Sum digits of an integer
You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Take a Natural Number in a given base and return the sum of its digits:
- 110 sums to 1
- 123410 sums to 10
- fe16 sums to 29
- f0e16 sums to 29
11l
F sum_digits(=n, base)
V r = 0
L n > 0
r += n % base
n I/= base
R r
print(sum_digits(1, 10))
print(sum_digits(1234, 10))
print(sum_digits(F'E, 16))
print(sum_digits(0F'0E, 16))
- Output:
1 10 29 29
360 Assembly
The program uses two ASSIST macro (XDECO,XPRNT) to keep the code as short as possible.
* Sum digits of an integer 08/07/2016
SUMDIGIN CSECT
USING SUMDIGIN,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
LA R11,NUMBERS @numbers
LA R8,1 k=1
LOOPK CH R8,=H'4' do k=1 to hbound(numbers)
BH ELOOPK "
SR R10,R10 sum=0
LA R7,1 j=1
LOOPJ CH R7,=H'8' do j=1 to length(number)
BH ELOOPJ "
LR R4,R11 @number
BCTR R4,0 -1
AR R4,R7 +j
MVC D,0(R4) d=substr(number,j,1)
SR R9,R9 ii=0
SR R6,R6 i=0
LOOPI CH R6,=H'15' do i=0 to 15
BH ELOOPI "
LA R4,DIGITS @digits
AR R4,R6 i
MVC C,0(R4) c=substr(digits,i+1,1)
CLC D,C if d=c
BNE NOTEQ then
LR R9,R6 ii=i
B ELOOPI leave i
NOTEQ LA R6,1(R6) i=i+1
B LOOPI end do i
ELOOPI AR R10,R9 sum=sum+ii
LA R7,1(R7) j=j+1
B LOOPJ end do j
ELOOPJ MVC PG(8),0(R11) number
XDECO R10,XDEC edit sum
MVC PG+8(8),XDEC+4 output sum
XPRNT PG,L'PG print buffer
LA R11,8(R11) @number=@number+8
LA R8,1(R8) k=k+1
B LOOPK end do k
ELOOPK L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
DIGITS DC CL16'0123456789ABCDEF'
NUMBERS DC CL8'1',CL8'1234',CL8'FE',CL8'F0E'
C DS CL1
D DS CL1
PG DC CL16' ' buffer
XDEC DS CL12 temp
YREGS
END SUMDIGIN
- Output:
1 1 1234 10 FE 29 F0E 29
8086 Assembly
cpu 8086
org 100h
section .text
jmp demo
;;; Sum of digits of AX in base BX.
;;; Returns: AX = result
;;; CX, DX destroyed.
digsum: xor cx,cx ; Result
.loop: xor dx,dx ; Divide AX by BX
div bx ; Quotient in AX, modulus in DX
add cx,dx ; Add digit to sum
test ax,ax ; Is the quotient now zero?
jnz .loop ; If not, keep going
mov ax,cx ; Otherwise, return
ret
;;; Print the value of AX in decimal using DOS.
;;; (Note the similarity.)
pr_ax: mov bx,num ; Number buffer pointer
mov cx,10 ; Divisor
.loop: xor dx,dx ; Get digit
div cx
add dl,'0' ; Make ASCII digit
dec bx ; Store in buffer
mov [bx],dl
test ax,ax ; More digits?
jnz .loop ; If so, keep going
mov dx,bx ; Begin of number in DX
mov ah,9 ; MS-DOS syscall 9 prints $-terminated string
int 21h
ret
;;; Run the function on the given examples
demo: mov si,tests ; Pointer to example array
.loop: lodsw ; Get base
test ax,ax ; If 0, we're done
jz .done
xchg bx,ax
lodsw ; Get number
call digsum ; Calculate sum of digits
call pr_ax ; Print sum of digits
jmp .loop ; Get next pair
.done: ret
section .data
db '*****' ; Placeholder for numeric output
num: db 13,10,'$'
tests: dw 10, 1 ; Examples
dw 10, 1234
dw 16, 0FEh
dw 16, 0F0Eh
dw 0 ; End marker
- Output:
1 10 29 29
Action!
CARD FUNC SumDigits(CARD num,base)
CARD res,a
res=0
WHILE num#0
DO
res==+num MOD base
num=num/base
OD
RETURN(res)
PROC Main()
CARD ARRAY data=[
1 10 1234 10 $FE 16 $F0E 16
$FF 2 0 2 2186 3 2187 3]
BYTE i
CARD num,base,res
FOR i=0 TO 15 STEP 2
DO
num=data(i)
base=data(i+1)
res=SumDigits(num,base)
PrintF("num=%U base=%U sum=%U%E",num,base,res)
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
num=1 base=10 sum=1 num=1234 base=10 sum=10 num=254 base=16 sum=29 num=3854 base=16 sum=29 num=255 base=2 sum=8 num=0 base=2 sum=0 num=2186 base=3 sum=14 num=2187 base=3 sum=1
Ada
Numeric constants in Ada are either decimal or written as B#Digits#. Here B is the base, written as a decimal number, and Digits is a base-B number. E.g., 30, 10#30# 2#11110#, and 16#1E# are the same number -- either written in decimal, binary or hexadecimal notation.
with Ada.Integer_Text_IO;
procedure Sum_Digits is
-- sums the digits of an integer (in whatever base)
-- outputs the sum (in base 10)
function Sum_Of_Digits(N: Natural; Base: Natural := 10) return Natural is
Sum: Natural := 0;
Val: Natural := N;
begin
while Val > 0 loop
Sum := Sum + (Val mod Base);
Val := Val / Base;
end loop;
return Sum;
end Sum_Of_Digits;
use Ada.Integer_Text_IO;
begin -- main procedure Sum_Digits
Put(Sum_OF_Digits(1)); -- 1
Put(Sum_OF_Digits(12345)); -- 15
Put(Sum_OF_Digits(123045)); -- 15
Put(Sum_OF_Digits(123045, 50)); -- 104
Put(Sum_OF_Digits(16#fe#, 10)); -- 11
Put(Sum_OF_Digits(16#fe#, 16)); -- 29
Put(Sum_OF_Digits(16#f0e#, 16)); -- 29
end Sum_Digits;
- Output:
1 15 15 104 11 29 29
ALGOL 68
# operator to return the sum of the digits of an integer value in the #
# specified base #
PRIO SUMDIGITS = 1;
OP SUMDIGITS = ( INT value, INT base )INT:
IF base < 2
THEN
# invalid base #
print( ( "Base for digit sum must be at least 2", newline ) );
stop
ELSE
# the base is OK #
INT result := 0;
INT rest := ABS value;
WHILE rest /= 0
DO
result PLUSAB ( rest MOD base );
rest OVERAB base
OD;
result
FI; # SUMDIGITS #
# additional operator so we can sum the digits of values expressed in #
# other than base 10, e.g. 16ra is a hex lteral with value 10 #
# (Algol 68 allows bases 2, 4, 8 and 16 for non-base 10 literals) #
# however as such literals are BITS values, not INTs, we need this #
# second operator #
OP SUMDIGITS = ( BITS value, INT base )INT: ABS value SUMDIGITS base;
main:(
# test the SUMDIGITS operator #
print( ( "value\base base digit-sum", newline ) );
print( ( " 1\10 10 ", whole( 1 SUMDIGITS 10, -9 ), newline ) );
print( ( " 1234\10 10 ", whole( 1234 SUMDIGITS 10, -9 ), newline ) );
print( ( " fe\16 16 ", whole( 16rfe SUMDIGITS 16, -9 ), newline ) );
print( ( " f0e\16 16 ", whole( 16rf0e SUMDIGITS 16, -9 ), newline ) );
# of course, we don't have to express the number in the base we sum #
# the digits in... #
print( ( " 73\10 71 ", whole( 73 SUMDIGITS 71, -9 ), newline ) )
)
- Output:
value\base base digit-sum 1\10 10 1 1234\10 10 10 fe\16 16 29 f0e\16 16 29 73\10 71 3
AppleScript
----------------- SUM DIGITS OF AN INTEGER -----------------
-- baseDigitSum :: Int -> Int -> Int
on baseDigitSum(base)
script
on |λ|(n)
script go
on |λ|(x)
if 0 < x then
Just({x mod base, x div base})
else
Nothing()
end if
end |λ|
end script
sum(unfoldl(go, n))
end |λ|
end script
end baseDigitSum
--------------------------- TEST ---------------------------
on run
{ap(map(baseDigitSum, {2, 8, 10, 16}), {255}), ¬
ap(map(baseDigitSum, {10}), {1, 1234}), ¬
ap(map(baseDigitSum, {16}), map(readHex, {"0xfe", "0xf0e"}))}
--> {{8, 17, 12, 30}, {1, 10}, {29, 29}}
end run
-------------------- GENERIC FUNCTIONS ---------------------
-- Just :: a -> Maybe a
on Just(x)
-- Constructor for an inhabited Maybe (option type) value.
-- Wrapper containing the result of a computation.
{type:"Maybe", Nothing:false, Just:x}
end Just
-- Nothing :: Maybe a
on Nothing()
-- Constructor for an empty Maybe (option type) value.
-- Empty wrapper returned where a computation is not possible.
{type:"Maybe", Nothing:true}
end Nothing
-- Each member of a list of functions applied to
-- each of a list of arguments, deriving a list of new values
-- ap (<*>) :: [(a -> b)] -> [a] -> [b]
on ap(fs, xs)
set lst to {}
repeat with f in fs
tell mReturn(contents of f)
repeat with x in xs
set end of lst to |λ|(contents of x)
end repeat
end tell
end repeat
return lst
end ap
-- elemIndex :: Eq a => a -> [a] -> Maybe Int
on elemIndex(x, xs)
set lng to length of xs
repeat with i from 1 to lng
if x = (item i of xs) then return Just(i - 1)
end repeat
return Nothing()
end elemIndex
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(item i of xs, v, i, xs)
end repeat
return v
end tell
end foldr
-- identity :: a -> a
on identity(x)
-- The argument unchanged.
x
end identity
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- maybe :: b -> (a -> b) -> Maybe a -> b
on maybe(v, f, mb)
-- Either the default value v (if mb is Nothing),
-- or the application of the function f to the
-- contents of the Just value in mb.
if Nothing of mb then
v
else
tell mReturn(f) to |λ|(Just of mb)
end if
end maybe
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- readHex :: String -> Int
on readHex(s)
-- The integer value of the given hexadecimal string.
set ds to "0123456789ABCDEF"
script go
on |λ|(c, a)
set {v, e} to a
set i to maybe(0, my identity, elemIndex(c, ds))
{v + (i * e), 16 * e}
end |λ|
end script
item 1 of foldr(go, {0, 1}, characters of s)
end readHex
-- sum :: [Num] -> Num
on sum(xs)
script add
on |λ|(a, b)
a + b
end |λ|
end script
foldl(add, 0, xs)
end sum
-- > unfoldl (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- > [1,2,3,4,5,6,7,8,9,10]
-- unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
on unfoldl(f, v)
set xr to {v, v} -- (value, remainder)
set xs to {}
tell mReturn(f)
repeat -- Function applied to remainder.
set mb to |λ|(item 2 of xr)
if Nothing of mb then
exit repeat
else -- New (value, remainder) tuple,
set xr to Just of mb
-- and value appended to output list.
set xs to ({item 1 of xr} & xs)
end if
end repeat
end tell
return xs
end unfoldl
- Output:
{{8, 17, 12, 30}, {1, 10}, {29, 29}}
APL
sd←+/⊥⍣¯1
- Output:
10 sd 12345 15 16 sd 254 29
ArnoldC
LISTEN TO ME VERY CAREFULLY sumDigits
I NEED YOUR CLOTHES YOUR BOOTS AND YOUR MOTORCYCLE n
I NEED YOUR CLOTHES YOUR BOOTS AND YOUR MOTORCYCLE base
GIVE THESE PEOPLE AIR
HEY CHRISTMAS TREE sum
YOU SET US UP @I LIED
STICK AROUND n
HEY CHRISTMAS TREE digit
YOU SET US UP @I LIED
GET TO THE CHOPPER digit
HERE IS MY INVITATION n
I LET HIM GO base
ENOUGH TALK
GET TO THE CHOPPER sum
HERE IS MY INVITATION sum
GET UP digit
ENOUGH TALK
GET TO THE CHOPPER n
HERE IS MY INVITATION n
HE HAD TO SPLIT base
ENOUGH TALK
CHILL
I'LL BE BACK sum
HASTA LA VISTA, BABY
IT'S SHOWTIME
HEY CHRISTMAS TREE sum
YOU SET US UP @I LIED
GET YOUR A** TO MARS sum
DO IT NOW sumDigits 12345 10
TALK TO THE HAND "sumDigits 12345 10 ="
TALK TO THE HAND sum
GET YOUR A** TO MARS sum
DO IT NOW sumDigits 254 16
TALK TO THE HAND "sumDigits 254 16 ="
TALK TO THE HAND sum
YOU HAVE BEEN TERMINATED
- Output:
sumDigits 12345 10 = 15 sumDigits 254 16 = 29
Arturo
sumDigits: function [n base][
result: 0
while [n>0][
result: result + n%base
n: n/base
]
return result
]
print sumDigits 1 10
print sumDigits 12345 10
print sumDigits 123045 10
print sumDigits from.hex "0xfe" 16
print sumDigits from.hex "0xf0e" 16
- Output:
1 15 15 29 29
ATS
(* ****** ****** *)
//
// How to compile:
// patscc -DATS_MEMALLOC_LIBC -o SumDigits SumDigits.dats
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)
extern
fun{a:t@ype}
SumDigits(n: a, base: int): a
implement
{a}(*tmp*)
SumDigits(n, base) = let
//
val base = gnumber_int(base)
//
fun
loop (n: a, res: a): a =
if gisgtz_val<a> (n)
then loop (gdiv_val<a>(n, base), gadd_val<a>(res, gmod_val<a>(n, base)))
else res
//
in
loop (n, gnumber_int(0))
end // end of [SumDigits]
(* ****** ****** *)
val SumDigits_int = SumDigits<int>
(* ****** ****** *)
implement
main0 () =
{
//
val n = 1
val () = println! ("SumDigits(1, 10) = ", SumDigits_int(n, 10))
val n = 12345
val () = println! ("SumDigits(12345, 10) = ", SumDigits_int(n, 10))
val n = 123045
val () = println! ("SumDigits(123045, 10) = ", SumDigits_int(n, 10))
val n = 0xfe
val () = println! ("SumDigits(0xfe, 16) = ", SumDigits_int(n, 16))
val n = 0xf0e
val () = println! ("SumDigits(0xf0e, 16) = ", SumDigits_int(n, 16))
//
} (* end of [main0] *)
- Output:
SumDigits(1, 10) = 1 SumDigits(12345, 10) = 15 SumDigits(123045, 10) = 15 SumDigits(0xfe, 16) = 29 SumDigits(0xf0e, 16) = 29
AutoHotkey
Translated from the C version.
MsgBox % sprintf("%d %d %d %d %d`n"
,SumDigits(1, 10)
,SumDigits(12345, 10)
,SumDigits(123045, 10)
,SumDigits(0xfe, 16)
,SumDigits(0xf0e, 16) )
SumDigits(n,base) {
sum := 0
while (n)
{
sum += Mod(n,base)
n /= base
}
return sum
}
sprintf(s,fmt*) {
for each, f in fmt
StringReplace,s,s,`%d, % f
return s
}
- Output:
1 15 15 29 29
AWK
MAWK only support base 10 numeric constants, so a conversion function is necessary.
Will sum digits in numbers from base 2 to base 16.
The output is in decimal. Output in other bases would require a function to do the conversion because MAWK's printf() does not support bases other than 10.
Other versions of AWK may not have these limitations.
#!/usr/bin/awk -f
BEGIN {
print sumDigits("1")
print sumDigits("12")
print sumDigits("fe")
print sumDigits("f0e")
}
function sumDigits(num, nDigs, digits, sum, d, dig, val, sum) {
nDigs = split(num, digits, "")
sum = 0
for (d = 1; d <= nDigs; d++) {
dig = digits[d]
val = digToDec(dig)
sum += val
}
return sum
}
function digToDec(dig) {
return index("0123456789abcdef", tolower(dig)) - 1
}
- Output:
1 3 29 29
BASIC
Note that in order for this to work with the Windows versions of PowerBASIC, the test code (the block at the end containing the PRINT lines) needs to be inside FUNCTION PBMAIN
.
FUNCTION sumDigits(num AS STRING, bas AS LONG) AS LONG
'can handle up to base 36
DIM outp AS LONG
DIM validNums AS STRING, tmp AS LONG, x AS LONG, lennum AS LONG, L0 AS LONG
'ensure num contains only valid characters
validNums = LEFT$("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", bas)
lennum = LEN(num)
FOR L0 = lennum TO 1 STEP -1
x = INSTR(validNums, UCASE$(MID$(num, L0, 1))) - 1
IF -1 = x THEN EXIT FUNCTION
tmp = tmp + (x * (bas ^ (lennum - L0)))
NEXT
WHILE tmp
outp = outp + (tmp MOD bas)
tmp = tmp \ bas
WEND
sumDigits = outp
END FUNCTION
PRINT sumDigits(LTRIM$(STR$(1)), 10)
PRINT sumDigits(LTRIM$(STR$(1234)), 10)
PRINT sumDigits(LTRIM$(STR$(&HFE)), 16)
PRINT sumDigits(LTRIM$(STR$(&HF0E)), 16)
PRINT sumDigits("2", 2)
- Output:
1 10 11 20 0
See also: BBC BASIC, Run BASIC, Visual Basic
Applesoft BASIC
10 BASE = 10
20 N$ = "1" : GOSUB 100 : PRINT N
30 N$ = "1234" : GOSUB 100 : PRINT N
40 BASE = 16
50 N$ = "FE" : GOSUB 100 : PRINT N
60 N$ = "F0E" : GOSUB 100 : PRINT N
90 END
100 REM SUM DIGITS OF N$, BASE
110 IF BASE = 1 THEN N = LEN(N$) : RETURN
120 IF BASE < 2 THEN BASE = 10
130 N = 0 : V$ = LEFT$("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", BASE)
140 FOR I = 1 TO LEN(N$) : C$ = MID$(N$, I, 1)
150 FOR J = 1 TO LEN(V$)
160 IF C$ <> MID$(V$, J, 1) THEN NEXT J : N = SQR(-1) : STOP
170 N = N + J - 1
180 NEXT I
190 RETURN
BASIC256
function SumDigits(number, nBase)
if number < 0 then number = -number
if nBase < 2 then nBase = 2
sum = 0
while number > 0
sum += number mod nBase
number /= nBase
end while
return sum
end function
print "The sums of the digits are:"
print
print "1 base 10 : "; SumDigits(1, 10)
print "1234 base 10 : "; SumDigits(1234, 10)
print "fe base 16 : "; SumDigits(0xfe, 16)
print "f0e base 16 : "; SumDigits(0xf0e, 16)
end
BBC BASIC
This solution deliberately avoids MOD and DIV so it is not restricted to 32-bit integers.
*FLOAT64
PRINT "Digit sum of 1 (base 10) is "; FNdigitsum(1, 10)
PRINT "Digit sum of 12345 (base 10) is "; FNdigitsum(12345, 10)
PRINT "Digit sum of 9876543210 (base 10) is "; FNdigitsum(9876543210, 10)
PRINT "Digit sum of FE (base 16) is "; ~FNdigitsum(&FE, 16) " (base 16)"
PRINT "Digit sum of F0E (base 16) is "; ~FNdigitsum(&F0E, 16) " (base 16)"
END
DEF FNdigitsum(n, b)
LOCAL q, s
WHILE n <> 0
q = INT(n / b)
s += n - q * b
n = q
ENDWHILE
= s
- Output:
Digit sum of 1 (base 10) is 1 Digit sum of 12345 (base 10) is 15 Digit sum of 9876543210 (base 10) is 45 Digit sum of FE (base 16) is 1D (base 16) Digit sum of F0E (base 16) is 1D (base 16)
Chipmunk Basic
10 rem Sum digits of an integer
20 cls
30 print "The sums of the digits are:"
40 print
50 gosub 100 : print "1 base 10 : " sumdigits(1,10)
60 gosub 100 : print "1234 base 10 : ";sumdigits(1234,10)
70 gosub 100 : print "fe base 16 : " sumdigits(254,16)
80 gosub 100 : print "f0e base 16 : ";sumdigits(3854,16)
90 end
100 sub sumdigits(number,nbase)
110 if number < 0 then number = -number
120 if nbase < 2 then nbase = 2
130 sum = 0
140 while number > 0
150 sum = sum+(number-int(number/nbase)*nbase)
160 number = int(number/nbase)
170 wend
180 sumdigits = sum
190 return
(define dsum (lambda (x base)
(let ((number (if (string? x) (string->number x base) x)))
(if (= (string-length (number->string number)) 1) number
(+ (mod number base) (dsum (div number base) base))))))
> (dsum 123 10)
6
> (dsum "fe" 16)
29
> (dsum "f0e" 16)
29
> (dsum 1234 10)
10
Craft Basic
define number = 0, base = 0, sum = 0
input "number: ", number
input "base: ", base
if number < 0 then
let number = number * -1
endif
if base < 2 then
let base = 2
endif
do
if number > 0 then
let sum = sum + number % base
let number = int(number / base)
endif
loop number > 0
print "sum of digits in base ", base, ": ", sum
end
- Output:
number: 1234567 base: 10 sum of digits in base 10: 28
FreeBASIC
' FB 1.05.0 Win64
Function SumDigits(number As Integer, nBase As Integer) As Integer
If number < 0 Then number = -number ' convert negative numbers to positive
If nBase < 2 Then nBase = 2 ' nBase can't be less than 2
Dim As Integer sum = 0
While number > 0
sum += number Mod nBase
number \= nBase
Wend
Return sum
End Function
Print "The sums of the digits are:"
Print
Print "1 base 10 :"; SumDigits(1, 10)
Print "1234 base 10 :"; SumDigits(1234, 10)
Print "fe base 16 :"; SumDigits(&Hfe, 16)
Print "f0e base 16 :"; SumDigits(&Hf0e, 16)
Print
Print "Press any key to quit the program"
Sleep
- Output:
The sums of the digits are: 1 base 10 : 1 1234 base 10 : 10 fe base 16 : 29 f0e base 16 : 29
Gambas
Public Sub Main()
Print "The sums of the digits are:\n"
Print "1 base 10 : "; SumDigits(1, 10)
Print "1234 base 10 : "; SumDigits(1234, 10)
Print "fe base 16 : "; SumDigits(&Hfe, 16)
Print "f0e base 16 : "; SumDigits(&Hf0e, 16)
End
Function SumDigits(number As Integer, nBase As Integer) As Integer
If number < 0 Then number = -number ' convert negative numbers to positive
If nBase < 2 Then nBase = 2 ' nBase can't be less than 2
Dim sum As Integer = 0
While number > 0
sum += number Mod nBase
number \= nBase
Wend
Return sum
End Function
- Output:
Same as FreeBASIC entry.
GW-BASIC
10 REM Sum digits of an integer
20 CLS : REM 20 HOME for Applesoft BASIC
30 BASE = 10
40 N$ = "1" : GOSUB 100 : PRINT "1 base 10 : " N
50 N$ = "1234" : GOSUB 100 : PRINT "1234 base 10 : " N
60 BASE = 16
70 N$ = "FE" : GOSUB 100 : PRINT "FE base 16 : " N
80 N$ = "F0E" : GOSUB 100 : PRINT "F0E base 16 : " N
90 END
100 REM SUM DIGITS OF N$, BASE
110 IF BASE = 1 THEN N = LEN(N$) : RETURN
120 IF BASE < 2 THEN BASE = 10
130 N = 0 : V$ = LEFT$("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", BASE)
140 FOR I = 1 TO LEN(N$) : C$ = MID$(N$, I, 1)
150 FOR J = 1 TO LEN(V$)
160 IF C$ <> MID$(V$, J, 1) THEN NEXT J : N = SQR(-1) : STOP
170 N = N + J - 1
180 NEXT I
190 RETURN
Minimal BASIC
Only base ten is supported. Minimal BASIC does not support operations on strings (except assignment to variables).
10 REM Sum digits of an integer
20 PRINT "Enter a number";
30 INPUT N
40 LET N = ABS(N)
50 LET S = 0
60 IF N = 0 THEN 100
70 LET S = S+N-10*INT(N/10)
80 LET N = INT(N/10)
90 GOTO 60
100 PRINT "Its digit sum:"; S
110 END
MSX Basic
10 CLS
20 PRINT "The sums of the digits are:" : PRINT
30 B = 10
40 N$ = "1" : GOSUB 100 : PRINT "1 base 10 :" N
50 N$ = "1234" : GOSUB 100 : PRINT "1234 base 10 :" N
60 B = 16
70 N$ = "FE" : GOSUB 100 : PRINT "FE base 16 :" N
80 N$ = "F0E" : GOSUB 100 : PRINT "F0E base 16 :" N
90 END
100 REM SUM DIGITS OF N$, B
110 IF B = 1 THEN N = LEN(N$) : RETURN
120 IF B < 2 THEN B = 10
130 N = 0
140 V$ = LEFT$("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", B)
150 FOR I = 1 TO LEN(N$)
160 C$ = MID$(N$, I, 1)
170 FOR J = 1 TO LEN(V$)
180 IF C$ <> MID$(V$, J, 1) THEN NEXT J : N = SQR(-1) : STOP
190 N = N + J - 1
200 NEXT I
210 RETURN
- Output:
Similar to FreeBASIC entry.
Palo Alto Tiny BASIC
Only base ten is supported. Palo Alto Tiny BASIC does not support operations on strings.
10 REM SUM DIGITS OF AN INTEGER
20 INPUT "ENTER A NUMBER"N
30 LET N=ABS(N),U=0
40 IF N=0 GOTO 80
50 LET U=U+N-N/10*10
60 LET N=N/10
70 GOTO 40
80 PRINT "ITS DIGIT SUM:",U
90 STOP
- Output:
ENTER A NUMBER:-12321 ITS DIGIT SUM: 9
PureBasic
EnableExplicit
Procedure.i SumDigits(Number.q, Base)
If Number < 0 : Number = -Number : EndIf; convert negative numbers to positive
If Base < 2 : Base = 2 : EndIf ; base can't be less than 2
Protected sum = 0
While Number > 0
sum + Number % Base
Number / Base
Wend
ProcedureReturn sum
EndProcedure
If OpenConsole()
PrintN("The sums of the digits are:")
PrintN("")
PrintN("1 base 10 : " + SumDigits(1, 10))
PrintN("1234 base 10 : " + SumDigits(1234, 10))
PrintN("fe base 16 : " + SumDigits($fe, 16))
PrintN("f0e base 16 : " + SumDigits($f0e, 16))
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
- Output:
The sums of the digits are: 1 base 10 : 1 1234 base 10 : 10 fe base 16 : 29 f0e base 16 : 29
QBasic
FUNCTION SumDigits (number, nBase)
IF number < 0 THEN number = -number
IF nBase < 2 THEN nBase = 2
sum = 0
DO WHILE number > 0
sum = sum + (number MOD nBase)
number = number \ nBase
LOOP
SumDigits = sum
END FUNCTION
PRINT "The sums of the digits are:"
PRINT
PRINT "1 base 10 :"; SumDigits(1, 10)
PRINT "1234 base 10 :"; SumDigits(1234, 10)
PRINT "fe base 16 :"; SumDigits(&HFE, 16)
PRINT "f0e base 16 :"; SumDigits(&HF0E, 16)
END
QuickBASIC
DECLARE FUNCTION SumDigits% (Num AS INTEGER, NBase AS INTEGER)
CLS
PRINT "1 base 10 ->"; SumDigits%(1, 10)
PRINT "1234 base 10 ->"; SumDigits%(1234, 10)
PRINT "FE base 16 ->"; SumDigits%(&HFE, 16); " (Hex -> "; HEX$(SumDigits%(&HFE, 16)); ")"
PRINT "F0E base 16 ->"; SumDigits%(&HF0E, 16); " (Hex -> "; HEX$(SumDigits%(&HF0E, 16)); ")"
FUNCTION SumDigits% (Num AS INTEGER, NBase AS INTEGER)
' Var
DIM iSum AS INTEGER
Num = ABS(Num) ' Should be a positive number
IF NBase < 2 THEN NBase = 10 ' Default decimal
DO WHILE Num > 0
iSum = iSum + (Num MOD NBase)
Num = Num \ NBase
LOOP
SumDigits% = iSum
END FUNCTION
- Output:
1 base 10 -> 1 1234 base 10 -> 10 FE base 16 -> 11 F0E base 16 -> 20
Run BASIC
function SumDigits(number, nBase)
if number < 0 then number = -1 * number ' convert negative numbers to positive
if nBase < 2 then nBase = 2 ' nBase can//t be less than 2
sum = 0
while number > 0
sum = sum + (number mod nBase)
number = int(number / nBase)
wend
SumDigits = sum
end function
print "The sums of the digits are:\n"
print "1 base 10 : "; SumDigits(1, 10)
print "1234 base 10 : "; SumDigits(1234, 10)
print "fe base 16 : "; SumDigits(hexdec("FE"), 16)
print "f0e base 16 : "; SumDigits(hexdec("F0E"), 16)
==={{header|TI-83 BASIC}}===
<syntaxhighlight lang="ti-83b">"01234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ"→Str1
Disp "SUM DIGITS OF INT"
Disp "-----------------"
Disp "ENTER NUMBER"
Input Str2
Disp "ENTER BASE"
Input B
0→R
length(Str2)→L
For(I,1,L,1)
sub(Str2,I,1)→Str3
inString(Str1,Str3)-1→S
If S≥B or S=-1:Then
Disp "ERROR:"
Disp Str3
Disp "NOT IN BASE"
Disp B
Stop
End
R+S→R
End
Disp R
Tiny BASIC
Only base ten is supported because the only data type is signed 16-bit int.
PRINT "Enter a number."
INPUT N
IF N < 0 THEN LET N = -N
LET S = 0
10 IF N = 0 THEN GOTO 20
LET S = S + N - 10*(N/10)
LET N = N / 10
GOTO 10
20 PRINT "Its digit sum is ",S,"."
END
- Output:
Enter a number. -11212 Its digit sum is 7.
True BASIC
FUNCTION SumDigits(number, nBase)
IF number < 0 THEN LET number = -number
IF nBase < 2 THEN LET nBase = 2
LET sum = 0
DO WHILE number > 0
LET sum = sum + REMAINDER(number, nBase)
LET number = INT(number / nBase)
LOOP
LET SumDigits = sum
END FUNCTION
PRINT "The sums of the digits are:"
PRINT
PRINT "1 base 10 :"; SumDigits(1, 10)
PRINT "1234 base 10 :"; SumDigits(1234, 10)
PRINT "fe base 16 :"; SumDigits(254, 16) !0xfe
PRINT "f0e base 16 :"; SumDigits(3854, 16) !0xf0e
END
Visual Basic
This version checks that only valid digits for the indicated base are passed in, exiting otherwise.
Function sumDigits(num As Variant, base As Long) As Long
'can handle up to base 36
Dim outp As Long
Dim validNums As String, tmp As Variant, x As Long, lennum As Long
'ensure num contains only valid characters
validNums = Left$("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", base)
lennum = Len(num)
For L0 = lennum To 1 Step -1
x = InStr(validNums, Mid$(num, L0, 1)) - 1
If -1 = x Then Exit Function
tmp = tmp + (x * (base ^ (lennum - L0)))
Next
While tmp
outp = outp + (tmp Mod base)
tmp = tmp \ base
Wend
sumDigits = outp
End Function
Sub tester()
Debug.Print sumDigits(1, 10)
Debug.Print sumDigits(1234, 10)
Debug.Print sumDigits(&HFE, 16)
Debug.Print sumDigits(&HF0E, 16)
Debug.Print sumDigits("2", 2)
End Sub
- Output:
(in the debug window)
1 10 11 20 0
XBasic
PROGRAM "Sum digits of an integer"
VERSION "0.0000"
DECLARE FUNCTION Entry ()
DECLARE FUNCTION SumDigits (number, nBase)
FUNCTION Entry ()
PRINT "The sums of the digits are:"
PRINT
PRINT "1 base 10 : "; SumDigits(1, 10)
PRINT "1234 base 10 : "; SumDigits(1234, 10)
PRINT "fe base 16 : "; SumDigits(0xfe, 16)
PRINT "f0e base 16 : "; SumDigits(0xf0e, 16)
END FUNCTION
FUNCTION SumDigits (number, nBase)
IF number < 0 THEN number = -number
IF nBase < 2 THEN nBase = 2
sum = 0
DO WHILE number > 0
sum = sum + (number MOD nBase)
number = number / nBase
LOOP
RETURN sum
END FUNCTION
END PROGRAM
Yabasic
sub SumDigits(number, nBase)
if number < 0 then number = -number : fi
if nBase < 2 then nBase = 2 : fi
sum = 0
while number > 0
sum = sum + mod(number, nBase)
number = int(number / nBase)
wend
return sum
end sub
print "The sums of the digits are:\n"
print "1 base 10 : ", SumDigits(1, 10)
print "1234 base 10 : ", SumDigits(1234, 10)
print "fe base 16 : ", SumDigits(0xfe, 16)
print "f0e base 16 : ", SumDigits(0xf0e, 16)
end
bc
define s(n) {
auto i, o, s
o = scale
scale = 0
for (i = n; i > 0; i /= ibase) {
s += i % ibase
}
scale = o
return(s)
}
ibase = 10
s(1)
s(1234)
ibase = 16
s(FE)
s(F0E)
- Output:
1 10 29 29
BCPL
get "libhdr"
let digitsum(n, base) =
n=0 -> 0,
n rem base + digitsum(n/base, base)
let start() be
$( writef("%N*N", digitsum(1, 10)) // prints 1
writef("%N*N", digitsum(1234, 10)) // prints 10
writef("%N*N", digitsum(#1234, 8)) // also prints 10
writef("%N*N", digitsum(#XFE, 16)) // prints 29
writef("%N*N", digitsum(#XF0E, 16)) // also prints 29
$)
- Output:
1 10 10 29 29
Befunge
This solution reads the number and base as integers from stdin (in base 10). There doesn't seem any point in accepting input in other bases, because it would then have to be processed as a string and the base would be irrelevant, defeating the point of this exercise.
" :rebmuN">:#,_&0v
|_,#!>#:<"Base: "<
<>10g+\00g/:v:p00&
v^\p01<%g00:_55+\>
>" :muS">:#,_$\.,@
- Output:
Number: 1234 Base: 10 Sum: 10
BQN
Recursive function which sums the digits of the left argument.
Default base(right argument) is 10.
SumDigits ← {
𝕊 𝕩: 10 𝕊 𝕩;
𝕨 𝕊 0: 0;
(𝕨|𝕩)+𝕨𝕊⌊𝕩÷𝕨
}
•Show SumDigits 1
•Show SumDigits 1234
•Show 16 SumDigits 254
1
10
29
C
#include <stdio.h>
int SumDigits(unsigned long long n, const int base) {
int sum = 0;
for (; n; n /= base)
sum += n % base;
return sum;
}
int main() {
printf("%d %d %d %d %d\n",
SumDigits(1, 10),
SumDigits(12345, 10),
SumDigits(123045, 10),
SumDigits(0xfe, 16),
SumDigits(0xf0e, 16) );
return 0;
}
- Output:
1 15 15 29 29
C#
namespace RosettaCode.SumDigitsOfAnInteger
{
using System;
using System.Collections.Generic;
using System.Linq;
internal static class Program
{
/// <summary>
/// Enumerates the digits of a number in a given base.
/// </summary>
/// <param name="number"> The number. </param>
/// <param name="base"> The base. </param>
/// <returns> The digits of the number in the given base. </returns>
/// <remarks>
/// The digits are enumerated from least to most significant.
/// </remarks>
private static IEnumerable<int> Digits(this int number, int @base = 10)
{
while (number != 0)
{
int digit;
number = Math.DivRem(number, @base, out digit);
yield return digit;
}
}
/// <summary>
/// Sums the digits of a number in a given base.
/// </summary>
/// <param name="number"> The number. </param>
/// <param name="base"> The base. </param>
/// <returns> The sum of the digits of the number in the given base. </returns>
private static int SumOfDigits(this int number, int @base = 10)
{
return number.Digits(@base).Sum();
}
/// <summary>
/// Demonstrates <see cref="SumOfDigits" />.
/// </summary>
private static void Main()
{
foreach (var example in
new[]
{
new {Number = 1, Base = 10},
new {Number = 12345, Base = 10},
new {Number = 123045, Base = 10},
new {Number = 0xfe, Base = 0x10},
new {Number = 0xf0e, Base = 0x10}
})
{
Console.WriteLine(example.Number.SumOfDigits(example.Base));
}
}
}
}
- Output:
1 15 15 29 29
C++
#include <iostream>
#include <cmath>
int SumDigits(const unsigned long long int digits, const int BASE = 10) {
int sum = 0;
unsigned long long int x = digits;
for (int i = log(digits)/log(BASE); i>0; i--){
const double z = std::pow(BASE,i);
const unsigned long long int t = x/z;
sum += t;
x -= t*z;
}
return x+sum;
}
int main() {
std::cout << SumDigits(1) << ' '
<< SumDigits(12345) << ' '
<< SumDigits(123045) << ' '
<< SumDigits(0xfe, 16) << ' '
<< SumDigits(0xf0e, 16) << std::endl;
return 0;
}
- Output:
1 15 15 29 29
Template metaprogramming version
Tested with g++-4.6.3 (Ubuntu).
// Template Metaprogramming version by Martin Ettl
#include <iostream>
#include <cmath>
typedef unsigned long long int T;
template <typename T, T i> void For(T &sum, T &x, const T &BASE)
{
const double z(std::pow(BASE,i));
const T t = x/z;
sum += t;
x -= t*z;
For<T, i-1>(sum,x,BASE);
}
template <> void For<T,0>(T &, T &, const T &){}
template <typename T, T digits, int BASE> T SumDigits()
{
T sum(0);
T x(digits);
const T end(log(digits)/log(BASE));
For<T,end>(sum,x,BASE);
return x+sum;
}
int main()
{
std::cout << SumDigits<T, 1 , 10>() << ' '
<< SumDigits<T, 12345 , 10>() << ' '
<< SumDigits<T, 123045, 10>() << ' '
<< SumDigits<T, 0xfe , 16>() << ' '
<< SumDigits<T, 0xf0e , 16>() << std::endl;
return 0;
}
- Output:
1 15 15 29 29
Chez Scheme
(define dsum (lambda (x base)
(let ((number (if (string? x) (string->number x base) x)))
(if (= (string-length (number->string number)) 1) number
(+ (mod number base) (dsum (div number base) base))))))
> (dsum 123 10)
6
> (dsum "fe" 16)
29
> (dsum "f0e" 16)
29
> (dsum 1234 10)
10
Clojure
(defn sum-digits [n base]
(let [number (if-not (string? n) (Long/toString n base) n)]
(reduce + (map #(Long/valueOf (str %) base) number))))
- Output:
user=> (sum-digits 1 10) 1 user=> (sum-digits 1234 10) 10 user=> (sum-digits "fe" 16) 29 user=> (sum-digits "f0e" 16) 29 user=> (sum-digits 254 16) 29 user=> (sum-digits 3854 16) 29 user=> (sum-digits 16rfe 16) 29 user=> (sum-digits 16rf0e 16) 29 user=> (sum-digits "clojure" 32) 147
CLU
% Find the digits of a number in a given base
digits = iter (n, base: int) yields (int)
while n>0 do
yield(n // base)
n := n / base
end
end digits
% Sum the digits of a number in a given base
digitsum = proc (n, base: int) returns (int)
sum: int := 0
for digit: int in digits(n, base) do
sum := sum + digit
end
return(sum)
end digitsum
start_up = proc ()
po: stream := stream$primary_output()
stream$putl(po, int$unparse(digitsum(1, 10)))
stream$putl(po, int$unparse(digitsum(1234, 10)))
stream$putl(po, int$unparse(digitsum(254, 16))) % 0xFE = 254
stream$putl(po, int$unparse(digitsum(3854, 16))) % 0xF0E = 3854
end start_up
- Output:
1 10 29 29
Common Lisp
(defun sum-digits (number base)
(loop for n = number then q
for (q r) = (multiple-value-list (truncate n base))
sum r until (zerop q)))
Example:
(loop for (number base) in '((1 10) (1234 10) (#xfe 16) (#xf0e 16))
do (format t "(~a)_~a = ~a~%" number base (sum-digits number base)))
- Output:
(1)_10 = 1 (1234)_10 = 10 (254)_16 = 29 (3854)_16 = 29
Cowgol
include "cowgol.coh";
sub digitSum(n: uint32, base: uint32): (r: uint32) is
r := 0;
while n > 0 loop
r := r + n % base;
n := n / base;
end loop;
end sub;
print_i32(digitSum(1, 10)); # prints 1
print_nl();
print_i32(digitSum(1234, 10)); # prints 10
print_nl();
print_i32(digitSum(0xFE, 16)); # prints 29
print_nl();
print_i32(digitSum(0xF0E, 16)); # prints 29
print_nl();
- Output:
1 10 29 29
Crystal
class String
def sum_digits(base : Int) : Int32
self.chars.reduce(0) { |acc, c|
value = c.to_i(base)
acc += value
}
end
end
puts("1".sum_digits 10)
puts("1234".sum_digits 10)
puts("fe".sum_digits 16)
puts("f0e".sum_digits 16)
- Output:
1 10 29 29
D
import std.stdio, std.bigint;
uint sumDigits(T)(T n, in uint base=10) pure nothrow
in {
assert(base > 1);
} body {
typeof(return) total = 0;
for ( ; n; n /= base)
total += n % base;
return total;
}
void main() {
1.sumDigits.writeln;
1_234.sumDigits.writeln;
sumDigits(0xfe, 16).writeln;
sumDigits(0xf0e, 16).writeln;
1_234.BigInt.sumDigits.writeln;
}
- Output:
1 10 29 29 10
Dart
import 'dart:math';
num sumDigits(var number, var nBase) {
if (number < 0) number = -number; // convert negative numbers to positive
if (nBase < 2) nBase = 2; // nBase can't be less than 2
num sum = 0;
while (number > 0) {
sum += number % nBase;
number ~/= nBase;
}
return sum;
}
void main() {
print('The sums of the digits are:\n');
print('1 base 10 : ${sumDigits(1, 10)}');
print('1234 base 10 : ${sumDigits(1234, 10)}');
print('fe base 16 : ${sumDigits(0xfe, 16)}');
print('f0e base 16 : ${sumDigits(0xf0e, 16)}');
}
- Output:
Same as FreeBASIC entry.
Dc
[ I ~ S! d 0!=S L! + ] sS
1 lS x p
1234 lS x p
16 i
FE lS x p
F0E lS x p
- Output:
1 10 29 29
Dyalect
func digits(num, bas = 10) {
while num != 0 {
let (n, digit) = (num / bas, num % bas)
num = n
yield digit
}
}
func Iterator.Sum(acc = 0) {
for x in this {
acc += x
}
return acc
}
func sumOfDigits(num, bas = 10) => digits(num, bas).Sum()
for e in [
(num: 1, bas: 10),
(num: 12345, bas: 10),
(num: 123045, bas:10),
(num: 0xfe, bas: 16),
(num: 0xf0e, bas: 16)
] {
print(sumOfDigits(e.num, e.bas))
}
- Output:
1 15 15 29 29
Delphi
See Pascal.
Draco
proc nonrec digitsum(word n; byte base) byte:
byte sum;
sum := 0;
while n>0 do
sum := sum + n % base;
n := n / base
od;
sum
corp
proc nonrec main() void:
writeln(digitsum(1, 10));
writeln(digitsum(1234, 10));
writeln(digitsum(0xFE, 16));
writeln(digitsum(0xF0E, 16))
corp
- Output:
1 10 29 29
DuckDB
In this entry, `sum_of_digits(x)` is defined in a way that allows x to be a numeric value (e.g. -1.2) or a string (e.g. 'aA'). For numbers, non-numeric characters are simply ignored; and for strings, non-alphanumeric characters are ignored.
This means, for example, that sum_of_digits(1.2e-34) will evaluate to 10, because the 'e' and minus sign are ignored.
create or replace function number_sum_of_digits(i) as (
with characters as (select unnest( regexp_extract_all(i::VARCHAR, '[0-9]')) as c)
select sum(c::uint8) from characters
);
create or replace function string_sum_of_digits(str) as (
with characters as (select unnest( regexp_extract_all(str::VARCHAR, '[0-9a-zA-Z]')) as c),
numbers as (select ascii(c) as a from characters)
select sum(
case when a < 65 then a - 48 -- 0 => 48
when a < 97 then a - 55 -- A => 65
else a - 87 -- a => 97
end ) from numbers
);
create or replace function sum_of_digits(x) as (
case when typeof(x) = 'VARCHAR' then string_sum_of_digits(x)
else number_sum_of_digits(x)
end
);
select sum_of_digits('f0E') = 29;
select sum_of_digits(1234) = 10;
select sum_of_digits(1.2e-34) = 10;
- Output:
┌─────────────────────────────┐ │ (sum_of_digits('f0E') = 29) │ │ boolean │ ├─────────────────────────────┤ │ true │ └─────────────────────────────┘ ┌────────────────────────────┐ │ (sum_of_digits(1234) = 10) │ │ boolean │ ├────────────────────────────┤ │ true │ └────────────────────────────┘ ┌───────────────────────────────┐ │ (sum_of_digits(1.2e-34) = 10) │ │ boolean │ ├───────────────────────────────┤ │ true │ └───────────────────────────────┘
EasyLang
func sumdig s$ .
for c$ in strchars s$
h = strcode c$ - 48
if h >= 10
h -= 39
.
r += h
.
return r
.
print sumdig "1"
print sumdig "1234"
print sumdig "fe"
print sumdig "f0e"
EDSAC order code
Numbers on the simulated input tape have to be in decimal (not a serious restriction, as pointed out in the Befunge solution). The EDSAC subroutine library didn't include a routine for integer division, so we have to write our own. In the test values, decimal 2003579 represents base-36 16xyz from Kotlin.
[Sum of digits of a number in a given base - Rosetta Code
EDSAC program (Initial Orders 2)]
[Arrange the storage]
T45K P56F [H parameter: library subroutine R4 to read integer]
T46K P80F [N parameter: subroutine to print 35-bit positive integer]
T47K P180F [M parameter: main routine]
T48K P120F [& (Delta) parameter: subroutine for integer division]
T51K P157F [G parameter: subroutine to find sum of digits]
[Library subroutine M3, runs at load time and is then overwritten.
Prints header; here, last character sets teleprinter to figures.]
PF GK IF AF RD LF UF OF E@ A6F G@ E8F EZ PF
*!!!!NUMBER!!!!!!!BASE!!!SUM!OF!DIGITS@&#..PZ
[============== G parameter: Subroutine find sum of digits ==============
Input: 4D = non-negative number (not preserved)
6D = base (not preserved)
Output: 0D = sum of digits
Workspace: 8D (in called subroutine), 10D, 12D]
E25K TG GK
A3F T22@ [plant return link as usual]
A6D T10D [store base in 10D]
T12D [sum of digits in 12D, initialize to 0]
A4D [acc := number]
E17@ [jump into middle of loop]
[Start of loop. Next dividend is already in 4D.]
[7] TF [clear acc]
A10D T6D [pass base as divisor]
[10] A10@ G& [call division subroutine]
A4D A12D T12D [remainder is next digit; add to result]
A6D U4D [quotient becomes next dividend]
[17] S10D [is dividend >= base?]
E7@ [if so, loop back to do division]
[Here if dividend < base. Means that dividend = top digit.]
A10D [restore digit after test]
A12D [add to sum of digits]
TD [return sum of digits in 0D]
[22] ZF [(planted) jump back to caller]
[====================== M parameter: Main routine ======================]
E25K TM GK
[Load at even addess; put 35-bit values first]
[0] PF PF [number]
[2] PF PF [base]
[4] PF [negative data count]
[5] !F [space]
[6] @F [carriage return]
[7] &F [line feed]
[8] K4096F [null character]
[Enter with acc = 0]
[9] A9@ GH [call subroutine R4, sets 0D := count of (n,k) pairs]
SF [acc := count negated; it's assumed that count < 2^16]
E48@ [exit if count = 0]
LD [shift count into address field]
[14] T4@ [update negative loop counter]
[15] A15@ GH [call library subroutine R4, 0D := number]
AD T#@ [store number]
[19] A19@ GH [call library subroutine R4, 0D := base]
AD T2#@ [store base]
A#@ TD [pass number to print subroutine]
[25] A25@ GN O5@ [print number, plus space]
A2#@ TD [pass base to print subroutine]
[30] A30@ GN O5@ O5@ O5@ [print base, plus spaces]
A#@ T4D [pass number to sum-of-digits subroutine]
A2#@ T6D [same for base]
[39] A39@ GG [call subroutine, 0D := sum of digits]
[41] A41@ GN O6@ O7@ [print sum of digits, plus CR,LF]
A4@ A2F [increment negative counter]
G14@ [loop back if still negative]
[48] O8@ [done; print null to flush printer buffer]
ZF [halt the machine]
[The next 3 lines put the entry address into location 50,
so that it can be accessed via the X parameter (see end of program).]
T50K
P9@
T9Z
[================== H parameter: Library subroutine R4 ==================
Input of one signed integer, returned in 0D.
22 locations.]
E25K TH GK
GKA3FT21@T4DH6@E11@P5DJFT6FVDL4FA4DTDI4FA4FS5@G7@S5@G20@SDTDT6FEF
[============================= N parameter ==============================
Library subroutine P7, prints long strictly positive integer in 0D.
10 characters, right justified, padded left with spaces.
Even address; 35 storage locations; working position 4D.]
E25K TN
GKA3FT26@H28#@NDYFLDT4DS27@TFH8@S8@T1FV4DAFG31@SFLDUFOFFFSFL4F
T4DA1FA27@G11@XFT28#ZPFT27ZP1024FP610D@524D!FO30@SFL8FE22@
[========================== & (Delta) parameter ==========================]
[The following subroutine is not in the EDSAC library.
Division subroutine for positive 35-bit integers,
returning quotient and remainder.
Input: dividend at 4D, divisor at 6D
Output: remainder at 4D, quotient at 6D.
37 locations; working locations 0D, 8D.]
E25K T&
GKA3FT35@A6DU8DTDA4DRDSDG13@T36@ADLDE4@T36@T6DA4DSDG23@
T4DA6DYFYFT6DT36@A8DSDE35@T36@ADRDTDA6DLDT6DE15@EFPF
[==========================================================================]
[On the original EDSAC, the following (without the whitespace and comments)]
[might have been input on a separate tape.]
E25K TX GK
EZ [define entry point]
PF [acc = 0 on entry]
[Count of (n,k) pairs, then the pairs, to be read by library subroutine R4.]
[Note that sign comes *after* value.]
10+1+10+1234+10+254+16+3854+16+2186+3+2187+3+123045+50+2003579+36+
123456789+1000+1234567890+100000+
- Output:
NUMBER BASE SUM OF DIGITS 1 10 1 1234 10 10 254 16 29 3854 16 29 2186 3 14 2187 3 1 123045 50 104 2003579 36 109 123456789 1000 1368 1234567890 100000 80235
Elixir
defmodule RC do
def sumDigits(n, base\\10)
def sumDigits(n, base) when is_integer(n) do
Integer.digits(n, base) |> Enum.sum
end
def sumDigits(n, base) when is_binary(n) do
String.codepoints(n) |> Enum.map(&String.to_integer(&1, base)) |> Enum.sum
end
end
Enum.each([{1, 10}, {1234, 10}, {0xfe, 16}, {0xf0e, 16}], fn {n,base} ->
IO.puts "#{Integer.to_string(n,base)}(#{base}) sums to #{ RC.sumDigits(n,base) }"
end)
IO.puts ""
Enum.each([{"1", 10}, {"1234", 10}, {"fe", 16}, {"f0e", 16}], fn {n,base} ->
IO.puts "#{n}(#{base}) sums to #{ RC.sumDigits(n,base) }"
end)
- Output:
1(10) sums to 1 1234(10) sums to 10 FE(16) sums to 29 F0E(16) sums to 29 1(10) sums to 1 1234(10) sums to 10 fe(16) sums to 29 f0e(16) sums to 29
Emacs Lisp
(defun digit-sum (n)
(apply #'+ (mapcar (lambda (c) (- c ?0)) (string-to-list "123"))))
(digit-sum 1234) ;=> 10
Erlang
-module(sum_digits).
-export([sum_digits/2, sum_digits/1]).
sum_digits(N) ->
sum_digits(N,10).
sum_digits(N,B) ->
sum_digits(N,B,0).
sum_digits(0,_,Acc) ->
Acc;
sum_digits(N,B,Acc) when N < B ->
Acc+N;
sum_digits(N,B,Acc) ->
sum_digits(N div B, B, Acc + (N rem B)).
Example usage:
2> sum_digits:sum_digits(1). 1 3> sum_digits:sum_digits(1234). 10 4> sum_digits:sum_digits(16#fe,16). 29 5> sum_digits:sum_digits(16#f0e,16). 29
Excel
LAMBDA
We can define digit sums for integer strings in bases up to base 36 by binding the names digitSum, digitValue to the following lambda expressions in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
digitSum
=LAMBDA(s,
FOLDROW(
LAMBDA(a,
LAMBDA(c,
a + digitValue(c)
)
)
)(0)(
CHARSROW(s)
)
)
digitValue
=LAMBDA(c,
LET(
ic, UNICODE(MID(c, 1, 1)),
IF(AND(47 < ic, 58 > ic),
ic - 48,
IF(AND(64 < ic, 91 > ic),
10 + (ic - 65),
IF(AND(96 < ic, 123 > ic),
10 + (ic - 97),
0
)
)
)
)
)
and also assuming the following generic bindings in the Name Manager for the WorkBook:
CHARSROW
=LAMBDA(s,
MID(s,
SEQUENCE(1, LEN(s), 1, 1),
1
)
)
FOLDROW
=LAMBDA(op,
LAMBDA(a,
LAMBDA(xs,
LET(
b, op(a)(HEADROW(xs)),
IF(1 < COLUMNS(xs),
FOLDROW(op)(b)(
TAILROW(xs)
),
b
)
)
)
)
)
HEADROW
=LAMBDA(xs,
LET(REM, "The first item of each row in xs",
INDEX(
xs,
SEQUENCE(ROWS(xs)),
SEQUENCE(1, 1)
)
)
)
TAILROW
=LAMBDA(xs,
LET(REM,"The tail of each row in the grid",
n, COLUMNS(xs) - 1,
IF(0 < n,
INDEX(
xs,
SEQUENCE(ROWS(xs), 1, 1, 1),
SEQUENCE(1, n, 2, 1)
),
NA()
)
)
)
- Output:
fx | =digitSum(A2) | ||
---|---|---|---|
A | B | ||
1 | Digit strings | Sum of digit values | |
2 | 00 | 0 | |
3 | 1 | 1 | |
4 | 1234 | 10 | |
5 | fe6 | 35 | |
6 | f0e | 29 | |
7 | ff | 30 | |
8 | gg | 32 | |
9 | ze7ro | 107 | |
10 | zero | 100 |
Ezhil
# இது ஒரு எழில் தமிழ் நிரலாக்க மொழி உதாரணம்
# sum of digits of a number
# எண்ணிக்கையிலான இலக்கங்களின் தொகை
நிரல்பாகம் எண்_கூட்டல்( எண் )
தொகை = 0
@( எண் > 0 ) வரை
d = எண்%10;
பதிப்பி "digit = ",d
எண் = (எண்-d)/10;
தொகை = தொகை + d
முடி
பின்கொடு தொகை
முடி
பதிப்பி எண்_கூட்டல்( 1289)#20
பதிப்பி எண்_கூட்டல்( 123456789)# 45
F#
open System
let digsum b n =
let rec loop acc = function
| n when n > 0 ->
let m, r = Math.DivRem(n, b)
loop (acc + r) m
| _ -> acc
loop 0 n
[<EntryPoint>]
let main argv =
let rec show = function
| n :: b :: r -> printf " %d" (digsum b n); show r
| _ -> ()
show [1; 10; 1234; 10; 0xFE; 16; 0xF0E; 16] // -> 1 10 29 29
0
or Generically
In order to complete the Digital root task I require a function which can handle numbers larger than 32 bit integers.
//Sum Digits of An Integer - Nigel Galloway: January 31st., 2015
//This code will work with any integer type
let inline sumDigits N BASE =
let rec sum(g, n) = if n < BASE then n+g else sum(g+n%BASE, n/BASE)
sum(LanguagePrimitives.GenericZero<_>,N)
- Output:
> sumDigits 254 2;; val it : int = 7 > sumDigits 254 10;; val it : int = 11 > sumDigits 254 16;; val it : int = 29 > sumDigits 254 23;; val it : int = 12
so let's try it with a big integer
> sumDigits 123456789123456789123456789123456789123456789I 10I;; val it : System.Numerics.BigInteger = 225 {IsEven = false; IsOne = false; IsPowerOfTwo = false; IsZero = false; Sign = 1;}
Factor
: sum-digits ( base n -- sum ) 0 swap [ dup zero? ] [ pick /mod swapd + swap ] until drop nip ;
{ 10 10 16 16 } { 1 1234 0xfe 0xf0e } [ sum-digits ] 2each
- Output:
--- Data stack: 1 10 29 29
Forth
This is an easy task for Forth, that has built in support for radices up to 36. You set the radix by storing the value in variable BASE.
: sum_int 0 begin over while swap base @ /mod swap rot + repeat nip ;
2 base ! 11110 sum_int decimal . cr
10 base ! 12345 sum_int decimal . cr
16 base ! f0e sum_int decimal . cr
Fortran
Please find GNU/linux compilation instructions along with the sample output within the comments at the start of this FORTRAN 2008 source. Thank you. Review of this page shows a solution to this task with the number input as text. The solution is the sum of index positions in an ordered list of digit characters. (awk). Other solutions ignore the representations of the input, encode digits using the base, then sum the encoding. Both methods appear in this implementation.
!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Fri Jun 7 21:00:12
!
!a=./f && make $a && $a
!gfortran -std=f2008 -Wall -fopenmp -ffree-form -fall-intrinsics -fimplicit-none f.f08 -o f
!f.f08:57.29:
!
! subroutine process1(fmt,s,b)
! 1
!Warning: Unused dummy argument 'b' at (1)
!digit sum n
! 1 1
! 10 1234
! 29 fe
! 29 f0e
! sum of digits of n expressed in base is...
! n base sum
! 1 10 1
! 1234 10 10
! 254 16 29
! 3854 16 29
!
!Compilation finished at Fri Jun 7 21:00:12
module base_mod
private :: reverse
contains
subroutine reverse(a)
integer, dimension(:), intent(inout) :: a
integer :: i, j, t
do i=1,size(a)/2
j = size(a) - i + 1
t = a(i)
a(i) = a(j)
a(j) = t
end do
end subroutine reverse
function antibase(b, n) result(a)
integer, intent(in) :: b,n
integer, dimension(32) :: a
integer :: m, i
a = 0
m = n
i = 1
do while (m .ne. 0)
a(i) = mod(m, b)
m = m/b
i = i+1
end do
call reverse(a)
end function antibase
end module base_mod
program digit_sum
use base_mod
call still
call confused
contains
subroutine still
character(len=6),parameter :: fmt = '(i9,a)'
print'(a9,a8)','digit sum','n'
call process1(fmt,'1',10)
call process1(fmt,'1234',10)
call process1(fmt,'fe',16)
call process1(fmt,'f0e',16)
end subroutine still
subroutine process1(fmt,s,b)
character(len=*), intent(in) :: fmt, s
integer, intent(in), optional :: b
integer :: i
print fmt,sum((/(index('123456789abcdef',s(i:i)),i=1,len(s))/)),' '//s
end subroutine process1
subroutine confused
character(len=5),parameter :: fmt = '(3i7)'
print*,'sum of digits of n expressed in base is...'
print'(3a7)','n','base','sum'
call process0(10,1,fmt)
call process0(10,1234,fmt)
call process0(16,254,fmt)
call process0(16,3854,fmt)
end subroutine confused
subroutine process0(b,n,fmt)
integer, intent(in) :: b, n
character(len=*), intent(in) :: fmt
print fmt,n,b,sum(antibase(b, n))
end subroutine process0
end program digit_sum
Frink
In Frink numbers can be specifed to an arbitrary base from 2 to 36 as number\\base
. The function integerDigits[n, base]
lists the digits of n
in the base base
.
sumDigits[n, base=10] := sum[integerDigits[n, base]]
The sample problems can be written as:
sumDigits[1]
sumDigits[1234]
sumDigits[fe\\16]
sumDigits[f03\\16]
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Test cases
Go
Handling numbers up to 2^64-1 and bases from 2 to 36 is pretty easy, larger values can be handled using the math/big
package (but it's still limited to base<=36).
// File digit.go
package digit
import (
"math/big"
"strconv"
)
func SumString(n string, base int) (int, error) {
i, ok := new(big.Int).SetString(n, base)
if !ok {
return 0, strconv.ErrSyntax
}
if i.Sign() < 0 {
return 0, strconv.ErrRange
}
if i.BitLen() <= 64 {
return Sum(i.Uint64(), base), nil
}
return SumBig(i, base), nil
}
func Sum(i uint64, base int) (sum int) {
b64 := uint64(base)
for ; i > 0; i /= b64 {
sum += int(i % b64)
}
return
}
func SumBig(n *big.Int, base int) (sum int) {
i := new(big.Int).Set(n)
b := new(big.Int).SetUint64(uint64(base))
r := new(big.Int)
for i.BitLen() > 0 {
i.DivMod(i, b, r)
sum += int(r.Uint64())
}
return
}
// File digit_test.go
package digit
import "testing"
type testCase struct {
n string
base int
dSum int
}
var testData = []testCase{
{"1", 10, 1},
{"1234", 10, 10},
{"fe", 16, 29},
{"f0e", 16, 29},
{"18446744073709551615", 10, 87},
{"abcdefghijklmnopqrstuvwzuz0123456789", 36, 628},
}
func TestSumString(t *testing.T) {
for _, tc := range testData {
ds, err := SumString(tc.n, tc.base)
if err != nil {
t.Error("test case", tc, err)
continue
}
if ds != tc.dSum {
t.Error("test case", tc, "got", ds, "expected", tc.dSum)
}
}
}
func TestErrors(t *testing.T) {
for _, tc := range []struct {
n string
base int
}{
{"1234", 37},
{"0", 1},
{"1234", 4},
{"-123", 10},
} {
_, err := SumString(tc.n, tc.base)
if err == nil {
t.Error("expected error for", tc)
}
t.Log("got expected error:", err)
}
}
Golfscript
{base {+}*}:sd;
Test (apply sd for each array [number radix]) :
- Output:
[[1 10] [1234 10] [254 16] [3854 16]] {~sd p}% 1 10 29 29
Groovy
Solution:
def digitsum = { number, radix = 10 ->
Integer.toString(number, radix).collect { Integer.parseInt(it, radix) }.sum()
}
Test:
[[30, 2], [30, 10], [1, 10], [12345, 10], [123405, 10], [0xfe, 16], [0xf0e, 16]].each {
println """
Decimal value: ${it[0]}
Radix: ${it[1]}
Radix value: ${Integer.toString(it[0], it[1])}
Decimal Digit Sum: ${digitsum(it[0], it[1])}
Radix Digit Sum: ${Integer.toString(digitsum(it[0], it[1]), it[1])}
"""
}
- Output:
Decimal value: 30 Radix: 2 Radix value: 11110 Decimal Digit Sum: 4 Radix Digit Sum: 100 Decimal value: 30 Radix: 10 Radix value: 30 Decimal Digit Sum: 3 Radix Digit Sum: 3 Decimal value: 1 Radix: 10 Radix value: 1 Decimal Digit Sum: 1 Radix Digit Sum: 1 Decimal value: 12345 Radix: 10 Radix value: 12345 Decimal Digit Sum: 15 Radix Digit Sum: 15 Decimal value: 123405 Radix: 10 Radix value: 123405 Decimal Digit Sum: 15 Radix Digit Sum: 15 Decimal value: 254 Radix: 16 Radix value: fe Decimal Digit Sum: 29 Radix Digit Sum: 1d Decimal value: 3854 Radix: 16 Radix value: f0e Decimal Digit Sum: 29 Radix Digit Sum: 1d
Haskell
digsum
:: Integral a
=> a -> a -> a
digsum base = f 0
where
f a 0 = a
f a n = f (a + r) q
where
(q, r) = n `quotRem` base
main :: IO ()
main = print $ digsum 16 255 -- "FF": 15 + 15 = 30
- Output:
30
In terms of unfoldr:
import Data.List (unfoldr)
import Data.Tuple (swap)
----------------- SUM DIGITS OF AN INTEGER ---------------
baseDigitSum :: Int -> Int -> Int
baseDigitSum base = sum . unfoldr go
where
go x
| 0 < x = (Just . swap) $ quotRem x base
| otherwise = Nothing
-------------------------- TESTS -------------------------
main :: IO ()
main =
mapM_
print
[ baseDigitSum <$> [2, 8, 10, 16] <*> [255],
baseDigitSum <$> [10] <*> [1, 1234],
baseDigitSum <$> [16] <*> [0xfe, 0xf0e]
]
- Output:
[8,17,12,30] [1,10] [29,29]
Or, we could write sum . fmap digitToInt, or the equivalent but more efficient fusion of it to a single fold: foldr ((+) . digitToInt) 0
import Data.Char (digitToInt, intToDigit, isHexDigit)
import Data.List (transpose)
import Numeric (readInt, showIntAtBase)
------------------ SUM OF INTEGER DIGITS -----------------
digitSum :: String -> Int
digitSum = foldr ((+) . digitToInt) 0
intDigitSum :: Int -> Int -> Int
intDigitSum base =
digitSum
. flip (showIntAtBase base intToDigit) []
-------------------------- TESTS -------------------------
main :: IO ()
main =
mapM_ putStrLn $
unwords
<$> transpose
( ( fmap
=<< flip justifyRight ' '
. succ
. maximum
. fmap length
)
<$> transpose
( [ "Base",
"Digits",
"Value",
"digit string -> sum",
"integer value -> sum"
] :
( ( \(s, b) ->
let v = readBase b s
in [ show b, -- base
show s, -- digits
show v, -- value
-- sum from digit string
show (digitSum s),
-- sum from base and value
show (intDigitSum b v)
]
)
<$> [ ("1", 10),
("1234", 10),
("fe", 16),
("f0e", 16)
]
)
)
)
where
justifyRight n c = (drop . length) <*> (replicate n c <>)
readBase b s = n
where
[(n, _)] = readInt b isHexDigit digitToInt s
- Output:
Base Digits Value digit string -> sum integer value -> sum 10 "1" 1 1 1 10 "1234" 1234 10 10 16 "fe" 254 29 29 16 "f0e" 3854 29 29
Icon and Unicon
This solution works in both languages. This solution assumes the input number is expressed in the indicated base. This assumption differs from that made in some of the other solutions.
procedure main(a)
write(dsum(a[1]|1234,a[2]|10))
end
procedure dsum(n,b)
n := integer((\b|10)||"r"||n)
sum := 0
while sum +:= (0 < n) % b do n /:= b
return sum
end
Sample runs:
->sdi 1 1 ->sdi 1234 10 ->sdi fe 16 29 ->sdi f0e 16 29 ->sdi ff 16 30 ->sdi 255 16 12 ->sdi fffff 16 75 ->sdi 254 16 11 ->
J
digsum=: 10&$: : (+/@(#.inv))
Example use:
digsum 1234
10
10 digsum 254
11
16 digsum 254
29
Illustration of mechanics:
10 #. 1 2 3 4
1234
10 #.inv 1234
1 2 3 4
10 +/ 1 2 3 4
10
10 +/@(#.inv) 1234
10
So #.inv gives us the digits, +/ gives us the sum, and @ glues them together with +/ being a "post processor" for #.inv or, as we say in the expression: (#.inv). We need the parenthesis or inv will try to look up the inverse of +/@#. and that's not well defined.
The rest of it is about using 10 as the default left argument when no left argument is defined. A J verb has a monadic definition (for use with one argument) and a dyadic definition (for use with two arguments) and : derives a new verb where the monadic definition is used from the verb on the left and the dyadic definition is used from the verb on the right. $: is a self reference to the top-level defined verb.
Full examples:
digsum 1
1
digsum 1234
10
16 digsum 16bfe
29
16 digsum 16bf0e
29
Note that J implements numeric types -- J tries to ensure that the semantics of numbers match their mathematical properties. So it doesn't matter how we originally obtained a number.
200+54
254
254
254
2.54e2
254
16bfe
254
254b10 , 1r254b0.1 NB. 10 in base 254 , 0.1 in base 1/254
254 254
Java
import java.math.BigInteger;
public class SumDigits {
public static int sumDigits(long num) {
return sumDigits(num, 10);
}
public static int sumDigits(long num, int base) {
String s = Long.toString(num, base);
int result = 0;
for (int i = 0; i < s.length(); i++)
result += Character.digit(s.charAt(i), base);
return result;
}
public static int sumDigits(BigInteger num) {
return sumDigits(num, 10);
}
public static int sumDigits(BigInteger num, int base) {
String s = num.toString(base);
int result = 0;
for (int i = 0; i < s.length(); i++)
result += Character.digit(s.charAt(i), base);
return result;
}
public static void main(String[] args) {
System.out.println(sumDigits(1));
System.out.println(sumDigits(12345));
System.out.println(sumDigits(123045));
System.out.println(sumDigits(0xfe, 16));
System.out.println(sumDigits(0xf0e, 16));
System.out.println(sumDigits(new BigInteger("12345678901234567890")));
}
}
- Output:
1 15 15 29 29 90
JavaScript
Imperative
function sumDigits(n) {
n += ''
for (var s=0, i=0, e=n.length; i<e; i+=1) s+=parseInt(n.charAt(i),36)
return s
}
for (var n of [1, 12345, 0xfe, 'fe', 'f0e', '999ABCXYZ']) document.write(n, ' sum to ', sumDigits(n), '<br>')
- Output:
1 sum to 1 12345 sum to 15 254 sum to 11 fe sum to 29 f0e sum to 29 999ABCXYZ sum to 162
Functional
ES5
(function () {
'use strict';
// digitsSummed :: (Int | String) -> Int
function digitsSummed(number) {
// 10 digits + 26 alphabetics
// give us glyphs for up to base 36
var intMaxBase = 36;
return number
.toString()
.split('')
.reduce(function (a, digit) {
return a + parseInt(digit, intMaxBase);
}, 0);
}
// TEST
return [1, 12345, 0xfe, 'fe', 'f0e', '999ABCXYZ']
.map(function (x) {
return x + ' -> ' + digitsSummed(x);
})
.join('\n');
})();
1 -> 1 12345 -> 15 254 -> 11 fe -> 29 f0e -> 29 999ABCXYZ -> 162
ES6
(() => {
"use strict";
// -------------- INTEGER DIGITS SUMMED --------------
// digitsSummed :: (Int | String) -> Int
const digitsSummed = number => {
// 10 digits + 26 alphabetics
// give us glyphs for up to base 36
const intMaxBase = 36;
return `${number}`
.split("")
.reduce(
(sofar, digit) => sofar + parseInt(
digit, intMaxBase
),
0
);
};
// ---------------------- TEST -----------------------
return [1, 12345, 0xfe, "fe", "f0e", "999ABCXYZ"]
.map((x) => `${x} -> ${digitsSummed(x)}`)
.join("\n");
})();
- Output:
1 -> 1 12345 -> 15 254 -> 11 fe -> 29 f0e -> 29 999ABCXYZ -> 162
Joy
DEFINE digitsum ==
[swap string] [dup [strtol] dip] [] ifte
[<] [pop] [dup rollup div rotate] [+] linrec.
1 10 digitsum.
1234 10 digitsum.
"fe" 16 digitsum.
"f0e" 16 digitsum.
- Output:
1 10 29 29
jq
The following pipeline will have the desired effect if numbers and/or strings are presented as input:
tostring | explode | map(tonumber - 48) | add
For example:
$ jq -M 'tostring | explode | map(tonumber - 48) | add'
123
6
"123"
6
Julia
Using the built-in digits
function:
sumdigits(n, base=10) = sum(digits(n, base))
Kotlin
// version 1.1.0
const val digits = "0123456789abcdefghijklmnopqrstuvwxyz"
fun sumDigits(ns: String, base: Int): Int {
val n = ns.toLowerCase().trim()
if (base !in 2..36) throw IllegalArgumentException("Base must be between 2 and 36")
if (n.isEmpty()) throw IllegalArgumentException("Number string can't be blank or empty")
var sum = 0
for (digit in n) {
val index = digits.indexOf(digit)
if (index == -1 || index >= base) throw IllegalArgumentException("Number string contains an invalid digit")
sum += index
}
return sum
}
fun main(args: Array<String>) {
val numbers = mapOf("1" to 10, "1234" to 10, "fe" to 16, "f0e" to 16, "1010" to 2, "777" to 8, "16xyz" to 36)
println("The sum of digits is:")
for ((number, base) in numbers) println("$number\tbase $base\t-> ${sumDigits(number, base)}")
}
- Output:
The sum of digits is: 1 base 10 -> 1 1234 base 10 -> 10 fe base 16 -> 29 f0e base 16 -> 29 1010 base 2 -> 2 777 base 8 -> 21 16xyz base 36 -> 109
Lambdatalk
Following Javascript, with 10 digits + 26 alphabetics giving us glyphs for up to base 36
{def sum_digits
{lambda {:n}
{if {W.empty? {W.rest :n}}
then {parseInt {W.first :n} 36}
else {+ {parseInt {W.first :n} 36} {sum_digits {W.rest :n}}}}}}
-> sum_digits
{S.map {lambda {:i} {div}:i sum to {sum_digits :i}}
1 12345 0xfe fe f0e 999ABCXYZ}
->
1 sum to 1
12345 sum to 15
0xfe sum to 62
fe sum to 29
f0e sum to 29
999ABCXYZ sum to 162
Lasso
define br => '<br />\n'
define sumdigits(int, base = 10) => {
fail_if(#base < 2, -1, 'Base need to be at least 2')
local(
out = integer,
divmod
)
while(#int) => {
#divmod = #int -> div(#base)
#int = #divmod -> first
#out += #divmod -> second
}
return #out
}
sumdigits(1)
br
sumdigits(12345)
br
sumdigits(123045)
br
sumdigits(0xfe, 16)
br
sumdigits(0xf0e, 16)
- Output:
1 15 15 29 29
Lingo
on sum_digits (n, base)
sum = 0
repeat while n
m = n / base
sum = sum + n - m * base
n = m
end repeat
return sum
end
put sum_digits(1, 10)
-- 1
put sum_digits(1234, 10)
-- 10
put sum_digits(254, 16) -- 0xfe
-- 29
put sum_digits(3854, 16) -- 0xf0e
-- 29
LiveCode
function sumDigits n, base
local numb
if base is empty then put 10 into base
repeat for each char d in n
add baseConvert(d,base,10) to numb
end repeat
return numb
end sumDigits
Example
put sumdigits(1,10) & comma & \
sumdigits(1234,10) & comma & \
sumdigits(fe,16) & comma & \
sumdigits(f0e,16)
Output
1,10,29,29
Logo
make "digits "0123456789abcdefghijklmnopqrstuvwxyz
to digitvalue :digit
output difference find [equal? :digit item ? :digits] iseq 1 count :digits 1
end
to sumdigits :number [:base 10]
output reduce "sum map.se "digitvalue :number
end
foreach [1 1234 fe f0e] [print (se ? "-> sumdigits ?)]
- Output:
1 -> 1 1234 -> 10 fe -> 29 f0e -> 29
Lua
function sum_digits(n, base)
sum = 0
while n > 0.5 do
m = math.floor(n / base)
digit = n - m * base
sum = sum + digit
n = m
end
return sum
end
print(sum_digits(1, 10))
print(sum_digits(1234, 10))
print(sum_digits(0xfe, 16))
print(sum_digits(0xf0e, 16))
- Output:
1 10 29 29
M2000 Interpreter
module SumDigitisOfAnInteger {
z="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
sumdigits=lambda z (m as string) ->{
integer ret, i
m=ucase$(m)
if len(m)=0 then =ret:exit
for i=1 to len(m):ret+=instr(z, mid$(m,i,1))-1:next
=ret
}
CheckBase=lambda z (m as string, base as integer)->{
if len(m)=0 then Error "not valid input"
if base<2 or base>len(z) then Error "not valid input"
integer ret=1
m=ucase$(m)
for i=1 to len(m)
ret*=instr(z, mid$(m,i,1))<=base
if ret=0 then exit for
next
=ret<>0
}
string n
integer b
stack new {
data "1", 10
data "1234", 10
data ""+0xfe, 10
data "fe", 16
data "f0e", 16
while not empty
read n, b
Print n+" (base:"+b+") sums to "+sumdigits(n)
end while
}
Input "number, base :", n, b
if CheckBase(n, b) then
Print "sums to "+sumdigits(n)
else
Print n;" isn't a number of base "+b
end if
}
SumDigitisOfAnInteger
- Output:
1 (base:10) sums to 1 1234 (base:10) sums to 10 254 (base:10) sums to 11 fe (base:16) sums to 29 f0e (base:16) sums to 29 number, base :12345671234567, 8 sums to 56
Maple
sumDigits := proc( num )
local digits, number_to_string, i;
number_to_string := convert( num, string );
digits := [ seq( convert( h, decimal, hex ), h in seq( parse( i ) , i in number_to_string ) ) ];
return add( digits );
end proc:
sumDigits( 1234 );
sumDigits( "fe" );
- Output:
10 29
Mathematica /Wolfram Language
Total[IntegerDigits[1234]]
Total[IntegerDigits[16^^FE, 16]]
- Output:
10 29
Miranda
main :: [sys_message]
main = [Stdout (lay (map fmt tests))]
where tests = [(1,10), (1234,10), (0xfe,16), (0xf0e,16)]
fmt (d,b) = (shownum d) ++ "_" ++ (shownum b) ++ " -> " ++
(shownum (digitsum b d))
digitsum :: num->num->num
digitsum base 0 = 0
digitsum base n = n mod base + digitsum base (n div base)
- Output:
1_10 -> 1 1234_10 -> 10 254_16 -> 29 3854_16 -> 29
МК-61/52
П0 <-> П1 Сx П2 ИП1 ^ ИП0 / [x]
П3 ИП0 * - ИП2 + П2 ИП3 П1 x=0
05 ИП2 С/П
ML
Function with first argument valid base, second argument number
local
open IntInf
in
fun summDigits base = ( fn 0 => 0 | n => n mod base + summDigits base (n div base ) )
end;
summDigits 10 1 ;
summDigits 10 1234 ;
summDigits 16 0xfe ;
summDigits 16 0xf0e ;
summDigits 4332489243570890023480923 0x8092eeac80923984098234098efad2109ce341000c3f0912527130 ;
output
val it = 1: IntInf.int
val it = 10: IntInf.int
val it = 29: IntInf.int
val it = 29: IntInf.int
val it = 4745468831557628080368936: IntInf.int
mLite
Left in the to_radix even though not used in the solution.
exception :radix_out_of_range and :unknown_digit;
fun to_radix (0, radix, result) = implode result
| (n, radix > 36, result) = raise :radix_out_of_range
| (n rem radix > 10, radix, result) =
to_radix (n div radix, radix,
chr (n rem radix + ord #"a" - 10) :: result)
| (n, radix, result) =
to_radix (n div radix, radix,
chr (n rem radix + ord #"0") :: result)
| (n, radix) = to_radix (n, radix, [])
;
fun from_radix (s, radix) =
let val digits = explode "0123456789abcdefghijklmnopqrstuvwxyz";
val len_digits = len digits;
fun index (_, n >= radix, c) = raise :unknown_digit
| (h :: t, n, c = h) = n
| (_ :: t, n, c) = index (t, n + 1, c)
| c = index (digits, 0, c)
and conv ([], radix, power, n) = n
| (h :: t, radix, power, n) =
conv (t, radix, power * radix, index h * power + n)
| (s, radix) = conv (rev ` explode s, radix, 1, 0)
in
conv (s, radix)
end
;
fun sumdig
([], base, n) = n
| (h :: t, base, n) = sumdig (t, base, from_radix (implode [h], base) + n)
| (s, base) = sumdig (explode s, base, 0)
;
fun shosum (s, b) = (print "sum of digits of "; print s; print " (base "; print b; print ") = "; println ` sumdig (s, b))
;
shosum ("10fg",17);
shosum ("deadbeef",16);
shosum ("1101010101010101010101010101010101010101010101010101010101010101010101010101010101010101",2);
shosum ("thequickbrownfoxjumpsoverthelazydog",36);
Output
sum of digits of 10fg (base 17) = 32 sum of digits of deadbeef (base 16) = 104 sum of digits of 1101010101010101010101010101010101010101010101010101010101010101010101010101010101010101 (base 2) = 45 sum of digits of thequickbrownfoxjumpsoverthelazydog (base 36) = 788
Modula-2
MODULE SumOFDigits;
FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;
FROM Conversions IMPORT
StrBaseToLong;
PROCEDURE SumOfDigitBase(N: LONGCARD; Base: CARDINAL): CARDINAL;
VAR
Tmp, LBase: LONGCARD;
Digit, Sum : CARDINAL;
BEGIN
Digit := 0;
Sum := 0;
LBase := Base;
WHILE N > 0 DO
Tmp := N / LBase;
Digit := N - LBase * Tmp;
N := Tmp;
INC(Sum, Digit);
END;
RETURN Sum;
END SumOfDigitBase;
VAR
Num: LONGCARD;
BEGIN
WriteString(' 1 sums to ');
WriteInt(SumOfDigitBase(1, 10), 1);
WriteLn;
WriteString('1234 sums to ');
WriteInt(SumOfDigitBase(1234, 10), 1);
WriteLn;
IF StrBaseToLong('FE', 16, Num) THEN
WriteString(' $FE sums to ');
WriteInt(SumOfDigitBase(Num, 16), 1);
WriteLn;
END;
IF StrBaseToLong('F0E', 16, Num) THEN
WriteString('$F0E sums to ');
WriteInt(SumOfDigitBase(Num, 16), 1);
WriteLn;
END;
WriteString('MAX(LONGCARD) (in dec) sums to ');
WriteInt(SumOfDigitBase(MAX(LONGCARD), 10), 1);
WriteLn;
END SumOFDigits.
- Output:
1 sums to 1 1234 sums to 10 $FE sums to 29 $F0E sums to 29 MAX(LONGCARD) (in dec) sums to 87
NetRexx
Strings
Processes data as text from the command line. Provides a representative sample if no input is supplied:
/* NetRexx */
options replace format comments java crossref symbols nobinary
parse arg input
inputs = ['1234', '01234', '0xfe', '0xf0e', '0', '00', '0,2' '1', '070', '77, 8' '0xf0e, 10', '070, 16', '0xf0e, 36', '000999ABCXYZ, 36', 'ff, 16', 'f, 10', 'z, 37'] -- test data
if input.length() > 0 then inputs = [input] -- replace test data with user input
loop i_ = 0 to inputs.length - 1
in = inputs[i_]
parse in val . ',' base .
dSum = sumDigits(val, base)
say 'Sum of digits for integer "'val'" for a given base of "'base'":' dSum'\-'
-- Carry the exercise to it's logical conclusion and sum the results to give a single digit in range 0-9
loop while dSum.length() > 1 & dSum.datatype('n')
dSum = sumDigits(dSum, 10)
say ',' dSum'\-'
end
say
end i_
-- Sum digits of an integer
method sumDigits(val = Rexx, base = Rexx '') public static returns Rexx
rVal = 0
parse normalizeValue(val, base) val base .
loop label digs for val.length()
-- loop to extract digits from input and sum them
parse val dv +1 val
do
rVal = rVal + Integer.valueOf(dv.toString(), base).intValue()
catch ex = NumberFormatException
rVal = 'NumberFormatException:' ex.getMessage()
leave digs
end
end digs
return rVal
-- Clean up the input, normalize the data and determine which base to use
method normalizeValue(inV = Rexx, base = Rexx '') private static returns Rexx
inV = inV.strip('l')
base = base.strip()
parse inV xpref +2 . -
=0 opref +1 . -
=0 . '0x' xval . ',' . -
=0 . '0' oval . ',' . -
=0 dval .
select
when xpref = '0x' & base.length() = 0 then do
-- value starts with '0x' and no base supplied. Assign hex as base
inval = xval
base = 16
end
when opref = '0' & base.length() = 0 then do
-- value starts with '0' and no base supplied. Assign octal as base
inval = oval
base = 8
end
otherwise do
inval = dval
end
end
if base.length() = 0 then base = 10 -- base not set. Assign decimal as base
if inval.length() <= 0 then inval = 0 -- boundary condition. Invalid input or a single zero
rVal = inval base
return rVal
- Output:
Sum of digits for integer "1234" for a given base of "": 10, 1 Sum of digits for integer "01234" for a given base of "": 10, 1 Sum of digits for integer "0xfe" for a given base of "": 29, 11, 2 Sum of digits for integer "0xf0e" for a given base of "": 29, 11, 2 Sum of digits for integer "0" for a given base of "": 0 Sum of digits for integer "00" for a given base of "": 0 Sum of digits for integer "0" for a given base of "2": 0 Sum of digits for integer "070" for a given base of "": 7 Sum of digits for integer "77" for a given base of "8": 14, 5 Sum of digits for integer "070" for a given base of "16": 7 Sum of digits for integer "0xf0e" for a given base of "36": 62, 8 Sum of digits for integer "000999ABCXYZ" for a given base of "36": 162, 9 Sum of digits for integer "ff" for a given base of "16": 30, 3 Sum of digits for integer "f" for a given base of "10": NumberFormatException: For input string: "f" Sum of digits for integer "z" for a given base of "37": NumberFormatException: radix 37 greater than Character.MAX_RADIX
Type int
Processes sample data as int arrays:
/* NetRexx */
options replace format comments java crossref symbols binary
inputs = [[int 1234, 10], [octal('01234'), 8], [0xfe, 16], [0xf0e,16], [8b0, 2], [16b10101100, 2], [octal('077'), 8]] -- test data
loop i_ = 0 to inputs.length - 1
in = inputs[i_, 0]
ib = inputs[i_, 1]
dSum = sumDigits(in, ib)
say 'Sum of digits for integer "'Integer.toString(in, ib)'" for a given base of "'ib'":' dSum'\-'
-- Carry the exercise to it's logical conclusion and sum the results to give a single digit in range 0-9
loop while dSum.length() > 1 & dSum.datatype('n')
dSum = sumDigits(dSum, 10)
say ',' dSum'\-'
end
say
end i_
-- Sum digits of an integer
method sumDigits(val = int, base = int 10) public static returns Rexx
rVal = Rexx 0
sVal = Rexx(Integer.toString(val, base))
loop label digs for sVal.length()
-- loop to extract digits from input and sum them
parse sVal dv +1 sVal
do
rVal = rVal + Integer.valueOf(dv.toString(), base).intValue()
catch ex = NumberFormatException
rVal = 'NumberFormatException:' ex.getMessage()
leave digs
end
end digs
return rVal
-- if there's a way to insert octal constants into an int in NetRexx I don't remember it
method octal(oVal = String) private constant returns int signals NumberFormatException
iVal = Integer.valueOf(oVal, 8).intValue()
return iVal
- Output:
Sum of digits for integer "1234" for a given base of "10": 10, 1 Sum of digits for integer "1234" for a given base of "8": 10, 1 Sum of digits for integer "fe" for a given base of "16": 29, 11, 2 Sum of digits for integer "f0e" for a given base of "16": 29, 11, 2 Sum of digits for integer "0" for a given base of "2": 0 Sum of digits for integer "10101100" for a given base of "2": 4 Sum of digits for integer "77" for a given base of "8": 14, 5
Never
func sum_digits(n : int, base : int) -> int {
var sum = 0;
do
{
sum = sum + n % base;
n = n / base
}
while (n != 0);
sum
}
func main() -> int {
print(sum_digits(1, 10));
print(sum_digits(12345, 10));
print(sum_digits(123045, 10));
print(sum_digits(0xfe, 16));
print(sum_digits(0Xf0e, 16));
0
}
- Output:
1 15 15 29 29
Nim
proc sumdigits(n, base: Natural): Natural =
var n = n
while n > 0:
result += n mod base
n = n div base
echo sumDigits(1, 10)
echo sumDigits(12345, 10)
echo sumDigits(123045, 10)
echo sumDigits(0xfe, 16)
echo sumDigits(0xf0e, 16)
- Output:
1 15 15 29 29
Nu
def digits [r: int] {
generate {|n| if $n < $r { {out: $n} } else {out: ($n mod $r) next: ($n // $r)} } $in
}
[[0 2] [1 10] [1234 10] [0xfe 16] [0xf0e 16]] | each {|p| $p.0 | digits $p.1 | math sum }
- Output:
╭───┬────╮ │ 0 │ 0 │ │ 1 │ 1 │ │ 2 │ 10 │ │ 3 │ 29 │ │ 4 │ 29 │ ╰───┴────╯
Oberon-2
MODULE SumDigits;
IMPORT Out;
PROCEDURE Sum(n: LONGINT;base: INTEGER): LONGINT;
VAR
sum: LONGINT;
BEGIN
sum := 0;
WHILE (n > 0) DO
INC(sum,(n MOD base));
n := n DIV base
END;
RETURN sum
END Sum;
BEGIN
Out.String("1 : ");Out.LongInt(Sum(1,10),10);Out.Ln;
Out.String("1234 : ");Out.LongInt(Sum(1234,10),10);Out.Ln;
Out.String("0FEH : ");Out.LongInt(Sum(0FEH,16),10);Out.Ln;
Out.String("OF0EH : ");Out.LongInt(Sum(0F0EH,16),10);Out.Ln
END SumDigits.
- Output:
1 : 1 1234 : 10 0FEH : 29 OF0EH : 29
Objeck
class SumDigits {
function : Main(args : String[]) ~ Nil {
SumDigit(1)->PrintLine();
SumDigit(12345)->PrintLine();
SumDigit(0xfe, 16)->PrintLine();
SumDigit(0xf0e, 16)->PrintLine();
}
function : SumDigit(value : Int, base : Int := 10) ~ Int {
sum := 0;
do {
sum += value % base;
value /= base;
}
while(value <> 0);
return sum;
}
}
- Output:
1 15 29 29
OCaml
let sum_digits ~digits ~base =
let rec aux sum x =
if x <= 0 then sum else
aux (sum + x mod base) (x / base)
in
aux 0 digits
let () =
Printf.printf "%d %d %d %d %d\n"
(sum_digits 1 10)
(sum_digits 12345 10)
(sum_digits 123045 10)
(sum_digits 0xfe 16)
(sum_digits 0xf0e 16)
- Output:
1 15 15 29 29
Oforth
: sumDigits(n, base) 0 while( n ) [ n base /mod ->n + ] ;
Usage :
sumDigits(1, 10) println
sumDigits(1234, 10) println
sumDigits(0xfe, 16) println
sumDigits(0xf0e, 16) println
- Output:
1 10 29 29
Ol
(define (sum n base)
(if (zero? n)
n
(+ (mod n base) (sum (div n base) base))))
(print (sum 1 10))
; ==> 1
(print (sum 1234 10))
; ==> 10
(print (sum #xfe 16))
; ==> 29
(print (sum #xf0e 16))
; ==> 29
PARI/GP
dsum(n,base)=my(s); while(n, s += n%base; n \= base); s
Also the built-in sumdigits
can be used for base 10.
Pascal
Program SumOFDigits;
function SumOfDigitBase(n:UInt64;base:LongWord): LongWord;
var
tmp: Uint64;
digit,sum : LongWord;
Begin
digit := 0;
sum := 0;
While n > 0 do
Begin
tmp := n div base;
digit := n-base*tmp;
n := tmp;
inc(sum,digit);
end;
SumOfDigitBase := sum;
end;
Begin
writeln(' 1 sums to ', SumOfDigitBase(1,10));
writeln('1234 sums to ', SumOfDigitBase(1234,10));
writeln(' $FE sums to ', SumOfDigitBase($FE,16));
writeln('$FOE sums to ', SumOfDigitBase($F0E,16));
writeln('18446744073709551615 sums to ', SumOfDigitBase(High(Uint64),10));
end.
- output
1 sums to 1 1234 sums to 10 $FE sums to 29 $FOE sums to 29 18446744073709551615 sums to 87
PascalABC.NET
function SumDigits(n, base: integer): integer;
begin
var sum := 0;
while n > 0 do
begin
sum += n mod base;
n := n div base;
end;
Result := sum;
end;
begin
Print(SumDigits(1, 10));
Print(SumDigits(1234, 10));
Print(SumDigits($FE, 16));
Print(SumDigits($F0E, 16));
end.
- Output:
1 10 29 29
Perl
#!/usr/bin/perl
use strict;
use warnings;
my %letval = map { $_ => $_ } 0 .. 9;
$letval{$_} = ord($_) - ord('a') + 10 for 'a' .. 'z';
$letval{$_} = ord($_) - ord('A') + 10 for 'A' .. 'Z';
sub sumdigits {
my $number = shift;
my $sum = 0;
$sum += $letval{$_} for (split //, $number);
$sum;
}
print "$_ sums to " . sumdigits($_) . "\n"
for (qw/1 1234 1020304 fe f0e DEADBEEF/);
- Output:
1 sums to 1 1234 sums to 10 1020304 sums to 10 fe sums to 29 f0e sums to 29 DEADBEEF sums to 104
The ntheory module also does this, for a solution similar to Raku, with identical output.
use ntheory "sumdigits";
say sumdigits($_,36) for (qw/1 1234 1020304 fe f0e DEADBEEF/);
Phix
function sum_digits(integer n, integer base) integer res = 0 while n do res += remainder(n,base) n = floor(n/base) end while return res end function ?sum_digits(1,10) ?sum_digits(1234,10) ?sum_digits(#FE,16) ?sum_digits(#F0E,16)
- Output:
1 10 29 29
PHP
<?php
function sumDigits($num, $base = 10) {
$s = base_convert($num, 10, $base);
foreach (str_split($s) as $c)
$result += intval($c, $base);
return $result;
}
echo sumDigits(1), "\n";
echo sumDigits(12345), "\n";
echo sumDigits(123045), "\n";
echo sumDigits(0xfe, 16), "\n";
echo sumDigits(0xf0e, 16), "\n";
?>
- Output:
1 15 15 29 29
Picat
go =>
println(1=sum_digits(1)),
println(1234=sum_digits(1234)),
println('"1234"'=sum_digits("1234")),
println(1234=sum_digits(1234)),
println('"fe(16)"'=sum_digits("fe", 16)), % -> 29
println('"f0e(16)"'=sum_digits("f0e", 16)), % -> 29
println('"FOE(16)"'=sum_digits("F0E", 16)), % -> 29
println('123(16)'=sum_digits(123, 16)), % -> 6
println('"123"(16)'=sum_digits("123", 16)), % -> 6
println('"1110010101"(2)'=sum_digits("1110010101", 2)),
println('"picat"(36)'=sum_digits("picat", 36)),
Alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
Rand = [Alpha[1+random2() mod Alpha.length] : _ in 1..40],
println(rand=Rand),
println(rand_sum_digits=sum_digits(Rand, 36)),
println("\nTesting exceptions"),
catch(println(sum_digits(Rand, 10)), E, println(exception=E)), % bad_base
catch(println(sum_digits("picat_is_fun!", 36)), E2, println(exeption=E2)), % bad_digit
catch(println(sum_digits("11100101", 1)),E3,println(exception=E3)), % bad base
catch(println(sum_digits("hi", 100)), E4, println(exception=E4)), % bad base
% Output base
println("\nOutput base"),
println('"fe(16,10)"'=sum_digits("fe", 16,10)), % -> 29
println('"fe(16,16)"'=sum_digits("fe", 16,16)), % -> 1d
println('"f0e(16,16)"'=sum_digits("f0e", 16,16)), % -> 1d
println('"1110010101"(2,2)'=sum_digits("1110010101", 2,2)), % -> 110
println('"rosetta(36,36)"'=sum_digits("rosetta", 36,36)), % 4h
nl.
% base 10
sum_digits(N) = sum([D.to_integer() : D in N.to_string()]), integer(N) => true.
sum_digits(N) = sum([D.to_integer() : D in N]), string(N) => true.
% base Base
sum_digits(N,Base) = sum_digits(N.to_string(), Base), integer(N) => true.
sum_digits(N,Base) = sum_digits(N,Base,10), string(N) => true.
sum_digits(N,Base,OutputBase) = Sum, string(N) =>
N := to_lowercase(N),
Alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
Map = new_map([A=I : {A,I} in zip(Alpha,0..length(Alpha)-1)]),
M = [Map.get(I,-1) : I in N],
if max(M) >= Base ; Base < 2; Base > Alpha.length then
throw $bad_base('N'=N,base=Base)
elseif min(M) == -1 then
throw $bad_digits('N'=N,bad=[D : D in N, not Map.has_key(D) ])
else
if OutputBase != 10 then
Sum = dec_to_base(sum(M),OutputBase)
else
Sum = sum(M)
end
end.
dec_to_base(N, Base) = [Alpha[D+1] : D in reverse(Res)] =>
Alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
Res = [],
while (N > 0)
R := N mod Base,
N := N div Base,
Res := Res ++ [R]
end.
base_to_dec(N, Base) = base_to_dec(N.to_string(), Base), integer(N) => true.
base_to_dec(N, Base) = Res =>
println($base_to_dec(N, Base)),
Alpha = "0123456789abcdefghijklmnopqrstuvwxyz",
Map = new_map([A=I : {A,I} in zip(Alpha,0..length(Alpha)-1)]),
Len = N.length,
Res = sum([Map.get(D)*Base**(Len-I) : {D,I} in zip(N,1..N.length)]).
- Output:
1 = 1 1234 = 10 "1234" = 10 1234 = 10 "fe(16)" = 29 "f0e(16)" = 29 "FOE(16)" = 29 123(16) = 6 "123"(16) = 6 "1110010101"(2) = 6 "picat"(36) = 94 rand = ic5hprdfzrcs2h9hqko8dedirtk3fd6fs1sd7sxd rand_sum_digits = 694 Testing exceptions exception = bad_base(N = ic5hprdfzrcs2h9hqko8dedirtk3fd6fs1sd7sxd,base = 10) exeption = bad_digits(N = picat_is_fun!,bad = __!) exception = bad_base(N = 11100101,base = 1) exception = bad_base(N = hi,base = 100) Output base "fe(16,10)" = 29 "fe(16,16)" = 1d "f0e(16,16)" = 1d "1110010101"(2,2) = 110 "rosetta(36,36)" = 4h
PicoLisp
(de sumDigits (N Base)
(or
(=0 N)
(+ (% N Base) (sumDigits (/ N Base) Base)) ) )
Test:
: (sumDigits 1 10)
-> 1
: (sumDigits 1234 10)
-> 10
: (sumDigits (hex "fe") 16)
-> 29
: (sumDigits (hex "f0e") 16)
-> 29
PL/I
sum_digits: procedure options (main); /* 4/9/2012 */
declare ch character (1);
declare (k, sd) fixed;
on endfile (sysin) begin; put skip data (sd); stop; end;
sd = 0;
do forever;
get edit (ch) (a(1)); put edit (ch) (a);
k = index('abcdef', ch);
if k > 0 then /* we have a base above 10 */
sd = sd + 9 + k;
else
sd = sd + ch;
end;
end sum_digits;
results:
5c7e SD= 38; 10111000001 SD= 5;
PL/M
100H:
BDOS: PROCEDURE (F,A); DECLARE F BYTE, A ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; GO TO 0; END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;
PRINT$NUM: PROCEDURE (N);
DECLARE S (8) BYTE INITIAL ('.....',13,10,'$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P-1;
C = N MOD 10 + '0';
IF (N := N/10) > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT$NUM;
DIGIT$SUM: PROCEDURE (N, BASE) BYTE;
DECLARE N ADDRESS, (BASE, SUM) BYTE;
SUM = 0;
DO WHILE N > 0;
SUM = SUM + N MOD BASE;
N = N / BASE;
END;
RETURN SUM;
END DIGIT$SUM;
CALL PRINT$NUM(DIGIT$SUM( 1, 10));
CALL PRINT$NUM(DIGIT$SUM( 1234, 10));
CALL PRINT$NUM(DIGIT$SUM( 0FEH, 16));
CALL PRINT$NUM(DIGIT$SUM(0F0EH, 16));
CALL EXIT;
EOF
- Output:
1 10 29 29
PowerShell
function Get-DigitalSum ([string] $number, $base = 10)
{
if ($number.ToCharArray().Length -le 1) { [Convert]::ToInt32($number, $base) }
else
{
$result = 0
foreach ($character in $number.ToCharArray())
{
$digit = [Convert]::ToInt32(([string]$character), $base)
$result += $digit
}
return $result
}
}
- Output:
PS C:\> Get-DigitalSum 1 1 PS C:\> Get-DigitalSum 1234 10 PS C:\> Get-DigitalSum fe 16 29 PS C:\> Get-DigitalSum f0e 16 29
Alternative Implementation
function Get-DigitalSum ([string] $number, $base = 10)
{
Invoke-Expression (($number.ToCharArray() | ForEach-Object {[string][convert]::ToInt16($_, $base)}) -join "+")
}
- Output:
PS C:\> Get-DigitalSum 1 1 PS C:\> Get-DigitalSum 1234 10 PS C:\> Get-DigitalSum fe 16 29 PS C:\> Get-DigitalSum f0e 16 29
Prolog
digit_sum(N, Base, Sum):-
digit_sum(N, Base, Sum, 0).
digit_sum(N, Base, Sum, S1):-
N < Base,
!,
Sum is S1 + N.
digit_sum(N, Base, Sum, S1):-
divmod(N, Base, M, Digit),
S2 is S1 + Digit,
digit_sum(M, Base, Sum, S2).
test_digit_sum(N, Base):-
digit_sum(N, Base, Sum),
writef('Sum of digits of %w in base %w is %w.\n', [N, Base, Sum]).
main:-
test_digit_sum(1, 10),
test_digit_sum(1234, 10),
test_digit_sum(0xfe, 16),
test_digit_sum(0xf0e, 16).
- Output:
Sum of digits of 1 in base 10 is 1. Sum of digits of 1234 in base 10 is 10. Sum of digits of 254 in base 16 is 29. Sum of digits of 3854 in base 16 is 29.
Python
from numpy import base_repr
def sumDigits(num, base=10):
return sum(int(x, base) for x in list(base_repr(num, base)))
or
def sumDigits(num, base=10):
if base < 2:
print("Error: base must be at least 2")
return
num, sum = abs(num), 0
while num >= base:
num, rem = divmod(num, base)
sum += rem
return sum + num
print(sumDigits(1))
print(sumDigits(12345))
print(sumDigits(-123045))
print(sumDigits(0xfe, 16))
print(sumDigits(0xf0e, 16))
- Output:
1 15 15 29 29
The following does no error checking and requires non-base 10 numbers passed as string arguments:
def sumDigits(num, base=10):
return sum(int(x, base) for x in str(num))
print(sumDigits(1))
print(sumDigits(12345))
print(sumDigits(123045))
print(sumDigits('fe', 16))
print(sumDigits("f0e", 16))
Each digit is base converted as it's summed.
Or, as a composition of re-usable abstractions:
'''Sum digits of an integer'''
from functools import reduce
# digitSum :: Int -> Int -> Int
def digitSum(base):
'''The sum of the digits of a
natural number in a given base.
'''
return lambda n: reduce(
lambda a, x: a + digitToInt(x),
showIntAtBase(base)(digitChar)(n)(''),
0
)
# --------------------------TEST---------------------------
# main :: IO ()
def main():
'''Digit sums of numbers in bases 10 and 16:'''
print(
fTable(main.__doc__)(
lambda nb: showIntAtBase(nb[0])(
digitChar
)(nb[1])(' in base ') + str(nb[0])
)(repr)(
uncurry(digitSum)
)([(10, 1), (10, 10), (16, 0xfe), (16, 0xf0e)])
)
# -------------------------DISPLAY-------------------------
# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)
# -------------------------GENERIC-------------------------
# digitChar :: Int to Char
def digitChar(n):
'''A digit char for integers drawn from [0..15]'''
return ' ' if 0 > n or 15 < n else '0123456789abcdef'[n]
# digitToInt :: Char -> Int
def digitToInt(c):
'''The integer value of any digit character
drawn from the 0-9, A-F or a-f ranges.
'''
oc = ord(c)
if 48 > oc or 102 < oc:
return None
else:
dec = oc - 48 # ord('0')
hexu = oc - 65 # ord('A')
hexl = oc - 97 # ord('a')
return dec if 9 >= dec else (
10 + hexu if 0 <= hexu <= 5 else (
10 + hexl if 0 <= hexl <= 5 else None
)
)
# showIntAtBase :: Int -> (Int -> String) -> Int -> String -> String
def showIntAtBase(base):
'''String representation of an integer in a given base,
using a supplied function for the string representation
of digits.
'''
def wrap(toChr, n, rs):
def go(nd, r):
n, d = nd
r_ = toChr(d) + r
return go(divmod(n, base), r_) if 0 != n else r_
return 'unsupported base' if 1 >= base else (
'negative number' if 0 > n else (
go(divmod(n, base), rs))
)
return lambda toChr: lambda n: lambda rs: (
wrap(toChr, n, rs)
)
# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
'''A function over a tuple,
derived from a curried function.
'''
return lambda tpl: f(tpl[0])(tpl[1])
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Digit sums of numbers in bases 10 and 16: 1 in base 10 -> 1 10 in base 10 -> 1 fe in base 16 -> 29 f0e in base 16 -> 29
Quackery
[ temp put 0
[ over while
swap temp share /mod
rot + again ]
nip temp release ] is digitsum ( n n --> n )
1 10 digitsum echo sp
1234 10 digitsum echo sp
hex FE 16 digitsum echo sp
hex F0E 16 digitsum echo
- Output:
1 10 29 29
R
change.base <- function(n, base)
{
ret <- integer(as.integer(logb(x=n, base=base))+1L)
for (i in 1:length(ret))
{
ret[i] <- n %% base
n <- n %/% base
}
return(ret)
}
sum.digits <- function(n, base=10)
{
if (base < 2)
stop("base must be at least 2")
return(sum(change.base(n=n, base=base)))
}
sum.digits(1)
sum.digits(12345)
sum.digits(123045)
sum.digits(0xfe, 16)
sum.digits(0xf0e, 16)
Racket
#lang racket
(define (sum-of-digits n base (sum 0))
(if (= n 0)
sum
(sum-of-digits (quotient n base)
base
(+ (remainder n base) sum))))
(for-each
(lambda (number-base-pair)
(define number (car number-base-pair))
(define base (cadr number-base-pair))
(displayln (format "(~a)_~a = ~a" number base (sum-of-digits number base))))
'((1 10) (1234 10) (#xfe 16) (#xf0e 16)))
; outputs:
; (1)_10 = 1
; (1234)_10 = 10
; (254)_16 = 29
; (3854)_16 = 29
Raku
(formerly Perl 6) This will handle input numbers in any base from 2 to 36. The results are in base 10.
say Σ $_ for <1 1234 1020304 fe f0e DEADBEEF>;
sub Σ { [+] $^n.comb.map: { :36($_) } }
- Output:
1 10 10 29 29 104
REXX
version 1
/* REXX **************************************************************
* 04.12.2012 Walter Pachl
**********************************************************************/
digits='0123456789ABCDEF'
Do i=1 To length(digits)
d=substr(digits,i,1)
value.d=i-1
End
Call test '1'
Call test '1234'
Call test 'FE'
Call test 'F0E'
Exit
test:
Parse Arg number
res=right(number,4)
dsum=0
Do While number<>''
Parse Var number d +1 number
dsum=dsum+value.d
End
Say res '->' right(dsum,2)
Return
- Output:
1 -> 1 1234 -> 10 FE -> 29 F0E -> 29
version 2
This REXX version allows:
- leading signs (+ -)
- decimal points
- leading and/or trailing whitespace
- numerals may be in mixed case
- numbers may include commas (,)
- numbers may be expressed up to base 36
- numbers may be any length (size)
/*REXX program sums the decimal digits of natural numbers in any base up to base 36.*/
parse arg z /*obtain optional argument from the CL.*/
if z='' | z="," then z= '1 1234 fe f0e +F0E -666.00 11111112222222333333344444449'
do j=1 for words(z); _=word(z, j) /*obtain a number from the list. */
say right(sumDigs(_), 9) ' is the sum of the digits for the number ' _
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: procedure; arg x; @=123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ; $=0
do k=1 to length(x); $=$ + pos( substr(x, k, 1), @); end /*k*/
return $
output when using the default input:
1 is the sum of the digits for the number 1 10 is the sum of the digits for the number 1234 29 is the sum of the digits for the number fe 29 is the sum of the digits for the number f0e 29 is the sum of the digits for the number +F0E 18 is the sum of the digits for the number -666.00 79 is the sum of the digits for the number 11111112222222333333344444449
version 3
This REXX version is an optimized version limited to base ten integers only (for fast decomposing of a decimal number's numerals).
The function makes use of REXX's parse statement
/*REXX program sums the decimal digits of integers expressed in base ten. */
parse arg z /*obtain optional argument from the CL.*/
if z='' | z="," then z=copies(7, 108) /*let's generate a pretty huge integer.*/
numeric digits 1 + max( length(z) ) /*enable use of gigantic numbers. */
do j=1 for words(z); _=abs(word(z, j)) /*ignore any leading sign, if present.*/
say sumDigs(_) ' is the sum of the digits for the number ' _
end /*j*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: procedure; parse arg N 1 $ 2 ? /*use first decimal digit for the sum. */
do while ?\==''; parse var ? _ 2 ?; $=$+_; end /*while*/
return $
output when using the default input:
756 is the sum of the digits for the number 777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777
Ring
see "sum digits of 1 = " + sumDigits(1) + nl
see "sum digits of 1234 = " + sumDigits(1234) + nl
func sumDigits n
sum = 0
while n > 0.5
m = floor(n / 10)
digit = n - m * 10
sum = sum + digit
n = m
end
return sum
RPL
RPL can natively handle numbers in bases 2,8,10 or 16, but displays them according to the current base mode. For example, when you type #256d, it will be immediately turned into #100h if HEX mode is active. As there is no way to force the base mode to the base used for input, switching to string handling looks like a reasonable approach for code clarity and size. A side effect is that it can proceed with numbers in any base between 2 and 36.
≪ →STR → digits
≪ 0
1 digits SIZE FOR j
digits j DUP SUB NUM
IF DUP 48 ≥ OVER 57 ≤ AND
THEN 48 -
ELSE IF DUP 65 ≥ OVER 90 ≤ AND
THEN 55 -
ELSE NOT
END END
+ NEXT
≫ ≫ '∑DIGITS' STO
1 ∑DIGITS 1234 ∑DIGITS #FEh ∑DIGITS #F0Eh ∑DIGITS
- Output:
4: 1 3: 10 2: 29 1: 29
Ruby
def sum_digits(num, base = 10) = num.digits(base).sum
Rust
Using an Iterator
This solution creates an iterator which yields the digits of a given number using a given base and then utilizes the `sum` method which is implemented automatically on iterators.
struct DigitIter(usize, usize);
impl Iterator for DigitIter {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
if self.0 == 0 {
None
} else {
let ret = self.0 % self.1;
self.0 /= self.1;
Some(ret)
}
}
}
fn main() {
println!("{}", DigitIter(1234,10).sum::<usize>());
}
Scala
def sumDigits(x:BigInt, base:Int=10):BigInt=sumDigits(x.toString(base), base)
def sumDigits(x:String, base:Int):BigInt = x map(_.asDigit) sum
Test:
sumDigits(0) // => 0
sumDigits(0, 2) // => 0
sumDigits(0, 16) // => 0
sumDigits("00", 2) // => 0
sumDigits("00", 10) // => 0
sumDigits("00", 16) // => 0
sumDigits(1234) // => 10
sumDigits(0xfe) // => 11
sumDigits(0xfe, 16) // => 29
sumDigits(0xf0e, 16) // => 29
sumDigits(077) // => 9
sumDigits(077, 8) // => 14
sumDigits("077", 8) // => 14
sumDigits("077", 10) // => 14
sumDigits("077", 16) // => 14
sumDigits("0xf0e", 36) // => 62
sumDigits("000999ABCXYZ", 36) // => 162
sumDigits(BigInt("12345678901234567890")) // => 90
sumDigits("12345678901234567890", 10) // => 90
Scheme
This requires taking an input number (which may be input in any supported base), and a required target base to represent the number (as numbers entered in a given base do not preserve that base internally, and we may want to use unsupported bases).
The output is the sum of the digits in the target base, displayed in base 10.
(import (scheme base)
(scheme write))
;; convert number to a list of digits, in desired base
(define (number->list n base)
(let loop ((res '())
(num n))
(if (< num base)
(cons num res)
(loop (cons (remainder num base) res)
(quotient num base)))))
;; return the sum of digits of n in given base
(define (sum-digits n base)
(apply + (number->list n base)))
;; test cases:
;; -- this displays each number in its original, given-base, for comparison
;; -- target-base is the base in which to consider each number represented, for summing the digits
(define (test-case n given-base target-base)
(display (string-append (number->string n given-base)
" base "
(number->string given-base)
" has decimal value "
(number->string n)
" => sum of digits in base "
(number->string target-base)
" is "
(number->string (sum-digits n target-base))))
(newline))
(test-case 1 10 10)
(test-case 1234 10 10)
(test-case #o1234 8 10)
(test-case #xFE 16 16)
(test-case #xFE 16 10)
(test-case #xF0E 16 16)
(test-case #b1101010101010101010101010101010101 2 2)
(test-case #b1101010101010101010101010101010101 2 10)
(test-case #b1101010101010101010101010101010101 2 1000)
- Output:
The final sum is always in base 10:
1 base 10 has decimal value 1 => sum of digits in base 10 is 1 1234 base 10 has decimal value 1234 => sum of digits in base 10 is 10 1234 base 8 has decimal value 668 => sum of digits in base 10 is 20 fe base 16 has decimal value 254 => sum of digits in base 16 is 29 fe base 16 has decimal value 254 => sum of digits in base 10 is 11 f0e base 16 has decimal value 3854 => sum of digits in base 16 is 29 1101010101010101010101010101010101 base 2 has decimal value 14316557653 => sum of digits in base 2 is 18 1101010101010101010101010101010101 base 2 has decimal value 14316557653 => sum of digits in base 10 is 46 1101010101010101010101010101010101 base 2 has decimal value 14316557653 => sum of digits in base 1000 is 1540
Seed7
$ include "seed7_05.s7i";
const func integer: sumDigits (in var integer: num, in integer: base) is func
result
var integer: sum is 0;
begin
while num > 0 do
sum +:= num rem base;
num := num div base;
end while;
end func;
const proc: main is func
begin
writeln(sumDigits(1, 10));
writeln(sumDigits(12345, 10));
writeln(sumDigits(123045, 10));
writeln(sumDigits(123045, 50));
writeln(sumDigits(16#fe, 10));
writeln(sumDigits(16#fe, 16));
writeln(sumDigits(16#f0e, 16));
end func;
- Output:
1 15 15 104 11 29 29
Sidef
func Σ(String str, base=36) {
str.chars.map{ Num(_, base) }.sum
}
<1 1234 1020304 fe f0e DEADBEEF>.each { |n|
say "Σ(#{n}) = #{Σ(n)}"
}
- Output:
Σ(1) = 1 Σ(1234) = 10 Σ(1020304) = 10 Σ(fe) = 29 Σ(f0e) = 29 Σ(DEADBEEF) = 104
SQL
This is not a particularly efficient solution, but it gets the job done.
/*
This code is an implementation of "Sum digits of an integer" in SQL ORACLE 19c
p_in_str -- input string
*/
with
function sum_digits(p_in_str in varchar2) return varchar2 is
v_in_str varchar(32767) := translate(p_in_str,'*-+','*');
v_sum integer;
begin
--
if regexp_count(v_in_str,'[0-9A-F]',1,'i')=length(v_in_str) then -- base 16
execute immediate 'select sum('||regexp_replace(v_in_str,'(\w)','to_number(''\1'',''X'')+')||'0) from dual' into v_sum;
--
elsif regexp_count(v_in_str,'[0-9]',1,'i')=length(v_in_str) then -- base 10
execute immediate 'select sum('||regexp_replace(v_in_str,'(\d)','\1+')||'0) from dual' into v_sum;
--
else
return 'Sum of digits for integer "'||p_in_str||'" not defined';
--
end if;
--
return 'Sum of digits for integer "'||p_in_str||'" = '||v_sum;
end;
--Test
select sum_digits('') as res from dual
union all
select sum_digits('000') as res from dual
union all
select sum_digits('-010') as res from dual
union all
select sum_digits('+010') as res from dual
union all
select sum_digits('120034') as res from dual
union all
select sum_digits('FE') as res from dual
union all
select sum_digits('f0e') as res from dual
union all
select sum_digits('öst12') as res from dual;
- Output:
Sum of digits for integer "" not defined Sum of digits for integer "000" = 0 Sum of digits for integer "-010" = 1 Sum of digits for integer "+010" = 1 Sum of digits for integer "120034" = 10 Sum of digits for integer "FE" = 29 Sum of digits for integer "f0e" = 29 Sum of digits for integer "öst12" not defined
Standard ML
fun sumDigits (0, _) = 0
| sumDigits (n, base) = n mod base + sumDigits (n div base, base)
val testInput = [(1, 10), (1234, 10), (0xfe, 16), (0xf0e, 16)]
val () = print (String.concatWith " " (map (Int.toString o sumDigits) testInput) ^ "\n")
Stata
function sumdigits(s) {
a = ascii(strupper(s)):-48
return(sum(a:-(a:>9)*7))
}
sumdigits("1")
1
sumdigits("1234")
10
sumdigits("fe")
29
sumdigits("f0e")
29
sumdigits(inbase(16, 254, 10))
29
Swift
extension String: Error {
func sumDigits(withBase base: Int) throws -> Int {
func characterToInt(_ base: Int) -> (Character) -> Int? {
return { char in
return Int(String(char), radix: base)
}
}
return try self.map(characterToInt(base))
.flatMap {
guard $0 != nil else { throw "Invalid input" }
return $0
}
.reduce(0, +)
}
}
print(try! "1".sumDigits(withBase: 10))
print(try! "1234".sumDigits(withBase: 10))
print(try! "fe".sumDigits(withBase: 16))
print(try! "f0e".sumDigits(withBase: 16))
- Output:
1 10 29 29
Tcl
Supporting arbitrary bases makes this primarily a string operation.
proc sumDigits {num {base 10}} {
set total 0
foreach d [split $num ""] {
if {[string is alpha $d]} {
set d [expr {[scan [string tolower $d] %c] - 87}]
} elseif {![string is digit $d]} {
error "bad digit: $d"
}
if {$d >= $base} {
error "bad digit: $d"
}
incr total $d
}
return $total
}
Demonstrating:
puts [sumDigits 1]
puts [sumDigits 12345]
puts [sumDigits 123045]
puts [sumDigits fe 16]
puts [sumDigits f0e 16]
puts [sumDigits 000999ABCXYZ 36]
- Output:
1 15 15 29 29 162
Transd
#lang transd
MainModule : {
v10: [1, 1234, 10000000],
vvar: ["fe:16", "f0e:16", "2022:3", "Transd:30"],
sumDigits: (λ s String()
(with snum (substr s 0 ":")
base (first (substr s after: ":") "10") n 0
(textout "sum of " :left width: 10 (+ snum ":" base " : " ))
(tsd (split snum "") :reduce
using: (λ s String() (+= n (to-Int (+ s ":" base))))) (lout n))
),
_start: (lambda
(tsd v10 reduce: ["(to-String col1)"]
using: (λ s String() (sumDigits s)))
(tsd vvar reduce: ["(sumDigits col1)"] )
)
}
- Output:
sum of 1:10 : 1 sum of 1234:10 : 10 sum of 10000000:10 : 1 sum of fe:16 : 29 sum of f0e:16 : 29 sum of 2022:3 : 6 sum of Transd:30 : 130
TypeScript
// Sum digits of an integer
function sumOfDigitBase(n: number, bas: number): number {
var digit = 0, sum = 0;
while (n > 0)
{
var tmp = Math.floor(n / bas);
digit = n - bas * tmp;
n = tmp;
sum += digit;
}
return sum;
}
console.log(` 1 sums to ${sumOfDigitBase(1, 10)}`);
console.log(` 1234 sums to ${sumOfDigitBase(1234, 10)}`);
console.log(` 0xfe sums to ${sumOfDigitBase(0xfe, 16)}`);
console.log(`0xf0e sums to ${sumOfDigitBase(0xf0e, 16)}`);
maxint = Number.MAX_SAFE_INTEGER;
console.log(`${maxint} (Number.MAX_SAFE_INTEGER) sums to ${sumOfDigitBase(maxint, 10)}`);
- Output:
1 sums to 1 1234 sums to 10 0xfe sums to 29 0xf0e sums to 29 9007199254740991 (Number.MAX_SAFE_INTEGER) sums to 76
Ursa
The function:
def sumDigits (string val, int base)
decl int ret
for (decl int i) (< i (size val)) (inc i)
set ret (+ ret (int val<i> base))
end for
return ret
end sumDigits
Calling the function: (This could be done on a single line, but it's split up for clarity.)
out (sumDigits "1" 10) endl console
out (sumDigits "1234" 10) endl console
out (sumDigits "fe" 16) endl console
out (sumDigits "f0e" 16) endl console
- Output:
1 10 29 29
Uxntal
@sum-digits ( num* base* -: sum* )
#0000 STH2
&loop
OVR2 OVR2 DIV2k MUL2 SUB2
STH2r ADD2 STH2
DIV2k ORAk ?{ POP2 POP2 POP2 STH2r JMP2r }
SWP2 ROT2 POP2 !&loop
V (Vlang)
const digits = [[1, 10], [1234, 10], [0xfe, 16], [0xf0e, 16]]
fn main() {
for val in digits {println(sum_digits(val[0], val[1]))}
}
fn sum_digits(num int, base int) int {
mut sum, mut temp := 0, num
for temp > 0 {
sum += temp % base
temp /= base
}
return sum
}
- Output:
1 10 29 29
Wren
import "./fmt" for Fmt, Conv
var sumDigits = Fn.new { |n, b|
var sum = 0
while (n > 0) {
sum = sum + n%b
n = (n/b).truncate
}
return sum
}
var tests = [ [1, 10], [1234, 10], [0xfe, 16], [0xf0e, 16], [1411, 8], [111, 3] ]
System.print("The sum of the digits is:")
for (test in tests) {
var n = test[0]
var b = test[1]
var sum = sumDigits.call(n, b)
Fmt.print("$-5s in base $2d = $2d", Conv.itoa(n, b), b, sum)
}
- Output:
The sum of the digits is: 1 in base 10 = 1 1234 in base 10 = 10 fe in base 16 = 29 f0e in base 16 = 29 2603 in base 8 = 11 11010 in base 3 = 3
XPL0
code ChOut=8, CrLf=9, IntOut=11;
func SumDigits(N, Base);
int N, Base, Sum;
[Sum:= 0;
repeat N:= N/Base;
Sum:= Sum + rem(0);
until N=0;
return Sum;
];
[IntOut(0, SumDigits(1, 10)); ChOut(0, ^ );
IntOut(0, SumDigits(12345, 10)); ChOut(0, ^ );
IntOut(0, SumDigits(123045, 10)); ChOut(0, ^ );
IntOut(0, SumDigits($FE, 10)); ChOut(0, ^ );
IntOut(0, SumDigits($FE, 16)); ChOut(0, ^ );
IntOut(0, SumDigits($F0E, 16)); CrLf(0);
]
- Output:
1 15 15 11 29 29
zkl
fcn sum(n,b=10){
if(b==10) n.split().sum(0); // digits to list
else n.toString(b).split("").apply("toInt",b).sum(0);
}
If not base 10, convert the int into a string (in the proper base, ie 0xfe-->"fe"), blow it apart into a list of digits/characters, convert each character back into a int (from the base, ie ("c"/16-->12) and add them up.
- Output:
sum(1,10); //--> 1 sum(1234,10); //--> 10 sum(0xfe,16); //--> 29 sum(0xf0e,16); //--> 29 sum(0b1101,2); //--> 3
- Programming Tasks
- Solutions by Programming Task
- 11l
- 360 Assembly
- 8086 Assembly
- Action!
- Ada
- ALGOL 68
- APL
- ArnoldC
- Arturo
- ATS
- AutoHotkey
- AWK
- BASIC
- Applesoft BASIC
- BASIC256
- BBC BASIC
- Chipmunk Basic
- Craft Basic
- FreeBASIC
- Gambas
- GW-BASIC
- Minimal BASIC
- MSX Basic
- Palo Alto Tiny BASIC
- PureBasic
- QBasic
- QuickBASIC
- Run BASIC
- Tiny BASIC
- True BASIC
- Visual Basic
- XBasic
- Yabasic
- Bc
- BCPL
- Befunge
- BQN
- C
- C sharp
- C++
- Chez Scheme
- Clojure
- CLU
- Common Lisp
- Cowgol
- Crystal
- D
- Dart
- Dc
- Dyalect
- Delphi
- Draco
- DuckDB
- EasyLang
- EDSAC order code
- Elixir
- Emacs Lisp
- Erlang
- Excel
- Ezhil
- F Sharp
- Factor
- Forth
- Fortran
- Frink
- Fōrmulæ
- Go
- Golfscript
- Groovy
- Haskell
- Icon
- Unicon
- J
- Java
- JavaScript
- Joy
- Jq
- Julia
- Kotlin
- Lambdatalk
- Lasso
- Lingo
- LiveCode
- Logo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- Miranda
- МК-61/52
- ML
- MLite
- Modula-2
- NetRexx
- Never
- Nim
- Nu
- Oberon-2
- Objeck
- OCaml
- Oforth
- Ol
- PARI/GP
- Pascal
- PascalABC.NET
- Perl
- Ntheory
- Phix
- Phix/basics
- PHP
- Picat
- PicoLisp
- PL/I
- PL/M
- PowerShell
- Alternative Implementation
- Prolog
- Python
- Quackery
- R
- Racket
- Raku
- REXX
- Ring
- RPL
- Ruby
- Rust
- Scala
- Scheme
- Seed7
- Sidef
- SQL
- Standard ML
- Stata
- Swift
- Tcl
- Transd
- TypeScript
- Ursa
- Uxntal
- V (Vlang)
- Wren
- Wren-fmt
- XPL0
- Zkl
- Pages with too many expensive parser function calls