Perfect numbers

From Rosetta Code
Task
Perfect numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Write a function which says whether a number is perfect.


A perfect number is a positive integer that is the sum of its proper positive divisors excluding the number itself.

Equivalently, a perfect number is a number that is half the sum of all of its positive divisors (including itself).


Note:   The faster   Lucas-Lehmer test   is used to find primes of the form   2n-1,   all known perfect numbers can be derived from these primes using the formula   (2n - 1) × 2n - 1.

It is not known if there are any odd perfect numbers (any that exist are larger than 102000).

The number of   known   perfect numbers is   51   (as of December, 2018),   and the largest known perfect number contains  49,724,095  decimal digits.


See also



11l

Translation of: Python
F perf(n)
   V sum = 0
   L(i) 1 .< n
      I n % i == 0
         sum += i
   R sum == n

L(i) 1..10000
   I perf(i)
      print(i, end' ‘ ’)
Output:
6 28 496 8128

360 Assembly

Simple code

Translation of: PL/I

For maximum compatibility, this program uses only the basic instruction set (S/360) and two ASSIST macros (XDECO,XPRNT) to keep it as short as possible. The only added optimization is the loop up to n/2 instead of n-1. With 31 bit integers the limit is 2,147,483,647.

*        Perfect numbers           15/05/2016
PERFECTN CSECT
         USING  PERFECTN,R13       prolog
SAVEAREA B      STM-SAVEAREA(R15)  "
         DC     17F'0'             "
STM      STM    R14,R12,12(R13)    "
         ST     R13,4(R15)         "
         ST     R15,8(R13)         "
         LR     R13,R15            "
         LA     R6,2               i=2
LOOPI    C      R6,NN              do i=2 to nn
         BH     ELOOPI
         LR     R1,R6              i
         BAL    R14,PERFECT
         LTR    R0,R0              if perfect(i)
         BZ     NOTPERF
         XDECO  R6,PG              edit i
         XPRNT  PG,L'PG            print i
NOTPERF  LA     R6,1(R6)           i=i+1
         B      LOOPI
ELOOPI   L      R13,4(0,R13)       epilog
         LM     R14,R12,12(R13)    "
         XR     R15,R15            "
         BR     R14                exit
PERFECT  SR     R9,R9              function perfect(n); sum=0
         LA     R7,1               j
         LR     R8,R1              n
         SRA    R8,1               n/2
LOOPJ    CR     R7,R8              do j=1 to n/2
         BH     ELOOPJ
         LR     R4,R1              n
         SRDA   R4,32
         DR     R4,R7              n/j
         LTR    R4,R4              if mod(n,j)=0
         BNZ    NOTMOD
         AR     R9,R7              sum=sum+j
NOTMOD   LA     R7,1(R7)           j=j+1
         B      LOOPJ
ELOOPJ   SR     R0,R0              r0=false
         CR     R9,R1              if sum=n
         BNE    NOTEQ
         BCTR   R0,0               r0=true
NOTEQ    BR     R14                return(r0); end perfect
NN       DC     F'10000'
PG       DC     CL12' '            buffer
         YREGS
         END    PERFECTN
Output:
           6
          28
         496
        8128

Some optimizations

Translation of: REXX

Use of optimizations found in Rexx algorithms and use of packed decimal to have bigger numbers. With 15 digit decimal integers the limit is 999,999,999,999,999.

*        Perfect numbers           15/05/2016
PERFECPO CSECT
         USING  PERFECPO,R13       prolog
SAVEAREA B      STM-SAVEAREA(R15)  "
         DC     17F'0'             "
STM      STM    R14,R12,12(R13)    "
         ST     R13,4(R15)         "
         ST     R15,8(R13)         "
         LR     R13,R15            "
         ZAP    I,I1               i=i1
LOOPI    CP     I,I2               do i=i1 to i2
         BH     ELOOPI
         LA     R1,I               r1=@i
         BAL    R14,PERFECT        perfect(i)
         LTR    R0,R0              if perfect(i)
         BZ     NOTPERF
         UNPK   PG(16),I           unpack i
         OI     PG+15,X'F0'
         XPRNT  PG,16              print i
NOTPERF  AP     I,=P'1'            i=i+1
         B      LOOPI
ELOOPI   L      R13,4(0,R13)       epilog
         LM     R14,R12,12(R13)    "
         XR     R15,R15            "
         BR     R14                exit
PERFECT  EQU    *                  function perfect(n); 
         ZAP    N,0(8,R1)          n=%r1
         CP     N,=P'6'            if n=6
         BNE    NOT6
         L      R0,=F'-1'          r0=true
         B      RETURN             return(true)
NOT6     ZAP    PW,N               n
         SP     PW,=P'1'           n-1
         ZAP    PW2,PW             n-1
         DP     PW2,=PL8'9'        (n-1)/9
         ZAP    R,PW2+8(8)         if mod((n-1),9)<>0
         BZ     ZERO
         SR     R0,R0              r0=false
         B      RETURN             return(false)
ZERO     ZAP    PW2,N              n
         DP     PW2,=PL8'2'        n/2
         ZAP    SUM,PW2(8)         sum=n/2
         AP     SUM,=P'3'          sum=n/2+3
         ZAP    J,=P'3'            j=3
LOOPJ    ZAP    PW,J               do loop on j
         MP     PW,J               j*j
         CP     PW,N               while j*j<=n
         BH     ELOOPJ
         ZAP    PW2,N              n
         DP     PW2,J              n/j
         CP     PW2+8(8),=P'0'     if mod(n,j)<>0
         BNE    NEXTJ
         AP     SUM,J              sum=sum+j
         ZAP    PW2,N              n
         DP     PW2,J              n/j
         AP     SUM,PW2(8)         sum=sum+j+n/j
NEXTJ    AP     J,=P'1'            j=j+1
         B      LOOPJ              next j
ELOOPJ   SR     R0,R0              r0=false
         CP     SUM,N              if sum=n
         BNE    RETURN
         BCTR   R0,0               r0=true
RETURN   BR     R14                return(r0); end perfect
I1       DC     PL8'1'
I2       DC     PL8'200000000000'
I        DS     PL8
PG       DC     CL16' '            buffer
N        DS     PL8
SUM      DS     PL8
J        DS     PL8
R        DS     PL8
C        DS     CL16
PW       DS     PL8
PW2      DS     PL16
         YREGS
         END    PERFECPO
Output:
0000000000000006
0000000000000028
0000000000000496
0000000000008128
0000000033550337
0000008589869056
0000137438691328

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program perfectNumber64.s   */
/* use Euclide Formula : if M=(2puis p)-1 is prime M * (M+1)/2 is perfect see Wikipedia  */
/*******************************************/
/* Constantes file                         */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeConstantesARM64.inc"

.equ MAXI,      63

/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:        .asciz "Perfect  : @ \n"
szMessOverflow:     .asciz "Overflow in function isPrime.\n"
szCarriageReturn:   .asciz "\n"

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
sZoneConv:                  .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                               // entry of program 
    mov x4,2                        // start 2
    mov x3,1                        // counter 2 power
1:                                  // begin loop
    lsl x4,x4,1                     // 2 power
    sub x0,x4,1                     // - 1 
    bl isPrime                      // is prime ?
    cbz x0,2f                       // no
    sub x0,x4,1                     // yes
    mul x1,x0,x4                    // multiply m by m-1
    lsr x0,x1,1                     // divide by 2
    bl displayPerfect               // and display
2:
    add x3,x3,1                     // next power of 2
    cmp x3,MAXI
    blt 1b

100:                                // standard end of the program 
    mov x0,0                        // return code
    mov x8,EXIT                     // request to exit program
    svc 0                           // perform the system call
qAdrszCarriageReturn:    .quad szCarriageReturn
qAdrsMessResult:         .quad sMessResult

/******************************************************************/
/*      Display perfect number                                */ 
/******************************************************************/
/* x0 contains the number */
displayPerfect:
    stp x1,lr,[sp,-16]!             // save  registers
    ldr x1,qAdrsZoneConv
    bl conversion10                 // call décimal conversion
    ldr x0,qAdrsMessResult
    ldr x1,qAdrsZoneConv            // insert conversion in message
    bl strInsertAtCharInc
    bl affichageMess                // display message
100:
    ldp x1,lr,[sp],16               // restaur  2 registers
    ret                             // return to address lr x30
qAdrsZoneConv:                   .quad sZoneConv

/***************************************************/
/*   is a number prime ?         */
/***************************************************/
/* x0 contains the number */
/* x0 return 1 if prime  else 0  */
//2147483647  OK
//4294967297  NOK
//131071       OK
//1000003    OK 
//10001363   OK
isPrime:
    stp x1,lr,[sp,-16]!        // save  registres
    stp x2,x3,[sp,-16]!        // save  registres
    mov x2,x0
    sub x1,x0,#1
    cmp x2,0
    beq 99f                    // return zero
    cmp x2,2                   // for 1 and 2 return 1
    ble 2f
    mov x0,#2
    bl moduloPuR64
    bcs 100f                   // error overflow
    cmp x0,#1
    bne 99f                    // no prime 
    cmp x2,3
    beq 2f
    mov x0,#3
    bl moduloPuR64
    blt 100f                   // error overflow
    cmp x0,#1
    bne 99f

    cmp x2,5
    beq 2f
    mov x0,#5
    bl moduloPuR64
    bcs 100f                   // error overflow
    cmp x0,#1
    bne 99f                    // Pas premier

    cmp x2,7
    beq 2f
    mov x0,#7
    bl moduloPuR64
    bcs 100f                   // error overflow
    cmp x0,#1
    bne 99f                    // Pas premier

    cmp x2,11
    beq 2f
    mov x0,#11
    bl moduloPuR64
    bcs 100f                   // error overflow
    cmp x0,#1
    bne 99f                    // Pas premier

    cmp x2,13
    beq 2f
    mov x0,#13
    bl moduloPuR64
    bcs 100f                   // error overflow
    cmp x0,#1
    bne 99f                    // Pas premier
2:
    cmn x0,0                   // carry à zero no error
    mov x0,1                   // prime
    b 100f
99:
    cmn x0,0                   // carry à zero no error
    mov x0,#0                  // prime
100:
    ldp x2,x3,[sp],16          // restaur des  2 registres
    ldp x1,lr,[sp],16          // restaur des  2 registres
    ret


/**************************************************************/
/********************************************************/
/*   Compute modulo de b power e modulo m  */
/*    Exemple 4 puissance 13 modulo 497 = 445         */
/********************************************************/
/* x0  number  */
/* x1 exposant */
/* x2 modulo   */
moduloPuR64:
    stp x1,lr,[sp,-16]!        // save  registres
    stp x3,x4,[sp,-16]!        // save  registres
    stp x5,x6,[sp,-16]!        // save  registres
    stp x7,x8,[sp,-16]!        // save  registres
    stp x9,x10,[sp,-16]!       // save  registres
    cbz x0,100f
    cbz x1,100f
    mov x8,x0
    mov x7,x1
    mov x6,1                   // result
    udiv x4,x8,x2
    msub x9,x4,x2,x8           // remainder
1:
    tst x7,1                   // if bit = 1
    beq 2f
    mul x4,x9,x6
    umulh x5,x9,x6
    mov x6,x4
    mov x0,x6
    mov x1,x5
    bl divisionReg128U         // division 128 bits
    cbnz x1,99f                // overflow
    mov x6,x3                  // remainder
2:
    mul x8,x9,x9
    umulh x5,x9,x9
    mov x0,x8
    mov x1,x5
    bl divisionReg128U
    cbnz x1,99f                // overflow
    mov x9,x3
    lsr x7,x7,1
    cbnz x7,1b
    mov x0,x6                  // result
    cmn x0,0                   // carry à zero no error
    b 100f
99:
    ldr x0,qAdrszMessOverflow
    bl  affichageMess          // display error message
    cmp x0,0                   // carry set error
    mov x0,-1                  // code erreur

100:
    ldp x9,x10,[sp],16          // restaur des  2 registres
    ldp x7,x8,[sp],16          // restaur des  2 registres
    ldp x5,x6,[sp],16          // restaur des  2 registres
    ldp x3,x4,[sp],16          // restaur des  2 registres
    ldp x1,lr,[sp],16          // restaur des  2 registres
    ret                        // retour adresse lr x30
qAdrszMessOverflow:         .quad  szMessOverflow
/***************************************************/
/*   division d un nombre de 128 bits par un nombre de 64 bits */
/***************************************************/
/* x0 contient partie basse dividende */
/* x1 contient partie haute dividente */
/* x2 contient le diviseur */
/* x0 retourne partie basse quotient */
/* x1 retourne partie haute quotient */
/* x3 retourne le reste */
divisionReg128U:
    stp x6,lr,[sp,-16]!        // save  registres
    stp x4,x5,[sp,-16]!        // save  registres
    mov x5,#0                  // raz du reste R
    mov x3,#128                // compteur de boucle
    mov x4,#0                  // dernier bit
1:    
    lsl x5,x5,#1               // on decale le reste de 1
    tst x1,1<<63               // test du bit le plus à gauche
    lsl x1,x1,#1               // on decale la partie haute du quotient de 1
    beq 2f
    orr  x5,x5,#1              // et on le pousse dans le reste R
2:
    tst x0,1<<63
    lsl x0,x0,#1               // puis on decale la partie basse 
    beq 3f
    orr x1,x1,#1               // et on pousse le bit de gauche dans la partie haute
3:
    orr x0,x0,x4               // position du dernier bit du quotient
    mov x4,#0                  // raz du bit
    cmp x5,x2
    blt 4f
    sub x5,x5,x2               // on enleve le diviseur du reste
    mov x4,#1                  // dernier bit à 1
4:
                               // et boucle
    subs x3,x3,#1
    bgt 1b    
    lsl x1,x1,#1               // on decale le quotient de 1
    tst x0,1<<63
    lsl x0,x0,#1               // puis on decale la partie basse 
    beq 5f
    orr x1,x1,#1
5:
    orr x0,x0,x4               // position du dernier bit du quotient
    mov x3,x5
100:
    ldp x4,x5,[sp],16          // restaur des  2 registres
    ldp x6,lr,[sp],16          // restaur des  2 registres
    ret                        // retour adresse lr x30

/********************************************************/
/*        File Include fonctions                        */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
Perfect  : 6
Perfect  : 28
Perfect  : 496
Perfect  : 8128
Perfect  : 33550336
Perfect  : 8589869056
Perfect  : 137438691328
Perfect  : 2305843008139952128
Perfect  : 8070450532247928832

Action!

PROC Main()
  DEFINE MAXNUM="10000"
  CARD ARRAY pds(MAXNUM+1)
  CARD i,j

  FOR i=2 TO MAXNUM
  DO
    pds(i)=1
  OD
  FOR i=2 TO MAXNUM
  DO
    FOR j=i+i TO MAXNUM STEP i
    DO
      pds(j)==+i
    OD
  OD

  FOR i=2 TO MAXNUM
  DO
    IF pds(i)=i THEN
      PrintCE(i)
    FI
  OD
RETURN
Output:

Screenshot from Atari 8-bit computer

6
28
496
8128

Ada

function Is_Perfect(N : Positive) return Boolean is
   Sum : Natural := 0;
begin
   for I in 1..N - 1 loop
      if N mod I = 0 then
         Sum := Sum + I;
      end if;
   end loop;
   return Sum = N;
end Is_Perfect;

ALGOL 60

Works with: A60
begin

comment - return n mod m;
integer procedure mod(n, m);
  value n, m; integer n, m;
begin
  mod := n - m * entier(n / m);
end;

comment - return true if n is perfect, otherwise false;
boolean procedure isperfect(n);
  value n; integer n;
begin
  integer sum, f1, f2;
  sum := 1;
  f1 := 1;
  for f1 := f1 + 1 while (f1 * f1) <= n do
    begin
      if mod(n, f1) = 0 then
        begin
           sum := sum + f1;
           f2 := n / f1;
           if f2 > f1 then sum := sum + f2;
        end;
    end;
  isperfect := (sum = n);
end;

comment - exercise the procedure;
integer i, found;
outstring(1,"Searching up to 10000 for perfect numbers\n");
found := 0;
for i := 2 step 1 until 10000 do
  if isperfect(i) then 
    begin
      outinteger(1,i);
      found := found + 1;
    end;
outstring(1,"\n");
outinteger(1,found);
outstring(1," were found");

end
Output:
Searching up to 10000 for perfect numbers
 6  28  496  8128
 4 were found

ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d
PROC is perfect = (INT candidate)BOOL: (
  INT sum :=1;
  FOR f1 FROM 2 TO ENTIER ( sqrt(candidate)*(1+2*small real) ) WHILE
    IF candidate MOD f1 = 0 THEN
      sum +:= f1;
      INT f2 = candidate OVER f1;
      IF f2 > f1 THEN
        sum +:= f2
      FI
    FI;
# WHILE # sum <= candidate DO 
    SKIP 
  OD;
  sum=candidate
);

test:(
  FOR i FROM 2 TO 33550336 DO
    IF is perfect(i) THEN print((i, new line)) FI
  OD
)
Output:
         +6
        +28
       +496
      +8128
  +33550336

ALGOL W

Based on the Algol 68 version.

begin
    % returns true if n is perfect, false otherwise                %
    % n must be > 0                                                %
    logical procedure isPerfect ( integer value candidate ) ;
        begin
            integer sum; 
            sum    := 1;
            for f1 := 2 until round( sqrt( candidate ) ) do begin
                if candidate rem f1 = 0 then begin
                    integer f2;
                    sum := sum + f1;
                    f2  := candidate div f1;
                    % avoid e.g. counting 2 twice as a factor of 4 %
                    if f2 > f1 then sum := sum + f2
                end if_candidate_rem_f1_eq_0 ;
            end for_f1 ;
            sum = candidate
        end isPerfect ;

    % test isPerfect                                               %
    for n := 2 until 10000 do if isPerfect( n ) then write( n );
end.
Output:
             6
            28
           496
          8128

AppleScript

Functional

Translation of: JavaScript
-- PERFECT NUMBERS -----------------------------------------------------------

-- perfect :: integer -> bool
on perfect(n)
    
    -- isFactor :: integer -> bool
    script isFactor
        on |λ|(x)
            n mod x = 0
        end |λ|
    end script
    
    -- quotient :: number -> number
    script quotient
        on |λ|(x)
            n / x
        end |λ|
    end script
    
    -- sum :: number -> number -> number
    script sum
        on |λ|(a, b)
            a + b
        end |λ|
    end script
    
    -- Integer factors of n below the square root
    set lows to filter(isFactor, enumFromTo(1, (n ^ (1 / 2)) as integer))
    
    -- low and high factors (quotients of low factors) tested for perfection
    (n > 1) and (foldl(sum, 0, (lows & map(quotient, lows))) / 2 = n)
end perfect


-- TEST ----------------------------------------------------------------------
on run
    
    filter(perfect, enumFromTo(1, 10000))
    
    --> {6, 28, 496, 8128}
    
end run


-- GENERIC FUNCTIONS ---------------------------------------------------------

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
    if m > n then
        set d to -1
    else
        set d to 1
    end if
    set lst to {}
    repeat with i from m to n by d
        set end of lst to i
    end repeat
    return lst
end enumFromTo

-- filter :: (a -> Bool) -> [a] -> [a]
on filter(f, xs)
    tell mReturn(f)
        set lst to {}
        set lng to length of xs
        repeat with i from 1 to lng
            set v to item i of xs
            if |λ|(v, i, xs) then set end of lst to v
        end repeat
        return lst
    end tell
end filter

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: Handler -> Script
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn
Output:
{6, 28, 496, 8128}

Idiomatic

Sum of proper divisors

on aliquotSum(n)
    if (n < 2) then return 0
    set sum to 1
    set sqrt to n ^ 0.5
    set limit to sqrt div 1
    if (limit = sqrt) then
        set sum to sum + limit
        set limit to limit - 1
    end if
    repeat with i from 2 to limit
        if (n mod i is 0) then set sum to sum + i + n div i
    end repeat
    
    return sum
end aliquotSum

on isPerfect(n)
    if (n > 1.37438691328E+11) then return missing value -- Too high for perfection to be determinable.
    -- All the known perfect numbers listed in Wikipedia end with either 6 or 28.
    -- These endings are either preceded by odd digits or are the numbers themselves.
    tell (n mod 10) to ¬
        return ((((it = 6) and ((n mod 20 = 16) or (n = 6))) or ¬
            ((it = 8) and ((n mod 200 = 128) or (n = 28)))) and ¬
            (my aliquotSum(n) = n))
end isPerfect

local output, n
set output to {}
repeat with n from 1 to 10000
    if (isPerfect(n)) then set end of output to n
end repeat
return output
Output:
{6, 28, 496, 8128}

Euclid

on isPerfect(n)
    -- All the known perfect numbers listed in Wikipedia end with either 6 or 28.
    -- These endings are either preceded by odd digits or are the numbers themselves.
    tell (n mod 10) to ¬
        if not (((it = 6) and ((n mod 20 = 16) or (n = 6))) or ((it = 8) and ((n mod 200 = 128) or (n = 28)))) then ¬
            return false
    -- Work through the only seven primes p where (2 ^ p - 1) is also prime
    -- and (2 ^ p - 1) * (2 ^ (p - 1)) is a number that AppleScript can handle.
    repeat with p in {2, 3, 5, 7, 13, 17, 19}
        tell (2 ^ p - 1) * (2 ^ (p - 1))
            if (it < n) then
            else
                return (it = n)
            end if
        end tell
    end repeat
    return missing value
end isPerfect

local output, n
set output to {}
repeat with n from 2 to 33551000 by 2
    if (isPerfect(n)) then set end of output to n
end repeat
return output
Output:
{6, 28, 496, 8128, 33550336}

Practical

But since AppleScript can only physically manage seven of the known perfect numbers, they may as well be in a look-up list for maximum efficiency:

on isPerfect(n)
    if (n > 1.37438691328E+11) then return missing value -- Too high for perfection to be determinable.
    return (n is in {6, 28, 496, 8128, 33550336, 8.589869056E+9, 1.37438691328E+11})
end isPerfect

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program perfectNumber.s   */

 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

.equ MAXI,      1<<31

/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResultPerf:    .asciz "Perfect  : @ \n"
szCarriageReturn:   .asciz "\n"

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
sZoneConv:                  .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:                             @ entry of program 
    mov r2,#2                     @ begin first number
1:                                @ begin loop 
    mov r5,#1                     @ sum
    mov r4,#2                     @ first divisor 1
2:
    udiv r0,r2,r4                 @ compute divisor 2
    mls r3,r0,r4,r2               @ remainder
    cmp r3,#0
    bne 3f                        @ remainder = 0 ?
    add r5,r5,r0                  @ add divisor 2
    add r5,r5,r4                  @ add divisor 1
3:
    add r4,r4,#1                  @ increment divisor
    cmp r4,r0                     @ divisor 1  < divisor 2
    blt 2b                        @ yes -> loop
    cmp r2,r5                     @ compare number and divisors sum
    bne 4f                        @ not equal
    mov r0,r2                     @ equal -> display
    ldr r1,iAdrsZoneConv
    bl conversion10               @ call décimal conversion
    ldr r0,iAdrsMessResultPerf
    ldr r1,iAdrsZoneConv          @ insert conversion in message
    bl strInsertAtCharInc
    bl affichageMess              @ display message
4: 
    add r2,#2                     @ no perfect number odd < 10 puis 1500
    cmp r2,#MAXI                  @ end ?
    blo 1b                        @ no -> loop

100:                              @ standard end of the program 
    mov r0, #0                    @ return code
    mov r7, #EXIT                 @ request to exit program
    svc #0                        @ perform the system call
iAdrszCarriageReturn:    .int szCarriageReturn
iAdrsMessResultPerf:     .int sMessResultPerf
iAdrsZoneConv:           .int sZoneConv  

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"
Perfect  : 6
Perfect  : 28
Perfect  : 496
Perfect  : 8128
Perfect  : 33550336

Arturo

divisors: $[n][ select 1..(n/2)+1 'i -> 0 = n % i ]
perfect?: $[n][ n = sum divisors n ]
 
loop 2..1000 'i [
	if perfect? i -> print i 
]

AutoHotkey

This will find the first 8 perfect numbers.

Loop, 30 {
  If isMersennePrime(A_Index + 1)
    res .= "Perfect number: " perfectNum(A_Index + 1) "`n"
}

MsgBox % res

perfectNum(N) {
  Return 2**(N - 1) * (2**N - 1)
}

isMersennePrime(N) {
  If (isPrime(N)) && (isPrime(2**N - 1))
    Return true
}

isPrime(N) {
  Loop, % Floor(Sqrt(N))
    If (A_Index > 1 && !Mod(N, A_Index))
      Return false
  Return true
}

AWK

$ awk 'func perf(n){s=0;for(i=1;i<n;i++)if(n%i==0)s+=i;return(s==n)}
BEGIN{for(i=1;i<10000;i++)if(perf(i))print i}'
6
28
496
8128

Axiom

Translation of: Mathematica

Using the interpreter, define the function:

perfect?(n:Integer):Boolean == reduce(+,divisors n) = 2*n

Alternatively, using the Spad compiler:

)abbrev package TESTP TestPackage
TestPackage() : withma
    perfect?: Integer -> Boolean
  ==
    add
      import IntegerNumberTheoryFunctions
      perfect? n == reduce("+",divisors n) = 2*n

Examples (testing 496, testing 128, finding all perfect numbers in 1...10000):

perfect? 496
perfect? 128
[i for i in 1..10000 | perfect? i]
Output:
true
false
[6,28,496,8128]

BASIC

Works with: QuickBasic version 4.5
FUNCTION perf(n)
	sum = 0
	for i = 1 to n - 1
		IF n MOD i = 0 THEN
			sum = sum + i
		END IF
	NEXT i
	IF sum = n THEN
		perf = 1
	ELSE
		perf = 0
	END IF
END FUNCTION

BASIC256

Translation of: FreeBASIC
function isPerfect(n)
	if (n < 2) or (n mod 2 = 1) then return False
	#asumimos que los números impares no son perfectos
	sum = 1
	for i = 2 to sqr(n)
		if n mod i = 0 then
			sum += i
			q = n \ i
			if q > i then sum += q
		end if
	next
	return n = sum
end function

print "Los primeros 5 números perfectos son:"
for i = 2 to 233550336
	if isPerfect(i) then print i; " ";
next i
end

CBASIC

Works with: CBASIC 2
Works with: CB80
rem - return true (-1) if n is perfect, otherwise 0
def fn.isperfect%(n%)
  sum% = 1 : rem 1 is a divisor of every number
  f1% = 2
  f2% = 1 :  rem dummy value to start 
  while (f1% * f1%) <= n% 
    if n% = (n% / f1%) * f1% then \
      sum% = sum% + f1%  : \
      f2% = n% / f1% : \
      sum% = sum% + f2%
    rem  don't double count sqrt of perfect square!
    if f1% = f2% then sum% = sum% - f2%
    f1% = f1% + 1
  wend
  fn.isperfect% = (sum% = n%)
  return
fend

print "Searching to 10000 for perfect numbers"
count% = 0
for i% = 2 to 10000
  if fn.isperfect%(i%) then \
    print i% : count% = count% + 1
next i%

print count%; "were found" 

end
Output:
Searching to 10000 for perfect numbers
 6
 28
 496
 8128
 4 were found

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
100 sub isperfect(n)
110 if (n < 2) or (n mod 2 = 1) then isperfect = false
120 sum = 1
130 for i = 2 to sqr(n)
140  if n mod i = 0 then
150    sum = sum+i
160    q = int(n/i)
170    if q > i then sum = sum+q
180   endif
190  next
200  isperfect = n = sum
210 end sub
220 print "The first 4 perfect numbers are:"
230 for i = 2 to 10000
240  if isperfect(i) then print i;" ";
250 next i

Craft Basic

for n = 1 to 10000

	let s = 0

	for i = 1 to n / 2

		if n % i = 0 then

			let s = s + i

		endif

	next i

	if s = n then

		print n, " ",

	endif

	wait

next n
Output:
6 28 496 8128 

IS-BASIC

100 PROGRAM "PerfectN.bas"
110 FOR X=1 TO 10000
120   IF PERFECT(X) THEN PRINT X;
130 NEXT
140 DEF PERFECT(N)
150   IF N<2 OR MOD(N,2)<>0 THEN LET PERFECT=0:EXIT DEF
160   LET S=1
170   FOR I=2 TO SQR(N)
180     IF MOD(N,I)=0 THEN LET S=S+I+N/I
190   NEXT
200   LET PERFECT=N=S
210 END DEF

QB64

Works with: QBasic
Print "The first 4 perfect numbers are:"
For i = 2 To 10000
    If isPerfect(i) <> 0 Then Print i; " ";
Next i

Function isPerfect (n)
    If n < 2 Then isPerfect = 0
    If n Mod 2 = 1 Then isPerfect = 0
    sum = 1
    For i = 2 To Sqr(n)
        If n Mod i = 0 Then
            sum = sum + i
            q = n \ i
            If q > i Then sum = sum + q
        End If
    Next
    If n = sum Then isPerfect = -1 Else isPerfect = 0
End Function

Sinclair ZX81 BASIC

Call this subroutine and it will (eventually) return PERFECT = 1 if N is perfect or PERFECT = 0 if it is not.

2000 LET SUM=0
2010 FOR F=1 TO N-1
2020 IF N/F=INT (N/F) THEN LET SUM=SUM+F
2030 NEXT F
2040 LET PERFECT=SUM=N
2050 RETURN

True BASIC

FUNCTION perf(n)
    IF n < 2 or ramainder(n,2) = 1 then LET perf = 0
    LET sum = 0
    FOR i = 1 to n-1
        IF remainder(n,i) = 0 then LET sum = sum+i
    NEXT i
    IF sum = n then
       LET perf = 1
    ELSE
       LET perf = 0
    END IF
END FUNCTION

PRINT "Los primeros 5 números perfectos son:"
FOR i = 1 to 33550336
    IF perf(i) = 1 then PRINT i; " ";
NEXT i

PRINT
PRINT "Presione cualquier tecla para salir"
END

BBC BASIC

BASIC version

      FOR n% = 2 TO 10000 STEP 2
        IF FNperfect(n%) PRINT n%
      NEXT
      END
      
      DEF FNperfect(N%)
      LOCAL I%, S%
      S% = 1
      FOR I% = 2 TO SQR(N%)-1
        IF N% MOD I% = 0 S% += I% + N% DIV I%
      NEXT
      IF I% = SQR(N%) S% += I%
      = (N% = S%)
Output:
         6
        28
       496
      8128

Assembler version

      DIM P% 100
      [OPT 2 :.S% xor edi,edi
      .perloop mov eax,ebx : cdq : div ecx : or edx,edx : loopnz perloop : inc ecx
      add edi,ecx : add edi,eax : loop perloop : mov eax,edi : shr eax,1 : ret : ]
      
      FOR B% = 2 TO 35000000 STEP 2
        C% = SQRB%
        IF B% = USRS% PRINT B%
      NEXT
      END
Output:
         4
         6
        28
       496
      8128
  33550336

Bracmat

( ( perf
  =   sum i
    .   0:?sum
      & 0:?i
      &   whl
        ' ( !i+1:<!arg:?i
          & ( mod$(!arg.!i):0&!sum+!i:?sum
            |
            )
          )
      & !sum:!arg
  )
& 0:?n
&   whl
  ' ( !n+1:~>10000:?n
    & (perf$!n&out$!n|)
    )
);
Output:
6
28
496
8128

Burlesque

Jfc++\/2.*==
blsq) 8200ro{Jfc++\/2.*==}f[

{6 28 496 8128}

C

Translation of: D
#include "stdio.h"
#include "math.h"

int perfect(int n) {
    int max = (int)sqrt((double)n) + 1;
    int tot = 1;
    int i;

    for (i = 2; i < max; i++)
        if ( (n % i) == 0 ) {
            tot += i;
            int q = n / i;
            if (q > i)
                tot += q;
        }

    return tot == n;
}

int main() {
    int n;
    for (n = 2; n < 33550337; n++)
        if (perfect(n))
            printf("%d\n", n);

    return 0;
}

Using functions from Factors of an integer#Prime factoring:

int main()
{
	int j;
	ulong fac[10000], n, sum;
 
	sieve();
 
	for (n = 2; n < 33550337; n++) {
		j = get_factors(n, fac) - 1;
		for (sum = 0; j && sum <= n; sum += fac[--j]);
		if (sum == n) printf("%lu\n", n);
	}
 
	return 0;
}

C#

Translation of: C++
static void Main(string[] args)
{
	Console.WriteLine("Perfect numbers from 1 to 33550337:");

	for (int x = 0; x < 33550337; x++)
	{
		if (IsPerfect(x))
			Console.WriteLine(x + " is perfect.");
	}

	Console.ReadLine();
}

static bool IsPerfect(int num) 
{
	int sum = 0;
	for (int i = 1; i < num; i++)
	{
		if (num % i == 0)
			sum += i;
	}

	return sum == num ;
}

Version using Lambdas, will only work from version 3 of C# on

static void Main(string[] args)
{
	Console.WriteLine("Perfect numbers from 1 to 33550337:");

	for (int x = 0; x < 33550337; x++)
	{
		if (IsPerfect(x))
			Console.WriteLine(x + " is perfect.");
	}

	Console.ReadLine();
}

static bool IsPerfect(int num) 
{
	return Enumerable.Range(1, num - 1).Sum(n => num % n == 0 ? n : 0 ) == num;
}

C++

Works with: gcc
#include <iostream>
using namespace std ;

int divisor_sum( int number ) { 
   int sum = 0 ; 
   for ( int i = 1 ; i < number ; i++ ) 
      if ( number % i == 0 ) 
         sum += i ; 
   return sum; 
}

int main( ) { 
   cout << "Perfect numbers from 1 to 33550337:\n" ;
   for ( int num = 1 ; num < 33550337 ; num++ ) { 
      if (divisor_sum(num) == num) 
         cout << num << '\n' ;
   }   
   return 0 ; 
}

Clojure

(defn proper-divisors [n]
  (if (< n 4)
    [1]
    (->> (range 2 (inc (quot n 2)))
         (filter #(zero? (rem n %)))
         (cons 1))))

(defn perfect? [n]
  (= (reduce + (proper-divisors n)) n))
Translation of: Haskell
(defn perfect? [n]
  (->> (for [i (range 1 n)] :when (zero? (rem n i))] i)
       (reduce +)
       (= n)))

Functional version

(defn perfect? [n]
	(= (reduce + (filter #(zero? (rem n %)) (range 1 n))) n))

COBOL

Translation of: D
Works with: Visual COBOL

main.cbl:

      $set REPOSITORY "UPDATE ON"
       
       IDENTIFICATION DIVISION.
       PROGRAM-ID. perfect-main.
       
       ENVIRONMENT DIVISION.
       CONFIGURATION SECTION.
       REPOSITORY.
           FUNCTION perfect
           .
       DATA DIVISION.
       WORKING-STORAGE SECTION.
       01  i                      PIC 9(8).  
       
       PROCEDURE DIVISION.
           PERFORM VARYING i FROM 2 BY 1 UNTIL 33550337 = i
               IF FUNCTION perfect(i) = 0
                   DISPLAY i
               END-IF
           END-PERFORM
       
           GOBACK
           .
       END PROGRAM perfect-main.

perfect.cbl:

       IDENTIFICATION DIVISION.
       FUNCTION-ID. perfect.
       
       DATA DIVISION.
       LOCAL-STORAGE SECTION.
       01  max-val                 PIC 9(8).
       01  total                   PIC 9(8) VALUE 1.
       01  i                       PIC 9(8).
       01  q                       PIC 9(8).
       
       LINKAGE SECTION.
       01  n                       PIC 9(8).
       01  is-perfect              PIC 9.
       
       PROCEDURE DIVISION USING VALUE n RETURNING is-perfect.
           COMPUTE max-val = FUNCTION INTEGER(FUNCTION SQRT(n)) + 1
           
           PERFORM VARYING i FROM 2 BY 1 UNTIL i = max-val
               IF FUNCTION MOD(n, i) = 0
                   ADD i TO total
                   
                   DIVIDE n BY i GIVING q
                   IF q > i
                       ADD q TO total
                   END-IF
               END-IF
           END-PERFORM
           
           IF total = n
               MOVE 0 TO is-perfect
           ELSE
               MOVE 1 TO is-perfect
           END-IF
           
           GOBACK
           .
       END FUNCTION perfect.

CoffeeScript

Optimized version, for fun.

is_perfect_number = (n) ->
  do_factors_add_up_to n, 2*n
  
do_factors_add_up_to = (n, desired_sum) ->
  # We mildly optimize here, by taking advantage of
  # the fact that the sum_of_factors( (p^m) * x)
  # is (1 + ... + p^m-1 + p^m) * sum_factors(x) when
  # x is not itself a multiple of p.

  p = smallest_prime_factor(n)
  if p == n
    return desired_sum == p + 1

  # ok, now sum up all powers of p that
  # divide n
  sum_powers = 1
  curr_power = 1
  while n % p == 0
    curr_power *= p
    sum_powers += curr_power
    n /= p
  
  # if desired_sum does not divide sum_powers, we
  # can short circuit quickly
  return false unless desired_sum % sum_powers == 0
  
  # otherwise, recurse
  do_factors_add_up_to n, desired_sum / sum_powers

smallest_prime_factor = (n) ->
  for i in [2..n]
    return n if i*i > n
    return i if n % i == 0

# tests
do -> 
  # This is pretty fast...
  for n in [2..100000]
    console.log n if is_perfect_number n

  # For big numbers, let's just sanity check the known ones.
  known_perfects = [
    33550336
    8589869056
    137438691328
  ]
  for n in known_perfects
    throw Error("fail") unless is_perfect_number(n)
    throw Error("fail") if is_perfect_number(n+1)
Output:
> coffee perfect_numbers.coffee 
6
28
496
8128

Common Lisp

Translation of: Haskell
(defun perfectp (n)
  (= n (loop for i from 1 below n when (= 0 (mod n i)) sum i)))

D

Functional Version

import std.stdio, std.algorithm, std.range;

bool isPerfectNumber1(in uint n) pure nothrow
in {
    assert(n > 0);
} body {
    return n == iota(1, n - 1).filter!(i => n % i == 0).sum;
}

void main() {
    iota(1, 10_000).filter!isPerfectNumber1.writeln;
}
Output:
[6, 28, 496, 8128]

Faster Imperative Version

Translation of: Algol
import std.stdio, std.math, std.range, std.algorithm;

bool isPerfectNumber2(in int n) pure nothrow {
    if (n < 2)
        return false;

    int total = 1;
    foreach (immutable i; 2 .. cast(int)real(n).sqrt + 1)
        if (n % i == 0) {
            immutable int q = n / i;
            total += i;
            if (q > i)
                total += q;
        }

    return total == n;
}

void main() {
    10_000.iota.filter!isPerfectNumber2.writeln;
}
Output:
[6, 28, 496, 8128]

With a 33_550_337.iota it outputs:

[6, 28, 496, 8128, 33550336]

Dart

Explicit Iterative Version

/*
 * Function to test if a number is a perfect number
 * A number is a perfect number if it is equal to the sum of all its divisors
 * Input: Positive integer n
 * Output: true if n is a perfect number, false otherwise
 */
bool isPerfect(int n){
    //Generate a list of integers in the range 1 to n-1 : [1, 2, ..., n-1]
    List<int> range = new List<int>.generate(n-1, (int i) => i+1);

    //Create a list that filters the divisors of n from range
    List<int> divisors = new List.from(range.where((i) => n%i == 0));

    //Sum the all the divisors
    int sumOfDivisors = 0;
    for (int i = 0; i < divisors.length; i++){
        sumOfDivisors = sumOfDivisors + divisors[i];
    }

    // A number is a perfect number if it is equal to the sum of its divisors
    // We return the test if n is equal to sumOfDivisors
    return n == sumOfDivisors;
}

Compact Version

Translation of: Julia
isPerfect(n) =>
    n == new List.generate(n-1, (i) => n%(i+1) == 0 ? i+1 : 0).fold(0, (p,n)=>p+n);

In either case, if we test to find all the perfect numbers up to 1000, we get:

main() =>
    new List.generate(1000,(i)=>i+1).where(isPerfect).forEach(print);
Output:
6
28
496

Delphi

See #Pascal.

Dyalect

func isPerfect(num) {
    var sum = 0
    for i in 1..<num {
        if !i {
            break
        }
        if num % i == 0 {
            sum += i
        }
    }
    return sum == num
}

let max = 33550337
print("Perfect numbers from 0 to \(max):")

for x in 0..max {
    if isPerfect(x) {
        print("\(x) is perfect")
    }
}

E

pragma.enable("accumulator")
def isPerfectNumber(x :int) {
  var sum := 0
  for d ? (x % d <=> 0) in 1..!x {
    sum += d
    if (sum > x) { return false }
  }
  return sum <=> x
}

EasyLang

fastfunc perf n .
   i = 1
   while i < n
      if n mod i = 0
         sum += i
      .
      i += 1
   .
   if sum = n
      return 1
   .
   return 0
.
for i = 2 to 10000
   if perf i = 1
      write i & " "
   .
.
Output:
6 28 496 8128 

Eiffel

class
	APPLICATION

create
	make

feature

	make
		do
			io.put_string ("  6 is perfect...%T")
			io.put_boolean (is_perfect_number (6))
			io.new_line
			io.put_string (" 77 is perfect...%T")
			io.put_boolean (is_perfect_number (77))
			io.new_line
			io.put_string ("128 is perfect...%T")
			io.put_boolean (is_perfect_number (128))
			io.new_line
			io.put_string ("496 is perfect...%T")
			io.put_boolean (is_perfect_number (496))
		end

	is_perfect_number (n: INTEGER): BOOLEAN
			-- Is 'n' a perfect number?
		require
			n_positive: n > 0
		local
			sum: INTEGER
		do
			across
				1 |..| (n - 1) as c
			loop
				if n \\ c.item = 0 then
					sum := sum + c.item
				end
			end
			Result := sum = n
		end

end
Output:
  6 is perfect...      True
 77 is perfect...      False
128 is perfect...      False
496 is perfect...      True

Elena

ELENA 6.x:

import system'routines;
import system'math;
import extensions;
 
extension extension
{
    isPerfect()
        = new Range(1, self - 1).selectBy::(n => (self.mod(n) == 0).iif(n,0) ).summarize(new Integer()) == self;
}
 
public program()
{
    for(int n := 1; n < 10000; n += 1)
    {
        if(n.isPerfect())
            { console.printLine(n," is perfect") }
    };
 
    console.readChar()
}
Output:
6 is perfect
28 is perfect
496 is perfect
8128 is perfect

Elixir

defmodule RC do
  def is_perfect(1), do: false
  def is_perfect(n) when n > 1 do
    Enum.sum(factor(n, 2, [1])) == n
  end
  
  defp factor(n, i, factors) when n <  i*i   , do: factors
  defp factor(n, i, factors) when n == i*i   , do: [i | factors]
  defp factor(n, i, factors) when rem(n,i)==0, do: factor(n, i+1, [i, div(n,i) | factors])
  defp factor(n, i, factors)                 , do: factor(n, i+1, factors)
end

IO.inspect (for i <- 1..10000, RC.is_perfect(i), do: i)
Output:
[6, 28, 496, 8128]

Erlang

is_perfect(X) ->
    X == lists:sum([N || N <- lists:seq(1,X-1), X rem N == 0]).

ERRE

PROGRAM PERFECT

PROCEDURE PERFECT(N%->OK%)
      LOCAL I%,S%
      S%=1
      FOR I%=2 TO SQR(N%)-1 DO
        IF N% MOD I%=0 THEN S%+=I%+N% DIV I%
      END FOR
      IF I%=SQR(N%) THEN S%+=I%
      OK%=(N%=S%)
END PROCEDURE

BEGIN
    PRINT(CHR$(12);) ! CLS
    FOR N%=2 TO 10000 STEP 2 DO
       PERFECT(N%->OK%)
       IF OK% THEN PRINT(N%)
    END FOR
END PROGRAM
Output:
         6
        28
       496
      8128

F#

let perf n = n = List.fold (+) 0 (List.filter (fun i -> n % i = 0) [1..(n-1)])

for i in 1..10000 do if (perf i) then printfn "%i is perfect" i
Output:
6 is perfect
28 is perfect
496 is perfect
8128 is perfect

Factor

USING: kernel math math.primes.factors sequences ;
IN: rosettacode.perfect-numbers

: perfect? ( n -- ? )  [ divisors sum ] [ 2 * ] bi = ;

FALSE

[0\1[\$@$@-][\$@$@$@$@\/*=[@\$@+@@]?1+]#%=]p:
45p;!." "28p;!.   { 0 -1 }

Forth

: perfect? ( n -- ? )
  1
  over 2/ 1+ 2 ?do
    over i mod 0= if i + then
  loop
  = ;

Fortran

Works with: Fortran version 90 and later
FUNCTION isPerfect(n)
  LOGICAL :: isPerfect
  INTEGER, INTENT(IN) :: n
  INTEGER :: i, factorsum

  isPerfect = .FALSE.
  factorsum = 1
  DO i = 2, INT(SQRT(REAL(n)))
     IF(MOD(n, i) == 0) factorsum = factorsum + i + (n / i)
  END DO
  IF (factorsum == n) isPerfect = .TRUE.
END FUNCTION isPerfect

FreeBASIC

' FB 1.05.0 Win64

Function isPerfect(n As Integer) As Boolean
   If n < 2 Then Return False
   If n Mod 2 = 1 Then Return False '' we can assume odd numbers are not perfect
   Dim As Integer sum = 1, q
   For i As Integer = 2 To Sqr(n)
     If n Mod i = 0 Then
       sum += i
       q = n \ i
       If q > i Then sum += q
     End If
   Next 
   Return n = sum
End Function

Print "The first 5 perfect numbers are : "
For i As Integer = 2 To 33550336
  If isPerfect(i) Then Print i; " ";
Next

Print
Print "Press any key to quit"
Sleep
Output:
The first 5 perfect numbers are :
 6  28  496  8128  33550336

Frink

isPerfect = {|n| sum[allFactors[n, true, false]] == n}
println[select[1 to 1000, isPerfect]]
Output:
[1, 6, 28, 496]

FunL

def perfect( n ) = sum( d | d <- 1..n if d|n ) == 2n

println( (1..500).filter(perfect) )
Output:
(6, 28, 496)

FutureBasic

_maxNum = 10000

local fn IsPerfectNumber( n as long ) as BOOL
—————————————————————————————————————————————
  if ( n < 2 ) then exit fn = NO
  if ( n mod 2 == 1 ) then exit fn = NO
  long sum = 1, q, i
  for i = 2 to sqr(n)
    if ( n mod i == 0 )
      sum += i
      q = n / i
      if ( q > i ) then sum += q
    end if
  next
end fn = ( n == sum )

printf @"Perfect numbers in range %ld..%ld",2,_maxNum

long i
for i = 2 To _maxNum
  if ( fn IsPerfectNumber(i) ) then print i
next

HandleEvents
Output:
Perfect numbers in range 2..10000
6
28
496
8128

GAP

Filtered([1 .. 10000], n -> Sum(DivisorsInt(n)) = 2*n);
# [ 6, 28, 496, 8128 ]

Go

package main

import "fmt"

func computePerfect(n int64) bool {
    var sum int64
    for i := int64(1); i < n; i++ {
        if n%i == 0 {
            sum += i
        }
    }
    return sum == n
}

// following function satisfies the task, returning true for all
// perfect numbers representable in the argument type
func isPerfect(n int64) bool {
    switch n {
    case 6, 28, 496, 8128, 33550336, 8589869056,
        137438691328, 2305843008139952128:
        return true
    }
    return false
}

// validation
func main() {
    for n := int64(1); ; n++ {
        if isPerfect(n) != computePerfect(n) {
            panic("bug")
        }
        if n%1e3 == 0 {
            fmt.Println("tested", n)
        }
    }
}
Output:
tested 1000
tested 2000
tested 3000
...

Groovy

Solution:

def isPerfect = { n ->
    n > 4 && (n == (2..Math.sqrt(n)).findAll { n % it == 0 }.inject(1) { factorSum, i -> factorSum += i + n/i })
}

Test program:

(0..10000).findAll { isPerfect(it) }.each { println it }
Output:
6
28
496
8128

Haskell

perfect n =
    n == sum [i | i <- [1..n-1], n `mod` i == 0]

Create a list of known perfects:

perfect =
  (\x -> (2 ^ x - 1) * (2 ^ (x - 1))) <$>
  filter (\x -> isPrime x && isPrime (2 ^ x - 1)) maybe_prime
  where
    maybe_prime = scanl1 (+) (2 : 1 : cycle [2, 2, 4, 2, 4, 2, 4, 6])
    isPrime n = all ((/= 0) . (n `mod`)) $ takeWhile (\x -> x * x <= n) maybe_prime

isPerfect n = f n perfect
  where
    f n (p:ps) =
      case compare n p of
        EQ -> True
        LT -> False
        GT -> f n ps

main :: IO ()
main = do
  mapM_ print $ take 10 perfect
  mapM_ (print . (\x -> (x, isPerfect x))) [6, 27, 28, 29, 496, 8128, 8129]


or, restricting the search space to improve performance:

isPerfect :: Int -> Bool
isPerfect n =
  let lows = filter ((0 ==) . rem n) [1 .. floor (sqrt (fromIntegral n))]
  in 1 < n &&
     n ==
     quot
       (sum
          (lows ++
           [ y
           | x <- lows 
           , let y = quot n x 
           , x /= y ]))
       2

main :: IO ()
main = print $ filter isPerfect [1 .. 10000]
Output:
[6,28,496,8128]

HicEst

   DO i = 1, 1E4
      IF( perfect(i) ) WRITE() i
   ENDDO
END ! end of "main"

FUNCTION perfect(n)
   sum = 1
   DO i = 2, n^0.5
      sum = sum + (MOD(n, i) == 0) * (i + INT(n/i))
   ENDDO
   perfect = sum == n
END

Icon and Unicon

procedure main(arglist)
limit := \arglist[1] | 100000
write("Perfect numbers from 1 to ",limit,":")
every write(isperfect(1 to limit))
write("Done.")
end

procedure isperfect(n)         #: returns n if n is perfect
local sum,i 

every (sum := 0) +:= (n ~= divisors(n))
if sum = n then return n
end

link factors

Uses divisors from factors

Output:
Perfect numbers from 1 to 100000:
6
28
496
8128
Done.

J

is_perfect=: +: = >:@#.~/.~&.q:@(6>.<.)

Examples of use, including extensions beyond those assumptions:

   is_perfect 33550336
1
   I. is_perfect i. 100000
6 28 496 8128

   ] zero_through_twentynine =. i. 3 10
 0  1  2  3  4  5  6  7  8  9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
   is_perfect zero_through_twentynine
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
   is_perfect 191561942608236107294793378084303638130997321548169216x
1

More efficient version based on comments by Henry Rich and Roger Hui (comment train seeded by Jon Hough).

Java

public static boolean perf(int n){
	int sum= 0;
	for(int i= 1;i < n;i++){
		if(n % i == 0){
			sum+= i;
		}
	}
	return sum == n;
}

Or for arbitrary precision:

import java.math.BigInteger;

public static boolean perf(BigInteger n){
	BigInteger sum= BigInteger.ZERO;
	for(BigInteger i= BigInteger.ONE;
	i.compareTo(n) < 0;i=i.add(BigInteger.ONE)){
		if(n.mod(i).equals(BigInteger.ZERO)){
			sum= sum.add(i);
		}
	}
	return sum.equals(n);
}

JavaScript

Imperative

Translation of: Java
function is_perfect(n)
{
 var sum = 1, i, sqrt=Math.floor(Math.sqrt(n));
 for (i = sqrt-1; i>1; i--)
 {
  if (n % i == 0) {
   sum += i + n/i;
  }
 }
 if(n % sqrt == 0)
  sum += sqrt + (sqrt*sqrt == n ? 0 : n/sqrt);
 return sum === n;
}


var i;
for (i = 1; i < 10000; i++)
{
 if (is_perfect(i))
  print(i);
}
Output:
6
28
496
8128

Functional

ES5

Naive version (brute force)

(function (nFrom, nTo) {

  function perfect(n) {
    return n === range(1, n - 1).reduce(
      function (a, x) {
        return n % x ? a : a + x;
      }, 0
    );
  }

  function range(m, n) {
    return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
      return m + i;
    });
  }

  return range(nFrom, nTo).filter(perfect);

})(1, 10000);

Output:

[6, 28, 496, 8128]

Much faster (more efficient factorisation)

(function (nFrom, nTo) {

  function perfect(n) {
    var lows = range(1, Math.floor(Math.sqrt(n))).filter(function (x) {
      return (n % x) === 0;
    });

    return n > 1 && lows.concat(lows.map(function (x) {
      return n / x;
    })).reduce(function (a, x) {
      return a + x;
    }, 0) / 2 === n;
  }

  function range(m, n) {
    return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
      return m + i;
    });
  }

  return range(nFrom, nTo).filter(perfect)

})(1, 10000);

Output:

[6, 28, 496, 8128]

Note that the filter function, though convenient and well optimised, is not strictly necessary. We can always replace it with a more general monadic bind (chain) function, which is essentially just concat map (Monadic return/inject for lists is simply lambda x --> [x], inlined here, and fail is [].)

(function (nFrom, nTo) {

  // MONADIC CHAIN (bind) IN LIEU OF FILTER
  // ( monadic return for lists is just lambda x -> [x] )

  return chain(
    rng(nFrom, nTo),
    
    function mPerfect(n) {
      return (chain(
        rng(1, Math.floor(Math.sqrt(n))),
        function (y) {
          return (n % y) === 0 && n > 1 ? [y, n / y] : [];
        }
      ).reduce(function (a, x) {
        return a + x;
      }, 0) / 2 === n) ? [n] : [];
    }
    
  );

  /******************************************************************/

  // Monadic bind (chain) for lists
  function chain(xs, f) {
    return [].concat.apply([], xs.map(f));
  }

  function rng(m, n) {
    return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
      return m + i;
    });
  }

})(1, 10000);

Output:

[6, 28, 496, 8128]


ES6

(() => {
    const main = () =>
        enumFromTo(1, 10000).filter(perfect);

    // perfect :: Int -> Bool
    const perfect = n => {
        const
            lows = enumFromTo(1, Math.floor(Math.sqrt(n)))
            .filter(x => (n % x) === 0);

        return n > 1 && lows.concat(lows.map(x => n / x))
            .reduce((a, x) => (a + x), 0) / 2 === n;
    };

    // GENERIC --------------------------------------------

    // enumFromTo :: Int -> Int -> [Int]
    const enumFromTo = (m, n) =>
        Array.from({
            length: n - m + 1
        }, (_, i) => i + m)

    // MAIN ---
    return main();
})();
Output:
[6, 28, 496, 8128]

jq

def is_perfect:
  . as $in
  | $in == reduce range(1;$in) as $i
      (0; if ($in % $i) == 0 then $i + . else . end);

# Example:
range(1;10001) | select( is_perfect )
Output:
$ jq -n -f is_perfect.jq
6
28
496
8128

Julia

Works with: Julia version 0.6
isperfect(n::Integer) = n == sum([n % i == 0 ? i : 0 for i = 1:(n - 1)])
perfects(n::Integer) = filter(isperfect, 1:n)

@show perfects(10000)
Output:
perfects(10000) = [6, 28, 496, 8128]

K

Translation of: J
   perfect:{(x>2)&x=+/-1_{d:&~x!'!1+_sqrt x;d,_ x%|d}x}
   perfect 33550336
1
     
   a@&perfect'a:!10000
6 28 496 8128

   m:3 10#!30
(0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29)

   perfect'/: m
(0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1 0)

Kotlin

Translation of: C
// version 1.0.6

fun isPerfect(n: Int): Boolean = when {
        n < 2      -> false
        n % 2 == 1 -> false  // there are no known odd perfect numbers
        else       -> {
            var tot = 1
            var q: Int
            for (i in 2 .. Math.sqrt(n.toDouble()).toInt()) {
                if (n % i == 0) {
                    tot += i
                    q = n / i
                    if (q > i) tot += q
                }
            }
            n == tot
        }  
    }

fun main(args: Array<String>) {
    // expect a run time of about 6 minutes on a typical laptop 
    println("The first five perfect numbers are:")
    for (i in 2 .. 33550336) if (isPerfect(i)) print("$i ")    
}
Output:
The first five perfect numbers are:
6 28 496 8128 33550336

LabVIEW

This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code.

Lambdatalk

simple & slow

{def perf
 {def perf.sum
  {lambda {:n :sum :i}
   {if {>= :i :n}
    then {= :sum :n}
    else {perf.sum :n 
                   {if {= {% :n :i} 0}
                    then {+ :sum :i}
                    else :sum}
                   {+ :i 1}} }}}
 {lambda {:n}
  {perf.sum :n 0 2} }}
-> perf

{S.replace \s by space in
 {S.map {lambda {:i} {if {perf :i} then :i else}}
        {S.serie 2 1000 2}}} 
-> 6 28 496   // 5200ms

Too slow (and stackoverflow) to go further.

improved

{def lt_perfect
 {def lt_perfect.sum
  {lambda {:n :sum :i}
   {if {> :i 1}
    then {lt_perfect.sum :n
                         {if {= {% :n :i} 0} 
                          then {+ :sum :i {floor {/ :n :i}}}
                          else :sum}
                         {- :i 1}}
    else :sum }}}
 {lambda {:n}
  {let { {:n :n} 
         {:sqrt {floor {sqrt :n}}}
         {:sum {lt_perfect.sum :n 1 {- {floor {sqrt :n}} 0} }}
         {:foo {if {= {* :sqrt :sqrt} :n}
                then 0
                else {floor {/ :n :sqrt}}}}
       } {= :n {if {= {% :n :sqrt} 0}
                then {+ :sum :sqrt :foo}
                else :sum}} }}}
-> lt_perfect

-> {S.replace \s by space in
 {S.map {lambda {:i} {if {lt_perfect :i} then :i else}}
        {S.serie 6 10000 2}}}
-> 28 496 8128   // 7500ms

calling javascript

Following the javascript entry.

{S.replace \s by space in
 {S.map {lambda {:i} {if {js_perfect :i} then :i else}}
        {S.serie 2 10000}}}
-> 6 28 496 8128   // 80ms

{script 
LAMBDATALK.DICT["js_perfect"] = function() {
function js_perfect(n) {
 var sum = 1, i, sqrt=Math.floor(Math.sqrt(n));
 for (i = sqrt-1; i>1; i--) {
  if (n % i == 0) 
   sum += i + n/i;
 }
 if(n % sqrt == 0)
  sum += sqrt + (sqrt*sqrt == n ? 0 : n/sqrt);
 return sum === n;
}

var args = arguments[0].trim();
  return (js_perfect( Number(args) )) ? "true" : "false"
};

}

Lasso

#!/usr/bin/lasso9
 
define isPerfect(n::integer) => {
  #n < 2 ? return false
  return #n == (
    with i in generateSeries(1, math_floor(math_sqrt(#n)) + 1)
      where #n % #i == 0
      let q = #n / #i
    sum (#q > #i ? (#i == 1 ? 1 | #q + #i) | 0)
  )
}

with x in generateSeries(1, 10000)
  where isPerfect(#x)
select #x
Output:
6, 28, 496, 8128

Liberty BASIC

for n =1 to 10000
    if perfect( n) =1 then print n; " is perfect."
next n

end

function perfect( n)
    sum =0
    for i =1 TO n /2
        if n mod i =0 then
            sum =sum +i
        end if
    next i
    if sum =n then
        perfect= 1
    else
        perfect =0
    end if
end function

Lingo

on isPercect (n)
  sum = 1
  cnt = n/2
  repeat with i = 2 to cnt
    if n mod i = 0 then sum = sum + i
  end repeat
  return sum=n
end

to perfect? :n
  output equal? :n  apply "sum  filter [equal? 0  modulo :n ?]  iseq 1 :n/2
end

Lua

function isPerfect(x)
    local sum = 0
    for i = 1, x-1 do
	sum = (x % i) == 0 and sum + i or sum
    end
    return sum == x
end

M2000 Interpreter

Module PerfectNumbers {
      Function Is_Perfect(n as decimal) {
            s=1 : sN=Sqrt(n)
            last= n=sN*sN
            t=n
            If n mod 2=0 then s+=2+n div 2
            i=3 : sN--
            While i<sN {
            if  n mod i=0 then t=n div i :i=max.data(n div t, i): s+=t+ i
            i++
            }
            =n=s 
      }
      Inventory Known1=2@, 3@
      IsPrime=lambda  Known1 (x as decimal) -> {
                  =0=1
                  if exist(Known1, x) then =1=1 : exit
                  if x<=5 OR frac(x) then {if x == 2 OR x == 3 OR x == 5 then Append Known1, x  : =1=1
                  Break}
                  if frac(x/2) else exit
                  if frac(x/3) else exit
                  x1=sqrt(x):d = 5@
                  {if frac(x/d ) else exit
                        d += 2: if d>x1 then Append Known1, x : =1=1 : exit
                        if frac(x/d) else exit
                        d += 4: if d<= x1 else Append Known1, x :  =1=1: exit
                   loop}
            }
      \\ Check a perfect and a non perfect number
      p=2 : n=3 : n1=2
      Document Doc$
      IsPerfect( 0, 28)      
      IsPerfect( 0, 1544)      
      While p<32  { ' max 32
            if isprime(2^p-1@) then {
                   perf=(2^p-1@)*2@^(p-1@)
                   Rem  Print perf
                   \\ decompose pretty fast the Perferct Numbers
                   \\ all have a series of 2 and last a prime equal to perf/2^(p-1)
                   inventory queue factors
                   For i=1 to p-1 {
                         Append factors, 2@
                  }
                  Append factors, perf/2^(p-1)
                  \\ end decompose
                  Rem Print factors
                  IsPerfect(factors, Perf)
            }
            p++
      }
      
      Clipboard Doc$
      \\ exit here. No need for Exit statement
      Sub IsPerfect(factors, n)
            s=false
            if n<10000 or type$(factors)<>"Inventory" then {
                  s=Is_Perfect(n)
            } else {
                  local mm=each(factors, 1, -2), f =true
                  while mm {if eval(mm)<>2 then f=false
                  }
                  if f then if n/2@**(len(mm)-1)= factors(len(factors)-1!) then s=true
            }
            Local a$=format$("{0} is {1}perfect number", n, If$(s->"", "not "))
            Doc$=a$+{
            }
            Print a$
      End Sub      
}
  
PerfectNumbers
Output:
28 is perfect number
1544 is not perfect number
6 is perfect number
28 is perfect number
496 is perfect number
8128 is perfect number
33550336 is perfect number
8589869056 is perfect number
137438691328 is perfect number
2305843008139952128 is perfect number


M4

define(`for',
   `ifelse($#,0,``$0'',
   `ifelse(eval($2<=$3),1,
   `pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')dnl

define(`ispart',
   `ifelse(eval($2*$2<=$1),1,
      `ifelse(eval($1%$2==0),1,
         `ifelse(eval($2*$2==$1),1,
            `ispart($1,incr($2),eval($3+$2))',
            `ispart($1,incr($2),eval($3+$2+$1/$2))')',
         `ispart($1,incr($2),$3)')',
      $3)')
define(`isperfect',
   `eval(ispart($1,2,1)==$1)')

for(`x',`2',`33550336',
   `ifelse(isperfect(x),1,`x
')')

MAD

            NORMAL MODE IS INTEGER
            
          R FUNCTION THAT CHECKS IF NUMBER IS PERFECT
            INTERNAL FUNCTION(N)
            ENTRY TO PERFCT.
            DSUM = 0
            THROUGH SUMMAT, FOR CAND=1, 1, CAND.GE.N
SUMMAT      WHENEVER N/CAND*CAND.E.N, DSUM = DSUM+CAND
            FUNCTION RETURN DSUM.E.N
            END OF FUNCTION
            
          R PRINT PERFECT NUMBERS UP TO 10,000
            THROUGH SHOW, FOR I=1, 1, I.G.10000
SHOW        WHENEVER PERFCT.(I), PRINT FORMAT FMT,I

            VECTOR VALUES FMT = $I5*$
            PRINT COMMENT $ $
            END OF PROGRAM
Output:
    6
   28
  496
 8128

Maple

isperfect := proc(n) return evalb(NumberTheory:-SumOfDivisors(n) = 2*n); end proc:
isperfect(6);
                              true

Mathematica / Wolfram Language

Custom function:

PerfectQ[i_Integer] := Total[Divisors[i]] == 2 i

Examples (testing 496, testing 128, finding all perfect numbers in 1...10000):

PerfectQ[496]
PerfectQ[128]
Flatten[PerfectQ/@Range[10000]//Position[#,True]&]

gives back:

True
False
{6,28,496,8128}

MATLAB

Standard algorithm:

function perf = isPerfect(n)
    total = 0;
    for k = 1:n-1
        if ~mod(n, k)
            total = total+k;
        end
    end
    perf = total == n;
end

Faster algorithm:

function perf = isPerfect(n)
    if n < 2
        perf = false;
    else
        total = 1;
        k = 2;
        quot = n;
        while k < quot && total <= n
            if ~mod(n, k)
                total = total+k;
                quot = n/k;
                if quot ~= k
                    total = total+quot;
                end
            end
            k = k+1;
        end
        perf = total == n;
    end
end

Maxima

".."(a, b) := makelist(i, i, a, b)$
infix("..")$

perfectp(n) := is(divsum(n) = 2*n)$

sublist(1 .. 10000, perfectp);
/* [6, 28, 496, 8128] */

MAXScript

fn isPerfect n =
(
    local sum = 0
    for i in 1 to (n-1) do
    (
        if mod n i == 0 then
        (
            sum += i
        )
    )
    sum == n
)

Microsoft Small Basic

Translation of: BBC BASIC
For n = 2 To 10000 Step 2
  VerifyIfPerfect()
  If isPerfect = 1 Then 
    TextWindow.WriteLine(n)
  EndIf
EndFor

Sub VerifyIfPerfect
  s = 1
  sqrN = Math.SquareRoot(n)
  If Math.Remainder(n, 2) = 0 Then 
    s = s + 2 + Math.Floor(n / 2)
  EndIf  
  i = 3
  while i <= sqrN - 1
    If Math.Remainder(n, i) = 0 Then 
      s = s + i + Math.Floor(n / i)
    EndIf  
    i = i + 1
  EndWhile
  If i * i = n Then 
    s = s + i
  EndIf  
  If n = s Then
    isPerfect = 1
  Else
    isPerfect = 0
  EndIf  
EndSub

Modula-2

Translation of: BBC BASIC
Works with: ADW Modula-2 version any (Compile with the linker option Console Application).
MODULE PerfectNumbers;

FROM SWholeIO IMPORT
  WriteCard;
FROM STextIO IMPORT
  WriteLn;
FROM RealMath IMPORT
  sqrt;

VAR
  N: CARDINAL;

PROCEDURE IsPerfect(N: CARDINAL): BOOLEAN;
VAR
  S, I: CARDINAL;
  SqrtN: REAL;
BEGIN
  S := 1;
  SqrtN := sqrt(FLOAT(N));
  IF N REM 2 = 0 THEN
    S := S + 2 + N / 2;
  END;
  I := 3;
  WHILE FLOAT(I) <= SqrtN - 1.0 DO
    IF N REM I = 0 THEN
      S := S + I + N / I;
    END;
    I := I + 1;
  END;
  IF I * I = N THEN
    S := S + I;
  END;
  RETURN (N = S);
END IsPerfect;

BEGIN
  FOR N := 2 TO 10000 BY 2 DO
    IF IsPerfect(N) THEN
      WriteCard(N, 5);
      WriteLn;
    END;
  END;
END PerfectNumbers.

Nanoquery

Translation of: Python
def perf(n)
	sum = 0
	for i in range(1, n - 1)
		if (n % i) = 0
			sum += i
		end
	end
	return sum = n
end

Nim

import math

proc isPerfect(n: int): bool =
  var sum: int = 1
  for d in 2 .. int(n.toFloat.sqrt):
    if n mod d == 0:
      inc sum, d
      let q = n div d
      if q != d: inc sum, q
  result = n == sum

for n in 2..10_000:
  if n.isPerfect:
    echo n
Output:
6
28
496
8128

Objeck

bundle Default {  
  class Test {
    function : Main(args : String[]) ~ Nil {
      "Perfect numbers from 1 to 33550337:"->PrintLine();
      for(num := 1 ; num < 33550337; num += 1;) { 
        if(IsPerfect(num)) {
          num->PrintLine();
        };
      };
    }
		
    function : native : IsPerfect(number : Int) ~ Bool {
      sum := 0 ; 
      for(i := 1; i < number; i += 1;) {
        if (number % i = 0) { 
          sum += i;
        };
      };   
      
      return sum = number; 
    }
  }
}

OCaml

let perf n =
  let sum = ref 0 in
    for i = 1 to n-1 do
      if n mod i = 0 then
        sum := !sum + i
    done;
    !sum = n

Functional style:

(* range operator *)
let rec (--) a b =
  if a > b then
    []
  else
    a :: (a+1) -- b

let perf n = n = List.fold_left (+) 0 (List.filter (fun i -> n mod i = 0) (1 -- (n-1)))

Oforth

: isPerfect(n)  | i | 0 n 2 / loop: i [ n i mod ifZero: [ i + ] ] n == ;
Output:
#isPerfect 10000 seq filter .
[6, 28, 496, 8128]

Odin

package perfect_numbers
import "core:fmt"
main :: proc() {
	fmt.println("\nPerfect numbers from 1 to 100,000:\n")
	for num in 1 ..< 100001 {
		if divisor_sum(num) == num {
			fmt.print("num:", num, "\n")
		}
		if num % 10000 == 0 {
			fmt.print("Count:", num, "\n")
		}
	}
}
divisor_sum :: proc(number: int) -> int {
	sum := 0
	for i in 1 ..< number {
		if number % i == 0 {
			sum += i}
	}
	return sum
}
Output:
Perfect numbers from 1 to 100,000:
num: 6
num: 28
num: 496
num: 8128

ooRexx

-- first perfect number over 10000 is 33550336...let's not be crazy
loop i = 1 to 10000
    if perfectNumber(i) then say i "is a perfect number"
end

::routine perfectNumber
  use strict arg n

  sum = 0

  -- the largest possible factor is n % 2, so no point in
  -- going higher than that
  loop i = 1 to n % 2
      if n // i == 0 then sum += i
  end

  return sum = n
Output:
6 is a perfect number
28 is a perfect number
496 is a perfect number
8128 is a perfect number

Oz

declare
  fun {IsPerfect N}
     fun {IsNFactor I} N mod I == 0 end
     Factors = {Filter {List.number 1 N-1 1} IsNFactor}
  in
     {Sum Factors} == N
  end

  fun {Sum Xs} {FoldL Xs Number.'+' 0} end
in
  {Show {Filter {List.number 1 10000 1} IsPerfect}}
  {Show {IsPerfect 33550336}}

PARI/GP

Using built-in methods

isPerfect(n)=sigma(n,-1)==2

or

isPerfect(n)=sigma(n)==2*n

Show perfect numbers

forprime(p=2, 2281,
	if(isprime(2^p-1),
		print(p"\t",(2^p-1)*2^(p-1))))

faster alternative showing them still using built-in methods

[n|n<-[1..10^4],sigma(n,-1)==2]
Output:
[6, 28, 496, 8128]

Faster with Lucas-Lehmer test

p=2;n=3;n1=2;
while(p<2281,
	if(isprime(p),
		s=Mod(4,n);
		for(i=3,p,
			s=s*s-2);
		if(s==0 || p==2,
			print("(2^"p"-1)2^("p"-1)=\t"n1*n"\n")));
	p++; n1=n+1; n=2*n+1)
Output:
(2^2-1)2^(2-1)= 6
(2^3-1)2^(3-1)= 28
(2^5-1)2^(5-1)= 496
(2^7-1)2^(7-1)= 8128
(2^13-1)2^(13-1)=       33550336
(2^17-1)2^(17-1)=       8589869056
(2^19-1)2^(19-1)=       137438691328
(2^31-1)2^(31-1)=       2305843008139952128
(2^61-1)2^(61-1)=       2658455991569831744654692615953842176
(2^89-1)2^(89-1)=       191561942608236107294793378084303638130997321548169216

Pascal

program PerfectNumbers;

 function isPerfect(number: longint): boolean;
 var
  i, sum: longint;

 begin
  sum := 1;
  for i := 2 to round(sqrt(real(number))) do
    if (number mod i = 0) then
     sum := sum + i + (number div i);
  isPerfect := (sum = number);
 end;

var
 candidate: longint;
  
begin
 writeln('Perfect numbers from 1 to 33550337:');
 for candidate := 2 to 33550337 do       
   if isPerfect(candidate) then
    writeln (candidate, ' is a perfect number.');
end.
Output:
Perfect numbers from 1 to 33550337:
6 is a perfect number.
28 is a perfect number.
496 is a perfect number.
8128 is a perfect number.
33550336 is a perfect number.

PascalABC.NET

See Pascal.

Perl

Functions

sub perf {
    my $n = shift;
    my $sum = 0;
    foreach my $i (1..$n-1) {
        if ($n % $i == 0) {
            $sum += $i;
        }
    }
    return $sum == $n;
}

Functional style:

use List::Util qw(sum);

sub perf {
    my $n = shift;
    $n == sum(0, grep {$n % $_ == 0} 1..$n-1);
}

Modules

The functions above are terribly slow. As usual, this is easier and faster with modules. Both ntheory and Math::Pari have useful functions for this.

Library: ntheory

A simple predicate:

use ntheory qw/divisor_sum/;
sub is_perfect { my $n = shift;  divisor_sum($n) == 2*$n; }

Use this naive method to show the first 5. Takes about 15 seconds:

use ntheory qw/divisor_sum/;
for (1..33550336) {
  print "$_\n" if divisor_sum($_) == 2*$_;
}

Or we can be clever and look for 2^(p-1) * (2^p-1) where 2^p -1 is prime. The first 20 takes about a second.

use ntheory qw/forprimes is_prime/;
use bigint;
forprimes {
  my $n = 2**$_ - 1;
  print "$_\t", $n * 2**($_-1),"\n"   if is_prime($n);
} 2, 4500;
Output:
2	6
3	28
5	496
7	8128
13	33550336
17	8589869056
19	137438691328
31	2305843008139952128
61	2658455991569831744654692615953842176
89	191561942608236107294793378084303638130997321548169216
... 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423 ...

We can speed this up even more using a faster program for printing the large results, as well as a faster primality solution. The first 38 in about 1 second with most of the time printing the large results. Caveat: this goes well past the current bound for odd perfect numbers and does not check for them.

use ntheory qw/forprimes is_mersenne_prime/;
use Math::GMP qw/:constant/;
forprimes {
  print "$_\t", (2**$_-1)*2**($_-1),"\n"  if is_mersenne_prime($_);
} 7_000_000;

In addition to generating even perfect numbers, we can also have a fast function which returns true when a given even number is perfect:

use ntheory qw(is_mersenne_prime valuation);

sub is_even_perfect {
    my ($n) = @_;
    my $v = valuation($n, 2) || return;
    my $m = ($n >> $v);
    ($m & ($m + 1)) && return;
    ($m >> $v) == 1 || return;
    is_mersenne_prime($v + 1);
}

Phix

naive/native

function is_perfect(integer n)
    return sum(factors(n,-1))=n
end function

for i=2 to 100000 do
    if is_perfect(i) then ?i end if
end for
Output:
6
28
496
8128

gmp version

Library: Phix/mpfr
with javascript_semantics
-- demo\rosetta\Perfect_numbers.exw (includes native and cheat versions)
include mpfr.e
atom t0 = time(), t1 = t0+1
integer maxprime = 4423, -- 19937 (rather slow)
        lim = length(get_primes_le(maxprime))
mpz n = mpz_init(), m = mpz_init()
for i=1 to lim do
    integer p = get_prime(i)
    mpz_ui_pow_ui(n, 2, p)
    mpz_sub_ui(n, n, 1)
    if mpz_prime(n) then
        mpz_ui_pow_ui(m, 2, p-1)
        mpz_mul(n, n, m)
        string ns = mpz_get_short_str(n,comma_fill:=true),
               et = elapsed_short(time()-t0,5,"(%s)")
        printf(1, "%d  %s %s\n",{p,ns,et})
    elsif time()>t1 then
        progress("%d/%d (%.1f%%)\r",{p,maxprime,i/lim*100})
        t1 = time()+1
    end if
end for
?elapsed(time()-t0)
Output:
2  6
3  28
5  496
7  8,128
13  33,550,336
17  8,589,869,056
19  137,438,691,328
31  2,305,843,008,139,952,128
61  2,658,455,991,569,831,744,654,692,615,953,842,176
89  191,561,942,608,236,...,997,321,548,169,216 (54 digits)
107  13,164,036,458,569,6...,943,117,783,728,128 (65 digits)
127  14,474,011,154,664,5...,349,131,199,152,128 (77 digits)
521  23,562,723,457,267,3...,492,160,555,646,976 (314 digits)
607  141,053,783,706,712,...,570,759,537,328,128 (366 digits)
1279  54,162,526,284,365,8...,345,764,984,291,328 (770 digits)
2203  1,089,258,355,057,82...,580,834,453,782,528 (1,327 digits)
2281  99,497,054,337,086,4...,375,675,139,915,776 (1,373 digits)
3217  33,570,832,131,986,7...,888,332,628,525,056 (1,937 digits) (9s)
4253  18,201,749,040,140,4...,848,437,133,377,536 (2,561 digits) (24s)
4423  40,767,271,711,094,4...,020,642,912,534,528 (2,663 digits) (28s)
"28.4s"

Beyond that it gets rather slow:

9689  11,434,731,753,038,6...,982,558,429,577,216 (5,834 digits) (6:28)
9941  598,885,496,387,336,...,478,324,073,496,576 (5,985 digits) (7:31)
11213  3,959,613,212,817,94...,255,702,691,086,336 (6,751 digits) (11:32)
19937  931,144,559,095,633,...,434,790,271,942,656 (12,003 digits) (1:22:32)

cheating

Translation of: Picat
include mpfr.e
atom t0 = time()
mpz n = mpz_init(), m = mpz_init()
sequence validp = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
                1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213,
                19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
                756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593,
                13466917, 20996011, 24036583, 25964951, 30402457, 32582657,
                37156667, 42643801, 43112609, 57885161,
                74207281, 77232917, 82589933}
if platform()=JS then validp = validp[1..35] end if -- (keep it under 5s)
for p in validp do
    mpz_ui_pow_ui(n, 2, p)
    mpz_sub_ui(n, n, 1)
    mpz_ui_pow_ui(m, 2, p-1)
    mpz_mul(n, n, m)
    string ns = mpz_get_short_str(n,comma_fill:=true),
           et = elapsed_short(time()-t0,5,"(%s)")
    printf(1, "%d  %s %s\n",{p,ns,et})
end for
?elapsed(time()-t0)
2  6
3  28
5  496
7  8,128
13  33,550,336
17  8,589,869,056
19  137,438,691,328
31  2,305,843,008,139,952,128
61  2,658,455,991,569,831,744,654,692,615,953,842,176
89  191,561,942,608,236,...,997,321,548,169,216 (54 digits)
107  13,164,036,458,569,6...,943,117,783,728,128 (65 digits)
127  14,474,011,154,664,5...,349,131,199,152,128 (77 digits)
521  23,562,723,457,267,3...,492,160,555,646,976 (314 digits)
607  141,053,783,706,712,...,570,759,537,328,128 (366 digits)
1279  54,162,526,284,365,8...,345,764,984,291,328 (770 digits)
2203  1,089,258,355,057,82...,580,834,453,782,528 (1,327 digits)
2281  99,497,054,337,086,4...,375,675,139,915,776 (1,373 digits)
3217  33,570,832,131,986,7...,888,332,628,525,056 (1,937 digits)
4253  18,201,749,040,140,4...,848,437,133,377,536 (2,561 digits)
4423  40,767,271,711,094,4...,020,642,912,534,528 (2,663 digits)
9689  11,434,731,753,038,6...,982,558,429,577,216 (5,834 digits)
9941  598,885,496,387,336,...,478,324,073,496,576 (5,985 digits)
11213  3,959,613,212,817,94...,255,702,691,086,336 (6,751 digits)
19937  931,144,559,095,633,...,434,790,271,942,656 (12,003 digits)
21701  1,006,564,970,546,40...,865,255,141,605,376 (13,066 digits)
23209  81,153,776,582,351,0...,048,603,941,666,816 (13,973 digits)
44497  365,093,519,915,713,...,965,353,031,827,456 (26,790 digits)
86243  144,145,836,177,303,...,480,957,360,406,528 (51,924 digits)
110503  13,620,458,213,388,4...,255,233,603,862,528 (66,530 digits)
132049  13,145,129,545,436,9...,438,491,774,550,016 (79,502 digits)
216091  27,832,745,922,032,7...,263,416,840,880,128 (130,100 digits)
756839  15,161,657,022,027,0...,971,600,565,731,328 (455,663 digits)
859433  83,848,822,675,015,7...,651,540,416,167,936 (517,430 digits)
1257787  849,732,889,343,651,...,394,028,118,704,128 (757,263 digits)
1398269  331,882,354,881,177,...,668,017,723,375,616 (841,842 digits)
2976221  194,276,425,328,791,...,106,724,174,462,976 (1,791,864 digits)
3021377  811,686,848,628,049,...,147,573,022,457,856 (1,819,050 digits)
6972593  9,551,760,305,212,09...,914,475,123,572,736 (4,197,919 digits)
13466917  42,776,415,902,185,6...,230,460,863,021,056 (8,107,892 digits)
20996011  7,935,089,093,651,70...,903,578,206,896,128 (12,640,858 digits)
24036583  44,823,302,617,990,8...,680,460,572,950,528 (14,471,465 digits) (5s)
25964951  7,462,098,419,004,44...,245,874,791,088,128 (15,632,458 digits) (8s)
30402457  49,743,776,545,907,0...,934,536,164,704,256 (18,304,103 digits) (10s)
32582657  77,594,685,533,649,8...,428,476,577,120,256 (19,616,714 digits) (13s)
37156667  20,453,422,553,410,5...,147,975,074,480,128 (22,370,543 digits) (16s)
42643801  1,442,850,579,600,99...,314,837,377,253,376 (25,674,127 digits) (20s)
43112609  50,076,715,684,982,3...,909,221,145,378,816 (25,956,377 digits) (24s)
57885161  169,296,395,301,618,...,179,626,270,130,176 (34,850,340 digits) (29s)
74207281  45,112,996,270,669,0...,008,557,930,315,776 (44,677,235 digits) (36s)
77232917  10,920,015,213,433,6...,001,402,016,301,056 (46,498,850 digits) (43s)
82589933  1,108,477,798,641,48...,798,007,191,207,936 (49,724,095 digits) (50s)
"50.6s"

PHP

Translation of: C++
function is_perfect($number)
{
    $sum = 0;
    for($i = 1; $i < $number; $i++)
    {
        if($number % $i == 0)
            $sum += $i;
    }
    return $sum == $number;
}

echo "Perfect numbers from 1 to 33550337:" . PHP_EOL;
for($num = 1; $num < 33550337; $num++)
{
    if(is_perfect($num))
        echo $num . PHP_EOL;
}

Picat

Simple divisors/1 function

First is the slow perfect1/1 that use the simple divisors/1 function:

go =>
   println(perfect1=[I : I in 1..10_000, perfect1(I)]),
   nl.
 
perfect1(N) => sum(divisors(N)) == N.
divisors(N) = [J: J in 1..1+N div 2, N mod J == 0].
Output:
perfect1 = [1,6,28,496,8128]

Using formula for perfect number candidates

The formula for perfect number candidates is: 2^(p-1)*(2^p-1) for prime p. This is used to find some more perfect numbers in reasonable time. perfect2/1 is a faster version of checking if a number is perfect.

go2 =>
   println("Using the formula: 2^(p-1)*(2^p-1) for prime p"),
   foreach(P in primes(32))
      PF=perfectf(P),
      % Check that it is really a perfect number
      if perfect2(PF) then
        printf("%w (prime %w)\n",PF,P)
      end
   end,
   nl.

% Formula for perfect number candidates:
%   2^(p-1)*(2^p-1) where p is a prime
% 
perfectf(P) = (2**(P-1))*((2**P)-1).

% Faster check of a perfect number
perfect2(N) => sum_divisors(N) == N.

% Sum of divisors
table
sum_divisors(N) = Sum =>
  sum_divisors(2,N,1,Sum).

sum_divisors(I,N,Sum0,Sum), I > floor(sqrt(N)) =>
  Sum = Sum0.

% I is a divisor of N
sum_divisors(I,N,Sum0,Sum), N mod I == 0 =>
  Sum1 = Sum0 + I,
  (I != N div I -> 
    Sum2 = Sum1 + N div I 
    ; 
    Sum2 = Sum1
  ),
  sum_divisors(I+1,N,Sum2,Sum).

% I is not a divisor of N.
sum_divisors(I,N,Sum0,Sum) =>
  sum_divisors(I+1,N,Sum0,Sum).
Output:
6 (prime 2)
28 (prime 3)
496 (prime 5)
8128 (prime 7)
33550336 (prime 13)
8589869056 (prime 17)
137438691328 (prime 19)
2305843008139952128 (prime 31)

CPU time 118.039 seconds. Backtracks: 0

Using list of the primes generating the perfect numbers

Now let's cheat a little. At https://en.wikipedia.org/wiki/Perfect_number there is a list of the first 48 primes that generates perfect numbers according to the formula 2^(p-1)*(2^p-1) for prime p.

The perfect numbers are printed only if they has < 80 digits, otherwise the number of digits are shown. The program stops when reaching a number with more than 100 000 digits. (Note: The major time running this program is getting the number of digits.)

go3 =>
  ValidP = [2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
            1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213,
            19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091,
            
            756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593,
            13466917, 20996011, 24036583, 25964951, 30402457, 32582657,
            37156667, 42643801, 43112609, 57885161],
  foreach(P in ValidP)
      printf("prime %w: ", P),
      PF = perfectf(P),
      Len = PF.to_string.len,
      if Len < 80 then
        println(PF)
      else
        println(len=Len)
      end,
      if Len >= 100_000 then
        fail
      end
  end,
  nl.
Output:
prime 2: 6
prime 3: 28
prime 5: 496
prime 7: 8128
prime 13: 33550336
prime 17: 8589869056
prime 19: 137438691328
prime 31: 2305843008139952128
prime 61: 2658455991569831744654692615953842176
prime 89: 191561942608236107294793378084303638130997321548169216
prime 107: 13164036458569648337239753460458722910223472318386943117783728128
prime 127: 14474011154664524427946373126085988481573677491474835889066354349131199152128
prime 521: len = 314
prime 607: len = 366
prime 1279: len = 770
prime 2203: len = 1327
prime 2281: len = 1373
prime 3217: len = 1937
prime 4253: len = 2561
prime 4423: len = 2663
prime 9689: len = 5834
prime 9941: len = 5985
prime 11213: len = 6751
prime 19937: len = 12003
prime 21701: len = 13066
prime 23209: len = 13973
prime 44497: len = 26790
prime 86243: len = 51924
prime 110503: len = 66530
prime 132049: len = 79502
prime 216091: len = 130100

PicoLisp

(de perfect (N)
   (let C 0
      (for I (/ N 2)
         (and (=0 (% N I)) (inc 'C I)) )
      (= C N) ) )
(de faster (N)
   (let (C 1  Stop (sqrt N))
      (for (I 2 (<= I Stop) (inc I))
         (and
            (=0 (% N I))
            (inc 'C (+ (/ N I) I)) ) )
      (= C N) ) )

PL/I

perfect: procedure (n) returns (bit(1));
   declare n fixed;
   declare sum fixed;
   declare i fixed binary;

   sum = 0;
   do i = 1 to n-1;
      if mod(n, i) = 0 then sum = sum + i;
   end;
   return (sum=n);
end perfect;

PL/I-80

perfect_search: procedure options (main);

    %replace 
      search_limit by 10000,
      true by '1'b,
      false by '0'b;

    dcl (k, found) fixed bin;

    put skip list ('Searching for perfect numbers up to ');
    put edit (search_limit) (f(5));
    found = 0;
    do k = 2 to search_limit;
      if isperfect(k) then 
        do;
          put skip list(k);
          found = found + 1;
        end;
    end;
    put skip list (found, ' perfect numbers were found');

/* return true if n is perfect, otherwise false */
isperfect: procedure(n) returns (bit(1));
    
    dcl (n, sum, f1, f2) fixed bin;

    sum = 1;  /* 1 is a proper divisor of every number */
    f1 = 2;
    do while ((f1 * f1) <= n);
      if mod(n, f1) = 0 then
        do;
          sum = sum + f1;
          f2 = n / f1;
          /* don't double count identical co-factors! */
          if f2 > f1 then sum = sum + f2;
        end;
      f1 = f1 + 1;
    end;
    return (sum = n);
end isperfect;

end perfect_search;
Output:
Searching for perfect numbers up to 10000
        6
       28
      496
     8128
        4  perfect numbers were found 

PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND SOME PERFECT NUMBERS: NUMBERS EQUAL TO THE SUM OF THEIR PROPER */
      /* DIVISORS                                                            */
   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS: PROCEDURE( FN, ARG ); /* CP/M BDOS SYSTEM CALL */
      DECLARE FN BYTE, ARG ADDRESS;
      GOTO 5;
   END BDOS;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
   PR$NL:     PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH );  END;
   PR$NUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;

   /* TASK                                                                   */
   /* RETURNS TRUE IF N IS PERFECT, 0 OTHERWISE                              */
   IS$PERFECT: PROCEDURE( N )BYTE;
      DECLARE N               ADDRESS;
      DECLARE ( F1, F2, SUM ) ADDRESS;
      SUM = 1;
      F1  = 2;
      F2  = N;
      DO WHILE( F1 * F1 <= N );
         IF N MOD F1 = 0 THEN DO;
            SUM = SUM + F1;
            F2  =  N  / F1;
            /* AVOID COUNTING E.G., 2 TWICE AS A FACTOR OF 4                 */
            IF F2 > F1 THEN SUM = SUM + F2;
         END;
         F1 = F1 + 1;
      END;
      RETURN SUM = N;
   END IS$PERFECT ;
   /* TEST IS$PERFECT                                                        */
   DECLARE N ADDRESS;
   DO N = 2 TO 10$000;
      IF IS$PERFECT( N ) THEN DO;
         CALL PR$CHAR( ' ' );
         CALL PR$NUMBER( N );
      END;
   END;
EOF
Output:
 6 28 496 8128

Alternative, much faster version.

Translation of: Action!
Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

100H: /* FIND SOME PERFECT NUMBERS: NUMBERS EQUAL TO THE SUM OF THEIR PROPER */
      /* DIVISORS                                                            */
   /* CP/M SYSTEM CALL AND I/O ROUTINES                                      */
   BDOS: PROCEDURE( FN, ARG ); /* CP/M BDOS SYSTEM CALL */
      DECLARE FN BYTE, ARG ADDRESS;
      GOTO 5;
   END BDOS;
   PR$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C ); END;
   PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
   PR$NL:     PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH );  END;
   PR$NUMBER: PROCEDURE( N );
      DECLARE N ADDRESS;
      DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
      V = N;
      W = LAST( N$STR );
      N$STR( W ) = '$';
      N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      DO WHILE( ( V := V / 10 ) > 0 );
         N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
      END;
      CALL PR$STRING( .N$STR( W ) );
   END PR$NUMBER;

   /* TASK - TRANSLATION OF ACTION!                                          */
   DECLARE MAX$NUM LITERALLY '10$000';
   DECLARE PDS( 10$001 ) ADDRESS;
   DECLARE ( I, J )      ADDRESS;
 
   DO I = 2 TO MAX$NUM;
      PDS( I ) = 1;
   END;
   DO I = 2 TO MAX$NUM;
      DO J = I + I TO MAX$NUM BY I;
         PDS( J ) = PDS( J ) + I;
      END;
   END;
 
   DO I = 2 TO MAX$NUM;
      IF PDS( I ) = I THEN DO;
         CALL PR$NUMBER( I );
         CALL PR$NL;
      END;
   END;
EOF
Output:
6
28
496
8128

PowerShell

Function IsPerfect($n)
{
$sum=0
 for($i=1;$i-lt$n;$i++)
 {
  if($n%$i -eq 0)
  {
  $sum += $i
  }
 }
return $sum -eq $n
}

Returns "True" if the given number is perfect and "False" if it's not.

Prolog

Classic approach

Works with SWI-Prolog

tt_divisors(X, N, TT) :-
	Q is X / N,
	(   0 is X mod N -> (Q = N -> TT1 is N + TT; 
                             TT1 is N + Q + TT); 
            TT = TT1),
	(   sqrt(X) > N + 1 -> N1 is N+1, tt_divisors(X, N1, TT1);
	    TT1 = X).

perfect(X) :-
	tt_divisors(X, 2, 1).

perfect_numbers(N, L) :-
	numlist(2, N, LN),
	include(perfect, LN, L).

Faster method

Since a perfect number is of the form 2^(n-1) * (2^n - 1), we can eliminate a lot of candidates by merely factoring out the 2s and seeing if the odd portion is (2^(n+1)) - 1.

perfect(N) :-
   factor_2s(N, Chk, Exp),
   Chk =:= (1 << (Exp+1)) - 1,
   prime(Chk).

factor_2s(N, S, D) :- factor_2s(N, 0, S, D).

factor_2s(D, S, D, S) :- getbit(D, 0) =:= 1, !.
factor_2s(N, E, D, S) :-
   E2 is E + 1, N2 is N >> 1, factor_2s(N2, E2, D, S).

% check if a number is prime
%
wheel235(L) :-
   W = [4, 2, 4, 2, 4, 6, 2, 6 | W],
   L = [1, 2, 2 | W].

prime(N) :-
   N >= 2,
   wheel235(W),
   prime(N, 2, W).

prime(N, D, _) :- D*D > N, !.
prime(N, D, [A|As]) :-
    N mod D =\= 0,
    D2 is D + A, prime(N, D2, As).
Output:
?- between(1, 10_000, N), perfect(N).
N = 6 ;
N = 28 ;
N = 496 ;
N = 8128 ;
false.

Functional approach

Works with SWI-Prolog and module lambda, written by Ulrich Neumerkel found there http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl

:- use_module(library(lambda)).

is_divisor(V, N) :-
	0 =:= V mod N.

is_perfect(N) :-
	N1 is floor(N/2),
	numlist(1, N1, L),
	f_compose_1(foldl((\X^Y^Z^(Z is X+Y)), 0), filter(is_divisor(N)), F),
	call(F, L, N).

f_perfect_numbers(N, L) :-
	numlist(2, N, LN),
	filter(is_perfect, LN, L).


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% functionnal predicates

%% foldl(Pred, Init, List, R).
%
foldl(_Pred, Val, [], Val).
foldl(Pred, Val, [H | T], Res) :-
	call(Pred, Val, H, Val1),
	foldl(Pred, Val1, T, Res).

%% filter(Pred, LstIn, LstOut)
%
filter(_Pre, [], []).

filter(Pred, [H|T], L) :-
	filter(Pred, T, L1),
	(   call(Pred,H) -> L = [H|L1]; L = L1).

%% f_compose_1(Pred1, Pred2, Pred1(Pred2)).
%
f_compose_1(F,G, \X^Z^(call(G,X,Y), call(F,Y,Z))).

PureBasic

Procedure is_Perfect_number(n)
  Protected summa, i=1, result=#False
  Repeat  
    If Not n%i
      summa+i
    EndIf
    i+1
  Until i>=n
  If summa=n
    result=#True
  EndIf
  ProcedureReturn result
EndProcedure

Python

Relative timings

Relative timings for sifting the integers from 1 to 50_000 inclusive for perfect numbers.

Function Time Type
perf4 1 Optimised procedural
perfect 1.6 Optimised functional
perf1 259 Procedural
perf2 273 Functional

Python: Procedural

def perf1(n):
    sum = 0
    for i in range(1, n):
        if n % i == 0:
            sum += i
    return sum == n

Python: Optimised Procedural

from itertools import chain, cycle, accumulate

def factor2(n):
    def prime_powers(n):
        # c goes through 2, 3, 5, then the infinite (6n+1, 6n+5) series
        for c in accumulate(chain([2, 1, 2], cycle([2,4]))):
            if c*c > n: break
            if n%c: continue
            d,p = (), c
            while not n%c:
                n,p,d = n//c, p*c, d + (p,)
            yield(d)
        if n > 1: yield((n,))

    r = [1]
    for e in prime_powers(n):
        r += [a*b for a in r for b in e]
    return r

def perf4(n):
    "Using most efficient prime factoring routine from: http://rosettacode.org/wiki/Factors_of_an_integer#Python"
    return 2 * n == sum(factor2(n))

Python: Functional

def perf2(n):
    return n == sum(i for i in range(1, n) if n % i == 0)

print (
    list(filter(perf2, range(1, 10001)))
)


'''Perfect numbers'''

from math import sqrt


# perfect :: Int - > Bool
def perfect(n):
    '''Is n the sum of its proper divisors other than 1 ?'''

    root = sqrt(n)
    lows = [x for x in enumFromTo(2)(int(root)) if 0 == (n % x)]
    return 1 < n and (
        n == 1 + sum(lows + [n / x for x in lows if root != x])
    )


# main :: IO ()
def main():
    '''Test'''

    print([
        x for x in enumFromTo(1)(10000) if perfect(x)
    ])


# GENERIC -------------------------------------------------

# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
    '''Integer enumeration from m to n.'''
    return lambda n: list(range(m, 1 + n))


if __name__ == '__main__':
    main()
Output:
[6, 28, 496, 8128]

Quackery

factors is defined at Factors of an integer.

  [ 0 swap witheach + ]          is sum     ( [ --> n )

  [ factors -1 pluck dip sum = ] is perfect ( n --> n )

  say "Perfect numbers less than 10000:" cr
  10000 times 
    [ i^ 1+ perfect if [ i^ 1+ echo cr ] ]
Output:
Perfect numbers less than 10000:
6
28
496
8128

R

is.perf <- function(n){
	if (n==0|n==1) return(FALSE)
	s <- seq (1,n-1)
	x <- n %% s
	m <- data.frame(s,x)
	out <- with(m, s[x==0])
	return(sum(out)==n)	
}
# Usage - Warning High Memory Usage
is.perf(28)
sapply(c(6,28,496,8128,33550336),is.perf)

Racket

#lang racket
(require math)

(define (perfect? n)
  (= 
   (* n 2)
   (sum (divisors n))))

; filtering to only even numbers for better performance
(filter perfect? (filter even? (range 1e5)))
;-> '(0 6 28 496 8128)

Raku

(formerly Perl 6) Naive (very slow) version

sub is-perf($n) { $n == [+] grep $n %% *, 1 .. $n div 2 }

# used as
put ((1..Inf).hyper.grep: {.&is-perf})[^4];
Output:
6 28 496 8128

Much, much faster version:

my @primes   = lazy (2,3,*+2 … Inf).grep: { .is-prime };
my @perfects = lazy gather for @primes {
    my $n = 2**$_ - 1;
    take $n * 2**($_ - 1) if $n.is-prime;
}

.put for @perfects[^12];
Output:
6
28
496
8128
33550336
8589869056
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216
13164036458569648337239753460458722910223472318386943117783728128
14474011154664524427946373126085988481573677491474835889066354349131199152128

REBOL

perfect?:  func [n [integer!] /local sum] [
    sum: 0
    repeat i (n - 1) [
        if zero? remainder n i [
            sum: sum + i
        ]
    ]
    sum = n
]

REXX

Classic REXX version of ooRexx

This version is a Classic Rexx version of the ooRexx program as of 14-Sep-2013.

/*REXX version of the  ooRexx  program (the code was modified to run with Classic REXX).*/
      do i=1  to 10000                                 /*statement changed:  LOOP ──► DO*/
      if perfectNumber(i)  then say  i   "is a perfect number"
      end
exit

perfectNumber: procedure; parse arg n                  /*statements changed: ROUTINE,USE*/
sum=0
             do i=1  to n%2                            /*statement changed:  LOOP ──► DO*/
             if n//i==0 then sum=sum+i                 /*statement changed:  sum += i   */
             end
return sum=n

output   when using the default of 10000:

6 is a perfect number
28 is a perfect number
496 is a perfect number
8128 is a perfect number

Classic REXX version of PL/I

This version is a Classic REXX version of the PL/I program as of 14-Sep-2013,   a REXX   say   statement
was added to display the perfect numbers.   Also, an epilog was written for the re-worked function.

/*REXX version of the  PL/I  program  (code was modified to run with Classic REXX).     */
parse arg low high .                                   /*obtain the specified number(s).*/
if high=='' & low==''  then high=34000000              /*if no arguments,  use a range. */
if  low==''            then  low=1                     /*if no   LOW, then assume unity.*/
if high==''            then high=low                   /*if no  HIGH, then assume  LOW. */

               do i=low  to high                       /*process the single # or range. */
               if perfect(i)  then say  i  'is a perfect number.'
               end   /*i*/
exit

perfect: procedure;  parse arg n                       /*get the number to be tested.   */
sum=0                                                  /*the sum of the factors so far. */
             do i=1  for n-1                           /*starting at 1, find all factors*/
             if n//i==0 then sum=sum+i                 /*I is a factor of N,  so add it.*/
             end   /*i*/
return sum=n                                           /*if the sum matches N, perfect! */

output   when using the input defaults of:   1   10000

The output is the same as for the ooRexx version (above).

traditional method

Programming note:   this traditional method takes advantage of a few shortcuts:

  •   testing only goes up to the (integer) square root of   X
  •   testing bypasses the test of the first and last factors
  •   the   corresponding factor   is also used when a factor is found
/*REXX program  tests  if a  number  (or a range of numbers)  is/are  perfect.          */
parse arg low high .                             /*obtain optional arguments from the CL*/
if high=='' & low==""  then high=34000000        /*if no arguments, then use a  range.  */
if  low==''            then  low=1               /*if no   LOW,  then assume  unity.    */
if high==''            then high=low             /*if no  HIGH,  then assume   LOW.     */
w=length(high)                                   /*use   W   for formatting the output. */
numeric digits max(9,w+2)                        /*ensure enough digits to handle number*/

            do i=low  to high                    /*process the single number or a range.*/
            if isPerfect(i)  then say  right(i,w)   'is a perfect number.'
            end   /*i*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPerfect: procedure;  parse arg x               /*obtain the number to be tested.      */
           if x<6  then return 0                 /*perfect numbers can't be  <  six.    */
           s=1                                   /*the first factor of  X.           ___*/
                       do j=2  while  j*j<=x     /*starting at 2, find the factors ≤√ X */
                       if x//j\==0  then iterate /*J  isn't a factor of  X,  so skip it.*/
                       s = s + j + x%j           /* ··· add it  and  the other factor.  */
                       end   /*j*/               /*(above)  is marginally faster.       */
          return s==x                            /*if the sum matches  X, it's perfect! */

output   when using the default inputs:

       6 is a perfect number.
      28 is a perfect number.
     496 is a perfect number.
    8128 is a perfect number.
33550336 is a perfect number.

For 10,000 numbers tested, this version is   19.6   times faster than the ooRexx program logic.
For 10,000 numbers tested, this version is   25.6   times faster than the   PL/I   program logic.

Note:   For the above timings, only 10,000 numbers were tested.

optimized using digital root

This REXX version makes use of the fact that all   known   perfect numbers > 6 have a   digital root   of   1.

/*REXX program  tests  if a number  (or a range of numbers)  is/are  perfect.           */
parse arg low high .                             /*obtain the specified number(s).      */
if high=='' & low==""  then high=34000000        /*if no arguments,  then use a range.  */
if  low==''            then  low=1               /*if no   LOW,  then assume unity.     */
if high==''            then high=low             /*if no  HIGH,  then assume  LOW.      */
w=length(high)                                   /*use  W  for formatting the output.   */
numeric digits max(9,w+2)                        /*ensure enough digits to handle number*/

             do i=low  to high                   /*process the single number or a range.*/
             if isPerfect(i)  then say  right(i,w)  'is a perfect number.'
             end   /*i*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPerfect: procedure;  parse arg x 1 y           /*obtain the number to be tested.      */
           if x==6  then return 1                /*handle the special case of  six.     */
                                                 /*[↓]  perfect number's digitalRoot = 1*/
                 do  until  y<10                 /*find the digital root of  Y.         */
                 parse var y r 2;   do k=2  for length(y)-1; r=r+substr(y,k,1); end  /*k*/
                 y=r                             /*find digital root of the digit root. */
                 end   /*until*/                 /*wash, rinse, repeat ···              */

           if r\==1  then return 0               /*Digital root ¬ 1?   Then  ¬ perfect. */
           s=1                                   /*the first factor of  X.           ___*/
                       do j=2  while  j*j<=x     /*starting at 2, find the factors ≤√ X */
                       if x//j\==0  then iterate /*J  isn't a factor of X,  so skip it. */
                       s = s + j + x%j           /*··· add it  and  the other factor.   */
                       end   /*j*/               /*(above)  is marginally faster.       */
           return s==x                           /*if the sum matches  X, it's perfect! */

output   is the same as the traditional version   and is about   5.3   times faster   (testing 34,000,000 numbers).

optimized using only even numbers

This REXX version uses the fact that all   known   perfect numbers are   even.

/*REXX program  tests  if a number  (or a range of numbers)  is/are  perfect.           */
parse arg low high .                             /*obtain optional arguments from the CL*/
if high=='' & low==""  then high=34000000        /*if no arguments,  then use a  range. */
if  low==''            then  low=1               /*if no   LOW,  then assume unity.     */
low=low+low//2                                   /*if LOW is odd,   bump it by  one.    */
if high==''            then high=low             /*if no  HIGH,   then assume  LOW.     */
w=length(high)                                   /*use  W  for formatting the output.   */
numeric digits max(9,w+2)                        /*ensure enough digits to handle number*/

            do i=low  to high  by 2              /*process the single number or a range.*/
            if isPerfect(i)  then say  right(i,w)   'is a perfect number.'
            end   /*i*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPerfect: procedure;  parse arg x 1 y           /*obtain the number to be tested.      */
           if x==6  then return 1                /*handle the special case  of  six.    */

               do  until  y<10                   /*find the digital root of  Y.         */
               parse var y 1 r 2;    do k=2  for length(y)-1; r=r+substr(y,k,1); end /*k*/
               y=r                               /*find digital root of the digital root*/
               end   /*until*/                   /*wash, rinse, repeat ···              */

           if r\==1  then return 0               /*Digital root ¬ 1 ?    Then ¬ perfect.*/
           s=3 + x%2                             /*the first 3 factors of X.         ___*/
                       do j=3  while  j*j<=x     /*starting at 3, find the factors ≤√ X */
                       if x//j\==0  then iterate /*J  isn't a factor o f X,  so skip it.*/
                       s = s + j + x%j           /*  ··· add it  and  the other factor. */
                        end   /*j*/               /*(above)  is marginally faster.       */
           return s==x                           /*if sum matches  X, then it's perfect!*/

output   is the same as the traditional version   and is about   11.5   times faster   (testing 34,000,000 numbers).

Lucas-Lehmer method

This version uses memoization to implement a fast version of the Lucas-Lehmer test.

/*REXX program  tests  if a number  (or a range of numbers)  is/are  perfect.           */
parse arg low high .                             /*obtain the optional arguments from CL*/
if high=='' & low==""  then high=34000000        /*if no arguments,  then use a range.  */
if  low==''            then  low=1               /*if no   LOW,  then assume  unity.    */
low=low+low//2                                   /*if LOW is odd,  bump it by  one.     */
if high==''            then high=low             /*if no  HIGH,  then assume  LOW.      */
w=length(high)                                   /*use   W   for formatting the output. */
numeric digits max(9,w+2)                        /*ensure enough digits to handle number*/
@.=0;   @.1=2                                    /*highest magic number  and its index. */

            do i=low  to high  by 2              /*process the single number or a range.*/
            if isPerfect(i)  then say  right(i,w)   'is a perfect number.'
            end   /*i*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPerfect: procedure expose @.;  parse arg x     /*obtain the number to be tested.      */
                                                 /*Lucas-Lehmer know that perfect       */
                                                 /*    numbers can be expressed as:     */
                                                 /*    [2**n - 1]  *  [2** (n-1) ]      */

           if @.0<x then do @.1=@.1  while @._<=x; _=(2**@.1-1)*2**(@.1-1);  @.0=_;  @._=_
                         end   /*@.1*/           /*uses memoization for the formula.    */

           if @.x==0  then return 0              /*Didn't pass Lucas-Lehmer test?       */
           s = 3 + x%2                           /*we know the following factors:       */
                                                 /*  1      ('cause Mama said so.)      */
                                                 /*  2      ('cause it's even.)         */
                                                 /* x÷2     (   "     "    "  )      ___*/
                       do j=3  while  j*j<=x     /*starting at 3, find the factors ≤√ X */
                       if x//j\==0  then iterate /*J  divides  X  evenly,  so ···       */
                       s=s + j + x%j             /*···  add it  and  the other factor.  */
                       end   /*j*/               /*(above)  is marginally faster.       */
           return s==x                           /*if the sum matches  X,  it's perfect!*/

output   is the same as the traditional version   and is about   75   times faster   (testing 34,000,000 numbers).

Lucas-Lehmer + other optimizations

This version uses the Lucas-Lehmer method, digital roots, and restricts itself to   even   numbers, and
also utilizes a check for the last-two-digits as per François Édouard Anatole Lucas (in 1891).

Also, in the first   do   loop, the index   i   is   fast advanced   according to the last number tested.

An integer square root function was added to limit the factorization of a number.

/*REXX program tests if a number  (or a range of numbers)   is/are  perfect.            */
parse arg low high .                             /*obtain optional arguments from the CL*/
if high=='' & low==""  then high=34000000        /*No arguments?    Then use a range.   */
if  low==''            then  low=1               /*if no   LOW,  then assume unity.     */
low=low+low//2                                   /*if LOW is odd,  bump it by one.      */
if high==''            then high=low             /*if no  HIGH,  then assume  LOW.      */
w=length(high)                                   /*use   W   for formatting the output. */
numeric digits max(9,w+2)                        /*ensure enough decimal digits for nums*/
@. =0;    @.1=2;     !.=2;     _=' 6'            /*highest  magic number  and its index.*/
!._=22;   !.16=12;   !.28=8;   !.36=20;   !.56=20;   !.76=20;   !.96=20
                                                 /* [↑]   "Lucas' numbers,  in 1891.    */
            do i=low  to high  by 0              /*process the single number or a range.*/
            if isPerfect(i)  then say  right(i,w)   'is a perfect number.'
            i=i+!.?                              /*use a fast advance for the DO index. */
            end   /*i*/                          /* [↑]  note: the DO index is modified.*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isPerfect: procedure expose @. !. ?              /*expose (make global) some variables. */
           parse arg  x  1  y  ''  -2  ?         /*#  (and copy), and the last 2 digits.*/
           if x==6    then return 1              /*handle the special case of  six.     */
           if !.?==2  then return 0              /*test last two digits: François Lucas.*/
                                       /*╔═════════════════════════════════════════════╗
                                         ║ Lucas─Lehmer know that perfect numbers can  ║
                                         ║ be expressed as:    [2^n -1] * {2^(n-1) }   ║
                                         ╚═════════════════════════════════════════════╝*/
           if @.0<x  then do @.1=@.1  while @._<=x;  _=(2**@.1-1)*2**(@.1-1); @.0=_; @._=_
                          end   /*@.1*/          /* [↑]  uses memoization for formula.  */

           if @.x==0  then return 0              /*Didn't pass Lucas-Lehmer? Not perfect*/
                                                 /*[↓]  perfect numbers digital root = 1*/
                 do  until  y<10                 /*find the digital root of  Y.         */
                 parse var y d 2;  do k=2  for length(y)-1; d=d+substr(y,k,1);  end  /*k*/
                 y=d                             /*find digital root of the digital root*/
                 end   /*until*/                 /*wash, rinse, repeat ···              */

           if d\==1  then return 0               /*Is digital root ¬ 1?  Then ¬ perfect.*/
           s=3 + x%2                             /*we know the following factors: unity,*/
           z=x                                   /*2,  and  x÷2   (x is even).          */
           q=1;  do  while q<=z;   q=q*4 ;  end  /*while q≤z*/            /*       _____*/
           r=0                                   /* [↓]    R  will be the integer √  X  */
                 do  while q>1;  q=q%4; _=z-r-q; r=r%2;  if _>=0  then do; z=_; r=r+q; end
                 end   /*while q>1*/             /* [↑]  compute the integer SQRT of  X.*/
                                                 /*                                _____*/
                      do j=3  to r               /*starting at 3,  find factors ≤ √  X  */
                      if x//j==0  then s=s+j+x%j /*J divisible by X? Then add J and  X÷J*/
                      end   /*j*/
           return s==x                           /*if the sum matches X,  then perfect! */

output   is the same as the traditional version   and is about   500   times faster   (testing 34,000,000 numbers).

Ring

for i = 1 to 10000
    if perfect(i) see i + nl ok
next
 
func perfect n
     sum = 0
     for i = 1 to n - 1
         if n % i = 0 sum = sum + i ok
     next 
if sum = n return 1 else return 0 ok
return sum

RPL

≪  0 SWAP 1 
  WHILE DUP2 > REPEAT 
    IF DUP2 MOD NOT THEN ROT OVER + ROT ROT END
    1 + END 
  DROP == 
≫ 'PFCT?' STO

≪ 
  { } 1 1000 FOR n
      IF n PFCT? THEN n + END NEXT 
≫ 'TASK' STO
Output:
1: { 6 28 496 }

A vintage HP-28S needs 157 seconds to collect all perfect numbers under 100...

Ruby

def perf(n)
  sum = 0
  for i in 1...n
    sum += i  if n % i == 0
  end
  sum == n
end

Functional style:

def perf(n)
  n == (1...n).select {|i| n % i == 0}.inject(:+)
end

Faster version:

def perf(n)
  divisors = []
  for i in 1..Integer.sqrt(n)
    divisors << i << n/i  if n % i == 0
  end
  divisors.uniq.inject(:+) == 2*n
end

Test:

for n in 1..10000
  puts n if perf(n)
end
Output:
6
28
496
8128

Fast (Lucas-Lehmer)

Generate and memoize perfect numbers as needed.

require "prime"

def mersenne_prime_pow?(p)
  # Lucas-Lehmer test; expects prime as argument
  return true  if p == 2
  m_p = ( 1 << p ) - 1 
  s = 4
  (p-2).times{ s = (s**2 - 2) % m_p }
  s == 0
end

@perfect_numerator = Prime.each.lazy.select{|p| mersenne_prime_pow?(p)}.map{|p| 2**(p-1)*(2**p-1)}
@perfects = @perfect_numerator.take(1).to_a

def perfect?(num)
  @perfects << @perfect_numerator.next until @perfects.last >= num
  @perfects.include? num
end

# demo
p (1..10000).select{|num| perfect?(num)}
t1 = Time.now
p perfect?(13164036458569648337239753460458722910223472318386943117783728128)
p Time.now - t1
Output:
[6, 28, 496, 8128]
true
0.001053954

As the task states, it is not known if there are any odd perfect numbers (any that exist are larger than 10**2000). This program tests 10**2001 in about 30 seconds - but only for even perfects.

Run BASIC

for i = 1 to 10000
 if perf(i) then print i;" ";
next i

FUNCTION perf(n)
for i = 1 TO n - 1
  IF n MOD i = 0 THEN sum = sum + i
next i
IF sum = n THEN perf = 1
END FUNCTION
Output:
6 28 496 8128

Rust

fn main ( ) {
	fn factor_sum(n: i32) -> i32 {
	    let mut v = Vec::new(); //create new empty array
	    for  x in 1..n-1 {      //test vaules 1 to n-1
	    	if n%x == 0 {   //if current x is a factor of n
	    		v.push(x);      //add x to the array
	    	}
	    }
    let mut sum = v.iter().sum(); //iterate over array and sum it up 
    return sum;
    }
    
    fn perfect_nums(n: i32) {
    	for x in 2..n {       //test numbers from 1-n
    		if factor_sum(x) == x {//call factor_sum on each value of x, if return value is = x
    			println!("{} is a perfect number.", x); //print value of x 
    		}
    	}
    }
    perfect_nums(10000);
}

SASL

Copied from the SASL manual, page 22:

|| The function which takes a number and returns a list of its factors (including one but excluding itself) 
|| can be written
factors n = { a <- 1.. n/2; n rem a = 0 }
|| If we define a perfect number as one which is equal to the sum of its factors (for example 6 = 3 + 2 + 1 is perfect) 
|| we can write the list of all perfect numbers as
perfects = { n <- 1... ; n = sum(factors n) }

S-BASIC

$lines

rem - return n mod m 
function mod(n, m = integer) = integer
end = n - m * (n/m)

rem - return true if n is perfect, otherwise false
function isperfect(n = integer) = integer
  var sum, f1, f2 = integer
  sum = 1
  f1 = 2
  while (f1 * f1) <= n do
    begin
      if mod(n, f1) = 0 then
        begin
          sum = sum + f1
          f2 = n / f1
          if f2 > f1 then sum = sum + f2
        end
      f1 = f1 + 1
    end
end = (sum = n)

rem - exercise the function

var k, found = integer

print "Searching up to"; search_limit; " for perfect numbers ..."
found = 0
for k = 2 to search_limit
  if isperfect(k) then
     begin
        print k
        found = found + 1
     end
next k
print found; " were found"

end
Output:
Searching up to 10000 for perfect numbers ...
 6
 28
 496
 8128
 4 were found

Scala

def perfectInt(input: Int) = ((2 to sqrt(input).toInt).collect {case x if input % x == 0 => x + input / x}).sum == input - 1

or

def perfect(n: Int) = 
  (for (x <- 2 to n/2 if n % x == 0) yield x).sum + 1 == n

Scheme

(define (perf n)
  (let loop ((i 1)
             (sum 0))
    (cond ((= i n)
           (= sum n))
          ((= 0 (modulo n i))
           (loop (+ i 1) (+ sum i)))
          (else
           (loop (+ i 1) sum)))))

Seed7

$ include "seed7_05.s7i";

const func boolean: isPerfect (in integer: n) is func
  result
    var boolean: isPerfect is FALSE;
  local
    var integer: i is 0;
    var integer: sum is 1;
    var integer: q is 0;
  begin
    for i range 2 to sqrt(n) do
      if n rem i = 0 then
        sum +:= i;
        q := n div i;
        if q > i then
          sum +:= q;
        end if;
      end if;
    end for;
    isPerfect := sum = n;
  end func;
 
const proc: main is func
  local
    var integer: n is 0;
  begin
    for n range 2 to 33550336 do
      if isPerfect(n) then
        writeln(n);
      end if;
    end for;
  end func;
Output:
6
28
496
8128
33550336

Sidef

func is_perfect(n) {
    n.sigma == 2*n
}

for n in (1..10000) {
    say n if is_perfect(n)
}

Alternatively, a more efficient check for even perfect numbers:

func is_even_perfect(n) {

    var square = (8*n + 1)
    square.is_square || return false

    var t = ((square.isqrt + 1) / 2)
    t.is_smooth(2) || return false

    t-1 -> is_prime
}

for n in (1..10000) {
    say n if is_even_perfect(n)
}
Output:
6
28
496
8128

Simula

BOOLEAN PROCEDURE PERF(N); INTEGER N;
BEGIN
    INTEGER SUM;
    FOR I := 1 STEP 1 UNTIL N-1 DO
        IF MOD(N, I) = 0 THEN
            SUM := SUM + I;
    PERF := SUM = N;
END PERF;

Slate

n@(Integer traits) isPerfect
[
  (((2 to: n // 2 + 1) select: [| :m | (n rem: m) isZero])
    inject: 1 into: #+ `er) = n
].

Smalltalk

Integer extend [

  "Translation of the C version; this is faster..."
  isPerfectC [ |tot| tot := 1.
     (2 to: (self sqrt) + 1) do: [ :i |
        (self rem: i) = 0
        ifTrue: [ |q|
                  tot := tot + i.
                  q := self // i. 
                  q > i ifTrue: [ tot := tot + q ]
        ]
     ].
     ^ tot = self
  ]

  "... but this seems more idiomatic"
  isPerfect [
     ^ ( ( ( 2 to: self // 2 + 1) select: [ :a | (self rem: a) = 0 ] )
         inject: 1 into: [ :a :b | a + b ] ) = self
  ]
].
1 to: 9000 do: [ :p | (p isPerfect) ifTrue: [ p printNl ] ]

SparForte

As a structured script.

#!/usr/local/bin/spar
pragma annotate( summary, "perfect" );
pragma annotate( description, "In mathematics, a perfect number is a positive integer" );
pragma annotate( description, "that is the sum of its proper positive divisors, that is," );
pragma annotate( description, "the sum of the positive divisors excluding the number" );
pragma annotate( description, "itself." );
pragma annotate( see_also, "http://en.wikipedia.org/wiki/Perfect_number" );
pragma annotate( author, "Ken O. Burtch" );
pragma license( unrestricted );

pragma restriction( no_external_commands );

procedure perfect is

  function is_perfect( n : positive ) return boolean is
    total : natural := 0;
  begin
    for i in 1..n-1 loop
      if n mod i = 0 then
         total := @+i;
      end if;
    end loop;
    return total = natural( n );
  end is_perfect;

  number : positive;
  result : boolean;
begin
  number := 6;
  result   := is_perfect( number );
  put( number ) @ ( " : " ) @ ( result );
  new_line;

  number := 18;
  result   := is_perfect( number );
  put( number ) @ ( " : " ) @ ( result );
  new_line;

  number := 28;
  result   := is_perfect( number );
  put( number ) @ ( " : " ) @ ( result );
  new_line;

end perfect;

Swift

Translation of: Java
func perfect(n:Int) -> Bool {
    var sum = 0
    for i in 1..<n {
        if n % i == 0 {
            sum += i
        }
    }
    return sum == n
}

for i in 1..<10000 {
    if perfect(i) {
        println(i)
    }
}
Output:
6
28
496
8128

Tcl

proc perfect n {
    set sum 0
    for {set i 1} {$i <= $n} {incr i} {
        if {$n % $i == 0} {incr sum $i}
    }
    expr {$sum == 2*$n}
}

Ursala

#import std
#import nat

is_perfect = ~&itB&& ^(~&,~&t+ iota); ^E/~&l sum:-0+ ~| not remainder

This test program applies the function to a list of the first five hundred natural numbers and deletes the imperfect ones.

#cast %nL

examples = is_perfect*~ iota 500
Output:
<6,28,496>

VBA

Translation of: Phix

Using Factors_of_an_integer#VBA, slightly adapted.

Private Function Factors(x As Long) As String
    Application.Volatile
    Dim i As Long
    Dim cooresponding_factors As String
    Factors = 1
    corresponding_factors = x
    For i = 2 To Sqr(x)
        If x Mod i = 0 Then
            Factors = Factors & ", " & i
            If i <> x / i Then corresponding_factors = x / i & ", " & corresponding_factors
        End If
    Next i
    If x <> 1 Then Factors = Factors & ", " & corresponding_factors
End Function
Private Function is_perfect(n As Long)
    fs = Split(Factors(n), ", ")
    Dim f() As Long
    ReDim f(UBound(fs))
    For i = 0 To UBound(fs)
        f(i) = Val(fs(i))
    Next i
    is_perfect = WorksheetFunction.Sum(f) - n = n
End Function
Public Sub main()
    Dim i As Long
    For i = 2 To 100000
        If is_perfect(i) Then Debug.Print i
    Next i
End Sub
Output:
 6 
 28 
 496 
 8128 

VBScript

Function IsPerfect(n)
	IsPerfect = False
	i = n - 1
	sum = 0
	Do While i > 0
		If n Mod i = 0 Then
			sum = sum + i
		End If
		i = i - 1
	Loop
	If sum = n Then
		IsPerfect = True
	End If
End Function

WScript.StdOut.Write IsPerfect(CInt(WScript.Arguments(0)))
WScript.StdOut.WriteLine
Output:
C:\>cscript /nologo perfnum.vbs 6
True

C:\>cscript /nologo perfnum.vbs 29
False

C:\>


V (Vlang)

Translation of: go
fn compute_perfect(n i64) bool {
    mut sum := i64(0)
    for i := i64(1); i < n; i++ {
        if n%i == 0 {
            sum += i
        }
    }
    return sum == n
}
 
// following fntion satisfies the task, returning true for all
// perfect numbers representable in the argument type
fn is_perfect(n i64) bool {
    return n in [i64(6), 28, 496, 8128, 33550336, 8589869056,
        137438691328, 2305843008139952128]
}
 
// validation
fn main() {
    for n := i64(1); ; n++ {
        if is_perfect(n) != compute_perfect(n) {
            panic("bug")
        }
        if n%i64(1e3) == 0 {
            println("tested $n")
        }
    }
}
Output:
tested 1000
tested 2000
tested 3000
...

Wren

Version 1

Translation of: D

Restricted to the first four perfect numbers as the fifth one is very slow to emerge.

var isPerfect = Fn.new { |n|
    if (n <= 2) return false
    var tot = 1
    for (i in 2..n.sqrt.floor) {
        if (n%i == 0) {
            tot = tot + i
            var q = (n/i).floor
            if (q > i) tot = tot + q
        }
    }
    return n == tot
}

System.print("The first four perfect numbers are:")
var count = 0
var i = 2
while (count < 4) {
    if (isPerfect.call(i)) {
        System.write("%(i) ")
        count = count + 1
    }
    i = i + 2  // there are no known odd perfect numbers
}
System.print()
Output:
6 28 496 8128 

Version 2

Library: Wren-math

This makes use of the fact that all known perfect numbers are of the form (2n - 1) × 2n - 1 where (2n - 1) is prime and finds the first seven perfect numbers instantly. The numbers are too big after that to be represented accurately by Wren.

import "./math" for Int

var isPerfect = Fn.new { |n|
    if (n <= 2) return false
    var tot = 1
    for (i in 2..n.sqrt.floor) {
        if (n%i == 0) {
            tot = tot + i
            var q = (n/i).floor
            if (q > i) tot = tot + q
        }
    }
    return n == tot
}

System.print("The first seven perfect numbers are:")
var count = 0
var p = 2
while (count < 7) {
    var n = 2.pow(p) - 1
    if (Int.isPrime(n)) {
        n = n * 2.pow(p-1)
        if (isPerfect.call(n)) {
            System.write("%(n) ")
            count = count + 1
        }
    }
    p = p + 1
}
System.print()
Output:
6 28 496 8128 33550336 8589869056 137438691328

XPL0

include c:\cxpl\codes;  \intrinsic 'code' declarations

func Perfect(N);        \Return 'true' if N is a perfect number
int  N, S, I, Q;
[S:= 1;
for I:= 2 to sqrt(N) do
        [Q:= N/I;
        if rem(0)=0 then S:= S+I+Q;
        ];
return S=N & N#1;
];

int  A, N;
[for A:= 1 to 16 do
        [N:= (1<<A - 1) * 1<<(A-1);
        if Perfect(N) then [IntOut(0, N);  CrLf(0)];
        ];
]
Output:
6
28
496
8128
33550336


Yabasic

Translation of: True BASIC
sub isPerfect(n)
    if (n < 2) or mod(n, 2) = 1 then return false : endif
    // asumimos que los números impares no son perfectos
    sum = 0
    for i = 1 to n-1
        if mod(n,i) = 0 then sum = sum + i : endif
    next i
    if sum = n then return true else return false : endif
end sub

print "Los primeros 5 numeros perfectos son:"
for i = 1 to 33550336
	if isPerfect(i) then print i, " ", : endif
next i
print
end


Zig

const std = @import("std");
const expect = std.testing.expect;
const stdout = std.io.getStdOut().outStream();

pub fn main() !void {
    var i: u32 = 2;
    try stdout.print("The first few perfect numbers are: ", .{});
    while (i <= 10_000) : (i += 2) if (propersum(i) == i)
        try stdout.print("{} ", .{i});
    try stdout.print("\n", .{});
}

fn propersum(n: u32) u32 {
    var sum: u32 = 1;
    var d: u32 = 2;
    while (d * d <= n) : (d += 1) if (n % d == 0) {
        sum += d;
        const q = n / d;
        if (q > d)
            sum += q;
    };
    return sum;
}

test "Proper divisors" {
    expect(propersum(28) == 28);
    expect(propersum(71) == 1);
    expect(propersum(30) == 42);
}
Output:
The first few perfect numbers are: 6 28 496 8128 

zkl

Translation of: D
fcn isPerfectNumber1(n)
   { n == [1..n-1].filter('wrap(i){ n % i == 0 }).sum(); }
Output:
[1..0d10_000].filter(isPerfectNumber1).println();
L(6,28,496,8128)