Langton's ant

From Rosetta Code
Revision as of 19:36, 22 July 2024 by Chkas (talk | contribs) (→‎{{header|EasyLang}})
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Task
Langton's ant
You are encouraged to solve this task according to the task description, using any language you may know.

Langton's ant is a cellular automaton that models an ant sitting on a plane of cells, all of which are white initially, the ant facing in one of four directions.

Each cell can either be black or white.

The ant moves according to the color of the cell it is currently sitting in, with the following rules:

  1.   If the cell is black, it changes to white and the ant turns left;
  2.   If the cell is white, it changes to black and the ant turns right;
  3.   The ant then moves forward to the next cell, and repeat from step 1.


This rather simple ruleset leads to an initially chaotic movement pattern, and after about 10000 steps, a cycle appears where the ant moves steadily away from the starting location in a diagonal corridor about 10 cells wide. Conceptually the ant can then walk infinitely far away.


Task

Start the ant near the center of a 100x100 field of cells, which is about big enough to contain the initial chaotic part of the movement.

Follow the movement rules for the ant, terminate when it moves out of the region, and show the cell colors it leaves behind.


The problem has received some analysis; for more details, please take a look at the Wikipedia article   (a link is below)..


See also


Related task



11l

Translation of: Python
T.enum Dir
   UP
   RIGHT
   DOWN
   LEFT

-V color_WHITE = Char(‘ ’)
-V color_BLACK = Char(‘#’)

F invert_color(&grid, x, y)
   ‘Invert the color of grid at x, y coordinate.’
   I grid[y][x] == :color_BLACK
      grid[y][x] = :color_WHITE
   E
      grid[y][x] = :color_BLACK

F next_direction(grid, x, y, =direction)
   ‘Compute next direction according to current position and direction.’
   V turn_right = grid[y][x] != :color_BLACK
   V direction_index = Int(direction)
   I turn_right
      direction_index = (direction_index + 1) % 4
   E
      direction_index = (direction_index + 4 - 1) % 4
   V directions = [Dir.UP, Dir.RIGHT, Dir.DOWN, Dir.LEFT]
   direction = directions[direction_index]
   R direction

F next_position(=x, =y, direction)
   ‘Compute next position according to direction.’
   I direction == UP
      y--
   E I direction == RIGHT
      x--
   E I direction == DOWN
      y++
   E I direction == LEFT
      x++
   R (x, y)

F print_grid(grid)
   ‘Display grid.’
   print(80 * ‘#’)
   print(grid.map(row -> row.join(‘’)).join("\n"))

F ant(width, height, max_nb_steps)
   ‘Langton's ant.’
   V grid = [[:color_WHITE] * width] * height
   V x = width I/ 2
   V y = height I/ 2
   V direction = Dir.UP

   V i = 0
   L i < max_nb_steps & x C 0 .< width & y C 0 .< height
      invert_color(&grid, x, y)
      direction = next_direction(grid, x, y, direction)
      (x, y) = next_position(x, y, direction)
      i++

   print_grid(grid)

ant(width' 75, height' 52, max_nb_steps' 12000)
Output:
################################################################################




                             ##  ############  ##
                            #  ####          #  ##
                           ###   ##            ## #
                           # #  #         #  #    #
                       ##  ## # #         ###       #
                    ### #  #   #     #     ## ##  ###
                     # #  ###  ## #### ##   # #  # ##  ##
                     # ### ##  # ##  ### # #     ###   ###
                   #     #   ##### # #  ####  #   ### # # #
                  ### ##   # ####  ## ## ###### # ### #   #
                  # ### # ## # # ## ## ## #   ##### ### ##
                      # #   # ## ###   #   # #  ####    # ##
                   #  #         ## ##   #  ##     ## #     ##
                  ###   # # ## ###  #  ##     #   ### ##  ## #
                 #  ###  ##   ## ##   ###  #    #  ## ####   #
                ###   #   # #  # # #### ##  # ## ###  #     #
               #  ###  # ##    #  # ###  #      ### ## #  #  ##
              ###   #     # ## # ##  ##  ##### ####  #### ##   #
             #  ###  # # #  # ### # # ##      ##   # # #    #   #
            ###   #  ## ###  ## #   ##       #### ####   #      #
           #  ###  # #  #   ##  ########### #  ####  #    #    #
          ###   #  ##      # ####  ##  #########  #  ##    #  ##
         #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #
        ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #
       #  ###  # #   #     ##### # #####     # #  ## #    ##   #
      ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #
     #  ###  # #     #    #   #### #  ##### ##   ##########   ##
    ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##
   #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #
  ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##
 #  ###  # #                 #  #    # ######## # # ##  #### #
###   #  ##                  #  #   #       ## ##   #  #  ## #
   ##  # #                    #  #  #      #  ##  ##   ## ####
##  #  ##                      ##   #       ##  ##    #   # ###
 # # # #                            # ##  ####    #### ### ####
#### ##                              ##  ####    ##  # ## # #  #
# ## #                                ##    ##    ## ### ## #####
 ####                                                # ## #  ####
  ##                                                     ## ## ##
                                                         ##
                                                       # ##  #### #
                                                      #  # ###  ###
                                                      # ## #  #  #
                                                       ##      ##
                                                        ##

Action!

DEFINE DIRN="0"
DEFINE DIRE="1"
DEFINE DIRS="2"
DEFINE DIRW="3"
DEFINE BLACK="1"
DEFINE WHITE="2"
DEFINE MAXX="159"
DEFINE MAXY="95"

BYTE FUNC TurnLeft(BYTE dir)
  IF dir=DIRN THEN
    RETURN (DIRW)
  FI
RETURN (dir-1)

BYTE FUNC TurnRight(BYTE dir)
  IF dir=DIRW THEN
    RETURN (DIRN)
  FI
RETURN (dir+1)

PROC DrawAnt(INT x,y)
  BYTE c,dir

  dir=DIRN
  
  DO
    c=Locate(x,y)
  
    IF c=BLACK THEN
      Color=WHITE
      Plot(x,y)
      dir=TurnLeft(dir)
    ELSE
      Color=BLACK
      Plot(x,y)
      dir=TurnRight(dir)
    FI
    IF dir=DIRN THEN
      y==-1
      IF y<0 THEN EXIT FI
    ELSEIF dir=DIRE THEN
      x==+1
      IF X>MAXX THEN EXIT FI
    ELSEIF dir=DIRS THEN
      y==+1
      IF Y>MAXY THEN EXIT FI
    ELSE
      x==-1
      IF x<0 THEN EXIT FI
    FI
  OD
RETURN

PROC Main()
  BYTE CH=$02FC
  BYTE y

  Graphics(7+16)
  SetColor(0,0,2)
  SetColor(1,0,12)
  Color=2
  FOR y=0 TO MAXY
  DO
    Plot(0,y) DrawTo(MAXX,y)
  OD

  DrawAnt(80,48)

  DO UNTIL CH#$FF OD
  CH=$FF
RETURN
Output:

Screenshot from Atari 8-bit computer

Ada

with Ada.Text_IO;

procedure Langtons_Ant is

   Size: constant Positive := 100; -- change this to extend the playground

   subtype Step is Integer range -1 .. +1;

   procedure Right(N, W: in out Step) is
      Tmp: Step := W;
   begin
      W := - N;
      N := Tmp;
   end Right;

   procedure Left(N, W: in out Step) is
   begin
      for I in 1 .. 3 loop
         Right(N, W);
      end loop;
   end Left;

   Color_Character: array(Boolean) of Character :=
     (False => ' ', True => '#');

   Is_Black: array (1 .. Size, 1 .. Size) of Boolean :=
     (others => (others => False)); -- initially, the world is white;

   Ant_X, Ant_Y: Natural := Size/2; -- Position of Ant;
   Ant_North: Step := 1; Ant_West: Step := 0; -- initially, Ant looks northward

   Iteration: Positive := 1;

begin
   loop -- iterate the loop until an exception is raised
      if Is_Black(Ant_X, Ant_Y) then
         Left(Ant_North, Ant_West);
      else
         Right(Ant_North, Ant_West);
      end if;
      Is_Black(Ant_X, Ant_Y) := not Is_Black(Ant_X, Ant_Y);
      Ant_X := Ant_X - Ant_North; -- this may raise an exception
      Ant_Y := Ant_Y - Ant_West;  -- this may raise an exception
      Iteration := Iteration + 1;
    end loop;

exception
   when Constraint_Error => -- Ant has left its playground ... now output
      for X in 1 .. Size loop
         for Y in 1 .. Size loop
            Ada.Text_IO.Put(Color_Character(Is_Black(X, Y)));
         end loop;
         Ada.Text_IO.New_Line;
      end loop;
      Ada.Text_IO.Put_Line("# Iteration:" & Integer'Image(Iteration));
end Langtons_Ant;

Ouptut (to save space, I have removed the all-blank lines):

                                         ##  ############  ##                                       
                                        #  ####          #  ##                                      
                                       ###   ##            ## #                                     
                                       # #  #         #  #    #                                     
                                   ##  ## # #         ###       #                                   
                                ### #  #   #     #     ## ##  ###                                   
                                 # #  ###  ## #### ##   # #  # ##  ##                               
                                 # ### ##  # ##  ### # #     ###   ###                              
                               #     #   ##### # #  ####  #   ### # # #                             
                              ### ##   # ####  ## ## ###### # ### #   #                             
                              # ### # ## # # ## ## ## #   ##### ### ##                              
                                  # #   # ## ###   #   # #  ####    # ##                            
                               #  #         ## ##   #  ##     ## #     ##                           
                              ###   # # ## ###  #  ##     #   ### ##  ## #                          
                             #  ###  ##   ## ##   ###  #    #  ## ####   #                          
                            ###   #   # #  # # #### ##  # ## ###  #     #                           
                           #  ###  # ##    #  # ###  #      ### ## #  #  ##                         
                          ###   #     # ## # ##  ##  ##### ####  #### ##   #                        
                         #  ###  # # #  # ### # # ##      ##   # # #    #   #                       
                        ###   #  ## ###  ## #   ##       #### ####   #      #                       
                       #  ###  # #  #   ##  ########### #  ####  #    #    #                        
                      ###   #  ##      # ####  ##  #########  #  ##    #  ##                        
                     #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #                       
                    ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #                       
                   #  ###  # #   #     ##### # #####     # #  ## #    ##   #                        
                  ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #                        
                 #  ###  # #     #    #   #### #  ##### ##   ##########   ##                        
                ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##                            
               #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #                          
              ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##                          
             #  ###  # #                 #  #    # ######## # # ##  #### #                          
            ###   #  ##                  #  #   #       ## ##   #  #  ## #                          
           #  ###  # #                    #  #  #      #  ##  ##   ## ####                          
          ###   #  ##                      ##   #       ##  ##    #   # ###                         
         #  ###  # #                            # ##  ####    #### ### ####                         
        ###   #  ##                              ##  ####    ##  # ## # #  #                        
       #  ###  # #                                ##    ##    ## ### ## #####                       
      ###   #  ##                                                # ## #  ####                       
     #  ###  # #                                                     ## ## ##                       
    ###   #  ##                                                      ##                             
   #  ###  # #                                                     # ##  #### #                     
  ###   #  ##                                                     #  # ###  ###                     
 #  ###  # #                                                      # ## #  #  #                      
###   #  ##                                                        ##      ##                       
   ##  # #                                                          ##                              
##  #  ##                                                                                           
 # # # #                                                                                            
#### ##                                                                                             
# ## #                                                                                              
 ####                                                                                               
  ##                                                                                                
# Iteration: 11656

Aime

Output png

void
ant(integer x, y, d, list map)
{
    while (-1 < x && x < 100 && -1 < y && y < 100) {
        integer e, p, w;
        data b;

        b = map[y];
        w = b[x >> 3];
        p = 1 << (7 - (x & 7));
        b[x >> 3] = w ^ p;

        d += w & p ? 1 : 3;

        e = d & 1;
        set(e, $e + ((d & 2) - 1) * (2 * e - 1));
    }
}

integer
main(void)
{
    file f;
    list l;

    call_n(100, lb_p_data, l, data().run(13, 0));
    ant(50, 50, 2, l);

    f.create("ant.pbm", 00644).text("P4\n100 100\n");
    l.ucall(f_data, 1, f);

    0;
}

ALGOL 68

BEGIN
    # size of board for Langton's ant #
    INT max board = 100;
    [ 1 : max board, 1 : max board ]CHAR board;
    # start with the board all white #
    CHAR white = " ", black = "#";
    FOR r TO 1 UPB board DO FOR c TO 2 UPB board DO board[ r, c ] := white OD OD;
    # possible ant directions #
    INT head left = 0, head up = 1, head right = 2, head down = 3;
    # returns the new direction if we turn left from curr direction #
    OP LEFT = ( INT curr direction )INT:
       IF   curr direction = head left  THEN head down
       ELIF curr direction = head down  THEN head right
       ELIF curr direction = head right THEN head up
       ELSE                                  head left
       FI ; # LEFT #
    # returns the new direction if we turn right from curr direction #
    OP RIGHT = ( INT curr direction )INT:
       IF   curr direction = head left  THEN head up
       ELIF curr direction = head up    THEN head right
       ELIF curr direction = head right THEN head down
       ELSE                                  head left
       FI ; # RIGHT #
    # move the ant until it leaves the board #
    INT ant row := max board OVER 2;
    INT ant col := max board OVER 2;
    INT ant direction := head up;
    INT max row := 1;
    INT max col := 1;
    INT min row := max board;
    INT min col := max board;
    INT moves := 0;
    WHILE ant row >= 1 LWB board AND ant row <= 1 UPB board
      AND ant col >= 2 LWB board AND ant col <= 2 UPB board
    DO
        moves +:= 1;
        IF ant row > max row THEN max row := ant row FI;
        IF ant col > max col THEN max col := ant col FI;
        IF ant row < min row THEN min row := ant row FI;
        IF ant col < min col THEN min col := ant col FI;
        IF board[ ant row, ant col ] = white THEN
            # ant turns right on a white square #
            ant direction := RIGHT ant direction;
            board[ ant row, ant col ] := black
        ELSE
            # ant turns left on a black square #
            ant direction :=  LEFT ant direction;
            board[ ant row, ant col ] := white
        FI;
        # move the ant #
        IF     ant direction = head up    THEN ant row -:= 1
        ELIF   ant direction = head down  THEN ant row +:= 1
        ELIF   ant direction = head left  THEN ant col -:= 1
        ELSE # ant direction = head right #    ant col +:= 1
        FI
    OD;
    # show resultant position #
    print( ( "After ", whole( moves, 0 ), " moves."
           , " Showing rows ", whole( min row,0 ), " to ", whole( max row, 0 )
           , " columns ", whole( min col,0 ), " to ", whole( max col, 0 )
           , newline
           )
         );
    FOR r FROM min row TO max row DO
        print( ( board[ r, min col : max col ], newline ) )
    OD
END
Output:
After 11655 moves. Showing rows 28 to 78 columns 1 to 79
                                         ##  ############  ##                  
                                        #  ####          #  ##                 
                                       ###   ##            ## #                
                                       # #  #         #  #    #                
                                   ##  ## # #         ###       #              
                                ### #  #   #     #     ## ##  ###              
                                 # #  ###  ## #### ##   # #  # ##  ##          
                                 # ### ##  # ##  ### # #     ###   ###         
                               #     #   ##### # #  ####  #   ### # # #        
                              ### ##   # ####  ## ## ###### # ### #   #        
                              # ### # ## # # ## ## ## #   ##### ### ##         
                                  # #   # ## ###   #   # #  ####    # ##       
                               #  #         ## ##   #  ##     ## #     ##      
                              ###   # # ## ###  #  ##     #   ### ##  ## #     
                             #  ###  ##   ## ##   ###  #    #  ## ####   #     
                            ###   #   # #  # # #### ##  # ## ###  #     #      
                           #  ###  # ##    #  # ###  #      ### ## #  #  ##    
                          ###   #     # ## # ##  ##  ##### ####  #### ##   #   
                         #  ###  # # #  # ### # # ##      ##   # # #    #   #  
                        ###   #  ## ###  ## #   ##       #### ####   #      #  
                       #  ###  # #  #   ##  ########### #  ####  #    #    #   
                      ###   #  ##      # ####  ##  #########  #  ##    #  ##   
                     #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #  
                    ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #  
                   #  ###  # #   #     ##### # #####     # #  ## #    ##   #   
                  ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #   
                 #  ###  # #     #    #   #### #  ##### ##   ##########   ##   
                ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##       
               #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #     
              ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##     
             #  ###  # #                 #  #    # ######## # # ##  #### #     
            ###   #  ##                  #  #   #       ## ##   #  #  ## #     
           #  ###  # #                    #  #  #      #  ##  ##   ## ####     
          ###   #  ##                      ##   #       ##  ##    #   # ###    
         #  ###  # #                            # ##  ####    #### ### ####    
        ###   #  ##                              ##  ####    ##  # ## # #  #   
       #  ###  # #                                ##    ##    ## ### ## #####  
      ###   #  ##                                                # ## #  ####  
     #  ###  # #                                                     ## ## ##  
    ###   #  ##                                                      ##        
   #  ###  # #                                                     # ##  #### #
  ###   #  ##                                                     #  # ###  ###
 #  ###  # #                                                      # ## #  #  # 
###   #  ##                                                        ##      ##  
   ##  # #                                                          ##         
##  #  ##                                                                      
 # # # #                                                                       
#### ##                                                                        
# ## #                                                                         
 ####                                                                          
  ##                                                                           

APL

Works with: Dyalog APL
⍝  initialize a Langton's Ant setup with a grid of size left x right (square by default)
langton  {
    ⍝ If rows not specified, set equal to columns
      

    ⍝ 0=white, 1=black. Start with all white
    grid     0

    ⍝  Start the ant in the middle
    ant  2 ÷  

    ⍝  Aimed in a random direction
    dir  ?4

    ⍝ return everything in a tuple
    grid ant dir
}

⍝  iterate one step: takes and returns state as created by langton function
step  {
    grid ant dir   

    ⍝ Turn left or right based on grid cell
    dir  1 + 4|dir+2×grid[ant]

    ⍝ Toggle cell color
    grid[ant]  1 - grid[ant]

    ⍝ Advance along dir. Since coordinates are matrix order (row,col),
    ⍝ up is -1 0, right is 0 1, down is 1 0, and left is 0 -1
    ant + (4 2  ¯1 0, 0 1, 1 0, 0 ¯1)[dir;]

    grid ant dir
}

⍝ to watch it run, open the variable pic in the monitor before executing this step
{} { state    pic  '.⌺'[1+⊃1]  _⎕dl ÷200  step }  langton 100
Output:

The final contents of pic (eliding trailing blank lines)

.......................⌺⌺.⌺.⌺.......................................................................
......................⌺.⌺⌺⌺.⌺⌺......................................................................
.....................⌺⌺⌺⌺...⌺.⌺.....................................................................
.....................⌺⌺⌺⌺⌺.⌺..⌺⌺....................................................................
......................⌺...⌺⌺.⌺⌺.⌺...................................................................
.......................⌺⌺⌺...⌺..⌺⌺..................................................................
........................⌺...⌺⌺.⌺⌺.⌺.................................................................
.........................⌺⌺⌺...⌺..⌺⌺................................................................
..........................⌺...⌺⌺.⌺⌺.⌺...............................................................
...........................⌺⌺⌺...⌺..⌺⌺..............................................................
............................⌺...⌺⌺.⌺⌺.⌺.............................................................
.............................⌺⌺⌺...⌺..⌺⌺............................................................
..............................⌺...⌺⌺.⌺⌺.⌺...........................................................
...............................⌺⌺⌺...⌺..⌺⌺..........................................................
................................⌺...⌺⌺.⌺⌺.⌺.........................................................
.................................⌺⌺⌺...⌺..⌺⌺........................................................
..................................⌺...⌺⌺.⌺⌺.⌺.......................................................
...................................⌺⌺⌺...⌺..⌺⌺......................................................
....................................⌺...⌺⌺.⌺⌺.⌺.....................................................
.....................................⌺⌺⌺...⌺..⌺⌺....................................................
......................................⌺...⌺⌺.⌺⌺.⌺...................................................
.......................................⌺⌺⌺...⌺..⌺⌺..................................................
........................................⌺...⌺⌺.⌺⌺.⌺.................................................
.........................................⌺⌺⌺...⌺..⌺⌺................................................
..........................................⌺...⌺⌺.⌺⌺.⌺...............................................
...........................................⌺⌺⌺...⌺..⌺⌺..............................................
............................................⌺...⌺⌺.⌺⌺.⌺.............................................
.............................................⌺⌺⌺...⌺..⌺⌺............................................
..............................................⌺...⌺⌺.⌺⌺.⌺...........................................
...............................................⌺⌺⌺...⌺..⌺⌺..........................................
................................................⌺...⌺⌺.⌺⌺.⌺..⌺⌺.....................................
.................................................⌺⌺⌺...⌺..⌺⌺..⌺⌺....................................
..................................................⌺...⌺⌺.⌺⌺..⌺⌺...⌺.................................
............................................⌺⌺⌺⌺...⌺⌺⌺...⌺...⌺..⌺⌺⌺.................................
...........................................⌺....⌺...⌺...⌺⌺.⌺⌺⌺⌺...⌺.................................
..........................................⌺⌺⌺....⌺...⌺.⌺......⌺.⌺⌺.⌺................................
..........................................⌺⌺⌺....⌺.⌺⌺.....⌺.⌺⌺..⌺.⌺⌺................................
...........................................⌺....⌺...⌺⌺.⌺.⌺.....⌺⌺...................................
...........................................⌺.⌺......⌺.⌺⌺⌺⌺⌺..⌺...⌺..................................
..........................................⌺...⌺⌺⌺⌺⌺..........⌺⌺.⌺⌺⌺⌺⌺⌺..............................
..........................................⌺⌺⌺..⌺⌺..⌺.⌺⌺.⌺.⌺.⌺...⌺⌺.⌺.⌺⌺.............................
........................................⌺⌺..⌺.⌺⌺⌺⌺⌺⌺⌺.⌺...⌺..⌺⌺⌺....⌺⌺.⌺............................
.......................................⌺..⌺..⌺⌺⌺⌺⌺⌺.⌺⌺...⌺..⌺.⌺⌺...⌺...⌺............................
......................................⌺....⌺.⌺.⌺⌺.⌺..⌺⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺...⌺.............................
......................................⌺.⌺⌺⌺⌺.⌺⌺.⌺.⌺⌺⌺⌺....⌺⌺..⌺⌺.⌺.⌺⌺.⌺.............................
.......................................⌺....⌺⌺⌺⌺...⌺..⌺.⌺⌺⌺⌺⌺⌺.⌺⌺....⌺⌺⌺............................
..........................................⌺...⌺.⌺⌺.⌺.⌺⌺⌺.⌺..⌺⌺..⌺⌺...⌺⌺⌺............................
.............................................⌺⌺⌺⌺⌺⌺⌺....⌺..⌺⌺.⌺⌺.⌺.....⌺............................
.....................................⌺⌺⌺⌺..⌺⌺.⌺⌺..⌺⌺⌺⌺.⌺⌺.⌺⌺.⌺⌺..⌺.....⌺............................
....................................⌺....⌺.⌺...⌺⌺⌺.⌺⌺.⌺⌺⌺....⌺.⌺⌺⌺⌺....⌺............................
...................................⌺⌺⌺.......⌺⌺⌺.⌺.⌺.⌺⌺⌺⌺⌺....⌺.⌺......⌺............................
...................................⌺.⌺...⌺⌺⌺.⌺⌺⌺⌺.⌺⌺.⌺...⌺⌺.⌺⌺⌺.⌺⌺.....⌺............................
.........................................⌺⌺.⌺⌺..⌺⌺⌺⌺....⌺⌺⌺⌺.⌺.⌺.⌺.....⌺............................
....................................⌺....⌺..⌺⌺...⌺⌺⌺..⌺⌺⌺.....⌺⌺⌺......⌺............................
....................................⌺⌺...⌺⌺.⌺⌺⌺.⌺⌺⌺⌺..⌺......⌺⌺⌺...⌺⌺..⌺............................
....................................⌺⌺.⌺.⌺⌺⌺⌺.....⌺...⌺..⌺.⌺⌺.⌺⌺⌺.⌺⌺...⌺............................
...................................⌺⌺⌺⌺.⌺⌺...⌺⌺.⌺⌺⌺⌺..⌺.⌺..⌺..⌺..⌺⌺⌺...⌺............................
...................................⌺.⌺⌺.⌺⌺⌺..⌺.⌺.⌺⌺.⌺.⌺.....⌺.⌺.....⌺.⌺.............................
.......................................⌺.⌺..⌺....⌺⌺.⌺⌺..⌺.⌺..⌺⌺⌺.⌺⌺.................................
.......................................⌺⌺.⌺....⌺..⌺⌺⌺⌺⌺.⌺....⌺....⌺..⌺.⌺............................
......................................⌺.⌺⌺.⌺..⌺....⌺⌺.⌺⌺.⌺..⌺⌺⌺......⌺⌺⌺............................
....................................⌺.⌺...⌺..⌺..⌺..⌺..⌺⌺⌺...⌺⌺..⌺⌺....⌺.............................
...................................⌺⌺⌺.⌺.⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺.⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺.⌺.⌺⌺..............................
...................................⌺.⌺.⌺....⌺⌺⌺⌺⌺...⌺⌺..⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺.................................
.....................................⌺..⌺⌺...⌺......⌺..⌺.⌺⌺..⌺⌺⌺.⌺⌺⌺................................
..................................⌺⌺⌺⌺...⌺⌺⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺⌺⌺...⌺.⌺......................................
.............................⌺⌺....⌺..⌺.....⌺⌺⌺.⌺.⌺...⌺.⌺⌺⌺..⌺⌺⌺....................................
............................⌺..⌺..⌺⌺⌺⌺.⌺⌺...⌺⌺⌺.⌺⌺...⌺⌺⌺.⌺⌺.....⌺⌺..................................
...........................⌺⌺⌺....⌺.⌺⌺.⌺.⌺⌺⌺⌺⌺...⌺....⌺..⌺..⌺⌺.⌺⌺⌺..................................
...........................⌺.⌺⌺⌺⌺⌺.⌺.⌺...⌺⌺..⌺⌺.....⌺....⌺...⌺..⌺...................................
...............................⌺⌺⌺⌺⌺⌺.⌺⌺⌺⌺..⌺⌺.⌺...⌺..⌺⌺..⌺.⌺.⌺⌺....................................
.............................⌺⌺......⌺.⌺⌺⌺.⌺⌺..⌺⌺⌺⌺...⌺...⌺⌺⌺.......................................
..............................⌺..⌺.⌺⌺⌺⌺⌺..⌺...⌺.⌺⌺...⌺..⌺..⌺........................................
..............................⌺⌺.⌺⌺⌺.⌺⌺⌺⌺⌺⌺⌺.....⌺.....⌺.⌺⌺.........................................
.............................⌺.⌺..⌺⌺.⌺⌺......⌺...⌺⌺....⌺............................................
............................⌺..⌺.⌺⌺⌺⌺........⌺⌺⌺..⌺⌺..⌺.............................................
............................⌺.⌺⌺.⌺⌺⌺............⌺⌺..⌺⌺..............................................
.............................⌺⌺.....................................................................
..............................⌺⌺....................................................................

Applesoft BASIC

Translation of: BBC BASIC
 0  IF T THEN  FOR Q = 0 TO T STEP 0: XDRAW T AT X * S,H - Y * S:D =  FN M(D + D( PEEK (234)) + F):X = X + X(D):Y = Y + Y(D):Q = X > M OR X < 0 OR Y > M OR Y < 0: NEXT Q: END : DATA 100,50,50,3,220,1,4,-1,1,1,1,-1,-1
 1  HGR : SCALE= 1: ROT= 0
 2  LET S$ =  CHR$ (1) +  CHR$ (0) +  CHR$ (4) +  CHR$ (0) + "5'" +  CHR$ (0)
 3  POKE 236, PEEK (131): POKE 237, PEEK (132)
 4  LET S =  PEEK (236) +  PEEK (237) * 256 + 1
 5  POKE 232, PEEK (S)
 6  POKE 233, PEEK (S + 1)
 7  READ M,X,Y,S,H,T,F,D(0),D(4),Y(0),X(1),Y(2),X(3)
 8  DEF  FN M(N) = N -  INT (N / F) * F
 9  GOTO

AutoHotkey

ahk forum: discussion

Works with: AutoHotkey 1.1

(Fixed by just me)

#NoEnv
SetBatchLines, -1
; Directions
Directions := {0: "North", 1: "East", 2: "South", 3: "West"}
; Initialize the plane (set all cells to white)
White := 0xFFFFFF
Plane := []
PW := PH := 100
loop, % PH {
    I := A_Index
    loop, % PW
        Plane[I, A_Index] := White
}
; Let it run
DI := D := 0 ; initial direction
X := Y := 50 ; initial coordinates
while (X > 0) && (X <= PW) && (Y > 0) && (Y <= PH) {
    D := (D + ((Plane[X, Y] ^= White) ? 1 : 3)) & 3
    if (D & 1)
        X += -(D = 3) + (D = 1)
    else
        Y += -(D = 0) + (D = 2)
}
; Show the result
HBM := CreateDIB(Plane, PW, PH, 400, 400, 0)
Gui, Margin, 0, 0
Gui, Add, Text, x0 y0 w20 h440 Center 0x200, W
Gui, Add, Text, x20 y0 w400 h20 Center 0x200, N
Gui, Add, Picture, x20 y20 w400 h400 0x4E hwndHPIC ; SS_REALSIZECONTROL = 0x40 | SS_BITMAP = 0xE
DllCall("User32.dll\SendMessage", "Ptr", HPIC, "UInt", 0x172, "Ptr", 0, "Ptr", HBM) ; STM_SETIMAGE = 0x172
Gui, Add, Text, xp+5 yp h20 0x200 BackgroundTrans, % "Initial direction: " . Directions[DI]
Gui, Add, Text, x20 y420 w400 h20 Center 0x200, S
Gui, Add, Text, x420 y0 w20 h440 Center 0x200, E
Gui, Show, , Langton's ant (%PW%x%PH%)
Return

GuiClose:
ExitApp

CreateDIB(PixelArray, PAW, PAH, BMW := 0, BMH := 0, Gradient := 1) { ; SKAN, 01-Apr-2014 / array version by just me
    SLL := (PAW * 3) + (PAW & 1)
    VarSetCapacity(BMBITS, SLL * PAH, 0)
    P := &BMBITS
    loop, % PAH {
        R := A_Index
        loop, % PAW
            P := Numput(PixelArray[R, A_Index], P + 0, "UInt") - 1
        P += (PAW & 1)
    }
    HBM := DllCall("Gdi32.dll\CreateBitmap", "Int", PAW, "Int", PAH, "UInt", 1, "UInt", 24, "Ptr", 0, "UPtr")
    HBM := DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", 0, "Int", 0, "UInt", 0x2008, "UPtr")
    DllCall( "Gdi32.dll\SetBitmapBits", "Ptr", HBM, "UInt", SLL * PAH, "Ptr", &BMBITS)
    if (!Gradient)
        HBM := DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", 0, "Int", 0, "Int", 8, "UPtr")
    return DllCall("User32.dll\CopyImage", "Ptr", HBM, "UInt", 0, "Int", BMW, "Int", BMH, "UInt", 0x200C, "UPtr")
} ; http://ahkscript.org/boards/viewtopic.php?f=6&t=3203

AutoIt

Global $iCountMax = 100000
Global $aFields[100][100][2]
Global $iDelayStep = 10  ; stop between steps in msec

Global $aDirection[4][4] = [ _ ; [ direction 0-3 ][ left change x, y, right change x, y ]
[-1,  0, +1,  0], _   ; == direction 0
[ 0, -1,  0, +1], _   ; == direction 1
[+1,  0, -1,  0], _   ; == direction 2
[ 0, +1,  0, -1]]     ; == direction 3

Global $hGui = GUICreate("Langton's ant", 100*8, 100*8)
GUISetBkColor(0xFFFFFF)

For $i = 0 To 99
	For $j = 0 To 99
		$aFields[$i][$j][0] = GUICtrlCreateLabel('', $j*8, $i*8)
		GUICtrlSetColor(-1, 0xFF0000)
		$aFields[$i][$j][1] = 0
	Next
Next

GUISetState()

GUICtrlSetData($aFields[49][49][0], '#')

Do
	Sleep($iDelayStep)
Until Not _SetAnt()

Do
Until GUIGetMsg() = -3


Func _SetAnt()
	Local Static $iRowLast = 49, $iColLast = 49, $iCount = 0
	Local Static $aCol[2] = [0xFFFFFF,0x000000], $iDirection = 0
	Local $iRow, $iCol, $fRight = False
	If $iCount = $iCountMax Then Return 0

	; == get current color
	Local $iLastColor = $aFields[$iRowLast][$iColLast][1]

	; == go to left/right
	If $iLastColor = 0 Then $fRight = True

	; == set the ant to the next field
	Local $indexX = 0, $indexY = 1
	If $fRight Then
		$indexX = 2
		$indexY = 3
	EndIf
	$iRow = $iRowLast + ($aDirection[$iDirection][$indexX])
	$iCol = $iColLast + ($aDirection[$iDirection][$indexY])
	If $iRow < 0 Or $iRow > 99 Or $iCol < 0 Or $iCol > 99 Then Return 0
	GUICtrlSetData($aFields[$iRowLast][$iColLast][0], '')
	GUICtrlSetData($aFields[$iRow][$iCol][0], '#')

	; == direction for next step
	If $fRight Then
		$iDirection += 1
		If $iDirection = 4 Then $iDirection = 0
	Else
		$iDirection -= 1
		If $iDirection = -1 Then $iDirection = 3
	EndIf

	; == change the color of the current field
	GUICtrlSetBkColor($aFields[$iRowLast][$iColLast][0], $aCol[(Not $iLastColor)*1])
	$aFields[$iRowLast][$iColLast][1] = (Not $iLastColor)*1

	$iRowLast = $iRow
	$iColLast = $iCol
	$iCount += 1
	WinSetTitle($hGui, '', "Langton's ant      [ step: " & StringFormat('%06d', $iCount) & " ]")
	Return 1
EndFunc  ;==>_SetAnt

To see the GUI output, click here. --BugFix (talk) 14:48, 16 November 2013 (UTC)

AWK

# usage: awk  -v debug=0  -f langton.awk

# Simulates the cellular automaton "Langton's ant",
# see http://en.wikipedia.org/wiki/Langton%27s_ant

function turnRight() {
	dir++
	if( dir>4 ) { dir=1 }
}
function turnLeft() {
	dir--
	if( dir<1 ) { dir=4 }
}
function move() {
	if (dir==1) { y--; z="^" }
	if (dir==3) { y++; z="v" }

	if (dir==2) { x++; z=">" }
	if (dir==4) { x--; z="<" }
}

function ant() {
	if( debug )  AntStat() 				##

	if( grid[x,y]==0 ) { turnLeft() } else { turnRight() }
	if( grid[x,y]==0 ) { color=1    } else { color=0 }

	if( debug )  print( "# action", color, dir, z )	##

	grid[x,y] = color
	move()
}

###

function AntStat() {
	printf( "Move# %d : Ant @ x=%d y=%d dir=%d %s  color=%d\n",
		 moveNr, x,y, dir,z, grid[x,y] )
}
function dumpGrid() {
	AntStat()

	printf( "Grid:" )
	for(xx=1; xx<=limit/10; xx++) {
		printf( "....+....%s", xx )
	}
	printf "\n"

	cSum=0
	for(yy=1; yy <= limit; yy++) {
		printf( "%4d:",yy )
		for(xx=1; xx <= limit; xx++) {
			c = grid[xx,yy]
			if( c ) cSum++
	c1++
	c2+=grid[xx,yy]
			if( (xx==x)&&(yy==y) ) 	{ c=z } 	# Ant
			printf( c )
		}
		printf( "\n" )
	}
	printf( "Cells: %d  'black' cells: %d  Moves: %d\n\n", limit*limit, cSum, moveNr )
}

BEGIN { 
	  print( "Langton's ant\n" ) 

	  limit  = 72
	  for(x=1; x <= limit; x++) {
		for(y=1; y <= limit; y++) {
			grid[x,y] = 0
		}
	  }

	  moveNr =   0
	  x      =  36
	  y      =  28
	  dir    =   1	# 1=up/north 2=right/east 3=down/south 4=left/west
	  z      = "!"

	  while( moveNr < 11200 ) { 
		moveNr++
 		ant() 
		if(x<0 || x>limit) break
		if(y<0 || y>limit) break

		# Snapshots:
		if (moveNr==163 || moveNr==1297 || moveNr==10095 ) dumpGrid()
		if (y<=5 ) break
	  }
	  dumpGrid()
}
END	{ print("END.") }

BBC BASIC

      REM Implementation of Langton's ant for Rosetta Code
      fieldsize%=100
      REM Being pedantic, this will actually result in a field of 101 square,
      REM since arrays start at 0, and my implementation allows them to use it
      DIM field&(fieldsize%,fieldsize%)   : REM variables with an & suffix are byte variables
      x%=fieldsize%/2
      y%=fieldsize%/2
      d%=0
      REPEAT
        IF field&(x%,y%)=0 THEN field&(x%,y%)=1:d%-=1 ELSE field&(x%,y%)=0:d%+=1
        GCOL 15*field&(x%,y%)
        PLOT 69,x%*2,y%*2     :REM for historical reasons there are two "plot points" per pixel
        d%=(d%+4) MOD 4       :REM ensure direction is always between 0 and 3
        CASE d% OF
          WHEN 0:y%+=1
          WHEN 1:x%+=1
          WHEN 2:y%-=1
          WHEN 3:x%-=1
        ENDCASE
      UNTIL x%>fieldsize% OR x%<0 OR y%>fieldsize% OR y%<0
      END

bc

The output function o prints the resulting image (as a PBM image) to stdout. One can either store it into a file or pipe it through an image viewer (e.g. bc langton.bc | display).

define o() {
    auto i, j
    
    "P1 "
    w
    h
    for (j = 0; j < h; j++) {
        for (i = 0; i < w; i++) {
            a[j * w + i]
        }
    }
}
   
define l(w, h, x, y) {
    auto a[], d, i, x[], y[]

    /* d represents one of the four possible directions:
     *             0
     *             ⇑
     *           3⇐ ⇒1
     *             ⇓
     *             2
     * The arrays x[] and y[] contain the changes to the x and y direction for 
     * each value of d.
     */
    x[1] = 1
    x[3] = -1
    y[0] = -1
    y[2] = 1

    while (1) {
        i = y * w + x
        if (a[i] == 0) d += 1   /* turn right if white */
        if (a[i] == 1) d -= 1   /* turn left if black */
        if (d < 0) d = 3
        if (d > 3) d = 0
        x += x[d]
        y += y[d]
        a[i] = 1 - a[i]         /* toggle cell colour */
        if (x < 0) break
        if (x == w) break
        if (y < 0) break
        if (y == h) break
    }

    o()
}

l(100, 100, 50, 50)
quit

Befunge

"22222 -"*>>>1-:0\:"P"%\v>\7%1g48*-/2%3*48*+,1+:20g`!v1g01+55p03:_$$$>@
!"$(0@`vp00_^#!:p+7/"P"<<^g+7/*5"p"\%"P"/7::+g03*"d":_$,1+>:40g`!^1g03<
_::10g\v>00g+4%:00p::3\`\1-*50g+50p:2\-\0`*+::0\`\"c"`+50g:0\`\"c"`++#^
-*84g1<v^+1*2g09pg08g07-*g06-1*2p09:%2/g06:gp08:+7/*5"p"\p07:%"P"/7:p06
0p+:7%^>>-:0`!*+10p::20g\-:0`*+20p:"d"*50g::30g\-:0`!*+30p::40g\-:0`*+4
Output:
                                          ##  ############  ##
                                         #  ####          #  ##
                                        ###   ##            ## #
                                        # #  #         #  #    #
                                    ##  ## # #         ###       #
                                 ### #  #   #     #     ## ##  ###
                                  # #  ###  ## #### ##   # #  # ##  ##
                                  # ### ##  # ##  ### # #     ###   ###
                                #     #   ##### # #  ####  #   ### # # #
                               ### ##   # ####  ## ## ###### # ### #   #
                               # ### # ## # # ## ## ## #   ##### ### ##
                                   # #   # ## ###   #   # #  ####    # ##
                                #  #         ## ##   #  ##     ## #     ##
                               ###   # # ## ###  #  ##     #   ### ##  ## #
                              #  ###  ##   ## ##   ###  #    #  ## ####   #
                             ###   #   # #  # # #### ##  # ## ###  #     #
                            #  ###  # ##    #  # ###  #      ### ## #  #  ##
                           ###   #     # ## # ##  ##  ##### ####  #### ##   #
                          #  ###  # # #  # ### # # ##      ##   # # #    #   #
                         ###   #  ## ###  ## #   ##       #### ####   #      #
                        #  ###  # #  #   ##  ########### #  ####  #    #    #
                       ###   #  ##      # ####  ##  #########  #  ##    #  ##
                      #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #
                     ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #
                    #  ###  # #   #     ##### # #####     # #  ## #    ##   #
                   ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #
                  #  ###  # #     #    #   #### #  ##### ##   ##########   ##
                 ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##
                #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #
               ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##
              #  ###  # #                 #  #    # ######## # # ##  #### #
             ###   #  ##                  #  #   #       ## ##   #  #  ## #
            #  ###  # #                    #  #  #      #  ##  ##   ## ####
           ###   #  ##                      ##   #       ##  ##    #   # ###
          #  ###  # #                            # ##  ####    #### ### ####
         ###   #  ##                              ##  ####    ##  # ## # #  #
        #  ###  # #                                ##    ##    ## ### ## #####
       ###   #  ##                                                # ## #  ####
      #  ###  # #                                                     ## ## ##
     ###   #  ##                                                      ##
    #  ###  # #                                                     # ##  #### #
   ###   #  ##                                                     #  # ###  ###
  #  ###  # #                                                      # ## #  #  #
 ###   #  ##                                                        ##      ##
#  ###  # #                                                          ##
 ### #  ##
# # # # #
 #### ##
 # ## #
  ####
   ##

BQN

Ant is the main function, which runs the ant simulation given a starting point, direction and grid of zeros.

Fmt then formats into hashes and spaces.

_while_ is an idiom from BQNcrate which helps with conditional looping.

Rot  ¬{-(𝕨)𝕩}
Fmt  " #"
_while_  {𝔽𝔾𝔽_𝕣_𝔾𝔽𝔾𝕩}

Ant  2{ # Generator Block
  pdg:
  r  d Rot˜ pg
  
    p + r
    r
    ¬(p)g
  
} _while_ {   # Condition Block
  pdg:
  ´(p00)p<≢g
}

•Show Fmt Ant 5050, 01, 1001000

Try It! (Running will take some time due to JS, ≈40 secs on my machine)

C

Requires ANSI terminal.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

int w = 0, h = 0;
unsigned char *pix;

void refresh(int x, int y)
{
	int i, j, k;
	printf("\033[H");
	for (i = k = 0; i < h; putchar('\n'), i++)
		for (j = 0; j < w; j++, k++)
			putchar(pix[k] ? '#' : ' ');
}

void walk()
{
	int dx = 0, dy = 1, i, k;
	int x = w / 2, y = h / 2;

	pix = calloc(1, w * h);
	printf("\033[H\033[J");

	while (1) {
		i = (y * w + x);
		if (pix[i]) k = dx, dx = -dy, dy = k;
		else	    k = dy, dy = -dx, dx = k;

		pix[i] = !pix[i];
		printf("\033[%d;%dH%c", y + 1, x + 1, pix[i] ? '#' : ' ');

		x += dx, y += dy;

		k = 0;
		if (x < 0) {
			memmove(pix + 1, pix, w * h - 1);
			for (i = 0; i < w * h; i += w) pix[i] = 0;
			x++, k = 1;
		}
		else if (x >= w) {
			memmove(pix, pix + 1, w * h - 1);
			for (i = w-1; i < w * h; i += w) pix[i] = 0;
			x--, k = 1;
		}

		if (y >= h) {
			memmove(pix, pix + w, w * (h - 1));
			memset(pix + w * (h - 1), 0, w);
			y--, k = 1;
		}
		else if (y < 0) {
			memmove(pix + w, pix, w * (h - 1));
			memset(pix, 0, w);
			y++, k = 1;
		}
		if (k) refresh(x, y);
		printf("\033[%d;%dH\033[31m@\033[m", y + 1, x + 1);

		fflush(stdout);
		usleep(10000);
	}
}

int main(int c, char **v)
{
	if (c > 1) w = atoi(v[1]);
	if (c > 2) h = atoi(v[2]);
	if (w < 40) w = 40;
	if (h < 25) h = 25;

	walk();
	return 0;
}

C#

using System;

namespace LangtonAnt
{
    public struct Point
    {
        public int X;
        public int Y;

        public Point(int x, int y)
        {
            X = x;
            Y = y;
        }
    }

    enum Direction
    {
        North, East, West, South
    }

    public class Langton
    {
        public readonly bool [,] IsBlack;
        private Point _origin;
        private Point _antPosition = new Point(0, 0);
        public bool OutOfBounds { get; set;}

        // I don't see any mention of what direction the ant is supposed to start out in
        private Direction _antDirection = Direction.East;

        private readonly Direction[] _leftTurn = new[] { Direction.West, Direction.North, Direction.South, Direction.East };
        private readonly Direction[] _rightTurn = new[] { Direction.East, Direction.South, Direction.North, Direction.West };
        private readonly int[] _xInc = new[] { 0, 1,-1, 0};
        private readonly int[] _yInc = new[] {-1, 0, 0, 1};

        public Langton(int width, int height, Point origin)
        {
            _origin = origin;
            IsBlack = new bool[width, height];
            OutOfBounds = false;
        }

        public Langton(int width, int height) : this(width, height, new Point(width / 2, height / 2)) {}

        private void MoveAnt()
        {
            _antPosition.X += _xInc[(int)_antDirection];
            _antPosition.Y += _yInc[(int)_antDirection];
        }

        public Point Step()
        {
            if (OutOfBounds)
            {
                throw new InvalidOperationException("Trying to step after ant is out of bounds");
            }
            Point ptCur = new Point(_antPosition.X + _origin.X, _antPosition.Y + _origin.Y);
            bool leftTurn = IsBlack[ptCur.X, ptCur.Y];
            int iDirection = (int) _antDirection;
            _antDirection = leftTurn ? _leftTurn[iDirection] : _rightTurn[iDirection];
            IsBlack[ptCur.X, ptCur.Y] = !IsBlack[ptCur.X, ptCur.Y];
            MoveAnt();
            ptCur = new Point(_antPosition.X + _origin.X, _antPosition.Y + _origin.Y);
            OutOfBounds = 
                ptCur.X < 0 ||
                ptCur.X >= IsBlack.GetUpperBound(0) ||
                ptCur.Y < 0 ||
                ptCur.Y >= IsBlack.GetUpperBound(1);
            return _antPosition;
        }
    }
    class Program
    {
        static void Main()
        {
            Langton ant = new Langton(100, 100);

            while (!ant.OutOfBounds) ant.Step();

            for (int iRow = 0; iRow < 100; iRow++)
            {
                for (int iCol = 0; iCol < 100; iCol++)
                {
                    Console.Write(ant.IsBlack[iCol, iRow] ? "#" : " ");
                }
                Console.WriteLine();
            }

            Console.ReadKey();
        }
    }
}

Output:

<Blank lines eliminated for efficiency>                          # #                                                                       
                        ## # #                                                                      
                       # ### ##                                                                     
                      #### ### #                                                                    
                      ##### #  ##                                                                   
                       #   ## ## #                                                                  
                        ###   #  ##                                                                 
                         #   ## ## #                                                                
                          ###   #  ##                                                               
                           #   ## ## #                                                              
                            ###   #  ##                                                             
                             #   ## ## #                                                            
                              ###   #  ##                                                           
                               #   ## ## #                                                          
                                ###   #  ##                                                         
                                 #   ## ## #                                                        
                                  ###   #  ##                                                       
                                   #   ## ## #                                                      
                                    ###   #  ##                                                     
                                     #   ## ## #                                                    
                                      ###   #  ##                                                   
                                       #   ## ## #                                                  
                                        ###   #  ##                                                 
                                         #   ## ## #                                                
                                          ###   #  ##                                               
                                           #   ## ## #                                              
                                            ###   #  ##                                             
                                             #   ## ## #                                            
                                              ###   #  ##                                           
                                               #   ## ## #                                          
                                                ###   #  ##                                         
                                                 #   ## ## #  ##                                    
                                                  ###   #  ##  ##                                   
                                                   #   ## ##  ##   #                                
                                             ####   ###   #   #  ###                                
                                            #    #   #   ## ####   #                                
                                           ###    #   # #      # ## #                               
                                           ###    # ##     # ##  # ##                               
                                            #    #   ## # #     ##                                  
                                            # #      # #####  #   #                                 
                                           #   #####          ## ######                             
                                           ###  ##  # ## # # #   ## # ##                            
                                         ##  # ####### #   #  ###    ## #                           
                                        #  #  ###### ##   #  # ##   #   #                           
                                       #    # # ## #  ###### #######   #                            
                                       # #### ## # ####    ##  ## # ## #                            
                                        #    ####   #  # ###### ##    ###                           
                                           #   # ## # ### #  ##  ##   ###                           
                                              #######    #  ## ## #     #                           
                                      ####  ## ##  #### ## ## ##  #     #                           
                                     #    # #   ### ## ###    # ####    #                           
                                    ###       ### # # #####    # #      #                           
                                    # #   ### #### ## #   ## ### ##     #                           
                                          ## ##  ####    #### # # #     #                           
                                     #    #  ##   ###  ###     ###      #                           
                                     ##   ## ### ####  #      ###   ##  #                           
                                     ## # ####     #   #  # ## ### ##   #                           
                                    #### ##   ## ####  # #  #  #  ###   #                           
                                    # ## ###  # # ## # #     # #     # #                            
                                        # #  #    ## ##  # #  ### ##                                
                                        ## #    #  ##### #    #    #  # #                           
                                       # ## #  #    ## ## #  ###      ###                           
                                     # #   #  #  #  #  ###   ##  ##    #                            
                                    ### # ##### ###### ### ####### # ##                             
                                    # # #    #####   ##  ##### #####                                
                                      #  ##   #      #  # ##  ### ###                               
                                   ####   ##### #########   # #                                     
                              ##    #  #     ### # #   # ###  ###                                   
                             #  #  #### ##   ### ##   ### ##     ##                                 
                            ###    # ## # #####   #    #  #  ## ###                                 
                            # ##### # #   ##  ##     #    #   #  #                                  
                                ###### ####  ## #   #  ##  # # ##                                   
                              ##      # ### ##  ####   #   ###                                      
                               #  # #####  #   # ##   #  #  #                                       
                               ## ### #######     #     # ##                                        
                              # #  ## ##      #   ##    #                                           
                             #  # ####        ###  ##  #                                            
                             # ## ###            ##  ##                                             
                              ##                                                                    
                               ##                                                                   

C++

If you want to see it running infinitely, set the const bool INFINIT_RUN = true

#include <windows.h>
#include <string>

//--------------------------------------------------------------------------------------------------
using namespace std;

//--------------------------------------------------------------------------------------------------
const int BMP_SIZE = 600, CELL_SIZE = 4, GRID_SIZE = BMP_SIZE / CELL_SIZE;
const bool INFINIT_RUN = false;

enum cellState { WHITE, BLACK, ANT };
enum facing { NOR, EAS, SOU, WES };
enum state { RUNNING, RESTING };

//--------------------------------------------------------------------------------------------------
class myBitmap
{
public:
    myBitmap() : pen( NULL ) {}
    ~myBitmap()
    {
	DeleteObject( pen );
	DeleteDC( hdc );
	DeleteObject( bmp );
    }

    bool create( int w, int h )
    {
	BITMAPINFO	bi;
	ZeroMemory( &bi, sizeof( bi ) );

	bi.bmiHeader.biSize	   = sizeof( bi.bmiHeader );
	bi.bmiHeader.biBitCount	   = sizeof( DWORD ) * 8;
	bi.bmiHeader.biCompression = BI_RGB;
	bi.bmiHeader.biPlanes	   = 1;
	bi.bmiHeader.biWidth	   =  w;
	bi.bmiHeader.biHeight	   = -h;

	HDC dc = GetDC( GetConsoleWindow() );
	bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 );
	if( !bmp ) return false;

	hdc = CreateCompatibleDC( dc );
	SelectObject( hdc, bmp );
	ReleaseDC( GetConsoleWindow(), dc ); 

	width = w; height = h;

	return true;
    }

    void clear()
    {
	ZeroMemory( pBits, width * height * sizeof( DWORD ) );
    }

    void setPenColor( DWORD clr )
    {
	if( pen ) DeleteObject( pen );
	pen = CreatePen( PS_SOLID, 1, clr );
	SelectObject( hdc, pen );
    }

    void saveBitmap( string path )
    {
	BITMAPFILEHEADER fileheader;
	BITMAPINFO	 infoheader;
	BITMAP		 bitmap;
	DWORD		 wb;

	GetObject( bmp, sizeof( bitmap ), &bitmap );

	DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight];
	ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD ) );
	ZeroMemory( &infoheader, sizeof( BITMAPINFO ) );
	ZeroMemory( &fileheader, sizeof( BITMAPFILEHEADER ) );

	infoheader.bmiHeader.biBitCount = sizeof( DWORD ) * 8;
	infoheader.bmiHeader.biCompression = BI_RGB;
	infoheader.bmiHeader.biPlanes = 1;
	infoheader.bmiHeader.biSize = sizeof( infoheader.bmiHeader );
	infoheader.bmiHeader.biHeight = bitmap.bmHeight;
	infoheader.bmiHeader.biWidth = bitmap.bmWidth;
	infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof( DWORD );

	fileheader.bfType    = 0x4D42;
	fileheader.bfOffBits = sizeof( infoheader.bmiHeader ) + sizeof( BITMAPFILEHEADER );
	fileheader.bfSize    = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage;

	GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS );

	HANDLE file = CreateFile( path.c_str(), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL );
	WriteFile( file, &fileheader, sizeof( BITMAPFILEHEADER ), &wb, NULL );
	WriteFile( file, &infoheader.bmiHeader, sizeof( infoheader.bmiHeader ), &wb, NULL );
	WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL );
	CloseHandle( file );

	delete [] dwpBits;
    }

    HDC getDC() const     { return hdc; }
    int getWidth() const  { return width; }
    int getHeight() const { return height; }

private:
    HBITMAP bmp;
    HDC	    hdc;
    HPEN    pen;
    void   *pBits;
    int	    width, height;
};
//--------------------------------------------------------------------------------------------------
class Ant
{
public:
    Ant() 
    {
	_bmp.create( BMP_SIZE, BMP_SIZE );
	ZeroMemory( _grid, sizeof( _grid ) );
	RED_BRUSH = CreateSolidBrush( 255 );
	_antState = RUNNING;
    }

    ~Ant()
    {
	DeleteObject( RED_BRUSH );
    }

    void setPosition( int x, int y )
    {
	_sx = x; _sy = y;
	_facing = WES;
    }

    void mainLoop()
    {
	switch( _antState )
	{
	    case RUNNING:
	        simulate();
		// fall thru
	    case RESTING:
		display();
	}
    }

    void setHWND( HWND hwnd ) { _hwnd = hwnd; }

private:
    void simulate()
    {
	switch( _grid[_sx][_sy] )
	{
	    case BLACK:
		_grid[_sx][_sy] = WHITE;
		if( --_facing < NOR ) _facing = WES;
	    break;
	    case WHITE:
		_grid[_sx][_sy] = BLACK;
		if( ++_facing > WES ) _facing = NOR;
	}
	switch( _facing )
	{
	    case NOR: 
		if( --_sy < 0 )
		{
		    if( INFINIT_RUN ) _sy = GRID_SIZE - 1;
		    else _antState = RESTING;
		}
	    break;
	    case EAS:
		if( ++_sx >= GRID_SIZE )
		{
		    if( INFINIT_RUN ) _sx = 0;
		    else _antState = RESTING;
		}
	    break;
	    case SOU:
		if( ++_sy >= GRID_SIZE )
		{
		    if( INFINIT_RUN ) _sy = 0;
		    else _antState = RESTING;
		}
	    break;
	    case WES:
	        if( --_sx < 0 )
		{
		    if( INFINIT_RUN ) _sx = GRID_SIZE - 1;
		    else _antState = RESTING;
		}
	}
    }

    void display()
    {
        _bmp.clear();
		
        HBRUSH br; RECT rc;
        int xx, yy; HDC dc = _bmp.getDC();

        for( int y = 0; y < GRID_SIZE; y++ )
	    for( int x = 0; x < GRID_SIZE; x++ )
	    {
	        switch( _grid[x][y] )
	        {
		    case BLACK: br = static_cast<HBRUSH>( GetStockObject( BLACK_BRUSH ) ); break;
		    case WHITE: br = static_cast<HBRUSH>( GetStockObject( WHITE_BRUSH ) );
	        }
	        if( x == _sx && y == _sy ) br = RED_BRUSH;

	        xx = x * CELL_SIZE; yy = y * CELL_SIZE;
	        SetRect( &rc, xx, yy, xx + CELL_SIZE, yy + CELL_SIZE );
	        FillRect( dc, &rc, br );
	    }

        HDC wdc = GetDC( _hwnd );
        BitBlt( wdc, 0, 0, BMP_SIZE, BMP_SIZE, dc, 0, 0, SRCCOPY );
        ReleaseDC( _hwnd, wdc );
    }

    myBitmap _bmp;
    HWND     _hwnd;
    HBRUSH   RED_BRUSH;
    BYTE     _grid[GRID_SIZE][GRID_SIZE];
    int      _sx, _sy, _facing;
    state    _antState;
};
//--------------------------------------------------------------------------------------------------
class wnd
{
public:
    int wnd::Run( HINSTANCE hInst )
    {
	_hInst = hInst;
	_hwnd = InitAll();

	_ant.setHWND( _hwnd );
	_ant.setPosition( GRID_SIZE / 2, GRID_SIZE / 2 );

	ShowWindow( _hwnd, SW_SHOW );
	UpdateWindow( _hwnd );

	MSG msg;
	ZeroMemory( &msg, sizeof( msg ) );
	while( msg.message != WM_QUIT )
	{
	    if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) != 0 )
	    {
		TranslateMessage( &msg );
		DispatchMessage( &msg );
	    }
	    else
	    {
		_ant.mainLoop();
	    }
	}
	return UnregisterClass( "_LANGTONS_ANT_", _hInst );
    }
private:
    static int WINAPI wnd::WndProc( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
    {
	switch( msg )
	{
	    case WM_DESTROY: PostQuitMessage( 0 ); break;
	    default:
		return DefWindowProc( hWnd, msg, wParam, lParam );
	}
	return 0;
    }

    HWND InitAll()
    {
	WNDCLASSEX wcex;
	ZeroMemory( &wcex, sizeof( wcex ) );
	wcex.cbSize	       = sizeof( WNDCLASSEX );
	wcex.style	       = CS_HREDRAW | CS_VREDRAW;
	wcex.lpfnWndProc   = ( WNDPROC )WndProc;
	wcex.hInstance     = _hInst;
	wcex.hCursor       = LoadCursor( NULL, IDC_ARROW );
	wcex.hbrBackground = ( HBRUSH )( COLOR_WINDOW + 1 );
	wcex.lpszClassName = "_LANGTONS_ANT_";

	RegisterClassEx( &wcex );

	return CreateWindow( "_LANGTONS_ANT_", ".: Langton's Ant -- PJorente :.", WS_SYSMENU, CW_USEDEFAULT, 0, BMP_SIZE, BMP_SIZE, NULL, NULL, _hInst, NULL );
    }

    HINSTANCE _hInst;
    HWND      _hwnd;
    Ant       _ant;
};
//--------------------------------------------------------------------------------------------------
int APIENTRY _tWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow )
{
    wnd myWnd;
    return myWnd.Run( hInstance );
}
//--------------------------------------------------------------------------------------------------

Chapel

config const gridHeight: int = 100;
config const gridWidth: int = 100;

class PBMWriter {
  var imgDomain: domain(2);
  var imgData: [imgDomain] int;
  
  proc PBMWriter( height: int, width: int ){
    imgDomain = { 1..#height, 1..#width };
  }
  
  proc this( i : int, j : int) ref : int{
    return this.imgData[ i, j ];
  }

  proc writeImage( fileName: string ){
    var file = open(fileName, iomode.cw);
    var writingChannel = file.writer();
    writingChannel.write("P1\n", imgDomain.dim(1).size, " " ,imgDomain.dim(2).size,"\n");
    
    for px in imgData {
      writingChannel.write( px, " " );
    }
    
    writingChannel.write( "\n" );
    writingChannel.flush();
    writingChannel.close();
  }
  
}

enum Color { white, black };

inline proc nextDirection( position: 2*int, turnLeft: bool ): 2*int {
  return ( (if turnLeft then 1 else -1 ) * position[2], (if turnLeft then -1 else 1 ) * position[1] );
}

proc <( left: 2*int, right: 2*int ){
  return left[1] < right[1] && left[2] < right[2];
}

proc <=( left: 2*int, right: 2*int ){
  return left[1] <= right[1] && left[2] <= right[2];
}

proc main{
  const gridDomain: domain(2) = {1..#gridHeight, 1..#gridWidth};
  var grid: [gridDomain] Color;
  
  var antPos = ( gridHeight / 2, gridWidth / 2 );
  var antDir = (1,0); // start up;
  
  while (0,0) < antPos && antPos <= (gridHeight, gridWidth ) {
    var currColor = grid[ antPos ];
    grid[antPos] = if currColor == Color.white then Color.black else Color.white ;
    
    antDir = nextDirection( antDir, currColor == Color.black );
    antPos = antPos + antDir;
  }
  
  var image = new PBMWriter( height = gridHeight, width = gridWidth );
  
  for (i, j) in gridDomain {
    image[i,j] = if grid[gridHeight-j+1,gridHeight-i+1] == Color.black then 0 else 1;
  }
  
  image.writeImage( "output.png" );
}

Clojure

In keeping with the spirit of Clojure, this program eschews mutable state entirely. Instead, all computation occurs within a single recursive loop whose "variables" are "adjusted" at each iteration, a natural fit for this particular execution model.

(let [bounds (set (range 100))
      xs [1 0 -1 0] ys [0 -1 0 1]]
  (loop [dir 0 x 50 y 50
         grid {[x y] false}]
    (if (and (bounds x) (bounds y))
      (let [cur (not (grid [x y]))
            dir (mod (+ dir (if cur -1 1)) 4)]
        (recur dir (+ x (xs dir)) (+ y (ys dir))
               (merge grid {[x y] cur})))
      (doseq [col (range 100)]
        (println
          (apply str
                 (map #(if (grid [% col]) \# \.)
                      (range 100))))))))

COBOL

The following program displays the simulation in the console, and a very small font size (~4pt) will be needed to fit it into the window.

Works with: OpenCOBOL
       IDENTIFICATION DIVISION.
       PROGRAM-ID. langtons-ant.

       DATA DIVISION.
       WORKING-STORAGE SECTION.
       78  Grid-Size               VALUE 100.
       01  grid-area.
           03  grid-x              OCCURS Grid-Size TIMES.
               05  grid-y          OCCURS Grid-Size TIMES.
                   07  cell-colour PIC X VALUE "W".
                       88  black   VALUE "B".
                       88  white   VALUE "W".

       01  ant-x                   PIC 999.
       01  ant-y                   PIC 999.

       01  ant-direction           PIC 9.
           88  upward              VALUE 0.
           88  rightward           VALUE 1.
           88  downward            VALUE 2.
           88  leftward            VALUE 3.

       78  Pause-Time-Ns           VALUE 10000000.

       01  display-y               PIC 999.

       78  Black-Background        VALUE 0.
       78  White-Background        VALUE 7.

       01  i                       PIC 999.
       01  j                       PIC 999.

       01  pause                   PIC X.

       PROCEDURE DIVISION.
       main-line.
           DIVIDE Grid-Size BY 2 GIVING ant-x, ant-y

           PERFORM display-initial-grid
           PERFORM UNTIL (ant-x = Grid-Size OR 0)
                   OR (ant-y = Grid-Size OR 0)
               PERFORM step-simulation
               CALL "CBL_OC_NANOSLEEP" USING Pause-Time-Ns
           END-PERFORM

           DISPLAY "Press enter to quit." AT LINE 1 COLUMN 1
           ACCEPT pause

           GOBACK
           .
       step-simulation.
           IF black (ant-x, ant-y)
               SET white (ant-x, ant-y) TO TRUE
               PERFORM display-ant-cell
               COMPUTE ant-direction =
                   FUNCTION MOD(ant-direction + 1, 4)
           ELSE
               SET black (ant-x, ant-y) TO TRUE
               PERFORM display-ant-cell
               COMPUTE ant-direction =
                   FUNCTION MOD(ant-direction - 1, 4)
           END-IF

           EVALUATE TRUE
               WHEN upward
                   ADD 1 TO ant-y
               WHEN rightward
                   ADD 1 TO ant-x
               WHEN downward
                   SUBTRACT 1 FROM ant-y
               WHEN leftward
                   SUBTRACT 1 FROM ant-x
           END-EVALUATE
           .
       display-ant-cell.
               SUBTRACT ant-y FROM Grid-Size GIVING display-y
               IF black (ant-x, ant-y)
                   DISPLAY SPACE AT LINE display-y COLUMN ant-x
                       WITH BACKGROUND-COLOR Black-Background
               ELSE
                   DISPLAY SPACE AT LINE display-y COLUMN ant-x
                      WITH BACKGROUND-COLOR White-Background
               END-IF
               .
       display-initial-grid.
           PERFORM VARYING i FROM 1 BY 1 UNTIL i > Grid-Size
                   AFTER j FROM 1 BY 1 UNTIL j > Grid-Size
               DISPLAY SPACE AT LINE i COLUMN j
                   WITH BACKGROUND-COLOR White-Background
           END-PERFORM
           .

CoffeeScript

class Ant
  constructor: (@world) ->
    @location = [0, 0]
    @direction = 'E'
    
  move: =>
    [x, y] = @location
    if @world.is_set x, y
      @world.unset x, y
      @direction = Directions.left @direction
    else
      @world.set x, y
      @direction = Directions.right @direction
    @location = Directions.forward(x, y, @direction)

# Model a theoretically infinite 2D world with a hash, allowing squares
# to be black or white (independent of any ants.)
class BlackWhiteWorld
  constructor: ->
    @bits = {}
    
  set: (x, y) ->
    @bits["#{x},#{y}"] = true
    
  unset: (x, y) ->
    delete @bits["#{x},#{y}"]
    
  is_set: (x, y) ->
    @bits["#{x},#{y}"]

  draw: ->
    # Most of this code just involves finding the extent of the world.
    # Always include the origin, even if it's not set.
    @min_x = @max_x = @min_y = @max_y = 0
    for key of @bits
      [xx, yy] = (coord for coord in key.split ',')
      x = parseInt xx
      y = parseInt yy
      @min_x = x if x < @min_x
      @max_x = x if x > @max_x
      @min_y = y if y < @min_y
      @max_y = y if y > @max_y
    console.log "top left: #{@min_x}, #{@max_y}, bottom right: #{@max_x}, #{@min_y}"
    for y in [@max_y..@min_y] by -1
      s = ''
      for x in [@min_x..@max_x]
        if @bits["#{x},#{y}"]
          s += '#'
        else
          s += '_'
      console.log s

# Simple code for directions, independent of ants.
Directions =
  left: (dir) ->
    return 'W' if dir == 'N'
    return 'S' if dir == 'W'
    return 'E' if dir == 'S'
    'N'
  
  right: (dir) ->
    return 'E' if dir == 'N'
    return 'S' if dir == 'E'
    return 'W' if dir == 'S'
    'N'
    
  forward: (x, y, dir) ->
    return [x, y+1] if dir == 'N'
    return [x, y-1] if dir == 'S'
    return [x+1, y] if dir == 'E'
    return [x-1, y] if dir == 'W'


world = new BlackWhiteWorld()
ant = new Ant(world)
for i in [1..11500]
  ant.move()
console.log "Ant is at #{ant.location}, direction #{ant.direction}"
world.draw()

output

> coffee langstons_ant.coffee 
Ant is at -24,46, direction W
top left: -25, 47, bottom right: 22, -29
_##__##_________________________________________
##_#####________________________________________
#____##_#_______________________________________
____#_#_##______________________________________
_####_###_#_____________________________________
_#####_#__##____________________________________
__#___##_##_#___________________________________
___###___#__##__________________________________
____#___##_##_#_________________________________
_____###___#__##________________________________
______#___##_##_#_______________________________
_______###___#__##______________________________
________#___##_##_#_____________________________
_________###___#__##____________________________
__________#___##_##_#___________________________
___________###___#__##__________________________
____________#___##_##_#_________________________
_____________###___#__##________________________
______________#___##_##_#_______________________
_______________###___#__##______________________
________________#___##_##_#_____________________
_________________###___#__##____________________
__________________#___##_##_#___________________
___________________###___#__##__________________
____________________#___##_##_#_________________
_____________________###___#__##________________
______________________#___##_##_#_______________
_______________________###___#__##______________
________________________#___##_##_#__##_________
_________________________###___#__##__##________
__________________________#___##_##__##___#_____
____________________####___###___#___#__###_____
___________________#____#___#___##_####___#_____
__________________###____#___#_#______#_##_#____
__________________###____#_##_____#_##__#_##____
___________________#____#___##_#_#_____##_______
___________________#_#______#_#####__#___#______
__________________#___#####__________##_######__
__________________###__##__#_##_#_#_#___##_#_##_
________________##__#_#######_#___#__###____##_#
_______________#__#__######_##___#__#_##___#___#
______________#____#_#_##_#__######_#######___#_
______________#_####_##_#_####____##__##_#_##_#_
_______________#____####___#__#_######_##____###
__________________#___#_##_#_###_#__##__##___###
_____________________#######____#__##_##_#_____#
_____________####__##_##__####_##_##_##__#_____#
____________#____#_#___###_##_###____#_####____#
___________###_______###_#_#_#####____#_#______#
___________#_#___###_####_##_#___##_###_##_____#
_________________##_##__####____####_#_#_#_____#
____________#____#__##___###__###_____###______#
____________##___##_###_####__#______###___##__#
____________##_#_####_____#___#__#_##_###_##___#
___________####_##___##_####__#_#__#__#__###___#
___________#_##_###__#_#_##_#_#_____#_#_____#_#_
_______________#_#__#____##_##__#_#__###_##_____
_______________##_#____#__#####_#____#____#__#_#
______________#_##_#__#____##_##_#__###______###
____________#_#___#__#__#__#__###___##__##____#_
___________###_#_#####_######_###_#######_#_##__
___________#_#_#____#####___##__#####_#####_____
_____________#__##___#______#__#_##__###_###____
__________####___#####_#########___#_#__________
_____##____#__#_____###_#_#___#_###__###________
____#__#__####_##___###_##___###_##_____##______
___###____#_##_#_#####___#____#__#__##_###______
___#_#####_#_#___##__##_____#____#___#__#_______
_______######_####__##_#___#__##__#_#_##________
_____##______#_###_##__####___#___###___________
______#__#_#####__#___#_##___#__#__#____________
______##_###_#######_____#_____#_##_____________
_____#_#__##_##______#___##____#________________
____#__#_####________###__##__#_________________
____#_##_###____________##__##__________________
_____##_________________________________________
______##________________________________________

Common Lisp

(defmacro toggle (gv) `(setf  ,gv (not ,gv)))

(defun langtons-ant (width height start-x start-y start-dir) 
  (let ( (grid (make-array (list width height)))
         (x start-x)
         (y start-y)
         (dir start-dir) )
    (loop while (and (< -1 x width) (< -1 y height)) do
      (if (toggle (aref grid x y))
        (setq dir (mod (1+ dir) 4))
        (setq dir (mod (1- dir) 4)))
      (case dir
        (0 (decf y))
        (1 (incf x))
        (2 (incf y))
        (3 (decf x)))
    )
    grid
  )
)

(defun show-grid (grid) 
  (destructuring-bind (width height) (array-dimensions grid) 
    (dotimes (y height)
      (dotimes (x width)
        (princ (if (aref grid x y) "#" ".")))
      (princ #\Newline))
  )
)

(setf *random-state* (make-random-state t))
(show-grid (langtons-ant 100 100 (+ 45 (random 10)) (+ 45 (random 10)) (random 4)))

D

Textual Version

void main() @safe {
    import std.stdio, std.traits;

    enum width = 75, height = 52;
    enum maxSteps = 12_000;
    enum Direction { up, right, down, left }
    enum Color : char { white = '.', black = '#' }
    uint x = width / 2, y = height / 2;
    Color[width][height] M;
    auto dir = Direction.up;

    with (Color)
        for (int i = 0; i < maxSteps && x < width && y < height; i++) {
            immutable turn = M[y][x] == black;
            dir = [EnumMembers!Direction][(dir + (turn ? 1 : -1)) & 3];
            M[y][x] = (M[y][x] == black) ? white : black;
            final switch(dir) with (Direction) {
                case up:    y--; break;
                case right: x--; break;
                case down:  y++; break;
                case left:  x++; break;
            }
        }

    writefln("%(%-(%c%)\n%)", M);
}
Output:
...........................................................................
...........................................................................
...........................................................................
...........................................................................
.............................##..############..##..........................
............................#..####..........#..##.........................
...........................###...##............##.#........................
...........................#.#..#.........#..#....#........................
.......................##..##.#.#.........###.......#......................
....................###.#..#...#.....#.....##.##..###......................
.....................#.#..###..##.####.##...#.#..#.##..##..................
.....................#.###.##..#.##..###.#.#.....###...###.................
...................#.....#...#####.#.#..####..#...###.#.#.#................
..................###.##...#.####..##.##.######.#.###.#...#................
..................#.###.#.##.#.#.##.##.##.#...#####.###.##.................
......................#.#...#.##.###...#...#.#..####....#.##...............
...................#..#.........##.##...#..##.....##.#.....##..............
..................###...#.#.##.###..#..##.....#...###.##..##.#.............
.................#..###..##...##.##...###..#....#..##.####...#.............
................###...#...#.#..#.#.####.##..#.##.###..#.....#..............
...............#..###..#.##....#..#.###..#......###.##.#..#..##............
..............###...#.....#.##.#.##..##..#####.####..####.##...#...........
.............#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#..........
............###...#..##.###..##.#...##.......####.####...#......#..........
...........#..###..#.#..#...##..###########.#..####..#....#....#...........
..........###...#..##......#.####..##..#########..#..##....#..##...........
.........#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#..........
........###...#..##...#..#.######.##.#.##.#.#....###.###...##...#..........
.......#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#...........
......###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#...........
.....#..###..#.#.....#....#...####.#..#####.##...##########...##...........
....###...#..##......#.##...##...#..#...####..#...##.####.##...............
...#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#.............
..###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##.............
.#..###..#.#.................#..#....#.########.#.#.##..####.#.............
###...#..##..................#..#...#.......##.##...#..#..##.#.............
...##..#.#....................#..#..#......#..##..##...##.####.............
##..#..##......................##...#.......##..##....#...#.###............
.#.#.#.#............................#.##..####....####.###.####............
####.##..............................##..####....##..#.##.#.#..#...........
#.##.#................................##....##....##.###.##.#####..........
.####................................................#.##.#..####..........
..##.....................................................##.##.##..........
.........................................................##................
.......................................................#.##..####.#........
......................................................#..#.###..###........
......................................................#.##.#..#..#.........
.......................................................##......##..........
........................................................##.................
...........................................................................
...........................................................................
...........................................................................

Image Version

This similar version requires the module from the Grayscale Image Task to generate and save a PGM image.

import std.stdio, std.algorithm, std.traits, grayscale_image;

void main() {
    enum width = 100, height = 100;
    enum nSteps = 12_000;
    enum Direction { up, right, down, left }
    auto M = new Image!Gray(width, height);
    M.clear(Gray.white);
    uint x = width / 2, y = height / 2;
    auto dir = Direction.up;

    for (int i = 0; i < nSteps && x < width && y < height; i++) {
        immutable turn = M[x, y] == Gray.black;
        dir = [EnumMembers!Direction][(dir + (turn ? 1 : -1)) & 3];
        M[x, y] = (M[x, y] == Gray.black) ? Gray.white : Gray.black;
        final switch(dir) with (Direction) {
            case up:    y--; break;
            case right: x--; break;
            case down:  y++; break;
            case left:  x++; break;
        }
    }

    M.savePGM("langton_ant.pgm");
}

Dyalect

let xInc = [0, 1, -1, 0]
let yInc = [-1, 0, 0, 1]
let north = 0
let east = 1
let west = 2
let south = 3
 
let leftTurns  = [ west, north, south, east ]
let rightTurns = [ east, south, north, west ]
 
func move(ant) {
    ant.position.x += xInc[ant.direction]
    ant.position.y += yInc[ant.direction]
}
 
func Array.Step(ant) {
    var ptCur = (var x: ant.position.x + ant.origin.x, var y: ant.position.y + ant.origin.y)
    var leftTurn = this[ptCur.x][ptCur.y]
    ant.direction =
        if leftTurn  {
            leftTurns[ant.direction] 
        } else {
            rightTurns[ant.direction]
        }
    this[ptCur.x][ptCur.y] = !this[ptCur.x][ptCur.y]
    move(ant)
    ptCur = (x: ant.position.x + ant.origin.x, y: ant.position.y + ant.origin.y)
    ant.outOfBounds = 
        ptCur.x < 0 ||
        ptCur.x >= ant.width ||
        ptCur.y < 0 ||
        ptCur.y >= ant.height
    ant.position
}
 
func newAnt(width, height) {
    (
        var position: (var x: 0, var y: 0),
        var origin: (x: width / 2, y: height / 2),
        var outOfBounds: false,
        var isBlack: [],
        var direction: east,
        var width: width,
        var height: height
    )
}
 
func run() {
    let w = 100
    let h = 100
    let blacks = Array.Empty(w, () => Array.Empty(h, false))
    let ant = newAnt(w, h)
 
    while !ant.outOfBounds {
        blacks.Step(ant)
    }
 
    var iRow = 0;
 
    while iRow < w {
        var iCol = 0;
        var ln = ""
        while iCol < h {
            ln += if blacks[iCol][iRow] {
                "#"
            } else {
                " "
            }
            iCol += 1
        }
        print(ln)
        iRow += 1
    }
}
 
run()
Output:

Empty lines are omitted.

                          # #
                        ## # #
                       # ### ##
                      #### ### #
                      ##### #  ##
                       #   ## ## #
                        ###   #  ##
                         #   ## ## #
                          ###   #  ##
                           #   ## ## #
                            ###   #  ##
                             #   ## ## #
                              ###   #  ##
                               #   ## ## #
                                ###   #  ##
                                 #   ## ## #
                                  ###   #  ##
                                   #   ## ## #
                                    ###   #  ##
                                     #   ## ## #
                                      ###   #  ##
                                       #   ## ## #
                                        ###   #  ##
                                         #   ## ## #
                                          ###   #  ##
                                           #   ## ## #
                                            ###   #  ##
                                             #   ## ## #
                                              ###   #  ##
                                               #   ## ## #
                                                ###   #  ##
                                                 #   ## ## #  ##
                                                  ###   #  ##  ##
                                                   #   ## ##  ##   #
                                             ####   ###   #   #  ###
                                            #    #   #   ## ####   #
                                           ###    #   # #      # ## #
                                           ###    # ##     # ##  # ##
                                            #    #   ## # #     ##
                                            # #      # #####  #   #
                                           #   #####          ## ######
                                           ###  ##  # ## # # #   ## # ##
                                         ##  # ####### #   #  ###    ## #
                                        #  #  ###### ##   #  # ##   #   #
                                       #    # # ## #  ###### #######   #
                                       # #### ## # ####    ##  ## # ## #
                                        #    ####   #  # ###### ##    ###
                                           #   # ## # ### #  ##  ##   ###
                                              #######    #  ## ## #     #
                                      ####  ## ##  #### ## ## ##  #     #
                                     #    # #   ### ## ###    # ####    #
                                    ###       ### # # #####    # #      #
                                    # #   ### #### ## #   ## ### ##     #
                                          ## ##  ####    #### # # #     #
                                     #    #  ##   ###  ###     ###      #
                                     ##   ## ### ####  #      ###   ##  #
                                     ## # ####     #   #  # ## ### ##   #
                                    #### ##   ## ####  # #  #  #  ###   #
                                    # ## ###  # # ## # #     # #     # #
                                        # #  #    ## ##  # #  ### ##
                                        ## #    #  ##### #    #    #  # #
                                       # ## #  #    ## ## #  ###      ###
                                     # #   #  #  #  #  ###   ##  ##    #
                                    ### # ##### ###### ### ####### # ##
                                    # # #    #####   ##  ##### #####
                                      #  ##   #      #  # ##  ### ###
                                   ####   ##### #########   # #
                              ##    #  #     ### # #   # ###  ###
                             #  #  #### ##   ### ##   ### ##     ##
                            ###    # ## # #####   #    #  #  ## ###
                            # ##### # #   ##  ##     #    #   #  #
                                ###### ####  ## #   #  ##  # # ##
                              ##      # ### ##  ####   #   ###
                               #  # #####  #   # ##   #  #  #
                               ## ### #######     #     # ##
                              # #  ## ##      #   ##    #
                             #  # ####        ###  ##  #
                             # ## ###            ##  ##
                              ##
                               ##

EasyLang

Run it

len f[] 100 * 100
proc show . .
   for y = 0 to 99
      for x = 0 to 99
         if f[y * 100 + x + 1] = 1
            move x y
            rect 1 1
         .
      .
   .
.
proc run x y dir . .
   dx[] = [ 0 1 0 -1 ]
   dy[] = [ -1 0 1 0 ]
   while x >= 0 and x < 100 and y >= 0 and y < 100
      v = f[y * 100 + x + 1]
      f[y * 100 + x + 1] = 1 - v
      dir = (dir + 2 * v) mod 4 + 1
      x += dx[dir]
      y += dy[dir]
   .
.
run 70 40 0
show

EchoLisp

We implement multi-colored ants, as depicted in the article. An ant is described using L(eft)R(ight) patterns. LR is the basic black and white ant, other are RRLLLRRL or RRLLLRLLLRRR. See results for s black-and-white or colored ants.

(lib 'plot)
(lib 'types)

(define (move iter x dir constant: plane turns cmax  width  xmax (cidx 0))
	(while (> iter 0)
	;; get color index of current square
	(set! cidx (vector-ref plane x)) 

	;; turn	
	(if (vector-ref turns cidx)  
		(set! dir (if (= dir 3) 0 (1+ dir))) ;; right is #t
		(set! dir (if (= dir 0) 3 (1- dir)))) 

	;; rotate colors
	(set! cidx (if (= cidx cmax) 0 (1+ cidx)))
	(vector-set! plane x cidx)

	;; move
	;; x = v + h*width for a pixel at (h,v)
	(set! x 
		(cond
			((= dir 0) (1+ x))
			((= dir 1) (+ x width))
			((= dir 2) (1- x))
			((= dir 3) (- x width)))) 
		
	(when (or (< x 0) (>= x xmax)) (set! iter -666)) ;; out of bounds
	(set! iter (1- iter)))
	iter)
	
;; a color table of 16 colors
(define colors 
   (list 0 (rgb 1 1 1) (rgb 1 0 0) (rgb 0 1 0) (rgb 0 0 1) (rgb 1 1 0) (rgb 1 0 1) (rgb 0 1 1)))
(define colors (list->vector (append colors colors)))

;; transform color index into rgb color, using colors table.
(define (colorize plane xmax)
	(for ((x xmax)) 
		(vector-set! plane x (vector-ref colors (vector-ref plane x))))
	(vector->pixels plane)
	xmax )
	
;; ant's patterns
(define turns #(#t #t #f #f #f #t #f #f #f #t #t #t))   ;; RRLLLRLLLRRR
;;(define turns #(#t #t #f #f #f #t #t #f)) ; RRLLLRRL
;;(define turns #(#t #f)) ; RL : basic ant

(define  (ant (iter 100000))
	(plot-clear)
	(define width (first (pixels-dim))) ;; plane dimensions
	(define height (rest (pixels-dim)))
	(define plane (pixels->uint32-vector))
	(define x (+ (quotient width 2) (* width (quotient height 2)))) ;; middle of plane
	(define xmax (* width height))
	
	(move iter  x 0 plane turns (1- (vector-length turns)) width xmax)
	(colorize plane xmax))

(ant) ;; run

Ela

A straightforward implementation (assumes that we start with ant looking forward):

open list core generic
 
type Field = Field a
type Color = White | Black
type Direction = Lft | Fwd | Rgt | Bwd
field s = Field [[White \\ _ <- [1..s]] \\ _ <- [1..s]]
 
isBlack Black = true
isBlack _ = false
 
newfield xc yc (Field xs) = Field (newfield' 0 xs)
  where newfield' _ [] = []
        newfield' n (x::xs) 
          | n == yc = row 0 x :: xs
          | else   = x :: newfield' (n+1) xs
          where row _ [] = []
                row n (x::xs) 
                  | n == xc = toggle x :: xs
                  | else    = x :: row (n+1) xs
                  where toggle White = Black
                        toggle Black = White
 
showPath (Field xs) = toString <| show' "" xs
  where show' sb [] = sb +> ""
        show' sb (x::xs) = show' (showRow sb x +> "\r\n") xs
          where showRow sb [] = sb +> ""
                showRow sb (x::xs) = showRow (sb +> s) xs
                  where s | isBlack x = "#"
                          | else = "_"
 
move s xc yc = move' (Fwd,xc,yc) (field s)
  where move' (pos,xc,yc)@coor fld 
          | xc >= s || yc >= s || xc < 0 || yc < 0 = fld
          | else = fld |> newfield xc yc |> move' (matrix (dir fld) coor)
          where dir (Field xs) 
                  | `isBlack` (xs:yc):xc = Lft
                  | else = Rgt
                matrix Lft (pos,x,y) = go (left pos,x,y)
                matrix Rgt (pos,x,y) = go (right pos,x,y)
                go (Lft,x,y) = (Lft,x - 1,y)
                go (Rgt,x,y) = (Rgt,x+1,y)
                go (Fwd,x,y) = (Fwd,x,y - 1)
                go (Bwd,x,y) = (Bwd,x,y+1)
                right Lft = Fwd
                right Fwd = Rgt
                right Rgt = Bwd
                right Bwd = Lft
                left Lft = Bwd
                left Bwd = Rgt
                left Rgt = Fwd
                left Fwd = Lft

This implementation is pure (doesn't produce side effects).

Testing:

showPath <| move 100 50 50

Output (empty lines are skipped to save space):

__________________________________________##__############__##______________________________________
_________________________________________#__####__________#__##_____________________________________
________________________________________###___##____________##_#____________________________________
________________________________________#_#__#_________#__#____#____________________________________
____________________________________##__##_#_#_________###_______#__________________________________
_________________________________###_#__#___#_____#_____##_##__###__________________________________
__________________________________#_#__###__##_####_##___#_#__#_##__##______________________________
__________________________________#_###_##__#_##__###_#_#_____###___###_____________________________
________________________________#_____#___#####_#_#__####__#___###_#_#_#____________________________
_______________________________###_##___#_####__##_##_######_#_###_#___#____________________________
_______________________________#_###_#_##_#_#_##_##_##_#___#####_###_##_____________________________
___________________________________#_#___#_##_###___#___#_#__####____#_##___________________________
________________________________#__#_________##_##___#__##_____##_#_____##__________________________
_______________________________###___#_#_##_###__#__##_____#___###_##__##_#_________________________
______________________________#__###__##___##_##___###__#____#__##_####___#_________________________
_____________________________###___#___#_#__#_#_####_##__#_##_###__#_____#__________________________
____________________________#__###__#_##____#__#_###__#______###_##_#__#__##________________________
___________________________###___#_____#_##_#_##__##__#####_####__####_##___#_______________________
__________________________#__###__#_#_#__#_###_#_#_##______##___#_#_#____#___#______________________
_________________________###___#__##_###__##_#___##_______####_####___#______#______________________
________________________#__###__#_#__#___##__###########_#__####__#____#____#_______________________
_______________________###___#__##______#_####__##__#########__#__##____#__##_______________________
______________________#__###__#_#___##__#_##___##_##_###_###___#__#_##__####_#______________________
_____________________###___#__##___#__#_######_##_#_##_#_#____###_###___##___#______________________
____________________#__###__#_#___#_____#####_#_#####_____#_#__##_#____##___#_______________________
___________________###___#__##____#_____#_##_#####_##__#_#___#__#__##_#__#__#_______________________
__________________#__###__#_#_____#____#___####_#__#####_##___##########___##_______________________
_________________###___#__##______#_##___##___#__#___####__#___##_####_##___________________________
________________#__###__#_#________#####_#__##___##_#___#____#_#__#__#__#_#_________________________
_______________###___#__##__________##__##_#_#_#____##_##_#_#_##__#__##__##_________________________
______________#__###__#_#_________________#__#____#_########_#_#_##__####_#_________________________
_____________###___#__##__________________#__#___#_______##_##___#__#__##_#_________________________
____________#__###__#_#____________________#__#__#______#__##__##___##_####_________________________
___________###___#__##______________________##___#_______##__##____#___#_###________________________
__________#__###__#_#____________________________#_##__####____####_###_####________________________
_________###___#__##______________________________##__####____##__#_##_#_#__#_______________________
________#__###__#_#________________________________##____##____##_###_##_#####______________________
_______###___#__##________________________________________________#_##_#__####______________________
______#__###__#_#_____________________________________________________##_##_##______________________
_____###___#__##______________________________________________________##____________________________
____#__###__#_#_____________________________________________________#_##__####_#____________________
___###___#__##_____________________________________________________#__#_###__###____________________
__#__###__#_#______________________________________________________#_##_#__#__#_____________________
_###___#__##________________________________________________________##______##______________________
#__###__#_#__________________________________________________________##_____________________________
_###_#__##__________________________________________________________________________________________
#_#_#_#_#___________________________________________________________________________________________
_####_##____________________________________________________________________________________________
_#_##_#_____________________________________________________________________________________________
__####______________________________________________________________________________________________
___##_______________________________________________________________________________________________

Elixir

Works with: Elixir version 1.1+
Translation of: Ruby
defmodule Langtons do
  def ant(sizex, sizey) do
    {px, py} = {div(sizex,2), div(sizey,2)}     # start position
    move(MapSet.new, sizex, sizey, px, py, {1,0}, 0)
  end
  
  defp move(plane, sx, sy, px, py, _, step) when px<0 or sx<px or py<0 or sy<py, do:
    print(plane, sx, sy, px, py, step)
  defp move(plane, sx, sy, px, py, dir, step) do
    {plane2, {dx,dy}} = if {px,py} in plane,
                          do:   {MapSet.delete(plane, {px,py}), turn_right(dir)},
                          else: {MapSet.put(plane, {px,py}), turn_left(dir)}
    move(plane2, sx, sy, px+dx, py+dy, {dx,dy}, step+1)
  end
  
  defp turn_right({dx, dy}), do: {dy, -dx}
  defp turn_left({dx, dy}), do: {-dy, dx}
  
  defp print(plane, sx, sy, px, py, step) do
    IO.puts "out of bounds after #{step} moves: (#{px}, #{py})"
    Enum.each(0..sy, fn j ->
      IO.puts Enum.map(0..sx, fn i -> if {i,j} in plane, do: "#", else: "." end)
    end)
  end
end

Langtons.ant(100, 100)
Output:
out of bounds after 11669 moves: (26, -1)
..........................#.#........................................................................
........................##.#.#.......................................................................
.......................#.###.##......................................................................
......................####.###.#.....................................................................
......................#####.#..##....................................................................
.......................#...##.##.#...................................................................
........................###...#..##..................................................................
.........................#...##.##.#.................................................................
..........................###...#..##................................................................
...........................#...##.##.#...............................................................
............................###...#..##..............................................................
.............................#...##.##.#.............................................................
..............................###...#..##............................................................
...............................#...##.##.#...........................................................
................................###...#..##..........................................................
.................................#...##.##.#.........................................................
..................................###...#..##........................................................
...................................#...##.##.#.......................................................
....................................###...#..##......................................................
.....................................#...##.##.#.....................................................
......................................###...#..##....................................................
.......................................#...##.##.#...................................................
........................................###...#..##..................................................
.........................................#...##.##.#.................................................
..........................................###...#..##................................................
...........................................#...##.##.#...............................................
............................................###...#..##..............................................
.............................................#...##.##.#.............................................
..............................................###...#..##............................................
...............................................#...##.##.#...........................................
................................................###...#..##..........................................
.................................................#...##.##.#..##.....................................
..................................................###...#..##..##....................................
...................................................#...##.##..##...#.................................
.............................................####...###...#...#..###.................................
............................................#....#...#...##.####...#.................................
...........................................###....#...#.#......#.##.#................................
...........................................###....#.##.....#.##..#.##................................
............................................#....#...##.#.#.....##...................................
............................................#.#......#.#####..#...#..................................
...........................................#...#####..........##.######..............................
...........................................###..##..#.##.#.#.#...##.#.##.............................
.........................................##..#.#######.#...#..###....##.#............................
........................................#..#..######.##...#..#.##...#...#............................
.......................................#....#.#.##.#..######.#######...#.............................
.......................................#.####.##.#.####....##..##.#.##.#.............................
........................................#....####...#..#.######.##....###............................
...........................................#...#.##.#.###.#..##..##...###............................
..............................................#######....#..##.##.#.....#............................
......................................####..##.##..####.##.##.##..#.....#............................
.....................................#....#.#...###.##.###....#.####....#............................
....................................###.......###.#.#.#####....#.#......#............................
....................................#.#...###.####.##.#...##.###.##.....#............................
..........................................##.##..####....####.#.#.#.....#............................
.....................................#....#..##...###..###.....###......#............................
.....................................##...##.###.####..#......###...##..#............................
.....................................##.#.####.....#...#..#.##.###.##...#............................
....................................####.##...##.####..#.#..#..#..###...#............................
....................................#.##.###..#.#.##.#.#.....#.#.....#.#.............................
........................................#.#..#....##.##..#.#..###.##.................................
........................................##.#....#..#####.#....#....#..#.#............................
.......................................#.##.#..#....##.##.#..###......###............................
.....................................#.#...#..#..#..#..###...##..##....#.............................
....................................###.#.#####.######.###.#######.#.##..............................
....................................#.#.#....#####...##..#####.#####.................................
......................................#..##...#......#..#.##..###.###................................
...................................####...#####.#########...#.#......................................
..............................##....#..#.....###.#.#...#.###..###....................................
.............................#..#..####.##...###.##...###.##.....##..................................
............................###....#.##.#.#####...#....#..#..##.###..................................
............................#.#####.#.#...##..##.....#....#...#..#...................................
................................######.####..##.#...#..##..#.#.##....................................
..............................##......#.###.##..####...#...###.......................................
...............................#..#.#####..#...#.##...#..#..#........................................
...............................##.###.#######.....#.....#.##.........................................
..............................#.#..##.##......#...##....#............................................
.............................#..#.####........###..##..#.............................................
.............................#.##.###............##..##..............................................
..............................##.....................................................................
...............................##....................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................
.....................................................................................................

Elm

import Maybe as M
import Matrix 
import Time exposing (Time, every, second)
import List exposing (..)
import String exposing (join)
import Html exposing (div, h1, text)
import Html.App exposing (program)
import Svg 
import Svg.Attributes exposing (version, viewBox, cx, cy, r, x, y, x1, y1, x2, y2, fill,style, width, height, preserveAspectRatio)

w = 700
h = 700
dt = 0.0001

type Direction = North | West | South | East

type alias Model =
  { rows : Int
  , cols : Int
  , boxes : Matrix.Matrix Bool
  , location : Matrix.Location
  , direction : Direction
  }

initModel : Int -> Int -> Model
initModel cols rows = 
     { rows = rows
     , cols = cols 
     , boxes = Matrix.matrix rows cols (\location -> False)
     , location = (rows//2,cols//2)
     , direction = North
     }

view model =
  let
    borderLineStyle = style "stroke:black;stroke-width:0.3"

    x1Min = x1 <| toString 0
    y1Min = y1 <| toString 0
    x1Max = x1 <| toString model.cols
    y1Max = y1 <| toString model.rows
    x2Min = x2 <| toString 0
    y2Min = y2 <| toString 0
    x2Max = x2 <| toString model.cols
    y2Max = y2 <| toString model.rows

    borders = [ Svg.line [ x1Min, y1Min, x2Max, y2Min, borderLineStyle ] []
              , Svg.line [ x1Max, y1Min, x2Max, y2Max, borderLineStyle ] []
              , Svg.line [ x1Max, y1Max, x2Min, y2Max, borderLineStyle ] []
              , Svg.line [ x1Min, y1Max, x2Min, y2Min, borderLineStyle ] []
              ]

    circleInBox (row,col) color = 
      Svg.circle [ r "0.25"
      , fill (color)
      , cx (toString (toFloat col + 0.5))
      , cy (toString (toFloat row + 0.5))
      ] [] 

    showUnvisited location box =
       if box then [circleInBox location "black" ]
              else []

    unvisited = model.boxes 
                  |> Matrix.mapWithLocation showUnvisited 
                  |> Matrix.flatten 
                  |> concat

    maze = [ Svg.g [] <| borders ++ unvisited ] 

  in
      div 
          [] 
          [ h1 [] [text "Langton's Ant"]
          , Svg.svg 
              [ version "1.1"
              , width (toString w)
              , height (toString h)
              , viewBox (join " " 
                           [ 0          |> toString
                           , 0          |> toString
                           , model.cols |> toString
                           , model.rows |> toString ])
              ] 
              maze
          ]

updateModel : Model -> Model
updateModel model = 
      let current = model.location
          inBox =    snd current >= 0 && snd current < model.cols
                  && fst current >= 0 && fst current < model.rows
      in if not inBox then
           model
         else
           let currentValue = Matrix.get current model.boxes |> M.withDefault False

               dir = case (model.direction, currentValue) of
                       (North, True) -> East
                       (East, True) -> South
                       (South, True) -> West
                       (West, True) -> North
 
                       (North, False) -> West
                       (East, False) -> North
                       (South, False) -> East
                       (West, False) -> South
 
               next = case dir of
                        North -> (fst current+1, snd current)
                        South -> (fst current-1, snd current)
                        East -> (fst current, snd current+1)
                        West -> (fst current, snd current-1)
 
               boxes = Matrix.set current (not currentValue) model.boxes 
 
           in {model | boxes=boxes, location=next, direction=dir}

type Msg = Tick Time 

subscriptions model = every (dt * second) Tick

main =
  let 
    update msg model = (updateModel model, Cmd.none)
    init = (initModel 100 100 , Cmd.none)
  in program 
       { init = init
       , view = view
       , update = update
       , subscriptions = subscriptions
       }

Link to live demo: https://dc25.github.io/langtonsAntElm/

Erlang

Over-engineered sine I have summer vacation. Ex: Display function only display lines with black cells.

-module( langtons_ant ).

-export( [task/0] ).

-record( neighbour, {north, south, east, west} ).
-record( state, {colour=white, controller, max_x, max_y, neighbour, position} ).

task() ->
       Controller = erlang:self(),
       Max_x = Max_y = 100,
       Pid_positions = plane_create( Controller, Max_x, Max_y ),
       Pids = [X || {X, _} <- Pid_positions],
       [X ! {pid_positions, Pid_positions} || X <- Pids],
       {Pid, _Position} = lists:keyfind( {Max_x div 2, Max_y div 2}, 2, Pid_positions ),
       Pid ! {ant_start, north, Controller},
       receive
       {ant_arrives, _Pid} -> ok
       end,
       display( Controller, Max_x, Max_y, Pids ),
       [X ! {stop, Controller} || X <- Pids].



display( Controller, Max_x, Max_y, Pids ) ->
        Positions_colours = display_positions_colours( Pids, Controller ),
        All_lines = [display_line( Max_x, Positions_colours, Y ) || Y <- lists:seq(Max_y, 1, -1)],
        Lines_with_black = [X || X <- All_lines, lists:member(black, X)],
        [io:fwrite( "~s~n", [[display_on_screen(X) || X <- Lines]] ) || Lines <- Lines_with_black].

display_line( Max_x, Positions_colours, Y ) -> [proplists:get_value({X,Y}, Positions_colours, white) || X <- lists:seq(1, Max_x)].

display_on_screen( white ) -> $_;
display_on_screen( black ) -> $#.

display_positions_colours( Pids, Controller ) ->
        [X ! {position_colour, Controller} || X <- Pids],
        [display_positions_colours_receive() || _X <- Pids].

display_positions_colours_receive( ) ->
        receive
        {position_colour, Position, Colour} -> {Position, Colour}
        end.

loop( State ) ->
    receive
    {pid_positions, Pid_positions} ->
        {_My_position, Neighbour} = lists:foldl( fun loop_neighbour/2, {State#state.position, #neighbour{}}, Pid_positions ),
        erlang:garbage_collect(), % Shrink process after using large Pid_positions. For memory starved systems.
        loop( State#state{neighbour=Neighbour} );
    {ant_start, Direction, Controller} when Controller =:= State#state.controller ->
                {Pid, New_state} = loop_ant_departs( Direction, State ),
                Pid ! {ant_arrives, erlang:self()},
                loop( New_state );
    {ant_arrives, From} ->
                {Direction, New_state} = loop_ant_arrives( From, State ),
                {To, Newest_state} = loop_ant_departs( Direction, New_state ),
                To ! {ant_arrives, erlang:self()},
                loop( Newest_state );
    {position_colour, Controller} when Controller =:= State#state.controller ->
                Controller ! {position_colour, State#state.position, State#state.colour},
                loop( State );
    {stop, Controller} when Controller =:= State#state.controller -> ok
    end.

loop_ant_arrives( Pid, State ) ->
        Neighbour = State#state.neighbour,
        From = loop_ant_arrives_direction( Pid, Neighbour ),
        {loop_ant_arrives_new_direction(From, State), State}.

loop_ant_arrives_direction( Pid, #neighbour{north=Pid} ) -> north;
loop_ant_arrives_direction( Pid, #neighbour{south=Pid} ) -> south;
loop_ant_arrives_direction( Pid, #neighbour{east=Pid} ) -> east;
loop_ant_arrives_direction( Pid, #neighbour{west=Pid} ) -> west.

loop_ant_arrives_new_direction( north, #state{colour=white} ) -> west;
loop_ant_arrives_new_direction( north, #state{colour=black} ) -> east;
loop_ant_arrives_new_direction( south, #state{colour=white} ) -> east;
loop_ant_arrives_new_direction( south, #state{colour=black} ) -> west;
loop_ant_arrives_new_direction( east, #state{colour=white} ) -> north;
loop_ant_arrives_new_direction( east, #state{colour=black} ) -> south;
loop_ant_arrives_new_direction( west, #state{colour=white} ) -> south;
loop_ant_arrives_new_direction( west, #state{colour=black} ) -> north.

loop_ant_departs( north, #state{position={_X,Y}, max_y=Y}=State ) ->
        {State#state.controller, State};
loop_ant_departs( south, #state{position={_X,1}}=State ) ->
        {State#state.controller, State};
loop_ant_departs( east, #state{position={X,_Y}, max_x=X}=State ) ->
        {State#state.controller, State};
loop_ant_departs( west, #state{position={1,_Y}}=State ) ->
        {State#state.controller, State};
loop_ant_departs( Direction, State ) ->
        Neighbour = State#state.neighbour,
        Pid = loop_ant_departs_pid( Direction, Neighbour ),
        {Pid, State#state{colour=other_colour(State)}}.

loop_ant_departs_pid( north, #neighbour{north=Pid} ) -> Pid;
loop_ant_departs_pid( south, #neighbour{south=Pid} ) -> Pid;
loop_ant_departs_pid( east, #neighbour{east=Pid} ) -> Pid;
loop_ant_departs_pid( west, #neighbour{west=Pid} ) -> Pid.

loop_neighbour( {Pid, {X, Y}}, {{X, My_y}, Neighbour} ) when Y =:= My_y + 1 -> {{X, My_y}, Neighbour#neighbour{north=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{X, My_y}, Neighbour} ) when Y =:= My_y - 1 -> {{X, My_y}, Neighbour#neighbour{south=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{My_x, Y}, Neighbour} ) when X =:= My_x + 1 -> {{My_x, Y}, Neighbour#neighbour{east=Pid}};
loop_neighbour( {Pid, {X, Y}}, {{My_x, Y}, Neighbour} ) when X =:= My_x - 1 -> {{My_x, Y}, Neighbour#neighbour{west=Pid}};
loop_neighbour( _Pid_position, Acc ) -> Acc.

other_colour( #state{colour=white} ) -> black;
other_colour( #state{colour=black} ) -> white.

plane_create( Controller, Max_x, Max_y ) -> [{plane_create_cell(Controller, Max_x, Max_y, {X, Y}), {X,Y}} || X <- lists:seq(1, Max_x), Y<- lists:seq(1, Max_y)].
plane_create_cell( Controller, Max_x, Max_y, Position ) -> erlang:spawn_link( fun() -> loop( #state{controller=Controller, max_x=Max_x, max_y=Max_y, position=Position} ) end ).
Output:
___________________________________________________________________##_______________________________
____________________________________________________________________##______________________________
_____________________________________________##__##____________###_##_#_____________________________
____________________________________________#__##__###________####_#__#_____________________________
___________________________________________#____##___#______##_##__#_#______________________________
________________________________________##_#_____#_____#######_###_##_______________________________
_______________________________________#__#__#___##_#___#__#####_#__#_______________________________
______________________________________###___#___####__##_###_#______##______________________________
___________________________________##_#_#__##__#___#_##__####_######________________________________
__________________________________#__#___#____#_____##__##___#_#_#####_#____________________________
_________________________________###_##__#__#____#___#####_#_##_#____###____________________________
_________________________________##_____##_###___##_###___##_####__#__#_____________________________
___________________________________###__###_#___#_#_###_____#__#____##______________________________
_____________________________________#_#___#########_#####___####___________________________________
_______________________________###_###__##_#__#______#___##__#______________________________________
________________________________#####_#####__##___#####____#_#_#____________________________________
_____________________________##_#_#######_###_######_#####_#_###____________________________________
____________________________#____##__##___###__#__#__#__#___#_#_____________________________________
___________________________###______###__#_##_##____#__#_##_#_______________________________________
___________________________#_#__#____#____#_#####__#____#_##________________________________________
________________________________##_###__#_#__##_##____#__#_#________________________________________
____________________________#_#_____#_#_____#_#_##_#_#__###_##_#____________________________________
___________________________#___###__#__#__#_#__####_##___##_####____________________________________
___________________________#___##_###_##_#__#___#_____####_#_##_____________________________________
___________________________#__##___###______#__####_###_##___##_____________________________________
___________________________#______###_____###__###___##__#____#_____________________________________
___________________________#_____#_#_#_####____####__##_##__________________________________________
___________________________#_____##_###_##___#_##_####_###___#_#____________________________________
___________________________#______#_#____#####_#_#_###_______###____________________________________
___________________________#____####_#____###_##_###___#_#____#_____________________________________
___________________________#_____#__##_##_##_####__##_##__####______________________________________
___________________________#_____#_##_##__#____#######______________________________________________
___________________________###___##__##__#_###_#_##_#___#___________________________________________
___________________________###____##_######_#__#___####____#________________________________________
____________________________#_##_#_##__##____####_#_##_####_#_______________________________________
____________________________#___#######_######__#_##_#_#____#_______________________________________
___________________________#___#___##_#__#___##_######__#__#________________________________________
___________________________#_##____###__#___#_#######_#__##_________________________________________
____________________________##_#_##___#_#_#_##_#__##__###___________________________________________
_____________________________######_##__________#####___#___________________________________________
_________________________________#___#__#####_#______#_#____________________________________________
__________________________________##_____#_#_##___#____#____________________________________________
_______________________________##_#__##_#_____##_#____###___________________________________________
_______________________________#_##_#______#_#___#____###___________________________________________
________________________________#___####_##___#___#____#____________________________________________
________________________________###__#___#___###___####_____________________________________________
________________________________#___##__##_##___#___________________________________________________
___________________________________##__##__#___###__________________________________________________
____________________________________##__#_##_##___#_________________________________________________
_________________________________________##__#___###________________________________________________
__________________________________________#_##_##___#_______________________________________________
___________________________________________##__#___###______________________________________________
____________________________________________#_##_##___#_____________________________________________
_____________________________________________##__#___###____________________________________________
______________________________________________#_##_##___#___________________________________________
_______________________________________________##__#___###__________________________________________
________________________________________________#_##_##___#_________________________________________
_________________________________________________##__#___###________________________________________
__________________________________________________#_##_##___#_______________________________________
___________________________________________________##__#___###______________________________________
____________________________________________________#_##_##___#_____________________________________
_____________________________________________________##__#___###____________________________________
______________________________________________________#_##_##___#___________________________________
_______________________________________________________##__#___###__________________________________
________________________________________________________#_##_##___#_________________________________
_________________________________________________________##__#___###________________________________
__________________________________________________________#_##_##___#_______________________________
___________________________________________________________##__#___###______________________________
____________________________________________________________#_##_##___#_____________________________
_____________________________________________________________##__#___###____________________________
______________________________________________________________#_##_##___#___________________________
_______________________________________________________________##__#___###__________________________
________________________________________________________________#_##_##___#_________________________
_________________________________________________________________##__#___###________________________
__________________________________________________________________#_##_##___#_______________________
___________________________________________________________________##__#_#####______________________
____________________________________________________________________#_#___####______________________
_____________________________________________________________________##_###_#_______________________
______________________________________________________________________#___##________________________

Euphoria

Works with: Euphoria version 4.0.3, 4.0.0 RC1 and later
include std\console.e
include std\graphics.e

sequence grid = repeat(repeat(1,100),100) --fill 100 by 100 grid with white (1)
sequence antData = {48, 53, 360} --ant x coordinate, y coordinate, facing angle
integer iterations = 0

--while ant isn't out of bounds of the 100 by 100 area..
while antData[1] > 0 and antData[1] < 100 and antData[2] > 0 and antData[2] < 100 do
    switch grid[antData[1]][antData[2]] do
        case 1 then--cell is already white
            grid[antData[1]][antData[2]] = 0 --cell turns black, ant turns right
            antData[3] += 90
            break
        case 0 then--cell is already black
            grid[antData[1]][antData[2]] = 1 --cell turns white, ant turns left
            antData[3] -= 90
            break
    end switch
    --wrap ant directions if > 360 or < 90 (by 90)
    switch antData[3] do
        case 450 then
            antData[3] = 90
            break
        case 0 then
            antData[3] = 360
            break
    end switch  
    --move ant based on its new facing, one square
    --first north, then south, east, west
    switch antData[3] do
        case 360 then
            antData[2] -= 1
            break
        case 180 then
            antData[2] += 1
            break
        case 90 then
            antData[1] += 1
            break
        case 270 then
            antData[1] -= 1
            break
    end switch
iterations += 1
end while

wrap(0) --don't wrap text output, the grid wouldnt display as a square

for y=1 to 100 do
    printf(1,"\n")
    for x=1 to 100 do
        switch grid[x][y] do--each grid block , based on color
            case 0 then
                printf(1,".")
                break
            case 1 then
                printf(1,"#")
                break
        end switch
    end for
end for     

printf(1,"\n%d Iterations\n",iterations)
any_key()--wait for keypress, put default message 'press any key..'
SDL output

Code needed to run SDL example with Mark Akita's SDL_gfx_Test1.exw (as template) included with his SDL_gfx package from rapideuphoria.com's archive -

In initialization section :

sequence grid = repeat(repeat(1,100),100) --fill 100 by 100 grid with white (1)
sequence antData = {48, 53, 360} --x coordinate, y coordinate, facing angle

In main() , after keystate=SDL_GetKeyState(NULL) , you can adapt the program above to draw the ant's step each frame. Use dummy=pixelColor(surface,x+20,y+12,#000000FF) (for example) to replace the text output. Just before the close of the while loop, use dummy=pixelColor(surface,antData[1]+20,antData[2]+12,#FF0000FF) for the ant and SDL_UpdateRect(surface,0,0,0,0) to display the graphic.



F#

// Langton's ant  F#   https://rosettacode.org/wiki/Langton%27s_ant

// A list of cells which are black is maintained and then printed out at the end

type Cell = { X : int; Y : int }  
type Direction = | North | South | East| West // direction the ant is facing

let withinBounds (dim:int) (cell: Cell) = // ant's cell within dimensions ?
    cell.X < dim && cell.Y < dim && cell.X >= 0 && cell.Y >= 0  

let rotateLeft (currentDirection: Direction) =
    match currentDirection with 
        | North -> West | South -> East | East -> North | West -> South

let rotateRight (currentDirection: Direction ) =
    match currentDirection with 
        | North -> East | South -> West | East -> South | West -> North 

let nextCell (dir:Direction) (cell: Cell) = // compute next cell based on the direction
    match dir with
        | North -> {cell with Y = cell.Y + 1 }
        | South -> {cell with Y = cell.Y - 1 }
        | East ->  {cell with X = cell.X + 1 }
        | West ->  {cell with X = cell.X - 1 } 

let isBlackCell (blackCells: Cell list) (cell:Cell) =
    blackCells |> List.exists ( fun c -> c = cell)

let toggleCellColor (blackCells: Cell list) (cell: Cell) =
     if cell |> isBlackCell blackCells
     then blackCells |> List.where( fun c -> c <> cell) // remove the cell from list of black cells
     else cell::blackCells // add the cell to the list of black cells

let moveToCell (blackCells: Cell list) (currentDir : Direction) (cell: Cell) =
    let ndir = if cell |> isBlackCell blackCells  // next step direction is computed
                    then rotateLeft currentDir
                    else rotateRight currentDir
    let nlst  = cell |> toggleCellColor blackCells // next step updated list of black cells is computed
    let ncell = cell |> nextCell ndir  // next step cell is computedd
    (nlst, ndir, ncell) // return next step list of black cells, direction it will enter the cell, new cell 
    
let rec doStep (dim:int) (blackCells: Cell list) (dir : Direction) (cell: Cell) = 
        let (nlst, ndir, ncell) = moveToCell blackCells dir cell
        if withinBounds dim ncell // check if the next step is within bounds
            then doStep dim nlst ndir ncell // recursive call to next step
            else nlst, ndir, ncell

[<EntryPoint>]
let main _ =
   let dim = 100
   let (blacklist, _, _) = doStep dim []  North { X = dim/2 ; Y = dim/2 } // start with empty blacklist, facing north in the center

    // print out by row, 0th row is at the bottom
   seq { for row in [dim-1..-1..0] do for col in [0..dim-1]  -> (col,row) }
        |> Seq.iter (fun (row,col) -> if {X = row; Y = col } |> isBlackCell blacklist 
                                        then printf "#"  else printf " "
                                      if row = (dim - 1 )
                                        then printf "\n"  else  ()
                    )
   0
                                                                                     
                                          ##  ############  ##                                      
                                         #  ####          #  ##                                     
                                        ###   ##            ## #                                    
                                        # #  #         #  #    #                                    
                                    ##  ## # #         ###       #                                  
                                 ### #  #   #     #     ## ##  ###                                  
                                  # #  ###  ## #### ##   # #  # ##  ##                              
                                  # ### ##  # ##  ### # #     ###   ###                             
                                #     #   ##### # #  ####  #   ### # # #                            
                               ### ##   # ####  ## ## ###### # ### #   #                            
                               # ### # ## # # ## ## ## #   ##### ### ##                             
                                   # #   # ## ###   #   # #  ####    # ##                           
                                #  #         ## ##   #  ##     ## #     ##                          
                               ###   # # ## ###  #  ##     #   ### ##  ## #                         
                              #  ###  ##   ## ##   ###  #    #  ## ####   #                         
                             ###   #   # #  # # #### ##  # ## ###  #     #                          
                            #  ###  # ##    #  # ###  #      ### ## #  #  ##                        
                           ###   #     # ## # ##  ##  ##### ####  #### ##   #                       
                          #  ###  # # #  # ### # # ##      ##   # # #    #   #                      
                         ###   #  ## ###  ## #   ##       #### ####   #      #                      
                        #  ###  # #  #   ##  ########### #  ####  #    #    #                       
                       ###   #  ##      # ####  ##  #########  #  ##    #  ##                       
                      #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #                      
                     ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #                      
                    #  ###  # #   #     ##### # #####     # #  ## #    ##   #                       
                   ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #                       
                  #  ###  # #     #    #   #### #  ##### ##   ##########   ##                       
                 ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##                           
                #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #                         
               ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##                         
              #  ###  # #                 #  #    # ######## # # ##  #### #                         
             ###   #  ##                  #  #   #       ## ##   #  #  ## #                         
            #  ###  # #                    #  #  #      #  ##  ##   ## ####                         
           ###   #  ##                      ##   #       ##  ##    #   # ###                        
          #  ###  # #                            # ##  ####    #### ### ####                        
         ###   #  ##                              ##  ####    ##  # ## # #  #                       
        #  ###  # #                                ##    ##    ## ### ## #####                      
       ###   #  ##                                                # ## #  ####                      
      #  ###  # #                                                     ## ## ##                      
     ###   #  ##                                                      ##                            
    #  ###  # #                                                     # ##  #### #                    
   ###   #  ##                                                     #  # ###  ###                    
  #  ###  # #                                                      # ## #  #  #                     
 ###   #  ##                                                        ##      ##                      
#  ###  # #                                                          ##                             
 ### #  ##                                                                                          
# # # # #                                                                                           
 #### ##                                                                                            
 # ## #                                                                                             
  ####                                                                                              
   ##            

Fantom

class World
{
  Int height
  Int width
  Bool[] state

  new make (Int height, Int width)
  {
    this.height = height
    this.width = width
    state = List(Bool#, height * width)
    (height*width).times { state.add (false) }
  }

  Bool inWorld (Int x, Int y)
  {
    x >= 0 && x < width && y >= 0 && y < height
  }

  Void show ()
  {
    height.times |h|
    {
      width.times |w|
      {
        Env.cur.out.writeChar (state[w*width+h] ? '#' : '.')
      }
      Env.cur.out.writeChar ('\n')
    }
  }

  Void flip (Int x, Int y)
  {
    state[x*width + y] = !state[x*width + y]
  }

  Bool stateOf (Int x, Int y)
  {
    state[x*width + y]
  }
}

enum class Direction 
{ 
  up (0, -1), 
  down (0, 1), 
  left (-1, 0), 
  right (1, 0)

  private new make (Int deltaX, Int deltaY)
  {
    this.deltaX = deltaX
    this.deltaY = deltaY
  }

  Direction rotateLeft ()
  {
    if (this == up) return left
    if (this == down) return right
    if (this == left) return down
    // if (this == right) 
    return up
  }

  Direction rotateRight ()
  {
    if (this == up) return right
    if (this == down) return left
    if (this == left) return up
    // if (this == right) 
    return down
  }

  const Int deltaX
  const Int deltaY
}

class Ant
{
  World world
  Int currX
  Int currY
  Direction direction

  new make (World world, Int x, Int y)
  {
    this.world = world
    currX = x
    currY = y
    direction = Direction.up
  }

  Bool inWorld ()
  {
    world.inWorld (currX, currY)
  }

  // the ant movement rules
  Void move ()
  {
    if (world.stateOf (currX, currY))
    {
      direction = direction.rotateLeft
    }
    else
    {
      direction = direction.rotateRight
    }
    world.flip (currX, currY)
    currX += direction.deltaX
    currY += direction.deltaY
  }
}

class Main
{
  Void main ()
  {
    world := World (100, 100)
    ant := Ant (world, 50, 50)
    numIterations := 0
    while (ant.inWorld)
    {
      ant.move
      numIterations += 1
    }
    world.show
    echo ("Finished in $numIterations iterations")
  }
}

Output (snipping the blank lines):

..........................................##..############..##......................................
.........................................#..####..........#..##.....................................
........................................###...##............##.#....................................
........................................#.#..#.........#..#....#....................................
....................................##..##.#.#.........###.......#..................................
.................................###.#..#...#.....#.....##.##..###..................................
..................................#.#..###..##.####.##...#.#..#.##..##..............................
..................................#.###.##..#.##..###.#.#.....###...###.............................
................................#.....#...#####.#.#..####..#...###.#.#.#............................
...............................###.##...#.####..##.##.######.#.###.#...#............................
...............................#.###.#.##.#.#.##.##.##.#...#####.###.##.............................
...................................#.#...#.##.###...#...#.#..####....#.##...........................
................................#..#.........##.##...#..##.....##.#.....##..........................
...............................###...#.#.##.###..#..##.....#...###.##..##.#.........................
..............................#..###..##...##.##...###..#....#..##.####...#.........................
.............................###...#...#.#..#.#.####.##..#.##.###..#.....#..........................
............................#..###..#.##....#..#.###..#......###.##.#..#..##........................
...........................###...#.....#.##.#.##..##..#####.####..####.##...#.......................
..........................#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#......................
.........................###...#..##.###..##.#...##.......####.####...#......#......................
........................#..###..#.#..#...##..###########.#..####..#....#....#.......................
.......................###...#..##......#.####..##..#########..#..##....#..##.......................
......................#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#......................
.....................###...#..##...#..#.######.##.#.##.#.#....###.###...##...#......................
....................#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#.......................
...................###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#.......................
..................#..###..#.#.....#....#...####.#..#####.##...##########...##.......................
.................###...#..##......#.##...##...#..#...####..#...##.####.##...........................
................#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#.........................
...............###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##.........................
..............#..###..#.#.................#..#....#.########.#.#.##..####.#.........................
.............###...#..##..................#..#...#.......##.##...#..#..##.#.........................
............#..###..#.#....................#..#..#......#..##..##...##.####.........................
...........###...#..##......................##...#.......##..##....#...#.###........................
..........#..###..#.#............................#.##..####....####.###.####........................
.........###...#..##..............................##..####....##..#.##.#.#..#.......................
........#..###..#.#................................##....##....##.###.##.#####......................
.......###...#..##................................................#.##.#..####......................
......#..###..#.#.....................................................##.##.##......................
.....###...#..##......................................................##............................
....#..###..#.#.....................................................#.##..####.#....................
...###...#..##.....................................................#..#.###..###....................
..#..###..#.#......................................................#.##.#..#..#.....................
.###...#..##........................................................##......##......................
#..###..#.#..........................................................##.............................
.###.#..##..........................................................................................
#.#.#.#.#...........................................................................................
.####.##............................................................................................
.#.##.#.............................................................................................
..####..............................................................................................
...##...............................................................................................
Finished in 11669 iterations

Forth

Works with: GNU Forth version 0.7.0

All array manipulations were taken from Rosetta Code examples.

 1 0 0 0                                                          \ pushes orientation of the ant to the stack. 

 100 CONSTANT border                                              \ lenght of the side of the grid 
 border border * constant size                                    \ size of the grid

 variable antpos                                                  \ for storing position of the ant
 size 2 / border 2 / +  antpos !                                  \ positions ant in the middle of the grid

 create Grid size cells allot
 here constant GridEnd                                            \ creates an array to hold the grid

 : turn.left 
	>r rot r> SWAP ;                                          \ rotates ant anti-clockwise

 : turn.right 
	turn.left turn.left turn.left ;                           \ rotates ant clockwise

 : stop.ant 
	antpos @ DUP 0<  SWAP size > + ;                          \ checks if ant not out of bounds

 : call.pos 
	Grid antpos @ cells + @ ;                                 \ pushes ant position to the stack

 : grid.add 
	Grid antpos @ cells + @ -1 + Grid antpos @ cells + !   ;  \ pushes -1 to the current position of the ant on the grid
	
 : swap.pos 
	call.pos dup * Grid antpos @ cells + ! ;                  \ multiplies current grid cell by itself to turn -1 into 1

 : swap.col 
	grid.add swap.pos ;                                       \ changes current grid cell color

 : go.ant                                                         \ moves ant one step in the direction taken from the stack
	2over 2over                                               \ copies stack for testing
	1 = IF antpos @ border + antpos ! 2DROP DROP ELSE         \ if true moves ant one cell up, drops unused numbers from stack
	1 = IF antpos @ 1 + antpos ! 2DROP ELSE                   \ same, but moves to the right
	1 = IF antpos @ border - antpos ! DROP ELSE               \ here to the left
	1 = IF antpos @ 1 - antpos ! ELSE                         \ and down

	THEN THEN THEN THEN  ;                                
	
 : step.ant                                                       \ preforms one full step.
	 call.pos 1 = IF turn.left swap.col ELSE
	 turn.right swap.col 
	 
	 THEN go.ant  ;
	 
 : run.ant                                                        \ runs the ant until it leaves the grid                                                                                                  
	BEGIN
	step.ant 
	stop.ant UNTIL ;
	
 : square.draw                                                     \ draws an "*" if grid cell is one or " " if zero
	1 = IF 42 EMIT ELSE 32 EMIT THEN ;
		
	
 : draw.grid                                                       \ draws grid on screen
	PAGE                                                       \ clear sreen 
	size 0 DO I
	I border MOD 0= IF  CR  THEN                               \ breaks the grid into lines
	Grid I cells + @ square.draw DROP
	
	LOOP ; 
	
 : langton.ant run.ant draw.grid ;                                 \ launches the ant, outputs the result
Output:

                                                                    **
                                                                     **
                                              **  **            *** ** *
                                             *  **  ***        **** *  *
                                            *    **   *      ** **  * *
                                         ** *     *     ******* *** **
                                        *  *  *   ** *   *  ***** *  *
                                       ***   *   ****  ** *** *      **
                                    ** * *  **  *   * **  **** ******
                                   *  *   *    *     **  **   * * ***** *
                                  *** **  *  *    *   ***** * ** *    ***
                                  **     ** ***   ** ***   ** ****  *  *
                                    ***  *** *   * * ***     *  *    **
                                      * *   ********* *****   ****
                                *** ***  ** *  *      *   **  *
                                 ***** *****  **   *****    * * *
                              ** * ******* *** ****** ***** * ***
                             *    **  **   ***  *  *  *  *   * *
                            ***      ***  * ** **    *  * ** *
                            * *  *    *    * *****  *    * **
                                 ** ***  * *  ** **    *  * *
                             * *     * *     * * ** * *  *** ** *
                            *   ***  *  *  * *  **** **   ** ****
                            *   ** *** ** *  *   *     **** * **
                            *  **   ***      *  **** *** **   **
                            *      ***     ***  ***   **  *    *
                            *     * * * ****    ****  ** **
                            *     ** *** **   * ** **** ***   * *
                            *      * *    ***** * * ***       ***
                            *    **** *    *** ** ***   * *    *
                            *     *  ** ** ** ****  ** **  ****
                            *     * ** **  *    *******
                            ***   **  **  * *** * ** *   *
                            ***    ** ****** *  *   ****    *
                             * ** * **  **    **** * ** **** *
                             *   ******* ******  * ** * *    *
                            *   *   ** *  *   ** ******  *  *
                            * **    ***  *   * ******* *  **
                             ** * **   * * * ** *  **  ***
                              ****** **          *****   *
                                  *   *  ***** *      * *
                                   **     * * **   *    *
                                ** *  ** *     ** *    ***
                                * ** *      * *   *    ***
                                 *   **** **   *   *    *
                                 ***  *   *   ***   ****
                                 *   **  ** **   *
                                    **  **  *   ***
                                     **  * ** **   *
                                          **  *   ***
                                           * ** **   *
                                            **  *   ***
                                             * ** **   *
                                              **  *   ***
                                               * ** **   *
                                                **  *   ***
                                                 * ** **   *
                                                  **  *   ***
                                                   * ** **   *
                                                    **  *   ***
                                                     * ** **   *
                                                      **  *   ***
                                                       * ** **   *
                                                        **  *   ***
                                                         * ** **   *
                                                          **  *   ***
                                                           * ** **   *
                                                            **  *   ***
                                                             * ** **   *
                                                              **  *   ***
                                                               * ** **   *
                                                                **  *   ***
                                                                 * ** **   *
                                                                  **  *   ***
                                                                   * ** **   *
                                                                    **  * *****
                                                                     * *   ****
                                                                      ** *** *
                                                                       * * **                        ok

Fortran

Works with: Fortran version 90 and later
program Langtons_Ant
  implicit none

  integer, parameter :: csize = 100
  integer :: direction = 0, maxsteps = 20000
  integer :: i, x, y  
  logical :: cells(csize,csize) = .true.
  logical :: cflag
  
  x = csize / 2;   y = x
  
  do i = 1, maxsteps
    cflag = cells(x,y)
    if(cflag) then
      direction = direction + 1
      if(direction == 4) direction = direction - 4
    else
      direction = direction - 1
      if(direction == -1) direction = direction + 4
    end if
  
    cells(x,y) = .not. cells(x,y)

    select case(direction)
      case(0)
        y = y - 1
      case(1)
        x = x + 1
      case(2)
        y = y + 1
      case(3)
        x = x - 1
    end select

    if(x < 1 .or. x > csize .or. y < 1 .or. y > csize) exit
  end do
  
  do y = 1, csize
    do x = 1, csize
      if(cells(x,y)) then
        write(*, "(a)", advance="no") "."
      else
        write(*, "(a)", advance="no") "#"
      end if
    end do
    write(*,*)
  end do
end program
Output:

(Cropped to save space)

...................................................................................
...................................................................................
.........................................##..############..##......................
........................................#..####..........#..##.....................
.......................................###...##............##.#....................
.......................................#.#..#.........#..#....#....................
...................................##..##.#.#.........###.......#..................
................................###.#..#...#.....#.....##.##..###..................
.................................#.#..###..##.####.##...#.#..#.##..##..............
.................................#.###.##..#.##..###.#.#.....###...###.............
...............................#.....#...#####.#.#..####..#...###.#.#.#............
..............................###.##...#.####..##.##.######.#.###.#...#............
..............................#.###.#.##.#.#.##.##.##.#...#####.###.##.............
..................................#.#...#.##.###...#...#.#..####....#.##...........
...............................#..#.........##.##...#..##.....##.#.....##..........
..............................###...#.#.##.###..#..##.....#...###.##..##.#.........
.............................#..###..##...##.##...###..#....#..##.####...#.........
............................###...#...#.#..#.#.####.##..#.##.###..#.....#..........
...........................#..###..#.##....#..#.###..#......###.##.#..#..##........
..........................###...#.....#.##.#.##..##..#####.####..####.##...#.......
.........................#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#......
........................###...#..##.###..##.#...##.......####.####...#......#......
.......................#..###..#.#..#...##..###########.#..####..#....#....#.......
......................###...#..##......#.####..##..#########..#..##....#..##.......
.....................#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#......
....................###...#..##...#..#.######.##.#.##.#.#....###.###...##...#......
...................#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#.......
..................###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#.......
.................#..###..#.#.....#....#...####.#..#####.##...##########...##.......
................###...#..##......#.##...##...#..#...####..#...##.####.##...........
...............#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#.........
..............###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##.........
.............#..###..#.#.................#..#....#.########.#.#.##..####.#.........
............###...#..##..................#..#...#.......##.##...#..#..##.#.........
...........#..###..#.#....................#..#..#......#..##..##...##.####.........
..........###...#..##......................##...#.......##..##....#...#.###........
.........#..###..#.#............................#.##..####....####.###.####........
........###...#..##..............................##..####....##..#.##.#.#..#.......
.......#..###..#.#................................##....##....##.###.##.#####......
......###...#..##................................................#.##.#..####......
.....#..###..#.#.....................................................##.##.##......
....###...#..##......................................................##............
...#..###..#.#.....................................................#.##..####.#....
..###...#..##.....................................................#..#.###..###....
.#..###..#.#......................................................#.##.#..#..#.....
###...#..##........................................................##......##......
...##..#.#..........................................................##.............
##..#..##..........................................................................
.#.#.#.#...........................................................................
####.##............................................................................
#.##.#.............................................................................
.####..............................................................................
..##...............................................................................
...................................................................................
...................................................................................

But, if one remembers complex numbers

      PROGRAM LANGTONSANT
C   Langton's ant wanders across an initially all-white board, stepping one cell at a go.
C   If the current cell is white, it becomes black and the ant turns right.
C   If the current cell is black, it becomes white and the ant turns left.
C   The ant advances one cell in its latest direction, and reconsiders.
      INTEGER ENUFF
      PARAMETER (ENUFF = 100)		!Said to be so.
      CHARACTER*1 CELL(ENUFF,ENUFF)	!The work area.
      COMPLEX WAY,PLACE		!A direction and a position.
      INTEGER X,Y,XN,Y1		!Integer versions.
      INTEGER STEP		!A counter.
      CELL = ""				!Clear for action.
      PLACE = CMPLX(ENUFF/2,ENUFF/2)	!Start at the middle.
      WAY = (1,0)		!Initial direction is +x.
Commence wandering.
      DO STEP = 1,20000	!Enough to be going on with.
        X = REAL(PLACE)		!Change languages.
        Y = AIMAG(PLACE)	!Could mess about with EQUIVALENCE...
        IF (X.LE.0 .OR. X.GT.ENUFF	!Are we still
     1  .OR.Y.LE.0 .OR. Y.GT.ENUFF) THEN!Within bounds?
          WRITE (6,1) STEP - 1,X,Y		!No! Offer details.
    1     FORMAT ("Step ",I0," to (",I0,",",I0,") is out of bounds!")
          EXIT					!And wander no further.
        END IF				!But, if we're within bounds,
        IF (CELL(X,Y).NE."#") THEN	!Consider our position.
          CELL(X,Y) = "#"		!A blank cell becomes black. Ish.
          WAY = WAY*(0,-1)		!Turn right.
         ELSE				!Otherwise,
          CELL(X,Y) = "+"		!A black cell becomes white. Ish.
          WAY = WAY*(0,+1)		!Turn left.
        END IF			!So much for changing direction.
        PLACE = PLACE + WAY	!Advance one step.
      END DO		!On to the next step.
Consider the bounds...
      DO Y1 = 1,ENUFF		!Work up from the bottom.
        IF (ANY(CELL(:,Y1).NE." ")) EXIT	!The last line with a splot.
      END DO			!Subsequent lines would be blank.
      DO XN = ENUFF,1,-1	!Work back from the right hand side.
        IF (ANY(CELL(XN,:).NE." ")) EXIT	!The last column with a splot.
      END DO			!Subsequent columns would be blank.
Cast forth the splotches.
      DO Y = ENUFF,Y1,-1	!The topmost y-coordinate first!
        WRITE (6,"(666A1)") CELL(1:XN,Y)	!Roll a line's worth.
      END DO			!On to the next line.
Completed.
      END

Output is the same, except for orientation. Here I have stuck to (x,y) Cartesian orientation rather than lines (y) increasing downwards. Just for fun, + signs mark cells that have been trampled and then cleaned. But not to pure white... Notice that some interior cells have never been trampled.

Output:
Step 11669 to (26,101) is out of bounds!
                         #+#
                       ## #+#
                      #+###+##
                     ####+###+#
                     #####+#++##
                      #+++##+##+#
                       ###+++#++##
                        #+++##+##+#
                         ###+++#++##
                          #+++##+##+#
                           ###+++#++##
                            #+++##+##+#
                             ###+++#++##
                              #+++##+##+#
                               ###+++#++##
                                #+++##+##+#
                                 ###+++#++##
                                  #+++##+##+#
                                   ###+++#++##
                                    #+++##+##+#
                                     ###+++#++##
                                      #+++##+##+#
                                       ###+++#++##
                                        #+++##+##+#
                                         ###+++#++##
                                          #+++##+##+#
                                           ###+++#++##
                                            #+++##+##+#
                                             ###+++#++##
                                              #+++##+##+#
                                               ###+++#++##
                                                #+++##+##+#  ##
                                                 ###+++#++## +##
                                                  #+++##+##++##+++#
                                            ####   ###+++#+++#++###
                                           #++++#   #+++##+####+++#
                                          ###++++#   #+#++++++#+##+#
                                          ###++++# ##  +++#+##++#+##
                                           #++++#  +## #+#+++++##++
                                           #+#++++++#+#####++#+++#+
                                          #+++#####++++++++++##+######
                                          ###++##++#+##+#+#+#+++##+#+##
                                        ## +#+#######+#+++#++###++++##+#
                                       #++#++######+##+++#++#+## ++#+++#
                                      #++++#+#+##+#++######+#######+++#
                                      #+####+##+#+####++++##++##+#+##+#
                                       #++++####+++#++#+######+##++++###
                                          #+++#+##+#+###+#++##++##+++###
                                          +++#######++++#++##+##+#+++++#
                                     #### +##+##++####+##+##+##++#+++++#
                                    #++++#+#+++###+##+###++++#+####++++#
                                   ###+++++++###+#+#+#####++++#+#++++++#
                                   #+#+++###+####+##+#+++##+###+##+++++#
                                     ++++##+##++####++++####+#+#+#+++++#
                                    #++++#++##+++###++###+++++###++++++#
                                    ##+++##+###+####++#++++++###+++##++#
                                    ##+#+####+++++#+++#++#+##+###+##+++#
                                   ####+##+++##+####++#+#++#++#++###+++#
                                   #+##+###++#+#+##+#+#+++++#+#+++++#+#
                                     ++#+#++#++++##+##++#+#++###+##+++
                                     ++##+#++++#++#####+#++++#++++#++#+#
                                     +#+##+#++#++++##+##+#++###++++++###
                                    #+#+++#++#++#++#++###+++##++##++++#
                                   ###+#+#####+######+###+#######+#+##
                                   #+#+#++++#####+++##++#####+#####+
                                     #++##+++#++++++#++#+##++###+###
                                  ####+++#####+#########+++#+#+++
                             ##   +#++#+++++###+#+#+++#+###++###+
                            #++#  ####+##+++###+##+++###+##+++++##
                           ###++++#+##+#+#####+++#++++#++#++##+###
                           #+#####+#+#+++##++##++++ #++++#+  #++#
                             ++######+####++## #+++#+ ##++#+# ##
                             ##++++++#+###+##++####++ #+++###
                              #++#+#####++#+++#+##+++#+ #++#
                              ##+###+#######+++++#+++++# ##
                             #+#++##+##++++++#+++##++++#
                            #++#+####        ###++##++#
                            #+##+###            ##  ##
                             ##+
                              ##

FreeBASIC

' version 16-10-2016
' compile with: fbc -s gui

' a cell size of 4 x 4 pixels is used
' In FreeBASIC the 0,0 is the top left corner

ScreenRes 400,400,8 ' give a 100 by 100 field
Dim As UByte Ptr p = ScreenPtr
If p = 0 Then End ' p does not point to screen

Palette 0,       0,   0,   0      ' index 0 = black
Palette 255,   255, 255, 255      ' index 225 = white

Line (0, 0) - (799, 799), 255, bf   ' draw box and fill it with white color

Dim As Integer count, offset, x = 199, y = 199
Dim As UByte col   ' = color
' direction, 0 = up, 1 = right, 2 = down, 3 = left
Dim As UByte d     ' d = 0, looking up

Do
  offset = x + y * 400
  col = p[offset]

  If col = 0 Then
    d = (d -1) And 3
  Else
    d = (d +1) And 3
  EndIf

  col = col Xor 255 ' flip the color

  ScreenLock        ' don't update screen while we are drawing

  ' draw a 4*4 block and paint it with palette color [0 | 255]
  Line (x, y) - (x +3, y -3), col, bf

  ScreenUnLock    ' allow screen update's

  'Sleep 100       ' slow the program down if needed

  ' true = 0, false = -1
  If (d And 1) = 1 Then
    x = x + (d = 1) * 4 - (d = 3) * 4
  Else
    y = y - (d = 0) * 4 + (d = 2) * 4
  End If

  count += 1
  ' update step count window title bar
  WindowTitle "Langton's ant step: " + Str(count)

  ' has user clicked on close window "X" then end program
  If InKey = Chr(255) + "k" Then End

Loop Until x < 1 Or x > 398 Or y < 1 Or y > 398

' display total count in window title bar
WindowTitle "Langton's ant has left the field in " + Str(count) + " steps"

' empty keyboard buffer
While InKey <> "" : Wend
'Print : Print "hit any key to end program"
Sleep
End

Furor

###sysinclude X.uh
$ff0000 sto szin1
$ffffff sto szin2
2 sto pausetime
maxypixel 100 - sto YRES
maxxpixel       sto XRES
zero ant
// Az ant iránykódjai:
// 0 : fel
// 1 : le
// 2 : jobbra
// 3 : balra
@XRES 2 / sto antx // Az ant kezdeti koordinátái
@YRES 2 / sto anty
myscreen "Furor monitor" @YRES @XRES graphic // Create the graphic screen
."Kilépés: ESC\n"

infiniteloop: {... // infinite loop begins
myscreen @anty @antx [[]][[]] // A pixel színe amin az ant ül épp
@szin2 == { myscreen @anty @antx @szin1 [][] // másik színre átállítjuk a pixelt
2 // Jobbra fog fordulni
}{ myscreen @anty @antx @szin2 [][] // másik színre átállítjuk a pixelt
3 // Balra fog fordulni
}
// Elvégezzük az új koordináta beállítását:
sto direction
@ant 0 == { @direction 2 == then §r1 @direction 3 == then §r2 }
@ant 2 == { @direction 2 == then §r3 @direction 3 == then §r4 }
@ant 1 == { @direction 3 == { r1: antx @XRES  ring 2 goto §beolvas } @direction 2 == { r2: antx @XRES !ring 3 goto §beolvas } }
@ant 3 == { @direction 3 == { r3: anty @YRES !ring 1 goto §beolvas } @direction 2 == { r4: anty @YRES  ring 0 goto §beolvas } }

beolvas: sto ant
myscreen key? sto! billkód  @pausetime usleep $1b ==
|...}
."Made " {...}§infiniteloop print ." steps.\n"
."XRES = " @XRES printnl
."YRES = " @YRES printnl
myscreen !graphic
end
{ „myscreen” }
{ „billkód” }
{ „pausetime” }
{ „XRES” }
{ „YRES” }
{ „szin1” }
{ „szin2” }
{ „ant” }
{ „antx” }
{ „anty” }
{ „direction” }

Peri

###sysinclude standard.uh
###sysinclude system.uh
###sysinclude str.uh
###sysinclude X.uh
#g
$ff0000 sto szin1
$ffffff sto szin2
10 sto pausetime
//maxypixel 100 - sto YRES
//maxypixel 20 - sto YRES
//maxypixel 7 - sto YRES
//maxypixel 13 - sto YRES
maxypixel 20 - sto YRES
maxxpixel      sto XRES
zero ant
// Az ant iránykódjai:
// 0 : fel
// 1 : le
// 2 : jobbra
// 3 : balra
@XRES 2 / sto antx // Az ant kezdeti koordinátái
@YRES 2 / sto anty
myscreen "Furor monitor" @YRES @XRES graphic // Create the graphic screen
."Kilépés: ESC\n"

{.. // infinite loop begins
myscreen @anty @antx getpixel // A pixel színe amin az ant ül épp
@szin2 == {
myscreen @anty @antx @szin1 setpixel // másik színre átállítjuk a pixelt
2 // Jobbra fog fordulni
}{
myscreen @anty @antx @szin2 setpixel // másik színre átállítjuk a pixelt
3 // Balra fog fordulni
}
// Elvégezzük az új koordináta beállítását:
sto direction
@ant 0 == @direction 2 == & { ++() antx @antx @XRES == {       zero antx } 2 sto ant goto §beolvas }
@ant 0 == @direction 3 == & { @antx inv { @XRES -- sto antx }{ --() antx } 3 sto ant goto §beolvas }
@ant 1 == @direction 3 == & { ++() antx @antx @XRES == {       zero antx } 2 sto ant goto §beolvas }
@ant 1 == @direction 2 == & { @antx inv { @XRES -- sto antx }{ --() antx } 3 sto ant goto §beolvas }
@ant 2 == @direction 2 == & { @anty inv { @YRES -- sto anty }{ --() anty } 1 sto ant goto §beolvas }
@ant 2 == @direction 3 == & { ++() anty @anty @YRES == {       zero anty } 0 sto ant goto §beolvas }
@ant 3 == @direction 2 == & { ++() anty @anty @YRES == {       zero anty } 0 sto ant goto §beolvas }
@ant 3 == @direction 3 == & { @anty inv { @YRES -- sto anty }{ --() anty } 1 sto ant goto §beolvas }

beolvas:
myscreen key !sto billkód @pausetime inv sleep $1b == {
."Made " {..} print ." generations.\n" {.>.} }
..}
myscreen inv graphic
end
{ „myscreen” }
{ „billkód” }
{ „pausetime” }
{ „XRES” }
{ „YRES” }
{ „szin1” }
{ „szin2” }
{ „ant” }
{ „antx” }
{ „anty” }
{ „direction” }

Gambas

'This code will create a GUI Form to display the result

hGridView As GridView                                               'The display is on a GridView
iCol As Integer = 38                                                'Column start position
iRow As Integer = 30                                                'Row start position

Public Sub Form_show()

SetUpForm                                                           'Run the SetUpForm routine
Go                                                                  'Run the Go routine

End

Public Sub Go()                                                     'This is what does the work
Dim siDir As Short = 3                                              'Stores the Direction of the ant 0 = North, 1 = East, 2 = South ,3 = West
Dim siCount As Short                                                'Counter

Repeat                                                              'Repeat loop
  Inc siCount                                                       'Increase siCount
  If hGridView[iRow, iCol].background = -1 Then                     'If the Background of the cell is white then..(Right turn)
    hGridView[iRow, iCol].background = 0                            'Make the Background black
    siDir = Direction(siDir, True)                                  'Get the direction to turn
    If siDir = 0 Then Dec iRow                                      'Decrease Row if facing North
    If siDir = 1 Then Inc iCol                                      'Increase Column if facing East
    If siDir = 2 Then Inc iRow                                      'Increase Row if facing South
    If siDir = 3 Then Dec iCol                                      'Decrease Column if facing West
  End If 
'Wait                                                                'This will allow you to see the Grid being populated. Rem it out for an instant result
  If hGridView[iRow, iCol].background = 0 Then                      'If the Background of the cell is black then.. Left Turn
    hGridView[iRow, iCol].background = -1                           'Make the Background white
    siDir = Direction(siDir, False)                                 'Get the direction to turn
    If siDir = 0 Then Dec iRow                                      'Decrease Row if facing North
    If siDir = 1 Then Inc iCol                                      'Increase Column if facing East
    If siDir = 2 Then Inc iRow                                      'Increase Row if facing South
    If siDir = 3 Then Dec iCol                                      'Decrease Column if facing West
  End If 
Until siCount = 9660                                                'Loop 9660 times

End

Public Sub Direction(siDirection As Short, bWay As Boolean) As Byte 'To workout which way to go

If bWay Then                                                        'If turning Right then
  Inc siDirection                                                   'Increase siDirection e.g. 0 = North to 1 = East 
Else                                                                'Else if turning Left
  Dec siDirection                                                   'Decrease siDirection e.g. 2 = South to 1 = East 
End If

If siDirection < 0 Then siDirection = 3                             'To address 0 - 1 = -1
If siDirection > 3 Then siDirection = 0                             'To address 3 + 1 = 4

Return siDirection                                                  'Return the correct direction

End

Public Sub SetUpForm()                                              'Set up the Form and Create the Gridview

With Me                                                             'Change the Properties of the Form
  .Height = 1012                                                    'Set the Form Height
  .Width = 1012                                                     'Set the Form Width
  .Arrangement = Arrange.Vertical                                   'Set the Form Arrangement
  .Padding = 5                                                      'Set the Form Padding (Border)
  .title = "Langton's ant"                                          'Set the Form Title
End With

hGridView = New GridView(Me)                                        'Create a GridView
With hGridView                                                      'Change the Properties of the GridView
  .Columns.count = 100                                              'Create 100 Columns
  .Rows.count = 100                                                 'Create 100 Rows
  .Columns.Width = 10                                               'Set the Column Width
  .Rows.Height = 10                                                 'Set the Column Height
  .expand = True                                                    'Set the Gridview to Expand to fill the Form
  .background = -1                                                  'Set the Gridview background to White
End With

End

Click here for an image of the result

GFA Basic

To make it easier to see the output on small Atari screens, the output is written to a text file.

'
' Langton's ant
'
' World is a global boolean array, 100x100 in size
width%=100
height%=100
DIM world!(width%,height%)
ARRAYFILL world!(),FALSE
' Time in world
time%=0
' Ant is represented by a global three-element array
' holding: x, y, direction [0=north,1=west,2=south,3=east]
DIM ant%(3)
'
@setup_ant
@run_ant
@display_world
'
' Displays the world to file "langton.out": . for false, # for true
'
PROCEDURE display_world
  LOCAL i%,j%
  OPEN "o",#1,"langton.out"
  PRINT #1,"Time in world: ";time%;" ticks"
  FOR i%=0 TO width%-1
    FOR j%=0 TO height%-1
      IF world!(i%,j%)
        PRINT #1,"#";
      ELSE
        PRINT #1,".";
      ENDIF
    NEXT j%
    PRINT #1,""
  NEXT i%
  CLOSE #1
RETURN
'
' Set up the ant to start at (50,50) facing north
'
PROCEDURE setup_ant
  ant%(0)=50
  ant%(1)=50
  ant%(2)=0
RETURN
'
' check if ant position is within world's bounds
'
FUNCTION ant_in_world
  RETURN ant%(0)>=0 AND ant%(0)<width% AND ant%(1)>=0 AND ant%(1)<height%
ENDFUNC
'
' Turn ant direction to left
'
PROCEDURE ant_turn_left
  ant%(2)=(ant%(2)+1) MOD 4
RETURN
'
' Turn ant direction to right
'
PROCEDURE ant_turn_right
  ant%(2)=(ant%(2)+3) MOD 4
RETURN
'
' Ant takes a step forward in current direction
'
PROCEDURE ant_step_forward
  SELECT ant%(2)
  CASE 0
    ant%(0)=ant%(0)+1
  CASE 1
    ant%(1)=ant%(1)+1
  CASE 2
    ant%(0)=ant%(0)-1
  CASE 3
    ant%(1)=ant%(1)-1
  ENDSELECT
RETURN
'
' Run the ant until it falls out of the world
'
PROCEDURE run_ant
  WHILE @ant_in_world
    time%=time%+1
    IF world!(ant%(0),ant%(1)) ! true for white
      world!(ant%(0),ant%(1))=FALSE
      @ant_turn_left
    ELSE ! false for black
      world!(ant%(0),ant%(1))=TRUE
      @ant_turn_right
    ENDIF
    @ant_step_forward
  WEND
RETURN

Go

Output png
package main

import (
    "fmt"
    "image"
    "image/color"
    "image/draw"
    "image/png"
    "os"
)

const (
    up = iota
    rt
    dn
    lt
)

func main() {
    bounds := image.Rect(0, 0, 100, 100)
    im := image.NewGray(bounds)
    gBlack := color.Gray{0}
    gWhite := color.Gray{255}
    draw.Draw(im, bounds, image.NewUniform(gWhite), image.ZP, draw.Src)
    pos := image.Point{50, 50}
    dir := up
    for pos.In(bounds) {
        switch im.At(pos.X, pos.Y).(color.Gray).Y {
        case gBlack.Y:
            im.SetGray(pos.X, pos.Y, gWhite)
            dir--
        case gWhite.Y:
            im.SetGray(pos.X, pos.Y, gBlack)
            dir++
        }
        if dir&1 == 1 {
            pos.X += 1 - dir&2
        } else {
            pos.Y -= 1 - dir&2
        }
    }
    f, err := os.Create("ant.png")
    if err != nil {
        fmt.Println(err)
        return
    }
    if err = png.Encode(f, im); err != nil {
        fmt.Println(err)
    }
    if err = f.Close(); err != nil {
        fmt.Println(err)
    }
}

Haskell

The set of black cells is represented as a set of points. Complementary set is regarded as white cells.

Necessary import:

import Data.Set (member,insert,delete,Set)

In order to express the ant's algorithm literally we define two operators:

-- functional sequence 
(>>>) = flip (.)

-- functional choice
p ?>> (f, g) = \x -> if p x then f x else g x

Finally define the datatype representing the state of ant and ant's universe

data State = State { antPosition :: Point
                   , antDirection :: Point
                   , getCells :: Set Point }

type Point = (Float, Float)

Now we are ready to express the main part of the algorithm

step :: State -> State
step = isBlack ?>> (setWhite >>> turnRight,
                    setBlack >>> turnLeft) >>> move
  where
    isBlack   (State p _     m) = member p m
    setBlack  (State p d     m) = State p d (insert p m)
    setWhite  (State p d     m) = State p d (delete p m)
    turnRight (State p (x,y) m) = State p (y,-x) m
    turnLeft  (State p (x,y) m) = State p (-y,x) m
    move (State (x,y) (dx,dy) m) = State (x+dx, y+dy) (dx, dy) m

That's it.

Here is the solution of the task:

task :: State -> State
task = iterate step 
   >>> dropWhile ((< 50) . distance . antPosition) 
   >>> getCells . head
  where distance (x,y) = max (abs x) (abs y)

For given initial configuration it returns the set of black cells at the end of iterations.

We can display it graphically using Gloss library

import Graphics.Gloss

main = display w white (draw (task initial))
  where
    w = InWindow "Langton's Ant" (400,400) (0,0)
    initial = State (0,0) (1,0) mempty
    draw = foldMap drawCell
    drawCell (x,y) = Translate (10*x) (10*y) $ rectangleSolid 10 10

Or animate the ant's trajectory

main = simulate w white 500 initial draw (\_ _ -> step)
  where
    w = InWindow "Langton's Ant" (400,400) (0,0)
    initial = State (0,0) (1,0) mempty
    draw (State p _ s) = pictures [foldMap drawCell s, color red $ drawCell p]
    drawCell (x,y) = Translate (10*x) (10*y) $ rectangleSolid 10 10

Icon and Unicon

link graphics,printf

procedure main(A) 
   e := ( 0 < integer(\A[1])) | 100   # 100 or whole number from command line
   LangtonsAnt(e)
end

record antrec(x,y,nesw)

procedure LangtonsAnt(e)
   size  := sprintf("size=%d,%d",e,e)
   label := sprintf("Langton's Ant %dx%d [%d]",e,e,0)
   &window := open(label,"g","bg=white",size) | 
               stop("Unable to open window") 

   ant := antrec(e/2,e/2,?4%4)
   board := list(e)
   every !board := list(e,"w")
   
   k := 0
   repeat {
      k +:= 1
      WAttrib("fg=red")
      DrawPoint(ant.x,ant.y)
      
      cell := board[ant.x,ant.y]
      if cell == "w" then {                        # white cell
         WAttrib("fg=black")
         ant.nesw := (ant.nesw + 1) % 4            # . turn right
         }
      else {                                       # black cell
         WAttrib( "fg=white")   
         ant.nesw := (ant.nesw + 3) % 4            # . turn left = 3 x right
         }
      board[ant.x,ant.y] := map(cell,"wb","bw")    # flip colour         
      DrawPoint(ant.x,ant.y)
      
      case ant.nesw of {                           # go
         0: ant.y -:= 1                            # . north
         1: ant.x +:= 1                            # . east
         2: ant.y +:= 1                            # . south
         3: ant.x -:= 1                            # . west
         }
         
      if 0 < ant.x <= e & 0 < ant.y <= e then next
      else break      
      }
   printf("Langton's Ant exited the field after %d rounds.\n",k)
   label := sprintf("label=Langton's Ant %dx%d [%d]",e,e,k)
   WAttrib(label)
   WDone()
end

printf.icn provides formatting graphics.icn provides graphics support (WDone)

J

dirs=: 0 1,1 0,0 _1,:_1 0
langton=:3 :0
  loc=. <.-:$cells=. (_2{.y,y)$dir=. 0
  while. *./(0<:loc), loc<$cells do.
    color=. (<loc) { cells
    cells=. (-.color) (<loc)} cells
    dir=. 4 | dir +  _1 ^ color
    loc=. loc + dir { dirs
  end.
  ' #' {~ cells
)
   langton 100 100
                          # #                                                                       
                        ## # #                                                                      
                       # ### ##                                                                     
                      #### ### #                                                                    
                      ##### #  ##                                                                   
                       #   ## ## #                                                                  
                        ###   #  ##                                                                 
                         #   ## ## #                                                                
                          ###   #  ##                                                               
                           #   ## ## #                                                              
                            ###   #  ##                                                             
                             #   ## ## #                                                            
                              ###   #  ##                                                           
                               #   ## ## #                                                          
                                ###   #  ##                                                         
                                 #   ## ## #                                                        
                                  ###   #  ##                                                       
                                   #   ## ## #                                                      
                                    ###   #  ##                                                     
                                     #   ## ## #                                                    
                                      ###   #  ##                                                   
                                       #   ## ## #                                                  
                                        ###   #  ##                                                 
                                         #   ## ## #                                                
                                          ###   #  ##                                               
                                           #   ## ## #                                              
                                            ###   #  ##                                             
                                             #   ## ## #                                            
                                              ###   #  ##                                           
                                               #   ## ## #                                          
                                                ###   #  ##                                         
                                                 #   ## ## #  ##                                    
                                                  ###   #  ##  ##                                   
                                                   #   ## ##  ##   #                                
                                             ####   ###   #   #  ###                                
                                            #    #   #   ## ####   #                                
                                           ###    #   # #      # ## #                               
                                           ###    # ##     # ##  # ##                               
                                            #    #   ## # #     ##                                  
                                            # #      # #####  #   #                                 
                                           #   #####          ## ######                             
                                           ###  ##  # ## # # #   ## # ##                            
                                         ##  # ####### #   #  ###    ## #                           
                                        #  #  ###### ##   #  # ##   #   #                           
                                       #    # # ## #  ###### #######   #                            
                                       # #### ## # ####    ##  ## # ## #                            
                                        #    ####   #  # ###### ##    ###                           
                                           #   # ## # ### #  ##  ##   ###                           
                                              #######    #  ## ## #     #                           
                                      ####  ## ##  #### ## ## ##  #     #                           
                                     #    # #   ### ## ###    # ####    #                           
                                    ###       ### # # #####    # #      #                           
                                    # #   ### #### ## #   ## ### ##     #                           
                                          ## ##  ####    #### # # #     #                           
                                     #    #  ##   ###  ###     ###      #                           
                                     ##   ## ### ####  #      ###   ##  #                           
                                     ## # ####     #   #  # ## ### ##   #                           
                                    #### ##   ## ####  # #  #  #  ###   #                           
                                    # ## ###  # # ## # #     # #     # #                            
                                        # #  #    ## ##  # #  ### ##                                
                                        ## #    #  ##### #    #    #  # #                           
                                       # ## #  #    ## ## #  ###      ###                           
                                     # #   #  #  #  #  ###   ##  ##    #                            
                                    ### # ##### ###### ### ####### # ##                             
                                    # # #    #####   ##  ##### #####                                
                                      #  ##   #      #  # ##  ### ###                               
                                   ####   ##### #########   # #                                     
                              ##    #  #     ### # #   # ###  ###                                   
                             #  #  #### ##   ### ##   ### ##     ##                                 
                            ###    # ## # #####   #    #  #  ## ###                                 
                            # ##### # #   ##  ##     #    #   #  #                                  
                                ###### ####  ## #   #  ##  # # ##                                   
                              ##      # ### ##  ####   #   ###                                      
                               #  # #####  #   # ##   #  #  #                                       
                               ## ### #######     #     # ##                                        
                              # #  ## ##      #   ##    #                                           
                             #  # ####        ###  ##  #                                            
                             # ## ###            ##  ##                                             
                              ##                                                                    
                               ##                                                                   
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                    
                                                                                                   

Java

This implementation allows for sizes other than 100x100, marks the starting position with a green box (sometimes hard to see at smaller zoom levels and the box is smaller than the "pixels" so it doesn't cover up the color of the "pixel" it's in), and includes a "zoom factor" (ZOOM) in case the individual "pixels" are hard to see on your monitor.

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JFrame;
import javax.swing.JPanel;

public class Langton extends JFrame{
	private JPanel planePanel;
	private static final int ZOOM = 4;
	
	public Langton(final boolean[][] plane){
		planePanel = new JPanel(){
			@Override
			public void paint(Graphics g) {
				for(int y = 0; y < plane.length;y++){
					for(int x = 0; x < plane[0].length;x++){
						g.setColor(plane[y][x] ? Color.BLACK : Color.WHITE);
						g.fillRect(x * ZOOM, y * ZOOM, ZOOM, ZOOM);
					}
				}
				//mark the starting point
				g.setColor(Color.GREEN);
				g.fillRect(plane[0].length / 2 * ZOOM,
				           plane.length / 2 * ZOOM, ZOOM/2, ZOOM/2);
			}
		};
		planePanel.setSize(plane[0].length - 1, plane.length - 1);
		add(planePanel);
		setSize(ZOOM * plane[0].length, ZOOM * plane.length + 30);
		setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
		setVisible(true);
	}
	
	public static void main(String[] args){
		new Langton(runAnt(100, 100));
	}

	private static boolean[][] runAnt(int height, int width){
		boolean[][] plane = new boolean[height][width];
		int antX = width/2, antY = height/2;//start in the middle-ish
		int xChange = 0, yChange = -1; //start moving up
		while(antX < width && antY < height && antX >= 0 && antY >= 0){
			if(plane[antY][antX]){
				//turn left
				if(xChange == 0){ //if moving up or down
					xChange = yChange;
					yChange = 0;
				}else{ //if moving left or right
					yChange = -xChange;
					xChange = 0;
				}
			}else{
				//turn right
				if(xChange == 0){ //if moving up or down
					xChange = -yChange;
					yChange = 0;
				}else{ //if moving left or right
					yChange = xChange;
					xChange = 0;
				}
			}
			plane[antY][antX] = !plane[antY][antX];
			antX += xChange;
			antY += yChange;
		}
		return plane;
	}
}

Output (click for a larger view):

JavaScript

Utilises the HTML5 canvas element to procedurally generate the image... I wanted to see the progress of the grid state as it was generated, so this implementation produces a incrementally changing image until an 'ant' hits a cell outside of the coordinate system. It can also accept multiple ants, this adds minimal complexity with only the addition of an 'ants' array which is iterated in each step, no additional conditions are necessary to simulate multiple ants, they coexist quite well... good ants ! 1st argument is an array of ant objects, 2nd argument is an object property list of options to change grid size, pixel size and interval (animation speed).

// create global canvas
var canvas = document.createElement('canvas');
canvas.id = 'globalCanvas';
document.body.appendChild(canvas);

function langtonant(antx, optx) {
	'use strict';
	var x, y, i;

	// extend default opts
	var opts = {
		gridsize: 100,
		pixlsize: 4,
		interval: 4
	};
	for (i in optx) {
		opts[i] = optx[i];
	}

	// extend default ants
	var ants = [{
		x: 50,
		y: 50,
		d: 0
	}];
	for (i in antx) {
		ants[i] = antx[i];
	}

	// initialise grid
	var grid = [];
	for (x = 0; x < opts.gridsize; x ++) {
		grid[x] = [];
		for (y = 0; y < opts.gridsize; y ++) {
			grid[x][y] = true;
		}
	}

	// initialise directions
	var dirs = [
		{x: 1, y: 0},
		{x: 0, y: -1},
		{x: -1, y: 0},
		{x: 0, y: 1}
	];

	// initialise canvas
	var canv = document.getElementById('globalCanvas');
	var cont = canv.getContext('2d');
	canv.width = opts.gridsize * opts.pixlsize;
	canv.height = opts.gridsize * opts.pixlsize;

	// initialise pixels
	var pixlblac = cont.createImageData(opts.pixlsize, opts.pixlsize);
	for (i = 0; i < (opts.pixlsize * opts.pixlsize * 4); i += 4) {
		pixlblac.data[i + 3] = 255;
	}
	var pixlwhit = cont.createImageData(opts.pixlsize, opts.pixlsize);
	for (i = 0; i < (opts.pixlsize * opts.pixlsize * 4); i += 4) {
		pixlwhit.data[i + 3] = 0;
	}

	// run simulation
	function simulate() {
		var sane = true;

		// iterate over ants
		for (i = 0; i < ants.length; i ++) {
			var n = ants[i];

			// invert, draw, turn
			if (grid[n.x][n.y]) {
				grid[n.x][n.y] = false;
				cont.putImageData(pixlblac, n.x * opts.pixlsize, n.y * opts.pixlsize);
				n.d --;
			} else {
				grid[n.x][n.y] = true;
				cont.putImageData(pixlwhit, n.x * opts.pixlsize, n.y * opts.pixlsize);
				n.d ++;
			}

			// modulus wraparound
			n.d += dirs.length;
			n.d %= dirs.length;

			// position + direction
			n.x += dirs[n.d].x;
			n.y += dirs[n.d].y;

			// sanity check
			sane = (n.x < 0 || n.x > opts.gridsize || n.y < 0 || n.y > opts.gridsize) ? false : sane;
		}

		// loop with interval
		if (sane) {
			setTimeout(simulate, opts.interval);
		}
	}

	simulate();
}

Usage: default ants, custom opts

langtonant({}, {
	gridsize: 100,
	pixlsize: 4,
	interval: 4
});
Output:

Live Version

Usage: custom ants, default opts

langtonant([
	{
		x: (100 / 2) + 7,
		y: (100 / 2) + 7,
		d: 1
	}, {
		x: (100 / 2) + 7,
		y: (100 / 2) - 7,
		d: 2
	}, {
		x: (100 / 2) - 7,
		y: (100 / 2) - 7,
		d: 3
	}, {
		x: (100 / 2) - 7,
		y: (100 / 2) + 7,
		d: 0
	}
]);
Output:

Live Version

More functional approach to Javascript.

Requires lodash. Wants a canvas with id = "c"

///////////////////
// LODASH IMPORT //
///////////////////

// import all lodash functions to the main namespace, but isNaN not to cause conflicts
_.each(_.keys(_), k => window[k === 'isNaN' ? '_isNaN' : k] = _[k]);

const
WORLD_WIDTH  = 100,
WORLD_HEIGHT = 100,
PIXEL_SIZE   = 4,
DIRTY_COLOR  = '#000',
VIRGIN_COLOR = '#fff',
RUNS         = 10000,
SPEED        = 50,

//            up right down left
DIRECTIONS = [0, 1,    2,    3],

displayWorld = (world) => each(world, (row, rowidx) => {
  each(row, (cell, cellidx) => {
    canvas.fillStyle = cell === 1 ? DIRTY_COLOR : VIRGIN_COLOR;
    canvas.fillRect(rowidx * PIXEL_SIZE, cellidx * PIXEL_SIZE, PIXEL_SIZE, PIXEL_SIZE);
  });
}),

moveAnt = (world, ant) => {
  world[ant.x][ant.y] = world[ant.x][ant.y] === 1 ? 0 : 1;
  ant.dir             = DIRECTIONS[(4 + ant.dir + (world[ant.x][ant.y] === 0 ? 1 : -1)) % 4];
  switch (ant.dir) {
    case DIRECTIONS[0]:
      ant.y -= 1;
      break;
    case DIRECTIONS[1]:
      ant.x -= 1;
      break;
    case DIRECTIONS[2]:
      ant.y += 1;
      break;
    case DIRECTIONS[3]:
      ant.x += 1;
      break;
  }

  return [world, ant];
},

updateWorld = (world, ant, runs) => {
  [world, ant] = moveAnt(world, ant);
  displayWorld(world);

  if (runs > 0) setTimeout(partial(updateWorld, world, ant, --runs), SPEED);
},

canvas = document.getElementById('c').getContext('2d');

let
world = map(range(WORLD_HEIGHT), i => map(range(WORLD_WIDTH), partial(identity, 0))),
ant   = {
  x:   WORLD_WIDTH  / 2,
  y:   WORLD_HEIGHT / 2,
  dir: DIRECTIONS[0]
};

canvas.canvas.width  = WORLD_WIDTH  * PIXEL_SIZE;
canvas.canvas.height = WORLD_HEIGHT * PIXEL_SIZE;

updateWorld(world, ant, RUNS);

jq

In the following, the grid is boolean, and white is represented by true.

def matrix(m; n; init):  
  if m == 0 then [range(0;n)] | map(init)
  elif m > 0 then [range(0;m)][ range(0;m) ] = matrix(0;n;init) 
  else error("matrix\(m);_;_) invalid")
  end;

def printout:
  . as $grid
  | ($grid|length) as $height
  | ($grid[0]|length) as $width
  | reduce range(0;$height) as $i ("\u001B[H"; # ANSI code
    . + reduce range(0;$width) as $j ("\n";
         . + if $grid[$i][$j] then " " else "#" end ) );


def langtons_ant(grid_size):

  def flip(ant):
    # Flip the color of the current square
    .[ant[0]][ant[1]] = (.[ant[0]][ant[1]] | not) 
  ;

  # input/output: the ant's state: [x, y, direction]
  # where direction is one of (0,1,2,3)
  def move(grid):
    # If the cell is black, it changes to white and the ant turns left;
    # If the cell is white, it changes to black and the ant turns right;
    (if grid[.[0]][.[1]] then 1 else 3 end) as $turn
    | .[2] = ((.[2] + $turn) % 4)
    | if   .[2] == 0 then .[0] += 1
      elif .[2] == 1 then .[1] += 1
      elif .[2] == 2 then .[0] += -1
      else                .[1] += -1
      end
  ;

  # state: [ant, grid]
  def iterate:
    .[0] as $ant | .[1] as $grid
    # exit if the ant is outside the grid
    | if $ant[0] < 1 or $ant[0] > grid_size 
      or $ant[1] < 1 or $ant[1] > grid_size
      then [ $ant, $grid ]
      else
        ($grid | flip($ant)) as $grid
        | ($ant | move($grid)) as $ant
        | [$ant, $grid] | iterate
      end
  ;

  ((grid_size/2) | floor | [ ., ., 0]) as $ant
  | matrix(grid_size; grid_size; true) as $grid 
  | [$ant, $grid] | iterate
  | .[1]
  | printout
;
 
langtons_ant(100)
Output:

The output is the same as for Rexx below.

Julia

Works with: Julia version 1.0
function ant(width, height)
    y, x = fld(height, 2), fld(width, 2)
    M = falses(height, width)

    dir = im
    for i in 0:100000
        x in 1:width && y in 1:height || break
        dir *= M[y, x] ? im : -im
        M[y, x] = !M[y, x]
        x, y = reim(x + im * y + dir)
    end

    for row in 1:size(M,1)
        println(mapreduce(x -> x ? 'x' : '.', *, M[row,:]))
    end
end

ant(100, 100)

Kotlin

Translation of: D
// version 1.2.0

enum class Direction { UP, RIGHT, DOWN, LEFT }

const val WHITE = 0
const val BLACK = 1

fun main(args: Array<String>) {
    val width = 75
    val height = 52
    val maxSteps = 12_000
    var x = width / 2
    var y = height / 2
    val m = Array(height) { IntArray(width) }
    var dir = Direction.UP
    var i = 0
    while (i < maxSteps && x in 0 until width && y in 0 until height) {
        val turn = m[y][x] == BLACK
        val index = (dir.ordinal + if (turn) 1 else -1) and 3
        dir = Direction.values()[index]
        m[y][x] = if (m[y][x] == BLACK) WHITE else BLACK
        when (dir) {
             Direction.UP    -> y--
             Direction.RIGHT -> x--
             Direction.DOWN  -> y++
             Direction.LEFT  -> x++
        }
        i++
    }
    for (j in 0 until height) {
        for (k in 0 until width) print(if(m[j][k] == WHITE) '.' else '#')
        println()
    }
}
Output:
Same as D entry (textual version)

"Go to the ant, O sluggard; consider her ways, and be wise. Without having any chief, officer, or ruler, she prepares her bread in summer and gathers her food in harvest." For Dr. Kaser.

LC-3

"Go to the ant, O sluggard; consider her ways, and be wise. Without having any chief, officer, or ruler, she prepares her bread in summer and gathers her food in harvest." For Dr. Kaser.

.orig x3000
ld r1, ASCIIDIFF1

; user input for grid size
lea r0, STGRIDSIZE
puts
in

add r0, r0, r1
add r0, r0, #-1
brz SELECTED100
ld r0, GRID300
st r0, GRIDSIZE
brnzp GRIDSELECTED

SELECTED100
ld r0, GRID100
st r0, GRIDSIZE

GRIDSELECTED

; User input for number of additional ants
lea r0, STHOWMANY
puts
in
add r1, r1, r0 ; r1 = number of additional ants
add r1, r1, #1
st r1, LIVINGANTS

; INITIALIZE FIRST ANT
and r7, r7, x0
add r7, r7, #9 ; loop counter for the other ants

and r1, r1, x0  ; x and y coordinates go in here
and r3, r3, x0  ; to be mapped to a cell id

; check grid size for starting coordinates
ld r4, GRIDSIZE
ld r6, GRID100
not r6, r6
add r6, r6, #1
add r6, r6, r4  ; grid size - 100
brz GRID100B

ld r1, START300
ld r3, START300
brnzp FIRSTANTCOORDINATES

GRID100B
ld r1, START100
ld r3, START100

FIRSTANTCOORDINATES

JSR MAPPY   ; takes r1 and r3 values, converts to cell id in r5

ld r6, LIVEANTTEMPLATE  ; = x8000, alive and facing north
add r6, r6, r5  ; complete antword for ant 1
lea r4, ANTWORD
str r6, r4, #0  ; put first ant in base address of ANTWORD array


ld r2, LIVINGANTS
ANTSETUPLOOP
add r4, r4, #1  ;   increment address of ant

add r2, r2, #-1
brnz INITIALIZEDEAD
JSR ANTCOORDS
JSR MAPPY
ld r6, LIVEANTTEMPLATE
add r6, r5, r6
brnzp READYTOSTORE

INITIALIZEDEAD
and r6, r6, x0

READYTOSTORE
str r6, r4, #0


add r7, r7, #-1
brnz DONESETUP
brnzp ANTSETUPLOOP

DONESETUP







BIGMOVELOOP ; one iteration of this loop moves all 10 ants (doing nothing if they're dead)
ld r1, LIVINGANTS
brz EVERYONEISDEAD
ld r1, ANTWORD


; FOR LOOP TO MOVE ALL 10 ANTS





ld r1, STEPCOUNT
add r1, r1, #1
st r1, STEPCOUNT

BRNZP BIGMOVELOOP
EVERYONEISDEAD ; :(




halt
STGRIDSIZE .stringz "Grid size? 1 for 100, 3 for 300 "
STHOWMANY .stringz "How many additional ants? "
ASCIIDIFF1 .fill #-48
SUBTEMP1 .fill #0
LIVINGANTS .fill #0
GRIDSIZE .fill #0
GRID100 .fill #100
GRID300 .fill #300
STEPCOUNT .fill #0
ANTWORD .blkw #10
START100 .fill #50
START300 .fill #150
LIVEANTTEMPLATE .fill x8000
ANTCOORDTEMP .fill #0
ANTCOORDTEMP2 .fill #0









;************************************************************************
;************************************************************************
;                             SUBROUTINES
;************************************************************************
;************************************************************************

; SUBROUTINE
ANTSONTHEMOVE
; [1] check if dead
; [2] extract current location
; [3] extract current direction
; [4] check current colour
; [5] turn
; [7] change location or kill

; INPUT: R1:
address of ant
;        R4:
grid size

; LOCAL: R2: ant word
;           R3: cell id of ant

st r2, MOVETEMP2
st r3, MOVETEMP3
st r5, MOVETEMP5
st r6, MOVETEMP6
st r7, MOVETEMP7
ldr r2, r1, #0  ; r2 = copy of ant-word

; [1] CHECK FOR DEATH. word for dead ants == x0000
add r2, r2, #0
brz ENDOFMOVE ; if ant-word + 0 == 0, ant is dead.

; [2] extract current location
ld r3, IDMASK ; for getting rid of first 3 bits of ant-word, leaving only location
and r3, r2, r3 ; r3 = cell id of ant

; [4] check current colour and flip it


jsr FLIPPITY    ; flips bit, puts original colour in R5
                ; white/0: turn right; black/1: turn left

; [5] turn the ant according to pre-flipped colour

add r0, r5, #0
brnp LEFTTURN

jsr TAKEARIGHTTURN
brnzp DONETURNING

LEFTTURN
jsr TAKEALEFTTURN
DONETURNING

; [7] change location and kill

ldr r2, r1, #0 ; reload modified antword from memory

ld r5, SOUTH    ; butmasks
ld r6, EAST

and r5, r5, r2
and r6, r6, r2  ; isolating the two direction bits, 2b and 3b, to determine direction

add r5, r5, #0  ;    check if 2b is 0
brnp SECTIOND   ;
add r6, r6, #0  ;   check if 3b is 0
brnp SECTIONC


; if both are zero, direction is north
;; if cell id <= grid size, ant is already at the top and will die
not r0, r4
add r0, r0, #1  ; r0 = negative grid size
add r3, r0, r3  ; r3 = cell id - grid
brn ANTDEATHISPERMANENT ; if negative, kill it
add r2, r2, r0  ; antword - grid size
brnzp ENDOFMOVE



SECTIONC
; if direction is 01, ant faces east
;; if (cellID % grid != grid -1)
;; then cellid++, else die
not r0, r4
add r0, r0, #1

add r5, r3, #0  ;    copy celll id to r5 to repeatedly subtract grid size
EASTMODLOOP
add r5, r5, r0  ;   cell id - grid
add r5, r5, #1  ; if this is 0, then r5 == grid - 1
brz ANTDEATHISPERMANENT
add r5, r5, #-1 ; but if not, undo it and re-loop
brn MOVEEAST    ; if negative, allowed to move east
                ; if equal to grid-1, ant is on eastern border and will die

BRNZP EASTMODLOOP

MOVEEAST
add r2, r2, #1  ; move east: CellID++
brnzp ENDOFMOVE

SECTIOND    ; first direction bit is 1
add r6, r6, #0  ; check if second bit is 0
brnp SECTIONF
; if it is 0, then direction is 10 = south
; if ant is on southern border, it dies
; if cellID >= grid^2-grid, then ant is on southern border

ld r0, N100
add r0, r0, r3  ; checking if grid size = 100
brz GRIDIS100
ld r0, GRIDSQ300HALF
add r3, r3, r0
add r3, r3, r0
add r3, r3, r0
add r3, r3, r0
brzp ANTDEATHISPERMANENT
add r2, r2, r4
brnzp ENDOFMOVE

GRIDIS100
ld r0, GRIDSQ100
add r3, r3, r0
brzp ANTDEATHISPERMANENT
add r2, r2, r4
brnzp ENDOFMOVE


SECTIONF
; direction bits are 11 = WEST
; if cellID % grid != 0, ant can go west, otherwise dead

add r6, r3, #0  ; copy cell id to r6
not r0, r4
add r0, r0, #1  ; r0 = -grid
WESTMODLOOP
add r6, r6, r0
brz ANTDEATHISPERMANENT
brn CANMOVEWEST
brp WESTMODLOOP

CANMOVEWEST
add r2, r2, #-1
brnzp ENDOFMOVE


ANTDEATHISPERMANENT
and r2, r2, #0
ld r7, LIVINGANTS
add r7, r7, #-1
st r7, LIVINGANTS

ENDOFMOVE
str r1, r2, #0  ;    double check this syntax
ld r2, MOVETEMP2
ld r3, MOVETEMP3
ld r5, MOVETEMP5
ld r6, MOVETEMP6
ld r7, MOVETEMP7
RET

N100 .fill #-100
GRIDSQ100 .fill #-9900
GRIDSQ300HALF .fill #-22425
MOVETEMP3 .fill #0
MOVETEMP2 .fill #0
MOVETEMP4 .fill #0
MOVETEMP5 .fill #0
MOVETEMP6 .fill #0
MOVETEMP7 .fill x0
IDMASK .fill x1FFF    ;   for extracting bits 12-0, the cell ID of the ant

; end of ANTSONTHEMOVE subroutine





FAKEXOR ; subroutine

; XOR of two registers
; INPUT r2, r4
; OUTPUT r6 = r2 XOR r4

; A in r4, not A in r5
; B in r2; not B in r6
; r4 XOR r2

st r5, XORTEMP5

not r6, r2
and r6, r6, r4  ; r6 = a & ~b
not r6, r6      ; r6 = ~(a & ~b)

not r5, r4      ; r5 = ~ a
and r5, r5, r2  ; r5 = ~a & b
not r5, r5      ; r5 = ~(~a & b)
and r6, r5, r6  ; r6 = ~(a & ~b) & ~(~a & b)
not r6, r6      ; r6 = ~( ~(a & ~b) & ~(~a & b) ) = a XOR b

ld r5, XORTEMP5

RET 

XORTEMP5 .fill #0


; SUBROUTINE
 FLIPPITY
; Takes a cell id and flips the bit in the grid, returns the original colour
; INPUT     r1: cell id
; LOCAL     r2: which bit to flip, then bitmask
;           r3: quotient, then address of byte to change
; OUTOUT    r5: original colour of cell id, before flipping. 1 if black, 0 if white.
;
; First, get byte (GRID + OFFSET)
; CELL ID / 16

st r4, FLIPTEMP4
st r5, FLIPTEMP5
st r6, FLIPTEMP6

and r3, r3, #0
add r2, r1, #0  ; copy cell id into r2

; loop to divide cellid by 16
FLIPLOOP
add r2, r2, #-16 ; cell id - 16
brn FLIPLOOPDONE    ; if negative, division done
add r3, r3, #1      ; if not negative, increment quotient and subtract again
BRNZP FLIPLOOP

FLIPLOOPDONE
add r2, r2, #8      ; add 16 back to negative number to get cellid % 16
add r2, r2, #8      ; this is which bit within the byte that the cell ID refers to

lea r4, GRID        ; starting address of GRID array
add r3, r3, r4      ; r3 = address of byte that will be changed = GRID base address + CELL ID / 16


lea r4, BM1         ; r4 = address of butmask array
add r4, r4, r2      ; r4 + which bit to flip = address of appropriate bitmask
ldr r2, r4, #0      ; r2 = bitmask to flip one bit

ldr r4, r3, #0      ; r4 = byte to be changed

and r0, r2, r4      ; indicates original colour of bit. 0 if white, non-zero if black

; A in r4, not A in r5
; B in r2; not B in r6
; r4 XOR r2
not r6, r2
and r6, r6, r4  ; r6 = a & ~b
not r6, r6      ; r6 = ~(a & ~b)

not r5, r4      ; r5 = ~ a
and r5, r5, r2  ; r5 = ~a & b
not r5, r5      ; r5 = ~(~a & b)
and r6, r5, r6  ; r6 = ~(a & ~b) & ~(~a & b)
not r6, r6      ; r6 = ~( ~(a & ~b) & ~(~a & b) ) = a XOR b


str r6, r3, #0

ld r4, FLIPTEMP4
ld r6, FLIPTEMP6

add r5, r0, #0  ; move colour of bit into r5 for output

ret
GRID .fill x8000
FLIPTEMP4 .fill #0
FLIPTEMP5 .fill #0
FLIPTEMP6 .fill #0

; bitmasks for flipping one bit
BM1 .fill x8000
BM2 .fill x4000
BM3 .fill x2000
BM4 .fill x1000
BM5 .fill x0800
BM6 .fill x0400
BM7 .fill x0200
BM8 .fill x0100
BM9 .fill x0080
BM10 .fill x0040
BM11 .fill x0020
BM12 .fill x0010
BM13 .fill x0008
BM14 .fill x0004
BM15 .fill x0002
BM16 .fill x0001

; END OF FLIPPITY SUBROUTINE





; SUBROUTINE
TAKEALEFTTURN
; turns the ant 90 degrees left

; INPUT R1: address in memory of ANT
; LOCAL R2: ant
;       R3: bitmask
;       R4: 3rdbit
;       R5: 2nd and 3rd bit
;       R6:
;       R7:
;       R0:

st r2, LEFTTURNTEMP2
st r3, LEFTTURNTEMP3
st r4, LEFTTURNTEMP4
st r6, LEFTTURNTEMP6
st r7, LEFTTURNTEMP7  ;  store r7, load before RET
ldr r2, r1, #0  ;  load ant into r2
ld r3, EAST
and r4, r2, r3 ; r4 = 3rdbit

ld r3, WEST
;and r5, r2, r3 ; r5 = 2nd and 3rd bits


add r4, r4, #0 ; check if 3rd bit is 0
brnp THIRDBIT1  ; If so, continue. If not, jump to next part.
; 3rd bit is 0, so XOR r2 ant-word with WEST bitmask, already in R3

BRNZP LEFTTURNEND

THIRDBIT1
; third bit is 1, so use EAST bitmask
ld r3, EAST

LEFTTURNEND

add r0, r4, #0  ; move r4 3rdbit into r0 temporarily
add r4, r3, #0  ; move r3 bitmask into r4 for the XOR subroutine
JSR FAKEXOR   ; r6 = r2 XOR r4
              ; flips the correct bit to turn left

add r3, r4, #0 ; moves r4 bitmask back into r3
add r4, r0, #0  ; moves r0 3rdbit back into r3

str r6, r1, #0  ; store tweaked ant-word with new direction back in memory

ld r2, LEFTTURNTEMP2
ld r3, LEFTTURNTEMP3
ld r4, LEFTTURNTEMP4
ld r6, LEFTTURNTEMP6
ld r7, LEFTTURNTEMP7
RET


WEST .fill X6000
EAST .fill x2000
NORTH .fill x0000
SOUTH .fill x4000

LEFTTURNTEMP2 .fill #0
LEFTTURNTEMP3 .fill #0
LEFTTURNTEMP4 .fill #0
LEFTTURNTEMP6 .fill #0
LEFTTURNTEMP7 .fill #0

; end of TAKEALEFTTURN subroutine



; SUBROUTINE
TAKEARIGHTTURN
; turns the ant 90 degrees right

; INPUT R1: address in memory of ANT
; LOCAL R2: ant
;       R3: bitmask
;       R4: 3rdbit
;   R5: 2nd and 3rd bit
;   R6:
;   R7:
;   R0:

st r2, RIGHTTURNTEMP2
st r3, RIGHTTURNTEMP3
st r4, RIGHTTURNTEMP4
st r6, RIGHTTURNTEMP6
st r7, RIGHTTURNTEMP7  ;  store r7, load before RET
ldr r2, r1, #0  ;  load ant into r2
ld r3, EAST
and r4, r2, r3 ; r4 = 3rdbit

;ld r3, WEST
;and r5, r2, r3 ; r5 = 2nd and 3rd bits


add r4, r4, #0 ; check if 3rd bit is 0
brnp THIRDBIT1RIGHT  ; If so, continue. If not, jump to next part.
; 3rd bit is 0, so XOR r2 ant-word with EAST bitmask
ld r3, EAST

BRNZP RIGHTTURNEND

THIRDBIT1RIGHT
; third bit is 1, so use WEST bitmask
ld r3, WEST

RIGHTTURNEND

add r0, r4, #0  ; move r4 3rdbit into r0 temporarily
add r4, r3, #0  ; move r3 bitmask into r4 for the XOR subroutine
JSR FAKEXOR   ; r6 = r2 XOR r4
              ; flips the correct bit to turn right

add r3, r4, #0 ; moves r4 bitmask back into r3
add r4, r0, #0  ; moves r0 3rdbit back into r3

str r6, r1, #0  ; store modified ant-word with new direction back in memory

ld r2, RIGHTTURNTEMP2
ld r3, RIGHTTURNTEMP3
ld r4, RIGHTTURNTEMP4
ld r6, RIGHTTURNTEMP6
ld r7, RIGHTTURNTEMP7
RET

RIGHTTURNTEMP2 .fill #0
RIGHTTURNTEMP3 .fill #0
RIGHTTURNTEMP4 .fill #0
RIGHTTURNTEMP6 .fill #0
RIGHTTURNTEMP7 .fill #0

; end of TAKEARIGHTTURN subroutine









; SUBROUTINE
ANTCOORDS
; INPUT     r2: index of ant
; OUTPUT    r1: x coordinate value
;           r3: y coordinate value
; "Enter x coordinates for ant #whatever"

st r4, COORD2

ld r0, NEWLINE
out
lea r0, ENTERXCOORDS
puts
ld r3, ASCIIPLUS
;add r0, r2, r3
;out
ld r0, NEWLINE
out


ld r5, ASCIIDIFF 
getc
out
add r4, r0, r5  ; r4 holds first digit of x

add r1, r4, r4  ; r1 = 2 * r4
add r1, r1, r1  ; r1 = 4 * r4
add r1, r1, r1  ; r1 = 8 * r4
add r1, r1, r4  ; r1 = 9 * r4
add r1, r1, r4  ; r1 = 10 * r4



getc
out
add r4, r0, r5  ; r4 holds 2nd digit of x
add r1, r1, r4  ; full value of x coordt
st r1, COORD1


; "enter y coords"
ld r0, NEWLINE
out
lea r0, ENTERYCOORDS
puts
ld r3, ASCIIPLUS
;add r0, r2, r3
;out
ld r0, NEWLINE
out

ld r5, ASCIIDIFF 
getc
out
add r4, r0, r5  ; r4 holds first digit of y

add r1, r4, r4  ; r1 = 2 * r4
add r1, r1, r1  ; r1 = 4 * r4
add r1, r1, r1  ; r1 = 8 * r4
add r1, r1, r4  ; r1 = 9 * r4
add r1, r1, r4  ; r1 = 10 * r4


getc
out
add r4, r0, r5  ; r4 holds 2nd digit of y
add r3, r1, r4  ; full value of y coord
ld r1, COORD1
ld r4, COORD2
RET


ENTERXCOORDS .STRINGZ "Enter x coordinates for ant "
ENTERYCOORDS .STRINGZ "Enter y coordinates for ant "
ASCIIDIFF .fill #-48
ASCIIPLUS .fill #48
COORD1 .fill #0
NEWLINE .fill #10
COORD2 .fill #0
COORD3 .fill #0

; END OF ANT_COORDINATES_SUBROUTINE




MAPPY
; Maps the coordinates of the ant
; Input:  R1: x coord
;  R3: y coord
;  R4: grid size
; Output: R5: Cell ID
; Cell ID = grid size * y coord + x coord

st r6, MAP1
st r7, MAP2

; multiply by 100
add R0, R3, R3 ; 2y
add R0, R0, R0 ; 4y
add R6, R0, R0 ; 8y
add R6, R6, R6 ; 16y
add R6, R6, R6 ; 32y
add R0, R0, R6 ; 36y
add R6, R6, R6 ; 64y
add R0, R0, R6 ; 100y

ld R7, N100a
add R7, R4, R7

brz GRID100a
add R0, R0, R0 ;200y
add R0, R0, R3 ;300y

GRID100a
Add R5, R0, R1  ; OUTPUT: R5 = grid*y + x


ld r6, MAP1
ld r7, MAP2
RET
N100a .fill #-100
MAP1 .fill #0
MAP2 .fill #0

; END OF MAPPY SUBROUTINE



.end

Liberty BASIC

Native graphics.

dim arena(100,100)
black=0
white=not(black)
for i = 1 to 100
  for j = 1 to 100
    arena(i,j)=white
  next
next
'north=1 east=2 south=3 west=4

nomainwin
graphicbox #1.g, 0, 0, 100, 100
open "Langton's Ant" for window as #1
#1 "trapclose Quit"
#1.g "down"

antX=50:antY=50
nsew=1    'ant initially points north

while (antX>0) and (antX<100) and (antY>0) and (antY<100)
    if arena(antX,antY) then
      nsew=nsew-1
      if nsew<1 then nsew=4
    else
      nsew=nsew+1
      if nsew>4 then nsew=1
    end if

    select case nsew
      case 1: antY=antY-1
      case 2: antX=antX+1
      case 3: antY=antY+1
      case 4: antX=antX-1
      end select

    arena(antX,antY)=not(arena(antX,antY))
    #1.g "color ";GetColor$(antX,antY)
    #1.g "set ";antX;" ";antY
wend

#1.g "flush"
wait

function GetColor$(x,y)
    if arena(x,y) then
        GetColor$="white"
    else
        GetColor$="black"
    end if
    end function

sub Quit handle$
    close #handle$
    end
    end sub

Text version.

'move up=1 right=2 down=3 left=4
' ---------------------------------
dim plane(100,100)
x  = 50: y = 50
mx = 100

while (x>0) and (x<100) and (y>0) and (y<100)
if plane(x,y) then
   nxt = nxt - 1
   if nxt < 1 then nxt = 4
  else
   nxt = nxt + 1
   if nxt > 4 then nxt = 1
end if

x          = x + (nxt = 2) - (nxt = 4)
y          = y + (nxt = 3) - (nxt = 1)
plane(x,y) = (plane(x,y) <> 1)
mx         = min(x,mx)
wend

for x = mx to 100
  for y = 1 to 100
   print chr$((plane(x,y)*3) + 32);
  next y
  print x
next x

Locomotive Basic

10 mode 1:defint a-z:deg
20 ink 1,0:ink 0,26
30 x=50:y=50:ang=270
40 dim play(100,100)
50 graphics pen 3:move 220,100:drawr 200,0:drawr 0,200:drawr -200,0:drawr 0,-200
60 ' move ant
70 if play(x,y) then ang=ang-90 else ang=ang+90
80 play(x,y)=1-play(x,y)
90 plot 220+2*x,100+2*y,play(x,y)
100 ang=ang mod 360
110 x=x+sin(ang)
120 y=y+cos(ang)
130 if x<1 or x>100 or y<1 or y>100 then end
140 goto 70

Output:

make "size 100
make "white 1
make "black 2
make "sum sum :white :black
make "chars [. #]
make "origin quotient :size 2
make "grid mdarray (list :size :size) 
make "directions [ [1 0] [0 1] [-1 0] [0 -1] ]

repeat size [
  local "y
  make "y repcount
  repeat size [
    mdsetitem (list repcount :y) :grid :white
  ]
]
make "x quotient :size 2
make "y quotient :size 2
make "direction sum 1 random count :directions

while [(and (:x > 0) (:x <= :size) (:y > 0) (:y <= :size))] [
  local "color
  make "color mditem (list :x :y) :grid
  local "delta
  ifelse [equal? :color :white] [
     make "delta 1
  ] [
     make "delta -1
  ]
  make "direction sum 1 (modulo (:direction + :delta - 1) count :directions)
  make "dir (item :direction :directions)
  mdsetitem (list :x :y) :grid (sum :sum minus :color)
  make "x sum :x first :dir
  make "y sum :y last :dir
]

repeat size [
  local "y 
  local "blank
  make "y repcount
  make "blank "true
  repeat size [if ( (mditem (list repcount :y) :grid) = :black ) [make "blank "false]]

  if [not :blank] [
    repeat size [
      type item (mditem (list repcount :y) :grid) :chars
    ]
    print []
  ]
]
bye
Output:
...............................................................................................##...
..............................................................................................####..
.............................................................................................#.##.#.
............................................................................................##.####.
...........................................................................................#.#.#.#.#
..........................................................................................##..#.###.
.............................##..........................................................#.#..###..#
......................##......##........................................................##..#...###.
.....................#..#..#.##.#......................................................#.#..###..#..
....................###..###.#..#.....................................................##..#...###...
....................#.####..##.#.....................................................#.#..###..#....
............................##......................................................##..#...###.....
......................##.##.##.....................................................#.#..###..#......
......................####..#.##.#................................................##..#...###.......
......................#####.##.###.##....##....##................................#.#..###..#........
.......................#..#.#.##.#..##....####..##..............................##..#...###.........
........................####.###.####....####..##.#............................#.#..###..#..........
........................###.#...#....##..##.......#...##......................##..#...###...........
.........................####.##...##..##..#......#..#..#....................#.#..###..#............
.........................#.##..#..#...##.##.......#...#..#..................##..#...###.............
.........................#.####..##.#.#.########.#....#..#.................#.#..###..#..............
.........................##..##..#..##.#.#.##.##....#.#.#.##..##..........##..#...###...............
.........................#.#..#..#..#.#....#...#.##...##..#.#####........#.#..###..#................
...........................##.####.##...#..####...#..#...##...##.#......##..#...###.................
.......................##...##########...##.#####..#.####...#....#.....#.#..###..#..................
.......................#..#..#.##..#..#...#.#..##.#####.##.#.....#....##..#...###...................
.......................#...##....#.##..#.#.....#####.#.#####.....#...#.#..###..#....................
......................#...##...###.###....#.#.##.#.##.######.#..#...##..#...###.....................
......................#.####..##.#..#...###.###.##.##...##.#..##...#.#..###..#......................
.......................##..#....##..#..#########..##..####.#......##..#...###.......................
.......................#....#....#..####..#.###########..##...#..#.#..###..#........................
......................#......#...####.####.......##...#.##..###.##..#...###.........................
......................#...#....#.#.#...##......##.#.#.###.#..#.#.#..###..#..........................
.......................#...##.####..####.#####..##..##.#.##.#.....#...###...........................
........................##..#..#.##.###......#..###.#..#....##.#..###..#............................
..........................#.....#..###.##.#..##.####.#.#..#.#...#...###.............................
.........................#...####.##..#....#..###...##.##...##..###..#..............................
.........................#.##..##.###...#.....##..#..###.##.#.#...###...............................
..........................##.....#.##.....##..#...##.##.........#..#................................
...........................##.#....####..#.#...#...###.##.#...#.#...................................
.............................##.###.#####...#.##.##.##.#.#.##.#.###.#...............................
............................#...#.###.#.######.##.##..####.#...##.###...............................
............................#.#.#.###...#..####..#.#.#####...#.....#................................
.............................###...###.....#.#.###..##.#..##.###.#..................................
..............................##..##.#..#.#...##.####.##..###..#.#..................................
..................................###..##.##.....#.....#...#..#.###.................................
..................................#.......###.........#.#.##..##....................................
....................................#....#..#.........#..#.#........................................
....................................#.##............##...###........................................
.....................................##..#..........####..#.........................................
......................................##..############..##..........................................

LOLCODE

HAI 1.3

I HAS A plane ITZ A BUKKIT
IM IN YR init UPPIN YR i TIL BOTH SAEM i AN 10000
    plane HAS A SRS i ITZ FAIL
IM OUTTA YR init

I HAS A x ITZ 50, I HAS A y ITZ 50
I HAS A dir ITZ 0, I HAS A pos, I HAS A cell

BTW, WE PURRTIND WE HAS A 2D STRUKSHUR FUR EZ AKSESS
IM IN YR walker
    pos R SUM OF PRODUKT OF y AN 100 AN x
    cell R NOT plane'Z SRS pos
    plane'Z SRS pos R cell
    dir R MOD OF SUM OF dir AN SUM OF 5 AN PRODUKT OF cell AN 2 AN 4

    dir, WTF?
    OMG 0, x R  SUM OF x AN 1, GTFO
    OMG 1, y R DIFF OF y AN 1, GTFO
    OMG 2, x R DIFF OF x AN 1, GTFO
    OMG 3, y R  SUM OF y AN 1, GTFO
    OIC

    BTW, CHEKIN TEH ANTZ BOUNDZ
    WON OF BOTH SAEM x AN -1 AN BOTH SAEM x AN 100, O RLY?, YA RLY, GTFO, OIC
    WON OF BOTH SAEM y AN -1 AN BOTH SAEM y AN 100, O RLY?, YA RLY, GTFO, OIC
IM OUTTA YR walker

IM IN YR printer UPPIN YR cell TIL BOTH SAEM cell AN 10000
    plane'Z SRS cell, O RLY?
        YA RLY, VISIBLE "#"!
        NO WAI, VISIBLE "."!
    OIC

    NOT MOD OF SUM OF cell AN 1 AN 100, O RLY?, YA RLY, VISIBLE "", OIC
IM OUTTA YR printer BTW, UR OUTTA CYAN

KTHXBYE

Lua

For this example, the lua Socket and Curses modules and a terminal with enough lines are needed.

local socket = require 'socket' -- needed for socket.sleep
local curses = require 'curses' -- used for graphics

local naptime = 0.02 -- seconds
local world_x, world_y = 100, 100

local world = (function (x, y)
	local wrl = {}
	for i = 1, y do
		wrl[i] = {}
		for j = 1, x do
			wrl[i][j] = 0
		end
	end
	return wrl
end)(world_x, world_y)

-- directions: 0 up, clockwise
local ant = { 
	x = math.floor(world_x / 2),
	y = math.floor(world_y / 2),
	dir = 0,
	step = function(self)
		if self.dir == 0 then self.y = self.y - 1
		elseif self.dir == 1 then self.x = self.x + 1
		elseif self.dir == 2 then self.y = self.y + 1
		else self.x = self.x - 1
		end
	end
}

world.step = function (self, ant)
	if self[ant.y][ant.x] == 0 then	-- white
		-- change cell color
		self[ant.y][ant.x] = 1
		-- change dir
		ant.dir = (ant.dir + 1) % 4
		ant:step()
		-- boundary conditions
		if ant.x < 1 then ant.x = world_x
		elseif ant.x > world_x then ant.x = 1
		end
		if ant.y < 1 then ant.y = world_y
		elseif ant.y > world_y then ant.y = 1
		end
	else
		-- change cell color
		self[ant.y][ant.x] = 0
		-- change dir
		ant.dir = (ant.dir - 1) % 4
		ant:step()
		-- boundary conditions
		if ant.x < 1 then ant.x = world_x
		elseif ant.x > world_x then ant.x = 1
		end
		if ant.y < 1 then ant.y = world_y
		elseif ant.y > world_y then ant.y = 1
		end
	end
end

world.draw = function (self, ant)
	for i = 1, #self do
		for j = 1, #self[i] do
			if i == ant.y and j == ant.x then
				win:attron(curses.color_pair(3))
				win:mvaddch(i,j,"A")
				--win:attroff(curses.color_pair(3))
			elseif self[i][j] == 0 then 
				win:attron(curses.color_pair(1))
				win:mvaddch(i,j," ")
				--win:attroff(curses.color_pair(1))
			elseif self[i][j] == 1 then
				win:attron(curses.color_pair(2))
				win:mvaddch(i,j," ")
				--win:attroff(curses.color_pair(2))
			else error("self[" .. i .. "][" .. j .. "] is " .. self[i][j] .. "!")
			end
		end
	end
end

local it = 1
curses.initscr()
curses.start_color()
curses.echo(false)
curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_WHITE)
curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_RED, curses.COLOR_WHITE)
curses.init_pair(4, curses.COLOR_WHITE, curses.COLOR_BLACK)
win = curses.newwin(world_y + 1, world_x, 0, 0)
win:clear()
repeat
	world:draw(ant)
	win:move(world_y, 0)
	win:clrtoeol()
	win:attron(curses.color_pair(4))
	win:addstr("Iteration: " .. it .. ", nap = " .. naptime*1000 .. "ms")
	win:refresh()
	world:step(ant)
	it = it + 1
	--local c = stdscr:getch()
	--if c == '+' then naptime = naptime - (naptime / 10)
	--elseif c == '-' then naptime = naptime + (naptime / 10)
	--end
	socket.sleep(naptime)
until false

M2000 Interpreter

Module Ant {
	Form 120,102
	N=100
	Enum CellColor {black=0,white=#FFFFFF}
	Enum Direction{North=90, West=180, South=270, East=0}
	Function Rotate(cd as Direction, clockwise=true) {
			cd=(cd+if(clockwise->270,90)) mod 360
			=cd  ' return a Direction Enum type
	}
	
	dim rect(1 to N, 1 to N)=white
	cx=N div 2
	cy=N div 2
	cd=North
	rect(cx,cy)=black
	endmove=False
	while not endmove
		movecell()
	
	end while
	Disp()
	
	sub movecell()
		select case rect(cx,cy)
		case black
			cd=Rotate(cd, false) : rect(cx, cy)=white
		case white
			cd=Rotate(cd) : rect(cx, cy)=black
		end select
		select case cd
		case North
			cy--
		case West
			cx--
		case South
			cy++
		case East
			cx++
		end select
		endmove= cx<1 or cx>N or cy<1 or cy>N
	end sub
	sub disp()
		Local Doc$, i, j
		Document Doc$
		for i=1 to N:for j=1 to N
			Doc$=if$(rect(j,i)=White->"_","#")
		next
		Doc$={
		}
		next
		cls
		Print #-2,Doc$
		clipboard Doc$
	end sub
}
Ant
Output:
____________________________________________________________________________________________________
__________________________________________________________________##________________________________
___________________________________________________________________##_______________________________
____________________________________________##__##____________###_##_#______________________________
___________________________________________#__##__###________####_#__#______________________________
__________________________________________#____##___#______##_##__#_#_______________________________
_______________________________________##_#_____#_____#######_###_##________________________________
______________________________________#__#__#___##_#___#__#####_#__#________________________________
_____________________________________###___#___####__##_###_#______##_______________________________
__________________________________##_#_#__##__#___#_##__####_######_________________________________
_________________________________#__#___#____#_____##__##___#_#_#####_#_____________________________
________________________________###_##__#__#____#___#####_#_##_#____###_____________________________
________________________________##_____##_###___##_###___##_####__#__#______________________________
__________________________________###__###_#___#_#_###_____#__#____##_______________________________
____________________________________#_#___#########_#####___####____________________________________
______________________________###_###__##_#__#______#___##__#_______________________________________
_______________________________#####_#####__##___#####____#_#_#_____________________________________
____________________________##_#_#######_###_######_#####_#_###_____________________________________
___________________________#____##__##___###__#__#__#__#___#_#______________________________________
__________________________###______###__#_##_##____#__#_##_#________________________________________
__________________________#_#__#____#____#_#####__#____#_##_________________________________________
_______________________________##_###__#_#__##_##____#__#_#_________________________________________
___________________________#_#_____#_#_____#_#_##_#_#__###_##_#_____________________________________
__________________________#___###__#__#__#_#__####_##___##_####_____________________________________
__________________________#___##_###_##_#__#___#_____####_#_##______________________________________
__________________________#__##___###______#__####_###_##___##______________________________________
__________________________#______###_____###__###___##__#____#______________________________________
__________________________#_____#_#_#_####____####__##_##___________________________________________
__________________________#_____##_###_##___#_##_####_###___#_#_____________________________________
__________________________#______#_#____#####_#_#_###_______###_____________________________________
__________________________#____####_#____###_##_###___#_#____#______________________________________
__________________________#_____#__##_##_##_####__##_##__####_______________________________________
__________________________#_____#_##_##__#____#######_______________________________________________
__________________________###___##__##__#_###_#_##_#___#____________________________________________
__________________________###____##_######_#__#___####____#_________________________________________
___________________________#_##_#_##__##____####_#_##_####_#________________________________________
___________________________#___#######_######__#_##_#_#____#________________________________________
__________________________#___#___##_#__#___##_######__#__#_________________________________________
__________________________#_##____###__#___#_#######_#__##__________________________________________
___________________________##_#_##___#_#_#_##_#__##__###____________________________________________
____________________________######_##__________#####___#____________________________________________
________________________________#___#__#####_#______#_#_____________________________________________
_________________________________##_____#_#_##___#____#_____________________________________________
______________________________##_#__##_#_____##_#____###____________________________________________
______________________________#_##_#______#_#___#____###____________________________________________
_______________________________#___####_##___#___#____#_____________________________________________
_______________________________###__#___#___###___####______________________________________________
_______________________________#___##__##_##___#____________________________________________________
__________________________________##__##__#___###___________________________________________________
___________________________________##__#_##_##___#__________________________________________________
________________________________________##__#___###_________________________________________________
_________________________________________#_##_##___#________________________________________________
__________________________________________##__#___###_______________________________________________
___________________________________________#_##_##___#______________________________________________
____________________________________________##__#___###_____________________________________________
_____________________________________________#_##_##___#____________________________________________
______________________________________________##__#___###___________________________________________
_______________________________________________#_##_##___#__________________________________________
________________________________________________##__#___###_________________________________________
_________________________________________________#_##_##___#________________________________________
__________________________________________________##__#___###_______________________________________
___________________________________________________#_##_##___#______________________________________
____________________________________________________##__#___###_____________________________________
_____________________________________________________#_##_##___#____________________________________
______________________________________________________##__#___###___________________________________
_______________________________________________________#_##_##___#__________________________________
________________________________________________________##__#___###_________________________________
_________________________________________________________#_##_##___#________________________________
__________________________________________________________##__#___###_______________________________
___________________________________________________________#_##_##___#______________________________
____________________________________________________________##__#___###_____________________________
_____________________________________________________________#_##_##___#____________________________
______________________________________________________________##__#___###___________________________
_______________________________________________________________#_##_##___#__________________________
________________________________________________________________##__#___###_________________________
_________________________________________________________________#_##_##___#________________________
__________________________________________________________________##__#_#####_______________________
___________________________________________________________________#_###_####_______________________
____________________________________________________________________##_###_#________________________
_____________________________________________________________________#_#_##_________________________
______________________________________________________________________#_#___________________________

make

# Langton's ant Makefile
# netpbm is an ancient collection of picture file formats
# convert and display are from imagemagick
.PHONY: display
display: ant.png
	display $<
ant.png: ant.pbm
	convert $< $@

n9:=1 2 3 4 5 6 7 8 9
n100:=$(n9) $(foreach i,$(n9),$(foreach j,0 $(n9),$i$j)) 100
ndec:=0 $(n100)
ninc:=$(wordlist 2,99,$(n100))
$(foreach i,$(n100),$(eval row$i:=$(foreach j,$(n100),0)))

.PHONY: $(foreach i,$(ndec),row$i)
row0:
	@echo  >ant.pbm P1
	@echo >>ant.pbm '#' Langton"'"s ant
	@echo >>ant.pbm 100 100
rowrule=row$i: row$(word $i,$(ndec)); @echo >>ant.pbm $$($$@)
$(foreach i,$(n100),$(eval $(rowrule)))
ant.pbm: Makefile row100
	@:

x:=50
y:=50
direction:=1

turn=$(eval direction:=$(t$(xy)$(direction)))
xy=$(word $x,$(row$y))
t01:=4
t02:=1
t03:=2
t04:=3
t11:=2
t12:=3
t13:=4
t14:=1

flip=$(eval row$y:=$(start) $(not$(xy)) $(end))
start=$(wordlist 1,$(word $x,$(ndec)),$(row$y))
not0:=1
not1:=0
end=$(wordlist $(word $x,$(ninc) 100),100,$(row$y))

step=$(eval $(step$(direction)))
step1=y:=$(word $y,exit $(n100))
step2=x:=$(word $x,$(ninc) exit)
step3=y:=$(word $y,$(ninc) exit)
step4=x:=$(word $x,exit $(n100))

iteration=$(if $(filter exit,$x $y),,$(turn)$(flip)$(step))
$(foreach i,$(n100) $(n100),$(foreach j,$(n100),$(iteration)))

Mathematica /Wolfram Language

Output
direction = 1;
data = SparseArray[{{50, 50} -> -1}, {100, 100}, 1];
NestWhile[
  {Re@#, Im@#} &@(direction *= (data[[Sequence @@ #]] *= -1) I) + # &,
  {50, 50}, 1 <= Min@# <= Max@# <= 100 &];
Image@data

MATLAB / Octave

function u = langton_ant(n)
	if nargin<1, n=100; end;
	A = sparse(n,n);	% white
	P = [n/2;n/2];	% Positon
	D = 3;	         % index of direction 0-3 
	T = [1,0,-1,0;0,1,0,-1];	% 4 directions
	k = 0;
	while (1)
		k = k+1;	
		a = A(P(1),P(2));
		A(P(1),P(2)) = ~a;
		if ( a )
			D = mod(D+1,4);
		else
			D = mod(D-1,4);
		end;
		P = P+T(:,D+1);
		
		if (~mod(k,100)),spy(A);pause(.1);end;  %display after every 100 interations
	end; 
end

Nim

Translation of: Python
import strutils, sequtils

type
  Direction = enum up, right, down, left
  Color = enum white, black

const
  width = 75
  height = 52
  maxSteps = 12_000

var
  m: array[height, array[width, Color]]
  dir = up
  x = width div 2
  y = height div 2

var i = 0
while i < maxSteps and x in 0 ..< width and y in 0 ..< height:
  let turn = m[y][x] == black
  m[y][x] = if m[y][x] == black: white else: black

  dir = Direction((4 + int(dir) + (if turn: 1 else: -1)) mod 4)
  case dir
  of up:    dec y
  of right: dec x
  of down:  inc y
  of left:  inc x

  inc i

for row in m:
  echo map(row, proc(x: Color): string =
    if x == white: "." else: "#").join("")

OCaml

open Graphics

type dir = North | East | South | West

let turn_left = function
  | North -> West
  | East  -> North
  | South -> East
  | West  -> South

let turn_right = function
  | North -> East
  | East  -> South
  | South -> West
  | West  -> North

let move (x, y) = function
  | North -> x, y + 1
  | East  -> x + 1, y
  | South -> x, y - 1
  | West  -> x - 1, y

let () =
  open_graph "";
  let rec loop (x, y as pos) dir =
    let color = point_color x y in
    set_color (if color = white then black else white);
    plot x y;
    let dir = (if color = white then turn_right else turn_left) dir in
    if not(key_pressed()) then loop (move pos dir) dir
  in
  loop (size_x()/2, size_y()/2) North

Run with:

$ ocaml graphics.cma langton.ml

Octave

clear
E=100           % Size of lattice.
N=11200         % Number of iterations.
z(1:1:E^2)=-1;  % Init lattice rotations (-1=right, 1=left)
k(1:1:E^2)=0;
k(1)=(E^2+E)/2; % Init the Ant @ 50,50
for t=1:1:N;
k(t+1)=mod(k(t)+real(round((0.5*(E+1)*exp(i*pi/4*(trace(diag(z))-E^2)))-(0.5*(E-1)*exp(-i*pi/4*(trace(diag(z))-E^2)))))+imag(round((0.5*(E+1)*exp(i*pi/4*(trace(diag(z))-E^2)))-(0.5*(E-1)*exp(-i*pi/4*(trace(diag(z))-E^2))))),E^2);
z(k(t+1)+1)=real(exp(2*i*pi/4*(1+z(k(t+1)+1))));
endfor;
imagesc(reshape(z,E,E))    % Draw the Lattice

Ol

Library: OpenGL
#!/usr/bin/ol
(import (otus random!))

(define MAX 65536)  ; should be power of two
; size of game board (should be less than MAX)
(define WIDTH 170)
(define HEIGHT 96)

; helper function
(define (hash x y)
   (let ((x (mod (+ x WIDTH) WIDTH))
         (y (mod (+ y HEIGHT) HEIGHT)))
   (+ (* y MAX) x)))

;; ; helper function
(define directions '(
   (0 . 1) (1 . 0) (0 . -1) (-1 . 0)
))

; ---------------
(import (lib gl2))
(gl:set-window-title "Langton's Ant")

(glShadeModel GL_SMOOTH)
(glClearColor 0.11 0.11 0.11 1)
(glOrtho 0 WIDTH 0 HEIGHT 0 1)

(glPointSize (/ 854 WIDTH))

; generate random field
(gl:set-userdata
   (list->ff (map (lambda (i) (let ((x (rand! WIDTH)) (y (rand! HEIGHT)))
                                 (cons (hash x y) #t))) (iota 1000))))

(define ant (cons
   (rand! WIDTH)
   (rand! HEIGHT)))
(define dir (list (rand! 4))) ; 0, 1, 2, 3

; main game loop
(gl:set-renderer (lambda (mouse)
(let ((generation (gl:get-userdata)))
   (glClear GL_COLOR_BUFFER_BIT)

   ; draw the cells
   (glColor3f 0.2 0.5 0.2)
   (glBegin GL_POINTS)
      (ff-fold (lambda (st key value)
         (glVertex2f (mod key MAX)
                     (div key MAX))
      ) #f generation)
      (glColor3f 0.8 0.2 0.1)
      (glVertex2f (car ant) (cdr ant))
   (glEnd)

   (gl:set-userdata
      (let*((x (car ant))
            (y (cdr ant))
            (generation (case (get generation (hash x y) #f)
                           (#true ; black cell
                              (set-car! dir (mod (+ (car dir) 1) 4))
                              (del generation (hash x y)))
                           (#false
                              (set-car! dir (mod (+ (car dir) 7) 4))
                              (put generation (hash x y) #true)))))
         (set-car! ant (mod (+ x (car (lref directions (car dir)))) WIDTH))
         (set-cdr! ant (mod (+ y (cdr (lref directions (car dir)))) HEIGHT))
         generation))


)))

PARI/GP

langton()={
  my(M=matrix(100,100),x=50,y=50,d=0);
  while(x && y && x<=100 && y<=100,
    d=(d+if(M[x,y],1,-1))%4;
    M[x,y]=!M[x,y];
    if(d%2,x+=d-2,y+=d-1);
  );
  M
};
show(M)={
  my(d=sum(i=1,#M[,1],sum(j=1,#M,M[i,j])),u=vector(d),v=u,t);
  for(i=1,#M[,1],for(j=1,#M,if(M[i,j],v[t++]=i;u[t]=j)));
  plothraw(u,v)
};
show(langton())

Pascal

Pascal does not offer complex number arithmetic, so adjusting directions via multiplication of ±i is out. Similarly, it does not offer array manipulation statements, so Cell:=White; must be achieved via explicit for-loops with explicitly stated indices and bounds, and the adjustment of the (x,y) position by (dx,dy) can't be done by array addition. Otherwise, matters are straightforward, so instead this version tries to animate the ant on the screen. Alas, the maximum screen size is 80 characters by 50 lines, except that output to the last line causes a screen scroll so that only 49 lines are available. Alas, this cell array is too small and the bounds are exceeded in step 5,156 - before the ant starts its migration.

The animation shows the arrival at a cell with a yellow arrow pointing in the arrival direction. The cell state is investigated to decide the new direction (which is shown as a green arrow), the current cell's state is flipped, and the move to the new cell position is made. To show these events, the programme waits for a keystroke but if the S key is pressed, full speed results. Each stepwise ant move thus requires two keystrokes (one for each of the two directions being shown) however a quirk of Pascal's processing of keyboard symbols has certain keystrokes represented via two values from ReadKey, so pressing the arrow keys for example provides a doubled advance.

Works with: Free Pascal
Works with: Turbo Pascal

Except, the green arrow on step 4 does not appear!

{$B- Early and safe resolution of  If x <> 0 and 1/x...}
Program LangtonsAnt; Uses CRT;
{Perpetrated by R.N.McLean (whom God preserve), Victoria University, December MMXV.}
 Var AsItWas: record mode: word; ta: word; end;
 Var LastLine,LastCol: byte;

 Procedure Swap(var a,b: integer);	{Oh for a compiler-recognised statement.}
  var t: integer;			{Such as A=:=B;}
   Begin
    t:=a; a:=b; b:=t;
   End;

 var Stepwise: boolean;
 Var Cell: Array[1..80,1..50] of byte;	{The screen is of limited size, alas.}
 Var x,y,Step: integer;		{In the absence of complex numbers,}
 Var dx,dy: integer;		{And also of array action statements.}

 Procedure Croak(Gasp: string);	{Exit message...}
  Begin
   GoToXY(1,12); TextColor(Yellow);	{Reserve line twelve.}
   WriteLn(Gasp,' on step ',Step,' to (',x,',',y,')');
   HALT;
  End;

 Procedure Harken;		{Waits for a keystroke.}
  var ch: char;			{The character. Should really be 16-bit.}
  Begin
   ch:=ReadKey;			{Fancy keys evoke double characters. I don't care.}
   if (ch = 'S') or (ch = 's') then Stepwise:=not Stepwise	{Quick, slow, quick, quick, slow...}
    else if ch = #27 then Croak('ESC!');	{Or perhaps, enough already!}
  End;				{Fancy keys will give a twostep.}
 Procedure Waitabit;		{Slows the action.}
  Begin
   if Stepwise or KeyPressed then Harken;	{Perhaps a change while on the run.}
  End;	{of Waitabit.}

 Procedure Turn(way:integer);	{(dx,dy)*(0,w) = (-w*dy,+w*dx)}
  Begin
   Swap(dx,dy);			{In the absence of complex arithmetic,}
   dx:=-way*dx; dy:=way*dy;	{Do this in two stages.}
  End;

 const Arrow: array[-1..+1,-1..+1] of integer	{Only four entries are of interest.}
  = ((1,27,3),(25,5,24),(7,26,9));		{For the four arrow symbols.}
 Procedure ShowDirection(Enter,How: byte);	{Show one.}
  Begin
   GoToXY(x,LastLine - y + 1);	{(x,y) position, in Cartesian style.}
   TextBackground(Enter);	{The value in Cell[x,y] may have been changed.}
   TextColor(How);
   Writeln(chr(Arrow[dx,dy]));	{Not an ASCII control character, but an arrow symbol.}
   Waitabit;			{Having gone to all this trouble.}
  End;
 Procedure ShowState;		{Special usage for line two of the screen.}
  Begin
   GoToXY(1,2); TextBackground(LightGray); TextColor(Black);
   Write(Step:5,' (',x:2,',',y:2,') ');
   TextColor(Yellow);		{Yellow indicates the direction in mind.}
   Write(chr(Arrow[dx,dy]));	{On *arrival* at a position.}
  End;

 Var i,j: integer;		{Steppers. No whole-array assault as in Cell:=LightGray;}
 var Enter: byte;		{Needed to remember the cell state on arrival.}
 BEGIN
  AsItWas.mode:=LastMode;	{Grr. I might want to save the display content too!}
  AsItWas.ta:=TextAttr;		{Not just its colour and style.}
  TextMode(C80+Font8x8);	{Crazed gibberish gives less unsquare character cells, and 80x50 of them.}
  LastLine:=Hi(WindMax);	{ + 1 omitted, as a write to the last line scrolls the screen up one...}
  LastCol:=Lo(WindMax) + 1;	{Counting starts at zero, even though GoToXY starts with one.}
  x:=LastCol div 2;		{Start somewhere middleish.}
  y:=LastLine div 2;		{Consider (x,y) as being (0,0) for axes.}
  dx:=+1; dy:=0;		{Initial direction.}
  TextBackground(LightGray);	{"White" is not valid for background colour.}
  TextColor(Black);		{This will show up on a light background.}
  ClrScr;			{Here we go.}

  WriteLn('Langton''s Ant, on x = 1:',LastCol,', y = 1:',LastLine);
  ShowState;					{Where we start.}
  WriteLn; TextColor(Black);
  WriteLn('Press a key for each step.');	{Some encouragement.}
  WriteLn('"S" to pause each step or not.');
  WriteLn('ESC to quit.');

  for i:=1 to LastLine do begin GoToXY(x,i); Write('|'); end;			{Draw a y-axis.}
  for i:=1 to LastCol do begin GoToXY(i,LastLine - y + 1); Write('-'); end;	{And x.}
  gotoxy(1,6);	{Can't silence the cursor!}

  for i:=1 to LastCol do	{Prepare the cells.}
   for j:=1 to LastLine do	{One by one.}
    Cell[i,j]:=LightGray;	{Cell:=LightGray. Sigh.}

  Stepwise:=true;		{The action is of interest.}
  for Step:=1 to 12000 do	{Here we go.}
   if (x <= 0) or (x > LastCol) or (y <= 0) or (y > LastCol) then Croak('Out of bounds')
    else				{We're in a cell.}
     begin				{So, inspect it.}
      if Stepwise or (Step mod 10 = 0) then ShowState	{On arrival.}
       else if KeyPressed then Harken;			{If we're not pausing, check for a key poke.}
      Enter:=cell[x,y];					{This is what awaits the feet.}
      if Stepwise then ShowDirection(Enter,Yellow);	{Current direction, about to be changed.}
      case cell[x,y] of					{So, what to do?}
   LightGray: begin Cell[x,y]:=Black;     Turn(-1); end;{White. Make black and turn right.}
       Black: begin Cell[x,y]:=LightGray; Turn(+1); end;{Black. Make white and turn left.}
      end;						{Having decided,}
      if Stepwise then ShowDirection(Enter,Green);	{Show the direction about to be stepped.}
      GoToXY(x,LastLine - y + 1);	{Screen location (column,line) for (x,y)}
      TextBackground(Cell[x,y]);	{Change the state I'm about to leave.}
      Write(' ');			{Foreground colour irrelevant for spaces.}
      x:=x + dx; y:=y + dy;		{Make the step!}
     end;			{On to consider our new position.}

  Croak('Finished');		{That was fun.}

 END.

Perl

#!/usr/bin/perl
use strict;
# Perl 5 implementation of Langton's Ant

# Using screen coordinates - 0,0 in upper-left, +X right, +Y down -
# these directions (right, up, left, down) are counterclockwise
# so advance through the array to turn left, retreat to turn right
my @dirs = ( [1,0], [0,-1], [-1,0], [0,1] );
my $size = 100;

# we treat any false as white and true as black, so undef is fine for initial all-white grid
my @plane;
for (0..$size-1) { $plane[$_] = [] };

# start out in approximate middle
my ($x, $y) = ($size/2, $size/2);

# pointing in a random direction
my $dir = int rand @dirs;

my $move;
for ($move = 0; $x >= 0 && $x < $size && $y >= 0 && $y < $size; $move++) {
  # toggle cell's value (white->black or black->white)
  if ($plane[$x][$y] = 1 - ($plane[$x][$y] ||= 0)) {
        # if it's now true (black), then it was white, so turn right 
        $dir = ($dir - 1) % @dirs;
  } else {
        # otherwise it was black, so turn left
        $dir = ($dir + 1) % @dirs;
  }
  $x += $dirs[$dir][0];
  $y += $dirs[$dir][1];
}

print "Out of bounds after $move moves at ($x, $y)\n";
for (my $y=0; $y<$size; ++$y) {
  for (my $x=0; $x<$size; ++$x) {
    print $plane[$x][$y] ? '#' : '.';
  }
  print "\n";
}

Phix

sequence grid = repeat(repeat(' ',100),100)
integer aX = 50, aY = 50,
        gXY, angle = 1                      -- ' '/'#';  0,1,2,3 = NESW
constant dX = {0,-1,0,1}                    -- (dY = reverse(dX))
 
while aX>=1 and aX<=100
  and aY>=1 and aY<=100 do
    gXY = grid[aX][aY]
    grid[aX][aY] = 67-gXY           -- ' '<=>'#', aka 32<->35
    angle = mod(angle+2*gXY+3,4)    -- +/-1, ie 0,1,2,3 -> 1,2,3,0 or 3,0,1,2
    aX += dX[angle+1]
    aY += dX[4-angle]
end while
 
puts(1,join(grid,"\n"))
Output:
                                         ##  ############  ##
                                        #  ####          #  ##
                                       ###   ##            ## #
                                       # #  #         #  #    #
                                   ##  ## # #         ###       #
                                ### #  #   #     #     ## ##  ###
                                 # #  ###  ## #### ##   # #  # ##  ##
                                 # ### ##  # ##  ### # #     ###   ###
                               #     #   ##### # #  ####  #   ### # # #
                              ### ##   # ####  ## ## ###### # ### #   #
                              # ### # ## # # ## ## ## #   ##### ### ##
                                  # #   # ## ###   #   # #  ####    # ##
                               #  #         ## ##   #  ##     ## #     ##
                              ###   # # ## ###  #  ##     #   ### ##  ## #
                             #  ###  ##   ## ##   ###  #    #  ## ####   #
                            ###   #   # #  # # #### ##  # ## ###  #     #
                           #  ###  # ##    #  # ###  #      ### ## #  #  ##
                          ###   #     # ## # ##  ##  ##### ####  #### ##   #
                         #  ###  # # #  # ### # # ##      ##   # # #    #   #
                        ###   #  ## ###  ## #   ##       #### ####   #      #
                       #  ###  # #  #   ##  ########### #  ####  #    #    #
                      ###   #  ##      # ####  ##  #########  #  ##    #  ##
                     #  ###  # #   ##  # ##   ## ## ### ###   #  # ##  #### #
                    ###   #  ##   #  # ###### ## # ## # #    ### ###   ##   #
                   #  ###  # #   #     ##### # #####     # #  ## #    ##   #
                  ###   #  ##    #     # ## ##### ##  # #   #  #  ## #  #  #
                 #  ###  # #     #    #   #### #  ##### ##   ##########   ##
                ###   #  ##      # ##   ##   #  #   ####  #   ## #### ##
               #  ###  # #        ##### #  ##   ## #   #    # #  #  #  # #
              ###   #  ##          ##  ## # # #    ## ## # # ##  #  ##  ##
             #  ###  # #                 #  #    # ######## # # ##  #### #
            ###   #  ##                  #  #   #       ## ##   #  #  ## #
           #  ###  # #                    #  #  #      #  ##  ##   ## ####
          ###   #  ##                      ##   #       ##  ##    #   # ###
         #  ###  # #                            # ##  ####    #### ### ####
        ###   #  ##                              ##  ####    ##  # ## # #  #
       #  ###  # #                                ##    ##    ## ### ## #####
      ###   #  ##                                                # ## #  ####
     #  ###  # #                                                     ## ## ##
    ###   #  ##                                                      ##
   #  ###  # #                                                     # ##  #### #
  ###   #  ##                                                     #  # ###  ###
 #  ###  # #                                                      # ## #  #  #
###   #  ##                                                        ##      ##
   ##  # #                                                          ##
##  #  ##
 # # # #
#### ##
# ## #
 ####
  ##

PHP


This is an implementation of Langton`s Ant in PHP
(The TEXT TO IMAGE - part is obviously not necessary.
Additionally the x and y startpositions could be set
to the halves of width and height.)

// INIT AND DEFINITION
define('dest_name', 'output.png'); // destination image
define('width', 100);
define('height', 100);

$x = 50;
$y = 70;
$dir = 0; // 0-up, 1-left, 2-down, 3-right
$field = array();
$step_count = 0; 

// LANGTON´S ANT PROCEDURE
while(0 <= $x && $x <= width && 0 <= $y && $y <= height){
	if(isset($field[$x][$y])){
		unset($field[$x][$y]);
		$dir = ($dir + 3) % 4;
	}else{
		$field[$x][$y] = true;
		$dir = ($dir + 1) % 4;
	}
	switch($dir){
		case 0: $y++; break;
		case 1: $x--; break;
		case 2: $y--; break;
		case 3: $x++; break;
	}
	$step_count++;
}
// ARRAY TO IMAGE
$img = imagecreatetruecolor(width, height);
$white = imagecolorallocate($img, 255, 255, 255);
for($x = 0; $x < width; $x++){	
	for($y = 0; $y < height; $y++){
		if(isset($field[$x][$y])){
			imagesetpixel($img, $x, $y, $white);
		}
	}
}
// TEXT TO IMAGE
$color = array();
$color[0] = imagecolorallocate($img, 255, 0, 0);
$color[1] = imagecolorallocate($img, 0, 255, 0);
$color[2] = imagecolorallocate($img, 0, 0, 255);
$print_array = array(
	0 => 'Langton`s Ant', 1=>'PHP Version', 2=>'Steps: ' . $step_count
);
foreach($print_array as $key => $line){
	imagestring($img, 3, 3, 3 + $key*11, $line, $color[$key]);
}
// SAVE IMAGE
imagepng($img, dest_name);

PicoLisp

This code pipes a PBM into ImageMagick's "display" to show the result:

(de ant (Width Height X Y)
   (let (Field (make (do Height (link (need Width)))) Dir 0)
      (until (or (le0 X) (le0 Y) (> X Width) (> Y Height))
         (let Cell (nth Field X Y)
            (setq Dir (% (+ (if (car Cell) 1 3) Dir) 4))
            (set Cell (not (car Cell))) 
            (case Dir
               (0 (inc 'X))
               (1 (inc 'Y))
               (2 (dec 'X))
               (3 (dec 'Y)) ) ) )
      (prinl "P1")
      (prinl Width " " Height)
      (for Row Field
         (prinl (mapcar '[(X) (if X 1 0)] Row)) ) ) )
(out '(display -) (ant 100 100 50 50))
(bye)

PowerShell

Works with: PowerShell version 2

To simplify the steps within the loop, -1 and 1 are used to represent the binary state of the spaces in the grid. As neither state is now a default value, to simplify setting the starting states, an array of arrays is used instead of a two dimensional array.

$Size = 100

$G = @()
1..$Size | ForEach { $G += ,( @( 1 ) * $Size ) }

$x = $y = $Size / 2
 
#  Direction of next move
$Dx = 1
$Dy = 0
 
#  While we are still on the grid...
While ( $x -ge 0 -and $y -ge 0 -and $x -lt $Size -and $y -lt $Size )
    {
    #  Change direction
    $Dx, $Dy = ( $Dy * $G[$x][$y] ), -( $Dx * $G[$x][$y] )
 
    #  Change state of current square
    $G[$x][$y] = -$G[$x][$y]
 
    #  Move forward
    $x += $Dx
    $y += $Dy
    }
 
#  Convert to strings for output
ForEach ( $Row in $G ) { ( $Row | ForEach { ( ' ', '', '#')[$_+1] } ) -join '' }
Output:

Default PowerShell console colors reverse the colors from black on white to white on dark blue. Most blank lines not included below.

####################################################################################################
################################################################################################  ##
###############################################################################################    #
############################################################################################## #  # 
#############################################################################################  #    
############################################################################################ # # # #
###########################################################################################  ## ##  
##############################  ########################################################## # ##  ###
#######################  ######  ########################################################  ## ###   
###################### ## ## #  # ###################################################### # ##   ## #
#####################   ##   # ## #####################################################  ## ###   ##
##################### #    ##  # ##################################################### # ##   ## ###
#############################  ######################################################  ## ###   ####
#######################  #  #  ##################################################### # ##   ## #####
#######################    ## #  # ################################################  ## ###   ######
#######################     #  #   #  ####  ####  ################################ # ##   ## #######
######################## ## # #  # ##  ####    ##  ##############################  ## ###   ########
#########################    #   #    ####    ##  # ############################ # ##   ## #########
#########################   # ### ####  ##  ####### ###  ######################  ## ###   ##########
##########################    #  ###  ##  ## ###### ## ## #################### # ##   ## ###########
########################## #  ## ## ###  #  ####### ### ## ##################  ## ###   ############
########################## #    ##  # # #        # #### ## ################# # ##   ## #############
##########################  ##  ## ##  # # #  #  #### # # #  ##  ##########  ## ###   ##############
########################## # ## ## ## # #### ### #  ###  ## #     ######## # ##   ## ###############
############################  #    #  ### ##    ### ## ###  ###  # ######  ## ###   ################
########################  ###          ###  #     ## #    ### #### ##### # ##   ## #################
######################## ## ## #  ## ## ### # ##  #     #  # ##### ####  ## ###   ##################
######################## ###  #### #  ## # #####     # #     ##### ### # ##   ## ###################
####################### ###  ###   #   #### # #  # #  #      # ## ###  ## ###   ####################
####################### #    ##  # ## ###   #   #  #  ###  # ##  ### # ##   ## #####################
########################  ## ####  ## ##         ##  ##    # ######  ## ###   ######################
######################## #### #### ##    ## #           ##  ### ## # ##   ## #######################
####################### ###### ###    #    #######  ### #  ##   #  ## ###   ########################
####################### ### #### # # ###  ######  # # #   # ## # # ##   ## #########################
######################## ###  #    ##    #     ##  ##  # #  # ##### ###   ##########################
#########################  ## ## #  #   ###### ##   # ## ####  # ##   ## ###########################
########################### ##### ##   #  # ##  #    # # ## # ### ###   ############################
########################## ###    #  ## #### ##   ###  #  ###  ##   ## #############################
########################## #  ##  #   ### #####  ## ##   #  # # ###   ##############################
###########################  ##### #  #####  ## ###  #  ######### ## ###############################
############################  # ####    ## # ### ###   #  # ### # ##################################
##############################  #   #     ### #  #  #  # # #  # #   # ##############################
############################# ### #   # #      #  #  ##    # ###  #   ##############################
############################# # # #   ### ##    ## # #     ### ##### ###############################
##############################   ###   ##### # #   ##  # ##  #   # #################################
###############################  ##  # ## # ###  #    #  ##   ## # #################################
###################################   ##  #  ##### ##### ### ## #   ################################
################################### #######   ######### # #  ##  ###################################
##################################### #### ## ######### ## # #######################################
##################################### #  ############  ###   #######################################
######################################  ## ##########    ## ########################################
#######################################  ##            ##  #########################################
####################################################################################################

Processing

Processing implementation, this uses two notable features of Processing, first of all, the animation is calculated with the draw() loop, second the drawing on the screen is also used to represent the actual state.

/*
 * we use the following conventions:
 * directions 0: up, 1: left, 2: down: 3: right
 *
 * pixel white: true, black: false
 *
 * turn right: true, left: false
 *
 */

// number of iteration steps per frame
// set this to 1 to see a slow animation of each
// step or to 10 or 100 for a faster animation

final int STEP=100;

int x;
int y;
int direction;

void setup() {
  // 100x100 is large enough to show the
  // corridor after about 10000 cycles
  size(100, 100, P2D);

  background(#ffffff);

  x=width/2;
  y=height/2;

  direction=0;
}

int count=0;

void draw() {
  for(int i=0;i<STEP;i++) {
    count++;
    boolean pix=get(x,y)!=-1; //white =-1
    setBool(x,y,pix);
  
    turn(pix);
    move();
  
    if(x<0||y<0||x>=width||y>=height) {
      println("finished");
      noLoop();
      break;
    }
  }
  if(count%1000==0) {
    println("iteration "+count);
  }
}

void move() {
  switch(direction) {
    case 0:
      y--;
      break;
    case 1:
      x--;
      break;
    case 2:
      y++;
      break;
    case 3:
      x++;
      break;
  }
}

void turn(boolean rightleft) {
  direction+=rightleft?1:-1;
  if(direction==-1) direction=3;
  if(direction==4) direction=0;
}

void setBool(int x, int y, boolean white) {
  set(x,y,white?#ffffff:#000000);
}

Processing Python mode

"""
we use the following conventions:
directions 0: up, 1: left, 2: down: 3: right

pixel white: True, black: False

turn right: True, left: False
"""

# number of iteration steps per frame
# set this to 1 to see a slow animation of each
# step or to 10 or 100 for a faster animation

STEP = 100
count = 0

def setup():
    global x, y, direction

    # 100x100 is large enough to show the
    # corridor after about 10000 cycles
    size(100, 100, P2D)

    background(255)
    x = width / 2
    y = height / 2
    direction = 0

def draw():
    global count
    for i in range(STEP):
        count += 1
        pix = get(x, y) != -1 # white =-1
        setBool(x, y, pix)

        turn(pix)
        move()

        if (x < 0 or y < 0 or x >= width or y >= height):
            println("finished")
            noLoop()
            break

    if count % 1000 == 0:
        println("iteration {}".format(count))

def move():
    global x, y
    if direction == 0:
        y -= 1
    elif direction == 1:
        x -= 1
    elif direction == 2:
        y += 1
    elif direction == 3:
        x += 1

def turn(rightleft):
    global direction
    direction += 1 if rightleft else -1
    if direction == -1:
        direction = 3
    if direction == 4:
        direction = 0

def setBool(x, y, white):
    set(x, y, -1 if white else 0)

Prolog

This sort of problem, when stated in Prolog, reads a bit like a story book. Our main goal (go) succeeds if we can move north from the middle of the 100x100 matrix, and update_win- which outputs the black/1 blocks. The move/3 and direction/3 goals are really quite self explanatory, mirroring the instructions for the task.

Works with: SWI Prolog version 6.2.6 by Jan Wielemaker, University of Amsterdam
Sample output
%_______________________________________________________________
% Langtons ant.
:-dynamic
	black/1.

plot_point(Row, Col) :-   % Output a 5x5 black box at R,C
	new(C, box(5,5)), X is Col * 5 - 2, Y is Row * 5 - 2,
	send(C, colour, colour(black)), send(C, fill_pattern, colour(blue)),
	send(C, center(point(X,Y))), send(@win, display, C).
update_win :-  % Make a 500x500 window, find all the black points and plot them
	new(@win, window('Langtons Ant')),
	send(@win, size, size(500,500)), send(@win, open),
	black(Row/Col),plot_point(Row,Col),fail.
update_win.

direction(Row, Col, left) :- black(Row/Col), !, retract(black(Row/Col)).
direction(Row, Col, right):- not(black(Row/Col)), !, assert(black(Row/Col)).

move(_, Row,Col) :- (Row < 0; Col < 0; Row > 99; Col > 99), !.
move(north,Row,Col) :-
	(direction(Row,Col,left), C is Col - 1, !, move(west, Row, C));
	(direction(Row,Col,right), C is Col + 1, !, move(east, Row, C)).
move(south,Row,Col) :-
	(direction(Row,Col,right), C is Col - 1, !, move(west, Row, C));
	(direction(Row,Col,left), C is Col + 1, !, move(east, Row, C)).
move(east,Row,Col) :-
	(direction(Row,Col,right), R is Row + 1, !, move(south, R, Col));
	(direction(Row,Col,left), R is Row - 1, !, move(north, R, Col)).
move(west,Row,Col) :-
	(direction(Row,Col,left), R is Row + 1, !, move(south, R, Col));
	(direction(Row,Col,right), R is Row - 1, !, move(north, R, Col)).

go :-   retractall(black(_)), move(north,49,49), update_win.

PureBasic

Sample display of PureBasic solution
#White = $FFFFFF
#Black = 0
#planeHeight = 100
#planeWidth = 100
#canvasID = 0
#windowID = 0
OpenWindow(#windowID, 0, 0, 150, 150, "Langton's ant", #PB_Window_SystemMenu | #PB_Window_ScreenCentered)
CanvasGadget(#canvasID, 25, 25, #planeWidth, #planeHeight)
StartDrawing(CanvasOutput(#canvasID))
  Box(0, 0, #planeWidth, #planeHeight, #White)
StopDrawing()

Define event, quit, ant.POINT, antDirection, antSteps

ant\x = #planeHeight / 2
ant\y = #planeWidth / 2
Repeat
  Repeat
    event = WindowEvent()
    If event = #PB_Event_CloseWindow
      quit = 1
      event = 0
    EndIf 
  Until event = 0

  StartDrawing(CanvasOutput(#canvasID))
    Select Point(ant\x, ant\y)
      Case #Black
        Plot(ant\x, ant\y, #White)
        antDirection = (antDirection + 1) % 4 ;turn left
      Case #White
        Plot(ant\x, ant\y, #Black)
        antDirection = (antDirection - 1 + 4) % 4 ;turn right
    EndSelect
  StopDrawing()

  Select antDirection
    Case 0 ;up
      ant\y - 1
    Case 1 ;left
      ant\x - 1
    Case 2 ;down
      ant\y + 1
    Case 3 ;right
      ant\x + 1
  EndSelect
  antSteps + 1
  
  If ant\x < 0 Or ant\x >= #planeWidth Or ant\y < 0 Or ant\y >= #planeHeight
    MessageRequester("Langton's ant status", "Out of bounds after " + Str(antSteps) + " steps.")
    quit = 1
  EndIf    
  
  Delay(10) ;control animation speed and avoid hogging CPU
Until quit = 1

Sample output:

Out of bounds after 11669 steps.

Python

"""Langton's ant implementation."""
from enum import Enum, IntEnum


class Dir(IntEnum):
    """Possible directions."""

    UP = 0
    RIGHT = 1
    DOWN = 2
    LEFT = 3


class Color(Enum):
    """Possible colors."""

    WHITE = " "
    BLACK = "#"


def invert_color(grid, x, y):
    """Invert the color of grid at x, y coordinate."""
    if grid[y][x] == Color.BLACK:
        grid[y][x] = Color.WHITE
    else:
        grid[y][x] = Color.BLACK


def next_direction(grid, x, y, direction):
    """Compute next direction according to current position and direction."""
    if grid[y][x] == Color.BLACK:
        turn_right = False
    else:
        turn_right = True
    direction_index = direction.value
    if turn_right:
        direction_index = (direction_index + 1) % 4
    else:
        direction_index = (direction_index - 1) % 4
    directions = [Dir.UP, Dir.RIGHT, Dir.DOWN, Dir.LEFT]
    direction = directions[direction_index]
    return direction


def next_position(x, y, direction):
    """Compute next position according to direction."""
    if direction == Dir.UP:
        y -= 1
    elif direction == Dir.RIGHT:
        x -= 1
    elif direction == Dir.DOWN:
        y += 1
    elif direction == Dir.LEFT:
        x += 1
    return x, y


def print_grid(grid):
    """Display grid."""
    print(80 * "#")
    print("\n".join("".join(v.value for v in row) for row in grid))


def ant(width, height, max_nb_steps):
    """Langton's ant."""
    grid = [[Color.WHITE] * width for _ in range(height)]
    x = width // 2
    y = height // 2
    direction = Dir.UP

    i = 0
    while i < max_nb_steps and 0 <= x < width and 0 <= y < height:
        invert_color(grid, x, y)
        direction = next_direction(grid, x, y, direction)
        x, y = next_position(x, y, direction)
        print_grid(grid)
        i += 1


if __name__ == "__main__":
    ant(width=75, height=52, max_nb_steps=12000)

The output is similar to the basic D version.

Quackery

  [ stack 50 ]                 is xpos    (   --> s    )
  [ stack 50 ]                 is ypos    (   --> s    )

  [ xpos share 0 100 within
    ypos share 0 100 within
    and ]                      is inside  (   --> b    )

  [ -1 ypos ]                  is north   (   -->  n s )
  [  1 xpos ]                  is east    (   -->  n s )
  [  1 ypos ]                  is south   (   -->  n s )
  [ -1 xpos ]                  is west    (   -->  n s )

  [ stack 0 ]                  is heading (   --> s    )

  [  1 ]                       is right   (   --> n    )
  [ -1 ]                       is left    (   --> n    )

  [ heading take
    + 4 mod
    heading put ]              is turn    (   -->      )

  [ heading share
    [ table
      north east south west ]
    do tally ]                 is move    (   -->      )

  [ ypos share peek
    xpos share bit & 0 > ]     is black?  ( [ --> b    )

  [ ypos share
    2dup peek
    xpos share bit ~ &
    unrot poke ]               is white   ( [ --> [    )

  [ ypos share
    2dup peek
    xpos share bit |
    unrot poke ]               is black   ( [ --> [    )

  [ 50 xpos replace
    50 ypos replace
    0 heading replace ]        is reset   (   -->      )

  [ witheach
      [ 100 times
          [ dup i^ bit &
            iff  say "[]"
            else say "  " ]
        cr
        drop ] ]               is draw    ( [ -->      )

  [ reset
    0 100 of
    [ inside while
      dup black? iff
        [ white left ]
      else
        [ black right ]
      turn
      move
      again ]
    draw ]                     is ant     (   -->      )
Output:

Surplus whitespace trimmed. Shown at 2/3 size.

                                                                                    [][]    [][][][][][][][][][][][]    [][]
                                                                                  []    [][][][]                    []    [][]
                                                                                [][][]      [][]                        [][]  []
                                                                                []  []    []                  []    []        []
                                                                        [][]    [][]  []  []                  [][][]              []
                                                                  [][][]  []    []      []          []          [][]  [][]    [][][]
                                                                    []  []    [][][]    [][]  [][][][]  [][]      []  []    []  [][]    [][]
                                                                    []  [][][]  [][]    []  [][]    [][][]  []  []          [][][]      [][][]
                                                                []          []      [][][][][]  []  []    [][][][]    []      [][][]  []  []  []
                                                              [][][]  [][]      []  [][][][]    [][]  [][]  [][][][][][]  []  [][][]  []      []
                                                              []  [][][]  []  [][]  []  []  [][]  [][]  [][]  []      [][][][][]  [][][]  [][]
                                                                      []  []      []  [][]  [][][]      []      []  []    [][][][]        []  [][]
                                                                []    []                  [][]  [][]      []    [][]          [][]  []          [][]
                                                              [][][]      []  []  [][]  [][][]    []    [][]          []      [][][]  [][]    [][]  []
                                                            []    [][][]    [][]      [][]  [][]      [][][]    []        []    [][]  [][][][]      []
                                                          [][][]      []      []  []    []  []  [][][][]  [][]    []  [][]  [][][]    []          []
                                                        []    [][][]    []  [][]        []    []  [][][]    []            [][][]  [][]  []    []    [][]
                                                      [][][]      []          []  [][]  []  [][]    [][]    [][][][][]  [][][][]    [][][][]  [][]      []
                                                    []    [][][]    []  []  []    []  [][][]  []  []  [][]            [][]      []  []  []        []      []
                                                  [][][]      []    [][]  [][][]    [][]  []      [][]              [][][][]  [][][][]      []            []
                                                []    [][][]    []  []    []      [][]    [][][][][][][][][][][]  []    [][][][]    []        []        []
                                              [][][]      []    [][]            []  [][][][]    [][]    [][][][][][][][][]    []    [][]        []    [][]
                                            []    [][][]    []  []      [][]    []  [][]      [][]  [][]  [][][]  [][][]      []    []  [][]    [][][][]  []
                                          [][][]      []    [][]      []    []  [][][][][][]  [][]  []  [][]  []  []        [][][]  [][][]      [][]      []
                                        []    [][][]    []  []      []          [][][][][]  []  [][][][][]          []  []    [][]  []        [][]      []
                                      [][][]      []    [][]        []          []  [][]  [][][][][]  [][]    []  []      []    []    [][]  []    []    []
                                    []    [][][]    []  []          []        []      [][][][]  []    [][][][][]  [][]      [][][][][][][][][][]      [][]
                                  [][][]      []    [][]            []  [][]      [][]      []    []      [][][][]    []      [][]  [][][][]  [][]
                                []    [][][]    []  []                [][][][][]  []    [][]      [][]  []      []        []  []    []    []    []  []
                              [][][]      []    [][]                    [][]    [][]  []  []  []        [][]  [][]  []  []  [][]    []    [][]    [][]
                            []    [][][]    []  []                                  []    []        []  [][][][][][][][]  []  []  [][]    [][][][]  []
                          [][][]      []    [][]                                    []    []      []              [][]  [][]      []    []    [][]  []
                        []    [][][]    []  []                                        []    []    []            []    [][]    [][]      [][]  [][][][]
                      [][][]      []    [][]                                            [][]      []              [][]    [][]        []      []  [][][]
                    []    [][][]    []  []                                                        []  [][]    [][][][]        [][][][]  [][][]  [][][][]
                  [][][]      []    [][]                                                            [][]    [][][][]        [][]    []  [][]  []  []    []
                []    [][][]    []  []                                                                [][]        [][]        [][]  [][][]  [][]  [][][][][]
              [][][]      []    [][]                                                                                                []  [][]  []    [][][][]
            []    [][][]    []  []                                                                                                          [][]  [][]  [][]
          [][][]      []    [][]                                                                                                            [][]
        []    [][][]    []  []                                                                                                          []  [][]    [][][][]  []
      [][][]      []    [][]                                                                                                          []    []  [][][]    [][][]
    []    [][][]    []  []                                                                                                            []  [][]  []    []    []
  [][][]      []    [][]                                                                                                                [][]            [][]
[]    [][][]    []  []                                                                                                                    [][]
  [][][]  []    [][]
[]  []  []  []  []
  [][][][]  [][]
  []  [][]  []
    [][][][]
      [][]

R

langton.ant = function(n = 100) {
	map = matrix(data = 0, nrow = n, ncol = n)
	p = floor(c(n/2, n/2))
	d = sample(1:4, 1)
	i = 1
	while(p[1] > 0 & p[1] <= n & p[2] > 0 & p[2] <= n) {
		if(map[p[1], p[2]] == 1