Sorting algorithms/Permutation sort

Implement a permutation sort, which proceeds by generating the possible permutations of the input array/list until discovering the sorted one.

Task
Sorting algorithms/Permutation sort
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Pseudocode:

while not InOrder(list) do
    nextPermutation(list)
done



11l

F is_sorted(arr)
   L(i) 1..arr.len-1
      I arr[i-1] > arr[i]
         R 0B
   R 1B

F permutation_sort(&arr)
   L !is_sorted(arr)
      arr.next_permutation()

V arr = [7, 6, 5, 9, 8, 4, 3, 1, 2, 0]
permutation_sort(&arr)
print(arr)
Output:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program permutationSort64.s  */
 
/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeConstantesARM64.inc"

/*******************************************/
/* Structures                               */
/********************************************/
/* structure permutations  */
    .struct  0
perm_adrtable:                    // table value address
    .struct  perm_adrtable + 8
perm_size:                        // elements number
    .struct  perm_size + 8
perm_adrheap:                     // Init to zéro at the first call
    .struct  perm_adrheap + 8
perm_end:
/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessSortOk:       .asciz "Table sorted.\n"
szMessSortNok:      .asciz "Table not sorted !!!!!.\n"
sMessCounter:       .asciz "sorted in  @ permutations \n"
sMessResult:        .asciz "Value  : @ \n"

szCarriageReturn:   .asciz "\n"
 
.align 4
#TableNumber:      .quad   1,3,6,2,5,9,10,8,4,7,11
TableNumber:     .quad   10,9,8,7,6,-5,4,3,2,1
                 .equ NBELEMENTS, (. - TableNumber) / 8 
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:       .skip 24
stPermutation:   .skip perm_end
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                              // entry of program 
    ldr x0,qAdrstPermutation                       // address structure permutation
    ldr x1,qAdrTableNumber                         // address number table
    str x1,[x0,perm_adrtable]
    mov x1,NBELEMENTS                              // elements number
    str x1,[x0,perm_size]
    mov x1,0                                       // first call
    str x1,[x0,perm_adrheap]
    mov x20,0                                      // counter
1:
    ldr x0,qAdrstPermutation                       // address structure permutation
    bl newPermutation                              // call for each permutation
    cmp x0,0                                       // end ?
    blt 99f                                        // yes -> error
    //bl displayTable                              // for display after each permutation
    add x20,x20,1                                  // increment counter
    ldr x0,qAdrTableNumber                         // address number table
    mov x1,NBELEMENTS                              // number of élements 
    bl isSorted                                    // control sort
    cmp x0,1                                       // sorted ?
    bne 1b                                         // no -> loop

    ldr x0,qAdrTableNumber                         // address number table
    bl displayTable
    ldr x0,qAdrszMessSortOk                        // address OK message
    bl affichageMess
    mov x0,x20                                     // display counter
    ldr x1,qAdrsZoneConv 
    bl conversion10S                               // décimal conversion 
    ldr x0,qAdrsMessCounter
    ldr x1,qAdrsZoneConv                           // insert conversion
    bl strInsertAtCharInc
    bl affichageMess                               // display message
    b 100f
99:
    ldr x0,qAdrTableNumber                         // address number table
    bl displayTable
    ldr x0,qAdrszMessSortNok                       // address not OK message
    bl affichageMess
100:                                               // standard end of the program 
    mov x0,0                                       // return code
    mov x8,EXIT                                    // request to exit program
    svc 0                                          // perform the system call
 
qAdrsZoneConv:            .quad sZoneConv
qAdrszCarriageReturn:     .quad szCarriageReturn
qAdrsMessResult:          .quad sMessResult
qAdrTableNumber:          .quad TableNumber
qAdrstPermutation:        .quad stPermutation
qAdrszMessSortOk:         .quad szMessSortOk
qAdrszMessSortNok:        .quad szMessSortNok
qAdrsMessCounter:         .quad sMessCounter
/******************************************************************/
/*     control sorted table                                   */ 
/******************************************************************/
/* x0 contains the address of table */
/* x1 contains the number of elements  > 0  */
/* x0 return 0  if not sorted   1  if sorted */
isSorted:
    stp x2,lr,[sp,-16]!             // save  registers
    stp x3,x4,[sp,-16]!             // save  registers
    mov x2,0
    ldr x4,[x0,x2,lsl 3]
1:
    add x2,x2,1
    cmp x2,x1
    bge 99f
    ldr x3,[x0,x2, lsl 3]
    cmp x3,x4
    blt 98f
    mov x4,x3
    b 1b
98:
    mov x0,0                       // not sorted
    b 100f
99:
    mov x0,1                       // sorted
100:
    ldp x3,x4,[sp],16              // restaur  2 registers
    ldp x2,lr,[sp],16              // restaur  2 registers
    ret                            // return to address lr x30
/***************************************************/
/*   return permutation one by one                 */
/* sur une idée de vincent Moresmau                */
/* use algorytm heap iteratif see wikipedia        */
/***************************************************/
/* x0 contains the address of structure permutations */
/* x0 return address  of value table or zéro if end */
newPermutation:
    stp x1,lr,[sp,-16]!             // save  registers
    stp x2,x3,[sp,-16]!             // save  registers
    stp x4,x5,[sp,-16]!             // save  registers
    stp x6,x7,[sp,-16]!             // save  registers
    ldr x2,[x0,perm_adrheap]
    cmp x2,0
    bne 2f
                                    // first call -> init area on heap
    mov x7,x0
    ldr x1,[x7,perm_size]
    lsl x3,x1,3                     // 8 bytes by count table
    add x3,x3,8                     // 8 bytes for current index 
    mov x0,0                        // allocation place heap
    mov x8,BRK                      // call system 'brk'
    svc 0
    mov x2,x0                       // save address heap
    add x0,x0,x3                    // reservation place
    mov x8,BRK                      // call system 'brk'
    svc #0
    cmp x0,-1                       // allocation error
    beq 100f
    add x8,x2,8                     // address begin area counters
    mov x3,0
1:                                  // loop init
    str xzr,[x8,x3,lsl 3]           // init to zéro area heap
    add x3,x3,1
    cmp x3,x1
    blt 1b
    str xzr,[x2]                    // store zero to index 
    str x2,[x7,perm_adrheap]        // store heap address on structure permutation
    ldr x0,[x7,perm_adrtable]       // return first permutation
    b 100f
    
2:                                  // other calls x2 contains heap address
    mov x7,x0                       // structure address 
    ldr x1,[x7,perm_size]           // elements number
    ldr x0,[x7,perm_adrtable]  
    add x8,x2,8                     // begin address area count
    ldr x3,[x2]                     // load current index
3:
    ldr x4,[x8,x3,lsl 3]            // load count [i]
    cmp x4,x3                       // compare with i
    bge 6f
    tst x3,#1                       // even ?
    bne 4f
    ldr x5,[x0]                     // yes load value A[0]
    ldr x6,[x0,x3,lsl 3]            // and swap with value A[i]
    str x6,[x0]
    str x5,[x0,x3,lsl 3]
    b 5f
4:
    ldr x5,[x0,x4,lsl 3]            // no load value A[count[i]]
    ldr x6,[x0,x3,lsl 3]            // and swap with value A[i]
    str x6,[x0,x4,lsl 3]
    str x5,[x0,x3,lsl 3]
5:
    add x4,x4,1
    str x4,[x8,x3,lsl 3]            // store new count [i]
    str xzr,[x2]                    // store new index
    b 100f                          // and return new permutation in x0
6:
    str xzr,[x8,x3,lsl 3]           // store zero in count [i]
    add x3,x3,1                     // increment index
    cmp x3,x1                       // end 
    blt 3b                          // loop 
    mov x0,0                        // if end -> return zero
 
 100:                               // end function
    ldp x6,x7,[sp],16               // restaur  1 register
    ldp x4,x5,[sp],16               // restaur  1 register
    ldp x2,x3,[sp],16               // restaur  2 registers
    ldp x1,lr,[sp],16               // restaur  2 registers
    ret                             // return to address lr x30
 
/******************************************************************/
/*      Display table elements                                */ 
/******************************************************************/
/* x0 contains the address of table */
displayTable:
    stp x1,lr,[sp,-16]!              // save  registers
    stp x2,x3,[sp,-16]!              // save  registers
    mov x2,x0                        // table address
    mov x3,0
1:                                   // loop display table
    ldr x0,[x2,x3,lsl 3]
    ldr x1,qAdrsZoneConv
    bl conversion10S                  // décimal conversion
    ldr x0,qAdrsMessResult
    ldr x1,qAdrsZoneConv
    bl strInsertAtCharInc            // insert result at // character
    bl affichageMess                 // display message
    add x3,x3,1
    cmp x3,NBELEMENTS - 1
    ble 1b
    ldr x0,qAdrszCarriageReturn
    bl affichageMess
    mov x0,x2
100:
    ldp x2,x3,[sp],16               // restaur  2 registers
    ldp x1,lr,[sp],16               // restaur  2 registers
    ret                             // return to address lr x30
/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Value  : -5
Value  : +1
Value  : +2
Value  : +3
Value  : +4
Value  : +6
Value  : +7
Value  : +8
Value  : +9
Value  : +10

Table sorted.
sorted in  +3467024 permutations

ActionScript

//recursively builds the permutations of permutable, appended to front, and returns the first sorted permutation it encounters
function permutations(front:Array, permutable:Array):Array {
	//If permutable has length 1, there is only one possible permutation. Check whether it's sorted
	if (permutable.length==1)
		return isSorted(front.concat(permutable));
	else
		//There are multiple possible permutations. Generate them.
		var i:uint=0,tmp:Array=null;
		do
		{
			tmp=permutations(front.concat([permutable[i]]),remove(permutable,i));
			i++;
		}while (i< permutable.length && tmp == null);
		//If tmp != null, it contains the sorted permutation. If it does not contain the sorted permutation, return null. Either way, return tmp.
		return tmp;
}
//returns the array if it's sorted, or null otherwise
function isSorted(data:Array):Array {
	for (var i:uint = 1; i < data.length; i++) 
		if (data[i]<data[i-1]) 
			return null;
	return data;
}
//returns a copy of array with the i'th element removed
function remove(array:Array, i:uint):Array {
	return array.filter(function(item,index,array){return(index !=i)}) ;
}
//wrapper around the permutation function to provide a more logical interface
function permutationSort(array:Array):Array {
	return permutations([],array);
}

Ada

-- Permutation sort
-- J. Carter     2024 Jun
-- Uses the PragmAda Reusable Components (https://github.com/jrcarter/PragmARC)

with Ada.Text_IO;
with PragmARC.Permutations;

procedure Slow_Sort is
   package Char_Perms is new PragmARC.Permutations (Element => Character);

   procedure Put (Item : in Char_Perms.Sequence);
   -- Outputs all the Characters in Item to standard output, followed by a line terminator

   procedure Process (Seq : in Char_Perms.Sequence; Stop : in out Boolean);
   -- If Seq is sorted, outputs it and sets Stop to True

   procedure Put (Item : in Char_Perms.Sequence) is
      -- Empty
   begin -- Put
      All_Chars : for C of Item loop
         Ada.Text_IO.Put (Item => C);
      end loop All_Chars;

      Ada.Text_IO.New_Line;
   end Put;

   procedure Process (Seq : in Char_Perms.Sequence; Stop : in out Boolean) is
      -- Empty
   begin -- Process
      if (for all J in 1 .. Seq'Last - 1 => Seq (J) <= Seq (J + 1) ) then -- Sorted
         Put (Item => Seq);
         Stop := True;
      end if;
   end Process;

   Test : constant Char_Perms.Sequence := "kjihgfedcba";
begin -- Slow_Sort
   Char_Perms.Generate (Initial => Test, Process => Process'Access);
end Slow_Sort;
Output:
abcdefghijk

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program permutationSort.s  */
 
 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessSortOk:       .asciz "Table sorted.\n"
szMessSortNok:      .asciz "Table not sorted !!!!!.\n"
sMessResult:        .asciz "Value  : @ \n"
szCarriageReturn:   .asciz "\n"
 
.align 4
#TableNumber:      .int   1,3,6,2,5,9,10,8,5,7       @ for test 2 sames values
TableNumber:       .int   10,9,8,7,6,5,4,3,2,1
#TableNumber:       .int   1,2,3
                   .equ NBELEMENTS, (. - TableNumber) / 4
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:            .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                                              @ entry of program 
    ldr r0,iAdrTableNumber                         @ address number table
    mov r1,#NBELEMENTS                             @ number of élements 
    bl heapIteratif
    ldr r0,iAdrTableNumber                         @ address number table
    bl displayTable
 
    ldr r0,iAdrTableNumber                         @ address number table
    mov r1,#NBELEMENTS                             @ number of élements 
    bl isSorted                                    @ control sort
    cmp r0,#1                                      @ sorted ?
    beq 2f                                    
    ldr r0,iAdrszMessSortNok                       @ no !! error sort
    bl affichageMess
    b 100f
2:                                                 @ yes
    ldr r0,iAdrszMessSortOk
    bl affichageMess
100:                                               @ standard end of the program 
    mov r0, #0                                     @ return code
    mov r7, #EXIT                                  @ request to exit program
    svc #0                                         @ perform the system call
 
iAdrszCarriageReturn:     .int szCarriageReturn
iAdrsMessResult:          .int sMessResult
iAdrTableNumber:          .int TableNumber
iAdrszMessSortOk:         .int szMessSortOk
iAdrszMessSortNok:        .int szMessSortNok
/******************************************************************/
/*     permutation by heap iteratif (wikipedia)                                   */ 
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the eléments number  */
heapIteratif:
    push {r3-r9,lr}                @ save registers
    mov r8,r0                      @ save table address
    lsl r9,r1,#2                   @ four bytes by count
    sub sp,sp,r9
    mov fp,sp
    mov r3,#0
    mov r4,#0                      @ index
1:                                 @ init area counter
    str r4,[fp,r3,lsl #2]
    add r3,r3,#1
    cmp r3,r1
    blt 1b
    
    //bl displayTable
    bl isSorted                     @ control sort
    cmp r0,#1                       @ sorted ?
    beq 99f                                    
    mov r0,r8                       @ restaur table address
    
    mov r3,#0                       @ index
2:
    ldr r4,[fp,r3,lsl #2]           @ load count [i]
    cmp r4,r3                       @ compare with i
    bge 5f
    tst r3,#1                       @ even ?
    bne 3f
    ldr r5,[r0]                     @ yes load value A[0]
    ldr r6,[r0,r3,lsl #2]           @ ans swap with value A[i]
    str r6,[r0]
    str r5,[r0,r3,lsl #2]
    b 4f
3:
    ldr r5,[r0,r4,lsl #2]         @ load value A[count[i]]
    ldr r6,[r0,r3,lsl #2]         @ and swap with value A[i]
    str r6,[r0,r4,lsl #2]
    str r5,[r0,r3,lsl #2]
4:
    //bl displayTable
    bl isSorted                     @ control sort
    cmp r0,#1                       @ sorted ?
    beq 99f                         @ yes
    mov r0,r8                       @ restaur table address
    add r4,r4,#1                    @ increment count i
    str r4,[fp,r3,lsl #2]           @ and store on stack
    mov r3,#0                       @ raz index
    b 2b                            @ and loop
5:
    mov r4,#0                       @ raz count [i]
    str r4,[fp,r3,lsl #2]
    add r3,r3,#1                    @ increment index
    cmp r3,r1                       @ end ?
    blt 2b                          @ no -> loop
    
99:
    add sp,sp,r9                    @ stack alignement
100:
    pop {r3-r9,lr}
    bx lr                           @ return 
/******************************************************************/
/*     control sorted table                                   */ 
/******************************************************************/
/* r0 contains the address of table */
/* r1 contains the number of elements  > 0  */
/* r0 return 0  if not sorted   1  if sorted */
isSorted:
    push {r2-r4,lr}                 @ save registers
    mov r2,#0
    ldr r4,[r0,r2,lsl #2]
1:
    add r2,#1
    cmp r2,r1
    movge r0,#1
    bge 100f
    ldr r3,[r0,r2, lsl #2]
    cmp r3,r4
    movlt r0,#0
    blt 100f
    mov r4,r3
    b 1b
100:
    pop {r2-r4,lr}
    bx lr                            @ return 

 
/******************************************************************/
/*      Display table elements                                */ 
/******************************************************************/
/* r0 contains the address of table */
displayTable:
    push {r0-r3,lr}                                    @ save registers
    mov r2,r0                                          @ table address
    mov r3,#0
1:                                                     @ loop display table
    ldr r0,[r2,r3,lsl #2]
    ldr r1,iAdrsZoneConv                               @ 
    bl conversion10S                                    @ décimal conversion 
    ldr r0,iAdrsMessResult
    ldr r1,iAdrsZoneConv                               @ insert conversion
    bl strInsertAtCharInc
    bl affichageMess                                   @ display message
    add r3,#1
    cmp r3,#NBELEMENTS - 1
    ble 1b
    ldr r0,iAdrszCarriageReturn
    bl affichageMess
    mov r0,r2
100:
    pop {r0-r3,lr}
    bx lr
iAdrsZoneConv:           .int sZoneConv
/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"

Arturo

sorted?: function [arr][
    previous: first arr

    loop slice arr 1 (size arr)-1 'item [
        if not? item > previous -> return false
        previous: item
    ]
    return true
]

permutationSort: function [items][
    loop permutate items 'perm [
        if sorted? perm -> return perm
    ]
]

print permutationSort [3 1 2 8 5 7 9 4 6]
Output:
1 2 3 4 5 6 7 8 9

AutoHotkey

ahk forum: discussion

MsgBox % PermSort("")
MsgBox % PermSort("xxx")
MsgBox % PermSort("3,2,1")
MsgBox % PermSort("dog,000000,xx,cat,pile,abcde,1,cat")

PermSort(var) {                          ; SORT COMMA SEPARATED LIST
   Local i, sorted
   StringSplit a, var, `,                ; make array, size = a0

   v0 := a0                              ; auxiliary array for permutations
   Loop %v0%
      v%A_Index% := A_Index

   While unSorted("a","v")               ; until sorted
      NextPerm("v")                      ; try new permutations

   Loop % a0                             ; construct string from sorted array
      i := v%A_Index%, sorted .= "," . a%i%
   Return SubStr(sorted,2)               ; drop leading comma
}

unSorted(a,v) {
   Loop % %a%0-1 {
      i := %v%%A_Index%, j := A_Index+1, j := %v%%j%
      If (%a%%i% > %a%%j%)
         Return 1
   }
}

NextPerm(v) { ; the lexicographically next LARGER permutation of v1..v%v0%
   Local i, i1, j, t
   i := %v%0, i1 := i-1
   While %v%%i1% >= %v%%i% {
      --i, --i1
      IfLess i1,1, Return 1 ; Signal the end
   }
   j := %v%0
   While %v%%j% <= %v%%i1%
      --j
   t := %v%%i1%, %v%%i1% := %v%%j%, %v%%j% := t,  j := %v%0
   While i < j
      t := %v%%i%, %v%%i% := %v%%j%, %v%%j% := t, ++i, --j
}

BBC BASIC

      DIM test(9)
      test() = 4, 65, 2, 31, 0, 99, 2, 83, 782, 1
      
      perms% = 0
      WHILE NOT FNsorted(test())
        perms% += 1
        PROCnextperm(test())
      ENDWHILE
      PRINT ;perms% " permutations required to sort "; DIM(test(),1)+1 " items."
      END
      
      DEF PROCnextperm(a())
      LOCAL last%, maxindex%, p%
      maxindex% = DIM(a(),1)
      IF maxindex% < 1 THEN ENDPROC
      p% = maxindex%-1
      WHILE a(p%) >= a(p%+1)
        p% -= 1
        IF p% < 0 THEN
          PROCreverse(a(), 0, maxindex%)
          ENDPROC
        ENDIF
      ENDWHILE
      last% = maxindex%
      WHILE a(last%) <= a(p%)
        last% -= 1
      ENDWHILE
      SWAP a(p%), a(last%)
      PROCreverse(a(), p%+1, maxindex%)
      ENDPROC
      
      DEF PROCreverse(a(), first%, last%)
      WHILE first% < last%
        SWAP a(first%), a(last%)
        first% += 1
        last% -= 1
      ENDWHILE
      ENDPROC
      
      DEF FNsorted(d())
      LOCAL I%
      FOR I% = 1 TO DIM(d(),1)
        IF d(I%) < d(I%-1) THEN = FALSE
      NEXT
      = TRUE
Output:
980559 permutations required to sort 10 items.

C

Just keep generating next lexicographic permutation until the last one; it's sorted by definition.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef int(*cmp_func)(const void*, const void*);

void perm_sort(void *a, int n, size_t msize, cmp_func _cmp)
{
	char *p, *q, *tmp = malloc(msize);
#	define A(i) ((char *)a + msize * (i))
#	define swap(a, b) {\
		memcpy(tmp, a, msize);\
		memcpy(a, b, msize);\
		memcpy(b, tmp, msize);	}
	while (1) {
		/* find largest k such that a[k - 1] < a[k] */
		for (p = A(n - 1); (void*)p > a; p = q)
			if (_cmp(q = p - msize, p) > 0)
				break;

		if ((void*)p <= a) break;

		/* find largest l such that a[l] > a[k - 1] */
		for (p = A(n - 1); p > q; p-= msize)
			if (_cmp(q, p) > 0) break;

		swap(p, q); /* swap a[k - 1], a[l] */
		/* flip a[k] through a[end] */
		for (q += msize, p = A(n - 1); q < p; q += msize, p -= msize)
			swap(p, q);
	}
	free(tmp);
}

int scmp(const void *a, const void *b) { return strcmp(*(const char *const *)a, *(const char *const *)b); }

int main()
{
	int i;
	const char *strs[] = { "spqr", "abc", "giant squid", "stuff", "def" };
	perm_sort(strs, 5, sizeof(*strs), scmp);

	for (i = 0; i < 5; i++)
		printf("%s\n", strs[i]);
	return 0;
}

C#

public static class PermutationSorter
{
    public static void Sort<T>(List<T> list) where T : IComparable
    {
        PermutationSort(list, 0);
    }
    public static bool PermutationSort<T>(List<T> list, int i) where T : IComparable
    {
        int j;
        if (issorted(list, i))
        {
            return true;
        }
        for (j = i + 1; j < list.Count; j++)
        {
            T temp = list[i];
            list[i] = list[j];
            list[j] = temp;
            if (PermutationSort(list, i + 1))
            {
                return true;
            }
            temp = list[i];
            list[i] = list[j];
            list[j] = temp;
        }
        return false;
    }
    public static bool issorted<T>(List<T> list, int i) where T : IComparable
    {
	    for (int j = list.Count-1; j > 0; j--)
        {
	        if(list[j].CompareTo(list[j-1])<0)
            {
		        return false;
	        }
	    }
	    return true;
    }
}

C++

Since next_permutation already returns whether the resulting sequence is sorted, the code is quite simple:

#include <algorithm>

template<typename ForwardIterator>
 void permutation_sort(ForwardIterator begin, ForwardIterator end)
{
  while (std::next_permutation(begin, end))
  {
    // -- this block intentionally left empty --
  }
}

Clojure

(use '[clojure.contrib.combinatorics :only (permutations)])

(defn permutation-sort [s]
  (first (filter (partial apply <=) (permutations s))))

(permutation-sort [2 3 5 3 5])

CoffeeScript

# This code takes a ridiculously inefficient algorithm and rather futilely
# optimizes one part of it.  Permutations are computed lazily.

sorted_copy = (a) ->
  # This returns a sorted copy of an array by lazily generating
  # permutations of indexes and stopping when the indexes yield
  # a sorted array.
  indexes = [0...a.length]
  ans = find_matching_permutation indexes, (permuted_indexes) ->
    new_array = (a[i] for i in permuted_indexes)
    console.log permuted_indexes, new_array
    in_order(new_array)
  (a[i] for i in ans)

in_order = (a) ->
  # return true iff array a is in increasing order.
  return true if a.length <= 1
  for i in [0...a.length-1]
    return false if a[i] > a[i+1]
  true

get_factorials = (n) ->
  # return an array of the first n+1 factorials, starting with 0!
  ans = [1]
  f = 1
  for i in [1..n]
    f *= i
    ans.push f
  ans

permutation = (a, i, factorials) ->
  # Return the i-th permutation of an array by
  # using remainders of factorials to determine
  # elements.
  while a.length > 0
    f = factorials[a.length-1]
    n = Math.floor(i / f)
    i = i % f
    elem = a[n]
    a = a[0...n].concat(a[n+1...])
    elem
  # The above loop gets treated like
  # an array expression, so it returns
  # all the elements.

find_matching_permutation = (a, f_match) ->
  factorials = get_factorials(a.length)
  for i in [0...factorials[a.length]]
    permuted_array = permutation(a, i, factorials)
    if f_match permuted_array
      return permuted_array
  null
  
  
do ->
  a = ['c', 'b', 'a', 'd']
  console.log 'input:', a
  ans = sorted_copy a
  console.log 'DONE!'
  console.log 'sorted copy:', ans
Output:
> coffee permute_sort.coffee 
input: [ 'c', 'b', 'a', 'd' ]
[ 0, 1, 2, 3 ] [ 'c', 'b', 'a', 'd' ]
[ 0, 1, 3, 2 ] [ 'c', 'b', 'd', 'a' ]
[ 0, 2, 1, 3 ] [ 'c', 'a', 'b', 'd' ]
[ 0, 2, 3, 1 ] [ 'c', 'a', 'd', 'b' ]
[ 0, 3, 1, 2 ] [ 'c', 'd', 'b', 'a' ]
[ 0, 3, 2, 1 ] [ 'c', 'd', 'a', 'b' ]
[ 1, 0, 2, 3 ] [ 'b', 'c', 'a', 'd' ]
[ 1, 0, 3, 2 ] [ 'b', 'c', 'd', 'a' ]
[ 1, 2, 0, 3 ] [ 'b', 'a', 'c', 'd' ]
[ 1, 2, 3, 0 ] [ 'b', 'a', 'd', 'c' ]
[ 1, 3, 0, 2 ] [ 'b', 'd', 'c', 'a' ]
[ 1, 3, 2, 0 ] [ 'b', 'd', 'a', 'c' ]
[ 2, 0, 1, 3 ] [ 'a', 'c', 'b', 'd' ]
[ 2, 0, 3, 1 ] [ 'a', 'c', 'd', 'b' ]
[ 2, 1, 0, 3 ] [ 'a', 'b', 'c', 'd' ]
DONE!
sorted copy: [ 'a', 'b', 'c', 'd' ]

Common Lisp

Too bad sorted? vector code has to be copypasta'd. Could use map nil but that would in turn make it into spaghetti code.

The nth-permutation function is some classic algorithm from Wikipedia.

(defun factorial (n)
  (loop for result = 1 then (* i result)
        for i from 2 to n
        finally (return result)))

(defun nth-permutation (k sequence)
  (if (zerop (length sequence))
      (coerce () (type-of sequence))
      (let ((seq (etypecase sequence
                   (vector (copy-seq sequence))
                   (sequence (coerce sequence 'vector)))))
        (loop for j from 2 to (length seq)
              do (setq k (truncate (/ k (1- j))))
              do (rotatef (aref seq (mod k j))
                          (aref seq (1- j)))
              finally (return (coerce seq (type-of sequence)))))))

(defun sortedp (fn sequence)
  (etypecase sequence
    (list (loop for previous = #1='#:foo then i
                for i in sequence
                always (or (eq previous #1#)
                           (funcall fn i previous))))
    ;; copypasta
    (vector (loop for previous = #1# then i
                  for i across sequence
                  always (or (eq previous #1#)
                             (funcall fn i previous))))))

(defun permutation-sort (fn sequence)
  (loop for i below (factorial (length sequence))
        for permutation = (nth-permutation i sequence)
        when (sortedp fn permutation)
          do (return permutation)))
CL-USER> (time (permutation-sort #'> '(8 3 10 6 1 9 7 2 5 4)))
Evaluation took:
  5.292 seconds of real time
  5.204325 seconds of total run time (5.176323 user, 0.028002 system)
  [ Run times consist of 0.160 seconds GC time, and 5.045 seconds non-GC time. ]
  98.34% CPU
  12,337,938,025 processor cycles
  611,094,240 bytes consed
  
(1 2 3 4 5 6 7 8 9 10)

Crystal

def sorted?(items : Array)
    prev = items[0]
    items.each do |item|
        if item < prev
            return false
        end
        prev = item
    end
    return true
end

def permutation_sort(items : Array)
    items.each_permutation do |permutation|
        if sorted?(permutation)
            return permutation
        end
    end
end

D

Basic Version

This uses the second (lazy) permutations from the Permutations Task.

import std.stdio, std.algorithm, permutations2;

void permutationSort(T)(T[] items) pure nothrow @safe @nogc {
    foreach (const perm; items.permutations!false)
        if (perm.isSorted)
            break;
}

void main() {
    auto data = [2, 7, 4, 3, 5, 1, 0, 9, 8, 6, -1];
    data.permutationSort;
    data.writeln;
}
Output:
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The run-time is about 0.52 seconds with ldc2.

Alternative Version

Translation of: C++
import std.stdio, std.algorithm;

void permutationSort(T)(T[] items) pure nothrow @safe @nogc {
    while (items.nextPermutation) {}
}

void main() {
    auto data = [2, 7, 4, 3, 5, 1, 0, 9, 8, 6, -1];
    data.permutationSort;
    data.writeln;
}

The output is the same. Run-time about 1.04 seconds with ldc2 (the C++ entry with G++ takes about 0.4 seconds).

E

Translation of: C++
def swap(container, ixA, ixB) {
    def temp := container[ixA]
    container[ixA] := container[ixB]
    container[ixB] := temp
}

/** Reverse order of elements of 'sequence' whose indexes are in the interval [ixLow, ixHigh] */
def reverseRange(sequence, var ixLow, var ixHigh) {
    while (ixLow < ixHigh) {
        swap(sequence, ixLow, ixHigh)
        ixLow += 1
        ixHigh -= 1
    }
}

/** Algorithm from <http://marknelson.us/2002/03/01/next-permutation>, allegedly from a version of the C++ STL */
def nextPermutation(sequence) {
    def last := sequence.size() - 1
    var i := last
    while (true) {
        var ii := i
        i -= 1
        if (sequence[i] < sequence[ii]) {
            var j := last + 1
            while (!(sequence[i] < sequence[j -= 1])) {} # buried side effect
            swap(sequence, i, j)
            reverseRange(sequence, ii, last)
            return true
        }
        if (i == 0) {
            reverseRange(sequence, 0, last)
            return false
        }
    }
}

/** Note: Worst case on sorted list */
def permutationSort(flexList) {
    while (nextPermutation(flexList)) {}
}

EasyLang

global perm[] .
proc nextperm . a[] .
   n = len perm[]
   k = n - 1
   while k >= 1 and perm[k + 1] <= perm[k]
      k -= 1
   .
   if k = 0
      a[] = [ ]
      return
   .
   l = n
   while perm[l] <= perm[k]
      l -= 1
   .
   swap perm[l] perm[k]
   swap a[l] a[k]
   k += 1
   while k < n
      swap perm[k] perm[n]
      swap a[k] a[n]
      k += 1
      n -= 1
   .
.
proc perminit . a[] .
   for i to len a[]
      perm[] &= i
   .
.
proc permsort . a[] .
   perminit a[]
   repeat
      for i = 2 to len a[]
         if a[i - 1] > a[i]
            break 1
         .
      .
      until i > len a[]
      nextperm a[]
      if len a[] = 0
         print "error"
         break 1
      .
   .
.
arr[] = [ 7 6 5 9 8 4 3 1 2 0 ]
permsort arr[]
print arr[]
Output:
[ 0 1 2 3 4 5 6 7 8 9 ]

EchoLisp

;; This efficient sort method uses the list library for permutations

(lib 'list)
(define (in-order L)
(cond
    ((empty? L) #t)
    ((empty? (rest L)) #t)
    (else (and ( < (first L) (second  L)) (in-order (rest L))))))

(define L (shuffle (iota 6)))
     (1 5 4 2 0 3)

(for ((p (in-permutations (length L )))) 
    #:when (in-order (list-permute L p)) 
       (writeln (list-permute L p)) #:break #t)

     (0 1 2 3 4 5)

Elixir

defmodule Sort do
  def permutation_sort([]), do: []
  def permutation_sort(list) do
    Enum.find(permutation(list), fn [h|t] -> in_order?(t, h) end)
  end
  
  defp permutation([]), do: [[]]
  defp permutation(list) do
    for x <- list, y <- permutation(list -- [x]), do: [x|y]
  end
  
  defp in_order?([], _), do: true
  defp in_order?([h|_], pre) when h<pre, do: false
  defp in_order?([h|t], _), do: in_order?(t, h)
end

IO.inspect list = for _ <- 1..9, do: :rand.uniform(20)
IO.inspect Sort.permutation_sort(list)
Output:
[18, 2, 19, 10, 17, 10, 14, 8, 3]
[2, 3, 8, 10, 10, 14, 17, 18, 19]

EMal

Translation of: Java
type PermutationSort 
fun isSorted = logic by List a
  for int i = 1; i < a.length; ++i
    if a[i - 1] > a[i] do return false end
  end
  return true
end
fun permute = void by List a, int n, List lists
  if n == 1
    List b = int[]
    for int i = 0; i < a.length; ++i
      b.append(a[i])
    end
    lists.append(b)
    return
  end
  int i = 0
  while i < n
    a.swap(i, n - 1)
    permute(a, n - 1, lists)
    a.swap(i, n - 1)
    i = i + 1
  end
end
fun sort = List by List a
  List lists = List[]
  permute(a, a.length, lists)
  for each List list in lists
    if isSorted(list) do return list end
  end
  return a  
end
type Main
List a = int[3,2,1,8,9,4,6]
writeLine("Unsorted: " + a)
a = PermutationSort.sort(a)
writeLine("  Sorted: " + a)
Output:
Unsorted: [3,2,1,8,9,4,6]
  Sorted: [1,2,3,4,6,8,9]

Factor

USING: grouping io math.combinatorics math.order prettyprint ;
IN: rosetta-code.permutation-sort

: permutation-sort ( seq -- seq' )
    [ [ before=? ] monotonic? ] find-permutation ;
    
{ 10 2 6 8 1 4 3 } permutation-sort .
"apple" permutation-sort print
Output:
{ 1 2 3 4 6 8 10 }
aelpp

FreeBASIC

' version 07-04-2017
' compile with: fbc -s console

' Heap's algorithm non-recursive
Function permutation_sort(a() As ULong) As ULong

    Dim As ULong i, j, count
    Dim As ULong lb = LBound(a), ub = UBound(a)
    Dim As ULong n = ub - lb +1
    Dim As ULong c(lb To ub)

    While i < n
        If c(i) < i Then
            If (i And 1) = 0 Then
                Swap a(0), a(i)
            Else
                Swap a(c(i)), a(i)
            End If
            count += 1
            For j = lb To ub -1
                If a(j) > a(j +1) Then j = 99
            Next
            If j < 99 Then Return count
            c(i) += 1
            i = 0
        Else
            c(i) = 0
            i += 1
        End If
    Wend

End Function

' ------=< MAIN >=------

Dim As ULong k, p, arr(0 To 9)
Randomize Timer

Print "unsorted array"
For k = LBound(arr) To UBound(arr)
    arr(k) = Rnd * 1000
    Print arr(k) & IIf(k = UBound(arr), "", ", ");
Next
Print : Print

p = permutation_sort(arr())

Print "sorted array"
For k = LBound(arr) To UBound(arr)
    Print arr(k) & IIf(k = UBound(arr), "", ", ");
Next
Print : Print
Print "sorted array in "; p; " permutations"

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
Output:
unsorted array
81, 476, 915, 357, 934, 683, 413, 450, 2, 407

sorted array
2, 81, 357, 407, 413, 450, 476, 683, 915, 934

sorted array in 1939104 permutations

Go

Not following the pseudocode, it seemed simpler to just test sorted at the bottom of a recursive permutation generator.

package main

import "fmt"

var a = []int{170, 45, 75, -90, -802, 24, 2, 66}

// in place permutation sort of slice a
func main() {
    fmt.Println("before:", a)
    if len(a) > 1 && !recurse(len(a) - 1) {
        // recurse should never return false from the top level.
        // if it does, it means some code somewhere is busted,
        // either the the permutation generation code or the
        // sortedness testing code.
        panic("sorted permutation not found!")
    }
    fmt.Println("after: ", a)
}

// recursive permutation generator
func recurse(last int) bool {
    if last <= 0 {
        // bottom of recursion.  test if sorted.
        for i := len(a) - 1; a[i] >= a[i-1]; i-- {
            if i == 1 {
                return true
            }
        }
        return false
    }
    for i := 0; i <= last; i++ {
        a[i], a[last] = a[last], a[i]
        if recurse(last - 1) {
            return true
        }
        a[i], a[last] = a[last], a[i]
    }
    return false
}

Groovy

Permutation sort is an astonishingly inefficient sort algorithm. To even begin to make it tractable, we need to be able to create enumerated permutations on the fly, rather than relying on Groovy's List.permutations() method. For a list of length N there are N! permutations. In this solution, makePermutation creates the Ith permutation to order based on a recursive construction of a unique indexed permutation. The sort method then checks to see if that permutation is sorted, and stops when it is.

I believe that this method of constructing permutations results in a stable sort, but I have not actually proven that assertion.

def factorial = { (it > 1) ? (2..it).inject(1) { i, j -> i*j } : 1 }

def makePermutation;
makePermutation = { list, i ->
    def n = list.size()
    if (n < 2) return list
    def fact = factorial(n-1)
    assert i < fact*n
    
    def index = i.intdiv(fact)
    [list[index]] + makePermutation(list[0..<index] + list[(index+1)..<n], i % fact)
}

def sorted = { a -> (1..<(a.size())).every { a[it-1] <= a[it] } }

def permutationSort = { a ->
    def n = a.size()
    def fact = factorial(n)
    def permuteA = makePermutation.curry(a)
    def pIndex = (0..<fact).find { print "."; sorted(permuteA(it)) }
    permuteA(pIndex)
}

Test:

println permutationSort([7,0,12,-45,-1])
println ()
println permutationSort([10, 10.0, 10.00, 1])
println permutationSort([10, 10.00, 10.0, 1])
println permutationSort([10.0, 10, 10.00, 1])
println permutationSort([10.0, 10.00, 10, 1])
println permutationSort([10.00, 10, 10.0, 1])
println permutationSort([10.00, 10.0, 10, 1])

The examples with distinct integer and decimal values that compare as equal are there to demonstrate, but not to prove, that the sort is stable.

Output:
.............................................................................................[-45, -1, 0, 7, 12]

...................[1, 10, 10.0, 10.00]
...................[1, 10, 10.00, 10.0]
...................[1, 10.0, 10, 10.00]
...................[1, 10.0, 10.00, 10]
...................[1, 10.00, 10, 10.0]
...................[1, 10.00, 10.0, 10]

Haskell

import Control.Monad

permutationSort l = head [p | p <- permute l, sorted p]

sorted (e1 : e2 : r) = e1 <= e2 && sorted (e2 : r)
sorted _             = True

permute              = foldM (flip insert) []

insert e []          = return [e]
insert e l@(h : t)   = return (e : l) `mplus`
                       do { t' <- insert e t ; return (h : t') }
Works with: GHC version 6.10
import Data.List (permutations)

permutationSort l = head [p | p <- permutations l, sorted p]

sorted (e1 : e2 : r) = e1 <= e2 && sorted (e2 : r)
sorted _             = True

Icon and Unicon

Partly from here

procedure do_permute(l, i, n)
    if i >= n then
        return l
    else
        suspend l[i to n] <-> l[i] & do_permute(l, i+1, n)
 end
 
 procedure permute(l)
    suspend do_permute(l, 1, *l)
 end
 
 procedure sorted(l)
    local i
    if (i := 2 to *l & l[i] >= l[i-1]) then return &fail else return 1
 end
 
 procedure main()
    local l
    l := [6,3,4,5,1]
    |( l := permute(l) & sorted(l)) \1 & every writes(" ",!l)
 end

J

Generally, this task should be accomplished in J using /:~. Here we take an approach that's more comparable with the other examples on this page.

A function to locate the permuation index, in the naive manner prescribed by the task:

ps =:(1+])^:((-.@-:/:~)@A.~)^:_ 0:

Of course, this can be calculated much more directly (and efficiently):

ps =: A.@:/:

Either way:

   list =: 2 7 4 3 5 1 0 9 8 6
   
   ps list 
2380483    
   
   2380483 A. list
0 1 2 3 4 5 6 7 8 9
   
   (A.~ps) list
0 1 2 3 4 5 6 7 8 9

Java

import java.util.List;
import java.util.ArrayList;
import java.util.Arrays;

public class PermutationSort 
{
	public static void main(String[] args)
	{
		int[] a={3,2,1,8,9,4,6};
		System.out.println("Unsorted: " + Arrays.toString(a));
		a=pSort(a);
		System.out.println("Sorted: " + Arrays.toString(a));
	}
	public static int[] pSort(int[] a)
	{
		List<int[]> list=new ArrayList<int[]>();
		permute(a,a.length,list);
		for(int[] x : list)
			if(isSorted(x))
				return x;
		return a;
	}
	private static void permute(int[] a, int n, List<int[]> list) 
	{
		if (n == 1) 
		{
			int[] b=new int[a.length];
			System.arraycopy(a, 0, b, 0, a.length);
			list.add(b);
		    return;
		}
		for (int i = 0; i < n; i++) 
		{
		        swap(a, i, n-1);
		        permute(a, n-1, list);
		        swap(a, i, n-1);
		 }
	}
	private static boolean isSorted(int[] a)
	{
		for(int i=1;i<a.length;i++)
			if(a[i-1]>a[i])
				return false;
		return true;
	}
	private static void swap(int[] arr,int i, int j)
	{
		int temp=arr[i];
		arr[i]=arr[j];
		arr[j]=temp;
	}
}
Output:
Unsorted: [3, 2, 1, 8, 9, 4, 6]
Sorted: [1, 2, 3, 4, 6, 8, 9]

jq

Infrastructure: The following function generates a stream of permutations of an arbitrary JSON array:

def permutations:
  if length == 0 then []
  else
    . as $in 
    | range(0;length) as $i
    | ($in|del(.[$i])|permutations) 
    | [$in[$i]] + .
  end ;

Next is a generic function for checking whether the input array is non-decreasing. If your jq has until/2 then its definition here can be removed.

def sorted:
  def until(cond; next):
     def _until: if cond then . else (next|_until) end;
     _until;

  length as $length
  | if $length <= 1 then true
    else . as $in
    | 1 | until( . == $length or $in[.-1] > $in[.] ; .+1) == $length
  end;

Permutation-sort:

The first permutation-sort solution presented here works with jq 1.4 but is slower than the subsequent solution, which uses the "foreach" construct introduced after the release of jq 1.4. "foreach" allows a stream generator to be interrupted.

Works with: jq version 1.4
def permutation_sort_slow:
  reduce permutations as $p (null; if . then . elif ($p | sorted) then $p else . end);
Works with: jq version with foreach
def permutation_sort:
  # emit the first item in stream that satisfies the condition
  def first(stream; cond):
     label $out
     | foreach stream as $item
         ( [false, null];
           if .[0] then break $out else [($item | cond), $item] end;
           if .[0] then .[1] else empty end );
  first(permutations; sorted);

Example:

["too", true, 1, 0, {"a":1},  {"a":0} ] | permutation_sort
Output:
$ jq -c -n -f Permutation_sort.jq
[true,0,1,"too",{"a":0},{"a":1}]

Julia

# v0.6

using Combinatorics

function permsort(x::Array)
    for perm in permutations(x)
        if issorted(perm)
            return perm
        end
    end
end

x = randn(10)
@show x permsort(x)
Output:
x = [-0.799206, -2.52542, 0.677947, -1.85139, 0.744764, 1.5327, 0.808935, -0.876105, -0.234308, 0.874579]
permsort(x) = [-2.52542, -1.85139, -0.876105, -0.799206, -0.234308, 0.677947, 0.744764, 0.808935, 0.874579, 1.5327]

Kotlin

// version 1.1.2

fun <T : Comparable<T>> isSorted(list: List<T>): Boolean {
    val size = list.size
    if (size < 2) return true
    for (i in 1 until size) {
        if (list[i] < list[i - 1]) return false
    }
    return true
}

fun <T : Comparable<T>> permute(input: List<T>): List<List<T>> {
    if (input.size == 1) return listOf(input)
    val perms = mutableListOf<List<T>>()
    val toInsert = input[0]
    for (perm in permute(input.drop(1))) {
        for (i in 0..perm.size) {
            val newPerm = perm.toMutableList()
            newPerm.add(i, toInsert)
            perms.add(newPerm)
        }
    }
    return perms
}

fun <T : Comparable<T>> permutationSort(input: List<T>): List<T> {
    if (input.size == 1) return input
    val toInsert = input[0]
    for (perm in permute(input.drop(1))) {
        for (i in 0..perm.size) {
            val newPerm = perm.toMutableList()
            newPerm.add(i, toInsert)
            if (isSorted(newPerm)) return newPerm
        }
    }
    return input
}

fun main(args: Array<String>) {
    val input = listOf('d', 'b', 'e', 'a', 'f', 'c')
    println("Before sorting : $input")
    val output = permutationSort(input)
    println("After sorting  : $output")
    println()
    val input2 = listOf("first", "second", "third", "fourth", "fifth", "sixth")
    println("Before sorting : $input2")
    val output2 = permutationSort(input2)
    println("After sorting  : $output2")
}
Output:
Before sorting : [d, b, e, a, f, c]
After sorting  : [a, b, c, d, e, f]

Before sorting : [first, second, third, fourth, fifth, sixth]
After sorting  : [fifth, first, fourth, second, sixth, third]

Lua

-- Return an iterator to produce every permutation of list
function permute (list)
  local function perm (list, n)
    if n == 0 then coroutine.yield(list) end
    for i = 1, n do
      list[i], list[n] = list[n], list[i]
      perm(list, n - 1)
      list[i], list[n] = list[n], list[i]
    end
  end
  return coroutine.wrap(function() perm(list, #list) end)
end

-- Return true if table t is in ascending order or false if not
function inOrder (t)
  for pos = 2, #t do
    if t[pos] < t[pos - 1] then
      return false
    end
  end
  return true
end

-- Main procedure
local list = {2,3,1}                 --\   Written to match task pseudocode,
local nextPermutation = permute(list) --\  more idiomatic would be:
while not inOrder(list) do             --\ 
  list = nextPermutation()             --/   for p in permute(list) do
end                                   --/       stuffWith(p)
print(unpack(list))                  --/     end
Output:
1       2       3

Maple

arr := Array([17,0,-1,72,0]):
len := numelems(arr):
P := Iterator:-Permute(len):
for p in P do
	lst:= convert(arr[sort(convert(p,list),output=permutation)],list):
	if (ListTools:-Sorted(lst)) then
		print(lst):
		break:
	end if:
end do:
Output:
[-1,0,0,17,72]

Mathematica /Wolfram Language

Here is a one-line solution. A custom order relation can be defined for the OrderedQ[] function.

PermutationSort[x_List] := NestWhile[RandomSample, x, Not[OrderedQ[#]] &]

MATLAB / Octave

function list = permutationSort(list)

    permutations = perms(1:numel(list)); %Generate all permutations of the item indicies 
    
    %Test every permutation of the indicies of the original list
    for i = (1:size(permutations,1))
        if issorted( list(permutations(i,:)) )
            list = list(permutations(i,:));
            return %Once the correct permutation of the original list is found break out of the program
        end
    end

end

Sample Usage:

>> permutationSort([4 3 1 5 6 2])

ans =

     1     2     3     4     5     6

MAXScript

fn inOrder arr =
(
	if arr.count < 2 then return true
	else
	(
		local i = 1 
		while i < arr.count do
		(
			if arr[i+1] < arr[i] do return false
			i += 1
		)
		return true
	)
)

fn permutations arr =
(
	if arr.count <= 1 then return arr
	else
	(
		for i = 1 to arr.count do
			(
				local rest = for r in 1 to arr.count where r != i collect arr[r]
				local permRest = permutations rest
				local new = join #(arr[i]) permRest
				if inOrder new do return new
			)
		)
)

Output:

a = for i in 1 to 9 collect random 1 20
#(10, 20, 17, 15, 17, 15, 3, 11, 15)
permutations a
#(3, 10, 11, 15, 15, 15, 17, 17, 20)

Warning: This algorithm is very inefficient and Max will crash very quickly with bigger arrays.

NetRexx

Uses the permutation iterator RPermutationIterator at Permutations to generate the permutations.

/* NetRexx */
options replace format comments java crossref symbols nobinary

import java.util.List
import java.util.ArrayList

numeric digits 20

class RSortingPermutationsort public

  properties private static
    iterations
    maxIterations

  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method permutationSort(vlist = List) public static returns List
    perm = RPermutationIterator(vlist)
    iterations = 0
    maxIterations = RPermutationIterator.factorial(vlist.size())
    loop while perm.hasNext()
      iterations = iterations + 1
      pl = List perm.next()
      if isSorted(pl) then leave
      else pl = null
      end
    return pl

  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method isSorted(ss = List) private static returns boolean
    status = isTrue
    loop ix = 1 while ix < ss.size()
      vleft  = Rexx ss.get(ix - 1)
      vright = Rexx ss.get(ix)      
      if vleft.datatype('N') & vright.datatype('N')
      then vtest = vleft > vright  -- For numeric types we must use regular comparison.
      else vtest = vleft >> vright -- For non-numeric/mixed types we must do strict comparison.
      if vtest then do
        status = isFalse
        leave ix
        end
      end ix
    return status

  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method runSample(arg) private static
    placesList = -
        "UK  London,     US  New York,   US  Boston,     US  Washington" -
        "UK  Washington, US  Birmingham, UK  Birmingham, UK  Boston"
    anotherList = 'Alpha, Beta, Gamma, Beta'
    reversed = '7, 6, 5, 4, 3, 2, 1'
    unsorted = '734, 3, 1, 24, 324, -1024, -666, -1, 0, 324, 99999999'
    lists = [makeList(placesList), makeList(anotherList), makeList(reversed), makeList(unsorted)]
    loop il = 0 while il < lists.length
      vlist = lists[il]
      say vlist
      runtime = System.nanoTime()
      rlist = permutationSort(vlist)
      runtime = System.nanoTime() - runtime
      if rlist \= null then say rlist
      else say 'sort failed'
      say 'This permutation sort of' vlist.size() 'elements took' iterations 'passes (of' maxIterations') to complete. \-'
      say 'Elapsed time:' (runtime / 10 ** 9)'s.'
      say
      end il
    return

  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method makeList(in) public static returns List
    lst = ArrayList()
    loop while in > ''
      parse in val ',' in
      lst.add(val.strip())
      end
    return lst
  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method main(args = String[]) public static
    runSample(Rexx(args))
    return
  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method isTrue() public static returns boolean
    return (1 == 1)
  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  method isFalse() public static returns boolean
    return (1 == 0)
Output:
[UK  London, US  New York, US  Boston, US  Washington UK  Washington, US  Birmingham, UK  Birmingham, UK  Boston]
[UK  Birmingham, UK  Boston, UK  London, US  Birmingham, US  Boston, US  New York, US  Washington UK  Washington]
This permutation sort of 7 elements took 4221 passes (of 5040) to complete. Elapsed time: 0.361959s.

[Alpha, Beta, Gamma, Beta]
[Alpha, Beta, Beta, Gamma]
This permutation sort of 4 elements took 2 passes (of 24) to complete. Elapsed time: 0.000113s.

[7, 6, 5, 4, 3, 2, 1]
[1, 2, 3, 4, 5, 6, 7]
This permutation sort of 7 elements took 5040 passes (of 5040) to complete. Elapsed time: 0.267956s.

[734, 3, 1, 24, 324, -1024, -666, -1, 0, 324, 99999999]
[-1024, -666, -1, 0, 1, 3, 24, 324, 324, 734, 99999999]
This permutation sort of 11 elements took 20186793 passes (of 39916800) to complete. Elapsed time: 141.461863s.

newLISP

;;
;; Before the permutation is completely formed,
;; check for validity.
;;
;; n at a time.
(define (permute n__permute seq__permute func__permute
          (chk__permute or) (built__permute '()))
  (when (or (null? built__permute) (chk__permute built__permute))
    (if (or (zero? n__permute) (null? seq__permute))
      (func__permute built__permute)
      (dotimes (i__permute (length seq__permute))
        (unless (zero? i__permute) (rotate seq__permute -1))
        (permute (- n__permute 1)
          (rest seq__permute)
          func__permute
          chk__permute
          (append built__permute (0 1 seq__permute)))))))

(time
(permute -1 '(4 6 8 0 5 9 2 -1 7 1 3) println (fn(xs) (= xs (sort (copy xs)))))
)

(-1 0 1 2 3 4 5 6 7 8 9)
78.125  [ milliseconds ]


(time
(permute -1 '(4 6 8 0 5 9 2  7 1 3) println (fn(xs) (= xs (sort (copy xs)))))
)

(0 1 2 3 4 5 6 7 8 9)
15.625  [ milliseconds ]


Nim

iterator permutations[T](ys: openarray[T]): seq[T] =
  var
    d = 1
    c = newSeq[int](ys.len)
    xs = newSeq[T](ys.len)

  for i, y in ys: xs[i] = y
  yield xs

  block outter:
    while true:
      while d > 1:
        dec d
        c[d] = 0
      while c[d] >= d:
        inc d
        if d >= ys.len: break outter

      let i = if (d and 1) == 1: c[d] else: 0
      swap xs[i], xs[d]
      yield xs
      inc c[d]

proc isSorted[T](s: openarray[T]): bool =
  var last = low(T)
  for c in s:
    if c < last:
      return false
    last = c
  return true

proc permSort[T](a: openarray[T]): seq[T] =
  for p in a.permutations:
    if p.isSorted:
      return p

var a = @[4, 65, 2, -31, 0, 99, 2, 83, 782]
echo a.permSort
Output:
@[-31, 0, 2, 2, 4, 65, 83, 99, 782]

OCaml

Like the Haskell version, except not evaluated lazily. So it always computes all the permutations, before searching through them for a sorted one; which is more expensive than necessary; unlike the Haskell version, which stops generating at the first sorted permutation.

let rec sorted = function
 | e1 :: e2 :: r -> e1 <= e2 && sorted (e2 :: r)
 | _             -> true

let rec insert e = function
 | []          -> [[e]]
 | h :: t as l -> (e :: l) :: List.map (fun t' -> h :: t') (insert e t)

let permute xs = List.fold_right (fun h z -> List.concat (List.map (insert h) z))
                                 xs [[]]

let permutation_sort l = List.find sorted (permute l)

PARI/GP

permutationSort(v)={
  my(u);
  for(k=1,(#v)!,
    u=vecextract(v, numtoperm(#v,k));
    for(i=2,#u,
      if(u[i]<u[i-1], next(2))
    );
    return(u)
  )
};

Perl

Pass a list in by reference, and sort in situ.

sub psort {
        my ($x, $d) = @_;

        unless ($d //= $#$x) {
                $x->[$_] < $x->[$_ - 1] and return for 1 .. $#$x;
                return 1
        }
        
        for (0 .. $d) {
                unshift @$x, splice @$x, $d, 1;
                next if $x->[$d] < $x->[$d - 1];
                return 1 if psort($x, $d - 1);
        }
}

my @a = map+(int rand 100), 0 .. 10;
print "Before:\t@a\n";
psort(\@a);
print "After:\t@a\n"
Output:
Before: 94 15 42 35 55 24 96 14 61 94 43
After:  14 15 24 35 42 43 55 61 94 94 96

Phix

with javascript_semantics

function inOrder(sequence s)
    for i=2 to length(s) do
        if s[i]<s[i-1] then return false end if
    end for
    return true
end function
 
function permutationSort(sequence s)
    for n=1 to factorial(length(s)) do
        sequence perm = permute(n,s)
        if inOrder(perm) then return perm end if
    end for
    ?9/0 -- should never happen
end function
 
?permutationSort({"dog",0,15.545,{"cat","pile","abcde",1},"cat"})
Output:
{0,15.545,"cat","dog",{"cat","pile","abcde",1}}

PHP

function inOrder($arr){
	for($i=0;$i<count($arr);$i++){
		if(isset($arr[$i+1])){
			if($arr[$i] > $arr[$i+1]){
				return false;
			}
		}
	}
	return true;
}

function permute($items, $perms = array( )) {
    if (empty($items)) {
		if(inOrder($perms)){
			return $perms;
		}
    }  else {
        for ($i = count($items) - 1; $i >= 0; --$i) {
             $newitems = $items;
             $newperms = $perms;
             list($foo) = array_splice($newitems, $i, 1);
             array_unshift($newperms, $foo);
             $res = permute($newitems, $newperms);
			 if($res){
				return $res;
			 }		 		 
         }
    }
}

$arr = array( 8, 3, 10, 6, 1, 9, 7, 2, 5, 4);
$arr = permute($arr);
echo implode(',',$arr);
1,2,3,4,5,6,7,8,9,10

PicoLisp

(de permutationSort (Lst)
   (let L Lst
      (recur (L)  # Permute
         (if (cdr L)
            (do (length L)
               (T (recurse (cdr L)) Lst)
               (rot L)
               NIL )
            (apply <= Lst) ) ) ) )
Output:
: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (82 120 160 168 205 226 408 708 719)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (108 212 330 471 667 716 739 769 938)

: (permutationSort (make (do 9 (link (rand 1 999)))))
-> (118 253 355 395 429 548 890 900 983)

PowerShell

Function PermutationSort( [Object[]] $indata, $index = 0, $k = 0 )
{
	$data = $indata.Clone()
	$datal = $data.length - 1
	if( $datal -gt 0 ) {
		for( $j = $index; $j -lt $datal; $j++ )
		{
			$sorted = ( PermutationSort $data ( $index + 1 ) $j )[0]
			if( -not $sorted )
			{
				$temp = $data[ $index ]
				$data[ $index ] = $data[ $j + 1 ]
				$data[ $j + 1 ] = $temp
			}
		}
		if( $index -lt ( $datal - 1 ) )
		{
			PermutationSort $data ( $index + 1 ) $j
		} else {
			$sorted = $true
			for( $i = 0; ( $i -lt $datal ) -and $sorted; $i++ )
			{
				$sorted = ( $data[ $i ] -le $data[ $i + 1 ] )
			}
			$sorted
			$data
		}
	}
}

0..4 | ForEach-Object { $a = $_; 0..4 | Where-Object { -not ( $_ -match "$a" ) } |
	ForEach-Object { $b = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b" ) } |
		ForEach-Object { $c = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c" ) } |
			ForEach-Object { $d = $_; 0..4 | Where-Object { -not ( $_ -match "$a|$b|$c|$d" ) } |
				ForEach-Object { $e=$_; "$( PermutationSort ( $a, $b, $c, $d, $e ) )" } 
			} 
		} 
	} 
}
$l = 8; PermutationSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( 0, $l - 1 ) } )

Prolog

permutation_sort(L,S) :- permutation(L,S), sorted(S).

sorted([]).
sorted([_]).
sorted([X,Y|ZS]) :- X =< Y, sorted([Y|ZS]).

permutation([],[]).
permutation([X|XS],YS) :- permutation(XS,ZS), select(X,YS,ZS).

PureBasic

Macro reverse(firstIndex, lastIndex)
  first = firstIndex
  last = lastIndex
  While first < last
    Swap cur(first), cur(last)
    first + 1
    last - 1
  Wend 
EndMacro

Procedure nextPermutation(Array cur(1))
  Protected first, last, elementCount = ArraySize(cur())
  If elementCount < 2
    ProcedureReturn #False ;nothing to permute
  EndIf 
  
  ;Find the lowest position pos such that [pos] < [pos+1]
  Protected pos = elementCount - 1
  While cur(pos) >= cur(pos + 1)
    pos - 1
    If pos < 0
      reverse(0, elementCount)
      ProcedureReturn #False ;no higher lexicographic permutations left, return lowest one instead
    EndIf 
  Wend

  ;Swap [pos] with the highest positional value that is larger than [pos]
  last = elementCount
  While cur(last) <= cur(pos)
    last - 1
  Wend
  Swap cur(pos), cur(last)

  ;Reverse the order of the elements in the higher positions
  reverse(pos + 1, elementCount)
  ProcedureReturn #True ;next lexicographic permutation found
EndProcedure

Procedure display(Array a(1))
  Protected i, fin = ArraySize(a())
  For i = 0 To fin
    Print(Str(a(i)))
    If i = fin: Continue: EndIf
    Print(", ")
  Next
  PrintN("")
EndProcedure

If OpenConsole()
  Dim a(9)
  a(0) = 8: a(1) = 3: a(2) =  10: a(3) =  6: a(4) =  1: a(5) =  9: a(6) =  7: a(7) =  -4: a(8) =  5: a(9) =  3
  display(a())
  While nextPermutation(a()): Wend
  display(a())

  Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
  CloseConsole()
EndIf
Output:
8, 3, 10, 6, 1, 9, 7, -4, 5, 3
-4, 1, 3, 3, 5, 6, 7, 8, 9, 10

Python

Works with: Python version 2.6
from itertools import permutations

in_order = lambda s: all(x <= s[i+1] for i,x in enumerate(s[:-1]))
perm_sort = lambda s: (p for p in permutations(s) if in_order(p)).next()


The more_itertools package contains many useful functions, such as windowed. This function gives us a sliding window of chosen size over an iterable. We can use this window, among other things, to check if the iterable is sorted.

Works with: Python version 3.7
from itertools import permutations
from more_itertools import windowed

def is_sorted(seq):
  return all(
    v1 <= v2
    for v1, v2 in windowed(seq, 2)
  )

def permutation_sort(seq):
  return next(
    permutation
    for permutation in permutations(seq)
    if is_sorted(permutation)
  )

Quackery

  [ 1 swap times [ i 1+ * ] ] is !          (   n --> n )

  [ [] unrot 1 - times
      [ i 1+ ! /mod
        dip join ] drop ]     is factoradic ( n n --> [ )

  [ [] unrot witheach
      [ pluck
        rot swap nested join
        swap ]
    join ]                    is inversion  ( [ [ --> [ )

  [ over size
    factoradic inversion ]    is nperm      ( [ n --> [ )

 [ true swap 
   behead swap 
   witheach
     [ tuck > if
       [ dip not conclude ] ]
   drop ]                     is sorted     (   [ --> b ) 

 [ 0
   [ 2dup nperm
     dup sorted not while
     drop 1+ again ] 
   unrot 2drop ]              is sort       (   [ --> [ ) 

  $ "beings" sort echo$
Output:
begins

R

e1071

Library: e1071

Warning: This function keeps all the possible permutations in memory at once, which becomes silly when x has 10 or more elements.

permutationsort <- function(x)
{
   if(!require(e1071) stop("the package e1071 is required")
   is.sorted <- function(x) all(diff(x) >= 0)

   perms <- permutations(length(x))
   i <- 1
   while(!is.sorted(x)) 
   {
      x <- x[perms[i,]]
      i <- i + 1
   }
   x
}
permutationsort(c(1, 10, 9, 7, 3, 0))

RcppAlgos

Library: RcppAlgos

RcppAlgos lets us do this at the speed of C++ and with some very short code. The while loop with no body strikes me as poor taste, but I know of no better way.

library(RcppAlgos)
permuSort <- function(list)
{
  iter <- permuteIter(list)
  while(is.unsorted(iter$nextIter())){}#iter$nextIter advances iter to the next iteration and returns it.
  iter$currIter()
}
test <- sample(10)
print(test)
permuSort(test)
Output:
#Output
> test <- sample(10)
> print(test)
 [1]  8 10  6  2  9  4  7  5  3  1
> permuSort(test)
 [1]  1  2  3  4  5  6  7  8  9 10

An alternative solution would be to replace the while loop with the following:

repeat
{
  if(!is.unsorted(iter$nextIter())) break
}

This seems more explicit than the empty while loop, but also more complex.

Racket

#lang racket
(define (sort l)
  (for/first ([p (in-permutations l)] #:when (apply <= p)) p))
(sort '(6 1 5 2 4 3)) ; => '(1 2 3 4 5 6)

Raku

(formerly Perl 6)

# Lexicographic permuter from "Permutations" task.
sub next_perm ( @a ) {
    my $j = @a.end - 1;
    $j-- while $j >= 1 and [>] @a[ $j, $j+1 ];

    my $aj = @a[$j];
    my $k  = @a.end;
    $k-- while [>] $aj, @a[$k];

    @a[ $j, $k ] .= reverse;

    my Int $r = @a.end;
    my Int $s = $j + 1;
    while $r > $s {
        @a[ $r, $s ] .= reverse;
        $r--;
        $s++;
    }
}

sub permutation_sort ( @a ) {
    my @n = @a.keys;
    my $perm_count = [*] 1 .. +@n; # Factorial
    for ^$perm_count {
        my @permuted_a = @a[ @n ];
        return @permuted_a if [le] @permuted_a;
        next_perm(@n);
    }
}

my @data  = < c b e d a >; # Halfway between abcde and edcba
say 'Input  = ' ~ @data;
say 'Output = ' ~ @data.&permutation_sort;
Output:
Input  = c b e d a
Output = a b c d e

REXX

/*REXX program  sorts and displays  an array  using the  permutation-sort  method.      */
call gen                                         /*generate the array elements.         */
call show     'before sort'                      /*show the  before  array elements.    */
                           say  copies('░', 75)  /*show separator line between displays.*/
call pSort  L                                    /*invoke the permutation sort.         */
call show     ' after sort'                      /*show the   after  array elements.    */
say; say 'Permutation sort took '      ?      " permutations to find the sorted list."
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
.pAdd: #=#+1; do j=1 for N;  #.#=#.#  !.j;  end;   return           /*add a permutation.*/
show:    do j=1  for L;  say @e right(j, wL) arg(1)":" translate(@.j, , '_'); end;  return
/*──────────────────────────────────────────────────────────────────────────────────────*/
gen:   @.=;                            @.1 = '---Four_horsemen_of_the_Apocalypse---'
                                       @.2 = '====================================='
                                       @.3 = 'Famine───black_horse'
                                       @.4 = 'Death───pale_horse'
                                       @.5 = 'Pestilence_[Slaughter]───red_horse'
                                       @.6 = 'Conquest_[War]───white_horse'
       @e= right('element', 15)                          /*literal used for the display.*/
         do L=1  while @.L\=='';  @@.L=@.L;   end;    L= L-1;      wL=length(L);    return
/*──────────────────────────────────────────────────────────────────────────────────────*/
isOrd: parse arg q                                       /*see if  Q  list is in order. */
       _= word(q, 1);  do j=2  to words(q);  x= word(q, j);  if x<_  then return 0;   _= x
                       end   /*j*/                       /* [↑]  Out of order?   ¬sorted*/
         do k=1  for #;  _= word(#.?, k);  @.k= @@._;  end  /*k*/;  return 1  /*in order*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
.pNxt: procedure expose !.;    parse arg n,i;         nm= n - 1
                            do k=nm  by -1  for nm;   kp= k + 1
                            if !.k<!.kp   then  do;    i= k;         leave;    end
                            end   /*k*/                  /* [↓]  swap two array elements*/
          do j=i+1  while j<n;  parse value  !.j !.n  with  !.n !.j;   n= n-1;  end  /*j*/
       if i==0  then return 0                            /*0:  indicates no more perms. */
          do j=i+1  while !.j<!.i;   end  /*j*/          /*search perm for a lower value*/
       parse value !.j !.i  with  !.i !.j;  return 1     /*swap two values in !.  array.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
pSort: parse arg n,#.;  #= 0                     /*generate  L  items (!)  permutations.*/
         do f=1  for n;                !.f= f;        end  /*f*/;            call .pAdd
         do while .pNxt(n, 0);         call .pAdd;    end  /*while*/
         do ?=1  until isOrd($);       $=                            /*find permutation.*/
           do m=1  for #; _= word(#.?, m); $= $ @._;  end  /*m*/     /*build the $ list.*/
         end   /*?*/;                  return
output   when using the default (internal) inputs:
        element 1 before sort: ---Four horsemen of the Apocalypse---
        element 2 before sort: =====================================
        element 3 before sort: Famine───black horse
        element 4 before sort: Death───pale horse
        element 5 before sort: Pestilence [Slaughter]───red horse
        element 6 before sort: Conquest [War]───white horse
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
        element 1  after sort: ---Four horsemen of the Apocalypse---
        element 2  after sort: =====================================
        element 3  after sort: Conquest [War]───white horse
        element 4  after sort: Death───pale horse
        element 5  after sort: Famine───black horse
        element 6  after sort: Pestilence [Slaughter]───red horse

Permutation sort took  21  permutations to find the sorted list.

Ring

# Project : Sorting algorithms/Permutation sort

a = [4, 65, 2, 31, 0, 99, 2, 83, 782]  
result = []
permute(a,1)

for n = 1 to len(result)
     num = 0
     for m = 1 to len(result[n]) - 1
          if result[n][m] <= result[n][m+1]  
             num = num + 1
          ok
     next
      if num = len(result[n]) - 1
         nr = n
         exit
      ok
next 
see "" + nr + " permutations required to sort " + len(a) + " items." + nl

func permute(a,k) 
       if k = len(a)
          add(result,a)
       else
          for i = k to len(a)
               temp=a[k]
               a[k]=a[i]
               a[i]=temp
               permute(a,k+1)
               temp=a[k]
               a[k]=a[i]
               a[i]=temp
          next
       ok
       return a

Output:

169329 permutations required to sort 9 items.

RPL

Works with: RPL version HP-49C
« DUP SIZE DUP 0. → s n b c
  « 1. CF
    WHILE b 1. > 1. FC? AND REPEAT 
       s b 'b' DECR SWAP SUB
       IF EVAL < THEN 1. SF END
    END
    s
    IF 1. FS? THEN
       b GET s 'b' INCR n SUB REVLIST
       OVER > I→R 1. POS n 1. + SWAP - 'c' STO
       s c ROT PUT
       b 1. - s c GET PUT
    END
    DUP 1. b 1. - SUB SWAP b n SUB REVLIST +
» » 'NEXTPERM' STO     @ ( { list } → { list } )

« WHILE DUP DUP TAIL LASTARG HEAD +
       ≤ REVLIST TAIL « * » STREAM NOT
  REPEAT NEXTPERM END
» 'PERMSORT' STO       @ ( { list } → { list } )

Ruby

Works with: Ruby version 1.8.7+

The Array class has a permutation method that, with no arguments, returns an enumerable object.

class Array
  def permutationsort
    permutation.each{|perm| return perm if perm.sorted?}
  end
  
  def sorted?
    each_cons(2).all? {|a, b| a <= b}
  end
end

Rust

use itertools::Itertools;
use num::Num;

fn is_sorted<T>(data: &Vec<&T>) -> bool where T: Num + Ord {
    return data.windows(2).all(|pair| pair[0] <= pair[1]);
}

fn permsort<T>(arr: Vec<T>) -> Vec<T> where T: Num + Ord + Clone {
    for perm in arr.iter().permutations(arr.len()) {
        if is_sorted(&perm) {
            return perm.iter().cloned().cloned().collect();
        }
    }
    unreachable!("No ordered permutation found");
}

fn main() {
    let x = [4, 6, 5, 3, 1, 8, 7, 9, 10, 2].to_vec();
    println!("{:?}", permsort(x)); // [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    return ();
}

Scheme

(define (insertions e list)
  (if (null? list)
      (cons (cons e list) list)
      (cons (cons e list)
            (map (lambda (tail) (cons (car list) tail))
                 (insertions e (cdr list))))))

(define (permutations list)
  (if (null? list)
      (cons list list)
      (apply append (map (lambda (permutation)
                           (insertions (car list) permutation))
                         (permutations (cdr list))))))

(define (sorted? list)
  (cond ((null? list) #t)
        ((null? (cdr list)) #t)
        ((<= (car list) (cadr list)) (sorted? (cdr list)))
        (else #f)))

(define (permutation-sort list)
  (let loop ((permutations (permutations list)))
    (if (sorted? (car permutations))
        (car permutations)
        (loop (cdr permutations)))))

Sidef

Translation of: Perl
func psort(x, d=x.end) {

    if (d.is_zero) {
        for i in (1 .. x.end) {
            (x[i] < x[i-1]) && return false;
        }
        return true;
    }

    (d+1).times {
        x.prepend(x.splice(d, 1)...);
        x[d] < x[d-1] && next;
        psort(x, d-1) && return true;
    }

    return false;
}

var a = 10.of { 100.irand };
say "Before:\t#{a}";
psort(a);
say "After:\t#{a}";
Output:
Before:	60 98 85 85 37 0 62 96 95 2
After:	0 2 37 60 62 85 85 95 96 98

Tcl

Library: Tcllib (Package: struct::list)

The firstperm procedure actually returns the lexicographically first permutation of the input list. However, to meet the letter of the problem, let's loop:

package require Tcl 8.5
package require struct::list

proc inorder {list} {::tcl::mathop::<= {*}$list}

proc permutationsort {list} {
    while { ! [inorder $list]} {
        set list [struct::list nextperm $list]
    }
    return $list
}

Ursala

Standard library functions to generate permutations and test for ordering by a given predicate are used.

#import std

permsort "p" = ~&ihB+ ordered"p"*~+ permutations

#cast %sL

example = permsort(lleq) <'pmf','oao','ejw','hhp','oqh','ock','dwj'>
Output:
<'dwj','ejw','hhp','oao','ock','oqh','pmf'>

Wren

Translation of: Go
Library: Wren-sort
import "./sort" for Sort

var a = [170, 45, 75, -90, -802, 24, 2, 66]

// recursive permutation generator
var recurse
recurse = Fn.new { |last|
    if (last <= 0) return Sort.isSorted(a)
    for (i in 0..last) {
        var t = a[i]
        a[i] = a[last]
        a[last] = t
        if (recurse.call(last - 1))  return true
        t = a[i]
        a[i] = a[last]
        a[last] = t
    }
    return false
}

System.print("Unsorted: %(a)")
var count = a.count
if (count > 1 && !recurse.call(count-1)) Fiber.abort("Sorted permutation not found!")
System.print("Sorted  : %(a)")
Output:
Unsorted: [170, 45, 75, -90, -802, 24, 2, 66]
Sorted  : [-802, -90, 2, 24, 45, 66, 75, 170]

XPL0

int  A, Len;

func IsSorted;
int  I;
[for I:= 0 to Len-2 do
    if A(I) > A(I+1) then return false;
return true;
];

func PermSort(Last);
int  Last;
int  I, T;
[if Last <= 0 then return IsSorted;
for I:= 0 to Last do
    [T:= A(I);  A(I):= A(Last);  A(Last):= T;
    if PermSort(Last-1) then return true;
    T:= A(I);  A(I):= A(Last);  A(Last):= T;
    ];
return false;
];

int  I;
[A:= [170, 45, 75, -90, -802, 24, 2, 66];
Len:= 8;
PermSort(Len-1);
for I:= 0 to Len-1 do
    [IntOut(0, A(I));  if I < Len-1 then Text(0, ", ")];
CrLf(0);
]
Output:
-802, -90, 2, 24, 45, 66, 75, 170

zkl

Performance is horrid

rns:=T(4, 65, 2, 31, 0, 99, 2, 83, 782, 1);
fcn psort(list){ len:=list.len(); cnt:=Ref(0);
   foreach ns in (Utils.Helpers.permuteW(list)){ // lasy permutations
      cnt.set(1);
      ns.reduce('wrap(p,n){ if(p>n)return(Void.Stop); cnt.inc(); n });
      if(cnt.value==len) return(ns);
   }
}(rns).println();
Output:
L(0,1,2,2,4,31,65,83,99,782)