Stem-and-leaf plot
You are encouraged to solve this task according to the task description, using any language you may know.
Create a well-formatted stem-and-leaf plot from the following data set, where the leaves are the last digits:
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146
The primary intent of this task is the presentation of information. It is acceptable to hardcode the data set or characteristics of it (such as what the stems are) in the example, insofar as it is impractical to make the example generic to any data set. For example, in a computation-less language like HTML the data set may be entirely prearranged within the example; the interesting characteristics are how the proper visual formatting is arranged.
If possible, the output should not be a bitmap image. Monospaced plain text is acceptable, but do better if you can. It may be a window, i.e. not a file.
Note: If you wish to try multiple data sets, you might try this generator.
11l
F leaf_plot(&x)
x.sort()
V i = x[0] I/ 10 - 1
L(j) 0 .< x.len
V d = x[j] I/ 10
L d > i
i++
print(‘#.#3 |’.format((j != 0) * "\n", i), end' ‘’)
print(‘ ’(x[j] % 10), end' ‘’)
print()
V data = [
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146
]
leaf_plot(&data)
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
ACL2
(defun insert (x xs)
(cond ((endp xs) (list x))
((> x (first xs))
(cons (first xs) (insert x (rest xs))))
(t (cons x xs))))
(defun isort (xs)
(if (endp xs)
nil
(insert (first xs) (isort (rest xs)))))
(defun stem-and-leaf-bins (xs bin curr)
(cond ((endp xs) (list curr))
((= (floor (first xs) 10) bin)
(stem-and-leaf-bins (rest xs)
bin
(cons (first xs) curr)))
(t (cons curr
(stem-and-leaf-bins (rest xs)
(floor (first xs) 10)
(list (first xs)))))))
(defun print-bin (bin)
(if (endp bin)
nil
(progn$ (cw " ~x0" (mod (first bin) 10))
(print-bin (rest bin)))))
(defun stem-and-leaf-plot-r (bins)
(if (or (endp bins) (endp (first bins)))
nil
(progn$ (cw "~x0 |" (floor (first (first bins)) 10))
(print-bin (first bins))
(cw "~%")
(stem-and-leaf-plot-r (rest bins)))))
(defun stem-and-leaf-plot (xs)
(stem-and-leaf-plot-r
(reverse (stem-and-leaf-bins (reverse (isort xs))
0
nil))))
Action!
INCLUDE "D2:SORT.ACT" ;from the Action! Tool Kit
PROC Main()
DEFINE len="121"
BYTE ARRAY a(len)=[
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31
125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27
44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114
96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42
128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124
115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116
146]
BYTE i,j,min,max,stem,leaf
Put(125) PutE() ;clear screen
SortB(a,len,0)
min=a(0)/10
max=a(len-1)/10
FOR i=min TO max
DO
IF i<10 THEN Put(' ) FI
PrintB(i) Print("* | ")
FOR j=0 TO len-1
DO
stem=a(j)/10
IF stem=i THEN
leaf=a(j) MOD 10
PrintB(leaf)
FI
OD
PutE()
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
0* | 77 1* | 2388 2* | 357777778899 3* | 011112345677789 4* | 001222233344456788 5* | 23788 6* | 138 7* | 1 8* | 9* | 69 10* | 4555567999 11* | 13333444555666677778899 12* | 00112234445556777788 13* | 1239 14* | 16
Ada
GNAT used for sorting, could use any other sorting method. Does not handle negative stems properly.
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Gnat.Heap_Sort_G;
procedure stemleaf is
data : array(Natural Range <>) of Integer := (
0,12,127,28,42,39,113, 42,18,44,118,44,37,113,124,37,48,127,36,29,31,
125,139,131,115,105,132,104,123,35,113,122,42,117,119,58,109,23,105,
63,27,44,105,99,41,128,121,116,125,32,61,37,127,29,113,121,58,114,126,
53,114,96,25,109,7,31,141,46,13,27,43,117,116,27,7,68,40,31,115,124,42,
128,52,71,118,117,38,27,106,33,117,116,111,40,119,47,105,57,122,109,
124,115,43,120,43,27,27,18,28,48,125,107,114,34,133,45,120, 30,127,
31,116,146); -- Position 0 is used for storage during sorting, initialized as 0
procedure Move (from, to : in Natural) is
begin data(to) := data(from);
end Move;
function Cmp (p1, p2 : Natural) return Boolean is
begin return data(p1)<data(p2);
end Cmp;
package Sorty is new GNAT.Heap_Sort_G(Move,Cmp);
min,max,p,stemw: Integer;
begin
Sorty.Sort(data'Last);
min := data(1);
max := data(data'Last);
stemw := Integer'Image(max)'Length;
p := 1;
for stem in min/10..max/10 loop
put(stem,Width=>stemw); put(" |");
Leaf_Loop:
while data(p)/10=stem loop
put(" "); put(data(p) mod 10,Width=>1);
exit Leaf_loop when p=data'Last;
p := p+1;
end loop Leaf_Loop;
new_line;
end loop;
end stemleaf;
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
ALGOL 68
With sorting
Note the source of sort.incl.a68 is available on a page on Rosetta Code - see the link above.
Note that the wikipedia article linked to by the Task states that the stem and leaf are typically datum / 10 and datum MOD 10.
This sample can also also handle atypical cases.
BEGIN # produce a stem and leaf plot of some numbers, leaf = last digit, #
# stem = leading digits #
PR read "sort.incl.a68" PR # include row (array) sorting utilities #
[]INT data = ( 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44
, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139
, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117
, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41
, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121
, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141
, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31
, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106
, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109
, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125
, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146
);
# generates a stem-and-leaf plot of d, the stems and leaves are derived #
# from the elements by stem and leaf. the plot starts at first stem. #
# the data is assumed to be sorted into stem then leaf order #
PROC stem and leaf plot = ( []INT d, INT first stem, PROC(INT)INT stem, leaf )VOID:
IF UPB d < LWB d THEN
print( ( "No data", newline ) )
ELSE
# there is some data to plot #
INT curr stem := stem( d[ LWB d ] );
IF first stem < curr stem THEN
curr stem := first stem
FI;
curr stem -:= 1;
BOOL first := TRUE;
FOR i FROM LWB d TO UPB d DO
INT this stem = stem( d[ i ] );
IF first OR curr stem /= this stem THEN
curr stem +:= 1;
WHILE IF NOT first THEN
print( ( newline ) )
ELSE
first := FALSE
FI;
print( ( whole( curr stem, -4 ), "|" ) );
curr stem < this stem
DO
curr stem +:= 1
OD
FI;
print( ( " ", whole( leaf( d[ i ] ), 0 ) ) )
OD
FI # stem and leaf plot # ;
# sort the data #
[ LWB data : UPB data ]INT sorted data := data;
# sort and plot the data: stem = element / 10, leaf = element MOD 10 #
stem and leaf plot( QUICKSORT sorted data, 0, ( INT n )INT: n OVER 10, ( INT n )INT: n MOD 10 )
END
- Output:
0| 7 7 1| 2 3 8 8 2| 3 5 7 7 7 7 7 7 8 8 9 9 3| 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4| 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5| 2 3 7 8 8 6| 1 3 8 7| 1 8| 9| 6 9 10| 4 5 5 5 5 6 7 9 9 9 11| 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12| 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13| 1 2 3 9 14| 1 6
Without external dependencies
This solution doesn't use any library code and doesn't sort the data.
PROC stem and leaf plot = ([]INT data)VOID:
BEGIN
# get lowest and highest stem values #
INT min stem := data[LWB data] % 10,
max stem := data[LWB data] % 10;
FOR i FROM LWB data + 1 TO UPB data DO
INT stem := data[i] % 10;
IF min stem > stem THEN min stem := stem FI;
IF max stem < stem THEN max stem := stem FI
OD;
# this array will store the amount of leaves per stem: #
[min stem : max stem, 0:9]INT stems;
FOR i FROM LWB stems TO UPB stems DO
stems[i,] := []INT((0,0,0,0,0,0,0,0,0,0))[@0]
OD;
# fill the array #
FOR i FROM LWB data TO UPB data DO
stems[data[i] % 10, data[i] %* 10] +:= 1
OD;
# print the histogram #
FOR i FROM LWB stems TO UPB stems DO
print((whole(i, -4), "| "));
FOR j FROM 0 TO 9 DO
print(REPR (j + ABS "0") * stems[i,j])
OD;
print(newline)
OD
END;
[]INT data = (12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44,
37, 113, 124, 37, 48, 127, 36, 29, 31, 125,
139, 131, 115, 105, 132, 104, 123, 35, 113,
122, 42, 117, 119, 58, 109, 23, 105, 63, 27,
44, 105, 99, 41, 128, 121, 116, 125, 32, 61,
37, 127, 29, 113, 121, 58, 114, 126, 53, 114,
96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117,
116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52,
71, 118, 117, 38, 27, 106, 33, 117, 116, 111,
40, 119, 47, 105, 57, 122, 109, 124, 115, 43,
120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34,
133, 45, 120, 30, 127, 31, 116, 146);
stem and leaf plot(data)
- Output:
0| 77 1| 2388 2| 357777778899 3| 011112345677789 4| 001222233344456788 5| 23788 6| 138 7| 1 8| 9| 69 10| 4555567999 11| 13333444555666677778899 12| 00112234445556777788 13| 1239 14| 16
Arturo
data: [
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119
58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37
127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27
43 117 116 27 7 68 40 31 115 124 42 128 146 52 71 118 117 38
27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43
120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116
]
tens: gather sort data => [& / 10]
loop 0..do last keys tens 'n [
ns: ~"|n|"
prints [pad ns 2 "|"]
if key? tens ns -> prints map tens\[ns] => [& % 10]
print ""
]
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
AutoHotkey
SetWorkingDir %A_ScriptDir%
#NoEnv
Data := "12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146"
; This loop removes the double/multiple spaces encountered when copying+pasting the given data set:
While (Instr(Data," "))
StringReplace, Data, Data,%A_Space%%A_Space%,%A_Space%,All
; Sort the data numerically using a space as the separator:
Sort, Data,ND%A_Space%
OldStem := 0
; Parse the data using a space as the separator, storing each new string as A_LoopField and running the loop once per string:
Loop, parse, Data,%A_Space%
{
NewStem := SubStr(A_LoopField,1,StrLen(A_LoopField)-1) ; AutoHotkey doesn't have a Left() function, so this does the trick.
If ( NewStem <> OldStem and StrLen(A_LoopField) <> 1)
{
While(OldStem+1<>NewStem) ; account for all stems which don't appear (in this example, 8) but are between the lowest and highest stems
OldStem++,ToPrint .= "`n" PadStem(oldStem)
ToPrint .= "`n" PadStem(NewStem)
OldStem := NewStem
}
Else If ( StrLen(A_LoopField)=1 and !FirstStem)
ToPrint .= PadStem(0),FirstStem := true
ToPrint .= SubStr(A_LoopField,strLen(A_LoopField)) " " ; No Right() function either, so this returns the last character of A_LoopField (the string curently used by the parsing loop)
}
; Delete the old stem and leaf file (if any), write our new contents to it, then show it:
FileDelete Stem and leaf.txt
FileAppend %ToPrint%, Stem and Leaf.txt
Run Stem and leaf.txt
return
PadStem(Stem){
Spaces = 0
While ( 3 - StrLen(Stem) <> Spaces ) ; If the stems are more than 2 digits long, increase the number 3 to one more than the stem length.
ToReturn .= " ",Spaces++
ToReturn .= Stem
ToReturn .= " | "
Return ToReturn
}
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
AWK
# syntax: GAWK -f STEM-AND-LEAF_PLOT.AWK
#
# sorting:
# PROCINFO["sorted_in"] is used by GAWK
# SORTTYPE is used by Thompson Automation's TAWK
#
BEGIN {
data = "12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 " \
"125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 " \
"105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 " \
"109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 " \
"38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 " \
"28 48 125 107 114 34 133 45 120 30 127 31 116 146"
data_points = split(data,data_arr," ")
for (i=1; i<=data_points; i++) {
x = data_arr[i]
stem = int(x / 10)
leaf = x % 10
if (i == 1) {
lo = hi = stem
}
lo = min(lo,stem)
hi = max(hi,stem)
arr[stem][leaf]++
}
PROCINFO["sorted_in"] = "@ind_str_asc" ; SORTTYPE = 1
for (i=lo; i<=hi; i++) {
printf("%4d |",i)
arr[i][""]
for (j in arr[i]) {
for (k=1; k<=arr[i][j]; k++) {
printf(" %d",j)
leaves_printed++
}
}
printf("\n")
}
if (data_points == leaves_printed) {
exit(0)
}
else {
printf("error: %d data points != %d leaves printed\n",data_points,leaves_printed)
exit(1)
}
}
function max(x,y) { return((x > y) ? x : y) }
function min(x,y) { return((x < y) ? x : y) }
output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
BASIC
ANSI BASIC
100 PROGRAM StemAndLeafPlot
110 OPTION BASE 0
120 DIM Dat(120)
130 FOR I = 0 TO 120
140 READ Dat(I)
150 NEXT I
160 DATA 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
170 DATA 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
180 DATA 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
190 DATA 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
200 DATA 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
210 DATA 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
220 DATA 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
230 DATA 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
240 DATA 34, 133, 45, 120, 30, 127, 31, 116, 146
250 CALL LeafPlot(Dat)
260 END
270 REM ************************
1000 EXTERNAL SUB LeafPlot(A())
1010 CALL ShellSort(A)
1020 LET I = INT(A(0) / 10) - 1
1030 FOR J = 0 TO UBOUND(A)
1040 LET D = INT(A(J) / 10)
1050 DO WHILE D > I
1060 LET I = I + 1
1070 IF J <> 0 THEN PRINT
1080 PRINT USING "## |": I;
1090 LOOP
1100 PRINT USING "##": MOD(A(J), 10);
1110 NEXT J
1120 PRINT
1130 END SUB
1140 REM ************************
2000 EXTERNAL SUB ShellSort(A())
2010 LET N = UBOUND(A)
2020 LET Incr = INT(N / 2)
2030 DO WHILE Incr > 0
2040 FOR I = Incr TO N - 1
2050 LET J = I - Incr
2060 DO WHILE J >= 0
2070 IF A(J) > A(J + Incr) THEN
2080 REM SWAP A(J), A(J + Incr): J = J - Incr
2090 LET Tmp = A(J)
2100 LET A(J) = A(J + Incr)
2110 LET A(J + Incr) = Tmp
2120 LET J = J - Incr
2130 ELSE
2140 LET J = -1
2150 END IF
2160 LOOP
2170 NEXT I
2180 LET Incr = INT(Incr / 2)
2190 LOOP
2200 END SUB
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
ASIC
REM Stem-and-leaf plot
DIM A(120)
DATA 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
DATA 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
DATA 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
DATA 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
DATA 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
DATA 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
DATA 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
DATA 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
DATA 34, 133, 45, 120, 30, 127, 31, 116, 146
FOR I = 0 TO 120
READ A(I)
NEXT I
N = 121
NMin1 = N - 1
GOSUB LeafPlot:
END
LeafPlot:
GOSUB ShellSortInt:
I = A(0) / 10
I = I - 1
FOR J = 0 TO NMin1
D = A(J) / 10
WHILE D > I
I = I + 1
IF J <> 0 THEN
PRINT
ENDIF
SI$ = STR$(I)
SI$ = RIGHT$(SI$, 2)
PRINT SI$;
PRINT " |";
WEND
AJMod10 = A(J) MOD 10
SI$ = STR$(AJMod10)
SI$ = RIGHT$(SI$, 2)
PRINT SI$;
NEXT J
PRINT
RETURN
ShellSortInt:
Incr = N / 2
WHILE Incr > 0
FOR I = Incr TO NMin1
J = I - Incr
JPlIncr = J + Incr
WHILE J >= 0
IF A(J) > A(JPlIncr) THEN
Tmp = A(J)
A(J) = A(JPlIncr)
A(JPlIncr) = Tmp
JPlIncr = J
J = J - Incr
ELSE
J = -1
ENDIF
WEND
NEXT I
Incr = Incr / 2
WEND
RETURN
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
BBC BASIC
INSTALL @lib$+"SORTLIB"
Sort% = FN_sortinit(0, 0)
DIM Data%(120)
Data%() = \
\ 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, \
\ 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, \
\ 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, \
\ 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, \
\ 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, \
\ 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, \
\ 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, \
\ 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, \
\ 34, 133, 45, 120, 30, 127, 31, 116, 146
PROCleafplot(Data%(), DIM(Data%(),1) + 1)
END
DEF PROCleafplot(x%(), n%)
LOCAL @%, C%, i%, j%, d%
@% = 2
C% = n%
CALL Sort%, x%(0)
i% = x%(0) DIV 10 - 1
FOR j% = 0 TO n% - 1
d% = x%(j%) DIV 10
WHILE d% > i%
i% += 1
IF j% PRINT
PRINT i% " |" ;
ENDWHILE
PRINT x%(j%) MOD 10 ;
NEXT
PRINT
ENDPROC
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
FreeBASIC
' version 22-06-2015
' compile with: fbc -s console
' for boundry checks on array's compile with: fbc -s console -exx
' from the rosetta code FreeBASIC entry
#Define out_of_data 99999999 ' any number that is not in the set will do
Sub shellsort(s() As Integer)
' from the FreeBASIC entry at rosetta code
' sort from lower bound to the highter bound
Dim As Integer lb = LBound(s)
Dim As Integer ub = UBound(s)
Dim As Integer done, i, inc = ub - lb
Do
inc = inc / 2.2
If inc < 1 Then inc = 1
Do
done = 0
For i = lb To ub - inc
If s(i) > s(i + inc) Then
Swap s(i), s(i + inc)
done = 1
End If
Next
Loop Until done = 0
Loop Until inc = 1
End Sub
' ------=< TASK DATA >=------
Data 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
Data 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
Data 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
Data 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
Data 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
Data 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
Data 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
Data 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
Data 34, 133, 45, 120, 30, 127, 31, 116, 146
Data out_of_data
' ------=< MAIN >=------
Dim As String read_in
Dim As Integer i, x, y, count = -1 ' to let the index start on 0
Dim As Integer d()
ReDim d(300) ' big enough to hold data index start at 0
Do
Read i
If i = out_of_data Then Exit Do
count = count + 1
d(count) = i
Loop
ReDim Preserve d(count) ' trim the data array
shellsort(d()) ' sort data array
i = 0
For y = d(0) \ 10 To d(UBound(d)) \ 10
Print Using "#### |"; y;
Do
x = d(i) \ 10 ' \ = integer division
If y = x Then
Print Using "##"; d(i) Mod 10;
i = i + 1
Else
Exit Do
End If
Loop While i <= UBound(d)
Print ' force linefeed
Next
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
GW-BASIC
100 REM Stem-and-leaf plot
110 N% = 121: REM Array size
120 DIM A%(N% - 1)
130 FOR I% = 0 TO N% - 1
140 READ A%(I%)
150 NEXT I%
160 DATA 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
170 DATA 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
180 DATA 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
190 DATA 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
200 DATA 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
210 DATA 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
220 DATA 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
230 DATA 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
240 DATA 34, 133, 45, 120, 30, 127, 31, 116, 146
250 GOSUB 1000
260 END
990 REM ** Leaf plot
1000 GOSUB 2000
1010 I% = A%(0) \ 10 - 1
1020 FOR J% = 0 TO N% - 1
1030 D% = A%(J%) \ 10
1040 WHILE D% > I%
1050 I% = I% + 1
1060 IF J% THEN PRINT
1070 PRINT USING "## |"; I%;
1080 WEND
1090 PRINT USING "##"; A%(J%) MOD 10;
1100 NEXT J%
1110 PRINT
1120 RETURN
1990 REM ** Shell sort
2000 INCR% = N% \ 2
2010 WHILE INCR% > 0
2020 FOR I% = INCR% TO N% - 1
2030 J% = I% - INCR%
2040 WHILE J% >= 0
2050 IF A%(J%) > A%(J% + INCR%) THEN SWAP A%(J%), A%(J% + INCR%): J% = J% - INCR% ELSE J% = -1
2060 WEND
2070 NEXT I%
2080 INCR% = INCR% \ 2
2090 WEND
2100 RETURN
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
PureBasic
If OpenConsole()
Dim MyList(120)
Define i, j, StemMax, StemMin
Restore MyData ; Get the address of MyData, e.g. the data to print as a Stem-and-leaf plot
For a=0 To 120
Read.i MyList(a) ; Read the data into the used Array
If MyList(a)>StemMax
StemMax=MyList(a) ; Find the largest Stem layer at the same time
EndIf
If MyList(a)<StemMin
StemMin=MyList(a) ; Find the smallest Stem layer at the same time
EndIf
Next
StemMax/10: StemMin/10 ; Remove the leafs from the Stem limits
SortArray(MyList(),#PB_Sort_Ascending) ; Sort the data
For i=StemMin To StemMax
Print(RSet(Str(i),3)+" | ") ; Print the Stem
For j=0 To 120
If MyList(j)<10*i ; Skip all smaller then current
Continue
ElseIf MyList(j)>=10*(i+1) ; Break current print if a new Stem layer is reached
Break
Else
Print(Str(MyList(j)%10)+" ") ; Print all Leafs on this current Stem layer
EndIf
Next j
PrintN("")
Next i
Print(#CRLF$+#CRLF$+"Press ENTER to exit")
Input()
CloseConsole()
EndIf
DataSection
MyData:
Data.i 12,127, 28, 42, 39,113, 42, 18, 44,118, 44, 37,113,124, 37, 48,127, 36, 29, 31,125,139,131,115
Data.i 105,132,104,123, 35,113,122, 42,117,119, 58,109, 23,105, 63, 27, 44,105, 99, 41,128,121,116,125
Data.i 32, 61, 37,127, 29,113,121, 58,114,126, 53,114, 96, 25,109, 7, 31,141, 46, 13, 27, 43,117,116
Data.i 27, 7, 68, 40, 31,115,124, 42,128, 52, 71,118,117, 38, 27,106, 33,117,116,111, 40,119, 47,105
Data.i 57,122,109,124,115, 43,120, 43, 27, 27, 18, 28, 48,125,107,114, 34,133, 45,120, 30,127, 31,116,146
EndDataSection
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
QuickBASIC
REM Stem-and-leaf plot
DECLARE SUB LeafPlot (X%())
DECLARE SUB ShellSortInt (A%())
CONST MAXDATNDX = 120
DIM Dat%(MAXDATNDX)
FOR I% = 0 TO MAXDATNDX
READ Dat%(I%)
NEXT I%
DATA 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
DATA 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
DATA 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
DATA 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
DATA 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
DATA 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
DATA 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
DATA 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
DATA 34, 133, 45, 120, 30, 127, 31, 116, 146
LeafPlot Dat%()
END
SUB LeafPlot (X%())
ShellSortInt X%()
I% = X%(0) \ 10 - 1
FOR J% = 0 TO UBOUND(X%)
D% = X%(J%) \ 10
WHILE D% > I%
I% = I% + 1
IF J% THEN PRINT
PRINT USING "## |"; I%;
WEND
PRINT USING "##"; X%(J%) MOD 10;
NEXT
PRINT
END SUB
SUB ShellSortInt (A%())
N% = UBOUND(A%) + 1
Incr% = N% \ 2
WHILE Incr% > 0
FOR I% = Incr% TO N% - 1
J% = I% - Incr%
WHILE J% >= 0
IF A%(J%) > A%(J% + Incr%) THEN
SWAP A%(J%), A%(J% + Incr%)
J% = J% - Incr%
ELSE
J% = -1
END IF
WEND
NEXT I%
Incr% = Incr% \ 2
WEND
END SUB
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
uBasic/4tH
Push 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124
Push 0, 13 : Gosub _Read ' read 1st line of data
Push 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123
Push 14, 27 : Gosub _Read ' read 2nd line of data
Push 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105
Push 28, 41 : Gosub _Read ' read 3rd line of data
Push 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58
Push 42, 55 : Gosub _Read ' read 4tH line of data
Push 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43
Push 56, 69 : Gosub _Read ' read 5th line of data
Push 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118
Push 70, 83 : Gosub _Read ' read 6th line of data
Push 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122
Push 84, 97 : Gosub _Read ' read 7th line of data
Push 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114
Push 98, 111 : Gosub _Read ' read 8th line of data
Push 34, 133, 45, 120, 30, 127, 31, 116, 146
Push 112, 120 : Gosub _Read ' read last line of data
Push 121 : Gosub _SimpleSort ' now sort 121 elements
i = @(0) / 10 - 1
For j = 0 To Pop() - 1 ' note array size was still on stack
d = @(j) / 10
Do While d > i
If j Print
i = i + 1
If i < 10 Print " "; ' align stem number
Print i;" |"; ' print stem number
Loop
Print @(j) % 10;" "; ' print leaf number
Next
Print ' print final LF
End
' simplest sorting algorithm
_SimpleSort ' ( n -- n)
For x = 0 To Tos() - 1
For y = x+1 To Tos() - 1
If @(x) > @ (y) Then ' if larger, switch elements
Push @(y)
@(y) = @(x)
@(x) = Pop()
Endif
Next
Next
Return
' read a line of data backwards
_Read ' (.. n1 n2 -- ..)
For x = Pop() To Pop() Step -1 ' loop from n2 to n1
@(x) = Pop() ' get element from stack
Next
Return
Output:
0 |7 7 1 |2 3 8 8 2 |3 5 7 7 7 7 7 7 8 8 9 9 3 |0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 |0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 |2 3 7 8 8 6 |1 3 8 7 |1 8 | 9 |6 9 10 |4 5 5 5 5 6 7 9 9 9 11 |1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 |0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 |1 2 3 9 14 |1 6 0 OK, 0:2037
C
#include <stdio.h>
#include <stdlib.h>
int icmp(const void *a, const void *b)
{
return *(const int*)a < *(const int*)b ? -1 : *(const int*)a > *(const int*)b;
}
void leaf_plot(int *x, int len)
{
int i, j, d;
qsort(x, len, sizeof(int), icmp);
i = x[0] / 10 - 1;
for (j = 0; j < len; j++) {
d = x[j] / 10;
while (d > i) printf("%s%3d |", j ? "\n" : "", ++i);
printf(" %d", x[j] % 10);
}
}
int main()
{
int data[] = {
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146 };
leaf_plot(data, sizeof(data)/sizeof(data[0]));
return 0;
}
output
0 | 7 7
1 | 2 3 8 8
2 | 3 5 7 7 7 7 7 7 8 8 9 9
3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9
4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8
5 | 2 3 7 8 8
6 | 1 3 8
7 | 1
8 |
9 | 6 9
10 | 4 5 5 5 5 6 7 9 9 9
11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9
12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8
13 | 1 2 3 9
14 | 1 6
C#
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
class Program
{
static void Main()
{
const string data =
"12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 " +
"125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 " +
"105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 " +
"114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 " +
"115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 " +
"105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 " +
"133 45 120 30 127 31 116 146";
int[] ints = data.Split(' ').Select(int.Parse).ToArray();
StemAndLeafPlot(ints);
Console.ReadKey();
}
public static void StemAndLeafPlot(int[] arr)
{
int stemMax = arr.Max() / 10;
int stemMin = arr.Min() / 10;
Array.Sort(arr);
for (int i = stemMin; i <= stemMax; i++)
{
Console.Write("{0,3} | ", i);
foreach (var t in arr)
{
if (t < 10 * i)
continue;
if (t >= 10 * (i + 1))
break;
Console.Write("{0} ", t % 10);
}
Console.WriteLine("");
}
}
}
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
C++
#include <algorithm>
#include <iomanip>
#include <iostream>
#include <vector>
const int dataset[] = {
12,127, 28, 42, 39,113, 42, 18, 44,118, 44, 37,113,124, 37, 48,127, 36,
29, 31,125,139,131,115,105,132,104,123, 35,113,122, 42,117,119, 58,109,
23,105, 63, 27, 44,105, 99, 41,128,121,116,125, 32, 61, 37,127, 29,113,
121, 58,114,126, 53,114, 96, 25,109, 7, 31,141, 46, 13, 27, 43,117,116,
27, 7, 68, 40, 31,115,124, 42,128, 52, 71,118,117, 38, 27,106, 33,117,
116,111, 40,119, 47,105, 57,122,109,124,115, 43,120, 43, 27, 27, 18, 28,
48,125,107,114, 34,133, 45,120, 30,127, 31,116,146
};
const int datasize = sizeof(dataset) / sizeof(dataset[0]);
int main()
{
typedef std::pair<int,int> StemLeaf;
std::vector<StemLeaf> stemplot;
for (int i = 0; i < datasize; ++i)
{
stemplot.push_back(StemLeaf(dataset[i] / 10, dataset[i] % 10));
}
std::sort(stemplot.begin(), stemplot.end()); // order stem/leaf pairs
int lo = stemplot.front().first; // minimum stem value
int hi = stemplot.back().first; // maximum stem value
for (std::vector<StemLeaf>::iterator itr = stemplot.begin(); lo <= hi; ++lo)
{
std::cout << std::setw(2) << lo << " |"; // print stem
// while (there are more stems) and (stem is equal to lo)
for ( ; itr != stemplot.end() && itr->first == lo; ++itr)
{
std::cout << " " << itr->second; // print leaf
}
std::cout << std::endl;
}
}
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Ceylon
"Run the module `thestemandleafplot`."
shared void run() {
value data ="12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35
113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114
126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27
106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45
120 30 127 31 116 146";
value numbers = data
.split()
.map(parseInteger)
.coalesced;
value stemsToLeaves = numbers
.group((Integer element) => element / 10)
.mapItems((Integer key, [Integer+] item) => item.map((Integer element) => element % 10))
.mapItems((Integer key, {Integer+} item) => sort(item));
value lastStem = stemsToLeaves.keys.last else 0;
for(i in 0..lastStem) {
print("``formatInteger(i).padLeading(2)``| ``" ".join(stemsToLeaves[i] else [])``");
}
}
Clojure
(def data
[12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125
139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27
44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114
96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 146
52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124
115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116])
(defn calc-stem [number]
(int (Math/floor (/ number 10))))
(defn calc-leaf [number]
(mod number 10))
(defn new-plant
"Returns a leafless plant, with `size` empty branches,
i.e. a hash-map with integer keys (from 0 to `size` inclusive)
mapped to empty vectors.
(new-plant 2) ;=> {0 [] 1 [] 2 []}"
[size]
(let [end (inc size)]
(->> (repeat end [])
(interleave (range end))
(apply hash-map))))
(defn sprout-leaves
[plant [stem leaf]]
(update plant stem conj leaf))
(defn stem-and-leaf [numbers]
(let [max-stem (calc-stem (reduce max numbers))
baby-plant (new-plant max-stem)
plant (->> (map (juxt calc-stem calc-leaf) numbers)
(reduce sprout-leaves baby-plant)
(sort))]
(doseq [[stem leaves] plant]
(print (format (str "%2s") stem))
(print " | ")
(println (clojure.string/join " " (sort leaves))))))
(stem-and-leaf data)
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
D
import std.stdio, std.algorithm;
void main() {
enum data = [12,127,28,42,39,113,42,18,44,118,44,37,113,124,37,48,
127,36,29,31,125,139,131,115,105,132,104,123,35,113,122,42,117,
119,58,109,23,105,63,27,44,105,99,41,128,121,116,125,32,61,37,
127,29,113,121,58,114,126,53,114,96,25,109,7,31,141,46,13,27,
43,117,116,27,7,68,40,31,115,124,42,128,52,71,118,117,38,27,
106,33,117,116,111,40,119,47,105,57,122,109,124,115,43,120,43,
27,27,18,28,48,125,107,114,34,133,45,120,30,127,31,116,146];
int[][int] histo;
foreach (x; data)
histo[x / 10] ~= x % 10;
immutable loHi = data.reduce!(min, max);
foreach (i; loHi[0]/10 .. loHi[1]/10 + 1)
writefln("%2d | %(%d %) ", i, histo.get(i, []).sort());
}
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
EasyLang
proc sort . d[] .
for i = 1 to len d[] - 1
for j = i + 1 to len d[]
if d[j] < d[i]
swap d[j] d[i]
.
.
.
.
x[] = [ 12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146 ]
sort x[]
numfmt 0 2
i = x[1] div 10 - 1
for j = 1 to len x[]
d = x[j] div 10
while d > i
i += 1
if j > 1
print ""
.
write i & " |"
.
write x[j] mod 10
.
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Elixir
defmodule Stem_and_leaf do
def plot(data, leaf_digits\\1) do
multiplier = Enum.reduce(1..leaf_digits, 1, fn _,acc -> acc*10 end)
Enum.group_by(data, fn x -> div(x, multiplier) end)
|> Map.new(fn {k,v} -> {k, Enum.map(v, &rem(&1, multiplier)) |> Enum.sort} end)
|> print(leaf_digits)
end
defp print(plot_data, leaf_digits) do
{min, max} = Map.keys(plot_data) |> Enum.min_max
stem_width = length(to_charlist(max))
fmt = "~#{stem_width}w | ~s~n"
Enum.each(min..max, fn stem ->
leaves = Enum.map_join(Map.get(plot_data, stem, []), " ", fn leaf ->
to_string(leaf) |> String.pad_leading(leaf_digits)
end)
:io.format fmt, [stem, leaves]
end)
end
end
data = ~w(12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146)
|> Enum.map(&String.to_integer(&1))
Stem_and_leaf.plot(data)
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Euphoria
include sort.e
procedure leaf_plot(sequence s)
sequence stem
s = sort(s)
stem = repeat({},floor(s[$]/10)+1)
for i = 1 to length(s) do
stem[floor(s[i]/10)+1] &= remainder(s[i],10)
end for
for i = 1 to length(stem) do
printf(1, "%3d | ", i-1)
for j = 1 to length(stem[i]) do
printf(1, "%d ", stem[i][j])
end for
puts(1,'\n')
end for
end procedure
constant data = { 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113,
122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121,
116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114, 96, 25,
109, 7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31, 115, 124,
42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47,
105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107,
114, 34, 133, 45, 120, 30, 127, 31, 116, 146 }
leaf_plot(data)
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
F#
open System
let data =
[ 12; 127; 28; 42; 39; 113; 42; 18; 44; 118; 44; 37; 113; 124; 37; 48;
127; 36; 29; 31; 125; 139; 131; 115; 105; 132; 104; 123; 35; 113; 122;
42; 117; 119; 58; 109; 23; 105; 63; 27; 44; 105; 99; 41; 128; 121; 116;
125; 32; 61; 37; 127; 29; 113; 121; 58; 114; 126; 53; 114; 96; 25; 109;
7; 31; 141; 46; 13; 27; 43; 117; 116; 27; 7; 68; 40; 31; 115; 124; 42;
128; 52; 71; 118; 117; 38; 27; 106; 33; 117; 116; 111; 40; 119; 47; 105;
57; 122; 109; 124; 115; 43; 120; 43; 27; 27; 18; 28; 48; 125; 107; 114;
34; 133; 45; 120; 30; 127; 31; 116; 146 ]
let plotStemAndLeafs items =
let groupedItems = items |> Seq.sort
|> Seq.map (fun i -> i / 10, i % 10)
|> Seq.groupBy fst
let maxStem = groupedItems |> Seq.maxBy fst |> fst
let stemLeafMap = Map.ofSeq groupedItems
[0..maxStem] |> List.iter (fun stm -> printf " %2d | " stm
match stemLeafMap.TryFind stm with
| None -> ()
| Some items -> items |> Seq.iter (snd >> printf "%d ")
printfn "")
plotStemAndLeafs data
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Factor
USING: assocs formatting grouping.extras io kernel math
prettyprint sequences sorting ;
: leaf-plot ( seq -- )
natural-sort [ 10 /i ] group-by dup keys last 1 +
[ dup "%2d | " printf of [ 10 mod pprint bl ] each nl ] with
each-integer ;
{
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119
58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37
127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27
43 117 116 27 7 68 40 31 115 124 42 128 146 52 71 118 117 38
27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43
120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31
116
} leaf-plot
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Forth
create data
12 , 127 , 28 , 42 , 39 , 113 , 42 , 18 , 44 , 118 , 44 ,
37 , 113 , 124 , 37 , 48 , 127 , 36 , 29 , 31 , 125 , 139 ,
131 , 115 , 105 , 132 , 104 , 123 , 35 , 113 , 122 , 42 , 117 ,
119 , 58 , 109 , 23 , 105 , 63 , 27 , 44 , 105 , 99 , 41 ,
128 , 121 , 116 , 125 , 32 , 61 , 37 , 127 , 29 , 113 , 121 ,
58 , 114 , 126 , 53 , 114 , 96 , 25 , 109 , 7 , 31 , 141 ,
46 , 13 , 27 , 43 , 117 , 116 , 27 , 7 , 68 , 40 , 31 ,
115 , 124 , 42 , 128 , 52 , 71 , 118 , 117 , 38 , 27 , 106 ,
33 , 117 , 116 , 111 , 40 , 119 , 47 , 105 , 57 , 122 , 109 ,
124 , 115 , 43 , 120 , 43 , 27 , 27 , 18 , 28 , 48 , 125 ,
107 , 114 , 34 , 133 , 45 , 120 , 30 , 127 , 31 , 116 , 146 ,
here constant data-end
: sort ( end start -- )
over cell - swap do
dup i cell+ do
i @ j @ < if
i @ j @ i ! j !
then
cell +loop
cell +loop drop ;
: plot
data-end data sort
data
data-end cell - @ 10 / 1+
data @ 10 /
do
cr i 2 u.r ." | "
begin dup @ 10 /mod i = while . cell+ dup data-end = until else drop then
loop
drop ;
plot
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Fortran
Because the fancy "structured" options such as DO-WHILE also involve the maddening idea of full evaluation of redundant parts of a compound boolean expression, attempts such as WHILE (I <= N .AND. A(I) etc.)
can fail, because the parts may be evaluated "in any order", and so the array be accessed out of bounds. So instead, a classic intersecting loop tangle.
Layout is easily obtained, once the span of elements belonging to each stem value is ascertained. The output loop uses the later-form array specification of A(start:stop), but in earlier Fortran an implicit DO-loop would be in order: WRITE (6,12) STEM,(ABS(MOD(A(I),CLIP)), I = I1,I2 - 1)
Note that the MOD function can produce unexpected values for negative numbers, and, different computer/compiler/language combinations may produce different surprises. In this case, negative values produce negative remainder values, but the ABS function suppresses the surprise.
SUBROUTINE COMBSORT(A,N)
INTEGER A(*) !The array.
INTEGER N !The count.
INTEGER H,T !Assistants.
LOGICAL CURSE
H = N - 1 !Last - First, and not +1.
1 H = MAX(1,H*10/13) !The special feature.
IF (H.EQ.9 .OR. H.EQ.10) H = 11 !A twiddle.
CURSE = .FALSE. !So far, so good.
DO I = N - H,1,-1 !If H = 1, this is a BubbleSort.
IF (A(I) .GT. A(I + H)) THEN !One compare.
T=A(I); A(I)=A(I+H); A(I+H)=T !One swap.
CURSE = .TRUE. !One curse.
END IF !One test.
END DO !One loop.
IF (CURSE .OR. H.GT.1) GO TO 1 !Work remains?
END SUBROUTINE COMBSORT !Good performance, small code.
SUBROUTINE TOPIARY(A,N) !Produces a "stem&leaf" display for the integers in A, damaging A.
INTEGER A(*) !An array of integers.
INTEGER N !Their number.
INTEGER CLIP !Semi-generalisation.
PARAMETER (CLIP = 10) !Or at least, annotation.
INTEGER I1,I2,STEM !Assistants.
CALL COMBSORT(A,N) !Rearrange the array!
STEM = A(1)/CLIP !The first stem value.
I1 = 1 !The first stem's span starts here.
I2 = I1 !And so far as I know, ends here.
10 I2 = I2 + 1 !Probe ahead one position.
IF (I2 .GT. N) GO TO 11 !Off the end? Don't look!
IF (A(I2)/CLIP .EQ.STEM) GO TO 10 !Still in the same stem? Probe on.
Cast forth a STEM line, corresponding to elements I1:I2 - 1.
11 WRITE (6,12) STEM,ABS(MOD(A(I1:I2 - 1),CLIP)) !ABS: MOD with negatives can be unexpected.
12 FORMAT (I4,"|",(100I1)) !Layout. If more than a hundred, starts a new line.
IF (I2 .GT. N) RETURN !Are we there yet?
I1 = I2 !No. This is my new span's start.
Chug along to the next STEM value.
13 STEM = STEM + 1 !Advance to the next stem.
IF (A(I2)/CLIP.GT.STEM) GO TO 11!Has the stem reached the impending value?
GO TO 10 !Yes. Scan its span.
END SUBROUTINE TOPIARY !The days of carefully-arranged output.
PROGRAM TEST
INTEGER VALUES(121) !The exact number of values.
DATA VALUES/ !As in the specified example.
o 12,127, 28, 42, 39,113, 42, 18, 44,118, !A regular array
1 44, 37,113,124, 37, 48,127, 36, 29, 31, !Makes counting easier.
2 125,139,131,115,105,132,104,123, 35,113,
3 122, 42,117,119, 58,109, 23,105, 63, 27,
4 44,105, 99, 41,128,121,116,125, 32, 61,
5 37,127, 29,113,121, 58,114,126, 53,114,
6 96, 25,109, 7, 31,141, 46, 13, 27, 43,
7 117,116, 27, 7, 68, 40, 31,115,124, 42,
8 128, 52, 71,118,117, 38, 27,106, 33,117,
9 116,111, 40,119, 47,105, 57,122,109,124,
o 115, 43,120, 43, 27, 27, 18, 28, 48,125,
1 107,114, 34,133, 45,120, 30,127, 31,116,
2 146/
CALL TOPIARY(VALUES,121)
END
Output: (If additional spacing is desired, I2 format could be used, etc.)
0|77 1|2388 2|357777778899 3|011112345677789 4|001222233344456788 5|23788 6|138 7|1 8| 9|69 10|4555567999 11|13333444555666677778899 12|00112234445556777788 13|1239 14|16
Go
package main
import (
"fmt"
"sort"
"strconv"
"strings"
)
var data = `12 127 28 42` //...omitted...127 31 116 146`
func main() {
// load data into map
m := make(map[int][]string)
for _, s := range strings.Fields(data) {
if len(s) == 1 {
m[0] = append(m[0], s)
} else if i, err := strconv.Atoi(s[:len(s)-1]); err == nil {
m[i] = append(m[i], s[len(s)-1:])
} else {
panic("non numeric data")
}
}
// sort stem
s := make([]int, len(m))
var i int
for k := range m {
s[i] = k
i++
}
sort.Ints(s)
// print
for k := s[0]; ; k++ {
v := m[k]
sort.Strings(v)
fmt.Printf("%2d | %s\n", k, strings.Join(v, " "))
if k == s[len(s)-1] {
break
}
}
}
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Haskell
import Data.List
import Control.Arrow
import Control.Monad
nlsRaw = "12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31"
++ " 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63"
++ " 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53"
++ " 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128"
++ " 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115"
++ " 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146"
nls :: [Int]
nls = map read $ words nlsRaw
groupWith f = takeWhile(not.null). unfoldr(Just. (partition =<< (. f). (==). f. head))
justifyR = foldl ((. return) . (++) . tail) . flip replicate ' '
task ds = mapM_ (putStrLn. showStemLeaves justifyR fb. (head *** sort.concat). unzip)
$ groupWith fst $ stems ++ map (second return) stemLeaf
where stemLeaf = map (`quotRem` 10) ds
stems = map (flip(,)[]) $ uncurry enumFromTo $ minimum &&& maximum $ fst $ unzip stemLeaf
showStemLeaves f w (a,b) = f w (show a) ++ " |" ++ concatMap (f w. show) b
fb = length $ show $ maximum $ map abs ds
Output:
*Main> task nls 0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Or alternatively – aiming more for legibility than for economy or concision:
import Data.List (groupBy, intersperse, mapAccumL, sortBy)
import Data.Ord (comparing)
import Data.Function (on)
import Control.Arrow ((&&&))
-- Strings derived from integers,
-- and split into [(initial string, final character)] tuples.
xs :: [(String, Char)]
xs = (init &&& last) . show <$> [
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48,
127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122,
42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116,
125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114, 96, 25, 109,
7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42,
128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105,
57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107,
114, 34, 133, 45, 120, 30, 127, 31, 116, 146
]
-- Re-reading the initial strings as Ints
-- (empty strings read as 0),
ns :: [(Int, Char)]
ns =
(\x ->
let s = fst x
in ( if null s
then 0
else (read s :: Int)
, snd x)) <$>
xs
-- and sorting and grouping by these initial Ints,
-- interpreting them as data-collection bins.
bins :: [[(Int, Char)]]
bins =
groupBy (on (==) fst) (sortBy (mappend (comparing fst) (comparing snd)) ns)
-- Forming bars by the ordered accumulation of final characters in each bin,
bars :: [(Int, String)]
bars = (fst . head &&& fmap snd) <$> bins
-- and obtaining a complete series, with empty bar strings
-- interpolated for any missing integers.
series :: [(Int, String)]
series =
(concat . snd) $
mapAccumL
(\a x ->
let n = fst x
in if a == n
then (a + 1, [x])
else (n + 1, ((\i -> (i, "")) <$> [a .. (n - 1)]) ++ [x]))
1
bars
-- Assembling the series as a list of strings with right-justified indices,
justifyRight :: Int -> Char -> String -> String
justifyRight n c s = drop (length s) (replicate n c ++ s)
plotLines :: [String]
plotLines =
foldr
(\x a ->
(justifyRight 2 ' ' (show (fst x)) ++ " | " ++ intersperse ' ' (snd x)) :
a)
[]
series
-- and passing these over to IO as a single newline-delimited string.
main :: IO ()
main = putStrLn $ unlines plotLines
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
HicEst
The dialog prompts for bitmap or a text image, and for the stem base. Data are read in from clipboard.
REAL :: workspace(1000), base=16
DLG(CHeckbox=bitmap, NameEdit=base, DNum, MIn=1, MAx=16) ! 1 <= stem base <= 16
READ(ClipBoard, ItemS=nData) workspace ! get raw data
ALIAS(workspace,1, dataset,nData, stems,nData)
SORT(Vector=dataset, Sorted=dataset)
stems = (dataset - MOD(dataset,base)) / base
dataset = dataset - base*stems
max_stem = MAX(stems)
IF( bitmap ) AXIS()
printed = 0
DO stem = 0, max_stem
last = INDEX(stems, stem, 4) ! option 4: search backward
IF( last > printed ) THEN
nLeaves = last - printed
IF(bitmap) THEN
LINE(PenUp=1,W=8, x=0, y=stem, x=nLeaves, y=stem)
ELSE
ALIAS(dataset,printed+1, leaves,nLeaves)
WRITE(Format="i3, ':', 100Z2") stem, leaves
ENDIF
printed = printed + nLeaves
ELSE
WRITE(Format="i3, ':'") stem
ENDIF
ENDDO
Shown is the given example for bitmap=0 and base 16
0 : 7 7 C D 1 : 2 2 7 9 B B B B B B C C D D E F F F F 2 : 0 1 2 3 4 5 5 5 6 7 8 8 9 A A A A B B B C C C D E F 3 : 0 0 4 5 9 A A D F 4 : 4 7 5 : 6 : 0 3 8 9 9 9 9 A B D D D F 7 : 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 7 7 8 8 9 9 A A B C C C D D D E F F F F 8 : 0 0 3 4 5 B D 9 : 2
Icon and Unicon
procedure main(A)
prune := integer(\A[1]) | 10 # Boundary between leaf and stem
every put(data := [], integer(!&input))
writes(right(oldStem := 0,5)," |")
every item := !sort(data) do {
leaf := item % prune
stem := item / prune
while (oldStem < stem) do writes("\n",right(oldStem +:= 1, 5)," |")
writes(" ",right(leaf,*prune-1,"0"))
}
write()
end
Sample output from data.
->stem <stem.data 0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 ->
And a second run with 2-digit leaves:
->stem 100 <stem.data 0 | 07 07 12 13 18 18 23 25 27 27 27 27 27 27 28 28 29 29 30 31 31 31 31 32 33 34 35 36 37 37 37 38 39 40 40 41 42 42 42 42 43 43 43 44 44 44 45 46 47 48 48 52 53 57 58 58 61 63 68 71 96 99 1 | 04 05 05 05 05 06 07 09 09 09 11 13 13 13 13 14 14 14 15 15 15 16 16 16 16 17 17 17 17 18 18 19 19 20 20 21 21 22 22 23 24 24 24 25 25 25 26 27 27 27 27 28 28 31 32 33 39 41 46 ->
J
Solution: (Tacit)
stem =: <.@(%&10)
leaf =: 10&|
stemleaf =: (stem@{. ; leaf)/.~ stem
expandStems =: <./ ([ + i.@>:@-~) >./
expandLeaves=: (expandStems e. ])@[ #inv ]
showStemLeaf=: (":@,.@expandStems@[ ; ":&>@expandLeaves)&>/@(>@{. ; <@{:)@|:@stemleaf@/:~
Solution: (Explicit)
stemleafX=: monad define
leaves=. 10 | y
stems=. y <.@:% 10
leaves=. stems </. leaves NB. group leaves by stem
(<"0 ~.stems),.leaves
)
showStemLeafX=: monad define
'stems leaves'=. (>@{. ; <@{:)@|: stemleafX /:~ y
xstems=. (<./ ([ + i.@>:@-~ ) >./) stems NB. stems including those with no leaves
xleaves=. (xstems e. stems) #inv leaves NB. expand leaves to match xstems
(": ,.xstems) ; ":&> xleaves
)
Example:
nls =: ; <@(_&".);._2 noun define
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125
139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105
99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109
7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118
117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27
27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146
)
stemleaf nls NB. display has been abbreviated
┌──┬─────────────────────────────────────────────┐
│1 │2 8 3 8 │
├──┼─────────────────────────────────────────────┤
│12│7 4 7 5 3 2 8 1 5 7 1 6 4 8 2 4 0 5 0 7 │
├──┼─────────────────────────────────────────────┤
│2 │8 9 3 7 9 5 7 7 7 7 7 8 │
...
showStemLeaf nls
┌──┬─────────────────────────────────────────────┐
│ 0│7 7 │
│ 1│2 3 8 8 │
│ 2│3 5 7 7 7 7 7 7 8 8 9 9 │
│ 3│0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 │
│ 4│0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 │
│ 5│2 3 7 8 8 │
│ 6│1 3 8 │
│ 7│1 │
│ 8│ │
│ 9│6 9 │
│10│4 5 5 5 5 6 7 9 9 9 │
│11│1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9│
│12│0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 │
│13│1 2 3 9 │
│14│1 6 │
└──┴─────────────────────────────────────────────┘
(showStemLeaf -: showStemLeafX) nls NB. both solutions give same result
1
Java
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
public class StemAndLeaf {
private static int[] data = { 12, 127, 28, 42, 39, 113, 42, 18, 44, 118,
44, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105,
132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63,
27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113,
121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27,
43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34,
133, 45, 120, 30, 127, 31, 116, 146 };
public static Map<Integer, List<Integer>> createPlot(int... data){
Map<Integer, List<Integer>> plot = new TreeMap<Integer, List<Integer>>();
int highestStem = -1; //for filling in stems with no leaves
for(int datum:data){
int leaf = datum % 10;
int stem = datum / 10; //integer division
if(stem > highestStem){
highestStem = stem;
}
if(plot.containsKey(stem)){
plot.get(stem).add(leaf);
}else{
LinkedList<Integer> list = new LinkedList<Integer>();
list.add(leaf);
plot.put(stem, list);
}
}
if(plot.keySet().size() < highestStem + 1 /*highest stem value and 0*/ ){
for(int i = 0; i <= highestStem; i++){
if(!plot.containsKey(i)){
LinkedList<Integer> list = new LinkedList<Integer>();
plot.put(i, list);
}
}
}
return plot;
}
public static void printPlot(Map<Integer, List<Integer>> plot){
for(Map.Entry<Integer, List<Integer>> line : plot.entrySet()){
Collections.sort(line.getValue());
System.out.println(line.getKey() + " | " + line.getValue());
}
}
public static void main(String[] args){
Map<Integer, List<Integer>> plot = createPlot(data);
printPlot(plot);
}
}
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
public interface StemAndLeaf {
public static final int[] data = {12, 127, 28, 42, 39, 113, 42, 18, 44, 118,
44, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105,
132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63,
27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113,
121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27,
43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34,
133, 45, 120, 30, 127, 31, 116, 146};
public static Map<Integer, List<Integer>> createPlot(int... data) {
Map<Integer, List<Integer>> plot = Arrays.stream(data)
.parallel()
.boxed()
.collect(
Collectors.groupingBy(
datum -> datum / 10, // stem, integer division
Collectors.mapping(
datum -> datum % 10, // leaf
Collectors.toList()
)
)
)
;
int highestStem = Arrays.stream(data)
.parallel()
.map(datum -> datum / 10)
.max()
.orElse(-1) //for filling in stems with no leaves
;
Optional.of(plot)
.map(Map::keySet)
.map(Collection::size)
.filter(size -> size < highestStem + 1 /*highest stem value and 0*/)
.ifPresent(p ->
IntStream.rangeClosed(
0,
highestStem
)
.parallel()
.forEach(i ->
plot.computeIfAbsent(i, $ -> new LinkedList<>())
)
)
;
return plot;
}
public static void printPlot(Map<Integer, List<Integer>> plot) {
plot.entrySet()
.stream()
.parallel()
.peek(line -> Optional.of(line)
.map(Map.Entry::getValue)
.ifPresent(Collections::sort)
)
.map(line ->
String.join(" ",
String.valueOf(line.getKey()),
"|",
String.valueOf(line.getValue())
)
)
.forEachOrdered(System.out::println)
;
}
public static void main(String... arguments) {
Optional.of(data)
.map(StemAndLeaf::createPlot)
.ifPresent(StemAndLeaf::printPlot)
;
}
}
Output:
0 | [7, 7] 1 | [2, 3, 8, 8] 2 | [3, 5, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9] 3 | [0, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8, 9] 4 | [0, 0, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 7, 8, 8] 5 | [2, 3, 7, 8, 8] 6 | [1, 3, 8] 7 | [1] 8 | [] 9 | [6, 9] 10 | [4, 5, 5, 5, 5, 6, 7, 9, 9, 9] 11 | [1, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9] 12 | [0, 0, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 6, 7, 7, 7, 7, 8, 8] 13 | [1, 2, 3, 9] 14 | [1, 6]
JavaScript
JavaScript + DOM
It turns out that HTML+CSS renders the plot quite attractively.
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>stem and leaf plot</title>
<script type='text/javascript'>
function has_property(obj, propname) {
return typeof(obj[propname]) === "undefined" ? false : true;
}
function compare_numbers(a, b) {return a-b;}
function stemplot(data, target) {
var stem_data = {};
var all_stems = [];
for (var i = 0; i < data.length; i++) {
var stem = Math.floor(data[i] / 10);
var leaf = Math.round(data[i] % 10);
if (has_property(stem_data, stem)) {
stem_data[stem].push(leaf);
} else {
stem_data[stem] = [leaf];
all_stems.push(stem);
}
}
all_stems.sort(compare_numbers);
var min_stem = all_stems[0];
var max_stem = all_stems[all_stems.length - 1];
var table = document.createElement('table');
for (var stem = min_stem; stem <= max_stem; stem++) {
var row = document.createElement('tr');
var label = document.createElement('th');
row.appendChild(label);
label.appendChild(document.createTextNode(stem));
if (has_property(stem_data, stem)) {
stem_data[stem].sort(compare_numbers);
for (var i = 0; i < stem_data[stem].length; i++) {
var cell = document.createElement('td');
cell.appendChild(document.createTextNode(stem_data[stem][i]));
row.appendChild(cell);
}
}
table.appendChild(row);
}
target.appendChild(table);
}
</script>
<style type='text/css'>
body {font-family: monospace;}
table {border-collapse: collapse;}
th {border-right: 1px solid black; text-align: right;}
td {text-align: right;}
</style>
</head>
<body>
<div id="target"></div>
<script type='text/javascript'>
var data = [
12,127,28,42,39,113,42,18,44,118,44,37,113,124,37,48,127,36,29,31,125,139,131,
115,105,132,104,123,35,113,122,42,117,119,58,109,23,105,63,27,44,105,99,41,128,
121,116,125,32,61,37,127,29,113,121,58,114,126,53,114,96,25,109,7,31,141,46,13,
27,43,117,116,27,7,68,40,31,115,124,42,128,52,71,118,117,38,27,106,33,117,116,
111,40,119,47,105,57,122,109,124,115,43,120,43,27,27,18,28,48,125,107,114,34,
133,45,120,30,127,31,116,146
];
stemplot(data, document.getElementById('target'));
</script>
</body>
</html>
The output looks like:
JavaScript ES6
(() => {
// main :: IO String
const main = () => {
// Strings derived from integers,
// and split into [(initial string, final character)] tuples.
// xs :: [(String, Char)]
const xs = map(n => fanArrow(init, last)(n.toString()), [
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104,
123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27,
44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113,
121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27,
43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146
]);
// Re-reading the initial strings as Ints
// (empty strings read as 0),
// ns :: [(Int, Char)]
const ns = map(x => {
const s = fst(x);
return Tuple(s.length > 0 ? (
parseInt(s, 10)
) : 0, snd(x));
}, xs);
// and sorting and grouping by these initial Ints,
// interpreting them as data-collection bins.
// bins :: [[(Int, Char)]]
const bins =
groupBy(
(a, b) => a[0] === b[0],
sortBy(mappendComparing([
[fst, true],
[snd, true]
]), ns)
);
// Forming bars by the ordered accumulation of
// final characters in each bin,
// bars :: [(Int, String)]
const bars = map(
fanArrow(
x => fst(x[0]),
x => map(snd, x)
),
bins
);
// and obtaining a complete series, with empty bars
// interpolated for any missing integers.
// series :: [(Int, String)]
const series = concat(mapAccumL(
(a, x) => {
const n = x[0];
return a !== n ? (
Tuple(1 + n,
map(i => Tuple(i, []),
enumFromToInt(a, n - 1)
)
.concat([x])
)
) : Tuple(1 + a, [x]);
}, 7, bars
)[1]);
// Assembling the series as a list of strings with
// right-justified indices,
// plotLines :: [String]
const plotLines = foldr(
(x, a) => cons(concat([
justifyRight(2, ' ', x[0].toString()),
' | ',
unwords(x[1])
]), a), [],
series
);
// and passing these over to IO as a single
// newline-delimited string.
return unlines(plotLines);
};
// GENERIC FUNCTIONS -----------------------------------------------------
// Tuple (,) :: a -> b -> (a, b)
const Tuple = (a, b) => ({
type: 'Tuple',
'0': a,
'1': b
});
// compare :: a -> a -> Ordering
const compare = (a, b) => a < b ? -1 : (a > b ? 1 : 0);
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs =>
xs.length > 0 ? (() => {
const unit = typeof xs[0] === 'string' ? '' : [];
return unit.concat.apply(unit, xs);
})() : [];
// cons :: a -> [a] -> [a]
const cons = (x, xs) => [x, ...xs];
// enumFromToInt :: Int -> Int -> [Int]
const enumFromToInt = (m, n) =>
n >= m ? Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i) : [];
// Compose a function from a simple value to a tuple of
// the separate outputs of two different functions
// fanArrow (&&&) :: (a -> b) -> (a -> c) -> (a -> (b, c))
const fanArrow = (f, g) => x => Tuple(f(x), g(x));
// flip :: (a -> b -> c) -> b -> a -> c
const flip = f => (a, b) => f.apply(null, [b, a]);
// Note that that the Haskell signature of foldr is different from that of
// foldl - the positions of accumulator and current value are reversed
// foldr :: (a -> b -> b) -> b -> [a] -> b
const foldr = (f, a, xs) => xs.reduceRight(flip(f), a);
// fst :: (a, b) -> a
const fst = tpl => tpl.type !== 'Tuple' ? undefined : tpl[0];
// Typical usage: groupBy(on(eq, f), xs)
// groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
const groupBy = (f, xs) => {
const dct = xs.slice(1)
.reduce((a, x) => {
const h = a.active.length > 0 ? a.active[0] : undefined;
return h !== undefined && f(h, x) ? {
active: a.active.concat([x]),
sofar: a.sofar
} : {
active: [x],
sofar: a.sofar.concat([a.active])
};
}, {
active: xs.length > 0 ? [xs[0]] : [],
sofar: []
});
return dct.sofar.concat(dct.active.length > 0 ? [dct.active] : []);
};
// init :: [a] -> [a]
const init = xs => xs.length > 0 ? xs.slice(0, -1) : undefined;
// justifyRight :: Int -> Char -> String -> String
const justifyRight = (n, cFiller, strText) =>
n > strText.length ? (
(cFiller.repeat(n) + strText)
.slice(-n)
) : strText;
// last :: [a] -> a
const last = xs => xs.length ? xs.slice(-1)[0] : undefined;
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);
// mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
const mapAccumL = (f, acc, xs) =>
xs.reduce((a, x, i) => {
const pair = f(a[0], x, i);
return Tuple(pair[0], a[1].concat(pair[1]));
}, Tuple(acc, []));
// mappendComparing :: [((a -> b), Bool)] -> (a -> a -> Ordering)
const mappendComparing = fboolPairs =>
(x, y) => fboolPairs.reduce(
(ordr, fb) => {
const f = fb[0];
return ordr !== 0 ? (
ordr
) : fb[1] ? (
compare(f(x), f(y))
) : compare(f(y), f(x));
}, 0
);
// snd :: (a, b) -> b
const snd = tpl => tpl.type !== 'Tuple' ? undefined : tpl[1];
// sortBy :: (a -> a -> Ordering) -> [a] -> [a]
const sortBy = (f, xs) =>
xs.slice()
.sort(f);
// unlines :: [String] -> String
const unlines = xs => xs.join('\n');
// unwords :: [String] -> String
const unwords = xs => xs.join(' ');
// MAIN ------------------------------------------------------------------
return main();
})();
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
jq
def stem_and_leaf:
# align-right:
def right: tostring | (4-length) * " " + .;
sort
| .[0] as $min
| .[length-1] as $max
| "\($min/10|floor|right) | " as $stem
| reduce .[] as $d
# state: [ stem, string ]
( [ 0, $stem ];
.[0] as $stem
| if ($d/10) | floor == $stem
then [ $stem, (.[1] + "\($d % 10)" )]
else [ $stem + 1, (.[1] + "\n\($stem+1|right) | \($d % 10)" )]
end )
| .[1] ;
Example:
def data:
[ 12,127,28,42,39,113, 42,18,44,118,44,37,113,124,37,48,127,36,29,31,
125,139,131,115,105,132,104,123,35,113,122,42,117,119,58,109,23,105,
63,27,44,105,99,41,128,121,116,125,32,61,37,127,29,113,121,58,114,126,
53,114,96,25,109,7,31,141,46,13,27,43,117,116,27,7,68,40,31,115,124,42,
128,52,71,118,117,38,27,106,33,117,116,111,40,119,47,105,57,122,109,
124,115,43,120,43,27,27,18,28,48,125,107,114,34,133,45,120, 30,127,
31,116,146
];
data | stem_and_leaf
- Output:
$ jq -n -r -f stem-and-leaf_plot.jq
0 | 77
1 | 2388
2 | 357777778899
3 | 011112345677789
4 | 001222233344456788
5 | 23788
6 | 138
7 | 1
8 | 6
9 | 9
10 | 4555567999
11 | 13333444555666677778899
12 | 00112234445556777788
13 | 1239
14 | 16
Julia
The Function
This is a rather elaborate function that creates a string depicting a stem and leaf plot. Much of the elaboration is to handle the case of negative numbers that have a stem of 0. There is also a bit of work to allow for leaf sizes other than 1 (some power of 10).
function stemleaf{T<:Real}(a::Array{T,1}, leafsize=1)
ls = 10^int(log10(leafsize))
(stem, leaf) = divrem(sort(int(a/ls)), 10)
leaf[sign(stem) .== -1] *= -1
negzero = leaf .< 0
if any(negzero)
leaf[negzero] *= -1
nz = @sprintf "%10s | " "-0"
nz *= join(map(string, leaf[negzero]), " ")
nz *= "\n"
stem = stem[!negzero]
leaf = leaf[!negzero]
else
nz = ""
end
slp = ""
for i in stem[1]:stem[end]
i != 0 || (slp *= nz)
slp *= @sprintf "%10d | " i
slp *= join(map(string, leaf[stem .== i]), " ")
slp *= "\n"
end
slp *= " Leaf Unit = " * string(convert(T, ls)) * "\n"
return slp
end
Main
println("Using the Task's Test Data")
test = """12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29
31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105
63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126
53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42
128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109
124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31
116 146"""
test = map(parseint, split(test, r"\s"))
println(stemleaf(test))
println("Test with Reals and Negative Zero Stem")
test = [-23.678758, -12.45, -3.4, 4.43, 5.5, 5.678, 16.87, 24.7, 56.8]
println(stemleaf(test))
println("Test with Leaf Size Scaling")
test = int(500*randn(20))
println("Using: ", test)
println(stemleaf(test, 10))
- Output:
Using the Task's Test Data 0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 Leaf Unit = 1 Test with Reals and Negative Zero Stem -2 | 4 -1 | 2 -0 | 3 0 | 4 6 6 1 | 7 2 | 5 3 | 4 | 5 | 7 Leaf Unit = 1.0 Test with Leaf Size Scaling Using: [318,1163,-35,-611,-436,-127,-374,-150,119,541,-670,-558,3,592,604,1181,-180,419,829,-364] -6 | 7 1 -5 | 6 -4 | 4 -3 | 7 6 -2 | -1 | 8 5 3 -0 | 4 0 | 0 1 | 2 2 | 3 | 2 4 | 2 5 | 4 9 6 | 0 7 | 8 | 3 9 | 10 | 11 | 6 8 Leaf Unit = 10
Kotlin
// version 1.1.2
fun leafPlot(x: IntArray) {
x.sort()
var i = x[0] / 10 - 1
for (j in 0 until x.size) {
val d = x[j] / 10
while (d > i) print("%s%3d |".format(if (j != 0) "\n" else "", ++i))
print(" ${x[j] % 10}")
}
println()
}
fun main(args: Array<String>) {
val data = intArrayOf(
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146
)
leafPlot(data)
}
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Lua
data = { 12,127,28,42,39,113, 42,18,44,118,44,37,113,124,37,48,127,36,29,31,
125,139,131,115,105,132,104,123,35,113,122,42,117,119,58,109,23,105,
63,27,44,105,99,41,128,121,116,125,32,61,37,127,29,113,121,58,114,126,
53,114,96,25,109,7,31,141,46,13,27,43,117,116,27,7,68,40,31,115,124,42,
128,52,71,118,117,38,27,106,33,117,116,111,40,119,47,105,57,122,109,
124,115,43,120,43,27,27,18,28,48,125,107,114,34,133,45,120, 30,127,
31,116,146
}
table.sort( data )
min, max = data[1], data[#data]
p = 1
for stem = math.floor(min/10), math.floor(max/10) do
io.write( string.format( "%2d | ", stem ) )
while data[p] ~= nil and math.floor( data[p]/10 ) == stem do
io.write( string.format( "%2d ", data[p] % 10 ) )
p = p + 1
end
print ""
end
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Maple
StemPlot := proc( datatable::{rtable,list,algebraic} )
local i, j, k, tf, LeafStemTable, LeafStemIndices;
k:=0;
LeafStemTable := ListTools:-Categorize( (x,y) -> iquo(x, 10) = iquo(y, 10), sort(datatable));
if LeafStemTable = NULL then
error "Empty List";
elif nops( [ LeafStemTable ] ) = 1 or not( type( LeafStemTable[2], list) ) then
LeafStemTable := [ LeafStemTable ];
end if;
LeafStemIndices := { seq( iquo( LeafStemTable[i][1], 10 ), i = 1..nops( [ LeafStemTable ] ) ) };
for i from min( LeafStemIndices ) to max( LeafStemIndices ) do
if i in LeafStemIndices then
k := k + 1;
if i = 0 then
if min( datatable ) >=0 then
printf( "%-4a%s%-s\n", i, " | ", StringTools:-Remove( "[],", convert( [seq( abs( irem( LeafStemTable[k][j], 10 ) ), j = 1..nops( LeafStemTable[k] ) )], string ) ) );
else
tf := ListTools:-Occurrences( true, (x->type(x,negative))~(LeafStemTable[k]));
printf( "%s%-4a%s%-s\n", "-", i, " | ", StringTools:-Remove( "[],", convert( [seq( abs( irem( LeafStemTable[k][j], 10 ) ), j = 1 .. tf )], string ) ) );
printf( "%-4a%s%-s\n", i, " | ", StringTools:-Remove( "[],", convert( [seq( abs( irem( LeafStemTable[k][j], 10 ) ), j = tf + 1 .. nops( LeafStemTable[k] ) )], string ) ) );
end if;
else
printf( "%-4a%s%-s\n", i, " | ", StringTools:-Remove( "[],", convert( [seq( abs( irem( LeafStemTable[k][j], 10 ) ), j = 1..nops( LeafStemTable[k] ) )], string ) ) );
end if;
else
printf( "%-4a%s\n", i, " | " );
end if;
end do;
return NULL;
end proc:
Y := [ 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146];
StemPlot(Y);
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Mathematica /Wolfram Language
len[n_] := RealDigits[n][[2]]; padding = len[Max@ Quotient[inputdata, 10]];
For[i = Min@ Quotient[inputdata, 10],i <= Max@ Quotient[inputdata, 10], i++,
(Print[i, If[(padding - len[i]) > 0, (padding - len[i])*" " <> " |", " |"] ,
StringJoin[(" " <> #) & /@ Map[ToString, #]]])&@
Select[{Quotient[#, 10], Mod[#, 10]} & /@ Sort[inputdata],Part[#, 1] == i &][[;; , 2]]]
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
MATLAB / Octave
function stem_and_leaf_plot(x,stem_unit,leaf_unit)
if nargin < 2, stem_unit = 10; end;
if nargin < 3,
leaf_unit = 1;
else
x = leaf_unit*round(x/leaf_unit);
end;
stem = floor(x/stem_unit);
leaf = mod(x,stem_unit);
for k = min(stem):max(stem)
printf('\n%d |',k)
printf(' %d' ,sort(leaf(k==stem)))
end;
printf('\nkey:6|3=63\n');
printf('leaf unit: %.1f\n',leaf_unit);
printf('stem unit: %.1f\n',stem_unit);
end;
x = [12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146];
stem_and_leaf_plot(x);
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 key:6|3=63 leaf unit: 1.0 stem unit: 10.0
Maxima
load(descriptive)$
data: [12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127,
36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119,
58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127,
29, 113, 121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106,
33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27,
27, 18, 28, 48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146]$
stemplot(data);
0|77
1|2388
2|357777778899
3|011112345677789
4|001222233344456788
5|23788
6|138
7|1
9|69
10|4555567999
11|13333444555666677778899
12|00112234445556777788
13|1239
14|16
Nim
import tables
import math
import strutils
import algorithm
type
StemLeafPlot = ref object
leafDigits: int
multiplier: int
plot: TableRef[int, seq[int]]
proc `$`(s: seq[int]): string =
result = ""
for item in s:
result &= $item & " "
proc `$`(self: StemLeafPlot): string =
result = ""
var keys: seq[int] = @[]
for stem, _ in self.plot:
keys.add(stem)
for printedStem in keys.min..keys.max:
result &= align($printedStem & " | ", ($keys.max).len + 4)
if printedStem in keys:
self.plot[printedStem].sort(system.cmp[int])
result &= $self.plot[printedStem]
result &= "\n"
proc parse(self: StemLeafPlot, value: int): tuple[stem, leaf: int] =
(value div self.multiplier, abs(value mod self.multiplier))
proc init[T](self: StemLeafPlot, leafDigits: int, data: openArray[T]) =
self.leafDigits = leafDigits
self.multiplier = 10 ^ leafDigits
self.plot = newTable[int, seq[int]]()
for value in data:
let (stem, leaf) = self.parse(value)
if stem notin self.plot:
self.plot[stem] = @[leaf]
else:
self.plot[stem].add(leaf)
var taskData = @[12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146]
var negativeData = @[-24, -12, -3, 4, 6, 6, 17, 25, 57]
echo "Using the Task's Test Data"
var taskPlot = StemLeafPlot()
taskPlot.init(1, taskData)
echo taskPlot
echo "Test with Negative Stem"
var negativePlot = StemLeafPlot()
negativePlot.init(1, negativeData)
echo negativePlot
- Output:
Using the Task's Test Data 0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 Test with Reals and Negative Zero Stem -2 | 4 -1 | 2 0 | 3 4 6 6 1 | 7 2 | 5 3 | 4 | 5 | 7
OCaml
The definition of the function unique
below can be omited if one uses the extlib.
let unique li =
let rec aux acc = function
| [] -> (List.rev acc)
| x::xs ->
if List.mem x acc
then aux acc xs
else aux (x::acc) xs
in
aux [] li
let data =
[ 12; 127; 28; 42; 39; 113; 42; 18; 44; 118; 44; 37; 113; 124; 37; 48;
127; 36; 29; 31; 125; 139; 131; 115; 105; 132; 104; 123; 35; 113; 122;
42; 117; 119; 58; 109; 23; 105; 63; 27; 44; 105; 99; 41; 128; 121; 116;
125; 32; 61; 37; 127; 29; 113; 121; 58; 114; 126; 53; 114; 96; 25; 109;
7; 31; 141; 46; 13; 27; 43; 117; 116; 27; 7; 68; 40; 31; 115; 124; 42;
128; 52; 71; 118; 117; 38; 27; 106; 33; 117; 116; 111; 40; 119; 47; 105;
57; 122; 109; 124; 115; 43; 120; 43; 27; 27; 18; 28; 48; 125; 107; 114;
34; 133; 45; 120; 30; 127; 31; 116; 146 ]
let data =
List.map (fun d -> (d / 10, d mod 10)) data
let keys =
List.sort compare (unique (List.map fst data))
let () =
List.iter (fun key ->
Printf.printf " %2d |" key;
let vs = List.filter (fun (a,_) -> a = key) data in
let vs = List.sort compare (List.map snd vs) in
List.iter (Printf.printf " %d") vs;
print_newline()
) keys
we can output the same latex code than the Perl example replacing the main function as follow:
let () =
print_endline "\
\\documentclass{report}
\\usepackage{fullpage}
\\begin{document}
\\begin{tabular}{ r | *{120}{c} }";
List.iter (fun key ->
Printf.printf " %d" key;
let vs = List.filter (fun (a,_) -> a = key) data in
let vs = List.sort compare (List.map snd vs) in
List.iter (Printf.printf " & %d") vs;
print_endline " \\\\"
) keys;
print_endline "\
\\end{tabular}
\\end{document}"
Perl
my @data = sort {$a <=> $b} qw( 12 127 28 42 39 113 42 18 44 118 44
37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113
122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32
61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13
27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27
106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27
18 28 48 125 107 114 34 133 45 120 30 127 31 116 );
my $columns = @data;
my $laststem = undef;
for my $value (@data) {
my $stem = int($value / 10);
my $leaf = $value % 10;
while (not defined $laststem or $stem > $laststem) {
if (not defined $laststem) {
$laststem = $stem - 1;
} else {
print " \n";
}
$laststem++;
printf "%3d |", $laststem;
}
print " $leaf";
}
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1
LaTeX output
generating LaTeX
#!/usr/bin/perl -w
my @data = sort {$a <=> $b} qw( 12 127 28 42 39 113 42 18 44 118 44
37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113
122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32
61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13
27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27
106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27
18 28 48 125 107 114 34 133 45 120 30 127 31 116 );
# FIXME: This should count the maximum number of leaves in any one stem;
# instead it takes the total number of data items, which is usually
# a massive overestimate.
my $columns = @data;
print <<"EOT";
\\documentclass{report}
\\usepackage{fullpage}
\\begin{document}
\\begin{tabular}{ r | *{$columns}{c} }
EOT
my $laststem = undef;
for my $value (@data) {
my $stem = int($value / 10);
my $leaf = $value % 10;
while (not defined $laststem or $stem > $laststem) {
if (not defined $laststem) {
$laststem = $stem - 1;
} else {
print " \\\\\n";
}
$laststem++;
print " $laststem";
}
printf " & $leaf";
}
print <<'EOT';
\end{tabular}
\end{document}
EOT
LaTeX output of the Perl program:
\documentclass{report}
\usepackage{fullpage}
\begin{document}
\begin{tabular}{ r | *{120}{c} }
0 & 7 & 7 \\
1 & 2 & 3 & 8 & 8 \\
2 & 3 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 8 & 9 & 9 \\
...
13 & 1 & 2 & 3 & 9 \\
14 & 1
\end{tabular}
\end{document}
The parameter to the tabular
environment defines the columns of the table. “r” and “c” are right- and center-aligned columns, “|” is a vertical rule, and “*{count}{cols}”
repeats a column definition count times.
To get from the program above to a rendered PDF,
perl ./Stem-perl.pl > plot.tex && pdflatex plot.tex
and the output will be in plot.pdf
. Output.
Phix
with javascript_semantics procedure leaf_plot(sequence s) s = sort(deep_copy(s)) sequence stem = repeat({},floor(s[$]/10)+1) for i=1 to length(s) do integer j = floor(s[i]/10)+1 stem[j] = deep_copy(stem[j]) & remainder(s[i],10) end for for i=1 to length(stem) do printf(1, "%3d | ", i-1) for j=1 to length(stem[i]) do printf(1, "%d ", stem[i][j]) end for puts(1,'\n') end for end procedure constant data = { 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146 } leaf_plot(data)
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
PicoLisp
(de *Data
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119
58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127
29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43
117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106
33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27
27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146 )
(let L
(group
(mapcar
'((N)
(cons
(or (format (head -1 (setq N (chop N)))) 0)
(last N) ) )
(sort *Data) ) )
(for I (range (caar L) (car (last L)))
(prinl (align 3 I) " | " (glue " " (cdr (assoc I L)))) ) )
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
PowerShell
$Set = -split '12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146'
$Data = $Set | Select @{ Label = 'Stem'; Expression = { [string][int]$_.Substring( 0, $_.Length - 1 ) } }, @{ Label = 'Leaf'; Expression = { [string]$_[-1] } }
$StemStats = $Data | Measure-Object -Property Stem -Minimum -Maximum
ForEach ( $Stem in $StemStats.Minimum..$StemStats.Maximum )
{
@( $Stem.ToString().PadLeft( 2, " " ), '|' ) + ( ( $Data | Where Stem -eq $Stem ).Leaf | Sort ) -join " "
}
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Python
Adjusting Stem.leafdigits
allows you to modify how many digits of a value are used in the leaf, with the stem intervals adjusted accordingly.
from collections import namedtuple
from pprint import pprint as pp
from math import floor
Stem = namedtuple('Stem', 'data, leafdigits')
data0 = Stem((12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37,
48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35,
113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99,
41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114,
126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116,
27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27,
106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115,
43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34, 133, 45, 120,
30, 127, 31, 116, 146),
1.0)
def stemplot(stem):
d = []
interval = int(10**int(stem.leafdigits))
for data in sorted(stem.data):
data = int(floor(data))
stm, lf = divmod(data,interval)
d.append( (int(stm), int(lf)) )
stems, leafs = list(zip(*d))
stemwidth = max(len(str(x)) for x in stems)
leafwidth = max(len(str(x)) for x in leafs)
laststem, out = min(stems) - 1, []
for s,l in d:
while laststem < s:
laststem += 1
out.append('\n%*i |' % ( stemwidth, laststem))
out.append(' %0*i' % (leafwidth, l))
out.append('\n\nKey:\n Stem multiplier: %i\n X | Y => %i*X+Y\n'
% (interval, interval))
return ''.join(out)
if __name__ == '__main__':
print( stemplot(data0) )
Sample Output
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 Key: Stem multiplier: 10 X | Y => 10*X+Y
Here is an another example using an OrderedDict and Counter
from collections import OrderedDict, Counter
x= [12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48,
127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113,
122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128,
121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114,
96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31,
115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111,
40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18,
28, 48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146]
def stemleaf(x):
d = OrderedDict((((str(v)[:-1],' ')[v<10], Counter()) for v in sorted(x)))
for s in ((str(v),' '+str(v))[v<10] for v in x) : d[s[:-1]][s[-1]]+=1
m=max(len(s) for s in d)
for k in d:
print('%s%s | %s'%(' '*(m-len(k)),k,' '.join(sorted(d[k].elements()))))
stemleaf(x)
Output :
| 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Or, generalising a little to write a purely declarative function (in terms of groupby and reduce) which takes stem and leaf accessor functions as its first arguments:
from itertools import (groupby)
from functools import (reduce)
# stemLeaf :: (String -> Int) -> (String -> String) -> String -> String
def stemLeaf(f, g, s):
return '\n'.join(map(
lambda x: str(x[0]).rjust(2) + ' | ' +
reduce(lambda a, tpl: a + tpl[1] + ' ', x[1], ''),
(groupby(sorted(
map(lambda x: (f(x), g(x)), s.split())
),
lambda x: x[0]
))
))
# main :: IO()
def main():
def stem(s):
return (lambda x=s[:-1]: int(x) if 0 < len(x) else 0)()
def leaf(s):
return s[-1]
s = ('12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31'
' 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23'
' 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58'
' 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40'
' 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47'
' 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133'
' 45 120 30 127 31 116 146')
print (stemLeaf(stem, leaf, s))
main()
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Quackery
[ sort
-1 swap
witheach
[ 2dup < iff
[ cr dip
[ 10 + dup
10 / dup
10 < if sp
echo say " | " ] ]
again
[ over - 9 + echo sp ] ]
drop ] is leafplot ( [ --> )
' [ 12 127 28 42 39 113 42 18 44 118 44
37 113 124 37 48 127 36 29 31 125 139
131 115 105 132 104 123 35 113 122 42 117
119 58 109 23 105 63 27 44 105 99 41
128 121 116 125 32 61 37 127 29 113 121
58 114 126 53 114 96 25 109 7 31 141
46 13 27 43 117 116 27 7 68 40 31
115 124 42 128 52 71 118 117 38 27 106
33 117 116 111 40 119 47 105 57 122 109
124 115 43 120 43 27 27 18 28 48 125
107 114 34 133 45 120 30 127 31 116 146 ]
leafplot
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
R
x <- c(12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127, 36,
29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109,
23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113,
121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116,
27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117,
116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28,
48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146)
stem(x)
Output :
0 | 77 1 | 2388 2 | 357777778899 3 | 011112345677789 4 | 001222233344456788 5 | 23788 6 | 138 7 | 1 8 | 9 | 69 10 | 4555567999 11 | 13333444555666677778899 12 | 00112234445556777788 13 | 1239 14 | 16
Racket
#lang racket
(define (show-stem+leaf data)
(define xs (sort data <))
(for ([stem (add1 (floor (/ (last xs) 10)))])
(printf "~a|" (~a #:width 2 #:align 'right stem))
(for ([i xs])
(define-values [q r] (quotient/remainder i 10))
(when (= q stem) (printf " ~a" r)))
(newline)))
(show-stem+leaf (sequence->list (in-producer read eof)))
Sample run:
$ racket sl.rkt < the-data 0| 7 7 1| 2 3 8 8 2| 3 5 7 7 7 7 7 7 8 8 9 9 3| 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4| 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5| 2 3 7 8 8 6| 1 3 8 7| 1 8| 9| 6 9 10| 4 5 5 5 5 6 7 9 9 9 11| 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12| 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13| 1 2 3 9 14| 1 6
Raku
(formerly Perl 6)
Handles negative stems properly.
my @data = <
12 127 28 42 39 113 42 18 44 118 44
37 113 124 37 48 127 36 29 31 125 139
131 115 105 132 104 123 35 113 122 42 117
119 58 109 23 105 63 27 44 105 99 41
128 121 116 125 32 61 37 127 29 113 121
58 114 126 53 114 96 25 109 7 31 141
46 13 27 43 117 116 27 7 68 40 31
115 124 42 128 52 71 118 117 38 27 106
33 117 116 111 40 119 47 105 57 122 109
124 115 43 120 43 27 27 18 28 48 125
107 114 34 133 45 120 30 127 31 116 146
>».Int.sort;
my Int $stem_unit = 10;
my %h = @data.classify: * div $stem_unit;
my $range = [minmax] %h.keys».Int;
my $stem_format = "%{$range.min.chars max $range.max.chars}d";
for $range.list -> $stem {
my $leafs = %h{$stem} // [];
say $stem.fmt($stem_format), ' | ', ~$leafs.map: * % $stem_unit;
}
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
REXX
zero and positive numbers
A check is performed to verify that all input is numeric (decimal fractions are allowed as well as exponential format).
Also, a check is made if any of the numbers are negative (and an error message is issued). Negative numbers are handled by the 2nd REXX version.
Also, all numbers that are processed are normalized. Using a sparse array bypasses the need for sorting.
/*REXX program displays a stem and leaf plot of any non-negative numbers [can include 0]*/
parse arg @ /* [↓] Not specified? Then use default*/
if @='' then @=12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139,
131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121,
116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117,
116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105,
57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146
#.=; bot=.; top=. /* [↑] define all #. elements as null.*/
do j=1 for words(@); y=word(@, j) /*◄─── process each number in the list.*/
if \datatype(y,"N") then do; say '***error*** item' j "isn't numeric:" y; exit; end
if y<0 then do; say '***error*** item' j "is negative:" y; exit; end
n=format(y, , 0) / 1 /*normalize the numbers (not malformed)*/
stem=word(left(n, length(n) -1) 0, 1) /*obtain stem (1st digits) from number.*/
parse var n '' -1 leaf; _=stem * sign(n) /* " leaf (last digit) " " */
if bot==. then do; bot=_; top=_; end /*handle the first case for TOP and BOT*/
bot=min(bot, _); top=max(top, _) /*obtain the minimum and maximum so far*/
#.stem.leaf= #.stem.leaf leaf /*construct sorted stem-and-leaf entry.*/
end /*j*/
w=max(length(min), length(max) ) + 1 /*W: used to right justify the output.*/
/* [↓] display the stem-and-leaf plot.*/
do k=bot to top; $= /*$: is the output string, a plot line*/
do m=0 for 10; $=$ #.k.m /*build a line for the stem─&─leaf plot*/
end /*m*/
say right(k, w) '║' space($) /*display a line of stem─and─leaf plot.*/
end /*k*/ /*stick a fork in it, we're all done. */
output when using the (internal) defaults as input:
0 ║ 7 7 1 ║ 2 3 8 8 2 ║ 3 5 7 7 7 7 7 7 8 8 9 9 3 ║ 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 ║ 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 ║ 2 3 7 8 8 6 ║ 1 3 8 7 ║ 1 8 ║ 9 ║ 6 9 10 ║ 4 5 5 5 5 6 7 9 9 9 11 ║ 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 ║ 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 ║ 1 2 3 9 14 ║ 1 6
negative, zero, and positive numbers
This REXX version also handles negative numbers.
/*REXX program displays a stem─and─leaf plot of any real numbers [can be: neg, 0, pos].*/
parse arg @ /*obtain optional arguments from the CL*/
if @='' then @='15 14 3 2 1 0 -1 -2 -3 -14 -15' /*Not specified? Then use the default.*/
#.=; bot=.; top=.; z=. /* [↑] define all #. elements as null.*/
do j=1 for words(@); y=word(@, j) /*◄─── process each number in the list.*/
if \datatype(y,"N") then do; say '***error*** item' j "isn't numeric:" y; exit; end
n=format(y,,0)/1; an=abs(n); s=sign(n) /*normalize the numbers (not malformed)*/
stem=left(an, length(an) -1)
if stem=='' then if s>=0 then stem=0 /*handle case of one-digit positive #. */
else stem='-0' /* " " " " " negative " */
else stem=s * stem /* " " " a multi-digit number.*/
parse var n '' -1 leaf /*obtain the leaf (the last digit) of #*/
if bot==. then do; bot=stem; top=bot; end /*handle the first case for TOP and BOT*/
bot=min(bot, stem); top=max(top, stem) /*obtain the minimum and maximum so far*/
if stem=='-0' then z=0 /*use Z as a flag to show negative 0.*/
#.stem.leaf= #.stem.leaf leaf /*construct sorted stem-and-leaf entry.*/
end /*j*/
w=max(length(min), length(max) ) + 1 /*W: used to right─justify the output.*/
!='-0' /* [↓] display the stem-and-leaf plot.*/
do k=bot to top; $= /*$: is the output string, a plot line*/
if k==z then do /*handle a special case for negative 0.*/
do s=0 for 10; $=$ #.!.s /*build a line for the stem─&─leaf plot*/
end /*s*/ /* [↑] address special case of -zero.*/
say right(!, w) '║' space($) /*display a line of stem─and─leaf plot.*/
end /* [↑] handles special case of -zero.*/
$= /*a new plot line (of output). */
do m=0 for 10; $=$ #.k.m /*build a line for the stem─&─leaf plot*/
end /*m*/
say right(k, w) '║' space($) /*display a line of stem─and─leaf plot.*/
end /*k*/ /*stick a fork in it, we're all done. */
output when using the (internal) defaults as input:
-1 ║ 4 5 -0 ║ 1 2 3 0 ║ 0 1 2 3 1 ║ 4 5
Ring
# Project : Stem-and-leaf plot
data = list(120)
data = [12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146]
leafplot(data, len(data))
func leafplot(x,n)
c = n
x = sort(x)
i = floor(x[1] / 10 ) - 1
for j = 1 to n
d = floor(x[j] / 10)
while d > i
i = i + 1
if j > 0
see nl
ok
see "" + i + " |"
end
see "" + (x[j] % 10) + " "
next
see nl
Output:
0 |7 7 1 |2 3 8 8 2 |3 5 7 7 7 7 7 7 8 8 9 9 3 |0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 |0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 |2 3 7 8 8 6 |1 3 8 7 |1 8 | 9 |6 9 10 |4 5 5 5 5 6 7 9 9 9 11 |1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 |0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 |1 2 3 9 14 |1 6
Ruby
This implementation will handle negative values.
class StemLeafPlot
def initialize(data, options = {})
opts = {:leaf_digits => 1}.merge(options)
@leaf_digits = opts[:leaf_digits]
@multiplier = 10 ** @leaf_digits
@plot = generate_structure(data)
end
private
def generate_structure(data)
plot = Hash.new {|h,k| h[k] = []}
data.sort.each do |value|
stem, leaf = parse(value)
plot[stem] << leaf
end
plot
end
def parse(value)
stem, leaf = value.abs.divmod(@multiplier)
[Stem.get(stem, value), leaf.round]
end
public
def print
stem_width = Math.log10(@plot.keys.max_by {|s| s.value}.value).ceil + 1
Stem.get_range(@plot.keys).each do |stem|
leaves = @plot[stem].inject("") {|str,leaf| str << "%*d " % [@leaf_digits, leaf]}
puts "%*s | %s" % [stem_width, stem, leaves]
end
puts "key: 5|4=#{5 * @multiplier + 4}"
puts "leaf unit: 1"
puts "stem unit: #@multiplier"
end
end
class Stem
@@cache = {}
def self.get(stem_value, datum)
sign = datum < 0 ? :- : :+
cache(stem_value, sign)
end
private
def self.cache(value, sign)
if @@cache[[value, sign]].nil?
@@cache[[value, sign]] = self.new(value, sign)
end
@@cache[[value, sign]]
end
def initialize(value, sign)
@value = value
@sign = sign
end
public
attr_accessor :value, :sign
def negative?
@sign == :-
end
def <=>(other)
if self.negative?
if other.negative?
other.value <=> self.value
else
-1
end
else
if other.negative?
1
else
self.value <=> other.value
end
end
end
def to_s
"%s%d" % [(self.negative? ? '-' : ' '), @value]
end
def self.get_range(array_of_stems)
min, max = array_of_stems.minmax
if min.negative?
if max.negative?
min.value.downto(max.value).collect {|n| cache(n, :-)}
else
min.value.downto(0).collect {|n| cache(n, :-)} + 0.upto(max.value).collect {|n| cache(n, :+)}
end
else
min.value.upto(max.value).collect {|n| cache(n, :+)}
end
end
end
data = DATA.read.split.map {|s| Float(s)}
StemLeafPlot.new(data).print
__END__
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131
115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128
121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13
27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116
111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34
133 45 120 30 127 31 116 146
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6 key: 5|4=54 leaf unit: 1 stem unit: 10
Simple version
class StemLeafPlot
def initialize(data, leaf_digits=1)
@leaf_digits = leaf_digits
multiplier = 10 ** @leaf_digits
@plot = data.sort.group_by{|x| x / multiplier}
@plot.default = []
@plot.each{|k,v| @plot[k] = v.map{|val| val % multiplier}}
end
def print
min, max = @plot.keys.minmax
stem_width = max.to_s.size
(min..max).each do |stem|
leaves = @plot[stem].inject("") {|str,leaf| str << "%0*d " % [@leaf_digits, leaf]}
puts "%*s | %s" % [stem_width, stem, leaves]
end
end
end
data = DATA.read.split.map {|s| Integer(s)}
StemLeafPlot.new(data).print
__END__
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131
115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128
121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13
27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116
111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34
133 45 120 30 127 31 116 146
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Scala
def stemAndLeaf(numbers: List[Int]) = {
val lineFormat = "%" + (numbers map (_.toString.length) max) + "d | %s"
val map = numbers groupBy (_ / 10)
for (stem <- numbers.min / 10 to numbers.max / 10) {
println(lineFormat format (stem, map.getOrElse(stem, Nil) map (_ % 10) sortBy identity mkString " "))
}
}
Example:
scala> val list = """12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 | 146""" split "\\s+" map (_.toInt) toList list: List[Int] = List(12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127, 36, 29, 31, 125, 139, 1 31, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 1 20, 43, 27, 27, 18, 28, 48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146) scala> stemAndLeaf(list) 0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Seed7
$ include "seed7_05.s7i";
const proc: leafPlot (in var array integer: x) is func
local
var integer: i is 0;
var integer: j is 0;
var integer: d is 0;
begin
x := sort(x);
i := x[1] div 10 - 1;
for key j range x do
d := x[j] div 10;
while d > i do
if j <> 1 then
writeln;
end if;
incr(i);
write(i lpad 3 <& " |");
end while;
write(" " <& x[j] rem 10);
end for;
writeln;
end func;
const proc: main is func
local
const array integer: data is [] (
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124, 37, 48, 127, 36,
29, 31, 125, 139, 131, 115, 105, 132, 104, 123, 35, 113, 122, 42, 117, 119, 58, 109,
23, 105, 63, 27, 44, 105, 99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113,
121, 58, 114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43, 117, 116,
27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118, 117, 38, 27, 106, 33, 117,
116, 111, 40, 119, 47, 105, 57, 122, 109, 124, 115, 43, 120, 43, 27, 27, 18, 28,
48, 125, 107, 114, 34, 133, 45, 120, 30, 127, 31, 116, 146);
begin
leafPlot(data);
end func;
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Sidef
var data = %i(
12 127 28 42 39 113 42 18 44 118 44
37 113 124 37 48 127 36 29 31 125 139
131 115 105 132 104 123 35 113 122 42 117
119 58 109 23 105 63 27 44 105 99 41
128 121 116 125 32 61 37 127 29 113 121
58 114 126 53 114 96 25 109 7 31 141
46 13 27 43 117 116 27 7 68 40 31
115 124 42 128 52 71 118 117 38 27 106
33 117 116 111 40 119 47 105 57 122 109
124 115 43 120 43 27 27 18 28 48 125
107 114 34 133 45 120 30 127 31 116 146
).sort;
var stem_unit = 10;
var h = data.group_by { |i| i / stem_unit -> int }
var rng = RangeNum(h.keys.map{.to_i}.minmax);
var stem_format = "%#{rng.min.len.max(rng.max.len)}d";
rng.each { |stem|
var leafs = (h{stem} \\ [])
say(stem_format % stem, ' | ', leafs.map { _ % stem_unit }.join(' '))
}
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Stata
. clear all
. input x
12
127
28
...
31
116
146
end
. stem x
Stem-and-leaf plot for x
0* | 77
1* | 2388
2* | 357777778899
3* | 011112345677789
4* | 001222233344456788
5* | 23788
6* | 138
7* | 1
8* |
9* | 69
10* | 4555567999
11* | 13333444555666677778899
12* | 00112234445556777788
13* | 1239
14* | 16
Tcl
package require Tcl 8.5
# How to process a single value, adding it to the table mapping stems to
# leaves.
proc addSLValue {tblName value {splitFactor 10}} {
upvar 1 $tblName tbl
# Extract the stem and leaf
if {$value < 0} {
set value [expr {round(-$value)}]
set stem -[expr {$value / $splitFactor}]
} else {
set value [expr {round($value)}]
set stem [expr {$value / $splitFactor}]
}
if {![info exist tbl]} {
dict set tbl min $stem
}
dict set tbl max $stem
set leaf [expr {$value % $splitFactor}]
dict lappend tbl $stem $leaf
}
# How to do the actual output of the stem-and-leaf table, given that we have
# already done the splitting into stems and leaves.
proc printSLTable {tblName} {
upvar 1 $tblName tbl
# Get the range of stems
set min [dict get $tbl min]
set max [dict get $tbl max]
# Work out how much width the stems take so everything lines up
set l [expr {max([string length $min], [string length $max])}]
# Print out the table
for {set i $min} {$i <= $max} {incr i} {
if {![dict exist $tbl $i]} {
puts [format " %*d |" $l $i]
} else {
puts [format " %*d | %s" $l $i [dict get $tbl $i]]
}
}
}
# Assemble the parts into a full stem-and-leaf table printer.
proc printStemLeaf {dataList {splitFactor 10}} {
foreach value [lsort -real $dataList] {
addSLValue tbl $value $splitFactor
}
printSLTable tbl
}
# Demo code
set data {
12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119 58 109
23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113
121 58 114 126 53 114 96 25 109 7 31 141 46 13 27 43 117 116
27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117
116 111 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28
48 125 107 114 34 133 45 120 30 127 31 116 146
}
printStemLeaf $data
Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
TUSCRIPT
$$ MODE TUSCRIPT
digits=*
DATA 12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36 29 31 125 139 131 115 105 132 104 123 35 113
DATA 122 42 117 119 58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37 127 29 113 121 58 114 126 53 114
DATA 96 25 109 7 31 141 46 13 27 43 117 116 27 7 68 40 31 115 124 42 128 52 71 118 117 38 27 106 33 117 116 111
DATA 40 119 47 105 57 122 109 124 115 43 120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116 146
digits=SPLIT (digits,": :"), digitssort=DIGIT_SORT (digits)
SECTION format
formatstem=CENTER (currentstem,5," ")
PRINT formatstem, leaves
ENDSECTION
leaves="",currentstem=0
LOOP d=digitssort
leaf=mod(d,10),stem=d/10
IF (stem!=currentstem) THEN
DO format
IF (stem!=nextstem) THEN
currentstem=nextstem=nextstem+1,leaves=""
DO format
ENDIF
leaves=leaf, currentstem=stem
ELSE
leaves=APPEND (leaves,leaf), nextstem=stem+1
ENDIF
ENDLOOP
DO format
Output:
0 7'7 1 2'3'8'8 2 3'5'7'7'7'7'7'7'8'8'9'9 3 0'1'1'1'1'2'3'4'5'6'7'7'7'8'9 4 0'0'1'2'2'2'2'3'3'3'4'4'4'5'6'7'8'8 5 2'3'7'8'8 6 1'3'8 7 1 8 9 6'9 10 4'5'5'5'5'6'7'9'9'9 11 1'3'3'3'3'4'4'4'5'5'5'6'6'6'6'7'7'7'7'8'8'9'9 12 0'0'1'1'2'2'3'4'4'4'5'5'5'6'7'7'7'7'8'8 13 1'2'3'9 14 1'6
Uiua
[12 127 28 42 39 113 42 18 44 118 44 37 113 124 37 48 127 36
29 31 125 139 131 115 105 132 104 123 35 113 122 42 117 119
58 109 23 105 63 27 44 105 99 41 128 121 116 125 32 61 37
127 29 113 121 58 114 126 53 114 96 25 109 7 31 141 46 13 27
43 117 116 27 7 68 40 31 115 124 42 128 146 52 71 118 117 38
27 106 33 117 116 111 40 119 47 105 57 122 109 124 115 43
120 43 27 27 18 28 48 125 107 114 34 133 45 120 30 127 31 116]
°⊏⊕(□⊏⍏.◿10)⌊÷10.
∵◇(&p$"_ | _"⬚@ ↙¯2°⋕⊙/$"_ _")
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Ursala
#import std
#import nat
data =
<
12,127,28,42,39,113,42,18,44,118,44,37,113,124,37,48,127,36,29,31,125,139,131,
115,105,132,104,123,35,113,122,42,117,119,58,109,23,105,63,27,44,105,99,41,128,
121,116,125,32,61,37,127,29,113,121,58,114,126,53,114,96,25,109,7,31,141,46,13,
27,43,117,116,27,7,68,40,31,115,124,42,128,52,71,118,117,38,27,106,33,117,116,
111,40,119,47,105,57,122,109,124,115,43,120,43,27,27,18,28,48,125,107,114,34,
133,45,120,30,127,31,116,146>
stemleaf_plot =
^|T(~&,' | '--)*+ -+
^p(pad` @hS; * ==` ~-rlT,mat` *tS)@hSS+ (%nP*)^|*H/~& ^lrNCT/iota ~&,
^(*+ ^C/~&+ -:0!,~&zl)+ ^|(~&,nleq-<)*+ nleq-<&l@lK2hlPrSXS+ * division\10+-
#show+
main = stemleaf_plot data
Reading from right to left on the bottom line of the stemleaf_plot
function, we
obtain the quotient and remainder of every datum divided by ten, partition by
quotients, sort the partitions and sort within each partition,
make a note of the maximum quotient, and reify the table into a function.
From right to left on the line above, we apply the reified function to each number up to the maximum quotient (i.e., including 8 which wasn't in the original table), convert each number to a string, flatten each leaf list with spaces as separators, and right justify the stem list.
The remaining top line forms the concatenation of each stem with its flattened leaf list and a vertical bar between them.
output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
Wren
import "./fmt" for Fmt
var leafPlot = Fn.new { |x|
x.sort()
var i = (x[0]/10).floor - 1
for (j in 0...x.count) {
var d = (x[j] / 10).floor
while (d > i) {
i = i + 1
Fmt.write("$0s$3d |", (j != 0) ? "\n" : "", i)
}
System.write(" %(x[j] % 10)")
}
System.print()
}
var data = [
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146
]
leafPlot.call(data)
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
XPL0
\ Stem-and-leaf plot
code Rem=2, CrLf=9, Text=12;
code real RlOut=48, Float=49, Format=52;
define DataSize = 121;
integer Data;
procedure ShellSortInt(A, N);
integer A, N;
integer I, J, Incr, Tmp;
begin
Incr:= N / 2;
while Incr > 0 do
begin
for I:= Incr, N - 1 do
begin
J:= I - Incr;
while J >= 0 do
begin
if A(J) > A(J + Incr) then
begin
Tmp:= A(J);
A(J):= A(J + Incr);
A(J + Incr):= Tmp;
J:= J - Incr
end
else
J:= -1
end;
end;
Incr:= Incr / 2
end;
end;
procedure LeafPlot (X, N);
integer X, N;
integer D, I, J;
begin
ShellSortInt(X, N);
I:= X(0) / 10 - 1;
Format(2,0);
for J:= 0, N - 1 do
begin
D:= X(J) / 10;
while D > I do
begin
I:= I + 1;
if J then CrLf(0);
RlOut(0, Float(I)); Text(0, " |");
end;
RlOut(0, Float(Rem(X(J) / 10)));
end;
CrLf(0);
end;
begin
Data:= [ 12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146];
LeafPlot(Data, DataSize)
end;
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
zkl
fcn leaf_plot(xs){
xs=xs.sort();
i := xs[0] / 10 - 1;
foreach j in (xs.len()){
d := xs[j] / 10;
while (d > i){ print("%s%3d |".fmt(j and "\n" or "", i+=1)); }
print(" %d".fmt(xs[j] % 10));
}
println();
}
data := T(
12, 127, 28, 42, 39, 113, 42, 18, 44, 118, 44, 37, 113, 124,
37, 48, 127, 36, 29, 31, 125, 139, 131, 115, 105, 132, 104, 123,
35, 113, 122, 42, 117, 119, 58, 109, 23, 105, 63, 27, 44, 105,
99, 41, 128, 121, 116, 125, 32, 61, 37, 127, 29, 113, 121, 58,
114, 126, 53, 114, 96, 25, 109, 7, 31, 141, 46, 13, 27, 43,
117, 116, 27, 7, 68, 40, 31, 115, 124, 42, 128, 52, 71, 118,
117, 38, 27, 106, 33, 117, 116, 111, 40, 119, 47, 105, 57, 122,
109, 124, 115, 43, 120, 43, 27, 27, 18, 28, 48, 125, 107, 114,
34, 133, 45, 120, 30, 127, 31, 116, 146 );
leaf_plot(data);
- Output:
0 | 7 7 1 | 2 3 8 8 2 | 3 5 7 7 7 7 7 7 8 8 9 9 3 | 0 1 1 1 1 2 3 4 5 6 7 7 7 8 9 4 | 0 0 1 2 2 2 2 3 3 3 4 4 4 5 6 7 8 8 5 | 2 3 7 8 8 6 | 1 3 8 7 | 1 8 | 9 | 6 9 10 | 4 5 5 5 5 6 7 9 9 9 11 | 1 3 3 3 3 4 4 4 5 5 5 6 6 6 6 7 7 7 7 8 8 9 9 12 | 0 0 1 1 2 2 3 4 4 4 5 5 5 6 7 7 7 7 8 8 13 | 1 2 3 9 14 | 1 6
- Programming Tasks
- Probability and statistics
- 11l
- ACL2
- Action!
- Action! Tool Kit
- Ada
- ALGOL 68
- ALGOL 68-sort
- Arturo
- AutoHotkey
- AWK
- BASIC
- ANSI BASIC
- ASIC
- BBC BASIC
- FreeBASIC
- GW-BASIC
- PureBasic
- QuickBASIC
- UBasic/4tH
- C
- C sharp
- C++
- Ceylon
- Clojure
- D
- EasyLang
- Elixir
- Euphoria
- F Sharp
- Factor
- Forth
- Fortran
- Go
- Haskell
- HicEst
- Icon
- Unicon
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lua
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- Maxima
- Nim
- OCaml
- Perl
- LaTeX
- Phix
- PicoLisp
- PowerShell
- Python
- Quackery
- R
- Racket
- Raku
- REXX
- Ring
- Ruby
- Scala
- Seed7
- Sidef
- Stata
- Tcl
- TUSCRIPT
- Uiua
- Ursala
- Wren
- Wren-fmt
- XPL0
- Zkl
- GUISS/Omit