (1)
sequence antData = {48, 53, 360} --ant x coordinate, y coordinate, facing angle
integer iterations = 0
--while ant isn't out of bounds of the 100 by 100 area..
while antData[1] > 0 and antData[1] < 100 and antData[2] > 0 and antData[2] < 100 do
switch grid[antData[1]][antData[2]] do
case 1 then--cell is already white
grid[antData[1]][antData[2]] = 0 --cell turns black, ant turns right
antData[3] += 90
break
case 0 then--cell is already black
grid[antData[1]][antData[2]] = 1 --cell turns white, ant turns left
antData[3] -= 90
break
end switch
--wrap ant directions if > 360 or < 90 (by 90)
switch antData[3] do
case 450 then
antData[3] = 90
break
case 0 then
antData[3] = 360
break
end switch
--move ant based on its new facing, one square
--first north, then south, east, west
switch antData[3] do
case 360 then
antData[2] -= 1
break
case 180 then
antData[2] += 1
break
case 90 then
antData[1] += 1
break
case 270 then
antData[1] -= 1
break
end switch
iterations += 1
end while
wrap(0) --don't wrap text output, the grid wouldnt display as a square
for y=1 to 100 do
printf(1,"\n")
for x=1 to 100 do
switch grid[x][y] do--each grid block , based on color
case 0 then
printf(1,".")
break
case 1 then
printf(1,"#")
break
end switch
end for
end for
printf(1,"\n%d Iterations\n",iterations)
any_key()--wait for keypress, put default message 'press any key..'
Code needed to run SDL example with Mark Akita's SDL_gfx_Test1.exw (as template) included with his SDL_gfx package from rapideuphoria.com's archive -
In initialization section :
sequence grid = repeat(repeat(1,100),100) --fill 100 by 100 grid with white (1)
sequence antData = {48, 53, 360} --x coordinate, y coordinate, facing angle
In main() , after keystate=SDL_GetKeyState(NULL) , you can adapt the program above to draw the ant's step each frame. Use dummy=pixelColor(surface,x+20,y+12,#000000FF) (for example) to replace the text output. Just before the close of the while loop, use dummy=pixelColor(surface,antData[1]+20,antData[2]+12,#FF0000FF) for the ant and SDL_UpdateRect(surface,0,0,0,0) to display the graphic.
F#
// Langton's ant F# https://rosettacode.org/wiki/Langton%27s_ant
// A list of cells which are black is maintained and then printed out at the end
type Cell = { X : int; Y : int }
type Direction = | North | South | East| West // direction the ant is facing
let withinBounds (dim:int) (cell: Cell) = // ant's cell within dimensions ?
cell.X < dim && cell.Y < dim && cell.X >= 0 && cell.Y >= 0
let rotateLeft (currentDirection: Direction) =
match currentDirection with
| North -> West | South -> East | East -> North | West -> South
let rotateRight (currentDirection: Direction ) =
match currentDirection with
| North -> East | South -> West | East -> South | West -> North
let nextCell (dir:Direction) (cell: Cell) = // compute next cell based on the direction
match dir with
| North -> {cell with Y = cell.Y + 1 }
| South -> {cell with Y = cell.Y - 1 }
| East -> {cell with X = cell.X + 1 }
| West -> {cell with X = cell.X - 1 }
let isBlackCell (blackCells: Cell list) (cell:Cell) =
blackCells |> List.exists ( fun c -> c = cell)
let toggleCellColor (blackCells: Cell list) (cell: Cell) =
if cell |> isBlackCell blackCells
then blackCells |> List.where( fun c -> c <> cell) // remove the cell from list of black cells
else cell::blackCells // add the cell to the list of black cells
let moveToCell (blackCells: Cell list) (currentDir : Direction) (cell: Cell) =
let ndir = if cell |> isBlackCell blackCells // next step direction is computed
then rotateLeft currentDir
else rotateRight currentDir
let nlst = cell |> toggleCellColor blackCells // next step updated list of black cells is computed
let ncell = cell |> nextCell ndir // next step cell is computedd
(nlst, ndir, ncell) // return next step list of black cells, direction it will enter the cell, new cell
let rec doStep (dim:int) (blackCells: Cell list) (dir : Direction) (cell: Cell) =
let (nlst, ndir, ncell) = moveToCell blackCells dir cell
if withinBounds dim ncell // check if the next step is within bounds
then doStep dim nlst ndir ncell // recursive call to next step
else nlst, ndir, ncell
[<EntryPoint>]
let main _ =
let dim = 100
let (blacklist, _, _) = doStep dim [] North { X = dim/2 ; Y = dim/2 } // start with empty blacklist, facing north in the center
// print out by row, 0th row is at the bottom
seq { for row in [dim-1..-1..0] do for col in [0..dim-1] -> (col,row) }
|> Seq.iter (fun (row,col) -> if {X = row; Y = col } |> isBlackCell blacklist
then printf "#" else printf " "
if row = (dim - 1 )
then printf "\n" else ()
)
0
## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # # ### # # # # # # ## ## ## #### ### # ## ## # ## ## # # ### # ### # # # ## #### #### ### #### ### # ## ## #### ## # ## # # # # ### # # ## ## ## ### ## ##### ### # ## # ## # #### # ### # # ## ## ## ### # ## ## # ### # # # ## #### # ### # ## # # ### ### # ### # # # ## # # # ### # ## ## ## # ### # # ## ### # ## # # # # # #### ## # ## # #### ##
Fantom
class World
{
Int height
Int width
Bool[] state
new make (Int height, Int width)
{
this.height = height
this.width = width
state = List(Bool#, height * width)
(height*width).times { state.add (false) }
}
Bool inWorld (Int x, Int y)
{
x >= 0 && x < width && y >= 0 && y < height
}
Void show ()
{
height.times |h|
{
width.times |w|
{
Env.cur.out.writeChar (state[w*width+h] ? '#' : '.')
}
Env.cur.out.writeChar ('\n')
}
}
Void flip (Int x, Int y)
{
state[x*width + y] = !state[x*width + y]
}
Bool stateOf (Int x, Int y)
{
state[x*width + y]
}
}
enum class Direction
{
up (0, -1),
down (0, 1),
left (-1, 0),
right (1, 0)
private new make (Int deltaX, Int deltaY)
{
this.deltaX = deltaX
this.deltaY = deltaY
}
Direction rotateLeft ()
{
if (this == up) return left
if (this == down) return right
if (this == left) return down
// if (this == right)
return up
}
Direction rotateRight ()
{
if (this == up) return right
if (this == down) return left
if (this == left) return up
// if (this == right)
return down
}
const Int deltaX
const Int deltaY
}
class Ant
{
World world
Int currX
Int currY
Direction direction
new make (World world, Int x, Int y)
{
this.world = world
currX = x
currY = y
direction = Direction.up
}
Bool inWorld ()
{
world.inWorld (currX, currY)
}
// the ant movement rules
Void move ()
{
if (world.stateOf (currX, currY))
{
direction = direction.rotateLeft
}
else
{
direction = direction.rotateRight
}
world.flip (currX, currY)
currX += direction.deltaX
currY += direction.deltaY
}
}
class Main
{
Void main ()
{
world := World (100, 100)
ant := Ant (world, 50, 50)
numIterations := 0
while (ant.inWorld)
{
ant.move
numIterations += 1
}
world.show
echo ("Finished in $numIterations iterations")
}
}
Output (snipping the blank lines):
..........................................##..############..##...................................... .........................................#..####..........#..##..................................... ........................................###...##............##.#.................................... ........................................#.#..#.........#..#....#.................................... ....................................##..##.#.#.........###.......#.................................. .................................###.#..#...#.....#.....##.##..###.................................. ..................................#.#..###..##.####.##...#.#..#.##..##.............................. ..................................#.###.##..#.##..###.#.#.....###...###............................. ................................#.....#...#####.#.#..####..#...###.#.#.#............................ ...............................###.##...#.####..##.##.######.#.###.#...#............................ ...............................#.###.#.##.#.#.##.##.##.#...#####.###.##............................. ...................................#.#...#.##.###...#...#.#..####....#.##........................... ................................#..#.........##.##...#..##.....##.#.....##.......................... ...............................###...#.#.##.###..#..##.....#...###.##..##.#......................... ..............................#..###..##...##.##...###..#....#..##.####...#......................... .............................###...#...#.#..#.#.####.##..#.##.###..#.....#.......................... ............................#..###..#.##....#..#.###..#......###.##.#..#..##........................ ...........................###...#.....#.##.#.##..##..#####.####..####.##...#....................... ..........................#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#...................... .........................###...#..##.###..##.#...##.......####.####...#......#...................... ........................#..###..#.#..#...##..###########.#..####..#....#....#....................... .......................###...#..##......#.####..##..#########..#..##....#..##....................... ......................#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#...................... .....................###...#..##...#..#.######.##.#.##.#.#....###.###...##...#...................... ....................#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#....................... ...................###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#....................... ..................#..###..#.#.....#....#...####.#..#####.##...##########...##....................... .................###...#..##......#.##...##...#..#...####..#...##.####.##........................... ................#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#......................... ...............###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##......................... ..............#..###..#.#.................#..#....#.########.#.#.##..####.#......................... .............###...#..##..................#..#...#.......##.##...#..#..##.#......................... ............#..###..#.#....................#..#..#......#..##..##...##.####......................... ...........###...#..##......................##...#.......##..##....#...#.###........................ ..........#..###..#.#............................#.##..####....####.###.####........................ .........###...#..##..............................##..####....##..#.##.#.#..#....................... ........#..###..#.#................................##....##....##.###.##.#####...................... .......###...#..##................................................#.##.#..####...................... ......#..###..#.#.....................................................##.##.##...................... .....###...#..##......................................................##............................ ....#..###..#.#.....................................................#.##..####.#.................... ...###...#..##.....................................................#..#.###..###.................... ..#..###..#.#......................................................#.##.#..#..#..................... .###...#..##........................................................##......##...................... #..###..#.#..........................................................##............................. .###.#..##.......................................................................................... #.#.#.#.#........................................................................................... .####.##............................................................................................ .#.##.#............................................................................................. ..####.............................................................................................. ...##............................................................................................... Finished in 11669 iterations
Forth
All array manipulations were taken from Rosetta Code examples.
1 0 0 0 \ pushes orientation of the ant to the stack.
100 CONSTANT border \ lenght of the side of the grid
border border * constant size \ size of the grid
variable antpos \ for storing position of the ant
size 2 / border 2 / + antpos ! \ positions ant in the middle of the grid
create Grid size cells allot
here constant GridEnd \ creates an array to hold the grid
: turn.left
>r rot r> SWAP ; \ rotates ant anti-clockwise
: turn.right
turn.left turn.left turn.left ; \ rotates ant clockwise
: stop.ant
antpos @ DUP 0< SWAP size > + ; \ checks if ant not out of bounds
: call.pos
Grid antpos @ cells + @ ; \ pushes ant position to the stack
: grid.add
Grid antpos @ cells + @ -1 + Grid antpos @ cells + ! ; \ pushes -1 to the current position of the ant on the grid
: swap.pos
call.pos dup * Grid antpos @ cells + ! ; \ multiplies current grid cell by itself to turn -1 into 1
: swap.col
grid.add swap.pos ; \ changes current grid cell color
: go.ant \ moves ant one step in the direction taken from the stack
2over 2over \ copies stack for testing
1 = IF antpos @ border + antpos ! 2DROP DROP ELSE \ if true moves ant one cell up, drops unused numbers from stack
1 = IF antpos @ 1 + antpos ! 2DROP ELSE \ same, but moves to the right
1 = IF antpos @ border - antpos ! DROP ELSE \ here to the left
1 = IF antpos @ 1 - antpos ! ELSE \ and down
THEN THEN THEN THEN ;
: step.ant \ preforms one full step.
call.pos 1 = IF turn.left swap.col ELSE
turn.right swap.col
THEN go.ant ;
: run.ant \ runs the ant until it leaves the grid
BEGIN
step.ant
stop.ant UNTIL ;
: square.draw \ draws an "*" if grid cell is one or " " if zero
1 = IF 42 EMIT ELSE 32 EMIT THEN ;
: draw.grid \ draws grid on screen
PAGE \ clear sreen
size 0 DO I
I border MOD 0= IF CR THEN \ breaks the grid into lines
Grid I cells + @ square.draw DROP
LOOP ;
: langton.ant run.ant draw.grid ; \ launches the ant, outputs the result
- Output:
** ** ** ** *** ** * * ** *** **** * * * ** * ** ** * * ** * * ******* *** ** * * * ** * * ***** * * *** * **** ** *** * ** ** * * ** * * ** **** ****** * * * * ** ** * * ***** * *** ** * * * ***** * ** * *** ** ** *** ** *** ** **** * * *** *** * * * *** * * ** * * ********* ***** **** *** *** ** * * * ** * ***** ***** ** ***** * * * ** * ******* *** ****** ***** * *** * ** ** *** * * * * * * *** *** * ** ** * * ** * * * * * * ***** * * ** ** *** * * ** ** * * * * * * * * * ** * * *** ** * * *** * * * * **** ** ** **** * ** *** ** * * * **** * ** * ** *** * **** *** ** ** * *** *** *** ** * * * * * * **** **** ** ** * ** *** ** * ** **** *** * * * * * ***** * * *** *** * **** * *** ** *** * * * * * ** ** ** **** ** ** **** * * ** ** * ******* *** ** ** * *** * ** * * *** ** ****** * * **** * * ** * ** ** **** * ** **** * * ******* ****** * ** * * * * * ** * * ** ****** * * * ** *** * * ******* * ** ** * ** * * * ** * ** *** ****** ** ***** * * * ***** * * * ** * * ** * * ** * ** * ** * *** * ** * * * * *** * **** ** * * * *** * * *** **** * ** ** ** * ** ** * *** ** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * *** * ** ** * ** * ***** * * **** ** *** * * * ** ok
Fortran
program Langtons_Ant
implicit none
integer, parameter :: csize = 100
integer :: direction = 0, maxsteps = 20000
integer :: i, x, y
logical :: cells(csize,csize) = .true.
logical :: cflag
x = csize / 2; y = x
do i = 1, maxsteps
cflag = cells(x,y)
if(cflag) then
direction = direction + 1
if(direction == 4) direction = direction - 4
else
direction = direction - 1
if(direction == -1) direction = direction + 4
end if
cells(x,y) = .not. cells(x,y)
select case(direction)
case(0)
y = y - 1
case(1)
x = x + 1
case(2)
y = y + 1
case(3)
x = x - 1
end select
if(x < 1 .or. x > csize .or. y < 1 .or. y > csize) exit
end do
do y = 1, csize
do x = 1, csize
if(cells(x,y)) then
write(*, "(a)", advance="no") "."
else
write(*, "(a)", advance="no") "#"
end if
end do
write(*,*)
end do
end program
- Output:
(Cropped to save space)
................................................................................... ................................................................................... .........................................##..############..##...................... ........................................#..####..........#..##..................... .......................................###...##............##.#.................... .......................................#.#..#.........#..#....#.................... ...................................##..##.#.#.........###.......#.................. ................................###.#..#...#.....#.....##.##..###.................. .................................#.#..###..##.####.##...#.#..#.##..##.............. .................................#.###.##..#.##..###.#.#.....###...###............. ...............................#.....#...#####.#.#..####..#...###.#.#.#............ ..............................###.##...#.####..##.##.######.#.###.#...#............ ..............................#.###.#.##.#.#.##.##.##.#...#####.###.##............. ..................................#.#...#.##.###...#...#.#..####....#.##........... ...............................#..#.........##.##...#..##.....##.#.....##.......... ..............................###...#.#.##.###..#..##.....#...###.##..##.#......... .............................#..###..##...##.##...###..#....#..##.####...#......... ............................###...#...#.#..#.#.####.##..#.##.###..#.....#.......... ...........................#..###..#.##....#..#.###..#......###.##.#..#..##........ ..........................###...#.....#.##.#.##..##..#####.####..####.##...#....... .........................#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#...... ........................###...#..##.###..##.#...##.......####.####...#......#...... .......................#..###..#.#..#...##..###########.#..####..#....#....#....... ......................###...#..##......#.####..##..#########..#..##....#..##....... .....................#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#...... ....................###...#..##...#..#.######.##.#.##.#.#....###.###...##...#...... ...................#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#....... ..................###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#....... .................#..###..#.#.....#....#...####.#..#####.##...##########...##....... ................###...#..##......#.##...##...#..#...####..#...##.####.##........... ...............#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#......... ..............###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##......... .............#..###..#.#.................#..#....#.########.#.#.##..####.#......... ............###...#..##..................#..#...#.......##.##...#..#..##.#......... ...........#..###..#.#....................#..#..#......#..##..##...##.####......... ..........###...#..##......................##...#.......##..##....#...#.###........ .........#..###..#.#............................#.##..####....####.###.####........ ........###...#..##..............................##..####....##..#.##.#.#..#....... .......#..###..#.#................................##....##....##.###.##.#####...... ......###...#..##................................................#.##.#..####...... .....#..###..#.#.....................................................##.##.##...... ....###...#..##......................................................##............ ...#..###..#.#.....................................................#.##..####.#.... ..###...#..##.....................................................#..#.###..###.... .#..###..#.#......................................................#.##.#..#..#..... ###...#..##........................................................##......##...... ...##..#.#..........................................................##............. ##..#..##.......................................................................... .#.#.#.#........................................................................... ####.##............................................................................ #.##.#............................................................................. .####.............................................................................. ..##............................................................................... ................................................................................... ...................................................................................
But, if one remembers complex numbers
PROGRAM LANGTONSANT
C Langton's ant wanders across an initially all-white board, stepping one cell at a go.
C If the current cell is white, it becomes black and the ant turns right.
C If the current cell is black, it becomes white and the ant turns left.
C The ant advances one cell in its latest direction, and reconsiders.
INTEGER ENUFF
PARAMETER (ENUFF = 100) !Said to be so.
CHARACTER*1 CELL(ENUFF,ENUFF) !The work area.
COMPLEX WAY,PLACE !A direction and a position.
INTEGER X,Y,XN,Y1 !Integer versions.
INTEGER STEP !A counter.
CELL = "" !Clear for action.
PLACE = CMPLX(ENUFF/2,ENUFF/2) !Start at the middle.
WAY = (1,0) !Initial direction is +x.
Commence wandering.
DO STEP = 1,20000 !Enough to be going on with.
X = REAL(PLACE) !Change languages.
Y = AIMAG(PLACE) !Could mess about with EQUIVALENCE...
IF (X.LE.0 .OR. X.GT.ENUFF !Are we still
1 .OR.Y.LE.0 .OR. Y.GT.ENUFF) THEN!Within bounds?
WRITE (6,1) STEP - 1,X,Y !No! Offer details.
1 FORMAT ("Step ",I0," to (",I0,",",I0,") is out of bounds!")
EXIT !And wander no further.
END IF !But, if we're within bounds,
IF (CELL(X,Y).NE."#") THEN !Consider our position.
CELL(X,Y) = "#" !A blank cell becomes black. Ish.
WAY = WAY*(0,-1) !Turn right.
ELSE !Otherwise,
CELL(X,Y) = "+" !A black cell becomes white. Ish.
WAY = WAY*(0,+1) !Turn left.
END IF !So much for changing direction.
PLACE = PLACE + WAY !Advance one step.
END DO !On to the next step.
Consider the bounds...
DO Y1 = 1,ENUFF !Work up from the bottom.
IF (ANY(CELL(:,Y1).NE." ")) EXIT !The last line with a splot.
END DO !Subsequent lines would be blank.
DO XN = ENUFF,1,-1 !Work back from the right hand side.
IF (ANY(CELL(XN,:).NE." ")) EXIT !The last column with a splot.
END DO !Subsequent columns would be blank.
Cast forth the splotches.
DO Y = ENUFF,Y1,-1 !The topmost y-coordinate first!
WRITE (6,"(666A1)") CELL(1:XN,Y) !Roll a line's worth.
END DO !On to the next line.
Completed.
END
Output is the same, except for orientation. Here I have stuck to (x,y) Cartesian orientation rather than lines (y) increasing downwards. Just for fun, + signs mark cells that have been trampled and then cleaned. But not to pure white... Notice that some interior cells have never been trampled.
- Output:
Step 11669 to (26,101) is out of bounds! #+# ## #+# #+###+## ####+###+# #####+#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ###+++#++## #+++##+##+# ## ###+++#++## +## #+++##+##++##+++# #### ###+++#+++#++### #++++# #+++##+####+++# ###++++# #+#++++++#+##+# ###++++# ## +++#+##++#+## #++++# +## #+#+++++##++ #+#++++++#+#####++#+++#+ #+++#####++++++++++##+###### ###++##++#+##+#+#+#+++##+#+## ## +#+#######+#+++#++###++++##+# #++#++######+##+++#++#+## ++#+++# #++++#+#+##+#++######+#######+++# #+####+##+#+####++++##++##+#+##+# #++++####+++#++#+######+##++++### #+++#+##+#+###+#++##++##+++### +++#######++++#++##+##+#+++++# #### +##+##++####+##+##+##++#+++++# #++++#+#+++###+##+###++++#+####++++# ###+++++++###+#+#+#####++++#+#++++++# #+#+++###+####+##+#+++##+###+##+++++# ++++##+##++####++++####+#+#+#+++++# #++++#++##+++###++###+++++###++++++# ##+++##+###+####++#++++++###+++##++# ##+#+####+++++#+++#++#+##+###+##+++# ####+##+++##+####++#+#++#++#++###+++# #+##+###++#+#+##+#+#+++++#+#+++++#+# ++#+#++#++++##+##++#+#++###+##+++ ++##+#++++#++#####+#++++#++++#++#+# +#+##+#++#++++##+##+#++###++++++### #+#+++#++#++#++#++###+++##++##++++# ###+#+#####+######+###+#######+#+## #+#+#++++#####+++##++#####+#####+ #++##+++#++++++#++#+##++###+### ####+++#####+#########+++#+#+++ ## +#++#+++++###+#+#+++#+###++###+ #++# ####+##+++###+##+++###+##+++++## ###++++#+##+#+#####+++#++++#++#++##+### #+#####+#+#+++##++##++++ #++++#+ #++# ++######+####++## #+++#+ ##++#+# ## ##++++++#+###+##++####++ #+++### #++#+#####++#+++#+##+++#+ #++# ##+###+#######+++++#+++++# ## #+#++##+##++++++#+++##++++# #++#+#### ###++##++# #+##+### ## ## ##+ ##
FreeBASIC
' version 16-10-2016
' compile with: fbc -s gui
' a cell size of 4 x 4 pixels is used
' In FreeBASIC the 0,0 is the top left corner
ScreenRes 400,400,8 ' give a 100 by 100 field
Dim As UByte Ptr p = ScreenPtr
If p = 0 Then End ' p does not point to screen
Palette 0, 0, 0, 0 ' index 0 = black
Palette 255, 255, 255, 255 ' index 225 = white
Line (0, 0) - (799, 799), 255, bf ' draw box and fill it with white color
Dim As Integer count, offset, x = 199, y = 199
Dim As UByte col ' = color
' direction, 0 = up, 1 = right, 2 = down, 3 = left
Dim As UByte d ' d = 0, looking up
Do
offset = x + y * 400
col = p[offset]
If col = 0 Then
d = (d -1) And 3
Else
d = (d +1) And 3
EndIf
col = col Xor 255 ' flip the color
ScreenLock ' don't update screen while we are drawing
' draw a 4*4 block and paint it with palette color [0 | 255]
Line (x, y) - (x +3, y -3), col, bf
ScreenUnLock ' allow screen update's
'Sleep 100 ' slow the program down if needed
' true = 0, false = -1
If (d And 1) = 1 Then
x = x + (d = 1) * 4 - (d = 3) * 4
Else
y = y - (d = 0) * 4 + (d = 2) * 4
End If
count += 1
' update step count window title bar
WindowTitle "Langton's ant step: " + Str(count)
' has user clicked on close window "X" then end program
If InKey = Chr(255) + "k" Then End
Loop Until x < 1 Or x > 398 Or y < 1 Or y > 398
' display total count in window title bar
WindowTitle "Langton's ant has left the field in " + Str(count) + " steps"
' empty keyboard buffer
While InKey <> "" : Wend
'Print : Print "hit any key to end program"
Sleep
End
Furor
###sysinclude X.uh
$ff0000 sto szin1
$ffffff sto szin2
2 sto pausetime
maxypixel 100 - sto YRES
maxxpixel sto XRES
zero ant
// Az ant iránykódjai:
// 0 : fel
// 1 : le
// 2 : jobbra
// 3 : balra
@XRES 2 / sto antx // Az ant kezdeti koordinátái
@YRES 2 / sto anty
myscreen "Furor monitor" @YRES @XRES graphic // Create the graphic screen
."Kilépés: ESC\n"
infiniteloop: {... // infinite loop begins
myscreen @anty @antx [[]][[]] // A pixel színe amin az ant ül épp
@szin2 == { myscreen @anty @antx @szin1 [][] // másik színre átállítjuk a pixelt
2 // Jobbra fog fordulni
}{ myscreen @anty @antx @szin2 [][] // másik színre átállítjuk a pixelt
3 // Balra fog fordulni
}
// Elvégezzük az új koordináta beállítását:
sto direction
@ant 0 == { @direction 2 == then §r1 @direction 3 == then §r2 }
@ant 2 == { @direction 2 == then §r3 @direction 3 == then §r4 }
@ant 1 == { @direction 3 == { r1: antx @XRES ring 2 goto §beolvas } @direction 2 == { r2: antx @XRES !ring 3 goto §beolvas } }
@ant 3 == { @direction 3 == { r3: anty @YRES !ring 1 goto §beolvas } @direction 2 == { r4: anty @YRES ring 0 goto §beolvas } }
beolvas: sto ant
myscreen key? sto! billkód @pausetime usleep $1b ==
|...}
."Made " {...}§infiniteloop print ." steps.\n"
."XRES = " @XRES printnl
."YRES = " @YRES printnl
myscreen !graphic
end
{ „myscreen” }
{ „billkód” }
{ „pausetime” }
{ „XRES” }
{ „YRES” }
{ „szin1” }
{ „szin2” }
{ „ant” }
{ „antx” }
{ „anty” }
{ „direction” }
Peri
###sysinclude standard.uh
###sysinclude system.uh
###sysinclude str.uh
###sysinclude X.uh
#g
$ff0000 sto szin1
$ffffff sto szin2
10 sto pausetime
//maxypixel 100 - sto YRES
//maxypixel 20 - sto YRES
//maxypixel 7 - sto YRES
//maxypixel 13 - sto YRES
maxypixel 20 - sto YRES
maxxpixel sto XRES
zero ant
// Az ant iránykódjai:
// 0 : fel
// 1 : le
// 2 : jobbra
// 3 : balra
@XRES 2 / sto antx // Az ant kezdeti koordinátái
@YRES 2 / sto anty
myscreen "Furor monitor" @YRES @XRES graphic // Create the graphic screen
."Kilépés: ESC\n"
{.. // infinite loop begins
myscreen @anty @antx getpixel // A pixel színe amin az ant ül épp
@szin2 == {
myscreen @anty @antx @szin1 setpixel // másik színre átállítjuk a pixelt
2 // Jobbra fog fordulni
}{
myscreen @anty @antx @szin2 setpixel // másik színre átállítjuk a pixelt
3 // Balra fog fordulni
}
// Elvégezzük az új koordináta beállítását:
sto direction
@ant 0 == @direction 2 == & { ++() antx @antx @XRES == { zero antx } 2 sto ant goto §beolvas }
@ant 0 == @direction 3 == & { @antx inv { @XRES -- sto antx }{ --() antx } 3 sto ant goto §beolvas }
@ant 1 == @direction 3 == & { ++() antx @antx @XRES == { zero antx } 2 sto ant goto §beolvas }
@ant 1 == @direction 2 == & { @antx inv { @XRES -- sto antx }{ --() antx } 3 sto ant goto §beolvas }
@ant 2 == @direction 2 == & { @anty inv { @YRES -- sto anty }{ --() anty } 1 sto ant goto §beolvas }
@ant 2 == @direction 3 == & { ++() anty @anty @YRES == { zero anty } 0 sto ant goto §beolvas }
@ant 3 == @direction 2 == & { ++() anty @anty @YRES == { zero anty } 0 sto ant goto §beolvas }
@ant 3 == @direction 3 == & { @anty inv { @YRES -- sto anty }{ --() anty } 1 sto ant goto §beolvas }
beolvas:
myscreen key !sto billkód @pausetime inv sleep $1b == {
."Made " {..} print ." generations.\n" {.>.} }
..}
myscreen inv graphic
end
{ „myscreen” }
{ „billkód” }
{ „pausetime” }
{ „XRES” }
{ „YRES” }
{ „szin1” }
{ „szin2” }
{ „ant” }
{ „antx” }
{ „anty” }
{ „direction” }
Gambas
'This code will create a GUI Form to display the result
hGridView As GridView 'The display is on a GridView
iCol As Integer = 38 'Column start position
iRow As Integer = 30 'Row start position
Public Sub Form_show()
SetUpForm 'Run the SetUpForm routine
Go 'Run the Go routine
End
Public Sub Go() 'This is what does the work
Dim siDir As Short = 3 'Stores the Direction of the ant 0 = North, 1 = East, 2 = South ,3 = West
Dim siCount As Short 'Counter
Repeat 'Repeat loop
Inc siCount 'Increase siCount
If hGridView[iRow, iCol].background = -1 Then 'If the Background of the cell is white then..(Right turn)
hGridView[iRow, iCol].background = 0 'Make the Background black
siDir = Direction(siDir, True) 'Get the direction to turn
If siDir = 0 Then Dec iRow 'Decrease Row if facing North
If siDir = 1 Then Inc iCol 'Increase Column if facing East
If siDir = 2 Then Inc iRow 'Increase Row if facing South
If siDir = 3 Then Dec iCol 'Decrease Column if facing West
End If
'Wait 'This will allow you to see the Grid being populated. Rem it out for an instant result
If hGridView[iRow, iCol].background = 0 Then 'If the Background of the cell is black then.. Left Turn
hGridView[iRow, iCol].background = -1 'Make the Background white
siDir = Direction(siDir, False) 'Get the direction to turn
If siDir = 0 Then Dec iRow 'Decrease Row if facing North
If siDir = 1 Then Inc iCol 'Increase Column if facing East
If siDir = 2 Then Inc iRow 'Increase Row if facing South
If siDir = 3 Then Dec iCol 'Decrease Column if facing West
End If
Until siCount = 9660 'Loop 9660 times
End
Public Sub Direction(siDirection As Short, bWay As Boolean) As Byte 'To workout which way to go
If bWay Then 'If turning Right then
Inc siDirection 'Increase siDirection e.g. 0 = North to 1 = East
Else 'Else if turning Left
Dec siDirection 'Decrease siDirection e.g. 2 = South to 1 = East
End If
If siDirection < 0 Then siDirection = 3 'To address 0 - 1 = -1
If siDirection > 3 Then siDirection = 0 'To address 3 + 1 = 4
Return siDirection 'Return the correct direction
End
Public Sub SetUpForm() 'Set up the Form and Create the Gridview
With Me 'Change the Properties of the Form
.Height = 1012 'Set the Form Height
.Width = 1012 'Set the Form Width
.Arrangement = Arrange.Vertical 'Set the Form Arrangement
.Padding = 5 'Set the Form Padding (Border)
.title = "Langton's ant" 'Set the Form Title
End With
hGridView = New GridView(Me) 'Create a GridView
With hGridView 'Change the Properties of the GridView
.Columns.count = 100 'Create 100 Columns
.Rows.count = 100 'Create 100 Rows
.Columns.Width = 10 'Set the Column Width
.Rows.Height = 10 'Set the Column Height
.expand = True 'Set the Gridview to Expand to fill the Form
.background = -1 'Set the Gridview background to White
End With
End
Click here for an image of the result
GFA Basic
To make it easier to see the output on small Atari screens, the output is written to a text file.
'
' Langton's ant
'
' World is a global boolean array, 100x100 in size
width%=100
height%=100
DIM world!(width%,height%)
ARRAYFILL world!(),FALSE
' Time in world
time%=0
' Ant is represented by a global three-element array
' holding: x, y, direction [0=north,1=west,2=south,3=east]
DIM ant%(3)
'
@setup_ant
@run_ant
@display_world
'
' Displays the world to file "langton.out": . for false, # for true
'
PROCEDURE display_world
LOCAL i%,j%
OPEN "o",#1,"langton.out"
PRINT #1,"Time in world: ";time%;" ticks"
FOR i%=0 TO width%-1
FOR j%=0 TO height%-1
IF world!(i%,j%)
PRINT #1,"#";
ELSE
PRINT #1,".";
ENDIF
NEXT j%
PRINT #1,""
NEXT i%
CLOSE #1
RETURN
'
' Set up the ant to start at (50,50) facing north
'
PROCEDURE setup_ant
ant%(0)=50
ant%(1)=50
ant%(2)=0
RETURN
'
' check if ant position is within world's bounds
'
FUNCTION ant_in_world
RETURN ant%(0)>=0 AND ant%(0)<width% AND ant%(1)>=0 AND ant%(1)<height%
ENDFUNC
'
' Turn ant direction to left
'
PROCEDURE ant_turn_left
ant%(2)=(ant%(2)+1) MOD 4
RETURN
'
' Turn ant direction to right
'
PROCEDURE ant_turn_right
ant%(2)=(ant%(2)+3) MOD 4
RETURN
'
' Ant takes a step forward in current direction
'
PROCEDURE ant_step_forward
SELECT ant%(2)
CASE 0
ant%(0)=ant%(0)+1
CASE 1
ant%(1)=ant%(1)+1
CASE 2
ant%(0)=ant%(0)-1
CASE 3
ant%(1)=ant%(1)-1
ENDSELECT
RETURN
'
' Run the ant until it falls out of the world
'
PROCEDURE run_ant
WHILE @ant_in_world
time%=time%+1
IF world!(ant%(0),ant%(1)) ! true for white
world!(ant%(0),ant%(1))=FALSE
@ant_turn_left
ELSE ! false for black
world!(ant%(0),ant%(1))=TRUE
@ant_turn_right
ENDIF
@ant_step_forward
WEND
RETURN
Go
package main
import (
"fmt"
"image"
"image/color"
"image/draw"
"image/png"
"os"
)
const (
up = iota
rt
dn
lt
)
func main() {
bounds := image.Rect(0, 0, 100, 100)
im := image.NewGray(bounds)
gBlack := color.Gray{0}
gWhite := color.Gray{255}
draw.Draw(im, bounds, image.NewUniform(gWhite), image.ZP, draw.Src)
pos := image.Point{50, 50}
dir := up
for pos.In(bounds) {
switch im.At(pos.X, pos.Y).(color.Gray).Y {
case gBlack.Y:
im.SetGray(pos.X, pos.Y, gWhite)
dir--
case gWhite.Y:
im.SetGray(pos.X, pos.Y, gBlack)
dir++
}
if dir&1 == 1 {
pos.X += 1 - dir&2
} else {
pos.Y -= 1 - dir&2
}
}
f, err := os.Create("ant.png")
if err != nil {
fmt.Println(err)
return
}
if err = png.Encode(f, im); err != nil {
fmt.Println(err)
}
if err = f.Close(); err != nil {
fmt.Println(err)
}
}
Haskell
The set of black cells is represented as a set of points. Complementary set is regarded as white cells.
Necessary import:
import Data.Set (member,insert,delete,Set)
In order to express the ant's algorithm literally we define two operators:
-- functional sequence
(>>>) = flip (.)
-- functional choice
p ?>> (f, g) = \x -> if p x then f x else g x
Finally define the datatype representing the state of ant and ant's universe
data State = State { antPosition :: Point
, antDirection :: Point
, getCells :: Set Point }
type Point = (Float, Float)
Now we are ready to express the main part of the algorithm
step :: State -> State
step = isBlack ?>> (setWhite >>> turnRight,
setBlack >>> turnLeft) >>> move
where
isBlack (State p _ m) = member p m
setBlack (State p d m) = State p d (insert p m)
setWhite (State p d m) = State p d (delete p m)
turnRight (State p (x,y) m) = State p (y,-x) m
turnLeft (State p (x,y) m) = State p (-y,x) m
move (State (x,y) (dx,dy) m) = State (x+dx, y+dy) (dx, dy) m
That's it.
Here is the solution of the task:
task :: State -> State
task = iterate step
>>> dropWhile ((< 50) . distance . antPosition)
>>> getCells . head
where distance (x,y) = max (abs x) (abs y)
For given initial configuration it returns the set of black cells at the end of iterations.
We can display it graphically using Gloss library
import Graphics.Gloss
main = display w white (draw (task initial))
where
w = InWindow "Langton's Ant" (400,400) (0,0)
initial = State (0,0) (1,0) mempty
draw = foldMap drawCell
drawCell (x,y) = Translate (10*x) (10*y) $ rectangleSolid 10 10
Or animate the ant's trajectory
main = simulate w white 500 initial draw (\_ _ -> step)
where
w = InWindow "Langton's Ant" (400,400) (0,0)
initial = State (0,0) (1,0) mempty
draw (State p _ s) = pictures [foldMap drawCell s, color red $ drawCell p]
drawCell (x,y) = Translate (10*x) (10*y) $ rectangleSolid 10 10
Icon and Unicon
printf.icn provides formatting graphics.icn provides graphics support (WDone)
J
dirs=: 0 1,1 0,0 _1,:_1 0
langton=:3 :0
loc=. <.-:$cells=. (_2{.y,y)$dir=. 0
while. *./(0<:loc), loc<$cells do.
color=. (<loc) { cells
cells=. (-.color) (<loc)} cells
dir=. 4 | dir + _1 ^ color
loc=. loc + dir { dirs
end.
' #' {~ cells
)
langton 100 100 # # ## # # # ### ## #### ### # ##### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ### # ## # ## ## # ## ### # ## ## # ## ## ## # #### ### # # ### # # # ## #### # ### # # # # ## # ### # ## # ## # ## # # ## # # ## # # # ##### # # # ##### ## ###### ### ## # ## # # # ## # ## ## # ####### # # ### ## # # # ###### ## # # ## # # # # # ## # ###### ####### # # #### ## # #### ## ## # ## # # #### # # ###### ## ### # # ## # ### # ## ## ### ####### # ## ## # # #### ## ## #### ## ## ## # # # # # ### ## ### # #### # ### ### # # ##### # # # # # ### #### ## # ## ### ## # ## ## #### #### # # # # # # ## ### ### ### # ## ## ### #### # ### ## # ## # #### # # # ## ### ## # #### ## ## #### # # # # ### # # ## ### # # ## # # # # # # # # # ## ## # # ### ## ## # # ##### # # # # # # ## # # ## ## # ### ### # # # # # # ### ## ## # ### # ##### ###### ### ####### # ## # # # ##### ## ##### ##### # ## # # # ## ### ### #### ##### ######### # # ## # # ### # # # ### ### # # #### ## ### ## ### ## ## ### # ## # ##### # # # ## ### # ##### # # ## ## # # # # ###### #### ## # # ## # # ## ## # ### ## #### # ### # # ##### # # ## # # # ## ### ####### # # ## # # ## ## # ## # # # #### ### ## # # ## ### ## ## ## ##
Java
This implementation allows for sizes other than 100x100, marks the starting position with a green box (sometimes hard to see at smaller zoom levels and the box is smaller than the "pixels" so it doesn't cover up the color of the "pixel" it's in), and includes a "zoom factor" (ZOOM
) in case the individual "pixels" are hard to see on your monitor.
import java.awt.Color;
import java.awt.Graphics;
import javax.swing.JFrame;
import javax.swing.JPanel;
public class Langton extends JFrame{
private JPanel planePanel;
private static final int ZOOM = 4;
public Langton(final boolean[][] plane){
planePanel = new JPanel(){
@Override
public void paint(Graphics g) {
for(int y = 0; y < plane.length;y++){
for(int x = 0; x < plane[0].length;x++){
g.setColor(plane[y][x] ? Color.BLACK : Color.WHITE);
g.fillRect(x * ZOOM, y * ZOOM, ZOOM, ZOOM);
}
}
//mark the starting point
g.setColor(Color.GREEN);
g.fillRect(plane[0].length / 2 * ZOOM,
plane.length / 2 * ZOOM, ZOOM/2, ZOOM/2);
}
};
planePanel.setSize(plane[0].length - 1, plane.length - 1);
add(planePanel);
setSize(ZOOM * plane[0].length, ZOOM * plane.length + 30);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
}
public static void main(String[] args){
new Langton(runAnt(100, 100));
}
private static boolean[][] runAnt(int height, int width){
boolean[][] plane = new boolean[height][width];
int antX = width/2, antY = height/2;//start in the middle-ish
int xChange = 0, yChange = -1; //start moving up
while(antX < width && antY < height && antX >= 0 && antY >= 0){
if(plane[antY][antX]){
//turn left
if(xChange == 0){ //if moving up or down
xChange = yChange;
yChange = 0;
}else{ //if moving left or right
yChange = -xChange;
xChange = 0;
}
}else{
//turn right
if(xChange == 0){ //if moving up or down
xChange = -yChange;
yChange = 0;
}else{ //if moving left or right
yChange = xChange;
xChange = 0;
}
}
plane[antY][antX] = !plane[antY][antX];
antX += xChange;
antY += yChange;
}
return plane;
}
}
Output (click for a larger view):
JavaScript
Utilises the HTML5 canvas element to procedurally generate the image... I wanted to see the progress of the grid state as it was generated, so this implementation produces a incrementally changing image until an 'ant' hits a cell outside of the coordinate system. It can also accept multiple ants, this adds minimal complexity with only the addition of an 'ants' array which is iterated in each step, no additional conditions are necessary to simulate multiple ants, they coexist quite well... good ants ! 1st argument is an array of ant objects, 2nd argument is an object property list of options to change grid size, pixel size and interval (animation speed).
// create global canvas
var canvas = document.createElement('canvas');
canvas.id = 'globalCanvas';
document.body.appendChild(canvas);
function langtonant(antx, optx) {
'use strict';
var x, y, i;
// extend default opts
var opts = {
gridsize: 100,
pixlsize: 4,
interval: 4
};
for (i in optx) {
opts[i] = optx[i];
}
// extend default ants
var ants = [{
x: 50,
y: 50,
d: 0
}];
for (i in antx) {
ants[i] = antx[i];
}
// initialise grid
var grid = [];
for (x = 0; x < opts.gridsize; x ++) {
grid[x] = [];
for (y = 0; y < opts.gridsize; y ++) {
grid[x][y] = true;
}
}
// initialise directions
var dirs = [
{x: 1, y: 0},
{x: 0, y: -1},
{x: -1, y: 0},
{x: 0, y: 1}
];
// initialise canvas
var canv = document.getElementById('globalCanvas');
var cont = canv.getContext('2d');
canv.width = opts.gridsize * opts.pixlsize;
canv.height = opts.gridsize * opts.pixlsize;
// initialise pixels
var pixlblac = cont.createImageData(opts.pixlsize, opts.pixlsize);
for (i = 0; i < (opts.pixlsize * opts.pixlsize * 4); i += 4) {
pixlblac.data[i + 3] = 255;
}
var pixlwhit = cont.createImageData(opts.pixlsize, opts.pixlsize);
for (i = 0; i < (opts.pixlsize * opts.pixlsize * 4); i += 4) {
pixlwhit.data[i + 3] = 0;
}
// run simulation
function simulate() {
var sane = true;
// iterate over ants
for (i = 0; i < ants.length; i ++) {
var n = ants[i];
// invert, draw, turn
if (grid[n.x][n.y]) {
grid[n.x][n.y] = false;
cont.putImageData(pixlblac, n.x * opts.pixlsize, n.y * opts.pixlsize);
n.d --;
} else {
grid[n.x][n.y] = true;
cont.putImageData(pixlwhit, n.x * opts.pixlsize, n.y * opts.pixlsize);
n.d ++;
}
// modulus wraparound
n.d += dirs.length;
n.d %= dirs.length;
// position + direction
n.x += dirs[n.d].x;
n.y += dirs[n.d].y;
// sanity check
sane = (n.x < 0 || n.x > opts.gridsize || n.y < 0 || n.y > opts.gridsize) ? false : sane;
}
// loop with interval
if (sane) {
setTimeout(simulate, opts.interval);
}
}
simulate();
}
Usage: default ants, custom opts
langtonant({}, {
gridsize: 100,
pixlsize: 4,
interval: 4
});
- Output:
Usage: custom ants, default opts
langtonant([
{
x: (100 / 2) + 7,
y: (100 / 2) + 7,
d: 1
}, {
x: (100 / 2) + 7,
y: (100 / 2) - 7,
d: 2
}, {
x: (100 / 2) - 7,
y: (100 / 2) - 7,
d: 3
}, {
x: (100 / 2) - 7,
y: (100 / 2) + 7,
d: 0
}
]);
- Output:
More functional approach to Javascript.
Requires lodash. Wants a canvas with id = "c"
///////////////////
// LODASH IMPORT //
///////////////////
// import all lodash functions to the main namespace, but isNaN not to cause conflicts
_.each(_.keys(_), k => window[k === 'isNaN' ? '_isNaN' : k] = _[k]);
const
WORLD_WIDTH = 100,
WORLD_HEIGHT = 100,
PIXEL_SIZE = 4,
DIRTY_COLOR = '#000',
VIRGIN_COLOR = '#fff',
RUNS = 10000,
SPEED = 50,
// up right down left
DIRECTIONS = [0, 1, 2, 3],
displayWorld = (world) => each(world, (row, rowidx) => {
each(row, (cell, cellidx) => {
canvas.fillStyle = cell === 1 ? DIRTY_COLOR : VIRGIN_COLOR;
canvas.fillRect(rowidx * PIXEL_SIZE, cellidx * PIXEL_SIZE, PIXEL_SIZE, PIXEL_SIZE);
});
}),
moveAnt = (world, ant) => {
world[ant.x][ant.y] = world[ant.x][ant.y] === 1 ? 0 : 1;
ant.dir = DIRECTIONS[(4 + ant.dir + (world[ant.x][ant.y] === 0 ? 1 : -1)) % 4];
switch (ant.dir) {
case DIRECTIONS[0]:
ant.y -= 1;
break;
case DIRECTIONS[1]:
ant.x -= 1;
break;
case DIRECTIONS[2]:
ant.y += 1;
break;
case DIRECTIONS[3]:
ant.x += 1;
break;
}
return [world, ant];
},
updateWorld = (world, ant, runs) => {
[world, ant] = moveAnt(world, ant);
displayWorld(world);
if (runs > 0) setTimeout(partial(updateWorld, world, ant, --runs), SPEED);
},
canvas = document.getElementById('c').getContext('2d');
let
world = map(range(WORLD_HEIGHT), i => map(range(WORLD_WIDTH), partial(identity, 0))),
ant = {
x: WORLD_WIDTH / 2,
y: WORLD_HEIGHT / 2,
dir: DIRECTIONS[0]
};
canvas.canvas.width = WORLD_WIDTH * PIXEL_SIZE;
canvas.canvas.height = WORLD_HEIGHT * PIXEL_SIZE;
updateWorld(world, ant, RUNS);
jq
In the following, the grid is boolean, and white is represented by true.
def matrix(m; n; init):
if m == 0 then [range(0;n)] | map(init)
elif m > 0 then [range(0;m)][ range(0;m) ] = matrix(0;n;init)
else error("matrix\(m);_;_) invalid")
end;
def printout:
. as $grid
| ($grid|length) as $height
| ($grid[0]|length) as $width
| reduce range(0;$height) as $i ("\u001B[H"; # ANSI code
. + reduce range(0;$width) as $j ("\n";
. + if $grid[$i][$j] then " " else "#" end ) );
def langtons_ant(grid_size):
def flip(ant):
# Flip the color of the current square
.[ant[0]][ant[1]] = (.[ant[0]][ant[1]] | not)
;
# input/output: the ant's state: [x, y, direction]
# where direction is one of (0,1,2,3)
def move(grid):
# If the cell is black, it changes to white and the ant turns left;
# If the cell is white, it changes to black and the ant turns right;
(if grid[.[0]][.[1]] then 1 else 3 end) as $turn
| .[2] = ((.[2] + $turn) % 4)
| if .[2] == 0 then .[0] += 1
elif .[2] == 1 then .[1] += 1
elif .[2] == 2 then .[0] += -1
else .[1] += -1
end
;
# state: [ant, grid]
def iterate:
.[0] as $ant | .[1] as $grid
# exit if the ant is outside the grid
| if $ant[0] < 1 or $ant[0] > grid_size
or $ant[1] < 1 or $ant[1] > grid_size
then [ $ant, $grid ]
else
($grid | flip($ant)) as $grid
| ($ant | move($grid)) as $ant
| [$ant, $grid] | iterate
end
;
((grid_size/2) | floor | [ ., ., 0]) as $ant
| matrix(grid_size; grid_size; true) as $grid
| [$ant, $grid] | iterate
| .[1]
| printout
;
langtons_ant(100)
- Output:
The output is the same as for Rexx below.
Julia
function ant(width, height)
y, x = fld(height, 2), fld(width, 2)
M = falses(height, width)
dir = im
for i in 0:100000
x in 1:width && y in 1:height || break
dir *= M[y, x] ? im : -im
M[y, x] = !M[y, x]
x, y = reim(x + im * y + dir)
end
for row in 1:size(M,1)
println(mapreduce(x -> x ? 'x' : '.', *, M[row,:]))
end
end
ant(100, 100)
Kotlin
// version 1.2.0
enum class Direction { UP, RIGHT, DOWN, LEFT }
const val WHITE = 0
const val BLACK = 1
fun main(args: Array<String>) {
val width = 75
val height = 52
val maxSteps = 12_000
var x = width / 2
var y = height / 2
val m = Array(height) { IntArray(width) }
var dir = Direction.UP
var i = 0
while (i < maxSteps && x in 0 until width && y in 0 until height) {
val turn = m[y][x] == BLACK
val index = (dir.ordinal + if (turn) 1 else -1) and 3
dir = Direction.values()[index]
m[y][x] = if (m[y][x] == BLACK) WHITE else BLACK
when (dir) {
Direction.UP -> y--
Direction.RIGHT -> x--
Direction.DOWN -> y++
Direction.LEFT -> x++
}
i++
}
for (j in 0 until height) {
for (k in 0 until width) print(if(m[j][k] == WHITE) '.' else '#')
println()
}
}
- Output:
Same as D entry (textual version)
"Go to the ant, O sluggard; consider her ways, and be wise. Without having any chief, officer, or ruler, she prepares her bread in summer and gathers her food in harvest." For Dr. Kaser.
LC-3
"Go to the ant, O sluggard; consider her ways, and be wise. Without having any chief, officer, or ruler, she prepares her bread in summer and gathers her food in harvest." For Dr. Kaser.
.orig x3000
ld r1, ASCIIDIFF1
; user input for grid size
lea r0, STGRIDSIZE
puts
in
add r0, r0, r1
add r0, r0, #-1
brz SELECTED100
ld r0, GRID300
st r0, GRIDSIZE
brnzp GRIDSELECTED
SELECTED100
ld r0, GRID100
st r0, GRIDSIZE
GRIDSELECTED
; User input for number of additional ants
lea r0, STHOWMANY
puts
in
add r1, r1, r0 ; r1 = number of additional ants
add r1, r1, #1
st r1, LIVINGANTS
; INITIALIZE FIRST ANT
and r7, r7, x0
add r7, r7, #9 ; loop counter for the other ants
and r1, r1, x0 ; x and y coordinates go in here
and r3, r3, x0 ; to be mapped to a cell id
; check grid size for starting coordinates
ld r4, GRIDSIZE
ld r6, GRID100
not r6, r6
add r6, r6, #1
add r6, r6, r4 ; grid size - 100
brz GRID100B
ld r1, START300
ld r3, START300
brnzp FIRSTANTCOORDINATES
GRID100B
ld r1, START100
ld r3, START100
FIRSTANTCOORDINATES
JSR MAPPY ; takes r1 and r3 values, converts to cell id in r5
ld r6, LIVEANTTEMPLATE ; = x8000, alive and facing north
add r6, r6, r5 ; complete antword for ant 1
lea r4, ANTWORD
str r6, r4, #0 ; put first ant in base address of ANTWORD array
ld r2, LIVINGANTS
ANTSETUPLOOP
add r4, r4, #1 ; increment address of ant
add r2, r2, #-1
brnz INITIALIZEDEAD
JSR ANTCOORDS
JSR MAPPY
ld r6, LIVEANTTEMPLATE
add r6, r5, r6
brnzp READYTOSTORE
INITIALIZEDEAD
and r6, r6, x0
READYTOSTORE
str r6, r4, #0
add r7, r7, #-1
brnz DONESETUP
brnzp ANTSETUPLOOP
DONESETUP
BIGMOVELOOP ; one iteration of this loop moves all 10 ants (doing nothing if they're dead)
ld r1, LIVINGANTS
brz EVERYONEISDEAD
ld r1, ANTWORD
; FOR LOOP TO MOVE ALL 10 ANTS
ld r1, STEPCOUNT
add r1, r1, #1
st r1, STEPCOUNT
BRNZP BIGMOVELOOP
EVERYONEISDEAD ; :(
halt
STGRIDSIZE .stringz "Grid size? 1 for 100, 3 for 300 "
STHOWMANY .stringz "How many additional ants? "
ASCIIDIFF1 .fill #-48
SUBTEMP1 .fill #0
LIVINGANTS .fill #0
GRIDSIZE .fill #0
GRID100 .fill #100
GRID300 .fill #300
STEPCOUNT .fill #0
ANTWORD .blkw #10
START100 .fill #50
START300 .fill #150
LIVEANTTEMPLATE .fill x8000
ANTCOORDTEMP .fill #0
ANTCOORDTEMP2 .fill #0
;************************************************************************
;************************************************************************
; SUBROUTINES
;************************************************************************
;************************************************************************
; SUBROUTINE
ANTSONTHEMOVE
; [1] check if dead
; [2] extract current location
; [3] extract current direction
; [4] check current colour
; [5] turn
; [7] change location or kill
; INPUT: R1:
address of ant
; R4:
grid size
; LOCAL: R2: ant word
; R3: cell id of ant
st r2, MOVETEMP2
st r3, MOVETEMP3
st r5, MOVETEMP5
st r6, MOVETEMP6
st r7, MOVETEMP7
ldr r2, r1, #0 ; r2 = copy of ant-word
; [1] CHECK FOR DEATH. word for dead ants == x0000
add r2, r2, #0
brz ENDOFMOVE ; if ant-word + 0 == 0, ant is dead.
; [2] extract current location
ld r3, IDMASK ; for getting rid of first 3 bits of ant-word, leaving only location
and r3, r2, r3 ; r3 = cell id of ant
; [4] check current colour and flip it
jsr FLIPPITY ; flips bit, puts original colour in R5
; white/0: turn right; black/1: turn left
; [5] turn the ant according to pre-flipped colour
add r0, r5, #0
brnp LEFTTURN
jsr TAKEARIGHTTURN
brnzp DONETURNING
LEFTTURN
jsr TAKEALEFTTURN
DONETURNING
; [7] change location and kill
ldr r2, r1, #0 ; reload modified antword from memory
ld r5, SOUTH ; butmasks
ld r6, EAST
and r5, r5, r2
and r6, r6, r2 ; isolating the two direction bits, 2b and 3b, to determine direction
add r5, r5, #0 ; check if 2b is 0
brnp SECTIOND ;
add r6, r6, #0 ; check if 3b is 0
brnp SECTIONC
; if both are zero, direction is north
;; if cell id <= grid size, ant is already at the top and will die
not r0, r4
add r0, r0, #1 ; r0 = negative grid size
add r3, r0, r3 ; r3 = cell id - grid
brn ANTDEATHISPERMANENT ; if negative, kill it
add r2, r2, r0 ; antword - grid size
brnzp ENDOFMOVE
SECTIONC
; if direction is 01, ant faces east
;; if (cellID % grid != grid -1)
;; then cellid++, else die
not r0, r4
add r0, r0, #1
add r5, r3, #0 ; copy celll id to r5 to repeatedly subtract grid size
EASTMODLOOP
add r5, r5, r0 ; cell id - grid
add r5, r5, #1 ; if this is 0, then r5 == grid - 1
brz ANTDEATHISPERMANENT
add r5, r5, #-1 ; but if not, undo it and re-loop
brn MOVEEAST ; if negative, allowed to move east
; if equal to grid-1, ant is on eastern border and will die
BRNZP EASTMODLOOP
MOVEEAST
add r2, r2, #1 ; move east: CellID++
brnzp ENDOFMOVE
SECTIOND ; first direction bit is 1
add r6, r6, #0 ; check if second bit is 0
brnp SECTIONF
; if it is 0, then direction is 10 = south
; if ant is on southern border, it dies
; if cellID >= grid^2-grid, then ant is on southern border
ld r0, N100
add r0, r0, r3 ; checking if grid size = 100
brz GRIDIS100
ld r0, GRIDSQ300HALF
add r3, r3, r0
add r3, r3, r0
add r3, r3, r0
add r3, r3, r0
brzp ANTDEATHISPERMANENT
add r2, r2, r4
brnzp ENDOFMOVE
GRIDIS100
ld r0, GRIDSQ100
add r3, r3, r0
brzp ANTDEATHISPERMANENT
add r2, r2, r4
brnzp ENDOFMOVE
SECTIONF
; direction bits are 11 = WEST
; if cellID % grid != 0, ant can go west, otherwise dead
add r6, r3, #0 ; copy cell id to r6
not r0, r4
add r0, r0, #1 ; r0 = -grid
WESTMODLOOP
add r6, r6, r0
brz ANTDEATHISPERMANENT
brn CANMOVEWEST
brp WESTMODLOOP
CANMOVEWEST
add r2, r2, #-1
brnzp ENDOFMOVE
ANTDEATHISPERMANENT
and r2, r2, #0
ld r7, LIVINGANTS
add r7, r7, #-1
st r7, LIVINGANTS
ENDOFMOVE
str r1, r2, #0 ; double check this syntax
ld r2, MOVETEMP2
ld r3, MOVETEMP3
ld r5, MOVETEMP5
ld r6, MOVETEMP6
ld r7, MOVETEMP7
RET
N100 .fill #-100
GRIDSQ100 .fill #-9900
GRIDSQ300HALF .fill #-22425
MOVETEMP3 .fill #0
MOVETEMP2 .fill #0
MOVETEMP4 .fill #0
MOVETEMP5 .fill #0
MOVETEMP6 .fill #0
MOVETEMP7 .fill x0
IDMASK .fill x1FFF ; for extracting bits 12-0, the cell ID of the ant
; end of ANTSONTHEMOVE subroutine
FAKEXOR ; subroutine
; XOR of two registers
; INPUT r2, r4
; OUTPUT r6 = r2 XOR r4
; A in r4, not A in r5
; B in r2; not B in r6
; r4 XOR r2
st r5, XORTEMP5
not r6, r2
and r6, r6, r4 ; r6 = a & ~b
not r6, r6 ; r6 = ~(a & ~b)
not r5, r4 ; r5 = ~ a
and r5, r5, r2 ; r5 = ~a & b
not r5, r5 ; r5 = ~(~a & b)
and r6, r5, r6 ; r6 = ~(a & ~b) & ~(~a & b)
not r6, r6 ; r6 = ~( ~(a & ~b) & ~(~a & b) ) = a XOR b
ld r5, XORTEMP5
RET
XORTEMP5 .fill #0
; SUBROUTINE
FLIPPITY
; Takes a cell id and flips the bit in the grid, returns the original colour
; INPUT r1: cell id
; LOCAL r2: which bit to flip, then bitmask
; r3: quotient, then address of byte to change
; OUTOUT r5: original colour of cell id, before flipping. 1 if black, 0 if white.
;
; First, get byte (GRID + OFFSET)
; CELL ID / 16
st r4, FLIPTEMP4
st r5, FLIPTEMP5
st r6, FLIPTEMP6
and r3, r3, #0
add r2, r1, #0 ; copy cell id into r2
; loop to divide cellid by 16
FLIPLOOP
add r2, r2, #-16 ; cell id - 16
brn FLIPLOOPDONE ; if negative, division done
add r3, r3, #1 ; if not negative, increment quotient and subtract again
BRNZP FLIPLOOP
FLIPLOOPDONE
add r2, r2, #8 ; add 16 back to negative number to get cellid % 16
add r2, r2, #8 ; this is which bit within the byte that the cell ID refers to
lea r4, GRID ; starting address of GRID array
add r3, r3, r4 ; r3 = address of byte that will be changed = GRID base address + CELL ID / 16
lea r4, BM1 ; r4 = address of butmask array
add r4, r4, r2 ; r4 + which bit to flip = address of appropriate bitmask
ldr r2, r4, #0 ; r2 = bitmask to flip one bit
ldr r4, r3, #0 ; r4 = byte to be changed
and r0, r2, r4 ; indicates original colour of bit. 0 if white, non-zero if black
; A in r4, not A in r5
; B in r2; not B in r6
; r4 XOR r2
not r6, r2
and r6, r6, r4 ; r6 = a & ~b
not r6, r6 ; r6 = ~(a & ~b)
not r5, r4 ; r5 = ~ a
and r5, r5, r2 ; r5 = ~a & b
not r5, r5 ; r5 = ~(~a & b)
and r6, r5, r6 ; r6 = ~(a & ~b) & ~(~a & b)
not r6, r6 ; r6 = ~( ~(a & ~b) & ~(~a & b) ) = a XOR b
str r6, r3, #0
ld r4, FLIPTEMP4
ld r6, FLIPTEMP6
add r5, r0, #0 ; move colour of bit into r5 for output
ret
GRID .fill x8000
FLIPTEMP4 .fill #0
FLIPTEMP5 .fill #0
FLIPTEMP6 .fill #0
; bitmasks for flipping one bit
BM1 .fill x8000
BM2 .fill x4000
BM3 .fill x2000
BM4 .fill x1000
BM5 .fill x0800
BM6 .fill x0400
BM7 .fill x0200
BM8 .fill x0100
BM9 .fill x0080
BM10 .fill x0040
BM11 .fill x0020
BM12 .fill x0010
BM13 .fill x0008
BM14 .fill x0004
BM15 .fill x0002
BM16 .fill x0001
; END OF FLIPPITY SUBROUTINE
; SUBROUTINE
TAKEALEFTTURN
; turns the ant 90 degrees left
; INPUT R1: address in memory of ANT
; LOCAL R2: ant
; R3: bitmask
; R4: 3rdbit
; R5: 2nd and 3rd bit
; R6:
; R7:
; R0:
st r2, LEFTTURNTEMP2
st r3, LEFTTURNTEMP3
st r4, LEFTTURNTEMP4
st r6, LEFTTURNTEMP6
st r7, LEFTTURNTEMP7 ; store r7, load before RET
ldr r2, r1, #0 ; load ant into r2
ld r3, EAST
and r4, r2, r3 ; r4 = 3rdbit
ld r3, WEST
;and r5, r2, r3 ; r5 = 2nd and 3rd bits
add r4, r4, #0 ; check if 3rd bit is 0
brnp THIRDBIT1 ; If so, continue. If not, jump to next part.
; 3rd bit is 0, so XOR r2 ant-word with WEST bitmask, already in R3
BRNZP LEFTTURNEND
THIRDBIT1
; third bit is 1, so use EAST bitmask
ld r3, EAST
LEFTTURNEND
add r0, r4, #0 ; move r4 3rdbit into r0 temporarily
add r4, r3, #0 ; move r3 bitmask into r4 for the XOR subroutine
JSR FAKEXOR ; r6 = r2 XOR r4
; flips the correct bit to turn left
add r3, r4, #0 ; moves r4 bitmask back into r3
add r4, r0, #0 ; moves r0 3rdbit back into r3
str r6, r1, #0 ; store tweaked ant-word with new direction back in memory
ld r2, LEFTTURNTEMP2
ld r3, LEFTTURNTEMP3
ld r4, LEFTTURNTEMP4
ld r6, LEFTTURNTEMP6
ld r7, LEFTTURNTEMP7
RET
WEST .fill X6000
EAST .fill x2000
NORTH .fill x0000
SOUTH .fill x4000
LEFTTURNTEMP2 .fill #0
LEFTTURNTEMP3 .fill #0
LEFTTURNTEMP4 .fill #0
LEFTTURNTEMP6 .fill #0
LEFTTURNTEMP7 .fill #0
; end of TAKEALEFTTURN subroutine
; SUBROUTINE
TAKEARIGHTTURN
; turns the ant 90 degrees right
; INPUT R1: address in memory of ANT
; LOCAL R2: ant
; R3: bitmask
; R4: 3rdbit
; R5: 2nd and 3rd bit
; R6:
; R7:
; R0:
st r2, RIGHTTURNTEMP2
st r3, RIGHTTURNTEMP3
st r4, RIGHTTURNTEMP4
st r6, RIGHTTURNTEMP6
st r7, RIGHTTURNTEMP7 ; store r7, load before RET
ldr r2, r1, #0 ; load ant into r2
ld r3, EAST
and r4, r2, r3 ; r4 = 3rdbit
;ld r3, WEST
;and r5, r2, r3 ; r5 = 2nd and 3rd bits
add r4, r4, #0 ; check if 3rd bit is 0
brnp THIRDBIT1RIGHT ; If so, continue. If not, jump to next part.
; 3rd bit is 0, so XOR r2 ant-word with EAST bitmask
ld r3, EAST
BRNZP RIGHTTURNEND
THIRDBIT1RIGHT
; third bit is 1, so use WEST bitmask
ld r3, WEST
RIGHTTURNEND
add r0, r4, #0 ; move r4 3rdbit into r0 temporarily
add r4, r3, #0 ; move r3 bitmask into r4 for the XOR subroutine
JSR FAKEXOR ; r6 = r2 XOR r4
; flips the correct bit to turn right
add r3, r4, #0 ; moves r4 bitmask back into r3
add r4, r0, #0 ; moves r0 3rdbit back into r3
str r6, r1, #0 ; store modified ant-word with new direction back in memory
ld r2, RIGHTTURNTEMP2
ld r3, RIGHTTURNTEMP3
ld r4, RIGHTTURNTEMP4
ld r6, RIGHTTURNTEMP6
ld r7, RIGHTTURNTEMP7
RET
RIGHTTURNTEMP2 .fill #0
RIGHTTURNTEMP3 .fill #0
RIGHTTURNTEMP4 .fill #0
RIGHTTURNTEMP6 .fill #0
RIGHTTURNTEMP7 .fill #0
; end of TAKEARIGHTTURN subroutine
; SUBROUTINE
ANTCOORDS
; INPUT r2: index of ant
; OUTPUT r1: x coordinate value
; r3: y coordinate value
; "Enter x coordinates for ant #whatever"
st r4, COORD2
ld r0, NEWLINE
out
lea r0, ENTERXCOORDS
puts
ld r3, ASCIIPLUS
;add r0, r2, r3
;out
ld r0, NEWLINE
out
ld r5, ASCIIDIFF
getc
out
add r4, r0, r5 ; r4 holds first digit of x
add r1, r4, r4 ; r1 = 2 * r4
add r1, r1, r1 ; r1 = 4 * r4
add r1, r1, r1 ; r1 = 8 * r4
add r1, r1, r4 ; r1 = 9 * r4
add r1, r1, r4 ; r1 = 10 * r4
getc
out
add r4, r0, r5 ; r4 holds 2nd digit of x
add r1, r1, r4 ; full value of x coordt
st r1, COORD1
; "enter y coords"
ld r0, NEWLINE
out
lea r0, ENTERYCOORDS
puts
ld r3, ASCIIPLUS
;add r0, r2, r3
;out
ld r0, NEWLINE
out
ld r5, ASCIIDIFF
getc
out
add r4, r0, r5 ; r4 holds first digit of y
add r1, r4, r4 ; r1 = 2 * r4
add r1, r1, r1 ; r1 = 4 * r4
add r1, r1, r1 ; r1 = 8 * r4
add r1, r1, r4 ; r1 = 9 * r4
add r1, r1, r4 ; r1 = 10 * r4
getc
out
add r4, r0, r5 ; r4 holds 2nd digit of y
add r3, r1, r4 ; full value of y coord
ld r1, COORD1
ld r4, COORD2
RET
ENTERXCOORDS .STRINGZ "Enter x coordinates for ant "
ENTERYCOORDS .STRINGZ "Enter y coordinates for ant "
ASCIIDIFF .fill #-48
ASCIIPLUS .fill #48
COORD1 .fill #0
NEWLINE .fill #10
COORD2 .fill #0
COORD3 .fill #0
; END OF ANT_COORDINATES_SUBROUTINE
MAPPY
; Maps the coordinates of the ant
; Input: R1: x coord
; R3: y coord
; R4: grid size
; Output: R5: Cell ID
; Cell ID = grid size * y coord + x coord
st r6, MAP1
st r7, MAP2
; multiply by 100
add R0, R3, R3 ; 2y
add R0, R0, R0 ; 4y
add R6, R0, R0 ; 8y
add R6, R6, R6 ; 16y
add R6, R6, R6 ; 32y
add R0, R0, R6 ; 36y
add R6, R6, R6 ; 64y
add R0, R0, R6 ; 100y
ld R7, N100a
add R7, R4, R7
brz GRID100a
add R0, R0, R0 ;200y
add R0, R0, R3 ;300y
GRID100a
Add R5, R0, R1 ; OUTPUT: R5 = grid*y + x
ld r6, MAP1
ld r7, MAP2
RET
N100a .fill #-100
MAP1 .fill #0
MAP2 .fill #0
; END OF MAPPY SUBROUTINE
.end
Liberty BASIC
dim arena(100,100)
black=0
white=not(black)
for i = 1 to 100
for j = 1 to 100
arena(i,j)=white
next
next
'north=1 east=2 south=3 west=4
nomainwin
graphicbox #1.g, 0, 0, 100, 100
open "Langton's Ant" for window as #1
#1 "trapclose Quit"
#1.g "down"
antX=50:antY=50
nsew=1 'ant initially points north
while (antX>0) and (antX<100) and (antY>0) and (antY<100)
if arena(antX,antY) then
nsew=nsew-1
if nsew<1 then nsew=4
else
nsew=nsew+1
if nsew>4 then nsew=1
end if
select case nsew
case 1: antY=antY-1
case 2: antX=antX+1
case 3: antY=antY+1
case 4: antX=antX-1
end select
arena(antX,antY)=not(arena(antX,antY))
#1.g "color ";GetColor$(antX,antY)
#1.g "set ";antX;" ";antY
wend
#1.g "flush"
wait
function GetColor$(x,y)
if arena(x,y) then
GetColor$="white"
else
GetColor$="black"
end if
end function
sub Quit handle$
close #handle$
end
end sub
Text version.
'move up=1 right=2 down=3 left=4
' ---------------------------------
dim plane(100,100)
x = 50: y = 50
mx = 100
while (x>0) and (x<100) and (y>0) and (y<100)
if plane(x,y) then
nxt = nxt - 1
if nxt < 1 then nxt = 4
else
nxt = nxt + 1
if nxt > 4 then nxt = 1
end if
x = x + (nxt = 2) - (nxt = 4)
y = y + (nxt = 3) - (nxt = 1)
plane(x,y) = (plane(x,y) <> 1)
mx = min(x,mx)
wend
for x = mx to 100
for y = 1 to 100
print chr$((plane(x,y)*3) + 32);
next y
print x
next x
Locomotive Basic
10 mode 1:defint a-z:deg
20 ink 1,0:ink 0,26
30 x=50:y=50:ang=270
40 dim play(100,100)
50 graphics pen 3:move 220,100:drawr 200,0:drawr 0,200:drawr -200,0:drawr 0,-200
60 ' move ant
70 if play(x,y) then ang=ang-90 else ang=ang+90
80 play(x,y)=1-play(x,y)
90 plot 220+2*x,100+2*y,play(x,y)
100 ang=ang mod 360
110 x=x+sin(ang)
120 y=y+cos(ang)
130 if x<1 or x>100 or y<1 or y>100 then end
140 goto 70
Output:
Logo
make "size 100
make "white 1
make "black 2
make "sum sum :white :black
make "chars [. #]
make "origin quotient :size 2
make "grid mdarray (list :size :size)
make "directions [ [1 0] [0 1] [-1 0] [0 -1] ]
repeat size [
local "y
make "y repcount
repeat size [
mdsetitem (list repcount :y) :grid :white
]
]
make "x quotient :size 2
make "y quotient :size 2
make "direction sum 1 random count :directions
while [(and (:x > 0) (:x <= :size) (:y > 0) (:y <= :size))] [
local "color
make "color mditem (list :x :y) :grid
local "delta
ifelse [equal? :color :white] [
make "delta 1
] [
make "delta -1
]
make "direction sum 1 (modulo (:direction + :delta - 1) count :directions)
make "dir (item :direction :directions)
mdsetitem (list :x :y) :grid (sum :sum minus :color)
make "x sum :x first :dir
make "y sum :y last :dir
]
repeat size [
local "y
local "blank
make "y repcount
make "blank "true
repeat size [if ( (mditem (list repcount :y) :grid) = :black ) [make "blank "false]]
if [not :blank] [
repeat size [
type item (mditem (list repcount :y) :grid) :chars
]
print []
]
]
bye
- Output:
...............................................................................................##... ..............................................................................................####.. .............................................................................................#.##.#. ............................................................................................##.####. ...........................................................................................#.#.#.#.# ..........................................................................................##..#.###. .............................##..........................................................#.#..###..# ......................##......##........................................................##..#...###. .....................#..#..#.##.#......................................................#.#..###..#.. ....................###..###.#..#.....................................................##..#...###... ....................#.####..##.#.....................................................#.#..###..#.... ............................##......................................................##..#...###..... ......................##.##.##.....................................................#.#..###..#...... ......................####..#.##.#................................................##..#...###....... ......................#####.##.###.##....##....##................................#.#..###..#........ .......................#..#.#.##.#..##....####..##..............................##..#...###......... ........................####.###.####....####..##.#............................#.#..###..#.......... ........................###.#...#....##..##.......#...##......................##..#...###........... .........................####.##...##..##..#......#..#..#....................#.#..###..#............ .........................#.##..#..#...##.##.......#...#..#..................##..#...###............. .........................#.####..##.#.#.########.#....#..#.................#.#..###..#.............. .........................##..##..#..##.#.#.##.##....#.#.#.##..##..........##..#...###............... .........................#.#..#..#..#.#....#...#.##...##..#.#####........#.#..###..#................ ...........................##.####.##...#..####...#..#...##...##.#......##..#...###................. .......................##...##########...##.#####..#.####...#....#.....#.#..###..#.................. .......................#..#..#.##..#..#...#.#..##.#####.##.#.....#....##..#...###................... .......................#...##....#.##..#.#.....#####.#.#####.....#...#.#..###..#.................... ......................#...##...###.###....#.#.##.#.##.######.#..#...##..#...###..................... ......................#.####..##.#..#...###.###.##.##...##.#..##...#.#..###..#...................... .......................##..#....##..#..#########..##..####.#......##..#...###....................... .......................#....#....#..####..#.###########..##...#..#.#..###..#........................ ......................#......#...####.####.......##...#.##..###.##..#...###......................... ......................#...#....#.#.#...##......##.#.#.###.#..#.#.#..###..#.......................... .......................#...##.####..####.#####..##..##.#.##.#.....#...###........................... ........................##..#..#.##.###......#..###.#..#....##.#..###..#............................ ..........................#.....#..###.##.#..##.####.#.#..#.#...#...###............................. .........................#...####.##..#....#..###...##.##...##..###..#.............................. .........................#.##..##.###...#.....##..#..###.##.#.#...###............................... ..........................##.....#.##.....##..#...##.##.........#..#................................ ...........................##.#....####..#.#...#...###.##.#...#.#................................... .............................##.###.#####...#.##.##.##.#.#.##.#.###.#............................... ............................#...#.###.#.######.##.##..####.#...##.###............................... ............................#.#.#.###...#..####..#.#.#####...#.....#................................ .............................###...###.....#.#.###..##.#..##.###.#.................................. ..............................##..##.#..#.#...##.####.##..###..#.#.................................. ..................................###..##.##.....#.....#...#..#.###................................. ..................................#.......###.........#.#.##..##.................................... ....................................#....#..#.........#..#.#........................................ ....................................#.##............##...###........................................ .....................................##..#..........####..#......................................... ......................................##..############..##..........................................
LOLCODE
HAI 1.3
I HAS A plane ITZ A BUKKIT
IM IN YR init UPPIN YR i TIL BOTH SAEM i AN 10000
plane HAS A SRS i ITZ FAIL
IM OUTTA YR init
I HAS A x ITZ 50, I HAS A y ITZ 50
I HAS A dir ITZ 0, I HAS A pos, I HAS A cell
BTW, WE PURRTIND WE HAS A 2D STRUKSHUR FUR EZ AKSESS
IM IN YR walker
pos R SUM OF PRODUKT OF y AN 100 AN x
cell R NOT plane'Z SRS pos
plane'Z SRS pos R cell
dir R MOD OF SUM OF dir AN SUM OF 5 AN PRODUKT OF cell AN 2 AN 4
dir, WTF?
OMG 0, x R SUM OF x AN 1, GTFO
OMG 1, y R DIFF OF y AN 1, GTFO
OMG 2, x R DIFF OF x AN 1, GTFO
OMG 3, y R SUM OF y AN 1, GTFO
OIC
BTW, CHEKIN TEH ANTZ BOUNDZ
WON OF BOTH SAEM x AN -1 AN BOTH SAEM x AN 100, O RLY?, YA RLY, GTFO, OIC
WON OF BOTH SAEM y AN -1 AN BOTH SAEM y AN 100, O RLY?, YA RLY, GTFO, OIC
IM OUTTA YR walker
IM IN YR printer UPPIN YR cell TIL BOTH SAEM cell AN 10000
plane'Z SRS cell, O RLY?
YA RLY, VISIBLE "#"!
NO WAI, VISIBLE "."!
OIC
NOT MOD OF SUM OF cell AN 1 AN 100, O RLY?, YA RLY, VISIBLE "", OIC
IM OUTTA YR printer BTW, UR OUTTA CYAN
KTHXBYE
Lua
For this example, the lua Socket and Curses modules and a terminal with enough lines are needed.
local socket = require 'socket' -- needed for socket.sleep
local curses = require 'curses' -- used for graphics
local naptime = 0.02 -- seconds
local world_x, world_y = 100, 100
local world = (function (x, y)
local wrl = {}
for i = 1, y do
wrl[i] = {}
for j = 1, x do
wrl[i][j] = 0
end
end
return wrl
end)(world_x, world_y)
-- directions: 0 up, clockwise
local ant = {
x = math.floor(world_x / 2),
y = math.floor(world_y / 2),
dir = 0,
step = function(self)
if self.dir == 0 then self.y = self.y - 1
elseif self.dir == 1 then self.x = self.x + 1
elseif self.dir == 2 then self.y = self.y + 1
else self.x = self.x - 1
end
end
}
world.step = function (self, ant)
if self[ant.y][ant.x] == 0 then -- white
-- change cell color
self[ant.y][ant.x] = 1
-- change dir
ant.dir = (ant.dir + 1) % 4
ant:step()
-- boundary conditions
if ant.x < 1 then ant.x = world_x
elseif ant.x > world_x then ant.x = 1
end
if ant.y < 1 then ant.y = world_y
elseif ant.y > world_y then ant.y = 1
end
else
-- change cell color
self[ant.y][ant.x] = 0
-- change dir
ant.dir = (ant.dir - 1) % 4
ant:step()
-- boundary conditions
if ant.x < 1 then ant.x = world_x
elseif ant.x > world_x then ant.x = 1
end
if ant.y < 1 then ant.y = world_y
elseif ant.y > world_y then ant.y = 1
end
end
end
world.draw = function (self, ant)
for i = 1, #self do
for j = 1, #self[i] do
if i == ant.y and j == ant.x then
win:attron(curses.color_pair(3))
win:mvaddch(i,j,"A")
--win:attroff(curses.color_pair(3))
elseif self[i][j] == 0 then
win:attron(curses.color_pair(1))
win:mvaddch(i,j," ")
--win:attroff(curses.color_pair(1))
elseif self[i][j] == 1 then
win:attron(curses.color_pair(2))
win:mvaddch(i,j," ")
--win:attroff(curses.color_pair(2))
else error("self[" .. i .. "][" .. j .. "] is " .. self[i][j] .. "!")
end
end
end
end
local it = 1
curses.initscr()
curses.start_color()
curses.echo(false)
curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_WHITE)
curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_RED, curses.COLOR_WHITE)
curses.init_pair(4, curses.COLOR_WHITE, curses.COLOR_BLACK)
win = curses.newwin(world_y + 1, world_x, 0, 0)
win:clear()
repeat
world:draw(ant)
win:move(world_y, 0)
win:clrtoeol()
win:attron(curses.color_pair(4))
win:addstr("Iteration: " .. it .. ", nap = " .. naptime*1000 .. "ms")
win:refresh()
world:step(ant)
it = it + 1
--local c = stdscr:getch()
--if c == '+' then naptime = naptime - (naptime / 10)
--elseif c == '-' then naptime = naptime + (naptime / 10)
--end
socket.sleep(naptime)
until false
M2000 Interpreter
Module Ant {
Form 120,102
N=100
Enum CellColor {black=0,white=#FFFFFF}
Enum Direction{North=90, West=180, South=270, East=0}
Function Rotate(cd as Direction, clockwise=true) {
cd=(cd+if(clockwise->270,90)) mod 360
=cd ' return a Direction Enum type
}
dim rect(1 to N, 1 to N)=white
cx=N div 2
cy=N div 2
cd=North
rect(cx,cy)=black
endmove=False
while not endmove
movecell()
end while
Disp()
sub movecell()
select case rect(cx,cy)
case black
cd=Rotate(cd, false) : rect(cx, cy)=white
case white
cd=Rotate(cd) : rect(cx, cy)=black
end select
select case cd
case North
cy--
case West
cx--
case South
cy++
case East
cx++
end select
endmove= cx<1 or cx>N or cy<1 or cy>N
end sub
sub disp()
Local Doc$, i, j
Document Doc$
for i=1 to N:for j=1 to N
Doc$=if$(rect(j,i)=White->"_","#")
next
Doc$={
}
next
cls
Print #-2,Doc$
clipboard Doc$
end sub
}
Ant
- Output:
____________________________________________________________________________________________________ __________________________________________________________________##________________________________ ___________________________________________________________________##_______________________________ ____________________________________________##__##____________###_##_#______________________________ ___________________________________________#__##__###________####_#__#______________________________ __________________________________________#____##___#______##_##__#_#_______________________________ _______________________________________##_#_____#_____#######_###_##________________________________ ______________________________________#__#__#___##_#___#__#####_#__#________________________________ _____________________________________###___#___####__##_###_#______##_______________________________ __________________________________##_#_#__##__#___#_##__####_######_________________________________ _________________________________#__#___#____#_____##__##___#_#_#####_#_____________________________ ________________________________###_##__#__#____#___#####_#_##_#____###_____________________________ ________________________________##_____##_###___##_###___##_####__#__#______________________________ __________________________________###__###_#___#_#_###_____#__#____##_______________________________ ____________________________________#_#___#########_#####___####____________________________________ ______________________________###_###__##_#__#______#___##__#_______________________________________ _______________________________#####_#####__##___#####____#_#_#_____________________________________ ____________________________##_#_#######_###_######_#####_#_###_____________________________________ ___________________________#____##__##___###__#__#__#__#___#_#______________________________________ __________________________###______###__#_##_##____#__#_##_#________________________________________ __________________________#_#__#____#____#_#####__#____#_##_________________________________________ _______________________________##_###__#_#__##_##____#__#_#_________________________________________ ___________________________#_#_____#_#_____#_#_##_#_#__###_##_#_____________________________________ __________________________#___###__#__#__#_#__####_##___##_####_____________________________________ __________________________#___##_###_##_#__#___#_____####_#_##______________________________________ __________________________#__##___###______#__####_###_##___##______________________________________ __________________________#______###_____###__###___##__#____#______________________________________ __________________________#_____#_#_#_####____####__##_##___________________________________________ __________________________#_____##_###_##___#_##_####_###___#_#_____________________________________ __________________________#______#_#____#####_#_#_###_______###_____________________________________ __________________________#____####_#____###_##_###___#_#____#______________________________________ __________________________#_____#__##_##_##_####__##_##__####_______________________________________ __________________________#_____#_##_##__#____#######_______________________________________________ __________________________###___##__##__#_###_#_##_#___#____________________________________________ __________________________###____##_######_#__#___####____#_________________________________________ ___________________________#_##_#_##__##____####_#_##_####_#________________________________________ ___________________________#___#######_######__#_##_#_#____#________________________________________ __________________________#___#___##_#__#___##_######__#__#_________________________________________ __________________________#_##____###__#___#_#######_#__##__________________________________________ ___________________________##_#_##___#_#_#_##_#__##__###____________________________________________ ____________________________######_##__________#####___#____________________________________________ ________________________________#___#__#####_#______#_#_____________________________________________ _________________________________##_____#_#_##___#____#_____________________________________________ ______________________________##_#__##_#_____##_#____###____________________________________________ ______________________________#_##_#______#_#___#____###____________________________________________ _______________________________#___####_##___#___#____#_____________________________________________ _______________________________###__#___#___###___####______________________________________________ _______________________________#___##__##_##___#____________________________________________________ __________________________________##__##__#___###___________________________________________________ ___________________________________##__#_##_##___#__________________________________________________ ________________________________________##__#___###_________________________________________________ _________________________________________#_##_##___#________________________________________________ __________________________________________##__#___###_______________________________________________ ___________________________________________#_##_##___#______________________________________________ ____________________________________________##__#___###_____________________________________________ _____________________________________________#_##_##___#____________________________________________ ______________________________________________##__#___###___________________________________________ _______________________________________________#_##_##___#__________________________________________ ________________________________________________##__#___###_________________________________________ _________________________________________________#_##_##___#________________________________________ __________________________________________________##__#___###_______________________________________ ___________________________________________________#_##_##___#______________________________________ ____________________________________________________##__#___###_____________________________________ _____________________________________________________#_##_##___#____________________________________ ______________________________________________________##__#___###___________________________________ _______________________________________________________#_##_##___#__________________________________ ________________________________________________________##__#___###_________________________________ _________________________________________________________#_##_##___#________________________________ __________________________________________________________##__#___###_______________________________ ___________________________________________________________#_##_##___#______________________________ ____________________________________________________________##__#___###_____________________________ _____________________________________________________________#_##_##___#____________________________ ______________________________________________________________##__#___###___________________________ _______________________________________________________________#_##_##___#__________________________ ________________________________________________________________##__#___###_________________________ _________________________________________________________________#_##_##___#________________________ __________________________________________________________________##__#_#####_______________________ ___________________________________________________________________#_###_####_______________________ ____________________________________________________________________##_###_#________________________ _____________________________________________________________________#_#_##_________________________ ______________________________________________________________________#_#___________________________
make
# Langton's ant Makefile
# netpbm is an ancient collection of picture file formats
# convert and display are from imagemagick
.PHONY: display
display: ant.png
display $<
ant.png: ant.pbm
convert $< $@
n9:=1 2 3 4 5 6 7 8 9
n100:=$(n9) $(foreach i,$(n9),$(foreach j,0 $(n9),$i$j)) 100
ndec:=0 $(n100)
ninc:=$(wordlist 2,99,$(n100))
$(foreach i,$(n100),$(eval row$i:=$(foreach j,$(n100),0)))
.PHONY: $(foreach i,$(ndec),row$i)
row0:
@echo >ant.pbm P1
@echo >>ant.pbm '#' Langton"'"s ant
@echo >>ant.pbm 100 100
rowrule=row$i: row$(word $i,$(ndec)); @echo >>ant.pbm $$($$@)
$(foreach i,$(n100),$(eval $(rowrule)))
ant.pbm: Makefile row100
@:
x:=50
y:=50
direction:=1
turn=$(eval direction:=$(t$(xy)$(direction)))
xy=$(word $x,$(row$y))
t01:=4
t02:=1
t03:=2
t04:=3
t11:=2
t12:=3
t13:=4
t14:=1
flip=$(eval row$y:=$(start) $(not$(xy)) $(end))
start=$(wordlist 1,$(word $x,$(ndec)),$(row$y))
not0:=1
not1:=0
end=$(wordlist $(word $x,$(ninc) 100),100,$(row$y))
step=$(eval $(step$(direction)))
step1=y:=$(word $y,exit $(n100))
step2=x:=$(word $x,$(ninc) exit)
step3=y:=$(word $y,$(ninc) exit)
step4=x:=$(word $x,exit $(n100))
iteration=$(if $(filter exit,$x $y),,$(turn)$(flip)$(step))
$(foreach i,$(n100) $(n100),$(foreach j,$(n100),$(iteration)))
Mathematica /Wolfram Language
direction = 1;
data = SparseArray[{{50, 50} -> -1}, {100, 100}, 1];
NestWhile[
{Re@#, Im@#} &@(direction *= (data[[Sequence @@ #]] *= -1) I) + # &,
{50, 50}, 1 <= Min@# <= Max@# <= 100 &];
Image@data
MATLAB / Octave
function u = langton_ant(n)
if nargin<1, n=100; end;
A = sparse(n,n); % white
P = [n/2;n/2]; % Positon
D = 3; % index of direction 0-3
T = [1,0,-1,0;0,1,0,-1]; % 4 directions
k = 0;
while (1)
k = k+1;
a = A(P(1),P(2));
A(P(1),P(2)) = ~a;
if ( a )
D = mod(D+1,4);
else
D = mod(D-1,4);
end;
P = P+T(:,D+1);
if (~mod(k,100)),spy(A);pause(.1);end; %display after every 100 interations
end;
end
Nim
import strutils, sequtils
type
Direction = enum up, right, down, left
Color = enum white, black
const
width = 75
height = 52
maxSteps = 12_000
var
m: array[height, array[width, Color]]
dir = up
x = width div 2
y = height div 2
var i = 0
while i < maxSteps and x in 0 ..< width and y in 0 ..< height:
let turn = m[y][x] == black
m[y][x] = if m[y][x] == black: white else: black
dir = Direction((4 + int(dir) + (if turn: 1 else: -1)) mod 4)
case dir
of up: dec y
of right: dec x
of down: inc y
of left: inc x
inc i
for row in m:
echo map(row, proc(x: Color): string =
if x == white: "." else: "#").join("")
OCaml
open Graphics
type dir = North | East | South | West
let turn_left = function
| North -> West
| East -> North
| South -> East
| West -> South
let turn_right = function
| North -> East
| East -> South
| South -> West
| West -> North
let move (x, y) = function
| North -> x, y + 1
| East -> x + 1, y
| South -> x, y - 1
| West -> x - 1, y
let () =
open_graph "";
let rec loop (x, y as pos) dir =
let color = point_color x y in
set_color (if color = white then black else white);
plot x y;
let dir = (if color = white then turn_right else turn_left) dir in
if not(key_pressed()) then loop (move pos dir) dir
in
loop (size_x()/2, size_y()/2) North
Run with:
$ ocaml graphics.cma langton.ml
Octave
clear
E=100 % Size of lattice.
N=11200 % Number of iterations.
z(1:1:E^2)=-1; % Init lattice rotations (-1=right, 1=left)
k(1:1:E^2)=0;
k(1)=(E^2+E)/2; % Init the Ant @ 50,50
for t=1:1:N;
k(t+1)=mod(k(t)+real(round((0.5*(E+1)*exp(i*pi/4*(trace(diag(z))-E^2)))-(0.5*(E-1)*exp(-i*pi/4*(trace(diag(z))-E^2)))))+imag(round((0.5*(E+1)*exp(i*pi/4*(trace(diag(z))-E^2)))-(0.5*(E-1)*exp(-i*pi/4*(trace(diag(z))-E^2))))),E^2);
z(k(t+1)+1)=real(exp(2*i*pi/4*(1+z(k(t+1)+1))));
endfor;
imagesc(reshape(z,E,E)) % Draw the Lattice
Ol
#!/usr/bin/ol
(import (otus random!))
(define MAX 65536) ; should be power of two
; size of game board (should be less than MAX)
(define WIDTH 170)
(define HEIGHT 96)
; helper function
(define (hash x y)
(let ((x (mod (+ x WIDTH) WIDTH))
(y (mod (+ y HEIGHT) HEIGHT)))
(+ (* y MAX) x)))
;; ; helper function
(define directions '(
(0 . 1) (1 . 0) (0 . -1) (-1 . 0)
))
; ---------------
(import (lib gl2))
(gl:set-window-title "Langton's Ant")
(glShadeModel GL_SMOOTH)
(glClearColor 0.11 0.11 0.11 1)
(glOrtho 0 WIDTH 0 HEIGHT 0 1)
(glPointSize (/ 854 WIDTH))
; generate random field
(gl:set-userdata
(list->ff (map (lambda (i) (let ((x (rand! WIDTH)) (y (rand! HEIGHT)))
(cons (hash x y) #t))) (iota 1000))))
(define ant (cons
(rand! WIDTH)
(rand! HEIGHT)))
(define dir (list (rand! 4))) ; 0, 1, 2, 3
; main game loop
(gl:set-renderer (lambda (mouse)
(let ((generation (gl:get-userdata)))
(glClear GL_COLOR_BUFFER_BIT)
; draw the cells
(glColor3f 0.2 0.5 0.2)
(glBegin GL_POINTS)
(ff-fold (lambda (st key value)
(glVertex2f (mod key MAX)
(div key MAX))
) #f generation)
(glColor3f 0.8 0.2 0.1)
(glVertex2f (car ant) (cdr ant))
(glEnd)
(gl:set-userdata
(let*((x (car ant))
(y (cdr ant))
(generation (case (get generation (hash x y) #f)
(#true ; black cell
(set-car! dir (mod (+ (car dir) 1) 4))
(del generation (hash x y)))
(#false
(set-car! dir (mod (+ (car dir) 7) 4))
(put generation (hash x y) #true)))))
(set-car! ant (mod (+ x (car (lref directions (car dir)))) WIDTH))
(set-cdr! ant (mod (+ y (cdr (lref directions (car dir)))) HEIGHT))
generation))
)))
PARI/GP
langton()={
my(M=matrix(100,100),x=50,y=50,d=0);
while(x && y && x<=100 && y<=100,
d=(d+if(M[x,y],1,-1))%4;
M[x,y]=!M[x,y];
if(d%2,x+=d-2,y+=d-1);
);
M
};
show(M)={
my(d=sum(i=1,#M[,1],sum(j=1,#M,M[i,j])),u=vector(d),v=u,t);
for(i=1,#M[,1],for(j=1,#M,if(M[i,j],v[t++]=i;u[t]=j)));
plothraw(u,v)
};
show(langton())
Pascal
Pascal does not offer complex number arithmetic, so adjusting directions via multiplication of ±i is out. Similarly, it does not offer array manipulation statements, so Cell:=White;
must be achieved via explicit for-loops with explicitly stated indices and bounds, and the adjustment of the (x,y) position by (dx,dy) can't be done by array addition. Otherwise, matters are straightforward, so instead this version tries to animate the ant on the screen. Alas, the maximum screen size is 80 characters by 50 lines, except that output to the last line causes a screen scroll so that only 49 lines are available. Alas, this cell array is too small and the bounds are exceeded in step 5,156 - before the ant starts its migration.
The animation shows the arrival at a cell with a yellow arrow pointing in the arrival direction. The cell state is investigated to decide the new direction (which is shown as a green arrow), the current cell's state is flipped, and the move to the new cell position is made. To show these events, the programme waits for a keystroke but if the S key is pressed, full speed results. Each stepwise ant move thus requires two keystrokes (one for each of the two directions being shown) however a quirk of Pascal's processing of keyboard symbols has certain keystrokes represented via two values from ReadKey, so pressing the arrow keys for example provides a doubled advance.
Except, the green arrow on step 4 does not appear!
{$B- Early and safe resolution of If x <> 0 and 1/x...}
Program LangtonsAnt; Uses CRT;
{Perpetrated by R.N.McLean (whom God preserve), Victoria University, December MMXV.}
Var AsItWas: record mode: word; ta: word; end;
Var LastLine,LastCol: byte;
Procedure Swap(var a,b: integer); {Oh for a compiler-recognised statement.}
var t: integer; {Such as A=:=B;}
Begin
t:=a; a:=b; b:=t;
End;
var Stepwise: boolean;
Var Cell: Array[1..80,1..50] of byte; {The screen is of limited size, alas.}
Var x,y,Step: integer; {In the absence of complex numbers,}
Var dx,dy: integer; {And also of array action statements.}
Procedure Croak(Gasp: string); {Exit message...}
Begin
GoToXY(1,12); TextColor(Yellow); {Reserve line twelve.}
WriteLn(Gasp,' on step ',Step,' to (',x,',',y,')');
HALT;
End;
Procedure Harken; {Waits for a keystroke.}
var ch: char; {The character. Should really be 16-bit.}
Begin
ch:=ReadKey; {Fancy keys evoke double characters. I don't care.}
if (ch = 'S') or (ch = 's') then Stepwise:=not Stepwise {Quick, slow, quick, quick, slow...}
else if ch = #27 then Croak('ESC!'); {Or perhaps, enough already!}
End; {Fancy keys will give a twostep.}
Procedure Waitabit; {Slows the action.}
Begin
if Stepwise or KeyPressed then Harken; {Perhaps a change while on the run.}
End; {of Waitabit.}
Procedure Turn(way:integer); {(dx,dy)*(0,w) = (-w*dy,+w*dx)}
Begin
Swap(dx,dy); {In the absence of complex arithmetic,}
dx:=-way*dx; dy:=way*dy; {Do this in two stages.}
End;
const Arrow: array[-1..+1,-1..+1] of integer {Only four entries are of interest.}
= ((1,27,3),(25,5,24),(7,26,9)); {For the four arrow symbols.}
Procedure ShowDirection(Enter,How: byte); {Show one.}
Begin
GoToXY(x,LastLine - y + 1); {(x,y) position, in Cartesian style.}
TextBackground(Enter); {The value in Cell[x,y] may have been changed.}
TextColor(How);
Writeln(chr(Arrow[dx,dy])); {Not an ASCII control character, but an arrow symbol.}
Waitabit; {Having gone to all this trouble.}
End;
Procedure ShowState; {Special usage for line two of the screen.}
Begin
GoToXY(1,2); TextBackground(LightGray); TextColor(Black);
Write(Step:5,' (',x:2,',',y:2,') ');
TextColor(Yellow); {Yellow indicates the direction in mind.}
Write(chr(Arrow[dx,dy])); {On *arrival* at a position.}
End;
Var i,j: integer; {Steppers. No whole-array assault as in Cell:=LightGray;}
var Enter: byte; {Needed to remember the cell state on arrival.}
BEGIN
AsItWas.mode:=LastMode; {Grr. I might want to save the display content too!}
AsItWas.ta:=TextAttr; {Not just its colour and style.}
TextMode(C80+Font8x8); {Crazed gibberish gives less unsquare character cells, and 80x50 of them.}
LastLine:=Hi(WindMax); { + 1 omitted, as a write to the last line scrolls the screen up one...}
LastCol:=Lo(WindMax) + 1; {Counting starts at zero, even though GoToXY starts with one.}
x:=LastCol div 2; {Start somewhere middleish.}
y:=LastLine div 2; {Consider (x,y) as being (0,0) for axes.}
dx:=+1; dy:=0; {Initial direction.}
TextBackground(LightGray); {"White" is not valid for background colour.}
TextColor(Black); {This will show up on a light background.}
ClrScr; {Here we go.}
WriteLn('Langton''s Ant, on x = 1:',LastCol,', y = 1:',LastLine);
ShowState; {Where we start.}
WriteLn; TextColor(Black);
WriteLn('Press a key for each step.'); {Some encouragement.}
WriteLn('"S" to pause each step or not.');
WriteLn('ESC to quit.');
for i:=1 to LastLine do begin GoToXY(x,i); Write('|'); end; {Draw a y-axis.}
for i:=1 to LastCol do begin GoToXY(i,LastLine - y + 1); Write('-'); end; {And x.}
gotoxy(1,6); {Can't silence the cursor!}
for i:=1 to LastCol do {Prepare the cells.}
for j:=1 to LastLine do {One by one.}
Cell[i,j]:=LightGray; {Cell:=LightGray. Sigh.}
Stepwise:=true; {The action is of interest.}
for Step:=1 to 12000 do {Here we go.}
if (x <= 0) or (x > LastCol) or (y <= 0) or (y > LastCol) then Croak('Out of bounds')
else {We're in a cell.}
begin {So, inspect it.}
if Stepwise or (Step mod 10 = 0) then ShowState {On arrival.}
else if KeyPressed then Harken; {If we're not pausing, check for a key poke.}
Enter:=cell[x,y]; {This is what awaits the feet.}
if Stepwise then ShowDirection(Enter,Yellow); {Current direction, about to be changed.}
case cell[x,y] of {So, what to do?}
LightGray: begin Cell[x,y]:=Black; Turn(-1); end;{White. Make black and turn right.}
Black: begin Cell[x,y]:=LightGray; Turn(+1); end;{Black. Make white and turn left.}
end; {Having decided,}
if Stepwise then ShowDirection(Enter,Green); {Show the direction about to be stepped.}
GoToXY(x,LastLine - y + 1); {Screen location (column,line) for (x,y)}
TextBackground(Cell[x,y]); {Change the state I'm about to leave.}
Write(' '); {Foreground colour irrelevant for spaces.}
x:=x + dx; y:=y + dy; {Make the step!}
end; {On to consider our new position.}
Croak('Finished'); {That was fun.}
END.
Perl
#!/usr/bin/perl
use strict;
# Perl 5 implementation of Langton's Ant
# Using screen coordinates - 0,0 in upper-left, +X right, +Y down -
# these directions (right, up, left, down) are counterclockwise
# so advance through the array to turn left, retreat to turn right
my @dirs = ( [1,0], [0,-1], [-1,0], [0,1] );
my $size = 100;
# we treat any false as white and true as black, so undef is fine for initial all-white grid
my @plane;
for (0..$size-1) { $plane[$_] = [] };
# start out in approximate middle
my ($x, $y) = ($size/2, $size/2);
# pointing in a random direction
my $dir = int rand @dirs;
my $move;
for ($move = 0; $x >= 0 && $x < $size && $y >= 0 && $y < $size; $move++) {
# toggle cell's value (white->black or black->white)
if ($plane[$x][$y] = 1 - ($plane[$x][$y] ||= 0)) {
# if it's now true (black), then it was white, so turn right
$dir = ($dir - 1) % @dirs;
} else {
# otherwise it was black, so turn left
$dir = ($dir + 1) % @dirs;
}
$x += $dirs[$dir][0];
$y += $dirs[$dir][1];
}
print "Out of bounds after $move moves at ($x, $y)\n";
for (my $y=0; $y<$size; ++$y) {
for (my $x=0; $x<$size; ++$x) {
print $plane[$x][$y] ? '#' : '.';
}
print "\n";
}
Phix
sequence grid = repeat(repeat(' ',100),100) integer aX = 50, aY = 50, gXY, angle = 1 -- ' '/'#'; 0,1,2,3 = NESW constant dX = {0,-1,0,1} -- (dY = reverse(dX)) while aX>=1 and aX<=100 and aY>=1 and aY<=100 do gXY = grid[aX][aY] grid[aX][aY] = 67-gXY -- ' '<=>'#', aka 32<->35 angle = mod(angle+2*gXY+3,4) -- +/-1, ie 0,1,2,3 -> 1,2,3,0 or 3,0,1,2 aX += dX[angle+1] aY += dX[4-angle] end while puts(1,join(grid,"\n"))
- Output:
## ############ ## # #### # ## ### ## ## # # # # # # # ## ## # # ### # ### # # # # ## ## ### # # ### ## #### ## # # # ## ## # ### ## # ## ### # # ### ### # # ##### # # #### # ### # # # ### ## # #### ## ## ###### # ### # # # ### # ## # # ## ## ## # ##### ### ## # # # ## ### # # # #### # ## # # ## ## # ## ## # ## ### # # ## ### # ## # ### ## ## # # ### ## ## ## ### # # ## #### # ### # # # # # #### ## # ## ### # # # ### # ## # # ### # ### ## # # ## ### # # ## # ## ## ##### #### #### ## # # ### # # # # ### # # ## ## # # # # # ### # ## ### ## # ## #### #### # # # ### # # # ## ########### # #### # # # ### # ## # #### ## ######### # ## # ## # ### # # ## # ## ## ## ### ### # # ## #### # ### # ## # # ###### ## # ## # # ### ### ## # # ### # # # ##### # ##### # # ## # ## # ### # ## # # ## ##### ## # # # # ## # # # # ### # # # # #### # ##### ## ########## ## ### # ## # ## ## # # #### # ## #### ## # ### # # ##### # ## ## # # # # # # # # ### # ## ## ## # # # ## ## # # ## # ## ## # ### # # # # # ######## # # ## #### # ### # ## # # # ## ## # # ## # # ### # # # # # # ## ## ## #### ### # ## ## # ## ## # # ### # ### # # # ## #### #### ### #### ### # ## ## #### ## # ## # # # # ### # # ## ## ## ### ## ##### ### # ## # ## # #### # ### # # ## ## ## ### # ## ## # ### # # # ## #### # ### # ## # # ### ### # ### # # # ## # # # ### # ## ## ## ## # # ## ## # ## # # # # #### ## # ## # #### ##
PHP
This is an implementation of Langton`s Ant in PHP
(The TEXT TO IMAGE - part is obviously not necessary.
Additionally the x and y startpositions could be set
to the halves of width and height.)
// INIT AND DEFINITION
define('dest_name', 'output.png'); // destination image
define('width', 100);
define('height', 100);
$x = 50;
$y = 70;
$dir = 0; // 0-up, 1-left, 2-down, 3-right
$field = array();
$step_count = 0;
// LANGTON´S ANT PROCEDURE
while(0 <= $x && $x <= width && 0 <= $y && $y <= height){
if(isset($field[$x][$y])){
unset($field[$x][$y]);
$dir = ($dir + 3) % 4;
}else{
$field[$x][$y] = true;
$dir = ($dir + 1) % 4;
}
switch($dir){
case 0: $y++; break;
case 1: $x--; break;
case 2: $y--; break;
case 3: $x++; break;
}
$step_count++;
}
// ARRAY TO IMAGE
$img = imagecreatetruecolor(width, height);
$white = imagecolorallocate($img, 255, 255, 255);
for($x = 0; $x < width; $x++){
for($y = 0; $y < height; $y++){
if(isset($field[$x][$y])){
imagesetpixel($img, $x, $y, $white);
}
}
}
// TEXT TO IMAGE
$color = array();
$color[0] = imagecolorallocate($img, 255, 0, 0);
$color[1] = imagecolorallocate($img, 0, 255, 0);
$color[2] = imagecolorallocate($img, 0, 0, 255);
$print_array = array(
0 => 'Langton`s Ant', 1=>'PHP Version', 2=>'Steps: ' . $step_count
);
foreach($print_array as $key => $line){
imagestring($img, 3, 3, 3 + $key*11, $line, $color[$key]);
}
// SAVE IMAGE
imagepng($img, dest_name);
PicoLisp
This code pipes a PBM into ImageMagick's "display" to show the result:
(de ant (Width Height X Y)
(let (Field (make (do Height (link (need Width)))) Dir 0)
(until (or (le0 X) (le0 Y) (> X Width) (> Y Height))
(let Cell (nth Field X Y)
(setq Dir (% (+ (if (car Cell) 1 3) Dir) 4))
(set Cell (not (car Cell)))
(case Dir
(0 (inc 'X))
(1 (inc 'Y))
(2 (dec 'X))
(3 (dec 'Y)) ) ) )
(prinl "P1")
(prinl Width " " Height)
(for Row Field
(prinl (mapcar '[(X) (if X 1 0)] Row)) ) ) )
(out '(display -) (ant 100 100 50 50))
(bye)
PowerShell
To simplify the steps within the loop, -1 and 1 are used to represent the binary state of the spaces in the grid. As neither state is now a default value, to simplify setting the starting states, an array of arrays is used instead of a two dimensional array.
$Size = 100
$G = @()
1..$Size | ForEach { $G += ,( @( 1 ) * $Size ) }
$x = $y = $Size / 2
# Direction of next move
$Dx = 1
$Dy = 0
# While we are still on the grid...
While ( $x -ge 0 -and $y -ge 0 -and $x -lt $Size -and $y -lt $Size )
{
# Change direction
$Dx, $Dy = ( $Dy * $G[$x][$y] ), -( $Dx * $G[$x][$y] )
# Change state of current square
$G[$x][$y] = -$G[$x][$y]
# Move forward
$x += $Dx
$y += $Dy
}
# Convert to strings for output
ForEach ( $Row in $G ) { ( $Row | ForEach { ( ' ', '', '#')[$_+1] } ) -join '' }
- Output:
Default PowerShell console colors reverse the colors from black on white to white on dark blue. Most blank lines not included below.
#################################################################################################### ################################################################################################ ## ############################################################################################### # ############################################################################################## # # ############################################################################################# # ############################################################################################ # # # # ########################################################################################### ## ## ############################## ########################################################## # ## ### ####################### ###### ######################################################## ## ### ###################### ## ## # # ###################################################### # ## ## # ##################### ## # ## ##################################################### ## ### ## ##################### # ## # ##################################################### # ## ## ### ############################# ###################################################### ## ### #### ####################### # # ##################################################### # ## ## ##### ####################### ## # # ################################################ ## ### ###### ####################### # # # #### #### ################################ # ## ## ####### ######################## ## # # # ## #### ## ############################## ## ### ######## ######################### # # #### ## # ############################ # ## ## ######### ######################### # ### #### ## ####### ### ###################### ## ### ########## ########################## # ### ## ## ###### ## ## #################### # ## ## ########### ########################## # ## ## ### # ####### ### ## ################## ## ### ############ ########################## # ## # # # # #### ## ################# # ## ## ############# ########################## ## ## ## # # # # #### # # # ## ########## ## ### ############## ########################## # ## ## ## # #### ### # ### ## # ######## # ## ## ############### ############################ # # ### ## ### ## ### ### # ###### ## ### ################ ######################## ### ### # ## # ### #### ##### # ## ## ################# ######################## ## ## # ## ## ### # ## # # # ##### #### ## ### ################## ######################## ### #### # ## # ##### # # ##### ### # ## ## ################### ####################### ### ### # #### # # # # # # ## ### ## ### #################### ####################### # ## # ## ### # # # ### # ## ### # ## ## ##################### ######################## ## #### ## ## ## ## # ###### ## ### ###################### ######################## #### #### ## ## # ## ### ## # ## ## ####################### ####################### ###### ### # ####### ### # ## # ## ### ######################## ####################### ### #### # # ### ###### # # # # ## # # ## ## ######################### ######################## ### # ## # ## ## # # # ##### ### ########################## ######################### ## ## # # ###### ## # ## #### # ## ## ########################### ########################### ##### ## # # ## # # # ## # ### ### ############################ ########################## ### # ## #### ## ### # ### ## ## ############################# ########################## # ## # ### ##### ## ## # # # ### ############################## ########################### ##### # ##### ## ### # ######### ## ############################### ############################ # #### ## # ### ### # # ### # ################################## ############################## # # ### # # # # # # # # # ############################## ############################# ### # # # # # ## # ### # ############################## ############################# # # # ### ## ## # # ### ##### ############################### ############################## ### ##### # # ## # ## # # ################################# ############################### ## # ## # ### # # ## ## # ################################# ################################### ## # ##### ##### ### ## # ################################ ################################### ####### ######### # # ## ################################### ##################################### #### ## ######### ## # ####################################### ##################################### # ############ ### ####################################### ###################################### ## ########## ## ######################################## ####################################### ## ## ######################################### ####################################################################################################
Processing
Processing implementation, this uses two notable features of Processing, first of all, the animation is calculated with the draw() loop, second the drawing on the screen is also used to represent the actual state.
/*
* we use the following conventions:
* directions 0: up, 1: left, 2: down: 3: right
*
* pixel white: true, black: false
*
* turn right: true, left: false
*
*/
// number of iteration steps per frame
// set this to 1 to see a slow animation of each
// step or to 10 or 100 for a faster animation
final int STEP=100;
int x;
int y;
int direction;
void setup() {
// 100x100 is large enough to show the
// corridor after about 10000 cycles
size(100, 100, P2D);
background(#ffffff);
x=width/2;
y=height/2;
direction=0;
}
int count=0;
void draw() {
for(int i=0;i<STEP;i++) {
count++;
boolean pix=get(x,y)!=-1; //white =-1
setBool(x,y,pix);
turn(pix);
move();
if(x<0||y<0||x>=width||y>=height) {
println("finished");
noLoop();
break;
}
}
if(count%1000==0) {
println("iteration "+count);
}
}
void move() {
switch(direction) {
case 0:
y--;
break;
case 1:
x--;
break;
case 2:
y++;
break;
case 3:
x++;
break;
}
}
void turn(boolean rightleft) {
direction+=rightleft?1:-1;
if(direction==-1) direction=3;
if(direction==4) direction=0;
}
void setBool(int x, int y, boolean white) {
set(x,y,white?#ffffff:#000000);
}
Processing Python mode
"""
we use the following conventions:
directions 0: up, 1: left, 2: down: 3: right
pixel white: True, black: False
turn right: True, left: False
"""
# number of iteration steps per frame
# set this to 1 to see a slow animation of each
# step or to 10 or 100 for a faster animation
STEP = 100
count = 0
def setup():
global x, y, direction
# 100x100 is large enough to show the
# corridor after about 10000 cycles
size(100, 100, P2D)
background(255)
x = width / 2
y = height / 2
direction = 0
def draw():
global count
for i in range(STEP):
count += 1
pix = get(x, y) != -1 # white =-1
setBool(x, y, pix)
turn(pix)
move()
if (x < 0 or y < 0 or x >= width or y >= height):
println("finished")
noLoop()
break
if count % 1000 == 0:
println("iteration {}".format(count))
def move():
global x, y
if direction == 0:
y -= 1
elif direction == 1:
x -= 1
elif direction == 2:
y += 1
elif direction == 3:
x += 1
def turn(rightleft):
global direction
direction += 1 if rightleft else -1
if direction == -1:
direction = 3
if direction == 4:
direction = 0
def setBool(x, y, white):
set(x, y, -1 if white else 0)
Prolog
This sort of problem, when stated in Prolog, reads a bit like a story book. Our main goal (go) succeeds if we can move north from the middle of the 100x100 matrix, and update_win- which outputs the black/1 blocks. The move/3 and direction/3 goals are really quite self explanatory, mirroring the instructions for the task.
%_______________________________________________________________
% Langtons ant.
:-dynamic
black/1.
plot_point(Row, Col) :- % Output a 5x5 black box at R,C
new(C, box(5,5)), X is Col * 5 - 2, Y is Row * 5 - 2,
send(C, colour, colour(black)), send(C, fill_pattern, colour(blue)),
send(C, center(point(X,Y))), send(@win, display, C).
update_win :- % Make a 500x500 window, find all the black points and plot them
new(@win, window('Langtons Ant')),
send(@win, size, size(500,500)), send(@win, open),
black(Row/Col),plot_point(Row,Col),fail.
update_win.
direction(Row, Col, left) :- black(Row/Col), !, retract(black(Row/Col)).
direction(Row, Col, right):- not(black(Row/Col)), !, assert(black(Row/Col)).
move(_, Row,Col) :- (Row < 0; Col < 0; Row > 99; Col > 99), !.
move(north,Row,Col) :-
(direction(Row,Col,left), C is Col - 1, !, move(west, Row, C));
(direction(Row,Col,right), C is Col + 1, !, move(east, Row, C)).
move(south,Row,Col) :-
(direction(Row,Col,right), C is Col - 1, !, move(west, Row, C));
(direction(Row,Col,left), C is Col + 1, !, move(east, Row, C)).
move(east,Row,Col) :-
(direction(Row,Col,right), R is Row + 1, !, move(south, R, Col));
(direction(Row,Col,left), R is Row - 1, !, move(north, R, Col)).
move(west,Row,Col) :-
(direction(Row,Col,left), R is Row + 1, !, move(south, R, Col));
(direction(Row,Col,right), R is Row - 1, !, move(north, R, Col)).
go :- retractall(black(_)), move(north,49,49), update_win.
PureBasic
#White = $FFFFFF
#Black = 0
#planeHeight = 100
#planeWidth = 100
#canvasID = 0
#windowID = 0
OpenWindow(#windowID, 0, 0, 150, 150, "Langton's ant", #PB_Window_SystemMenu | #PB_Window_ScreenCentered)
CanvasGadget(#canvasID, 25, 25, #planeWidth, #planeHeight)
StartDrawing(CanvasOutput(#canvasID))
Box(0, 0, #planeWidth, #planeHeight, #White)
StopDrawing()
Define event, quit, ant.POINT, antDirection, antSteps
ant\x = #planeHeight / 2
ant\y = #planeWidth / 2
Repeat
Repeat
event = WindowEvent()
If event = #PB_Event_CloseWindow
quit = 1
event = 0
EndIf
Until event = 0
StartDrawing(CanvasOutput(#canvasID))
Select Point(ant\x, ant\y)
Case #Black
Plot(ant\x, ant\y, #White)
antDirection = (antDirection + 1) % 4 ;turn left
Case #White
Plot(ant\x, ant\y, #Black)
antDirection = (antDirection - 1 + 4) % 4 ;turn right
EndSelect
StopDrawing()
Select antDirection
Case 0 ;up
ant\y - 1
Case 1 ;left
ant\x - 1
Case 2 ;down
ant\y + 1
Case 3 ;right
ant\x + 1
EndSelect
antSteps + 1
If ant\x < 0 Or ant\x >= #planeWidth Or ant\y < 0 Or ant\y >= #planeHeight
MessageRequester("Langton's ant status", "Out of bounds after " + Str(antSteps) + " steps.")
quit = 1
EndIf
Delay(10) ;control animation speed and avoid hogging CPU
Until quit = 1
Sample output:
Out of bounds after 11669 steps.
Python
"""Langton's ant implementation."""
from enum import Enum, IntEnum
class Dir(IntEnum):
"""Possible directions."""
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3
class Color(Enum):
"""Possible colors."""
WHITE = " "
BLACK = "#"
def invert_color(grid, x, y):
"""Invert the color of grid at x, y coordinate."""
if grid[y][x] == Color.BLACK:
grid[y][x] = Color.WHITE
else:
grid[y][x] = Color.BLACK
def next_direction(grid, x, y, direction):
"""Compute next direction according to current position and direction."""
if grid[y][x] == Color.BLACK:
turn_right = False
else:
turn_right = True
direction_index = direction.value
if turn_right:
direction_index = (direction_index + 1) % 4
else:
direction_index = (direction_index - 1) % 4
directions = [Dir.UP, Dir.RIGHT, Dir.DOWN, Dir.LEFT]
direction = directions[direction_index]
return direction
def next_position(x, y, direction):
"""Compute next position according to direction."""
if direction == Dir.UP:
y -= 1
elif direction == Dir.RIGHT:
x -= 1
elif direction == Dir.DOWN:
y += 1
elif direction == Dir.LEFT:
x += 1
return x, y
def print_grid(grid):
"""Display grid."""
print(80 * "#")
print("\n".join("".join(v.value for v in row) for row in grid))
def ant(width, height, max_nb_steps):
"""Langton's ant."""
grid = [[Color.WHITE] * width for _ in range(height)]
x = width // 2
y = height // 2
direction = Dir.UP
i = 0
while i < max_nb_steps and 0 <= x < width and 0 <= y < height:
invert_color(grid, x, y)
direction = next_direction(grid, x, y, direction)
x, y = next_position(x, y, direction)
print_grid(grid)
i += 1
if __name__ == "__main__":
ant(width=75, height=52, max_nb_steps=12000)
The output is similar to the basic D version.
Quackery
[ stack 50 ] is xpos ( --> s )
[ stack 50 ] is ypos ( --> s )
[ xpos share 0 100 within
ypos share 0 100 within
and ] is inside ( --> b )
[ -1 ypos ] is north ( --> n s )
[ 1 xpos ] is east ( --> n s )
[ 1 ypos ] is south ( --> n s )
[ -1 xpos ] is west ( --> n s )
[ stack 0 ] is heading ( --> s )
[ 1 ] is right ( --> n )
[ -1 ] is left ( --> n )
[ heading take
+ 4 mod
heading put ] is turn ( --> )
[ heading share
[ table
north east south west ]
do tally ] is move ( --> )
[ ypos share peek
xpos share bit & 0 > ] is black? ( [ --> b )
[ ypos share
2dup peek
xpos share bit ~ &
unrot poke ] is white ( [ --> [ )
[ ypos share
2dup peek
xpos share bit |
unrot poke ] is black ( [ --> [ )
[ 50 xpos replace
50 ypos replace
0 heading replace ] is reset ( --> )
[ witheach
[ 100 times
[ dup i^ bit &
iff say "[]"
else say " " ]
cr
drop ] ] is draw ( [ --> )
[ reset
0 100 of
[ inside while
dup black? iff
[ white left ]
else
[ black right ]
turn
move
again ]
draw ] is ant ( --> )
- Output:
Surplus whitespace trimmed. Shown at 2/3 size.
[][] [][][][][][][][][][][][] [][] [] [][][][] [] [][] [][][] [][] [][] [] [] [] [] [] [] [] [][] [][] [] [] [][][] [] [][][] [] [] [] [] [][] [][] [][][] [] [] [][][] [][] [][][][] [][] [] [] [] [][] [][] [] [][][] [][] [] [][] [][][] [] [] [][][] [][][] [] [] [][][][][] [] [] [][][][] [] [][][] [] [] [] [][][] [][] [] [][][][] [][] [][] [][][][][][] [] [][][] [] [] [] [][][] [] [][] [] [] [][] [][] [][] [] [][][][][] [][][] [][] [] [] [] [][] [][][] [] [] [] [][][][] [] [][] [] [] [][] [][] [] [][] [][] [] [][] [][][] [] [] [][] [][][] [] [][] [] [][][] [][] [][] [] [] [][][] [][] [][] [][] [][][] [] [] [][] [][][][] [] [][][] [] [] [] [] [] [][][][] [][] [] [][] [][][] [] [] [] [][][] [] [][] [] [] [][][] [] [][][] [][] [] [] [][] [][][] [] [] [][] [] [][] [][] [][][][][] [][][][] [][][][] [][] [] [] [][][] [] [] [] [] [][][] [] [] [][] [][] [] [] [] [] [] [][][] [] [][] [][][] [][] [] [][] [][][][] [][][][] [] [] [] [][][] [] [] [] [][] [][][][][][][][][][][] [] [][][][] [] [] [] [][][] [] [][] [] [][][][] [][] [][][][][][][][][] [] [][] [] [][] [] [][][] [] [] [][] [] [][] [][] [][] [][][] [][][] [] [] [][] [][][][] [] [][][] [] [][] [] [] [][][][][][] [][] [] [][] [] [] [][][] [][][] [][] [] [] [][][] [] [] [] [][][][][] [] [][][][][] [] [] [][] [] [][] [] [][][] [] [][] [] [] [][] [][][][][] [][] [] [] [] [] [][] [] [] [] [] [][][] [] [] [] [] [][][][] [] [][][][][] [][] [][][][][][][][][][] [][] [][][] [] [][] [] [][] [][] [] [] [][][][] [] [][] [][][][] [][] [] [][][] [] [] [][][][][] [] [][] [][] [] [] [] [] [] [] [] [] [][][] [] [][] [][] [][] [] [] [] [][] [][] [] [] [][] [] [][] [][] [] [][][] [] [] [] [] [] [][][][][][][][] [] [] [][] [][][][] [] [][][] [] [][] [] [] [] [][] [][] [] [] [][] [] [] [][][] [] [] [] [] [] [] [][] [][] [][] [][][][] [][][] [] [][] [][] [] [][] [][] [] [] [][][] [] [][][] [] [] [] [][] [][][][] [][][][] [][][] [][][][] [][][] [] [][] [][] [][][][] [][] [] [][] [] [] [] [] [][][] [] [] [][] [][] [][] [][][] [][] [][][][][] [][][] [] [][] [] [][] [] [][][][] [] [][][] [] [] [][] [][] [][] [][][] [] [][] [][] [] [][][] [] [] [] [][] [][][][] [] [][][] [] [][] [] [] [][][] [][][] [] [][][] [] [] [] [][] [] [] [] [][][] [] [][] [][] [][] [] [][][] [] [] [][] [][][] [] [][] [] [] [] [] [] [][][][] [][] [] [][] [] [][][][] [][]
R
langton.ant = function(n = 100) {
map = matrix(data = 0, nrow