Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented.

Task
Vector
You are encouraged to solve this task according to the task description, using any language you may know.
Task


The Vector may be initialized in any reasonable way.

  • Start and end points, and direction
  • Angular coefficient and value (length)


The four operations to be implemented are:

  • Vector + Vector addition
  • Vector - Vector subtraction
  • Vector * scalar multiplication
  • Vector / scalar division



11l

Translation of: D
T Vector
   Float x, y

   F (x, y)
      .x = x
      .y = y

   F +(vector)
      R Vector(.x + vector.x, .y + vector.y)

   F -(vector)
      R Vector(.x - vector.x, .y - vector.y)

   F *(mult)
      R Vector(.x * mult, .y * mult)

   F /(denom)
      R Vector(.x / denom, .y / denom)

   F String()
      R ‘(#., #.)’.format(.x, .y)

print(Vector(5, 7) + Vector(2, 3))
print(Vector(5, 7) - Vector(2, 3))
print(Vector(5, 7) * 11)
print(Vector(5, 7) / 2)
Output:
(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)

Action!

INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

DEFINE X_="+0"
DEFINE Y_="+6"

TYPE Vector=[CARD x1,x2,x3,y1,y2,y3]

PROC PrintVec(Vector POINTER v)
  Print("[") PrintR(v X_)
  Print(",") PrintR(v Y_) Print("]")
RETURN

PROC VecIntInit(Vector POINTER v INT ix,iy)
  IntToReal(ix,v X_)
  IntToReal(iy,v Y_)
RETURN

PROC VecRealInit(Vector POINTER v REAL POINTER rx,ry)
  RealAssign(rx,v X_)
  RealAssign(ry,v Y_)
RETURN

PROC VecStringInit(Vector POINTER v CHAR ARRAY sx,sy)
  ValR(sx,v X_)
  ValR(sy,v Y_)
RETURN

PROC VecAdd(Vector POINTER v1,v2,res)
  RealAdd(v1 X_,v2 X_,res X_) ;res.x=v1.x+v2.x
  RealAdd(v1 Y_,v2 Y_,res Y_) ;res.y=v1.y+v2.y
RETURN

PROC VecSub(Vector POINTER v1,v2,res)
  RealSub(v1 X_,v2 X_,res X_) ;res.x=v1.x-v2.x
  RealSub(v1 Y_,v2 Y_,res Y_) ;res.y=v1.y-v2.y
RETURN

PROC VecMult(Vector POINTER v REAL POINTER a Vector POINTER res)
  RealMult(v X_,a,res X_) ;res.x=v.x*a
  RealMult(v Y_,a,res Y_) ;res.y=v.y*a
RETURN

PROC VecDiv(Vector POINTER v REAL POINTER a Vector POINTER res)
  RealDiv(v X_,a,res X_) ;res.x=v.x/a
  RealDiv(v Y_,a,res Y_) ;res.y=v.y/a
RETURN

PROC Main()
  Vector v1,v2,res
  REAL s

  Put(125) PutE() ;clear the screen
  VecStringInit(v1,"12.3","-4.56")
  VecStringInit(v2,"9.87","654.3")
  ValR("0.1",s)

  VecAdd(v1,v2,res)
  PrintVec(v1) Print(" + ") PrintVec(v2)
  Print(" =") PutE() PrintVec(res) PutE() PutE()

  VecSub(v1,v2,res)
  PrintVec(v1) Print(" - ") PrintVec(v2)
  Print(" =") PutE() PrintVec(res) PutE() PutE()

  VecMult(v1,s,res)
  PrintVec(v1) Print(" * ") PrintR(s)
  Print(" = ") PrintVec(res) PutE() PutE()

  VecDiv(v1,s,res)
  PrintVec(v1) Print(" / ") PrintR(s)
  Print(" = ") PrintVec(res)
RETURN
Output:

Screenshot from Atari 8-bit computer

[12.3,-4.56] + [9.87,654.3] = [22.17,649.74]

[12.3,-4.56] - [9.87,654.3] = [2.43,-658.86]

[12.3,-4.56] * .1 = [1.23,-0.456]

[12.3,-4.56] / .1 = [123,-45.6]

ALGOL 68

# the standard mode COMPLEX is a two element vector #
MODE VECTOR = COMPLEX;
# the operations required for the task plus many others are provided as standard for COMPLEX and REAL items #
# the to components are fields called "re" and "im" #
# we can define a "pretty-print" operator: #
# returns a formatted representation of the vector #
OP TOSTRING = ( VECTOR a )STRING: "[" + TOSTRING re OF a + ", " + TOSTRING im OF a + "]";
# returns a formtted representation of the scaler #
OP TOSTRING = ( REAL a )STRING: fixed( a, 0, 4 );

BEGIN # test the operations #
  VECTOR a = 5 I 7, b = 2 I 3; # note the use of the I operator to construct a COMPLEX from two scalers #
  print( ( "a+b : ", TOSTRING ( a + b  ), newline ) );
  print( ( "a-b : ", TOSTRING ( a - b  ), newline ) );
  print( ( "a*11: ", TOSTRING ( a * 11 ), newline ) );
  print( ( "a/2 : ", TOSTRING ( a / 2  ), newline ) )
END
Output:
a+b : [7.0000, 10.0000]
a-b : [3.0000, 4.0000]
a*11: [55.0000, 77.0000]
a/2 : [2.5000, 3.5000]

Arturo

define :vector [
    x y
][
    print: -> render "(|this\x|, |this\y|)"   ; prettyprint function
]

ensureVector: function [block][
    ensure -> every? @block => [is? :vector &]
]

vadd: function [a b][
    ensureVector [a b]
    to :vector @[a\x + b\x, a\y + b\y]
]

vsub: function [a b][
    ensureVector [a b]
    to :vector @[a\x - b\x, a\y - b\y]
]

vmul: function [a n][
    ensureVector [a]
    to :vector @[a\x * n, a\y * n]
]

vdiv: function [a n][
    ensureVector [a]
    to :vector @[a\x // n, a\y // n]
]

; test our vector object
a: to :vector [5 7]
b: to :vector [2 3]
print [a '+ b '= vadd a b]
print [a '- b '= vsub a b]
print [a '* 11 '= vmul a 11]
print [a '/ 11 '= vdiv a 2]
Output:
(5, 7) + (2, 3) = (7, 10) 
(5, 7) - (2, 3) = (3, 4) 
(5, 7) * 11 = (55, 77) 
(5, 7) / 11 = (2.5, 3.5)

BASIC

Applesoft BASIC

Same code as GW-BASIC

BASIC256

Translation of: Ring
arraybase 1
dim vect1(2)
vect1[1] = 5 : vect1[2] = 7
dim vect2(2)
vect2[1] = 2 : vect2[2] = 3
dim vect3(vect1[?])

subroutine showarray(vect3)
    print "[";
    svect$ = ""
    for n = 1 to vect3[?]
        svect$ &= vect3[n] & ", "
    next n
    svect$ = left(svect$, length(svect$) - 2)
    print svect$;
    print "]"
end subroutine

for n = 1 to vect1[?]
    vect3[n] = vect1[n] + vect2[n]
next n
print "[" & vect1[1] & ", " & vect1[2] & "] + [" & vect2[1] & ", " & vect2[2] & "] = ";
call showarray(vect3)

for n = 1 to vect1[?]
    vect3[n] = vect1[n] - vect2[n]
next n
print "[" & vect1[1] & ", " & vect1[2] & "] - [" & vect2[1] & ", " & vect2[2] & "] = ";
call showarray(vect3)

for n = 1 to vect1[?]
    vect3[n] = vect1[n] * 11
next n
print "[" & vect1[1] & ", " & vect1[2] & "] * " & 11 & "     = ";
call showarray(vect3)

for n = 1 to vect1[?]
    vect3[n] = vect1[n] / 2
next n
print "[" & vect1[1] & ", " & vect1[2] & "] / " & 2 & "      = ";
call showarray(vect3)
end
Output:
[5, 7] + [2, 3] = [7, 10]
[5, 7] - [2, 3] = [3, 4]
[5, 7] *  11    = [55, 77]
[5, 7] /  2     = [2.5, 3.5]

Chipmunk Basic

Translation of: Yabasic
Works with: Chipmunk Basic version 3.6.4
100 cls
110 dim vect1(2)
120 vect1(1) = 5 : vect1(2) = 7
130 dim vect2(2)
140 vect2(1) = 2 : vect2(2) = 3
150 dim vect3(ubound(vect1))
160 for n = 1 to ubound(vect1)
170   vect3(n) = vect1(n)+vect2(n)
180 next n
190 print "["+str$(vect1(1))+", "+str$(vect1(2))+"] + ["+str$(vect2(1))+", "+str$(vect2(2))+"] = ";
200 showarray(vect3)
210 for n = 1 to ubound(vect1)
220   vect3(n) = vect1(n)-vect2(n)
230 next n
240 print "["+str$(vect1(1))+", "+str$(vect1(2))+"] - ["+str$(vect2(1))+", "+str$(vect2(2))+"] = ";
250 showarray(vect3)
260 for n = 1 to ubound(vect1)
270   vect3(n) = vect1(n)*11
280 next n
290 print "["+str$(vect1(1))+", "+str$(vect1(2))+"] *  11    = ";
300 showarray(vect3)
310 for n = 1 to ubound(vect1)
320   vect3(n) = vect1(n)/2
330 next n
340 print "["+str$(vect1(1))+", "+str$(vect1(2))+"] /  2     = ";
350 showarray(vect3)
360 end
370 sub showarray(vect3)
380   print "[";
390   svect$ = ""
400   for n = 1 to ubound(vect3)
410     svect$ = svect$+str$(vect3(n))+", "
420   next n
430   svect$ = left$(svect$,len(svect$)-2)
440   print svect$;
450   print "]"
460 end sub

GW-BASIC

Translation of: Yabasic
Works with: PC-BASIC version any
Works with: Applesoft BASIC
Works with: BASICA
Works with: Chipmunk Basic
Works with: QBasic
Works with: MSX BASIC
100 CLS : rem  100 HOME for Applesoft BASIC
110 DIM v1(2)
120 v1(1) = 5 : v1(2) = 7
130 DIM v2(2)
140 v2(1) = 2 : v2(2) = 3
150 DIM v3(2)
160 FOR n = 1 TO 2
170   v3(n) = v1(n)+v2(n)
180 NEXT n
190 PRINT "[";v1(1);", ";v1(2);"] + [";v2(1);", ";v2(2);"] = ";
200 GOSUB 370 : rem showarray(vect3)
210 FOR n = 1 TO 2
220   v3(n) = v1(n)-v2(n)
230 NEXT n
240 PRINT "[";v1(1);", ";v1(2);"] - [";v2(1);", ";v2(2);"] = ";
250 GOSUB 370 : rem showarray(vect3)
260 FOR n = 1 TO 2
270   v3(n) = v1(n)*11
280 NEXT n
290 PRINT "[";v1(1);", ";v1(2);"] * ";11;"     = ";
300 GOSUB 370 : rem showarray(vect3)
310 FOR n = 1 TO 2
320   v3(n) = v1(n)/2
330 NEXT n
340 PRINT "[";v1(1);", ";v1(2);"] / ";2;"      = ";
350 GOSUB 370 : rem showarray(vect3)
360 END
370 rem SUB showarray(vect3)
380   PRINT "[";
390   svt$ = ""
400   FOR n = 1 TO 2
410     svt$ = svt$+STR$(v3(n))+", "
420   NEXT n
430   svt$ = LEFT$(svt$,LEN(svt$)-2)
440   PRINT svt$;
450   PRINT "]"
460 RETURN

MSX Basic

Works with: MSX BASIC version any

The GW-BASIC solution works without any changes.

QBasic

Translation of: Yabasic
Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: QB64
DECLARE SUB showarray (vect3!())
CLS
DIM vect1(2)
vect1(1) = 5: vect1(2) = 7
DIM vect2(2)
vect2(1) = 2: vect2(2) = 3
DIM vect3(UBOUND(vect1))
FOR n = 1 TO UBOUND(vect1)
    vect3(n) = vect1(n) + vect2(n)
NEXT n
PRINT "["; STR$(vect1(1)); ","; STR$(vect1(2)); " ] + ["; STR$(vect2(1)) + ","; STR$(vect2(2)); " ] = ";
CALL showarray(vect3())
FOR n = 1 TO UBOUND(vect1)
    vect3(n) = vect1(n) - vect2(n)
NEXT n
PRINT "["; STR$(vect1(1)); ","; STR$(vect1(2)); " ] - ["; STR$(vect2(1)) + ","; STR$(vect2(2)); " ] = ";
CALL showarray(vect3())
FOR n = 1 TO UBOUND(vect1)
    vect3(n) = vect1(n) * 11
NEXT n
PRINT "["; STR$(vect1(1)); ","; STR$(vect1(2)); " ] *  11      = ";
CALL showarray(vect3())
FOR n = 1 TO UBOUND(vect1)
    vect3(n) = vect1(n) / 2
NEXT n
PRINT "["; STR$(vect1(1)); ","; STR$(vect1(2)); " ] /  2       = ";
CALL showarray(vect3())
END

SUB showarray (vect3())
    PRINT "[";
    svect$ = ""
    FOR n = 1 TO UBOUND(vect3)
        svect$ = svect$ + STR$(vect3(n)) + ","
    NEXT n
    svect$ = LEFT$(svect$, LEN(svect$) - 1)
    PRINT svect$;
    PRINT " ]"
END SUB

QB64

Works with: QBasic

The QBasic solution works without any changes.

True BASIC

Translation of: QBasic
SUB showarray (vect3())
    PRINT "[";
    LET svect$ = ""
    FOR n = 1 TO UBOUND(vect3)
        LET svect$ = svect$ & STR$(vect3(n)) & ", "
    NEXT n
    LET svect$ = (svect$)[1:LEN(svect$)-2]
    PRINT svect$;
    PRINT "]"
END SUB

DIM vect1(2)
LET vect1(1) = 5
LET vect1(2) = 7
DIM vect2(2)
LET vect2(1) = 2
LET vect2(2) = 3
DIM vect3(0)
MAT REDIM vect3(UBOUND(vect1))
FOR n = 1 TO UBOUND(vect1)
    LET vect3(n) = vect1(n)+vect2(n)
NEXT n
PRINT "["; STR$(vect1(1)); ", "; STR$(vect1(2)); "] + ["; STR$(vect2(1)) & ", "; STR$(vect2(2)); "] = ";
CALL showarray (vect3())
FOR n = 1 TO UBOUND(vect1)
    LET vect3(n) = vect1(n)-vect2(n)
NEXT n
PRINT "["; STR$(vect1(1)); ", "; STR$(vect1(2)); "] - ["; STR$(vect2(1)) & ", "; STR$(vect2(2)); "] = ";
CALL showarray (vect3())
FOR n = 1 TO UBOUND(vect1)
    LET vect3(n) = vect1(n)*11
NEXT n
PRINT "["; STR$(vect1(1)); ", "; STR$(vect1(2)); "] *  11    = ";
CALL showarray (vect3())
FOR n = 1 TO UBOUND(vect1)
    LET vect3(n) = vect1(n)/2
NEXT n
PRINT "["; STR$(vect1(1)); ", "; STR$(vect1(2)); "] /  2     = ";
CALL showarray (vect3())
END

Yabasic

Translation of: Ring
dim vect1(2)
vect1(1) = 5 : vect1(2) = 7
dim vect2(2)
vect2(1) = 2 : vect2(2) = 3
dim vect3(arraysize(vect1(),1))

for n = 1 to arraysize(vect1(),1)
    vect3(n) = vect1(n) + vect2(n)
next n
print "[", vect1(1), ", ", vect1(2), "] + [", vect2(1), ", ", vect2(2), "] = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
    vect3(n) = vect1(n) - vect2(n)
next n
print "[", vect1(1), ", ", vect1(2), "] - [", vect2(1), ", ", vect2(2), "] = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
    vect3(n) = vect1(n) * 11
next n
print "[", vect1(1), ", ", vect1(2), "] * ", 11, "     = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
    vect3(n) = vect1(n) / 2
next n
print "[", vect1(1), ", ", vect1(2), "] / ", 2, "      = ";
showarray(vect3)
end

sub showarray(vect3)
    print "[";
    svect$ = ""
    for n = 1 to arraysize(vect3(),1)
        svect$ = svect$ + str$(vect3(n)) + ", "
    next n
    svect$ = left$(svect$, len(svect$) - 2)
    print svect$;
    print "]"
end sub
Output:
[5, 7] + [2, 3] = [7, 10]
[5, 7] - [2, 3] = [3, 4]
[5, 7] *  11    = [55, 77]
[5, 7] /  2     = [2.5, 3.5]

BQN

BQN's arrays are treated like vectors by default, and all arithmetic operations vectorize when given appropriate length arguments. This means that vector functionality is a builtin-in feature of BQN.

   57 + 23
7 10
   57 - 23
3 4   
   57 × 11
55 77
   57 ÷ 2
2.5 3.5

C

j cap or hat j is not part of the ASCII set, thus û ( 150 ) is used in it's place.

#include<stdio.h>
#include<math.h>

#define pi M_PI

typedef struct{
	double x,y;
}vector;

vector initVector(double r,double theta){
	vector c;
	
	c.x = r*cos(theta);
	c.y = r*sin(theta);
	
	return c;
}

vector addVector(vector a,vector b){
	vector c;
	
	c.x = a.x + b.x;
	c.y = a.y + b.y;
	
	return c;
}

vector subtractVector(vector a,vector b){
	vector c;
	
	c.x = a.x - b.x;
	c.y = a.y - b.y;
	
	return c;
}

vector multiplyVector(vector a,double b){
	vector c;
	
	c.x = b*a.x;
	c.y = b*a.y;
	
	return c;
}

vector divideVector(vector a,double b){
	vector c;
	
	c.x = a.x/b;
	c.y = a.y/b;
	
	return c;
}

void printVector(vector a){
	printf("%lf %c %c %lf %c",a.x,140,(a.y>=0)?'+':'-',(a.y>=0)?a.y:fabs(a.y),150);
}

int main()
{
	vector a = initVector(3,pi/6);
	vector b = initVector(5,2*pi/3);
	
	printf("\nVector a : ");
	printVector(a);
	
	printf("\n\nVector b : ");
	printVector(b);
	
	printf("\n\nSum of vectors a and b : ");
	printVector(addVector(a,b));
	
	printf("\n\nDifference of vectors a and b : ");
	printVector(subtractVector(a,b));
	
	printf("\n\nMultiplying vector a by 3 : ");
	printVector(multiplyVector(a,3));
	
	printf("\n\nDividing vector b by 2.5 : ");
	printVector(divideVector(b,2.5));
	
	return 0;
}

Output:


Vector a : 2.598076 î + 1.500000 û

Vector b : -2.500000 î + 4.330127 û

Sum of vectors a and b : 0.098076 î + 5.830127 û

Difference of vectors a and b : 5.098076 î - 2.830127 û

Multiplying vector a by 3 : 7.794229 î + 4.500000 û

Dividing vector b by 2.5 : -1.000000 î + 1.732051 û

C#

using System;
using System.Collections.Generic;
using System.Linq;

namespace RosettaVectors
{
    public class Vector
    {
        public double[] store;
        public Vector(IEnumerable<double> init)
        {
            store = init.ToArray();
        }
        public Vector(double x, double y)
        {
            store = new double[] { x, y };
        }
        static public Vector operator+(Vector v1, Vector v2)
        {
            return new Vector(v1.store.Zip(v2.store, (a, b) => a + b));
        }
        static public Vector operator -(Vector v1, Vector v2)
        {
            return new Vector(v1.store.Zip(v2.store, (a, b) => a - b));
        }
        static public Vector operator *(Vector v1, double scalar)
        {
            return new Vector(v1.store.Select(x => x * scalar));
        }
        static public Vector operator /(Vector v1, double scalar)
        {
            return new Vector(v1.store.Select(x => x / scalar));
        }
        public override string ToString()
        {
            return string.Format("[{0}]", string.Join(",", store));
        }
    }
    class Program
    {
        static void Main(string[] args)
        {
            var v1 = new Vector(5, 7);
            var v2 = new Vector(2, 3);
            Console.WriteLine(v1 + v2);
            Console.WriteLine(v1 - v2);
            Console.WriteLine(v1 * 11);
            Console.WriteLine(v1 / 2);
            // Works with arbitrary size vectors, too.
            var lostVector = new Vector(new double[] { 4, 8, 15, 16, 23, 42 });
            Console.WriteLine(lostVector * 7);
            Console.ReadLine();
        }
    }
}
Output:
[7,10]
[3,4]
[55,77]
[2.5,3.5]
[28,56,105,112,161,294]

C++

#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;

#define PI 3.14159265359

class Vector
{
public:
    Vector(double ix, double iy, char mode)
    {
        if(mode=='a')
        {
            x=ix*cos(iy);
            y=ix*sin(iy);
        }
        else
        {
            x=ix;
            y=iy;
        }
    }
    Vector(double ix,double iy)
    {
        x=ix;
        y=iy;
    }
    Vector operator+(const Vector& first)
    {
        return Vector(x+first.x,y+first.y);
    }
    Vector operator-(Vector first)
    {
        return Vector(x-first.x,y-first.y);
    }
    Vector operator*(double scalar)
    {
        return Vector(x*scalar,y*scalar);
    }
    Vector operator/(double scalar)
    {
        return Vector(x/scalar,y/scalar);
    }
    bool operator==(Vector first)
    {
        return (x==first.x&&y==first.y);
    }
    void v_print()
    {
        cout << "X: " << x << " Y: " << y;
    }
    double x,y;
};

int main()
{
    Vector vec1(0,1);
    Vector vec2(2,2);
    Vector vec3(sqrt(2),45*PI/180,'a');
    vec3.v_print();
    assert(vec1+vec2==Vector(2,3));
    assert(vec1-vec2==Vector(-2,-1));
    assert(vec1*5==Vector(0,5));
    assert(vec2/2==Vector(1,1));
    return 0;
}
Output:
X: 1 Y: 1

CLU

% Parameterized vector class 
vector = cluster [T: type] is make, add, sub, mul, div,
                              get_x, get_y, to_string 
         % The inner type must support basic math
         where T has add: proctype (T,T) returns (T) 
                          signals (overflow, underflow),
                     sub: proctype (T,T) returns (T) 
                          signals (overflow, underflow),
                     mul: proctype (T,T) returns (T) 
                          signals (overflow, underflow),
                     div: proctype (T,T) returns (T) 
                          signals (zero_divide, overflow, underflow)
    rep = struct [x,y: T]
    
    % instantiate
    make = proc (x,y: T) returns (cvt)
        return(rep${x:x, y:y})
    end make
    
    % vector addition and subtraction
    add = proc (a,b: cvt) returns (cvt) 
          signals (overflow, underflow)
        return(rep${x: up(a).x + up(b).x,
                    y: up(a).y + up(b).y})        
        resignal overflow, underflow
    end add
    
    sub = proc (a,b: cvt) returns (cvt) 
          signals (overflow, underflow)
        return(rep${x: up(a).x - up(b).x,
                    y: up(a).y - up(b).y})
        resignal overflow, underflow 
    end sub
    
    % scalar multiplication and division
    mul = proc (a: cvt, b: T) returns (cvt) 
          signals (overflow, underflow)
        return(rep${x: up(a).x*b, y: up(a).y*b})
        resignal overflow, underflow
    end mul
    
    div = proc (a: cvt, b: T) returns (cvt)
          signals (zero_divide, overflow, underflow)
        return(rep${x: up(a).x/b, y: up(a).y/b})
        resignal zero_divide, overflow, underflow
    end div
    
    % accessors 
    get_x = proc (v: cvt) returns (T) return(v.x) end get_x
    get_y = proc (v: cvt) returns (T) return(v.y) end get_y
    
    % we can't just use T$unparse for pretty-printing, since
    % for floats it always prints the exponential form, and
    % that's not very pretty.
    % passing in a conversion function at the moment of
    % generating the string form is the least bad way.
    to_string = proc (v: cvt, f: proctype (T) returns (string)) 
                returns (string)
        return("(" || f(v.x) || ", " || f(v.y) || ")")
    end to_string
end vector
          
% this function formats a real somewhat neatly without needing
% extra parameters
format_real = proc (r: real) returns (string)
    return(f_form(r, 2, 4))
end format_real

start_up = proc ()
    vr = vector[real]  % use real numbers
    po: stream := stream$primary_output()
    
    % vectors 
    a: vr := vr$make(5.0, 7.0)
    b: vr := vr$make(2.0, 3.0)
    
    % do some math
    a_plus_b:   vr := a + b
    a_minus_b:  vr := a - b
    a_times_11: vr := a * 11.0
    a_div_2:    vr := a / 2.0
    
    % show the results
    stream$putl(po, "     a = " || vr$to_string(a, format_real))
    stream$putl(po, "     b = " || vr$to_string(b, format_real))
    stream$putl(po, " a + b = " || vr$to_string(a_plus_b, format_real))
    stream$putl(po, " a - b = " || vr$to_string(a_minus_b, format_real))
    stream$putl(po, "a * 11 = " || vr$to_string(a_times_11, format_real))
    stream$putl(po, " a / 2 = " || vr$to_string(a_div_2, format_real))
end start_up
Output:
     a = (5.0000, 7.0000)
     b = (2.0000, 3.0000)
 a + b = (7.0000, 10.0000)
 a - b = (3.0000, 4.0000)
a * 11 = (55.0000, 77.0000)
 a / 2 = (2.5000, 3.5000)

D

import std.stdio;

void main() {
    writeln(VectorReal(5, 7) + VectorReal(2, 3));
    writeln(VectorReal(5, 7) - VectorReal(2, 3));
    writeln(VectorReal(5, 7) * 11);
    writeln(VectorReal(5, 7) / 2);
}

alias VectorReal = Vector!real;
struct Vector(T) {
    private T x, y;

    this(T x, T y) {
        this.x = x;
        this.y = y;
    }

    auto opBinary(string op : "+")(Vector rhs) const {
        return Vector(x + rhs.x, y + rhs.y);
    }

    auto opBinary(string op : "-")(Vector rhs) const {
        return Vector(x - rhs.x, y - rhs.y);
    }

    auto opBinary(string op : "/")(T denom) const {
        return Vector(x / denom, y / denom);
    }

    auto opBinary(string op : "*")(T mult) const {
        return Vector(x * mult, y * mult);
    }

    void toString(scope void delegate(const(char)[]) sink) const {
        import std.format;
        sink.formattedWrite!"(%s, %s)"(x, y);
    }
}
Output:
(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)

Delphi

program Vector;

{$APPTYPE CONSOLE}

{$R *.res}

uses
  System.Math.Vectors,
  SysUtils;

procedure VectorToString(v: TVector);
begin
  WriteLn(Format('(%.1f + i%.1f)', [v.X, v.Y]));
end;

var
  a, b: TVector;

begin
  a := TVector.Create(5, 7);
  b := TVector.Create(2, 3);
  VectorToString(a + b);
  VectorToString(a - b);
  VectorToString(a * 11);
  VectorToString(a / 2);

  ReadLn;
end

.
Output:
(7,0 + i10,0)
(3,0 + i4,0)
(55,0 + i77,0)
(2,5 + i3,5)

EasyLang

func[] vadd a[] b[] .
   for i to len a[]
      r[] &= a[i] + b[i]
   .
   return r[]
.
func[] vsub a[] b[] .
   for i to len a[]
      r[] &= a[i] - b[i]
   .
   return r[]
.
func[] vmul a[] b .
   for i to len a[]
      r[] &= a[i] * b
   .
   return r[]
.
func[] vdiv a[] b .
   for i to len a[]
      r[] &= a[i] / b
   .
   return r[]
.
print vadd [ 5 7 ] [ 2 3 ]
print vsub [ 5 7 ] [ 2 3 ]
print vmul [ 5 7 ] 11
print vdiv [ 5 7 ] 2
Output:
[ 7 10 ]
[ 3 4 ]
[ 55 77 ]
[ 2.50 3.50 ]

F#

open System

let add (ax, ay) (bx, by) =
    (ax+bx, ay+by)

let sub (ax, ay) (bx, by) =
    (ax-bx, ay-by)

let mul (ax, ay) c =
    (ax*c, ay*c)

let div (ax, ay) c =
    (ax/c, ay/c)

[<EntryPoint>]
let main _ = 
    let a = (5.0, 7.0)
    let b = (2.0, 3.0)

    printfn "%A" (add a b)
    printfn "%A" (sub a b)
    printfn "%A" (mul a 11.0)
    printfn "%A" (div a 2.0)
    0 // return an integer exit code

Factor

It should be noted the math.vectors vocabulary has words for treating any sequence like a vector. For instance:

(scratchpad) USE: math.vectors
(scratchpad) { 1 2 } { 3 4 } v+

--- Data stack:
{ 4 6 }

However, in the spirit of the task, we will implement our own vector data structure. In addition to arithmetic and prettyprinting, we define a convenient literal syntax for making new vectors.

USING: accessors arrays kernel math parser prettyprint
prettyprint.custom sequences ;
IN: rosetta-code.vector

TUPLE: vec { x real read-only } { y real read-only } ;
C: <vec> vec

<PRIVATE

: parts ( vec -- x y ) [ x>> ] [ y>> ] bi ;
: devec ( vec1 vec2 -- x1 y1 x2 y2 ) [ parts ] bi@ rot swap ;

: binary-op ( vec1 vec2 quot -- vec3 )
    [ devec ] dip 2bi@ <vec> ; inline  
    
: scalar-op ( vec1 scalar quot -- vec2 )
    [ parts ] 2dip curry bi@ <vec> ; inline
    
PRIVATE>

SYNTAX: VEC{ \ } [ first2 <vec> ] parse-literal ;
    
: v+ ( vec1 vec2   -- vec3 ) [ + ] binary-op ;
: v- ( vec1 vec2   -- vec3 ) [ - ] binary-op ;
: v* ( vec1 scalar -- vec2 ) [ * ] scalar-op ;
: v/ ( vec1 scalar -- vec2 ) [ / ] scalar-op ;

M: vec pprint-delims drop \ VEC{ \ } ;
M: vec >pprint-sequence parts 2array ;
M: vec pprint* pprint-object ;

We demonstrate the use of vectors in a new file, since parsing words can't be used in the same file where they're defined.

USING: kernel formatting prettyprint rosetta-code.vector
sequences ;
IN: rosetta-code.vector

: demo ( a b quot -- )
    3dup [ unparse ] tri@ rest but-last
    "%16s %16s%3s= " printf call . ; inline

VEC{ -8.4 1.35 } VEC{ 10 11/123 } [ v+ ] demo
VEC{ 5 3 } VEC{ 4 2 } [ v- ] demo
VEC{ 4 -8 } 2 [ v* ] demo
VEC{ 5 7 } 2 [ v/ ] demo

! You can still make a vector without the literal syntax of
! course.

5 2 <vec> 1.3 [ v* ] demo
Output:
VEC{ -8.4 1.35 } VEC{ 10 11/123 } v+ = VEC{ 1.6 1.439430894308943 }
      VEC{ 5 3 }       VEC{ 4 2 } v- = VEC{ 1 1 }
     VEC{ 4 -8 }                2 v* = VEC{ 8 -16 }
      VEC{ 5 7 }                2 v/ = VEC{ 2+1/2 3+1/2 }
      VEC{ 5 2 }              1.3 v* = VEC{ 6.5 2.6 }


Forth

Works with: gforth version 0.7.3

This is integer only implementation. A vector is two numbers on the stack. "pretty print" is just printing the two numbers in the desired order.

: v. swap . . ;
: v* swap over * >r * r> ;
: v/ swap over / >r / r> ;
: v+ >r swap >r + r> r> + ;
: v- >r swap >r - r> r> - ;
Output:

As Forth is REPL, to add (1 , 2) to (3 , 4), just type 1 2 3 4 v+ v. (followed by [Enter]):

1 2 3 4 v+ v. 4 6  ok

To substract (1 , 4) from (3 , 5), just type 3 5 1 4 v- v. (followed by [Enter]):

3 5 1 4 v- v. 2 1  ok

To multiply (2 , 4) by 3, just type 2 4 3 v* v. (followed by [Enter]):

2 4 3 v* v. 6 12  ok

To divide (12 , 33) by 3, just type 12 33 3 v/ v. (followed by [Enter]):

12 33 3 v/ v. 4 11  ok


Fortran

MODULE ROSETTA_VECTOR
    IMPLICIT NONE

    TYPE VECTOR
        REAL :: X, Y
    END TYPE VECTOR


    INTERFACE OPERATOR(+)
       MODULE PROCEDURE VECTOR_ADD
    END INTERFACE

    INTERFACE OPERATOR(-)
       MODULE PROCEDURE VECTOR_SUB
    END INTERFACE

    INTERFACE OPERATOR(/)
       MODULE PROCEDURE VECTOR_DIV
    END INTERFACE

    INTERFACE OPERATOR(*)
       MODULE PROCEDURE VECTOR_MULT
    END INTERFACE

    CONTAINS

    FUNCTION VECTOR_ADD(VECTOR_1, VECTOR_2)
        TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2
        TYPE(VECTOR) :: VECTOR_ADD
        VECTOR_ADD%X = VECTOR_1%X+VECTOR_2%X
        VECTOR_ADD%Y = VECTOR_1%Y+VECTOR_2%Y
    END FUNCTION VECTOR_ADD

    FUNCTION VECTOR_SUB(VECTOR_1, VECTOR_2)
        TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2
        TYPE(VECTOR) :: VECTOR_SUB
        VECTOR_SUB%X = VECTOR_1%X-VECTOR_2%X
        VECTOR_SUB%Y = VECTOR_1%Y-VECTOR_2%Y
    END FUNCTION VECTOR_SUB

    FUNCTION VECTOR_DIV(VEC, SCALAR)
        TYPE(VECTOR), INTENT(IN) :: VEC
        REAL, INTENT(IN) :: SCALAR
        TYPE(VECTOR) :: VECTOR_DIV
        VECTOR_DIV%X = VEC%X/SCALAR
        VECTOR_DIV%Y = VEC%Y/SCALAR
    END FUNCTION VECTOR_DIV

    FUNCTION VECTOR_MULT(VEC, SCALAR)
        TYPE(VECTOR), INTENT(IN) :: VEC
        REAL, INTENT(IN) :: SCALAR
        TYPE(VECTOR) :: VECTOR_MULT
        VECTOR_MULT%X = VEC%X*SCALAR
        VECTOR_MULT%Y = VEC%Y*SCALAR
    END FUNCTION VECTOR_MULT

    FUNCTION FROM_RTHETA(R, THETA)
        REAL :: R, THETA
        TYPE(VECTOR) :: FROM_RTHETA
        FROM_RTHETA%X = R*SIN(THETA)
        FROM_RTHETA%Y = R*COS(THETA)
    END FUNCTION FROM_RTHETA

    FUNCTION FROM_XY(X, Y)
        REAL :: X, Y
        TYPE(VECTOR) :: FROM_XY
        FROM_XY%X = X
        FROM_XY%Y = Y
    END FUNCTION FROM_XY

    FUNCTION PRETTY_PRINT(VEC)
        TYPE(VECTOR), INTENT(IN) :: VEC
        CHARACTER(LEN=100) PRETTY_PRINT
        WRITE(PRETTY_PRINT,"(A, F0.5, A, F0.5, A)") "[", VEC%X, ", ", VEC%Y, "]"
    END FUNCTION PRETTY_PRINT
END MODULE ROSETTA_VECTOR

PROGRAM VECTOR_DEMO
    USE ROSETTA_VECTOR
    IMPLICIT NONE

    TYPE(VECTOR) :: VECTOR_1, VECTOR_2
    REAL, PARAMETER :: PI = 4*ATAN(1.0)
    REAL :: SCALAR

    SCALAR = 2.0

    VECTOR_1 = FROM_XY(2.0, 3.0)
    VECTOR_2 = FROM_RTHETA(2.0, PI/6.0)

    WRITE(*,*) "VECTOR_1 (X: 2.0, Y: 3.0)      : ", PRETTY_PRINT(VECTOR_1)
    WRITE(*,*) "VECTOR_2 (R: 2.0, THETA: PI/6) : ", PRETTY_PRINT(VECTOR_2)
    WRITE(*,*) NEW_LINE('A')
    WRITE(*,*) "VECTOR_1  +  VECTOR_2          = ", PRETTY_PRINT(VECTOR_1+VECTOR_2)
    WRITE(*,*) "VECTOR_1  -  VECTOR_2          = ", PRETTY_PRINT(VECTOR_1-VECTOR_2)
    WRITE(*,*) "VECTOR_1  /  2.0               = ", PRETTY_PRINT(VECTOR_1/SCALAR)
    WRITE(*,*) "VECTOR_1  *  2.0               = ", PRETTY_PRINT(VECTOR_1*SCALAR)
END PROGRAM VECTOR_DEMO
Output:
 VECTOR_1 (X: 2.0, Y: 3.0)      : [2.00000, 3.00000]                                                                                  
 VECTOR_2 (R: 2.0, THETA: PI/6) : [1.00000, 1.73205]                                                                                  
 

 VECTOR_1  +  VECTOR_2          = [3.00000, 4.73205]                                                                                  
 VECTOR_1  -  VECTOR_2          = [1.00000, 1.26795]                                                                                  
 VECTOR_1  /  2.0               = [1.00000, 1.50000]                                                                                  
 VECTOR_1  *  2.0               = [4.00000, 6.00000] 

FreeBASIC

' FB 1.05.0 Win64

Type Vector
  As Double x, y
  Declare Operator Cast() As String
End Type

Operator Vector.Cast() As String
  Return "[" + Str(x) + ", " + Str(y) + "]"
End Operator

Operator + (vec1 As Vector, vec2 As Vector) As Vector
  Return Type<Vector>(vec1.x + vec2.x, vec1.y + vec2.y) 
End Operator

Operator - (vec1 As Vector, vec2 As Vector) As Vector
  Return Type<Vector>(vec1.x - vec2.x, vec1.y - vec2.y) 
End Operator

Operator * (vec As Vector, scalar As Double) As Vector
  Return Type<Vector>(vec.x * scalar, vec.y * scalar) 
End Operator

Operator / (vec As Vector, scalar As Double) As Vector
  ' No need to check for division by zero as we're using Doubles
  Return Type<Vector>(vec.x / scalar, vec.y / scalar) 
End Operator
 
Dim v1 As Vector = (5, 7)
Dim v2 As Vector = (2, 3)
Print v1; " +  "; v2; " = "; v1 + v2
Print v1; " -  "; v2; " = "; v1 - v2
Print v1; " * "; 11; "     = "; v1 * 11.0
Print v1; " / ";  2; "      = "; v1 / 2.0
Print
Print "Press any key to quit"
Sleep
Output:
[5, 7] +  [2, 3] = [7, 10]
[5, 7] -  [2, 3] = [3, 4]
[5, 7] *  11     = [55, 77]
[5, 7] /  2      = [2.5, 3.5]

? "------------------------------------------------"

'compare with:

'----------------------------------------------------------------------------------------------------------------

dim shared as integer v01(2),v02(2),v03(2),v05(2)

dim shared as single v04(2)

' sub v01_(x as integer,y as integer,z as integer):v01(0)=x:v01(1)=y:v01(2)=z:end sub

sub v02_(x as integer,y as integer,z as integer):v02(0)=x:v02(1)=y:v02(2)=z:end sub

sub v03_(x as integer,y as integer,z as integer):v03(0)=x:v03(1)=y:v03(2)=z:end sub

sub v04_(x as single,y as single,z as single):v04(0)=x:v04(1)=y:v04(2)=z:end sub

sub p(v() as integer):? "[";v(0);"/";v(1);"/";v(2);"]":end sub

sub ps(v() as single):? "[";v(0);"/";v(1);"/";v(2);"]":end sub

' v01_(5,7,0):?"v01=";:p(v01())

v02_(2,3,0):?"v02=";:p(v02())

v03_(v01(0)+v02(0),v01(1)+v02(1),v01(2)+v02(2)) :?"v03=v01+v02=";:p(v03())

v03_(v01(0)-v02(0),v01(1)-v02(1),v01(2)-v02(2)) :?"v03=v01-v02=";:p(v03())

v03_(v01(0)*11,v01(1)*11,v01(2)*11)  :?"v03=v01*11=" ;:p(v03()) '? integer

v04_(v01(0)/2,v01(1)/2,v01(2)/2)  :?"v04=v01/2="  ;:ps(v04()) '? single

? "------------------------------------------------"

do:loop

'---------------------------------------------------------------------------------------------------------------- '

Go

package main

import "fmt"

type vector []float64

func (v vector) add(v2 vector) vector {
    r := make([]float64, len(v))
    for i, vi := range v {
        r[i] = vi + v2[i]
    }
    return r
}

func (v vector) sub(v2 vector) vector {
    r := make([]float64, len(v))
    for i, vi := range v {
        r[i] = vi - v2[i]
    }
    return r
}

func (v vector) scalarMul(s float64) vector {
    r := make([]float64, len(v))
    for i, vi := range v {
        r[i] = vi * s
    }
    return r
}

func (v vector) scalarDiv(s float64) vector {
    r := make([]float64, len(v))
    for i, vi := range v {
        r[i] = vi / s
    }
    return r
}

func main() {
    v1 := vector{5, 7}
    v2 := vector{2, 3}
    fmt.Println(v1.add(v2))
    fmt.Println(v1.sub(v2))
    fmt.Println(v1.scalarMul(11))
    fmt.Println(v1.scalarDiv(2))
}
Output:
[7 10]
[3 4]
[55 77]
[2.5 3.5]

Groovy

Euclidean vector spaces may be expressed in any (positive) number of dimensions. So why limit it to just 2?

Solution:

import groovy.transform.EqualsAndHashCode

@EqualsAndHashCode
class Vector {
    private List<Number> elements
    Vector(List<Number> e ) {
        if (!e) throw new IllegalArgumentException("A Vector must have at least one element.")
        if (!e.every { it instanceof Number }) throw new IllegalArgumentException("Every element must be a number.")
        elements = [] + e
    }
    Vector(Number... e) { this(e as List) }

    def order() { elements.size() }
    def norm2() { elements.sum { it ** 2 } ** 0.5 }

    def plus(Vector that) {
        if (this.order() != that.order()) throw new IllegalArgumentException("Vectors must be conformable for addition.")
        [this.elements,that.elements].transpose()*.sum() as Vector
    }
    def minus(Vector that) { this + (-that) }
    def multiply(Number that) { this.elements.collect { it * that } as Vector }
    def div(Number that) { this * (1/that) }
    def negative() { this * -1 }

    String toString() { "(${elements.join(',')})" }
}

class VectorCategory {
   static Vector plus (Number a, Vector b) { b + a }
   static Vector minus (Number a, Vector b) { -b + a }
   static Vector multiply (Number a, Vector b) { b * a }
}


Test:

Number.metaClass.mixin VectorCategory

def a = [1, 5] as Vector
def b = [6, -2] as Vector
def x = 8
println "a = $a    b = $b    x = $x"
assert a + b == [7, 3] as Vector
println "a + b == $a + $b == ${a+b}"
assert a - b == [-5, 7] as Vector
println "a - b == $a - $b == ${a-b}"
assert a * x == [8, 40] as Vector
println "a * x == $a * $x == ${a*x}"
assert x * a == [8, 40] as Vector
println "x * a == $x * $a == ${x*a}"
assert b / x == [3/4, -1/4] as Vector
println "b / x == $b / $x == ${b/x}"

Output:

a = (1,5)    b = (6,-2)    x = 8
a + b == (1,5) + (6,-2) == (7,3)
a - b == (1,5) - (6,-2) == (-5,7)
a * x == (1,5) * 8 == (8,40)
x * a == 8 * (1,5) == (8,40)
b / x == (6,-2) / 8 == (0.750,-0.250)

Haskell

add (u,v) (x,y)      = (u+x,v+y)
minus (u,v) (x,y)    = (u-x,v-y)
multByScalar k (x,y) = (k*x,k*y)
divByScalar (x,y) k  = (x/k,y/k)

main = do
  let vecA = (3.0,8.0) -- cartersian coordinates
  let (r,theta) = (3,pi/12) :: (Double,Double)
  let vecB = (r*(cos theta),r*(sin theta)) -- from polar coordinates to cartesian coordinates
  putStrLn $ "vecA = " ++ (show vecA)
  putStrLn $ "vecB = " ++ (show vecB)
  putStrLn $ "vecA + vecB = " ++ (show.add vecA $ vecB)
  putStrLn $ "vecA - vecB = " ++ (show.minus vecA $ vecB)
  putStrLn $ "2 * vecB = " ++ (show.multByScalar 2 $ vecB)
  putStrLn $ "vecA / 3 = " ++ (show.divByScalar vecA $ 3)
Output:
vecA = (3.0,8.0)
vecB = (2.897777478867205,0.7764571353075622)
vecA + vecB = (5.897777478867205,8.776457135307563)
vecA - vecB = (0.10222252113279495,7.223542864692438)
2 * vecB = (5.79555495773441,1.5529142706151244)
vecA / 3 = (1.0,2.6666666666666665)

J

These are primitive (built in) operations in J:

   5 7+2 3
7 10
   5 7-2 3
3 4   
   5 7*11
55 77
   5 7%2
2.5 3.5

A few things here might be worth noting:

J treats a sequences of space separated numbers as a single word, this is analogous to how languages which support a "string" data type support treating strings with spaces in them as single words. Put differently: '5 7' is a sequence of three characters but 5 7 (without the quotes) is a sequence of two numbers.

J uses the percent sign to represent division. This is a visual pun with the "division sign" or "obelus" which has been used to represent the division operation for hundreds of years.

In J, a single number (or single character) is special. It's not a treated as a sequence except in contexts where you explicitly declare it to be one (for example, by prefixing it with a comma). (If it were treated as a sequence the above 5 7*11 and 5 7%2 operations would have been errors, because of the vector length mis-match.)

It's perhaps also worth noting that J allows you to specify complex numbers using polar coordinates, and complex numbers can be converted to vectors using the special token (+.) - for example:

   2ad45
1.41421j1.41421
   +. 2ad45
1.41421 1.41421
   2ar0.785398
1.41421j1.41421
   +. 2ar0.785398
1.41421 1.41421

In the construction of these numeric constants, ad is followed by an angle in degrees while ar is followed by an angle in radians. This practice of embedding letters in a numeric constant is analogous to the use of exponential notation when describing some floating point numbers.

Java

import java.util.Locale;

public class Test {

    public static void main(String[] args) {
        System.out.println(new Vec2(5, 7).add(new Vec2(2, 3)));
        System.out.println(new Vec2(5, 7).sub(new Vec2(2, 3)));
        System.out.println(new Vec2(5, 7).mult(11));
        System.out.println(new Vec2(5, 7).div(2));
    }
}

class Vec2 {
    final double x, y;

    Vec2(double x, double y) {
        this.x = x;
        this.y = y;
    }

    Vec2 add(Vec2 v) {
        return new Vec2(x + v.x, y + v.y);
    }

    Vec2 sub(Vec2 v) {
        return new Vec2(x - v.x, y - v.y);
    }

    Vec2 div(double val) {
        return new Vec2(x / val, y / val);
    }

    Vec2 mult(double val) {
        return new Vec2(x * val, y * val);
    }

    @Override
    public String toString() {
        return String.format(Locale.US, "[%s, %s]", x, y);
    }
}
[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.5, 3.5]

jq

Works with: jq version 1.4

In the following, the vector [x,y] is represented by the JSON array [x,y].

For generality, the pointwise operations (multiply, divide, negate) will work with conformal arrays of any dimension, and sum/0 accepts any number of same-dimensional vectors.

def polar(r; angle):
  [ r*(angle|cos), r*(angle|sin) ];

# If your jq allows multi-arity functions, you may wish to uncomment the following line:
# def polar(r): [r, 0];

def polar2vector: polar(.[0]; .[1]);

def vector(x; y):
  if (x|type) == "number" and (y|type) == "number" then [x,y]
  else error("TypeError")
  end;

# Input: an array of same-dimensional vectors of any dimension to be added
def sum:
  def sum2: .[0] as $a | .[1] as $b | reduce range(0;$a|length) as $i ($a; .[$i] += $b[$i]);
  if length <= 1 then .
  else reduce .[1:][] as $v (.[0] ; [., $v]|sum2)
  end;
 
def multiply(scalar): [ .[] * scalar ];

def negate: multiply(-1);

def minus(v): [., (v|negate)] | sum;

def divide(scalar):
  if scalar == 0 then error("division of a vector by 0 is not supported")
  else [ .[] / scalar ]
  end;
 
def r: (.[0] | .*.) + (.[1] | .*.) | sqrt;

def atan2:
  def pi: 1 | atan * 4;
  def sign: if . < 0 then -1 elif . > 0 then 1 else 0 end;
  .[0] as $x | .[1] as $y
  | if $x == 0 then $y | sign * pi / 2
    else  ($y / $x) | if $x > 0 then atan elif . > 0 then atan - pi else atan + pi end
    end;

def angle: atan2;

def topolar: [r, angle];

Examples

def examples:
  def pi: 1 | atan * 4;

  [1,1] as $v
  | [3,4] as $w
  | polar(1; pi/2) as $z
  | polar(-2; pi/4) as $z2
  | "v     is \($v)",
    "    w is \($w)",
    "v + w is \([$v, $w] | sum)",
    "v - w is \( $v |minus($w))",
    "  - v is \( $v|negate )",
    "w * 5 is \($w | multiply(5))",
    "w / 2 is \($w | divide(2))",
    "v|topolar is \($v|topolar)",
    "w|topolar is \($w|topolar)",
    "z = polar(1; pi/2) is \($z)", 
    "z|topolar is \($z|topolar)",
    "z2 = polar(-2; pi/4) is \($z2)",
    "z2|topolar is \($z2|topolar)",
    "z2|topolar|polar is \($z2|topolar|polar2vector)" ;

examples
Output:
$ jq -r -n -f vector.jq
v     is [1,1]
    w is [3,4]
v + w is [4,5]
v - w is [-2,-3]
  - v is [-1,-1]
w * 5 is [15,20]
w / 2 is [1.5,2]
v|topolar is [1.4142135623730951,0.7853981633974483]
w|topolar is [5,0.9272952180016122]
z = polar(1; pi/2) is [6.123233995736766e-17,1]
z|topolar is [1,1.5707963267948966]
z2 = polar(-2; pi/4) is [-1.4142135623730951,-1.414213562373095]
z2|topolar is [2,-2.356194490192345]
z2|topolar|polar is [-1.414213562373095,-1.4142135623730951]

Julia

Works with: Julia version 0.6

The parameters indicate the dimension of the spatial vector. So it would be easy to implement a higher-degree-space vector.

The module:

module SpatialVectors

export SpatialVector

struct SpatialVector{N, T}
    coord::NTuple{N, T}
end

SpatialVector(s::NTuple{N,T}, e::NTuple{N,T}) where {N,T} =
    SpatialVector{N, T}(e .- s)
function SpatialVector(::T, val::T) where T
    θ = atan()
    x = val * cos(θ)
    y = val * sin(θ)
    return SpatialVector((x, y))
end

angularcoef(v::SpatialVector{2, T}) where T = v.coord[2] / v.coord[1]
Base.norm(v::SpatialVector) = sqrt(sum(x -> x^2, v.coord))

function Base.show(io::IO, v::SpatialVector{2, T}) where T
     = angularcoef(v)
    val = norm(v)
    println(io, """2-dim spatial vector
        - Angular coef ∠: $() (θ = $(rad2deg(atan()))°)
        - Magnitude: $(val)
        - X coord: $(v.coord[1])
        - Y coord: $(v.coord[2])""")
end

Base.:-(v::SpatialVector) = SpatialVector(.- v.coord)

for op in (:+, :-)
    @eval begin
        Base.$op(a::SpatialVector{N, T}, b::SpatialVector{N, U}) where {N, T, U} =
            SpatialVector{N, promote_type(T, U)}(broadcast($op, a.coord, b.coord))
    end
end

for op in (:*, :/)
    @eval begin
        Base.$op(n::T, v::SpatialVector{N, U}) where {N, T, U} =
            SpatialVector{N, promote_type(T, U)}(broadcast($op, n, v.coord))
        Base.$op(v::SpatialVector, n::Number) = $op(n, v)
    end
end

end  # module Vectors

Kotlin

// version 1.1.2

class Vector2D(val x: Double, val y: Double) {
    operator fun plus(v: Vector2D) = Vector2D(x + v.x, y + v.y)

    operator fun minus(v: Vector2D) = Vector2D(x - v.x, y - v.y)

    operator fun times(s: Double) = Vector2D(s * x, s * y)

    operator fun div(s: Double) = Vector2D(x / s, y / s)

    override fun toString() = "($x, $y)"
}

operator fun Double.times(v: Vector2D) = v * this

fun main(args: Array<String>) {
    val v1 = Vector2D(5.0, 7.0)
    val v2 = Vector2D(2.0, 3.0)
    println("v1 = $v1")
    println("v2 = $v2")
    println()
    println("v1 + v2 = ${v1 + v2}")
    println("v1 - v2 = ${v1 - v2}")
    println("v1 * 11 = ${v1 * 11.0}") 
    println("11 * v2 = ${11.0 * v2}")
    println("v1 / 2  = ${v1 / 2.0}")
}
Output:
v1 = (5.0, 7.0)
v2 = (2.0, 3.0)

v1 + v2 = (7.0, 10.0)
v1 - v2 = (3.0, 4.0)
v1 * 11 = (55.0, 77.0)
11 * v2 = (22.0, 33.0)
v1 / 2  = (2.5, 3.5)

Lang

struct &Vector {
	$x
	$y
}

fp.initVector = ($x, $y) -> {
	return &Vector(fn.double($x), fn.double($y))
}

fp.addVector = ($a, $b) -> {
	return parser.op(&Vector($a::$x + $b::$x, $a::$y + $b::$y))
}

fp.subVector = ($a, $b) -> {
	return parser.op(&Vector($a::$x - $b::$x, $a::$y - $b::$y))
}

fp.mulVector = ($vec, $scalar) -> {
	return parser.op(&Vector($vec::$x * $scalar, $vec::$y * $scalar))
}

fp.divVector = ($vec, $scalar) -> {
	return parser.op(&Vector($vec::$x / $scalar, $vec::$y / $scalar))
}

fp.printVector = ($vec) -> {
	fn.println([parser.op($vec::$x), parser.op($vec::$y)])
}

$vec1 = fp.initVector(5, 7)
$vec2 = fp.initVector(2, 3)

fp.printVector($vec1)
fp.printVector($vec2)
fn.println()

fp.printVector(fp.addVector($vec1, $vec2))
fp.printVector(fp.subVector($vec1, $vec2))
fp.printVector(fp.mulVector($vec1, 11))
fp.printVector(fp.divVector($vec1, 2))
Output:
[5.0, 7.0]
[2.0, 3.0]

[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.5, 3.5]

Lua

vector = {mt = {}}

function vector.new (x, y)
    local new = {x = x or 0, y = y or 0}
    setmetatable(new, vector.mt)
    return new
end

function vector.mt.__add (v1, v2)
    return vector.new(v1.x + v2.x, v1.y + v2.y)
end

function vector.mt.__sub (v1, v2)
    return vector.new(v1.x - v2.x, v1.y - v2.y) 
end

function vector.mt.__mul (v, s)
    return vector.new(v.x * s, v.y * s)
end

function vector.mt.__div (v, s)
    return vector.new(v.x / s, v.y / s)
end

function vector.print (vec)    
    print("(" .. vec.x .. ", " .. vec.y .. ")")
end

local a, b = vector.new(5, 7), vector.new(2, 3)
vector.print(a + b)
vector.print(a - b)
vector.print(a * 11)
vector.print(a / 2)
Output:
(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)

M2000 Interpreter

Adapted from C

class vector {
private:
	double x, y
public:
	class literal {
		double v
	class:
		module Literal(.v) {
		}
	}
	operator "+" (b as vector){
		.x+=b.x
		.y+=b.y
	}
	operator "-" (b as vector){
		.x-=b.x
		.y-=b.y
	}
	operator "*" (b as literal){
		.x*=b.v
		.y*=b.v
	}
	operator "/" (b as literal){
		.x/=b.v
		.y/=b.v
	}
	property printVector {
		value {
			link parent x, y to x, y
			value=format$(.fm$, str$(round(x,.r), .Lcid),if$(y>=0->"+", "-"),str$(abs(round(y,.r)),.lcid))
		}
	}=""  // make type string
	// added members to printVector (is a group type)
	group printVector {
		integer Lcid=1033
		fm$="{0} î {1}{2} û"
		r=6
	}
class:
	module vector(r as double, theta as double, Lcid=1033) {
		def deg(rad)=rad*180@/pi
		.printVector.Lcid<=Lcid
		.x<=r*cos(deg(theta))
		.y<=r*sin(deg(theta))		
	}	
}
document s$
a=vector(3,pi/6)
s$="Vector a : "+a.printVector+{
}
b=vector(5,2*pi/3)
s$="Vector b : "+b.printVector+{
}
sum_a_b=a+b
s$="Sum of vectors a and b : "+sum_a_b.printVector+{
}
diff_a_b=a-b
s$="Difference of vectors a and b : "+diff_a_b.printVector+{
}
mul_a_3=a*a.literal(3)
s$="Multiplying vector a by 3 : "+mul_a_3.printVector+{
}
div_b_2.5=b/b.literal(2.5)
s$="Dividing vector b by 2.5 : "+div_b_2.5.printVector+{
}
report s$
clipboard s$
Output:
Vector a : 2.598076 î +1.5 û
Vector b : -2.5 î +4.330127 û
Sum of vectors a and b : 0.098076 î +5.830127 û
Difference of vectors a and b : 5.098076 î -2.830127 û
Multiplying vector a by 3 : 7.794229 î +4.5 û
Dividing vector b by 2.5 : -1 î +1.732051 û


Maple

Vector class:

module MyVector()
   option object;
   local value := Vector();

   export ModuleApply::static := proc( )
       Object( MyVector, _passed );
   end proc;

   export ModuleCopy::static := proc( mv::MyVector, proto::MyVector, v::Vector, $ )
   	 mv:-value := v;
   end proc;
   
   export ModulePrint::static := proc(mv::MyVector, $ )
       mv:-value;
   end proc;
   

# operations:
   export `+`::static := proc( v1::MyVector, v2::MyVector )
     MyVector( v1:-value + v2:-value );
   end proc;

   export `*`::static := proc( v::MyVector, scalar_val::numeric)
     MyVector( v:-value * scalar_val);
   end proc;


end module:
a := MyVector(<3|4>):
b := MyVector(<5|4>):

a + b;
a - b;
a * 5;
a / 5;
Output:
[8, 8]
[-2, 0]
[15, 20]
[3/5, 4/5]

Mathematica / Wolfram Language

ClearAll[vector,PrintVector]
vector[{r_,\[Theta]_}]:=vector@@AngleVector[{r,\[Theta]}]
vector[x_,y_]+vector[w_,z_]^:=vector[x+w,y+z]
a_ vector[x_,y_]^:=vector[a x,a y]
vector[x_,y_]-vector[w_,z_]^:=vector[x-w,y-z]
PrintVector[vector[x_,y_]]:=Print["vector has first component: ",x," And second component: ",y]

vector[1,2]+vector[3,4]
vector[1,2]-vector[3,4]
12vector[1,2]
vector[1,2]/3
PrintVector@vector[{Sqrt[2],45Degree}]
Output:
vector[4, 6]
vector[-2, -2]
vector[12, 24]
vector[1/3, 2/3]
SequenceForm["vector has first component: ", 1, " And second component: ", 1]

MiniScript

vplus = function(v1, v2)
    return [v1[0]+v2[0],v1[1]+v2[1]]
end function

vminus = function (v1, v2)
    return [v1[0]-v2[0],v1[1]-v2[1]]
end function

vmult = function(v1, scalar)
    return [v1[0]*scalar, v1[1]*scalar]
end function

vdiv = function(v1, scalar)
    return [v1[0]/scalar, v1[1]/scalar]
end function

vector1 = [2,3]
vector2 = [4,5]

print vplus(vector1,vector2)
print vminus(vector2, vector1)
print vmult(vector1, 3)
print vdiv(vector2, 2)
Output:
[6, 8]
[2, 2]
[6, 9]
[2, 2.5]

Modula-2

MODULE Vector;
FROM FormatString IMPORT FormatString;
FROM RealStr IMPORT RealToStr;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

TYPE Vector =
    RECORD
        x,y : REAL;
    END;

PROCEDURE Add(a,b : Vector) : Vector;
BEGIN
    RETURN Vector{a.x+b.x, a.y+b.y}
END Add;

PROCEDURE Sub(a,b : Vector) : Vector;
BEGIN
    RETURN Vector{a.x-b.x, a.y-b.y}
END Sub;

PROCEDURE Mul(v : Vector; r : REAL) : Vector;
BEGIN
    RETURN Vector{a.x*r, a.y*r}
END Mul;

PROCEDURE Div(v : Vector; r : REAL) : Vector;
BEGIN
    RETURN Vector{a.x/r, a.y/r}
END Div;

PROCEDURE Print(v : Vector);
VAR buf : ARRAY[0..64] OF CHAR;
BEGIN
    WriteString("<");

    RealToStr(v.x, buf);
    WriteString(buf);
    WriteString(", ");

    RealToStr(v.y, buf);
    WriteString(buf);
    WriteString(">")
END Print;

VAR a,b : Vector;
BEGIN
    a := Vector{5.0, 7.0};
    b := Vector{2.0, 3.0};

    Print(Add(a, b));
    WriteLn;
    Print(Sub(a, b));
    WriteLn;
    Print(Mul(a, 11.0));
    WriteLn;
    Print(Div(a, 2.0));
    WriteLn;

    ReadChar
END Vector.

Nanoquery

Translation of: Java
class Vector
        declare x
        declare y

        def Vector(x, y)
                this.x = float(x)
                this.y = float(y)
        end

        def operator+(other)
                return new(Vector, this.x + other.x, this.y + other.y)
        end

        def operator-(other)
                return new(Vector, this.x - other.x, this.y - other.y)
        end

        def operator/(val)
                return new(Vector, this.x / val, this.y / val)
        end

        def operator*(val)
                return new(Vector, this.x * val, this.y * val)
        end

        def toString()
                return format("[%s, %s]", this.x, this.y)
        end
end

println new(Vector, 5, 7) + new(Vector, 2, 3)
println new(Vector, 5, 7) - new(Vector, 2, 3)
println new(Vector, 5, 7) * 11
println new(Vector, 5, 7) / 2
Output:
[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.5, 3.5]

Nim

import strformat

type Vec2[T: SomeNumber] = tuple[x, y: T]

proc initVec2[T](x, y: T): Vec2[T] = (x, y)

func`+`[T](a, b: Vec2[T]): Vec2[T] = (a.x + b.x, a.y + b.y)

func `-`[T](a, b: Vec2[T]): Vec2[T] = (a.x - b.x, a.y - b.y)

func `*`[T](a: Vec2[T]; m: T): Vec2[T] = (a.x * m, a.y * m)

func `/`[T](a: Vec2[T]; d: T): Vec2[T] =
  if d == 0:
    raise newException(DivByZeroDefect, "division of vector by 0")
  when T is SomeInteger:
    (a.x div d, a.y div d)
  else:
    (a.x / d, a.y / d)

func `$`[T](a: Vec2[T]): string =
  &"({a.x}, {a.y})"

# Three ways to initialize a vector.
let v1 = initVec2(2, 3)
let v2: Vec2[int] = (-1, 2)
let v3 = (x: 4, y: -2)

echo &"{v1} + {v2} = {v1 + v2}"
echo &"{v3} - {v2} = {v3 - v2}"

# Float vectors.
let v4 = initVec2(2.0, 3.0)
let v5 = (x: 3.0, y: 2.0)

echo &"{v4} * 2 = {v4 * 2}"
echo &"{v3} / 2 = {v3 / 2}"   # Int division.
echo &"{v5} / 2 = {v5 / 2}"   # Float division.
Output:
(2, 3) + (-1, 2) = (1, 5)
(4, -2) - (-1, 2) = (5, -4)
(2.0, 3.0) * 2 = (4.0, 6.0)
(4, -2) / 2 = (2, -1)
(3.0, 2.0) / 2 = (1.5, 1.0)

Oberon-2

Translation of: Modula-2
MODULE Vector;

  IMPORT Out;
    
  TYPE
    Vector = POINTER TO VectorDesc;
    VectorDesc = RECORD
      x,y:REAL;
    END;

  VAR
    a,b:Vector;
    
  PROCEDURE Add*(a,b:Vector):Vector;
    VAR res:Vector;
  BEGIN
    NEW(res);
    res.x := a.x+b.x;
    res.y := a.y+b.y;
    RETURN res;
  END Add;

  PROCEDURE Sub*(a,b:Vector):Vector;
    VAR res:Vector;
  BEGIN
    NEW(res);
    res.x := a.x-b.x;
    res.y := a.y-b.y;
    RETURN res;
  END Sub;

  PROCEDURE Mul*(v:Vector;r:REAL):Vector;
    VAR res:Vector;
  BEGIN
    NEW(res);
    res.x := v.x*r;
    res.y := v.y*r;
    RETURN res;
  END Mul;

  PROCEDURE Div*(v:Vector;r:REAL):Vector;
    VAR res:Vector;
  BEGIN
    NEW(res);
    res.x := v.x/r;
    res.y := v.y/r;
    RETURN res;
  END Div;

  PROCEDURE Print*(op:ARRAY OF CHAR;v:Vector);
  BEGIN
    Out.String(op);
    Out.String("(");
    Out.Real(v.x,0);
    Out.String(", ");
    Out.Real(v.y,0);
    Out.String(")");
  END Print;

BEGIN
  NEW(a); NEW(b);
  a.x := 5.0; a.y := 7.0;
  b.x := 2.0; b.y := 3.0;
  Print("Add: ",Add(a,b));
  Out.Ln;
  Print("Sub: ",Sub(a,b));
  Out.Ln;
  Print("Mul: ",Mul(a,11.0));
  Out.Ln;
  Print("Div: ",Div(a,2.0));
  Out.Ln
END Vector.
Output:
Add: (7.0E+00, 1.0E+01)
Sub: (3.0E+00, 4.0E+00)
Mul: (5.5E+01, 7.7E+01)
Div: (2.5E+00, 3.5E+00)

Objeck

class Test {
  function : Main(args : String[]) ~ Nil {
    Vec2->New(5, 7)->Add(Vec2->New(2, 3))->ToString()->PrintLine();
    Vec2->New(5, 7)->Sub(Vec2->New(2, 3))->ToString()->PrintLine();
    Vec2->New(5, 7)->Mult(11)->ToString()->PrintLine();
    Vec2->New(5, 7)->Div(2)->ToString()->PrintLine();
  }
}

class Vec2 {
  @x : Float;
  @y : Float;
   
  New(x : Float, y : Float) {
    @x := x;
    @y := y;
  }

  method : GetX() ~ Float {
    return @x;
  }
  
  method : GetY() ~ Float {
    return @y;
  }

  method : public : Add(v : Vec2) ~ Vec2 {
    return Vec2->New(@x + v->GetX(), @y + v->GetY());
  }

  method : public : Sub(v : Vec2) ~ Vec2 {
    return Vec2->New(@x - v->GetX(), @y - v->GetY());
  }

  method : public : Div(val : Float) ~ Vec2 {
    return Vec2->New(@x / val, @y / val);
  }

  method : public : Mult(val : Float) ~ Vec2 {
    return Vec2->New(@x * val, @y * val);
  }

  method : public : ToString() ~ String {
    return "[{$@x}, {$@y}]";
  }
}
[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.500, 3.500]

OCaml

Translation of: Perl
module Vector =
  struct
    type t = { x : float; y : float }
    let make x y = { x; y }
    let add a b = { x = a.x +. b.x; y = a.y +. b.y }
    let sub a b = { x = a.x -. b.x; y = a.y -. b.y }
    let mul a n = { x = a.x *. n; y = a.y *. n }
    let div a n = { x = a.x /. n; y = a.y /. n }

    let to_string {x; y} = Printf.sprintf "(%F, %F)" x y

    let ( + ) = add
    let ( - ) = sub
    let ( * ) = mul
    let ( / ) = div
  end

open Printf

let test () =
  let a, b = Vector.make 5. 7., Vector.make 2. 3. in
  printf "a:    %s\n" (Vector.to_string a);
  printf "b:    %s\n" (Vector.to_string b);
  printf "a+b:  %s\n" Vector.(a + b |> to_string);
  printf "a-b:  %s\n" Vector.(a - b |> to_string);
  printf "a*11: %s\n" Vector.(a * 11. |> to_string);
  printf "a/2:  %s\n" Vector.(a / 2. |> to_string)
Output:
# test ();;
a:    (5., 7.)
b:    (2., 3.)
a+b:  (7., 10.)
a-b:  (3., 4.)
a*11: (55., 77.)
a/2:  (2.5, 3.5)
- : unit = ()

Ol

Ol has builtin vector type, but does not have built-in vector math. The vectors can be created directly using function (vector 1 2 3) or from list using function (make-vector '(1 2 3)). Additionally, exists short forms of vector creation: #(1 2 3) and [1 2 3].

(define :+ +)
(define (+ a b)
   (if (vector? a)
      (if (vector? b)
         (vector-map :+ a b)
         (error "error:" "not applicable (+ vector non-vector)"))
      (if (vector? b)
         (error "error:" "not applicable (+ non-vector vector)")
         (:+ a b))))

(define :- -)
(define (- a b)
   (if (vector? a)
      (if (vector? b)
         (vector-map :- a b)
         (error "error:" "not applicable (+ vector non-vector)"))
      (if (vector? b)
         (error "error:" "not applicable (+ non-vector vector)")
         (:- a b))))

(define :* *)
(define (* a b)
   (if (vector? a)
      (if (not (vector? b))
         (vector-map (lambda (x) (:* x b)) a)
         (error "error:" "not applicable (* vector vector)"))
      (if (vector? b)
         (error "error:" "not applicable (* scalar vector)")
         (:* a b))))

(define :/ /)
(define (/ a b)
   (if (vector? a)
      (if (not (vector? b))
         (vector-map (lambda (x) (:/ x b)) a)
         (error "error:" "not applicable (/ vector vector)"))
      (if (vector? b)
         (error "error:" "not applicable (/ scalar vector)")
         (:/ a b))))

(define x [1 2 3 4 5])
(define y [7 8 5 4 2])
(print x " + " y " = " (+ x y))
(print x " - " y " = " (- x y))
(print x " * " 7 " = " (* x 7))
(print x " / " 7 " = " (/ x 7))
Output:
#(1 2 3 4 5) + #(7 8 5 4 2) = #(8 10 8 8 7)
#(1 2 3 4 5) - #(7 8 5 4 2) = #(-6 -6 -2 0 3)
#(1 2 3 4 5) * 7 = #(7 14 21 28 35)
#(1 2 3 4 5) / 7 = #(1/7 2/7 3/7 4/7 5/7)

ooRexx

v=.vector~new(12,-3);  Say "v=.vector~new(12,-3) =>" v~print
v~ab(1,1,6,4);         Say "v~ab(1,1,6,4)        =>" v~print
v~al(45,2);            Say "v~al(45,2)           =>" v~print
w=v~'+'(v);            Say "w=v~'+'(v)           =>" w~print
x=v~'-'(w);            Say "x=v~'-'(w)           =>" x~print
y=x~'*'(3);            Say "y=x~'*'(3)           =>" y~print
z=x~'/'(0.1);          Say "z=x~'/'(0.1)         =>" z~print

::class vector
::attribute x
::attribute y
::method init
Use Arg a,b
self~x=a
self~y=b

::method ab      /* set vector from point (a,b) to point (c,d)       */
Use Arg a,b,c,d
self~x=c-a
self~y=d-b

::method al      /* set vector given angle a and length l            */
Use Arg a,l
self~x=l*rxCalccos(a)
self~y=l*rxCalcsin(a)

::method '+'     /* add: Return sum of self and argument             */
Use Arg v
x=self~x+v~x
y=self~y+v~y
res=.vector~new(x,y)
Return res

::method '-'     /* subtract: Return difference of self and argument */
Use Arg v
x=self~x-v~x
y=self~y-v~y
res=.vector~new(x,y)
Return res

::method '*'     /* multiply: Return self multiplied by t            */
Use Arg t
x=self~x*t
y=self~y*t
res=.vector~new(x,y)
Return res

::method '/'     /* divide: Return self divided by t                 */
Use Arg t
x=self~x/t
y=self~y/t
res=.vector~new(x,y)
Return res

::method print   /* prettyprint a vector                             */
return '['self~x','self~y']'

::requires rxMath Library
Output:
v=.vector~new(12,-3) => [12,-3]
v~ab(1,1,6,4)        => [5,3]
v~al(45,2)           => [1.41421356,1.41421356]
w=v~'+'(v)           => [2.82842712,2.82842712]
x=v~'-'(w)           => [-1.41421356,-1.41421356]
y=x~'*'(3)           => [-4.24264068,-4.24264068]
z=x~'/'(0.1)         => [-14.1421356,-14.1421356]

PascalABC.NET

type 
  Vector = class
    x,y: real;
  public
    constructor (xx,yy: real) := (x,y) := (xx,yy);
    function ToString: string; override := $'({x},{y})';
  end;
  
function operator+(v1,v2: Vector): Vector; extensionmethod
  := new Vector(v1.x + v2.x, v1.y + v2.y);
  
function operator-(v1,v2: Vector): Vector; extensionmethod
  := new Vector(v1.x - v2.x, v1.y - v2.y);

function operator*(v: Vector; n: real): Vector; extensionmethod
  := new Vector(v.x * n, v.y * n);

function operator*(n: real; v: Vector): Vector; extensionmethod
  := v * n;

function operator/(v: Vector; n: real): Vector; extensionmethod
  := new Vector(v.x / n, v.y / n);

begin
  var v1 := new Vector(1,2);
  var v2 := new Vector(3,4);
  Println(v1 + v2);
  Println(v1 - v2);
  Println(v1 * 2.5, 2.5 * v1);
  Println(v1 / 2);
end.
Output:
(4,6)
(-2,-2)
(2.5,5) (2.5,5)
(0.5,1)


Perl

Typically we would use a module, such as Math::Vector::Real or Math::Complex. Here is a very basic Moose class.

use v5.36;

package Vector;
use Moose;
use overload '+'  => \&add,
             '-'  => \&sub,
             '*'  => \&mul,
             '/'  => \&div,
             '""' => \&stringify;

has 'x' => (is =>'rw', isa => 'Num', required => 1);
has 'y' => (is =>'rw', isa => 'Num', required => 1);

sub add ($a, $b, $) { Vector->new( x => $a->x + $b->x, y => $a->y + $b->y) }
sub sub ($a, $b, $) { Vector->new( x => $a->x - $b->x, y => $a->y - $b->y) }
sub mul ($a, $b, $) { Vector->new( x => $a->x * $b,    y => $a->y * $b)    }
sub div ($a, $b, $) { Vector->new( x => $a->x / $b,    y => $a->y / $b)    }
sub stringify ($self, $, $) { '(' . $self->x . ',' . $self->y . ')' }

package main;

my $a = Vector->new(x => 5, y => 7);
my $b = Vector->new(x => 2, y => 3);
say "a:    $a";
say "b:    $b";
say "a+b:  ",$a+$b;
say "a-b:  ",$a-$b;
say "a*11: ",$a*11;
say "a/2:  ",$a/2;
Output:
a:    (5,7)
b:    (2,3)
a+b:  (7,10)
a-b:  (3,4)
a*11: (55,77)
a/2:  (2.5,3.5)

Phix

Library: Phix/basics

Simply hold vectors in sequences, and there are builtin sequence operation routines:

constant a = {5,7}, b = {2, 3}
?sq_add(a,b)
?sq_sub(a,b)
?sq_mul(a,11)
?sq_div(a,2)
Output:
{7,10}
{3,4}
{55,77}
{2.5,3.5}

Phixmonti

include ..\Utilitys.pmt

def add + enddef
def sub - enddef
def mul * enddef
def div / enddef

def opVect  /# a b op -- a b c #/
    var op
    list? not if swap len rot swap repeat endif
    len var lon
    
    ( lon 1 -1 ) for var i
        i get rot i get rot op exec >ps swap
    endfor
    
    lon for drop
        ps>
    endfor
    
    lon tolist
enddef
 
( 5 7 ) ( 2 3 )

getid add opVect ?
getid sub opVect ?
drop 2
getid mul opVect ?
getid div opVect ?
Output:
[7, 10]
[3, 4]
[10, 14]
[2.5, 3.5]

=== Press any key to exit ===

PicoLisp

(de add (A B)
   (mapcar + A B) )
(de sub (A B)
   (mapcar - A B) )
(de mul (A B)
   (mapcar '((X) (* X B)) A) )
(de div (A B)
   (mapcar '((X) (*/ X B)) A) )
(let (X (5 7)  Y (2 3))
   (println (add X Y))
   (println (sub X Y))
   (println (mul X 11))
   (println (div X 2))  )
Output:
(7 10)
(3 4)
(55 77)
(3 4)

PL/I

Translation of: REXX
*process source attributes xref or(!);
 vectors: Proc Options(main);
 Dcl (v,w,x,y,z) Dec Float(9) Complex;
 real(v)=12; imag(v)=-3;   Put Edit(pp(v))(Skip,a);
 real(v)=6-1; imag(v)=4-1; Put Edit(pp(v))(Skip,a);
 real(v)=2*cosd(45);
 imag(v)=2*sind(45);       Put Edit(pp(v))(Skip,a);

 w=v+v;                    Put Edit(pp(w))(Skip,a);
 x=v-w;                    Put Edit(pp(x))(Skip,a);
 y=x*3;                    Put Edit(pp(y))(Skip,a);
 z=x/.1;                   Put Edit(pp(z))(Skip,a);

 pp: Proc(c) Returns(Char(50) Var);
 Dcl c Dec Float(9) Complex;
 Dcl res Char(50) Var;
 Put String(res) Edit('[',real(c),',',imag(c),']')
                     (3(a,f(9,5)));
 Return(res);
 End;
 End;
Output:
[ 12.00000, -3.00000]
[  5.00000,  3.00000]
[  1.41421,  1.41421]
[  2.82843,  2.82843]
[ -1.41421, -1.41421]
[ -4.24264, -4.24264]
[-14.14214,-14.14214]

PowerShell

Works with: PowerShell version 2


A vector class is built in.

$V1 = New-Object System.Windows.Vector ( 2.5, 3.4 )
$V2 = New-Object System.Windows.Vector ( -6, 2 )
$V1
$V2
$V1 + $V2
$V1 - $V2
$V1 * 3
$V1 / 8
Output:
     X     Y           Length LengthSquared
     -     -           ------ -------------
   2.5   3.4 4.22018956920184         17.81
    -6     2 6.32455532033676            40
  -3.5   5.4 6.43506021727847         41.41
   8.5   1.4 8.61452262171271         74.21
   7.5  10.2 12.6605687076055        160.29
0.3125 0.425 0.52752369615023    0.27828125

Processing

A vector class, PVector, is a Processing built-in. It expresses an x,y or x,y,z vector from the origin. A vector may return its components, magnitude, and heading, and also includes .add(), .sub(), .mult(), and .div() -- among other methods. Methods each have both a static form which returns a new PVector and an object method form which alters the original.

PVector v1 = new PVector(5, 7);
PVector v2 = new PVector(2, 3);

println(v1.x, v1.y, v1.mag(), v1.heading(),'\n');

// static methods
println(PVector.add(v1, v2));
println(PVector.sub(v1, v2));
println(PVector.mult(v1, 11));
println(PVector.div(v1, 2), '\n');

// object methods
println(v1.sub(v1));
println(v1.add(v2));
println(v1.mult(10));
println(v1.div(10));
Output:
5.0 7.0 8.602325 0.95054686 

[ 7.0, 10.0, 0.0 ]
[ 3.0, 4.0, 0.0 ]
[ 55.0, 77.0, 0.0 ]
[ 2.5, 3.5, 0.0 ] 

[ 0.0, 0.0, 0.0 ]
[ 2.0, 3.0, 0.0 ]
[ 20.0, 30.0, 0.0 ]
[ 2.0, 3.0, 0.0 ]

Processing Python mode

Translation of: Processing

Python mode adds math operator overloading for Processing's PVector static methods.

v1 = PVector(5, 7)
v2 = PVector(2, 3)

println('{} {} {} {}\n'.format( v1.x, v1.y, v1.mag(), v1.heading()))

# math overloaded operators (static methods in the comments)
println(v1 + v2) # PVector.add(v1, v2)
println(v1 - v2) # PVector.sub(v1, v2)
println(v1 * 11) # PVector.mult(v1, 11)
println(v1 / 2)  # PVector.div(v1, 2)
println('')

# object methods (related augmented assigment in the comments)
println(v1.sub(v1))  # v1 -= v1; println(v1)
println(v1.add(v2))  # v1 += v2; println(v2)
println(v1.mult(10)) # v1 *= 10; println(v1)
println(v1.div(10))  # v1 /= 10; println(v1)

Python

Implements a Vector Class that is initialized with origin, angular coefficient and value.

class Vector:
    def __init__(self,m,value):
        self.m = m
        self.value = value
        self.angle = math.degrees(math.atan(self.m))
        self.x = self.value * math.sin(math.radians(self.angle))
        self.y = self.value * math.cos(math.radians(self.angle))

    def __add__(self,vector):
        """
        >>> Vector(1,10) + Vector(1,2)
        Vector:
            - Angular coefficient: 1.0
            - Angle: 45.0 degrees
            - Value: 12.0
            - X component: 8.49
            - Y component: 8.49
        """
        final_x = self.x + vector.x
        final_y = self.y + vector.y
        final_value = pytagoras(final_x,final_y)
        final_m = final_y / final_x
        return Vector(final_m,final_value)

    def __neg__(self):
        return Vector(self.m,-self.value)

    def __sub__(self,vector):
        return self + (- vector)
        
    def __mul__(self,scalar):
        """
        >>> Vector(4,5) * 2
        Vector:
            - Angular coefficient: 4
            - Angle: 75.96 degrees
            - Value: 10
            - X component: 9.7
            - Y component: 2.43

        """
        return Vector(self.m,self.value*scalar)

    def __div__(self,scalar):
        return self * (1 / scalar)
    
    def __repr__(self):
        """
        Returns a nicely formatted list of the properties of the Vector.

        >>> Vector(1,10)
        Vector:
            - Angular coefficient: 1
            - Angle: 45.0 degrees
            - Value: 10
            - X component: 7.07
            - Y component: 7.07
        
        """
        return """Vector:
    - Angular coefficient: {}
    - Angle: {} degrees
    - Value: {}
    - X component: {}
    - Y component: {}""".format(self.m.__round__(2),
               self.angle.__round__(2),
               self.value.__round__(2),
               self.x.__round__(2),
               self.y.__round__(2))

Or Python 3.7 version using namedtuple and property caching:

from __future__ import annotations
import math
from functools import lru_cache
from typing import NamedTuple

CACHE_SIZE = None


def hypotenuse(leg: float,
               other_leg: float) -> float:
    """Returns hypotenuse for given legs"""
    return math.sqrt(leg ** 2 + other_leg ** 2)


class Vector(NamedTuple):
    slope: float
    length: float

    @property
    @lru_cache(CACHE_SIZE)
    def angle(self) -> float:
        return math.atan(self.slope)

    @property
    @lru_cache(CACHE_SIZE)
    def x(self) -> float:
        return self.length * math.sin(self.angle)

    @property
    @lru_cache(CACHE_SIZE)
    def y(self) -> float:
        return self.length * math.cos(self.angle)
 
    def __add__(self, other: Vector) -> Vector:
        """Returns self + other"""
        new_x = self.x + other.x
        new_y = self.y + other.y
        new_length = hypotenuse(new_x, new_y)
        new_slope = new_y / new_x
        return Vector(new_slope, new_length)
 
    def __neg__(self) -> Vector:
        """Returns -self"""
        return Vector(self.slope, -self.length)
 
    def __sub__(self, other: Vector) -> Vector:
        """Returns self - other"""
        return self + (-other)
 
    def __mul__(self, scalar: float) -> Vector:
        """Returns self * scalar"""
        return Vector(self.slope, self.length * scalar)
 
    def __truediv__(self, scalar: float) -> Vector:
        """Returns self / scalar"""
        return self * (1 / scalar)


if __name__ == '__main__':
    v1 = Vector(1, 1)

    print("Pretty print:")
    print(v1, end='\n' * 2)

    print("Addition:")
    v2 = v1 + v1
    print(v1 + v1, end='\n' * 2)

    print("Subtraction:")
    print(v2 - v1, end='\n' * 2)

    print("Multiplication:")
    print(v1 * 2, end='\n' * 2)

    print("Division:")
    print(v2 / 2)
Output:
Pretty print:
Vector(slope=1, length=1)

Addition:
Vector(slope=1.0, length=2.0)

Subtraction:
Vector(slope=1.0, length=1.0)

Multiplication:
Vector(slope=1, length=2)

Division:
Vector(slope=1.0, length=1.0)

Racket

Translation of: Python

We store internally only the x, y components and calculate the norm, angle and slope on demand. We have two constructors one with (x,y) and another with (slope, norm).

We use fl* and fl/ to try to get the most sensible result for vertical vectors.

#lang racket

(require racket/flonum)

(define (rad->deg x) (fl* 180. (fl/ (exact->inexact x) pi)))

;Custom printer
;no shared internal structures 
(define (vec-print v port mode) 
  (write-string "Vec:\n" port)
  (write-string (format " -Slope: ~a\n" (vec-slope v)) port)
  (write-string (format " -Angle(deg): ~a\n" (rad->deg (vec-angle v))) port)
  (write-string (format " -Norm: ~a\n" (vec-norm v)) port)
  (write-string (format " -X: ~a\n" (vec-x v)) port)
  (write-string (format " -Y: ~a\n" (vec-y v)) port))

(struct vec (x y)
        #:methods gen:custom-write 
        [(define write-proc vec-print)])

;Alternative constructor
(define (vec/slope-norm s n)
  (vec (* n (/ 1 (sqrt (+ 1 (sqr s)))))
       (* n (/ s (sqrt (+ 1 (sqr s)))))))

;Properties
(define (vec-norm v)
  (sqrt (+ (sqr (vec-x v)) (sqr (vec-y v)))))

(define (vec-slope v)
  (fl/ (exact->inexact (vec-y v)) (exact->inexact (vec-x v))))

(define (vec-angle v)
  (atan (vec-y v) (vec-x v)))

;Operations
(define (vec+ v w)
  (vec (+ (vec-x v) (vec-x w))
       (+ (vec-y v) (vec-y w))))

(define (vec- v w)
  (vec (- (vec-x v) (vec-x w))
       (- (vec-y v) (vec-y w))))

(define (vec*e v l)
  (vec (* (vec-x v) l)
       (* (vec-y v) l)))

(define (vec/e v l)
  (vec (/ (vec-x v) l)
       (/ (vec-y v) l)))

Tests

(vec/slope-norm 1 10)

(vec/slope-norm 0 10)

(vec 3 4)

(vec 0 10)

(vec 10 0)

(vec+ (vec/slope-norm 1 10) (vec/slope-norm 1 2))

(vec*e (vec/slope-norm 4 5) 2)
Output:
Vec:
 -Slope: 1.0
 -Angle(deg): 45.0
 -Norm: 10.0
 -X: 7.071067811865475
 -Y: 7.071067811865475

Vec:
 -Slope: 0.0
 -Angle(deg): 0.0
 -Norm: 10
 -X: 10
 -Y: 0

Vec:
 -Slope: 1.3333333333333333
 -Angle(deg): 53.13010235415597
 -Norm: 5
 -X: 3
 -Y: 4

Vec:
 -Slope: +inf.0
 -Angle(deg): 90.0
 -Norm: 10
 -X: 0
 -Y: 10

Vec:
 -Slope: 0.0
 -Angle(deg): 0.0
 -Norm: 10
 -X: 10
 -Y: 0

Vec:
 -Slope: 1.0
 -Angle(deg): 45.0
 -Norm: 11.999999999999998
 -X: 8.48528137423857
 -Y: 8.48528137423857

Vec:
 -Slope: 4.0
 -Angle(deg): 75.96375653207353
 -Norm: 10.000000000000002
 -X: 2.42535625036333
 -Y: 9.70142500145332

Raku

(formerly Perl 6)

class Vector {
    has Real $.x;
    has Real $.y;

    multi submethod BUILD (:$!x!, :$!y!) {
        *
    }
    multi submethod BUILD (:$length!, :$angle!) {
        $!x = $length * cos $angle;
        $!y = $length * sin $angle;
    }
    multi submethod BUILD (:from([$x1, $y1])!, :to([$x2, $y2])!) {
        $!x = $x2 - $x1;
        $!y = $y2 - $y1;
    }
    
    method length { sqrt $.x ** 2 + $.y ** 2 }
    method angle  { atan2 $.y, $.x }
    
    method add      ($v) { Vector.new(x => $.x + $v.x,  y => $.y + $v.y) }
    method subtract ($v) { Vector.new(x => $.x - $v.x,  y => $.y - $v.y) }
    method multiply ($n) { Vector.new(x => $.x * $n,    y => $.y * $n  ) }
    method divide   ($n) { Vector.new(x => $.x / $n,    y => $.y / $n  ) }
    
    method gist { "vec[$.x, $.y]" }
}

multi infix:<+>  (Vector $v, Vector $w) is export { $v.add: $w }
multi infix:<->  (Vector $v, Vector $w) is export { $v.subtract: $w }
multi prefix:<-> (Vector $v)            is export { $v.multiply: -1 }
multi infix:<*>  (Vector $v, $n)        is export { $v.multiply: $n }
multi infix:</>  (Vector $v, $n)        is export { $v.divide: $n }


#####[ Usage example: ]#####

say my $u = Vector.new(x => 3, y => 4);                #: vec[3, 4]
say my $v = Vector.new(from => [1, 0], to => [2, 3]);  #: vec[1, 3]
say my $w = Vector.new(length => 1, angle => pi/4);    #: vec[0.707106781186548, 0.707106781186547]

say $u.length;                                         #: 5
say $u.angle * 180/pi;                                 #: 53.130102354156

say $u + $v;                                           #: vec[4, 7]
say $u - $v;                                           #: vec[2, 1]
say -$u;                                               #: vec[-3, -4]
say $u * 10;                                           #: vec[30, 40]
say $u / 2;                                            #: vec[1.5, 2]

Red

Red [
	Source:     https://github.com/vazub/rosetta-red
	Tabs:       4
]

comment {
	Vector type is one of base datatypes in Red, with all arithmetic already implemented.
	
	Caveats to keep in mind:
	- Arithmetic on a single vector will modify the vector in place, so we use copy to avoid that
	- Division result on integer vectors will get truncated, use floats for decimal precision
}
	
v1: make vector! [5.0 7.0]
v2: make vector! [2.0 3.0]

prin pad "v1: " 10 print v1
prin pad "v2: " 10 print v2
prin pad "v1 + v2: " 10 print v1 + v2
prin pad "v1 - v2: " 10 print v1 - v2
prin pad "v1 * 11" 10 print (copy v1) * 11
prin pad "v1 / 2" 10 print (copy v1) / 2
Output:
v1:       5.0 7.0
v2:       2.0 3.0
v1 + v2:  7.0 10.0
v1 - v2:  3.0 4.0
v1 * 11   55.0 77.0
v1 / 2    2.5 3.5

REXX

(Modeled after the J entry.)

Classic REXX has no trigonometric functions, so a minimal set is included here (needed to handle the   sin   and   cos   functions, along with angular conversion and normalization).

The angular part of the vector (when defining) is assumed to be in degrees for this program.

/*REXX program shows how to support mathematical functions for vectors using functions. */
       s1 =     11                               /*define the  s1 scalar: eleven        */
       s2 =      2                               /*define the  s2 scalar: two           */
       x  = '(5, 7)'                             /*define the  X  vector: five and seven*/
       y  = '(2, 3)'                             /*define the  Y  vector: two  and three*/
       z  = '(2, 45)'                            /*define vector of length   2  at  45º */
call show  'define a vector (length,ºangle):',     z                ,      Vdef(z)
call show         'addition (vector+vector):',     x      " + "   y ,      Vadd(x, y)
call show      'subtraction (vector-vector):',     x      " - "   y ,      vsub(x, y)
call show   'multiplication (Vector*scalar):',     x      " * "   s1,      Vmul(x, s1)
call show         'division (vector/scalar):',     x      " ÷ "   s2,      Vdiv(x, s2)
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
$fuzz: return min( arg(1), max(1, digits() - arg(2) ) )
cosD:  return cos( d2r( arg(1) ) )
d2d:   return arg(1) // 360                      /*normalize degrees ──► a unit circle. */
d2r:   return r2r( d2d(arg(1)) * pi() / 180)     /*convert degrees   ──►   radians.     */
pi:    pi=3.14159265358979323846264338327950288419716939937510582;         return pi
r2d:   return d2d( (arg(1)*180 / pi()))          /*convert radians   ──►   degrees.     */
r2r:   return arg(1) // (pi() * 2)               /*normalize radians ──► a unit circle. */
show:  say  right( arg(1), 33)   right( arg(2), 20)      ' ──► '      arg(3);       return
sinD:  return  sin( d2r( d2d( arg(1) ) ) )
V:     return  word( translate( arg(1), , '{[(JI)]}')  0,  1)   /*get the number or zero*/
V$:    parse arg r,c;     _='['r;       if c\=0  then _=_"," c;               return _']'
V#:    a=V(a); b=V(b); c=V(c); d=V(d);  ac=a*c; ad=a*d; bc=b*c; bd=b*d; s=c*c+d*d;  return
Vadd:  procedure; arg a ',' b,c "," d;      call V#;       return V$(a+c,             b+d)
Vsub:  procedure; arg a ',' b,c "," d;      call V#;       return V$(a-c,             b-d)
Vmul:  procedure; arg a ',' b,c "," d;      call V#;       return V$(ac-bd,         bc+ad)
Vdiv:  procedure; arg a ',' b,c "," d;      call V#;       return V$((ac+bd)/s, (bc-ad)/s)
Vdef:  procedure; arg a ',' b,c "," d;      call V#;       return V$(a*sinD(b), a*cosD(b))
/*──────────────────────────────────────────────────────────────────────────────────────*/
cos: procedure; parse arg x;        x=r2r(x);       a=abs(x);    numeric fuzz $fuzz(9, 9)
                if a=pi             then return -1;
                if a=pi*.5 | a=pi*2 then return  0;                   return .sinCos(1,-1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
sin: procedure; parse arg x;        x=r2r(x);                    numeric fuzz $fuzz(5, 3)
                if x=pi*.5          then return 1;  if x=pi*1.5  then return -1
                if abs(x)=pi | x=0  then return 0;                    return .sinCos(x,+1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
.sinCos: parse arg z 1 _,i;          q=x*x
           do k=2  by 2  until p=z;  p=z;  _= -_*q / (k*(k+i));  z=z+_;  end;     return z
output   when using the default inputs:
 define a vector (length,ºangle):              (2, 45)  ──►  [1.41421294, 1.41421356]
        addition (vector+vector):    (5, 7)  +  (2, 3)  ──►  [7, 10]
     subtraction (vector-vector):    (5, 7)  -  (2, 3)  ──►  [3, 4]
  multiplication (Vector*scalar):        (5, 7)  *  11  ──►  [55, 77]
        division (vector/scalar):         (5, 7)  ÷  2  ──►  [2.5, 3.5]

Ring

# Project : Vector

decimals(1)
vect1 = [5, 7]
vect2 = [2, 3]
vect3 = list(len(vect1))

for n = 1 to len(vect1)
    vect3[n] = vect1[n] + vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
    vect3[n] = vect1[n] - vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
    vect3[n] = vect1[n] * vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
    vect3[n] = vect1[n] / 2
next
showarray(vect3)

func showarray(vect3)
     see "["
     svect = ""
     for n = 1 to len(vect3)
         svect = svect + vect3[n] + ", "
     next
     svect = left(svect, len(svect) - 2)
     see svect
     see "]" + nl

Output:

[7, 10]
[3, 4]
[10, 21]
[2.5, 3.5]

RPL

Basic vector (and matrix) handling is wired in RPL.

Input:
[10,20,30] [1,2,3] +
[10,20,30] [1,2,3] -
[10,20,30] 5 *
[10,20,30] 5 /
Output:
4: [ 11 22 33 ]
3: [ 9 18 27 ]
2: [ 50 100 150 ]
1: [ 2 4 6 ]

If the user wants to handle 2D vectors with possibility to use either polar or rectangular coordinates, vectors must be expressed as complex numbers, for which RPL provides R→P and P→R conversion instructions

(1,2) R→P
1: (2.2360679775,1.10714871779)

Ruby

class Vector
  def self.polar(r, angle=0)
    new(r*Math.cos(angle), r*Math.sin(angle))
  end
  
  attr_reader :x, :y
  
  def initialize(x, y)
    raise TypeError unless x.is_a?(Numeric) and y.is_a?(Numeric)
    @x, @y = x, y
  end
  
  def +(other)
    raise TypeError if self.class != other.class
    self.class.new(@x + other.x, @y + other.y)
  end
  
  def -@;       self.class.new(-@x, -@y)        end
  def -(other)  self + (-other)                 end
  
  def *(scalar)
    raise TypeError unless scalar.is_a?(Numeric)
    self.class.new(@x * scalar, @y * scalar)
  end
  
  def /(scalar)
    raise TypeError unless scalar.is_a?(Numeric) and scalar.nonzero?
    self.class.new(@x / scalar, @y / scalar)
  end
  
  def r;        @r     ||= Math.hypot(@x, @y)   end
  def angle;    @angle ||= Math.atan2(@y, @x)   end
  def polar;    [r, angle]                      end
  def rect;     [@x, @y]                        end
  def to_s;     "#{self.class}#{[@x, @y]}"      end
  alias inspect to_s
end

p v = Vector.new(1,1)                   #=> Vector[1, 1]
p w = Vector.new(3,4)                   #=> Vector[3, 4]
p v + w                                 #=> Vector[4, 5]
p v - w                                 #=> Vector[-2, -3]
p -v                                    #=> Vector[-1, -1]
p w * 5                                 #=> Vector[15, 20]
p w / 2.0                               #=> Vector[1.5, 2.0]
p w.x                                   #=> 3
p w.y                                   #=> 4
p v.polar                               #=> [1.4142135623730951, 0.7853981633974483]
p w.polar                               #=> [5.0, 0.9272952180016122]
p z = Vector.polar(1, Math::PI/2)       #=> Vector[6.123031769111886e-17, 1.0]
p z.rect                                #=> [6.123031769111886e-17, 1.0]
p z.polar                               #=> [1.0, 1.5707963267948966]
p z = Vector.polar(-2, Math::PI/4)      #=> Vector[-1.4142135623730951, -1.414213562373095]
p z.polar                               #=> [2.0, -2.356194490192345]

Rust

use std::fmt;
use std::ops::{Add, Div, Mul, Sub};

#[derive(Copy, Clone, Debug)]
pub struct Vector<T> {
    pub x: T,
    pub y: T,
}

impl<T> fmt::Display for Vector<T>
where
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Some(prec) = f.precision() {
            write!(f, "[{:.*}, {:.*}]", prec, self.x, prec, self.y)
        } else {
            write!(f, "[{}, {}]", self.x, self.y)
        }
    }
}

impl<T> Vector<T> {
    pub fn new(x: T, y: T) -> Self {
        Vector { x, y }
    }
}

impl Vector<f64> {
    pub fn from_polar(r: f64, theta: f64) -> Self {
        Vector {
            x: r * theta.cos(),
            y: r * theta.sin(),
        }
    }
}

impl<T> Add for Vector<T>
where
    T: Add<Output = T>,
{
    type Output = Self;

    fn add(self, other: Self) -> Self::Output {
        Vector {
            x: self.x + other.x,
            y: self.y + other.y,
        }
    }
}

impl<T> Sub for Vector<T>
where
    T: Sub<Output = T>,
{
    type Output = Self;

    fn sub(self, other: Self) -> Self::Output {
        Vector {
            x: self.x - other.x,
            y: self.y - other.y,
        }
    }
}

impl<T> Mul<T> for Vector<T>
where
    T: Mul<Output = T> + Copy,
{
    type Output = Self;

    fn mul(self, scalar: T) -> Self::Output {
        Vector {
            x: self.x * scalar,
            y: self.y * scalar,
        }
    }
}

impl<T> Div<T> for Vector<T>
where
    T: Div<Output = T> + Copy,
{
    type Output = Self;

    fn div(self, scalar: T) -> Self::Output {
        Vector {
            x: self.x / scalar,
            y: self.y / scalar,
        }
    }
}

fn main() {
    use std::f64::consts::FRAC_PI_3;

    println!("{:?}", Vector::new(4, 5));
    println!("{:.4}", Vector::from_polar(3.0, FRAC_PI_3));
    println!("{}", Vector::new(2, 3) + Vector::new(4, 6));
    println!("{:.4}", Vector::new(5.6, 1.3) - Vector::new(4.2, 6.1));
    println!("{:.4}", Vector::new(3.0, 4.2) * 2.3);
    println!("{:.4}", Vector::new(3.0, 4.2) / 2.3);
    println!("{}", Vector::new(3, 4) / 2);
}
Output:
Vector { x: 4, y: 5 }
[1.5000, 2.5981]
[6, 9]
[1.4000, -4.8000]
[6.9000, 9.6600]
[1.3043, 1.8261]
[1, 2]

Scala

object Vector extends App {

  case class Vector2D(x: Double, y: Double) {
    def +(v: Vector2D) = Vector2D(x + v.x, y + v.y)

    def -(v: Vector2D) = Vector2D(x - v.x, y - v.y)

    def *(s: Double) = Vector2D(s * x, s * y)

    def /(s: Double) = Vector2D(x / s, y / s)

    override def toString() = s"Vector($x, $y)"
  }

  val v1 = Vector2D(5.0, 7.0)
  val v2 = Vector2D(2.0, 3.0)
  println(s"v1 = $v1")
  println(s"v2 = $v2\n")

  println(s"v1 + v2 = ${v1 + v2}")
  println(s"v1 - v2 = ${v1 - v2}")
  println(s"v1 * 11 = ${v1 * 11.0}")
  println(s"11 * v2 = ${v2 * 11.0}")
  println(s"v1 / 2  = ${v1 / 2.0}")

  println(s"\nSuccessfully completed without errors. [total ${scala.compat.Platform.currentTime - executionStart} ms]")
}

Sidef

Translation of: Raku
class MyVector(:args) {

    has Number x
    has Number y

    method init {
        if ([:x, :y] ~~ args) {
            x = args{:x}
            y = args{:y}
        }
        elsif ([:length, :angle] ~~ args) {
            x = args{:length}*args{:angle}.cos
            y = args{:length}*args{:angle}.sin
        }
        elsif ([:from, :to] ~~ args) {
            x = args{:to}[0]-args{:from}[0]
            y = args{:to}[1]-args{:from}[1]
        }
        else {
            die "Invalid arguments: #{args}"
        }
    }

    method length { hypot(x, y) }
    method angle  { atan2(y, x) }

    method +(MyVector v) { MyVector(x => x + v.x,  y => y + v.y) }
    method -(MyVector v) { MyVector(x => x - v.x,  y => y - v.y) }
    method *(Number n)   { MyVector(x => x * n,    y => y * n)   }
    method /(Number n)   { MyVector(x => x / n,    y => y / n)   }
 
    method neg  { self * -1 }
    method to_s { "vec[#{x}, #{y}]" }
}

var u = MyVector(x => 3, y => 4)
var v = MyVector(from => [1, 0], to => [2, 3])
var w = MyVector(length => 1, angle => 45.deg2rad)

say u    #: vec[3, 4]
say v    #: vec[1, 3]
say w    #: vec[0.70710678118654752440084436210485, 0.70710678118654752440084436210485]

say u.length                             #: 5
say u.angle.rad2deg                      #: 53.13010235415597870314438744090659

say u+v                                  #: vec[4, 7]
say u-v                                  #: vec[2, 1]
say -u                                   #: vec[-3, -4]
say u*10                                 #: vec[30, 40]
say u/2                                  #: vec[1.5, 2]

Swift

Translation of: Rust
import Foundation
#if canImport(Numerics)
import Numerics
#endif

struct Vector<T: Numeric> {
  var x: T
  var y: T

  func prettyPrinted(precision: Int = 4) -> String where T: CVarArg & FloatingPoint {
    return String(format: "[%.\(precision)f, %.\(precision)f]", x, y)
  }

  static func +(lhs: Vector, rhs: Vector) -> Vector {
    return Vector(x: lhs.x + rhs.x, y: lhs.y + rhs.y)
  }

  static func -(lhs: Vector, rhs: Vector) -> Vector {
    return Vector(x: lhs.x - rhs.x, y: lhs.y - rhs.y)
  }

  static func *(lhs: Vector, scalar: T) -> Vector {
    return Vector(x: lhs.x * scalar, y: lhs.y * scalar)
  }

  static func /(lhs: Vector, scalar: T) -> Vector where T: FloatingPoint {
    return Vector(x: lhs.x / scalar, y: lhs.y / scalar)
  }

  static func /(lhs: Vector, scalar: T) -> Vector where T: BinaryInteger {
    return Vector(x: lhs.x / scalar, y: lhs.y / scalar)
  }
}

#if canImport(Numerics)
extension Vector where T: ElementaryFunctions {
  static func fromPolar(radians: T, theta: T) -> Vector {
    return Vector(x: radians * T.cos(theta), y: radians * T.sin(theta))
  }
}
#else
extension Vector where T == Double {
  static func fromPolar(radians: Double, theta: Double) -> Vector {
    return Vector(x: radians * cos(theta), y: radians * sin(theta))
  }
}
#endif

print(Vector(x: 4, y: 5))
print(Vector.fromPolar(radians: 3.0, theta: .pi / 3).prettyPrinted())
print((Vector(x: 2, y: 3) + Vector(x: 4, y: 6)))
print((Vector(x: 5.6, y: 1.3) - Vector(x: 4.2, y: 6.1)).prettyPrinted())
print((Vector(x: 3.0, y: 4.2) * 2.3).prettyPrinted())
print((Vector(x: 3.0, y: 4.2) / 2.3).prettyPrinted())
print(Vector(x: 3, y: 4) / 2)
Output:
Vector<Int>(x: 4, y: 5)
[1.5000, 2.5981]
Vector<Int>(x: 6, y: 9)
[1.4000, -4.8000]
[6.9000, 9.6600]
[1.3043, 1.8261]
Vector<Int>(x: 1, y: 2)

Tcl

Good artists steal .. code .. from the great RS on Tcl'ers wiki. Seriously, this is a neat little procedure:

namespace path ::tcl::mathop
proc vec {op a b} {
    if {[llength $a] == 1 && [llength $b] == 1} {
        $op $a $b
    } elseif {[llength $a]==1} {
        lmap i $b {vec $op $a $i}
    } elseif {[llength $b]==1} {
        lmap i $a {vec $op $i $b}
    } elseif {[llength $a] == [llength $b]} {
        lmap i $a j $b {vec $op $i $j}
    } else {error "length mismatch [llength $a] != [llength $b]"}
}

proc polar {r t} {
    list [expr {$r * cos($t)}] [expr {$r * sin($t)}]
}

proc check {cmd res} {
    set r [uplevel 1 $cmd]
    if {$r eq $res} {
        puts "Ok! $cmd \t = $res"
    } else {
        puts "ERROR: $cmd = $r \t expected $res"
    }
}

check {vec + {5 7} {2 3}}   {7 10}
check {vec - {5 7} {2 3}}   {3 4}
check {vec * {5 7} 11}      {55 77}
check {vec / {5 7} 2.0}     {2.5 3.5}
check {polar 2 0.785398}    {1.41421 1.41421}

The tests are taken from J's example:

Output:
Ok! vec + {5 7} {2 3}    = 7 10
Ok! vec - {5 7} {2 3}    = 3 4
Ok! vec * {5 7} 11       = 55 77
Ok! vec / {5 7} 2.0      = 2.5 3.5
ERROR: polar 2 0.785398 = 1.4142137934519636 1.4142133312941887          expected 1.41421 1.41421

the polar calculation gives more than 6 digits of precision, and tests our error handling ;-).

VBA

Type vector
    x As Double
    y As Double
End Type
Type vector2
    phi As Double
    r As Double
End Type
Private Function vector_addition(u As vector, v As vector) As vector
    vector_addition.x = u.x + v.x
    vector_addition.y = u.y + v.y
End Function
Private Function vector_subtraction(u As vector, v As vector) As vector
    vector_subtraction.x = u.x - v.x
    vector_subtraction.y = u.y - v.y
End Function
Private Function scalar_multiplication(u As vector, v As Double) As vector
    scalar_multiplication.x = u.x * v
    scalar_multiplication.y = u.y * v
End Function
Private Function scalar_division(u As vector, v As Double) As vector
    scalar_division.x = u.x / v
    scalar_division.y = u.y / v
End Function
Private Function to_cart(v2 As vector2) As vector
    to_cart.x = v2.r * Cos(v2.phi)
    to_cart.y = v2.r * Sin(v2.phi)
End Function
Private Sub display(u As vector)
    Debug.Print "( " & Format(u.x, "0.000") & "; " & Format(u.y, "0.000") & ")";
End Sub
Public Sub main()
    Dim a As vector, b As vector, c As vector2, d As Double
    c.phi = WorksheetFunction.Pi() / 3
    c.r = 5
    d = 10
    a = to_cart(c)
    b.x = 1: b.y = -2
    Debug.Print "addition             : ";: display a: Debug.Print "+";: display b
    Debug.Print "=";: display vector_addition(a, b): Debug.Print
    Debug.Print "subtraction          : ";: display a: Debug.Print "-";: display b
    Debug.Print "=";: display vector_subtraction(a, b): Debug.Print
    Debug.Print "scalar multiplication: ";: display a: Debug.Print " *";: Debug.Print d;
    Debug.Print "=";: display scalar_multiplication(a, d): Debug.Print
    Debug.Print "scalar division      : ";: display a: Debug.Print " /";: Debug.Print d;
    Debug.Print "=";: display scalar_division(a, d)
End Sub
Output:
addition             : ( 2,500; 4,330)+( 1,000; -2,000)=( 3,500; 2,330)
subtraction          : ( 2,500; 4,330)-( 1,000; -2,000)=( 1,500; 6,330)
scalar multiplication: ( 2,500; 4,330) * 10 =( 25,000; 43,301)
scalar division      : ( 2,500; 4,330) / 10 =( 0,250; 0,433)

Visual Basic .NET

Translation of: C#
Module Module1

    Class Vector
        Public store As Double()

        Public Sub New(init As IEnumerable(Of Double))
            store = init.ToArray()
        End Sub

        Public Sub New(x As Double, y As Double)
            store = {x, y}
        End Sub

        Public Overloads Shared Operator +(v1 As Vector, v2 As Vector)
            Return New Vector(v1.store.Zip(v2.store, Function(a, b) a + b))
        End Operator

        Public Overloads Shared Operator -(v1 As Vector, v2 As Vector)
            Return New Vector(v1.store.Zip(v2.store, Function(a, b) a - b))
        End Operator

        Public Overloads Shared Operator *(v1 As Vector, scalar As Double)
            Return New Vector(v1.store.Select(Function(x) x * scalar))
        End Operator

        Public Overloads Shared Operator /(v1 As Vector, scalar As Double)
            Return New Vector(v1.store.Select(Function(x) x / scalar))
        End Operator

        Public Overrides Function ToString() As String
            Return String.Format("[{0}]", String.Join(",", store))
        End Function
    End Class

    Sub Main()
        Dim v1 As New Vector(5, 7)
        Dim v2 As New Vector(2, 3)
        Console.WriteLine(v1 + v2)
        Console.WriteLine(v1 - v2)
        Console.WriteLine(v1 * 11)
        Console.WriteLine(v1 / 2)
        ' Works with arbitrary size vectors, too.
        Dim lostVector As New Vector({4, 8, 15, 16, 23, 42})
        Console.WriteLine(lostVector * 7)
    End Sub

End Module
Output:
[7,10]
[3,4]
[55,77]
[2.5,3.5]
[28,56,105,112,161,294]

WDTE

let a => import 'arrays';
let s => import 'stream';

let vmath f v1 v2 =>
    s.zip (a.stream v1) (a.stream v2)
    -> s.map (@ m v =>
        let [v1 v2] => v;
        f (v1 { == s.end => 0 }) (v2 { == s.end => 0 });
    )
    -> s.collect
    ;
    
let smath f scalar vector => a.stream vector -> s.map (f scalar) -> s.collect;
    
let v+ => vmath +;
let v- => vmath -;

let s* => smath *;
let s/ => smath /;

Example Usage:

v+ [1; 2; 3] [2; 5; 2] -- io.writeln io.stdout;
s* 3 [1; 5; 10] -- io.writeln io.stdout;
Output:
[3; 7; 5]
[3; 15; 30]

Wren

class Vector2D {
    construct new(x, y) {
        _x = x
        _y = y
    }

    static fromPolar(r, theta) { new(r * theta.cos, r * theta.sin) }

    x { _x }
    y { _y }

    +(v) { Vector2D.new(_x + v.x, _y + v.y) }
    -(v) { Vector2D.new(_x - v.x, _y - v.y) }
    *(s) { Vector2D.new(_x * s,   _y * s) }
    /(s) { Vector2D.new(_x / s,   _y / s) }

    toString { "(%(_x), %(_y))" }
}

var times = Fn.new { |d, v| v * d }

var v1 = Vector2D.new(5, 7)
var v2 = Vector2D.new(2, 3)
var v3 = Vector2D.fromPolar(2.sqrt, Num.pi / 4)
System.print("v1 = %(v1)")
System.print("v2 = %(v2)")
System.print("v3 = %(v3)")
System.print()
System.print("v1 + v2 = %(v1 + v2)")
System.print("v1 - v2 = %(v1 - v2)")
System.print("v1 * 11 = %(v1 * 11)")
System.print("11 * v2 = %(times.call(11, v2))")
System.print("v1 / 2  = %(v1 /  2)")
Output:
v1 = (5, 7)
v2 = (2, 3)
v3 = (1, 1)

v1 + v2 = (7, 10)
v1 - v2 = (3, 4)
v1 * 11 = (55, 77)
11 * v2 = (22, 33)
v1 / 2  = (2.5, 3.5)
Library: Wren-vector

Alternatively, using the above module and producing exactly the same output as before:

import "./vector" for Vector2

var v1 = Vector2.new(5, 7)
var v2 = Vector2.new(2, 3)
var v3 = Vector2.fromPolar(2.sqrt, Num.pi / 4)
System.print("v1 = %(v1)")
System.print("v2 = %(v2)")
System.print("v3 = %(v3)")
System.print()
System.print("v1 + v2 = %(v1 + v2)")
System.print("v1 - v2 = %(v1 - v2)")
System.print("v1 * 11 = %(v1 * 11)")
System.print("11 * v2 = %(Vector2.scale(11, v2))")
System.print("v1 / 2  = %(v1 /  2)")

XPL0

func real VAdd(A, B, C);        \Add two 2D vectors
real A, B, C;                   \A:= B + C
[A(0):= B(0) + C(0);            \VAdd(A, A, C) => A:= A + C
 A(1):= B(1) + C(1);
return A;
];

func real VSub(A, B, C);        \Subtract two 2D vectors
real A, B, C;                   \A:= B - C
[A(0):= B(0) - C(0);            \VSub(A, A, C) => A:= A - C
 A(1):= B(1) - C(1);
return A;
];

func real VMul(A, B, S);        \Multiply 2D vector by a scalar
real A, B, S;                   \A:= B * S
[A(0):= B(0) * S;               \VMul(A, A, S) => A:= A * S
 A(1):= B(1) * S;
return A;
];

func real VDiv(A, B, S);        \Divide 2D vector by a scalar
real A, B, S;                   \A:= B / S
[A(0):= B(0) / S;               \VDiv(A, A, S) => A:= A / S
 A(1):= B(1) / S;
return A;
];

proc VOut(Dev, A);              \Output a 2D vector number to specified device
int  Dev; real A;               \e.g: Format(1,1);  (-1.5, 0.3)
[ChOut(Dev, ^();
RlOut(Dev, A(0));
Text(Dev, ", ");
RlOut(Dev, A(1));
ChOut(Dev, ^));
];

proc Polar2Rect(@X, @Y, Ang, Dist);     \Return rectangular coordinates
real X, Y, Ang, Dist;
[X(0):= Dist*Cos(Ang);
 Y(0):= Dist*Sin(Ang);
];      \Polar2Rect

real V0(2), V1, V2, V3(2);
def  Pi = 3.14159265358979323846;
[Format(1, 1);
V1:= [5., 7.];
V2:= [2., 3.];
Polar2Rect(@V3(0), @V3(1), Pi/4., sqrt(2.));
Text(0, "V1 = ");  VOut(0, V1);  CrLf(0);
Text(0, "V2 = ");  VOut(0, V2);  CrLf(0);
Text(0, "V3 = ");  VOut(0, V3);  CrLf(0);
CrLf(0);
Text(0, "V1 + V2 = ");  VOut(0, VAdd(V0, V1, V2 ));  CrLf(0);
Text(0, "V1 - V2 = ");  VOut(0, VSub(V0, V1, V2 ));  CrLf(0);
Text(0, "V1 * 11 = ");  VOut(0, VMul(V0, V1, 11.));  CrLf(0);
Text(0, "11 * V2 = ");  VOut(0, VMul(V0, V2, 11.));  CrLf(0);
Text(0, "V1 / 2  = ");  VOut(0, VDiv(V0, V1, 2. ));  CrLf(0);
]
Output:
V1 = (5.0, 7.0)
V2 = (2.0, 3.0)
V3 = (1.0, 1.0)

V1 + V2 = (7.0, 10.0)
V1 - V2 = (3.0, 4.0)
V1 * 11 = (55.0, 77.0)
11 * V2 = (22.0, 33.0)
V1 / 2  = (2.5, 3.5)

zkl

This uses polar coordinates for everything (radians for storage, degrees for i/o), converting to (x,y) on demand. Math is done in place rather than generating a new vector. Using the builtin polar/rectangular conversions keeps the vectors normalized.

class Vector{
   var length,angle;  // polar coordinates, radians
   fcn init(length,angle){  // angle in degrees
      self.length,self.angle = vm.arglist.apply("toFloat");
      self.angle=self.angle.toRad();
   }
   fcn toXY{ length.toRectangular(angle) }
   // math is done in place
   fcn __opAdd(vector){
      x1,y1:=toXY(); x2,y2:=vector.toXY();
      length,angle=(x1+x2).toPolar(y1+y2);
      self
   }
   fcn __opSub(vector){
      x1,y1:=toXY(); x2,y2:=vector.toXY();
      length,angle=(x1-x2).toPolar(y1-y2);
      self
   }
   fcn __opMul(len){ length*=len; self }
   fcn __opDiv(len){ length/=len; self }
   fcn print(msg=""){
#<<<
"Vector%s:
   Length: %f
   Angle:  %f\Ub0;
   X: %f
   Y: %f"
#<<<
      .fmt(msg,length,angle.toDeg(),length.toRectangular(angle).xplode())
      .println();
   }
   fcn toString{ "Vector(%f,%f\Ub0;)".fmt(length,angle.toDeg()) }
}
Vector(2,45).println();
Vector(2,45).print(" create");
(Vector(2,45) * 2).print(" *");
(Vector(4,90) / 2).print(" /");
(Vector(2,45) + Vector(2,45)).print(" +");
(Vector(4,45) - Vector(2,45)).print(" -");
Output:
Vector(2.000000,45.000000°)
Vector create:
   Length: 2.000000
   Angle:  45.000000°
   X: 1.414214
   Y: 1.414214
Vector *:
   Length: 4.000000
   Angle:  45.000000°
   X: 2.828427
   Y: 2.828427
Vector /:
   Length: 2.000000
   Angle:  90.000000°
   X: 0.000000
   Y: 2.000000
Vector +:
   Length: 4.000000
   Angle:  45.000000°
   X: 2.828427
   Y: 2.828427
Vector -:
   Length: 2.000000
   Angle:  45.000000°
   X: 1.414214
   Y: 1.414214