# Find the intersection of two lines

Find the intersection of two lines
You are encouraged to solve this task according to the task description, using any language you may know.

Finding the intersection of two lines that are in the same plane is an important topic in collision detection.[1]

Find the point of intersection of two lines in 2D.

The 1st line passes though   (4,0)   and   (6,10) .
The 2nd line passes though   (0,3)   and   (10,7) .

## 11l

Translation of: Python
```F line_intersect(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2)
V d = (By2 - By1) * (Ax2 - Ax1) - (Bx2 - Bx1) * (Ay2 - Ay1)
I d == 0
R (Float.infinity, Float.infinity)

V uA = ((Bx2 - Bx1) * (Ay1 - By1) - (By2 - By1) * (Ax1 - Bx1)) / d
V uB = ((Ax2 - Ax1) * (Ay1 - By1) - (Ay2 - Ay1) * (Ax1 - Bx1)) / d

I !(uA C 0.0..1.0 & uB C 0.0..1.0)
R (Float.infinity, Float.infinity)
V x = Ax1 + uA * (Ax2 - Ax1)
V y = Ay1 + uA * (Ay2 - Ay1)

R (x, y)

V (a, b, c, d) = (4.0, 0.0, 6.0, 10.0)
V (e, f, g, h) = (0.0, 3.0, 10.0, 7.0)
V pt = line_intersect(a, b, c, d, e, f, g, h)
print(pt)```
Output:
```(5, 5)
```

## 360 Assembly

Translation of: Rexx
```*        Intersection of two lines   01/03/2019
INTERSEC CSECT
USING  INTERSEC,R13       base register
B      72(R15)            skip savearea
DC     17F'0'             savearea
SAVE   (14,12)            save previous context
LE     F0,XA              xa
IF    CE,F0,EQ,XB THEN      if xa=xb then
STE    F0,X1                x1=xa
LE     F0,YA
IF    CE,F0,EQ,YB THEN        if ya=yb then
MVI    MSG,C'='               msg='='
ENDIF    ,                    endif
ELSE     ,                  else
MVI    FK1,X'01'            fk1=true
LE     F0,YB
SE     F0,YA                yb-ya
LE     F2,XB
SE     F2,XA                xb-xa
DER    F0,F2                /
STE    F0,K1                k1=(yb-ya)/(xb-xa)
ME     F0,XA                k1*xa
LE     F2,YA                ya
SER    F2,F0                -
STE    F2,D1                d1=ya-k1*xa
ENDIF    ,                  endif
LE     F0,XC
IF    CE,F0,EQ,XD THEN      if xc=xd then
STE    F0,X2                x2=xc
LE     F4,YC                yc
IF    CE,F4,EQ,YD THEN        if yc=yd then
MVI    MSG,C'='               msg='='
ENDIF    ,                    endif
ELSE     ,                  else
MVI    FK2,X'01'            fk2=true
LE     F0,YD
SE     F0,YC                yd-yc
LE     F2,XD
SE     F2,XC                xd-xc
DER    F0,F2                /
STE    F0,K2                k2=(yd-yc)/(xd-xc)
ME     F0,XC                k2*xc
LE     F2,YC                yc
SER    F2,F0                -
STE    F2,D2                d2=yc-k2*xc
ENDIF    ,                  endif
IF   CLI,MSG,EQ,C' ' THEN   if msg=' ' then
IF   CLI,FK1,EQ,X'00' THEN    if not fk1 then
IF   CLI,FK2,EQ,X'00' THEN      if not fk2 then
LE     F4,X1
IF    CE,F4,EQ,X2                 if x1=x2 then
MVI    MSG,C'='                   msg='='
ELSE     ,                        else
MVI    MSG,C'/'                   msg='/'
ENDIF    ,                        endif
ELSE     ,                      else
LE     F0,X1
STE    F0,X                     x=x1
LE     F0,K2                    k2
ME     F0,X                     *x
AE     F0,D2                    +d2
STE    F0,Y                     y=k2*x+d2
ENDIF    ,                      endif
ELSE     ,                    else
IF    CLI,FK2,EQ,X'00' THEN     if not fk2 then
LE     F0,X2
STE    F0,X                     x=x2
LE     F0,K1                    k1
ME     F0,X                     *x
AE     F0,D1                    +d1
STE    F0,Y                     y=k1*x+d1
ELSE     ,                      else
LE     F4,K1
IF    CE,F4,EQ,K2 THEN            if k1=k2 then
LE     F4,D1
IF    CE,F4,EQ,D2 THEN              if d1=d2 then
MVI    MSG,C'='                     msg='=';
ELSE     ,                          else
MVI    MSG,C'/'                     msg='/';
ENDIF    ,                          endif
ELSE     ,                        else
LE     F0,D2                      d2
SE     F0,D1                      -d1
LE     F2,K1                      k1
SE     F2,K2                      -k2
DER    F0,F2                      /
STE    F0,X                       x=(d2-d1)/(k1-k2)
LE     F0,K1                      k1
ME     F0,X                       *x
AE     F0,D1                      +d1
STE    F0,Y                       y=k1*x+d1
ENDIF    ,                        endif
ENDIF    ,                      endif
ENDIF    ,                    endif
ENDIF    ,                  endif
IF   CLI,MSG,EQ,C' ' THEN   if msg=' ' then
LE     F0,X                 x
LA     R0,3                 decimal=3
BAL    R14,FORMATF          format x
MVC    PG+0(13),0(R1)       output x
LE     F0,Y                 y
LA     R0,3                 decimal=3
BAL    R14,FORMATF          format y
MVC    PG+13(13),0(R1)      output y
ENDIF    ,                  endif
MVC    PG+28(1),MSG       output msg
XPRNT  PG,L'PG            print buffer
L      R13,4(0,R13)       restore previous savearea pointer
RETURN (14,12),RC=0       restore registers from calling sav
COPY   plig\\$_FORMATF.MLC
XA       DC     E'4.0'             point A
YA       DC     E'0.0'
XB       DC     E'6.0'             point B
YB       DC     E'10.0'
XC       DC     E'0.0'             point C
YC       DC     E'3.0'
XD       DC     E'10.0'            point D
YD       DC     E'7.0'
X        DS     E
Y        DS     E
X1       DS     E
X2       DS     E
K1       DS     E
K2       DS     E
D1       DS     E
D2       DS     E
FK1      DC     X'00'
FK2      DC     X'00'
MSG      DC     C' '
PG       DC     CL80' '
REGEQU
END    INTERSEC```
Output:
```        5.000        5.000
```

## Action!

```INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

DEFINE REALPTR="CARD"
TYPE PointR=[REALPTR x,y]

PROC Det(REAL POINTER x1,y1,x2,y2,res)
REAL tmp1,tmp2

RealMult(x1,y2,tmp1)
RealMult(y1,x2,tmp2)
RealSub(tmp1,tmp2,res)
RETURN

BYTE FUNC IsZero(REAL POINTER a)
CHAR ARRAY s(10)

StrR(a,s)
IF s(0)=1 AND s(1)='0 THEN
RETURN (1)
FI
RETURN (0)

BYTE FUNC Intersection(PointR POINTER p1,p2,p3,p4,res)
REAL det1,det2,dx1,dx2,dy1,dy2,nom,denom

Det(p1.x,p1.y,p2.x,p2.y,det1)
Det(p3.x,p3.y,p4.x,p4.y,det2)
RealSub(p1.x,p2.x,dx1)
RealSub(p1.y,p2.y,dy1)
RealSub(p3.x,p4.x,dx2)
RealSub(p3.y,p4.y,dy2)
Det(dx1,dy1,dx2,dy2,denom)

IF IsZero(denom) THEN
RETURN (0)
FI

Det(det1,dx1,det2,dx2,nom)
RealDiv(nom,denom,res.x)
Det(det1,dy1,det2,dy2,nom)
RealDiv(nom,denom,res.y)
RETURN (1)

PROC PrintPoint(PointR POINTER p)
Print("(") PrintR(p.x)
Print(",") PrintR(p.y)
Print(")")
RETURN

PROC PrintLine(PointR POINTER p1,p2)
PrintPoint(p1)
Print(" and ")
PrintPoint(p2)
RETURN

PROC Test(PointR POINTER p1,p2,p3,p4)
BYTE res
REAL px,py
PointR p

p.x=px p.y=py
Print("Line 1 points: ")
PrintLine(p1,p2) PutE()
Print("Line 2 points: ")
PrintLine(p3,p4) PutE()

res=Intersection(p1,p2,p3,p4,p)
IF res THEN
Print("Intersection point: ")
PrintPoint(p) PutE()
ELSE
PrintE("There is no intersection")
FI
PutE()
RETURN

PROC Main()
REAL x1,y1,x2,y2,x3,y3,x4,y4,px,py
PointR p1,p2,p3,p4

Put(125) PutE() ;clear screen

p1.x=x1 p1.y=y1
p2.x=x2 p2.y=y2
p3.x=x3 p3.y=y3
p4.x=x4 p4.y=y4

IntToReal(4,x1) IntToReal(0,y1)
IntToReal(6,x2) IntToReal(10,y2)
IntToReal(0,x3) IntToReal(3,y3)
IntToReal(10,x4) IntToReal(7,y4)
Test(p1,p2,p3,p4)

IntToReal(0,x1) IntToReal(0,y1)
IntToReal(1,x2) IntToReal(1,y2)
IntToReal(1,x3) IntToReal(2,y3)
IntToReal(4,x4) IntToReal(5,y4)
Test(p1,p2,p3,p4)
RETURN```
Output:
```Line 1 points: (4,0) and (6,10)
Line 2 points: (0,3) and (10,7)
Intersection point: (5,5)

Line 1 points: (0,0) and (1,1)
Line 2 points: (1,2) and (4,5)
There is no intersection
```

```with Ada.Text_IO;

procedure Intersection_Of_Two_Lines
is
Do_Not_Intersect : exception;

type Line is record
a : Float;
b : Float;
end record;

type Point is record
x : Float;
y : Float;
end record;

function To_Line(p1, p2 : in Point) return Line
is
a : constant Float := (p1.y - p2.y) / (p1.x - p2.x);
b : constant Float := p1.y - (a * p1.x);
begin
return (a,b);
end To_Line;

function Intersection(Left, Right : in Line) return Point is
begin
if Left.a = Right.a then
raise Do_Not_Intersect with "The two lines do not intersect.";
end if;

declare
b : constant Float := (Right.b - Left.b) / (Left.a - Right.a);
begin
return (b, Left.a * b + Left.b);
end;
end Intersection;

A1 : constant Line := To_Line((4.0, 0.0), (6.0, 10.0));
A2 : constant Line := To_Line((0.0, 3.0), (10.0, 7.0));
p : constant Point := Intersection(A1, A2);
begin
end Intersection_Of_Two_Lines;
```
Output:
``` 5.00000E+00 5.00000E+00
```

## ALGOL 68

Using "school maths".

```BEGIN
# mode to hold a point #
MODE POINT = STRUCT( REAL x, y );
# mode to hold a line expressed as y = mx + c #
MODE LINE  = STRUCT( REAL m, c );
# returns the line that passes through p1 and p2 #
PROC find line = ( POINT p1, p2 )LINE:
IF x OF p1 = x OF p2 THEN
# the line is vertical                 #
LINE( 0, x OF p1 )
ELSE
# the line is not vertical             #
REAL m = ( y OF p1 - y OF p2 ) / ( x OF p1 - x OF p2 );
LINE( m, y OF p1 - ( m * x OF p1 ) )
FI # find line # ;

# returns the intersection of two lines - the lines must be distinct and not parallel #
PRIO INTERSECTION = 5;
OP   INTERSECTION = ( LINE l1, l2 )POINT:
BEGIN
REAL x = ( c OF l2 - c OF l1 ) / ( m OF l1 - m OF l2 );
POINT( x, ( m OF l1 * x ) + c OF l1 )
END # INTERSECTION # ;

# find the intersection of the lines as per the task #
POINT i = find line( POINT( 4.0, 0.0 ), POINT( 6.0, 10.0 ) )
INTERSECTION find line( ( 0.0, 3.0 ), ( 10.0, 7.0 ) );
print( ( fixed( x OF i, -8, 4 ), fixed( y OF i, -8, 4 ), newline ) )

END```
Output:
```  5.0000  5.0000
```

## ALGOL W

```begin % find the intersection of two lines                                   %

record Point ( real x, y );
record Line  ( real m, c );                                 % y = mx + c %

% returns the line that passes through p1 and p2                         %
reference(Line) procedure findLine ( reference(Point) value p1, p2 ) ;
if x(p1) = x(p2) then begin                  % the line is verticval %
Line( 0, x(p1) )
end
else begin                                % the line is not vertical %
real m1;
m1 := ( y(p1) - y(p2) ) / ( x(p1) - x(p2) );
Line( m1, y(p1) - ( m1 * x(p1) ) )
end findLine ;

% returns the intersection of two lines                                  %
%       - the lines must be distinct and not parallel                    %
reference(Point) procedure intersection ( reference(Line) value l1, l2 ) ;
begin
real x;
x := ( c(l2) - c(l1) ) / ( m(l1) - m(l2) );
Point( x, ( m(l1) * x ) + c(l1) )
end intersection ;

begin % find the intersection of the lines as per the task               %
reference(Point) i;
i := intersection( findLine( Point( 4.0, 0.0 ), Point(  6.0, 10.0 ) )
, findLine( Point( 0.0, 3.0 ), Point( 10.0,  7.0 ) )
);
write( r_format := "A", r_w := 8, r_d := 4, x(i), y(i) )
end
end.```
Output:
```  5.0000  5.0000
```

## APL

```⍝ APL has a powerful operator the « dyadic domino » to solve a system of N linear equations with N unknowns
⍝ We use it first to solve the a and b, defining the 2 lines as y = ax + b, with the x and y of the given points
⍝ The system of equations for first line will be:
⍝  0 = 4a + b
⍝ 10 = 6a + b
⍝ The two arguments to be passed to the dyadic domino are:
⍝ The (0, 10) vector as the left argument
⍝ The ( 4  1 ) matrix as the right argument.
⍝     ( 6  1 )
⍝ We will define a solver that will take the matrix of coordinates, one point per row, then massage the argument to extract x,y
⍝ and inject 1, where needed, and return a pair (a, b) of resolved unknowns.
⍝ Applied twice, we will have a, b and a', b' defining the two lines, we need to resolve it in x and y, in order to determine
⍝ their intersection
⍝ y =  ax + b
⍝ y = a'x + b'
⍝ In order to reuse the same solver, we need to format a little bit the arguments, and change the sign of a and a', therefore
⍝ multiply (a,b) and (a', b') by (-1, 1):
⍝ b  =  -ax + y
⍝ b' = -a'x + y
A ← 4 0
B ← 6 10
C ← 0 3
D ← 10 7
solver ← {(,2 ¯1↑⍵)⌹(2 1↑⍵),1}
I ← solver 2 2⍴((¯1 1)×solver 2 2⍴A,B),(¯1 1)×solver 2 2⍴C,D
```
Output:
```  I
5 5
```

## Arturo

Translation of: Go
```define :point [x,y][]
define :line [a, b][
init: [
this\slope: div this\b\y-this\a\y this\b\x-this\a\x
this\yInt: this\a\y - this\slope*this\a\x
]
]

evalX: function [line, x][
line\yInt + line\slope * x
]

intersect: function [line1, line2][
x: div line2\yInt-line1\yInt line1\slope-line2\slope
y: evalX line1 x

to :point @[x y]
]

l1: to :line @[to :point [4.0 0.0] to :point [6.0 10.0]]
l2: to :line @[to :point [0.0 3.0] to :point [10.0 7.0]]

print intersect l1 l2
```
Output:
`[x:5.0 y:5.0]`

## AutoHotkey

```LineIntersectionByPoints(L1, L2){
x1 := L1[1,1], y1 := L1[1,2]
x2 := L1[2,1], y2 := L1[2,2]
x3 := L2[1,1], y3 := L2[1,2]
x4 := L2[2,1], y4 := L2[2,2]
return ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4) - (y1-y2)*(x3-x4)) ", "
.      ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4) - (y1-y2)*(x3-x4))
}
```

Examples:

```L1 := [[4,0], [6,10]]
L2 := [[0,3], [10,7]]
MsgBox % LineIntersectionByPoints(L1, L2)
```

Outputs:

`5.000000, 5.000000`

## AWK

```# syntax: GAWK -f FIND_THE_INTERSECTION_OF_TWO_LINES.AWK
# converted from Ring
BEGIN {
intersect(4,0,6,10,0,3,10,7)
exit(0)
}
function intersect(xa,ya,xb,yb,xc,yc,xd,yd,  errors,x,y) {
printf("the 1st line passes through (%g,%g) and (%g,%g)\n",xa,ya,xb,yb)
printf("the 2nd line passes through (%g,%g) and (%g,%g)\n",xc,yc,xd,yd)
if (xb-xa == 0) { print("error: xb-xa=0") ; errors++ }
if (xd-xc == 0) { print("error: xd-xc=0") ; errors++ }
if (errors > 0) {
print("")
return(0)
}
printf("the two lines are:\n")
printf("yab=%g+x*%g\n",ya-xa*((yb-ya)/(xb-xa)),(yb-ya)/(xb-xa))
printf("ycd=%g+x*%g\n",yc-xc*((yd-yc)/(xd-xc)),(yd-yc)/(xd-xc))
x = ((yc-xc*((yd-yc)/(xd-xc)))-(ya-xa*((yb-ya)/(xb-xa))))/(((yb-ya)/(xb-xa))-((yd-yc)/(xd-xc)))
printf("x=%g\n",x)
y = ya-xa*((yb-ya)/(xb-xa))+x*((yb-ya)/(xb-xa))
printf("yab=%g\n",y)
printf("ycd=%g\n",yc-xc*((yd-yc)/(xd-xc))+x*((yd-yc)/(xd-xc)))
printf("intersection: %g,%g\n\n",x,y)
return(1)
}
```
Output:
```the 1st line passes through (4,0) and (6,10)
the 2nd line passes through (0,3) and (10,7)
the two lines are:
yab=-20+x*5
ycd=3+x*0.4
x=5
yab=5
ycd=5
intersection: 5,5
```

## BASIC

### Applesoft BASIC

``` 0 A = 1:B = 2: HOME : VTAB 21: HGR : HCOLOR= 3: FOR L = A TO B: READ X1(L),Y1(L),X2(L),Y2(L): HPLOT X1(L),Y1(L) TO X2(L),Y2(L): NEXT : DATA4,0,6,10,0,3,10,7
1  GOSUB 5: IF NAN THEN  PRINT "THE LINES DO NOT INTERSECT, THEY ARE EITHER PARALLEL OR CO-INCIDENT."
2  IF  NOT NAN THEN  PRINT "POINT OF INTERSECTION : "X" "Y
3  PRINT  CHR\$ (13)"HIT ANY KEY TO END PROGRAM": IF  NOT NAN THEN  FOR K = 0 TO 1 STEP 0:C = C = 0: HCOLOR= 3 * C: HPLOT X,Y: FOR I = 1 TO 30:K =  PEEK (49152) > 127: NEXT I,K
4  GET K\$: TEXT : END
5  FOR L = A TO B:S\$(L) = "NAN": IF X1(L) <  > X2(L) THEN S(L) = (Y1(L) - Y2(L)) / (X1(L) - X2(L)):S\$(L) =  STR\$ (S(L))
6  NEXT L:NAN = S\$(A) = S\$(B): IF NAN THEN  RETURN
7  IF S\$(A) = "NAN" AND S\$(B) <  > "NAN" THEN X = X1(A):Y = (X1(A) - X1(B)) * S(B) + Y1(B): RETURN
8  IF S\$(B) = "NAN" AND S\$(A) <  > "NAN" THEN X = X1(B):Y = (X1(B) - X1(A)) * S(A) + Y1(A): RETURN
9 X = (S(A) * X1(A) - S(B) * X1(B) + Y1(B) - Y1(A)) / (S(A) - S(B)):Y = S(B) * (X - X1(B)) + Y1(B): RETURN```

### QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
Works with: BASIC256
Works with: Just BASIC
Works with: Run BASIC
```xa = 4: xb = 6: xc = 0: xd = 10
ya = 0: yb = 10: yc = 3: yd = 7
PRINT "The two lines are:"
PRINT "yab ="; (ya - xa * ((yb - ya) / (xb - xa))); "+ x*"; ((yb - ya) / (xb - xa))
PRINT "ycd ="; (yc - xc * ((yd - yc) / (xd - xc))); "+ x*"; ((yd - yc) / (xd - xc))
x = ((yc - xc * ((yd - yc) / (xd - xc))) - (ya - xa * ((yb - ya) / (xb - xa)))) / (((yb - ya) / (xb - xa)) - ((yd - yc) / (xd - xc)))
PRINT "x ="; x
y = ya - xa * ((yb - ya) / (xb - xa)) + x * ((yb - ya) / (xb - xa))
PRINT "yab ="; y
PRINT "ycd ="; (yc - xc * ((yd - yc) / (xd - xc)) + x * ((yd - yc) / (xd - xc)))
PRINT "intersection: ("; x; ","; y; ")"
```
Output:
```The two lines are:
yab =-20 + x* 5
ycd = 3 + x* 0.4
x = 5
yab = 5
ycd = 5
intersection: ( 5, 5 )```

### BASIC256

Works with: QBasic
Works with: Just BASIC
Works with: Run BASIC
```xa = 4 : xb =  6 : xc = 0 : xd = 10
ya = 0 : yb = 10 : yc = 3 : yd = 7
print "The two lines are:"
print "yab = "; (ya-xa*((yb-ya)/(xb-xa))); " + x*"; ((yb-ya)/(xb-xa))
print "ycd = "; (yc-xc*((yd-yc)/(xd-xc))); " + x*"; ((yd-yc)/(xd-xc))
x = ((yc-xc*((yd-yc)/(xd-xc)))-(ya-xa*((yb-ya)/(xb-xa))))/(((yb-ya)/(xb-xa))-((yd-yc)/(xd-xc)))
print "x = "; x
y = ya-xa*((yb-ya)/(xb-xa))+x*((yb-ya)/(xb-xa))
print "yab = "; y
print "ycd = "; (yc-xc*((yd-yc)/(xd-xc))+x*((yd-yc)/(xd-xc)))
print "intersection: ("; x; ", "; y ; ")"```

### Craft Basic

```define xa = 4, xb = 6, xc = 0, xd = 10
define ya = 0, yb = 10, yc = 3, yd = 7

print "The two lines are:"
print "yab = ", (ya - xa * ((yb - ya) / (xb - xa))), " + x * ", ((yb - ya) / (xb - xa))
print "ycd = ", (yc - xc * ((yd - yc) / (xd - xc))), " + x * ", ((yd - yc) / (xd - xc))
let x = ((yc - xc * ((yd - yc) / (xd - xc))) - (ya - xa * ((yb - ya) / (xb - xa)))) / (((yb - ya) / (xb - xa)) - ((yd - yc) / (xd - xc)))
print "x = ", x
let y = ya - xa * ((yb - ya) / (xb - xa)) + x * ((yb - ya) / (xb - xa))
print "yab = ", y
print "ycd = ", (yc - xc * ((yd - yc) / (xd - xc)) + x * ((yd - yc) / (xd - xc)))
print "intersection: (", x, comma, " ", y, ")"
```
Output:
```The two lines are:
yab = -20 + x * 5
ycd = 3 + x * 0.4000
x = 5
yab = 5
ycd = 5

intersection: (5, 5)```

### Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
Works with: QBasic
```xa = 4: xb = 6: xc = 0: xd = 10
ya = 0: yb = 10: yc = 3: yd = 7
print "The two lines are:"
print "yab = "; (ya - xa * ((yb - ya) / (xb - xa))); "+ x*"; ((yb - ya) / (xb - xa))
print "ycd = "; (yc - xc * ((yd - yc) / (xd - xc))); "+ x*"; ((yd - yc) / (xd - xc))
x = ((yc - xc * ((yd - yc) / (xd - xc))) - (ya - xa * ((yb - ya) / (xb - xa)))) / (((yb - ya) / (xb - xa)) - ((yd - yc) / (xd - xc)))
print "x = "; x
y = ya - xa * ((yb - ya) / (xb - xa)) + x * ((yb - ya) / (xb - xa))
print "yab = "; y
print "ycd = "; (yc - xc * ((yd - yc) / (xd - xc)) + x * ((yd - yc) / (xd - xc)))
print "intersection: ("; x; ","; y; " )"```

### Sinclair ZX81 BASIC

Translation of: REXX

(version 1)

Works with 1k of RAM.

``` 10 LET XA=4
20 LET YA=0
30 LET XB=6
40 LET YB=10
50 LET XC=0
60 LET YC=3
70 LET XD=10
80 LET YD=0
90 PRINT "THE TWO LINES ARE:"
100 PRINT "YAB=";YA-XA*((YB-YA)/(XB-XA));"+X*";((YB-YA)/(XB-XA))
110 PRINT "YCD=";YC-XC*((YD-YC)/(XD-XC));"+X*";((YD-YC)/(XD-XC))
120 LET X=((YC-XC*((YD-YC)/(XD-XC)))-(YA-XA*((YB-YA)/(XB-XA))))/(((YB-YA)/(XB-XA))-((YD-YC)/(XD-XC)))
130 PRINT "X=";X
140 LET Y=YA-XA*((YB-YA)/(XB-XA))+X*((YB-YA)/(XB-XA))
150 PRINT "YAB=";Y
160 PRINT "YCD=";YC-XC*((YD-YC)/(XD-XC))+X*((YD-YC)/(XD-XC))
170 PRINT "INTERSECTION: ";X;",";Y
```
Output:
```THE TWO LINES ARE:
YAB=-20+X*5
YCD=3+X*0.4
X=5
YAB=5
YCD=5
INTERSECTION: 5,5```

### True BASIC

Works with: QBasic
Works with: BASIC256
Works with: Just BASIC
Works with: Run BASIC
```LET xa = 4
LET ya = 0
LET xb = 6
LET yb = 10
LET xc = 0
LET yc = 3
LET xd = 10
LET yd = 7
PRINT "The two lines are:"
PRINT "yab ="; (ya-xa*((yb-ya)/(xb-xa))); " + x*"; ((yb-ya)/(xb-xa))
PRINT "ycd ="; (yc-xc*((yd-yc)/(xd-xc))); " + x*"; ((yd-yc)/(xd-xc))
LET x = ((yc-xc*((yd-yc)/(xd-xc)))-(ya-xa*((yb-ya)/(xb-xa))))/(((yb-ya)/(xb-xa))-((yd-yc)/(xd-xc)))
PRINT "x ="; x
LET y = ya-xa*((yb-ya)/(xb-xa))+x*((yb-ya)/(xb-xa))
PRINT "yab ="; y
PRINT "ycd ="; (yc-xc*((yd-yc)/(xd-xc))+x*((yd-yc)/(xd-xc)))
PRINT "intersection: ("; x; ","; y ; " )"
END
```

### Yabasic

```xa = 4: xb = 6: xc = 0: xd = 10
ya = 0: yb = 10: yc = 3: yd = 7
print "The two lines are:"
print "yab = ", (ya - xa * ((yb - ya) / (xb - xa))), " + x*", ((yb - ya) / (xb - xa))
print "ycd = ", (yc - xc * ((yd - yc) / (xd - xc))), " + x*", ((yd - yc) / (xd - xc))
x = ((yc - xc * ((yd - yc) / (xd - xc))) - (ya - xa * ((yb - ya) / (xb - xa)))) / (((yb - ya) / (xb - xa)) - ((yd - yc) / (xd - xc)))
print "x = ", x
y = ya - xa * ((yb - ya) / (xb - xa)) + x * ((yb - ya) / (xb - xa))
print "yab = ", y
print "ycd = ", (yc - xc * ((yd - yc) / (xd - xc)) + x * ((yd - yc) / (xd - xc)))
print "intersection: (", x, ", ", y, ")"```

## C

This implementation is generic and considers any two lines in the XY plane and not just the specified example. Usage is printed on incorrect invocation.

```#include<stdlib.h>
#include<stdio.h>
#include<math.h>

typedef struct{
double x,y;
}point;

double lineSlope(point a,point b){

if(a.x-b.x == 0.0)
return NAN;
else
return (a.y-b.y)/(a.x-b.x);
}

point extractPoint(char* str){
int i,j,start,end,length;
char* holder;
point c;

for(i=0;str[i]!=00;i++){
if(str[i]=='(')
start = i;
if(str[i]==','||str[i]==')')
{
end = i;

length = end - start;

holder = (char*)malloc(length*sizeof(char));

for(j=0;j<length-1;j++)
holder[j] = str[start + j + 1];
holder[j] = 00;

if(str[i]==','){
start = i;
c.x = atof(holder);
}
else
c.y = atof(holder);
}
}

return c;
}

point intersectionPoint(point a1,point a2,point b1,point b2){
point c;

double slopeA = lineSlope(a1,a2), slopeB = lineSlope(b1,b2);

if(slopeA==slopeB){
c.x = NAN;
c.y = NAN;
}
else if(isnan(slopeA) && !isnan(slopeB)){
c.x = a1.x;
c.y = (a1.x-b1.x)*slopeB + b1.y;
}
else if(isnan(slopeB) && !isnan(slopeA)){
c.x = b1.x;
c.y = (b1.x-a1.x)*slopeA + a1.y;
}
else{
c.x = (slopeA*a1.x - slopeB*b1.x + b1.y - a1.y)/(slopeA - slopeB);
c.y = slopeB*(c.x - b1.x) + b1.y;
}

return c;
}

int main(int argC,char* argV[])
{
point c;

if(argC < 5)
printf("Usage : %s <four points specified as (x,y) separated by a space>",argV[0]);
else{
c = intersectionPoint(extractPoint(argV[1]),extractPoint(argV[2]),extractPoint(argV[3]),extractPoint(argV[4]));

if(isnan(c.x))
printf("The lines do not intersect, they are either parallel or co-incident.");
else
printf("Point of intersection : (%lf,%lf)",c.x,c.y);
}

return 0;
}
```

Invocation and output:

```C:\rosettaCode>lineIntersect.exe (4,0) (6,10) (0,3) (10,7)
Point of intersection : (5.000000,5.000000)
```

## C#

```using System;
using System.Drawing;
public class Program
{
static PointF FindIntersection(PointF s1, PointF e1, PointF s2, PointF e2) {
float a1 = e1.Y - s1.Y;
float b1 = s1.X - e1.X;
float c1 = a1 * s1.X + b1 * s1.Y;

float a2 = e2.Y - s2.Y;
float b2 = s2.X - e2.X;
float c2 = a2 * s2.X + b2 * s2.Y;

float delta = a1 * b2 - a2 * b1;
//If lines are parallel, the result will be (NaN, NaN).
return delta == 0 ? new PointF(float.NaN, float.NaN)
: new PointF((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta);
}

static void Main() {
Func<float, float, PointF> p = (x, y) => new PointF(x, y);
Console.WriteLine(FindIntersection(p(4f, 0f), p(6f, 10f), p(0f, 3f), p(10f, 7f)));
Console.WriteLine(FindIntersection(p(0f, 0f), p(1f, 1f), p(1f, 2f), p(4f, 5f)));
}
}
```
Output:
```{X=5, Y=5}
{X=NaN, Y=NaN}
```

## C++

```#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;

/** Calculate determinant of matrix:
[a b]
[c d]
*/
inline double Det(double a, double b, double c, double d)
{
return a*d - b*c;
}

/// Calculate intersection of two lines.
bool LineLineIntersect(double x1, double y1, // Line 1 start
double x2, double y2, // Line 1 end
double x3, double y3, // Line 2 start
double x4, double y4, // Line 2 end
double &ixOut, double &iyOut) // Output
{
double detL1 = Det(x1, y1, x2, y2);
double detL2 = Det(x3, y3, x4, y4);
double x1mx2 = x1 - x2;
double x3mx4 = x3 - x4;
double y1my2 = y1 - y2;
double y3my4 = y3 - y4;

double denom = Det(x1mx2, y1my2, x3mx4, y3my4);
if(denom == 0.0) // Lines don't seem to cross
{
ixOut = NAN;
iyOut = NAN;
return false;
}

double xnom = Det(detL1, x1mx2, detL2, x3mx4);
double ynom = Det(detL1, y1my2, detL2, y3my4);
ixOut = xnom / denom;
iyOut = ynom / denom;
if(!isfinite(ixOut) || !isfinite(iyOut)) // Probably a numerical issue
return false;

return true; //All OK
}

int main()
{
// **Simple crossing diagonal lines**

// Line 1
double x1=4.0, y1=0.0;
double x2=6.0, y2=10.0;

// Line 2
double x3=0.0, y3=3.0;
double x4=10.0, y4=7.0;

double ix = -1.0, iy = -1.0;
bool result = LineLineIntersect(x1, y1, x2, y2, x3, y3, x4, y4, ix, iy);
cout << "result " <<  result << "," << ix << "," << iy << endl;

double eps = 1e-6;
assert(result == true);
assert(fabs(ix - 5.0) < eps);
assert(fabs(iy - 5.0) < eps);
return 0;
}
```
Output:
`result 1,5,5`

## Clojure

```;; Point is [x y] tuple
(defn compute-line [pt1 pt2]
(let [[x1 y1] pt1
[x2 y2] pt2
m (/ (- y2 y1) (- x2 x1))]
{:slope  m
:offset (- y1 (* m x1))}))

(defn intercept [line1 line2]
(let [x (/ (- (:offset line1) (:offset line2))
(- (:slope  line2) (:slope  line1)))]
{:x x
:y (+ (* (:slope line1) x)
(:offset line1))}))
```
Output:
```(def line1 (compute-line [4 0] [6 10]))
(def line2 (compute-line [0 3] [10 7]))
line1  ; {:slope 5, :offset -20}
line2  ; {:slope 2/5, :offset 3}

(intercept line1 line2)  ; {:x 5, :y 5}
```

## Common Lisp

```;; Point is [x y] tuple
(defun point-of-intersection (x1 y1 x2 y2 x3 y3 x4 y4)
"Find the point of intersection of the lines defined by the points (x1 y1) (x2 y2) and (x3 y3) (x4 y4)"
(let* ((dx1 (- x2 x1))
(dx2 (- x4 x3))
(dy1 (- y2 y1))
(dy2 (- y4 y3))
(den (- (* dy1 dx2) (* dy2 dx1))) )
(unless (zerop den)
(list (/ (+ (* (- y3 y1) dx1 dx2) (* x1 dy1 dx2) (* -1 x3 dy2 dx1)) den)
(/ (+ (* (+ x3 x1) dy1 dy2) (* -1 y1 dx1 dy2) (* y3 dx2 dy1)) den) ))))
```
Output:
```(point-of-intersection 4 0 6 10 0 3 10 7) => (5 5)
```

## D

Translation of: Kotlin
```import std.stdio;

struct Point {
real x, y;

void toString(scope void delegate(const(char)[]) sink) const {
import std.format;
sink("{");
sink.formattedWrite!"%f"(x);
sink(", ");
sink.formattedWrite!"%f"(y);
sink("}");
}
}

struct Line {
Point s, e;
}

Point findIntersection(Line l1, Line l2) {
auto a1 = l1.e.y - l1.s.y;
auto b1 = l1.s.x - l1.e.x;
auto c1 = a1 * l1.s.x + b1 * l1.s.y;

auto a2 = l2.e.y - l2.s.y;
auto b2 = l2.s.x - l2.e.x;
auto c2 = a2 * l2.s.x + b2 * l2.s.y;

auto delta = a1 * b2 - a2 * b1;
// If lines are parallel, intersection point will contain infinite values
return Point((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta);
}

void main() {
auto l1 = Line(Point(4.0, 0.0), Point(6.0, 10.0));
auto l2 = Line(Point(0f, 3f), Point(10f, 7f));
writeln(findIntersection(l1, l2));
l1 = Line(Point(0.0, 0.0), Point(1.0, 1.0));
l2 = Line(Point(1.0, 2.0), Point(4.0, 5.0));
writeln(findIntersection(l1, l2));
}
```
Output:
```{5.000000, 5.000000}
{-inf, -inf}```

## Delphi

Works with: Delphi version 6.0

This subroutine not only finds the intersection, it test for various degenerate condition where the intersection can fail.

```{Vector structs and operations - these would normally be in}
{a library, but are produced here so everything is explicit}

type T2DVector=packed record
X,Y: double;
end;

type T2DLine = packed record
P1,P2: T2DVector;
end;

function MakeVector2D(const X,Y: double): T2DVector;
begin
Result.X:=X;
Result.Y:=Y;
end;

function MakeLine2D(X1,Y1,X2,Y2: double): T2DLine;
begin
Result.P1:=MakeVector2D(X1,Y1);
Result.P2:=MakeVector2D(X2,Y2);
end;

function DoLinesIntersect2D(L1,L2: T2DLine; var Point: T2DVector): boolean;
{Finds intersect point only if the lines actually intersect}
var distAB, theCos, theSin, newX, ABpos: double;
begin
Result:=False;
{  Fail if either line segment is zero-length.}
if (L1.P1.X=L1.P2.X) and (L1.P1.Y=L1.P2.Y) or
(L2.P1.X=L2.P2.X) and (L2.P1.Y=L2.P2.Y) then exit;

{  Fail if the segments share an end-point.}
if (L1.P1.X=L2.P1.X) and (L1.P1.Y=L2.P1.Y) or
(L1.P2.X=L2.P1.X) and (L1.P2.Y=L2.P1.Y) or
(L1.P1.X=L2.P2.X) and (L1.P1.Y=L2.P2.Y) or
(L1.P2.X=L2.P2.X) and (L1.P2.Y=L2.P2.Y) then exit;

{  (1) Translate the system so that point A is on the origin.}
L1.P2.X:=L1.P2.X-L1.P1.X; L1.P2.Y:=L1.P2.Y-L1.P1.Y;
L2.P1.X:=L2.P1.X-L1.P1.X; L2.P1.Y:=L2.P1.Y-L1.P1.Y;
L2.P2.X:=L2.P2.X-L1.P1.X; L2.P2.Y:=L2.P2.Y-L1.P1.Y;

{  Discover the length of segment A-B.}
distAB:=sqrt(L1.P2.X*L1.P2.X+L1.P2.Y*L1.P2.Y);

{  (2) Rotate the system so that point B is on the positive X L1.P1.Xis.}
theCos:=L1.P2.X/distAB;
theSin:=L1.P2.Y/distAB;
newX:=L2.P1.X*theCos+L2.P1.Y*theSin;
L2.P1.Y  :=L2.P1.Y*theCos-L2.P1.X*theSin; L2.P1.X:=newX;
newX:=L2.P2.X*theCos+L2.P2.Y*theSin;
L2.P2.Y  :=L2.P2.Y*theCos-L2.P2.X*theSin; L2.P2.X:=newX;

{  Fail if segment C-D doesn't cross line A-B.}
if (L2.P1.Y<0) and (L2.P2.Y<0) or (L2.P1.Y>=0) and (L2.P2.Y>=0) then exit;

{  (3) Discover the position of the intersection point along line A-B.}
ABpos:=L2.P2.X+(L2.P1.X-L2.P2.X)*L2.P2.Y/(L2.P2.Y-L2.P1.Y);

{  Fail if segment C-D crosses line A-B outside of segment A-B.}
if (ABpos<0) or (ABpos>distAB) then exit;

{  (4) Apply the discovered position to line A-B in the original coordinate system.}
Point.X:=L1.P1.X+ABpos*theCos;
Point.Y:=L1.P1.Y+ABpos*theSin;
Result:=True;
end;

procedure TestIntersect(Memo: TMemo; L1,L2: T2DLine);
var Int: T2DVector;
var S: string;
begin
if DoLinesIntersect2D(L1,L2,Int) then Memo.Lines.Add(Format('Intersect = %2.1f %2.1f',[Int.X,Int.Y]))
end;

procedure TestLineIntersect(Memo: TMemo);
var L1,L2: T2DLine;
var S: string;
begin
L1:=MakeLine2D(4,0,6,10);
L2:=MakeLine2D(0,3,10,7);
TestIntersect(Memo,L1,L2);
L1:=MakeLine2D(0,0,1,1);
L2:=MakeLine2D(1,2,4,5);
TestIntersect(Memo,L1,L2);
end;
```
Output:
```Line-1: (4,0)->(6,10)
Line-2: (0,3)->(10,7)
Intersect = 5.0 5.0

Line-1: (0,0)->(1,1)
Line-2: (1,2)->(4,5)
No Intersect.
```

## EasyLang

Translation of: Python
```proc intersect ax1 ay1 ax2 ay2 bx1 by1 bx2 by2 . rx ry .
rx = 1 / 0
ry = 1 / 0
d = (by2 - by1) * (ax2 - ax1) - (bx2 - bx1) * (ay2 - ay1)
if d = 0
return
.
ua = ((bx2 - bx1) * (ay1 - by1) - (by2 - by1) * (ax1 - bx1)) / d
ub = ((ax2 - ax1) * (ay1 - by1) - (by2 - by1) * (ax1 - bx1)) / d
if abs ua > 1 or abs ub > 1
return
.
rx = ax1 + ua * (ax2 - ax1)
ry = ay1 + ua * (ay2 - ay1)
.
intersect 4 0 6 10 0 3 10 7 rx ry
print rx & " " & ry
intersect 4 0 6 10 0 3 10 7.1 rx ry
print rx & " " & ry
intersect 0 0 1 1 1 2 4 5 rx ry
print rx & " " & ry```

## Emacs Lisp

```;; y = a*x + b
(let ()
(defun line-prop (p1 p2)
(let* ((prop-a (/ (- (plist-get p2 'y) (plist-get p1 'y))
(- (plist-get p2 'x) (plist-get p1 'x))))
(prop-b (- (plist-get p1 'y) (* prop-a (plist-get p1 'x)))))

(list 'a prop-a 'b prop-b) ) )

(defun calculate-intersection (line1 line2)
(if (= (plist-get line1 'a) (plist-get line2 'a))
(progn (error "The two lines don't have any intersection.") nil)
(progn
(let (int-x int-y)
(setq int-x (/ (- (plist-get line2 'b) (plist-get line1 'b))
(- (plist-get line1 'a) (plist-get line2 'a))))
(setq int-y (+ (* (plist-get line1 'a) int-x) (plist-get line1 'b)))
(list 'x int-x 'y int-y) ) ) ) )

(let ((p1 '(x 4.0 y 0.0)) (p2 '(x 6.0 y 10.0))
(p3 '(x 0.0 y 3.0)) (p4 '(x 10.0 y 7.0)))
(let ((line1 (line-prop p1 p2))
(line2 (line-prop p3 p4)))
(message "%s" (calculate-intersection line1 line2)) ) )

)
```
Output:
```(x 5.0 y 5.0)
```

## EMal

```type Intersection
model
Point point
fun asText = <|when(me.point == null, "No intersection", me.point.asText())
end
type Point
model
real x, y
fun asText = <|"(" + me.x + "," + me.y + ")"
end
type Line
model
Point s,e
end
type Main
fun getIntersectionByLines = Intersection by Line n1, Line n2
real a1 = n1.e.y - n1.s.y
real b1 = n1.s.x - n1.e.x
real c1 = a1 * n1.s.x + b1 * n1.s.y
real a2 = n2.e.y - n2.s.y
real b2 = n2.s.x - n2.e.x
real c2 = a2 * n2.s.x + b2 * n2.s.y
real delta = a1 * b2 - a2 * b1
if delta == 0 do return Intersection() end
return Intersection(Point((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta))
end
Line n1 = Line(Point(4, 0), Point(6, 10))
Line n2 = Line(Point(0, 3), Point(10, 7))
writeLine(getIntersectionByLines(n1, n2))
n1 = Line(Point(0, 0), Point(1, 1))
n2 = Line(Point(1, 2), Point(4, 5))
writeLine(getIntersectionByLines(n1, n2))```
Output:
```(5.0,5.0)
No intersection
```

## F#

```(*
Find the point of intersection of 2 lines.
Nigel Galloway May 20th., 2017
*)
type Line={a:float;b:float;c:float} member N.toS=sprintf "%.2fx + %.2fy = %.2f" N.a N.b N.c
let intersect (n:Line) g = match (n.a*g.b-g.a*n.b) with
|0.0 ->printfn "%s does not intersect %s" n.toS g.toS
|ng  ->printfn "%s intersects %s at x=%.2f y=%.2f" n.toS g.toS ((g.b*n.c-n.b*g.c)/ng) ((n.a*g.c-g.a*n.c)/ng)
let fn (i,g) (e,l) = {a=g-l;b=e-i;c=(e-i)*g+(g-l)*i}
intersect (fn (4.0,0.0) (6.0,10.0)) (fn (0.0,3.0) (10.0,7.0))
intersect {a=3.18;b=4.23;c=7.13} {a=6.36;b=8.46;c=9.75}
```
Output:
```-10.00x + 2.00y = -40.00 intersects -4.00x + 10.00y = 30.00 at x=5.00 y=5.00
3.18x + 4.23y = 7.13 does not intersect 6.36x + 8.46y = 9.75
```

## Factor

Works with: Factor version 0.99 2020-01-23
```USING: arrays combinators.extras kernel math
math.matrices.laplace math.vectors prettyprint sequences ;

: det ( pt pt -- x ) 2array determinant ;

: numerator ( x y pt pt quot -- z )
bi@ swapd [ 2array ] 2bi@ det ; inline

: intersection ( pt pt pt pt -- pt )
[ [ det ] 2bi@ ]
[ [ v- ] 2bi@ ] 4bi
[ [ first ] numerator ]
[ [ second ] numerator ]
[ det 2nip ] 4tri
dup zero? [ 3drop { 0/0. 0/0. } ]
[ tuck [ / ] 2bi@ 2array ] if ;

{ 4 0 } { 6 10 } { 0 3 } { 10 7 } intersection .
{ 4 0 } { 6 10 } { 0 3 } { 10 7+1/10 } intersection .
{ 0 0 } { 1 1 } { 1 2 } { 4 5 } intersection .
```
Output:
```{ 5 5 }
{ 5+5/459 5+25/459 }
{ NAN: 8000000000000 NAN: 8000000000000 }
```

## Fortran

Works with: Fortran version 90 and later
```program intersect_two_lines
implicit none

type point
real::x,y
end type point

integer, parameter :: n = 4
type(point)        :: p(n)

p(1)%x = 4; p(1)%y = 0; p(2)%x = 6;  p(2)%y = 10 ! fist line
p(3)%x = 0; p(3)%y = 3; p(4)%x = 10; p(4)%y = 7  ! second line

call intersect(p, n)

contains

subroutine intersect(p,m)
integer, intent(in)       :: m
type(point), intent(in)   :: p(m)
integer   :: i
real      :: a(2), b(2) ! y = a*x + b, for each line
real      :: x, y       ! intersect point
real      :: dx,dy      ! working variables

do i = 1, 2
dx = p(2*i-1)%x - p(2*i)%x
dy = p(2*i-1)%y - p(2*i)%y
if( dx == 0.) then    ! in case this line is of the form y = b
a(i) = 0.
b(i) = p(2*i-1)%y
else
a(i)= dy / dx
b(i) = p(2*i-1)%y - a(i)*p(2*i-1)%x
endif
enddo

if( a(1) - a(2) == 0. ) then
write(*,*)"lines are not intersecting"
return
endif

x = ( b(2) - b(1) ) / ( a(1) - a(2) )
y = a(1) * x + b(1)
write(*,*)x,y
end subroutine intersect
end program intersect_two_lines
```
Output:
` 5.00000000       5.00000000 `

## FreeBASIC

```' version 16-08-2017
' compile with: fbc -s console
#Define NaN 0 / 0   ' FreeBASIC returns -1.#IND

Type _point_
As Double x, y
End Type

Function l_l_intersect(s1 As _point_, e1 As _point_, s2 As _point_, e2 As _point_) As _point_

Dim As Double a1 = e1.y - s1.y
Dim As Double b1 = s1.x - e1.x
Dim As Double c1 = a1 * s1.x + b1 * s1.y
Dim As Double a2 = e2.y - s2.y
Dim As Double b2 = s2.x - e2.x
Dim As Double c2 = a2 * s2.x + b2 * s2.y
Dim As Double det = a1 * b2 - a2 * b1

If det = 0 Then
Return Type(NaN, NaN)
Else
Return Type((b2 * c1 - b1 * c2) / det, (a1 * c2 - a2 * c1) / det)
End If

End Function

' ------=< MAIN >=------

Dim As _point_ s1, e1, s2, e2, answer

s1.x = 4.0 : s1.y = 0.0 : e1.x =  6.0 : e1.y = 10.0  ' start and end of first line
s2.x = 0.0 : s2.y = 3.0 : e2.x = 10.0 : e2.y =  7.0  ' start and end of second line
answer = l_l_intersect(s1, e1, s2, e2)

s1.x = 0.0 : s1.y = 0.0 : e1.x =  0.0 : e1.y =  0.0  ' start and end of first line
s2.x = 0.0 : s2.y = 3.0 : e2.x = 10.0 : e2.y =  7.0  ' start and end of second line
answer = l_l_intersect(s1, e1, s2, e2)

' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End```
Output:
``` 5              5
-1.#IND       -1.#IND```

## Frink

```lineIntersection[x1, y1, x2, y2, x3, y3, x4, y4] :=
{
det = (x1 - x2)(y3 - y4) - (y1 - y2)(x3 - x4)
if det == 0
return undef

t1 = (x1 y2 - y1 x2)
t2 = (x3 y4 - y3 x4)
px = (t1 (x3 - x4) - t2 (x1 - x2)) / det
py = (t1 (y3 - y4) - t2 (y1 - y2)) / det
return [px, py]
}

println[lineIntersection[4, 0, 6, 10, 0, 3, 10, 7]]```
Output:
```[5, 5]
```

## Go

```package main

import (
"fmt"
"errors"
)

type Point struct {
x float64
y float64
}

type Line struct {
slope float64
yint float64
}

func CreateLine (a, b Point) Line {
slope := (b.y-a.y) / (b.x-a.x)
yint := a.y - slope*a.x
return Line{slope, yint}
}

func EvalX (l Line, x float64) float64 {
return l.slope*x + l.yint
}

func Intersection (l1, l2 Line) (Point, error) {
if l1.slope == l2.slope {
return Point{}, errors.New("The lines do not intersect")
}
x := (l2.yint-l1.yint) / (l1.slope-l2.slope)
y := EvalX(l1, x)
return Point{x, y}, nil
}

func main() {
l1 := CreateLine(Point{4, 0}, Point{6, 10})
l2 := CreateLine(Point{0, 3}, Point{10, 7})
if result, err := Intersection(l1, l2); err == nil {
fmt.Println(result)
} else {
fmt.Println("The lines do not intersect")
}
}
```
Output:
`{5 5}`

## Groovy

Translation of: Java
```class Intersection {
private static class Point {
double x, y

Point(double x, double y) {
this.x = x
this.y = y
}

@Override
String toString() {
return "(\$x, \$y)"
}
}

private static class Line {
Point s, e

Line(Point s, Point e) {
this.s = s
this.e = e
}
}

private static Point findIntersection(Line l1, Line l2) {
double a1 = l1.e.y - l1.s.y
double b1 = l1.s.x - l1.e.x
double c1 = a1 * l1.s.x + b1 * l1.s.y

double a2 = l2.e.y - l2.s.y
double b2 = l2.s.x - l2.e.x
double c2 = a2 * l2.s.x + b2 * l2.s.y

double delta = a1 * b2 - a2 * b1
return new Point((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta)
}

static void main(String[] args) {
Line l1 = new Line(new Point(4, 0), new Point(6, 10))
Line l2 = new Line(new Point(0, 3), new Point(10, 7))
println(findIntersection(l1, l2))

l1 = new Line(new Point(0, 0), new Point(1, 1))
l2 = new Line(new Point(1, 2), new Point(4, 5))
println(findIntersection(l1, l2))
}
}
```
Output:
```(5.0, 5.0)
(-Infinity, -Infinity)```

```type Line = (Point, Point)

type Point = (Float, Float)

intersection :: Line -> Line -> Either String Point
intersection ab pq =
case determinant of
0 -> Left "(Parallel lines – no intersection)"
_ ->
let [abD, pqD] = (\(a, b) -> diff ([fst, snd] <*> [a, b])) <\$> [ab, pq]
[ix, iy] =
[\(ab, pq) -> diff [abD, ab, pqD, pq] / determinant] <*>
[(abDX, pqDX), (abDY, pqDY)]
in Right (ix, iy)
where
delta f x = f (fst x) - f (snd x)
diff [a, b, c, d] = a * d - b * c
[abDX, pqDX, abDY, pqDY] = [delta fst, delta snd] <*> [ab, pq]
determinant = diff [abDX, abDY, pqDX, pqDY]

-- TEST ----------------------------------------------------------------
ab :: Line
ab = ((4.0, 0.0), (6.0, 10.0))

pq :: Line
pq = ((0.0, 3.0), (10.0, 7.0))

interSection :: Either String Point
interSection = intersection ab pq

main :: IO ()
main =
putStrLn \$
case interSection of
Left x -> x
Right x -> show x
```
Output:
`(5.0,5.0)`

## J

Translation of: C++

Solution:

```det=: -/ .*   NB. calculate determinant
findIntersection=: (det ,."1 [: |: -/"2) %&det -/"2
```

Examples:

```   line1=: 4 0 ,: 6 10
line2=: 0 3 ,: 10 7
line3=: 0 3 ,: 10 7.1
line4=: 0 0 ,: 1 1
line5=: 1 2 ,: 4 5
line6=: 1 _1 ,: 4 4
line7=: 2 5 ,: 3 _2

findIntersection line1 ,: line2
5 5
findIntersection line1 ,: line3
5.01089 5.05447
findIntersection line4 ,: line5
__ __
findIntersection line6 ,: line7
2.5 1.5
```

## Java

Translation of: Kotlin
```public class Intersection {
private static class Point {
double x, y;

Point(double x, double y) {
this.x = x;
this.y = y;
}

@Override
public String toString() {
return String.format("{%f, %f}", x, y);
}
}

private static class Line {
Point s, e;

Line(Point s, Point e) {
this.s = s;
this.e = e;
}
}

private static Point findIntersection(Line l1, Line l2) {
double a1 = l1.e.y - l1.s.y;
double b1 = l1.s.x - l1.e.x;
double c1 = a1 * l1.s.x + b1 * l1.s.y;

double a2 = l2.e.y - l2.s.y;
double b2 = l2.s.x - l2.e.x;
double c2 = a2 * l2.s.x + b2 * l2.s.y;

double delta = a1 * b2 - a2 * b1;
return new Point((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta);
}

public static void main(String[] args) {
Line l1 = new Line(new Point(4, 0), new Point(6, 10));
Line l2 = new Line(new Point(0, 3), new Point(10, 7));
System.out.println(findIntersection(l1, l2));

l1 = new Line(new Point(0, 0), new Point(1, 1));
l2 = new Line(new Point(1, 2), new Point(4, 5));
System.out.println(findIntersection(l1, l2));
}
}
```
Output:
```{5.000000, 5.000000}
{-Infinity, -Infinity}```

## JavaScript

### ES6

```(() => {
'use strict';
// INTERSECTION OF TWO LINES ----------------------------------------------

// intersection :: Line -> Line -> Either String (Float, Float)
const intersection = (ab, pq) => {
const
delta = f => x => f(fst(x)) - f(snd(x)),
[abDX, pqDX, abDY, pqDY] = apList(
[delta(fst), delta(snd)], [ab, pq]
),
determinant = abDX * pqDY - abDY * pqDX;

return determinant !== 0 ? Right((() => {
const [abD, pqD] = map(
([a, b]) => fst(a) * snd(b) - fst(b) * snd(a),
[ab, pq]
);
return apList(
[([pq, ab]) =>
(abD * pq - ab * pqD) / determinant
], [
[pqDX, abDX],
[pqDY, abDY]
]
);
})()) : Left('(Parallel lines – no intersection)');
};

// GENERIC FUNCTIONS ------------------------------------------------------

// Left :: a -> Either a b
const Left = x => ({
type: 'Either',
Left: x
});

// Right :: b -> Either a b
const Right = x => ({
type: 'Either',
Right: x
});

// A list of functions applied to a list of arguments
// <*> :: [(a -> b)] -> [a] -> [b]
const apList = (fs, xs) => //
[].concat.apply([], fs.map(f => //
[].concat.apply([], xs.map(x => [f(x)]))));

// fst :: (a, b) -> a
const fst = tpl => tpl[0];

// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) => xs.map(f);

// snd :: (a, b) -> b
const snd = tpl => tpl[1];

// show :: a -> String
const show = x => JSON.stringify(x); //, null, 2);

// TEST --------------------------------------------------

// lrIntersection ::Either String Point
const lrIntersection = intersection([
[4.0, 0.0],
[6.0, 10.0]
], [
[0.0, 3.0],
[10.0, 7.0]
]);
return show(lrIntersection.Left || lrIntersection.Right);
})();
```
Output:
`[5,5]`

## jq

The implementation closely follows the zkl entry but uses the JSON array [x,y] to represent the point (x,y), and an array [P1,P2] to represent the line through points P1 and P2. Array destructuring is used for simplicity.

```# determinant of 2x2 matrix
def det(a;b;c;d): a*d - b*c ;

# Input: an array representing a line (L1)
# Output: the intersection of L1 and L2 unless the lines are judged to be parallel
# This implementation uses "destructuring" to assign local variables
def lineIntersection(L2):
.    as [[\$ax,\$ay], [\$bx,\$by]]
| L2 as [[\$cx,\$cy], [\$dx,\$dy]]
| {detAB: det(\$ax;\$ay; \$bx;\$by),
detCD: det(\$cx;\$cy; \$dx;\$dy),
abDx: (\$ax - \$bx),
cdDx: (\$cx - \$dx),
abDy: (\$ay - \$by),
cdDy: (\$cy - \$dy)}
| . + {xnom:  det(.detAB;.abDx;.detCD;.cdDx),
ynom:  det(.detAB;.abDy;.detCD;.cdDy),
denom: det(.abDx; .abDy;.cdDx; .cdDy) }
| if (.denom|length < 10e-6)  # length/0 emits the absolute value
then error("lineIntersect: parallel lines")
else [.xnom/.denom, .ynom/.denom]
end ;```

Example:

`[[4.0, 0.0], [6.0,10.0]] | lineIntersection([[0.0, 3.0], [10.0, 7.0]])`
Output:
`[5,5]`

## Julia

Works with: Julia version 0.6
Translation of: Kotlin
```struct Point{T}
x::T
y::T
end

struct Line{T}
s::Point{T}
e::Point{T}
end

function intersection(l1::Line{T}, l2::Line{T}) where T<:Real
a1 = l1.e.y - l1.s.y
b1 = l1.s.x - l1.e.x
c1 = a1 * l1.s.x + b1 * l1.s.y

a2 = l2.e.y - l2.s.y
b2 = l2.s.x - l2.e.x
c2 = a2 * l2.s.x + b2 * l2.s.y

Δ = a1 * b2 - a2 * b1
# If lines are parallel, intersection point will contain infinite values
return Point((b2 * c1 - b1 * c2) / Δ, (a1 * c2 - a2 * c1) / Δ)
end

l1 = Line(Point{Float64}(4, 0), Point{Float64}(6, 10))
l2 = Line(Point{Float64}(0, 3), Point{Float64}(10, 7))
println(intersection(l1, l2))

l1 = Line(Point{Float64}(0, 0), Point{Float64}(1, 1))
l2 = Line(Point{Float64}(1, 2), Point{Float64}(4, 5))
println(intersection(l1, l2))
```
Output:
```Point{Float64}(5.0, 5.0)
Point{Float64}(-Inf, -Inf)```

#### GeometryTypes library version

```using GeometryTypes

a = LineSegment(Point2f0(4, 0), Point2f0(6, 10))
b = LineSegment(Point2f0(0, 3), Point2f0(10, 7))
@show intersects(a, b)   # --> intersects(a, b) = (true, Float32[5.0, 5.0])
```

## Kotlin

Translation of: C#
```// version 1.1.2

class PointF(val x: Float, val y: Float) {
override fun toString() = "{\$x, \$y}"
}

class LineF(val s: PointF, val e: PointF)

fun findIntersection(l1: LineF, l2: LineF): PointF {
val a1 = l1.e.y - l1.s.y
val b1 = l1.s.x - l1.e.x
val c1 = a1 * l1.s.x + b1 * l1.s.y

val a2 = l2.e.y - l2.s.y
val b2 = l2.s.x - l2.e.x
val c2 = a2 * l2.s.x + b2 * l2.s.y

val delta = a1 * b2 - a2 * b1
// If lines are parallel, intersection point will contain infinite values
return PointF((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta)
}

fun main(args: Array<String>) {
var l1 = LineF(PointF(4f, 0f), PointF(6f, 10f))
var l2 = LineF(PointF(0f, 3f), PointF(10f, 7f))
println(findIntersection(l1, l2))
l1 = LineF(PointF(0f, 0f), PointF(1f, 1f))
l2 = LineF(PointF(1f, 2f), PointF(4f, 5f))
println(findIntersection(l1, l2))
}
```
Output:
```{5.0, 5.0}
{-Infinity, -Infinity}
```

## Lambdatalk

Translation of: Python
```{def line_intersect
{def line_intersect.sub
{lambda {:111 :121 :112 :122 :211 :221 :212 :222}
{let { {:x :111} {:y :121}
{:z {- {* {- :222 :221} {- :112 :111}}
{* {- :212 :211} {- :122 :121}} } }
{:a {- :112 :111}} {:b {- :122 :121}}
{:c {- :212 :211}} {:d {- :222 :221}}
{:e {- :121 :221}} {:f {- :111 :211}}
{:g {- :121 :211}} {:h {- :122 :121}}
} {if {> :z 0}
then {A.new ∞ ∞}
else {let { {:x :x} {:y :y} {:a :a} {:b :b}
{:t1 {/ {- {* :c :e} {* :d :f}} :z} }
{:t2 {/ {- {* :a :g} {* :h :f}} :z} }
} {if {and {>= :t1 0} {<= :t1 1} {>= :t2 0} {<= :t2 1}}
then {A.new {+ :x {* :t1 :a}} {+ :y {* :t1 :b}} }
else {A.new ∞ ∞}} }}}}}
{lambda {:1 :2}
{line_intersect.sub
{A.first {A.first :1}} {A.last {A.first :1}}
{A.first {A.last  :1}} {A.last {A.last  :1}}
{A.first {A.first :2}} {A.last {A.first :2}}
{A.first {A.last  :2}} {A.last {A.last  :2}} }}}
-> line_intersect

{line_intersect {A.new {A.new 4 0} {A.new 6 10}}
{A.new {A.new 0 3} {A.new 10 7}}}
-> [5,5]
{line_intersect {A.new {A.new 4 0} {A.new 6 10}}
{A.new {A.new 0 3} {A.new 10 7.1}}}
-> [5.010893246187364,5.05446623093682]
{line_intersect {A.new {A.new 1 -1} {A.new 4 4}}
{A.new {A.new 2 5} {A.new 3 -2}}}
-> [2.5,1.5]
{line_intersect {A.new {A.new 0 0} {A.new 0 0}}
{A.new {A.new 0 3} {A.new 10 7}}}
-> [∞,∞]
{line_intersect {A.new {A.new 0 0} {A.new 1 1}}
{A.new {A.new 1 2} {A.new 4 5}}}
-> [∞,∞]
```

## Lua

Translation of: C#
```function intersection (s1, e1, s2, e2)
local d = (s1.x - e1.x) * (s2.y - e2.y) - (s1.y - e1.y) * (s2.x - e2.x)
local a = s1.x * e1.y - s1.y * e1.x
local b = s2.x * e2.y - s2.y * e2.x
local x = (a * (s2.x - e2.x) - (s1.x - e1.x) * b) / d
local y = (a * (s2.y - e2.y) - (s1.y - e1.y) * b) / d
return x, y
end

local line1start, line1end = {x = 4, y = 0}, {x = 6, y = 10}
local line2start, line2end = {x = 0, y = 3}, {x = 10, y = 7}
print(intersection(line1start, line1end, line2start, line2end))
```
Output:
`5       5`

## M2000 Interpreter

```Module Lineintersection (lineAtuple, lineBtuple) {
class line {
private:
slop, k
public:
function f(x) {
=x*.slop-.k
}
function intersection(b as line) {
if b.slop==.slop then
=(,)
else
x1=(.k-b.k)/(.slop-b.slop)
=(x1, .f(x1))
end if
}
Class:
module line {
if x1==x2 then error "wrong input"
if x1>x2 then swap x1,x2 : swap y1, y2
.slop<=(y1-y2)/(x1-x2)
.k<=x1*.slop-y1
}
}
M=line(!lineAtuple)
N=line(!lineBtuple)
Print M.intersection(N)
}
Lineintersection (4,0,6,10), (0,3,10,7)  ' print   5  5```
Output:
```   5  5
```

## Maple

```with(geometry):
line(L1, [point(A,[4,0]), point(B,[6,10])]):
line(L2, [point(C,[0,3]), point(E,[10,7])]):
coordinates(intersection(x,L1,L2));```
Out:
`[5, 5]`

## Mathematica/Wolfram Language

```RegionIntersection[
InfiniteLine[{{4, 0}, {6, 10}}],
InfiniteLine[{{0, 3}, {10, 7}}]
]
```
Output:
`Point[{5, 5}]`

## MATLAB

```function cross=intersection(line1,line2)
a=polyfit(line1(:,1),line1(:,2),1);
b=polyfit(line2(:,1),line2(:,2),1);
cross=[a(1) -1; b(1) -1]\[-a(2);-b(2)];
end
```
Output:
```line1=[4 0; 6 10]; line2=[0 3; 10 7]; cross=intersection(line1,line2)
cross =

5.0000
5.0000
```

## Modula-2

```MODULE LineIntersection;
FROM RealStr IMPORT RealToStr;

TYPE
Point = RECORD
x,y : REAL;
END;

PROCEDURE PrintPoint(p : Point);
VAR buf : ARRAY[0..31] OF CHAR;
BEGIN
WriteString("{");
RealToStr(p.x, buf);
WriteString(buf);
WriteString(", ");
RealToStr(p.y, buf);
WriteString(buf);
WriteString("}");
END PrintPoint;

TYPE
Line = RECORD
s,e : Point;
END;

PROCEDURE FindIntersection(l1,l2 : Line) : Point;
VAR a1,b1,c1,a2,b2,c2,delta : REAL;
BEGIN
a1 := l1.e.y - l1.s.y;
b1 := l1.s.x - l1.e.x;
c1 := a1 * l1.s.x + b1 * l1.s.y;

a2 := l2.e.y - l2.s.y;
b2 := l2.s.x - l2.e.x;
c2 := a2 * l2.s.x + b2 * l2.s.y;

delta := a1 * b2 - a2 * b1;
RETURN Point{(b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta};
END FindIntersection;

VAR
l1,l2 : Line;
result : Point;
BEGIN
l1 := Line{{4.0,0.0}, {6.0,10.0}};
l2 := Line{{0.0,3.0}, {10.0,7.0}};
PrintPoint(FindIntersection(l1,l2));
WriteLn;

l1 := Line{{0.0,0.0}, {1.0,1.0}};
l2 := Line{{1.0,2.0}, {4.0,5.0}};
PrintPoint(FindIntersection(l1,l2));
WriteLn;

END LineIntersection.
```

## Nim

Translation of: Go
```type
Line = tuple
slope: float
yInt: float
Point = tuple
x: float
y: float

func createLine(a, b: Point): Line =
result.slope = (b.y - a.y) / (b.x - a.x)
result.yInt = a.y - result.slope * a.x

func evalX(line: Line, x: float): float =
line.slope * x + line.yInt

func intersection(line1, line2: Line): Point =
let x = (line2.yInt - line1.yInt) / (line1.slope - line2.slope)
let y = evalX(line1, x)
(x, y)

var line1 = createLine((4.0, 0.0), (6.0, 10.0))
var line2 = createLine((0.0, 3.0), (10.0, 7.0))
echo intersection(line1, line2)
line1 = createLine((0.0, 0.0), (1.0, 1.0))
line2 = createLine((1.0, 2.0), (4.0, 5.0))
echo intersection(line1, line2)
```
Output:
```(x: 5.0, y: 5.0)
(x: inf, y: inf)
```

## Perl

Translation of: C#

If warning are enabled the second print will issue a warning since we are trying to print out an undef

```sub intersect {
my (\$x1, \$y1, \$x2, \$y2, \$x3, \$y3, \$x4, \$y4) = @_;
my \$a1 = \$y2 - \$y1;
my \$b1 = \$x1 - \$x2;
my \$c1 = \$a1 * \$x1 + \$b1 * \$y1;
my \$a2 = \$y4 - \$y3;
my \$b2 = \$x3 - \$x4;
my \$c2 = \$a2 * \$x3 + \$b2 * \$y3;
my \$delta = \$a1 * \$b2 - \$a2 * \$b1;
return (undef, undef) if \$delta == 0;
# If delta is 0, i.e. lines are parallel then the below will fail
my \$ix = (\$b2 * \$c1 - \$b1 * \$c2) / \$delta;
my \$iy = (\$a1 * \$c2 - \$a2 * \$c1) / \$delta;
return (\$ix, \$iy);
}

my (\$ix, \$iy) = intersect(4, 0, 6, 10, 0, 3, 10, 7);
print "\$ix \$iy\n";
(\$ix, \$iy) = intersect(0, 0, 1, 1, 1, 2, 4, 5);
print "\$ix \$iy\n";
```

## Phix

Library: Phix/online

You can run this online here.

```with javascript_semantics
enum X, Y

function abc(sequence s,e)
-- yeilds {a,b,c}, corresponding to ax+by=c
atom a = e[Y]-s[Y], b = s[X]-e[X], c = a*s[X]+b*s[Y]
return {a,b,c}
end function

procedure intersect(sequence s1, e1, s2, e2)
atom {a1,b1,c1} = abc(s1,e1),
{a2,b2,c2} = abc(s2,e2),
delta = a1*b2 - a2*b1,
x = b2*c1 - b1*c2,
y = a1*c2 - a2*c1
?iff(delta=0?"parallel lines/do not intersect"
:{x/delta, y/delta})
end procedure

intersect({4,0},{6,10},{0,3},{10,7})        -- {5,5}
intersect({4,0},{6,10},{0,3},{10,7.1})      -- {5.010893246,5.054466231}
intersect({0,0},{0,0},{0,3},{10,7})         -- "parallel lines/do not intersect"
intersect({0,0},{1,1},{1,2},{4,5})          -- "parallel lines/do not intersect"
intersect({1,-1},{4,4},{2,5},{3,-2})        -- {2.5,1.5}
```

## Processing

```void setup() {
// test lineIntersect() with visual and textual output
float lineA[] = {4, 0, 6, 10};  // try 4, 0, 6, 4
float lineB[] = {0, 3, 10, 7};  // for non intersecting test
PVector pt = lineInstersect(lineA[0], lineA[1], lineA[2], lineA[3],
lineB[0], lineB[1], lineB[2], lineB[3]);
scale(9);
line(lineA[0], lineA[1], lineA[2], lineA[3]);
line(lineB[0], lineB[1], lineB[2], lineB[3]);
if (pt != null) {
stroke(255);
point(pt.x, pt.y);
println(pt.x, pt.y);
} else {
println("No point");
}
}

PVector lineInstersect(float Ax1, float Ay1, float Ax2, float Ay2,
float  Bx1, float By1, float Bx2, float By2) {
// returns null if there is no intersection
float uA, uB;
float d = ((By2 - By1) * (Ax2 - Ax1) - (Bx2 - Bx1) * (Ay2 - Ay1));
if (d != 0) {
uA = ((Bx2 - Bx1) * (Ay1 - By1) - (By2 - By1) * (Ax1 - Bx1)) / d;
uB = ((Ax2 - Ax1) * (Ay1 - By1) - (Ay2 - Ay1) * (Ax1 - Bx1)) / d;
} else {
return null;
}
if (0 > uA || uA > 1 || 0 > uB || uB > 1) {
return null;
}
float x = Ax1 + uA * (Ax2 - Ax1);
float y = Ay1 + uA * (Ay2 - Ay1);
return new PVector(x, y);
}
```

### Processing Python mode

```from __future__ import division

def setup():
""" test line_intersect() with visual and textual output """
(a, b), (c, d) = (4, 0), (6, 10)  # try (4, 0), (6, 4)
(e, f), (g, h) = (0, 3), (10, 7)  # for non intersecting test
pt = line_instersect(a, b, c, d, e, f, g, h)
scale(9)
line(a, b, c, d)
line(e, f, g, h)
if pt:
x, y = pt
stroke(255)
point(x, y)
println(pt)  # prints x, y coordinates or 'None'

def line_instersect(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2):
""" returns a (x, y) tuple or None if there is no intersection """
d = (By2 - By1) * (Ax2 - Ax1) - (Bx2 - Bx1) * (Ay2 - Ay1)
if d:
uA = ((Bx2 - Bx1) * (Ay1 - By1) - (By2 - By1) * (Ax1 - Bx1)) / d
uB = ((Ax2 - Ax1) * (Ay1 - By1) - (Ay2 - Ay1) * (Ax1 - Bx1)) / d
else:
return
if not(0 <= uA <= 1 and 0 <= uB <= 1):
return
x = Ax1 + uA * (Ax2 - Ax1)
y = Ay1 + uA * (Ay2 - Ay1)
return x, y
```

## Python

Find the intersection without importing third-party libraries.

```def line_intersect(Ax1, Ay1, Ax2, Ay2, Bx1, By1, Bx2, By2):
""" returns a (x, y) tuple or None if there is no intersection """
d = (By2 - By1) * (Ax2 - Ax1) - (Bx2 - Bx1) * (Ay2 - Ay1)
if d:
uA = ((Bx2 - Bx1) * (Ay1 - By1) - (By2 - By1) * (Ax1 - Bx1)) / d
uB = ((Ax2 - Ax1) * (Ay1 - By1) - (Ay2 - Ay1) * (Ax1 - Bx1)) / d
else:
return
if not(0 <= uA <= 1 and 0 <= uB <= 1):
return
x = Ax1 + uA * (Ax2 - Ax1)
y = Ay1 + uA * (Ay2 - Ay1)

return x, y

if __name__ == '__main__':
(a, b), (c, d) = (4, 0), (6, 10)  # try (4, 0), (6, 4)
(e, f), (g, h) = (0, 3), (10, 7)  # for non intersecting test
pt = line_intersect(a, b, c, d, e, f, g, h)
print(pt)
```
Output:
`(5.0, 5.0)`

Or, labelling the moving parts a little more, and returning a composable option value containing either a message (in the absence of an intersection), or a pair of coordinates:

Works with: Python version 3.7
```'''The intersection of two lines.'''

from itertools import product

# intersection :: Line -> Line -> Either String Point
def intersection(ab):
'''Either the point at which the lines ab and pq
intersect, or a message string indicating that
they are parallel and have no intersection.'''
def delta(f):
return lambda x: f(fst(x)) - f(snd(x))

def prodDiff(abcd):
[a, b, c, d] = abcd
return (a * d) - (b * c)

def go(pq):
[abDX, pqDX, abDY, pqDY] = apList(
[delta(fst), delta(snd)]
)([ab, pq])
determinant = prodDiff([abDX, abDY, pqDX, pqDY])

def point():
[abD, pqD] = map(
lambda xy: prodDiff(
apList([fst, snd])([fst(xy), snd(xy)])
), [ab, pq]
)
return apList(
[lambda abpq: prodDiff(
[abD, fst(abpq), pqD, snd(abpq)]) / determinant]
)(
[(abDX, pqDX), (abDY, pqDY)]
)
return Right(point()) if 0 != determinant else Left(
'( Parallel lines - no intersection )'
)

return lambda pq: bindLR(go(pq))(
lambda xs: Right((fst(xs), snd(xs)))
)

# --------------------------TEST---------------------------
# main :: IO()
def main():
'''Test'''

# Left(message - no intersection) or Right(point)
# lrPoint :: Either String Point
lrPoint = intersection(
((4.0, 0.0), (6.0, 10.0))
)(
((0.0, 3.0), (10.0, 7.0))
)
print(
lrPoint['Left'] or lrPoint['Right']
)

# --------------------GENERIC FUNCTIONS--------------------

# Left :: a -> Either a b
def Left(x):
'''Constructor for an empty Either (option type) value
with an associated string.'''
return {'type': 'Either', 'Right': None, 'Left': x}

# Right :: b -> Either a b
def Right(x):
'''Constructor for a populated Either (option type) value'''
return {'type': 'Either', 'Left': None, 'Right': x}

# apList (<*>) :: [(a -> b)] -> [a] -> [b]
def apList(fs):
'''The application of each of a list of functions,
to each of a list of values.
'''
def go(fx):
f, x = fx
return f(x)
return lambda xs: [
go(x) for x
in product(fs, xs)
]

# bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
def bindLR(m):
Two computations sequentially composed,
with any value produced by the first
passed as an argument to the second.'''
return lambda mf: (
mf(m.get('Right')) if None is m.get('Left') else m
)

# fst :: (a, b) -> a
def fst(tpl):
'''First member of a pair.'''
return tpl[0]

# snd :: (a, b) -> b
def snd(tpl):
'''Second member of a pair.'''
return tpl[1]

# MAIN ---
if __name__ == '__main__':
main()
```
Output:
`(5.0, 5.0)`
Library: Shapely

Find the intersection by importing the external Shapely library.

```from shapely.geometry import LineString

if __name__ == "__main__":
line1 = LineString([(4, 0), (6, 10)])
line2 = LineString([(0, 3), (10, 7)])
print(line1.intersection(line2))
```
Output:
`POINT (5 5)`
Library: Pygame

Find the intersection by importing the external PyGame library.

```import pygame as pg

def segment_intersection(a, b, c, d):
""" returns a pygame.Vector2 or None if there is no intersection """
ab, cd, ac = a - b, c - d, a - c
if not (denom:= ab.x * cd.y - ab.y * cd.x):
return

t = (ac.x * cd.y - ac.y * cd.x) / denom
u = -(ab.x * ac.y - ab.y * ac.x) / denom
if 0 <= t <= 1 and 0 <= u <= 1:
return a.lerp(b, t)

if __name__ == '__main__':
a,b = pg.Vector2(4,0), pg.Vector2(6,10)  # try (4, 0), (6, 4)
c,d = pg.Vector2(0,3), pg.Vector2(10,7)  # for non intersecting test
pt = segment_intersection(a, b, c, d)
print(pt)
```
Output:
`[5,5]`

## Racket

Translation of: C++
```#lang racket/base
(define (det a b c d) (- (* a d) (* b c))) ; determinant

(define (line-intersect ax ay bx by cx cy dx dy) ; --> (values x y)
(let* ((det.ab (det ax ay bx by))
(det.cd (det cx cy dx dy))
(abΔx (- ax bx))
(cdΔx (- cx dx))
(abΔy (- ay by))
(cdΔy (- cy dy))
(xnom (det det.ab abΔx det.cd cdΔx))
(ynom (det det.ab abΔy det.cd cdΔy))
(denom (det abΔx abΔy cdΔx cdΔy)))
(when (zero? denom)
(error 'line-intersect "parallel lines"))
(values (/ xnom denom) (/ ynom denom))))

(module+ test (line-intersect 4 0 6 10
0 3 10 7))
```
Output:
```5
5```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2016.11
Translation of: zkl
```sub intersection (Real \$ax, Real \$ay, Real \$bx, Real \$by,
Real \$cx, Real \$cy, Real \$dx, Real \$dy ) {

sub term:<|AB|> { determinate(\$ax, \$ay, \$bx, \$by) }
sub term:<|CD|> { determinate(\$cx, \$cy, \$dx, \$dy) }

my \$ΔxAB = \$ax - \$bx;
my \$ΔyAB = \$ay - \$by;
my \$ΔxCD = \$cx - \$dx;
my \$ΔyCD = \$cy - \$dy;

my \$x-numerator = determinate( |AB|, \$ΔxAB, |CD|, \$ΔxCD );
my \$y-numerator = determinate( |AB|, \$ΔyAB, |CD|, \$ΔyCD );
my \$denominator = determinate( \$ΔxAB, \$ΔyAB, \$ΔxCD, \$ΔyCD );

return 'Lines are parallel' if \$denominator == 0;

(\$x-numerator/\$denominator, \$y-numerator/\$denominator);
}

sub determinate ( Real \$a, Real \$b, Real \$c, Real \$d ) { \$a * \$d - \$b * \$c }

# TESTING
say 'Intersection point: ', intersection( 4,0, 6,10, 0,3, 10,7 );
say 'Intersection point: ', intersection( 4,0, 6,10, 0,3, 10,7.1 );
say 'Intersection point: ', intersection( 0,0, 1,1, 1,2, 4,5 );
```
Output:
```Intersection point: (5 5)
Intersection point: (5.010893 5.054466)
Intersection point: Lines are parallel
```

### Using a geometric algebra library

```use Clifford;

# We pick a projective basis,
# and we compute its pseudo-scalar and its square.
my (\$i, \$j, \$k) = @e;
my \$I = \$i∧\$j∧\$k;
my \$I2 = (\$I**2).narrow;

# Homogeneous coordinates of point (X,Y) are (X,Y,1)
my \$A =  4*\$i +  0*\$j + \$k;
my \$B =  6*\$i + 10*\$j + \$k;
my \$C =  0*\$i +  3*\$j + \$k;
my \$D = 10*\$i +  7*\$j + \$k;

# We form lines by joining points
my \$AB = \$A∧\$B;
my \$CD = \$C∧\$D;

# The intersection is their meet, which we
# compute by using the De Morgan law
my \$ab = \$AB*\$I/\$I2;
my \$cd = \$CD*\$I/\$I2;
my \$M = (\$ab ∧ \$cd)*\$I/\$I2;

# Affine coordinates are (X/Z, Y/Z)
say \$M/(\$M·\$k) X· \$i, \$j;
```
Output:
`(5 5)`

## REXX

### version 1

Naive implementation. To be improved for parallel lines and degenerate lines such as y=5 or x=8.

```/* REXX */
Parse Value '(4.0,0.0)'  With '(' xa ',' ya ')'
Parse Value '(6.0,10.0)' With '(' xb ',' yb ')'
Parse Value '(0.0,3.0)'  With '(' xc ',' yc ')'
Parse Value '(10.0,7.0)' With '(' xd ',' yd ')'

Say 'The two lines are:'
Say 'yab='ya-xa*((yb-ya)/(xb-xa))'+x*'||((yb-ya)/(xb-xa))
Say 'ycd='yc-xc*((yd-yc)/(xd-xc))'+x*'||((yd-yc)/(xd-xc))

x=((yc-xc*((yd-yc)/(xd-xc)))-(ya-xa*((yb-ya)/(xb-xa))))/,
(((yb-ya)/(xb-xa))-((yd-yc)/(xd-xc)))
Say 'x='||x
y=ya-xa*((yb-ya)/(xb-xa))+x*((yb-ya)/(xb-xa))
Say 'yab='y
Say 'ycd='yc-xc*((yd-yc)/(xd-xc))+x*((yd-yc)/(xd-xc))
Say 'Intersection: ('||x','y')'
```
Output:
```The two lines are:
yab=-20.0+x*5
ycd=3.0+x*0.4
x=5
yab=5.0
ycd=5.0
Intersection: (5,5.0)```

### version 2

complete implementation taking care of all possibilities.
Variables are named after the Austrian notation for a straight line: y=k*x+d

```say ggx1('4.0 0.0 6.0 10.0 0.0 3.0 10.0 7.0')
say ggx1('0.0 0.0 0.0 10.0 0.0 3.0 10.0 7.0')
say ggx1('0.0 0.0 0.0 10.0 0.0 3.0 10.0 7.0')
say ggx1('0.0 0.0 0.0  1.0 1.0 0.0  1.0 7.0')
say ggx1('0.0 0.0 0.0  0.0 0.0 3.0 10.0 7.0')
say ggx1('0.0 0.0 3.0  3.0 0.0 0.0  6.0 6.0')
say ggx1('0.0 0.0 3.0  3.0 0.0 1.0  6.0 7.0')
Exit

ggx1: Procedure
/*---------------------------------------------------------------------
* find the intersection of the lines AB and CD
*--------------------------------------------------------------------*/
Parse Arg xa  ya  xb  yb   xc  yc  xd   yd
Say 'A=('xa'/'ya') B=('||xb'/'yb') C=('||xc'/'yc') D=('||xd'/'yd')'
res=''
If xa=xb Then Do                    /* AB is a vertical line         */
k1='*'                            /* slope is infinite             */
x1=xa                             /* intersection's x is xa        */
If ya=yb Then                     /* coordinates are equal         */
res='Points A and B are identical' /* special case               */
End
Else Do                             /* AB is not a vertical line     */
k1=(yb-ya)/(xb-xa)                /* compute the slope of AB       */
d1=ya-k1*xa                /* and its intersection with the y-axis */
End
If xc=xd Then Do                    /* CD is a vertical line         */
k2='*'                            /* slope is infinite             */
x2=xc                             /* intersection's x is xc        */
If yc=yd Then                     /* coordinates are equal         */
res='Points C and D are identical' /* special case               */
End
Else Do                             /* CD is not a vertical line     */
k2=(yd-yc)/(xd-xc)                /* compute the slope of CD       */
d2=yc-k2*xc                /* and its intersection with the y-axis */
End

If res='' Then Do                   /* no special case so far        */
If k1='*' Then Do                 /* AB is vertical                */
If k2='*' Then Do               /* CD is vertical                */
If x1=x2 Then                 /* and they are identical        */
res='Lines AB and CD are identical'
Else                          /* not identical                 */
res='Lines AB and CD are parallel'
End
Else Do
x=x1                          /* x is taken from AB            */
y=k2*x+d2                     /* y is computed from CD         */
End
End
Else Do                           /* AB is not verical             */
If k2='*' Then Do               /* CD is vertical                */
x=x2                          /* x is taken from CD            */
y=k1*x+d1                     /* y is computed from AB         */
End
Else Do                         /* AB and CD are not vertical    */
If k1=k2 Then Do              /* identical slope               */
If d1=d2 Then               /* same intersection with x=0    */
res='Lines AB and CD are identical'
Else                        /* otherwise                     */
res='Lines AB and CD are parallel'
End
Else Do                       /* finally the normal case       */
x=(d2-d1)/(k1-k2)           /* compute x                     */
y=k1*x+d1                   /* and y                         */
End
End
End
End
If res='' Then                    /* not any special case          */
res='Intersection is ('||x'/'y')'  /* that's the result          */
Return '  -->' res
```
Output:
```A=(4.0/0.0) B=(6.0/10.0) C=(0.0/3.0) D=(10.0/7.0)
--> Intersection is (5/5.0)
A=(0.0/0.0) B=(0.0/10.0) C=(0.0/3.0) D=(10.0/7.0)
--> Intersection is (0.0/3.0)
A=(0.0/0.0) B=(0.0/10.0) C=(0.0/3.0) D=(10.0/7.0)
--> Intersection is (0.0/3.0)
A=(0.0/0.0) B=(0.0/1.0) C=(1.0/0.0) D=(1.0/7.0)
--> Lines AB and CD are parallel
A=(0.0/0.0) B=(0.0/0.0) C=(0.0/3.0) D=(10.0/7.0)
--> Points A and B are identical
A=(0.0/0.0) B=(3.0/3.0) C=(0.0/0.0) D=(6.0/6.0)
--> Lines AB and CD are identical
A=(0.0/0.0) B=(3.0/3.0) C=(0.0/1.0) D=(6.0/7.0)
--> Lines AB and CD are parallel```

## Ring

```# Project : Find the intersection of two lines

xa=4
ya=0
xb=6
yb=10
xc=0
yc=3
xd=10
yd=7
see "the two lines are:" + nl
see "yab=" + (ya-xa*((yb-ya)/(xb-xa))) + "+x*" + ((yb-ya)/(xb-xa)) + nl
see "ycd=" + (yc-xc*((yd-yc)/(xd-xc))) + "+x*" + ((yd-yc)/(xd-xc)) + nl
x=((yc-xc*((yd-yc)/(xd-xc)))-(ya-xa*((yb-ya)/(xb-xa))))/(((yb-ya)/(xb-xa))-((yd-yc)/(xd-xc)))
see "x=" + x + nl
y=ya-xa*((yb-ya)/(xb-xa))+x*((yb-ya)/(xb-xa))
see "yab=" + y + nl
see "ycd=" + (yc-xc*((yd-yc)/(xd-xc))+x*((yd-yc)/(xd-xc))) + nl
see "intersection: " + x + "," + y + nl```

Output:

```the two lines are:
yab=-20+x*5
ycd=3+x*0.4
x=5
yab=5
ycd=5
intersection: 5,5
```

## RPL

Works with: HP version 48
```« C→R ROT C→R ROT →V2
SWAP 1 4 ROLL 1 { 2 2 } →ARRY /
» '→LINECOEFF' STO

« →LINECOEFF ROT ROT →LINECOEFF OVER -
ARRY→ DROP NEG SWAP /
DUP2 * 1 GET ROT 2 GET + R→C
» 'INTERSECT' STO
```

Works with: HP version 49
```« DROITE UNROT DROITE OVER -
'X' SOLVE DUP EQ→ NIP
UNROT SUBST EQ→ NIP COLLECT R→C
» 'INTERSECT' STO
```
```(4,0) (6,10) (0,3) (10,7) INTERSECT
```
Output:
```1: (5,5)
```

## Ruby

```Point = Struct.new(:x, :y)

class Line

def initialize(point1, point2)
@a = (point1.y - point2.y).fdiv(point1.x - point2.x)
@b = point1.y - @a*point1.x
end

def intersect(other)
return nil if @a == other.a
x = (other.b - @b).fdiv(@a - other.a)
y = @a*x + @b
Point.new(x,y)
end

def to_s
"y = #{@a}x #{@b.positive? ? '+' : '-'} #{@b.abs}"
end

end

l1 = Line.new(Point.new(4, 0), Point.new(6, 10))
l2 = Line.new(Point.new(0, 3), Point.new(10, 7))

puts "Line #{l1} intersects line #{l2} at #{l1.intersect(l2)}."
```
Output:
`Line y = 5.0x - 20.0 intersects line y = 0.4x + 3.0 at #<struct Point x=5.0, y=5.0>.`

## Rust

```#[derive(Copy, Clone, Debug)]
struct Point {
x: f64,
y: f64,
}

impl Point {
pub fn new(x: f64, y: f64) -> Self {
Point { x, y }
}
}

#[derive(Copy, Clone, Debug)]
struct Line(Point, Point);

impl Line {
pub fn intersect(self, other: Self) -> Option<Point> {
let a1 = self.1.y - self.0.y;
let b1 = self.0.x - self.1.x;
let c1 = a1 * self.0.x + b1 * self.0.y;

let a2 = other.1.y - other.0.y;
let b2 = other.0.x - other.1.x;
let c2 = a2 * other.0.x + b2 * other.0.y;

let delta = a1 * b2 - a2 * b1;

if delta == 0.0 {
return None;
}

Some(Point {
x: (b2 * c1 - b1 * c2) / delta,
y: (a1 * c2 - a2 * c1) / delta,
})
}
}

fn main() {
let l1 = Line(Point::new(4.0, 0.0), Point::new(6.0, 10.0));
let l2 = Line(Point::new(0.0, 3.0), Point::new(10.0, 7.0));
println!("{:?}", l1.intersect(l2));

let l1 = Line(Point::new(0.0, 0.0), Point::new(1.0, 1.0));
let l2 = Line(Point::new(1.0, 2.0), Point::new(4.0, 5.0));
println!("{:?}", l1.intersect(l2));
}
```
Output:
```Some(Point { x: 5.0, y: 5.0 })
None
```

## Scala

```object Intersection extends App {
val (l1, l2) = (LineF(PointF(4, 0), PointF(6, 10)), LineF(PointF(0, 3), PointF(10, 7)))

def findIntersection(l1: LineF, l2: LineF): PointF = {
val a1 = l1.e.y - l1.s.y
val b1 = l1.s.x - l1.e.x
val c1 = a1 * l1.s.x + b1 * l1.s.y

val a2 = l2.e.y - l2.s.y
val b2 = l2.s.x - l2.e.x
val c2 = a2 * l2.s.x + b2 * l2.s.y

val delta = a1 * b2 - a2 * b1
// If lines are parallel, intersection point will contain infinite values
PointF((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta)
}

def l01 = LineF(PointF(0f, 0f), PointF(1f, 1f))
def l02 = LineF(PointF(1f, 2f), PointF(4f, 5f))

case class PointF(x: Float, y: Float) {
override def toString = s"{\$x, \$y}"
}

case class LineF(s: PointF, e: PointF)

println(findIntersection(l1, l2))
println(findIntersection(l01, l02))

}
```
Output:

See it in running in your browser by (JavaScript)

or by Scastie (JVM).

## Sidef

Translation of: Raku
```func det(a, b, c, d) { a*d - b*c }

func intersection(ax, ay, bx, by,
cx, cy, dx, dy) {

var detAB = det(ax,ay, bx,by)
var detCD = det(cx,cy, dx,dy)

var ΔxAB = (ax - bx)
var ΔyAB = (ay - by)
var ΔxCD = (cx - dx)
var ΔyCD = (cy - dy)

var x_numerator = det(detAB, ΔxAB, detCD, ΔxCD)
var y_numerator = det(detAB, ΔyAB, detCD, ΔyCD)
var denominator = det( ΔxAB, ΔyAB,  ΔxCD, ΔyCD)

denominator == 0 && return 'lines are parallel'
[x_numerator / denominator, y_numerator / denominator]
}

say ('Intersection point: ', intersection(4,0, 6,10, 0,3, 10,7))
say ('Intersection point: ', intersection(4,0, 6,10, 0,3, 10,7.1))
say ('Intersection point: ', intersection(0,0, 1,1, 1,2, 4,5))
```
Output:
```Intersection point: [5, 5]
Intersection point: [2300/459, 2320/459]
Intersection point: lines are parallel
```

## Swift

```struct Point {
var x: Double
var y: Double
}

struct Line {
var p1: Point
var p2: Point

var slope: Double {
guard p1.x - p2.x != 0.0 else { return .nan }

return (p1.y-p2.y) / (p1.x-p2.x)
}

func intersection(of other: Line) -> Point? {
let ourSlope = slope
let theirSlope = other.slope

guard ourSlope != theirSlope else { return nil }

if ourSlope.isNaN && !theirSlope.isNaN {
return Point(x: p1.x, y: (p1.x - other.p1.x) * theirSlope + other.p1.y)
} else if theirSlope.isNaN && !ourSlope.isNaN {
return Point(x: other.p1.x, y: (other.p1.x - p1.x) * ourSlope + p1.y)
} else {
let x = (ourSlope*p1.x - theirSlope*other.p1.x + other.p1.y - p1.y) / (ourSlope - theirSlope)
return Point(x: x, y: theirSlope*(x - other.p1.x) + other.p1.y)
}
}
}

let l1 = Line(p1: Point(x: 4.0, y: 0.0), p2: Point(x: 6.0, y: 10.0))
let l2 = Line(p1: Point(x: 0.0, y: 3.0), p2: Point(x: 10.0, y: 7.0))

print("Intersection at : \(l1.intersection(of: l2)!)")
```
Output:
`Intersection at : Point(x: 5.0, y: 5.0)`

## TI-83 BASIC

Works with: TI-83 BASIC version TI-84Plus 2.55MP
Translation of: Rexx

Simple version:

```[[4,0][6,10][0,3][10,7]]→[A]
([A](2,2)-[A](1,2))/([A](2,1)-[A](1,1))→B
[A](1,2)-[A](1,1)*B→A
([A](4,2)-[A](3,2))/([A](4,1)-[A](3,1))→D
[A](3,2)-[A](3,1)*D→C
(C-A)/(B-D)→X
A+X*B→Y
C+X*D→Z
Disp {X,Y}```
Output:
```       {5 5}
```

Full version:

```[[4,0][6,10][0,3][10,7]]→[A]
{4,2}→Dim([B])
0→M
If [A](1,1)=[A](2,1)
Then
[A](1,1)→[B](3,1)
If [A](1,2)=[A](2,2):1→M
Else
1→[B](4,1)
([A](2,2)-[A](1,2))/([A](2,1)-[A](1,1))→[B](1,1)
[A](1,2)-[B](1,1)*[A](1,1)→[B](2,1)
End
If [A](3,1)=[A](4,1)
Then
[A](3,1)→[B](3,2)
If [A](3,2)=[A](4,2):2→M
Else
1→[B](4,2)
([A](4,2)-[A](3,2))/([A](4,1)-[A](3,1))→[B](1,2)
[A](3,2)-[B](1,2)*[A](3,1)→[B](2,2)
End
If M=0 Then
If [B](4,1)=0
Then
If [B](4,2)=0
Then
If [B](3,1)=[B](3,2)
Then:3→M
Else:4→M
End
Else
[B](3,1)→X
[B](1,2)*X+[B](2,2)→Y
End
Else
If [B](4,2)=0
Then
[B](3,2)→X
[B](1,1)*X+[B](2,1)→Y
Else
If [B](1,1)=[B](1,2)
Then
If [B](2,1)=[B](2,2)
Then:5→M
Else:6→M
End
Else
([B](2,2)-[B](2,1))/([B](1,1)-[B](1,2))→X
[B](1,1)*X+[B](2,1)→Y
End
End
End
End
Disp {X,Y,M}```
Output:
```       {5 5}
```

## Visual Basic

Works with: Visual Basic version 5
Works with: Visual Basic version 6
Works with: VBA version 6.5
Works with: VBA version 7.1
```Option Explicit

Public Type Point
x As Double
y As Double
invalid As Boolean
End Type

Public Type Line
s As Point
e As Point
End Type

Public Function GetIntersectionPoint(L1 As Line, L2 As Line) As Point
Dim a1 As Double
Dim b1 As Double
Dim c1 As Double
Dim a2 As Double
Dim b2 As Double
Dim c2 As Double
Dim det As Double

a1 = L1.e.y - L1.s.y
b1 = L1.s.x - L1.e.x
c1 = a1 * L1.s.x + b1 * L1.s.y
a2 = L2.e.y - L2.s.y
b2 = L2.s.x - L2.e.x
c2 = a2 * L2.s.x + b2 * L2.s.y
det = a1 * b2 - a2 * b1

If det Then
With GetIntersectionPoint
.x = (b2 * c1 - b1 * c2) / det
.y = (a1 * c2 - a2 * c1) / det
End With
Else
GetIntersectionPoint.invalid = True
End If
End Function

Sub Main()
Dim ln1 As Line
Dim ln2 As Line
Dim ip As Point

ln1.s.x = 4
ln1.s.y = 0
ln1.e.x = 6
ln1.e.y = 10
ln2.s.x = 0
ln2.s.y = 3
ln2.e.x = 10
ln2.e.y = 7
ip = GetIntersectionPoint(ln1, ln2)
Debug.Assert Not ip.invalid
Debug.Assert ip.x = 5 And ip.y = 5

LSet ln2.s = ln2.e
ip = GetIntersectionPoint(ln1, ln2)
Debug.Assert ip.invalid

LSet ln2 = ln1
ip = GetIntersectionPoint(ln1, ln2)
Debug.Assert ip.invalid

End Sub```

## Visual Basic .NET

Translation of: C#
```Imports System.Drawing

Module Module1

Function FindIntersection(s1 As PointF, e1 As PointF, s2 As PointF, e2 As PointF) As PointF
Dim a1 = e1.Y - s1.Y
Dim b1 = s1.X - e1.X
Dim c1 = a1 * s1.X + b1 * s1.Y

Dim a2 = e2.Y - s2.Y
Dim b2 = s2.X - e2.X
Dim c2 = a2 * s2.X + b2 * s2.Y

Dim delta = a1 * b2 - a2 * b1

'If lines are parallel, the result will be (NaN, NaN).
Return If(delta = 0, New PointF(Single.NaN, Single.NaN), New PointF((b2 * c1 - b1 * c2) / delta, (a1 * c2 - a2 * c1) / delta))
End Function

Sub Main()
Dim p = Function(x As Single, y As Single) New PointF(x, y)
Console.WriteLine(FindIntersection(p(4.0F, 0F), p(6.0F, 10.0F), p(0F, 3.0F), p(10.0F, 7.0F)))
Console.WriteLine(FindIntersection(p(0F, 0F), p(1.0F, 1.0F), p(1.0F, 2.0F), p(4.0F, 5.0F)))
End Sub

End Module
```
Output:
```{X=5, Y=5}
{X=NaN, Y=NaN}```

## Wren

Translation of: Kotlin
```class Point {
construct new(x, y) {
_x = x
_y = y
}

x { _x }
y { _y }

toString { "(%(_x), %(_y))" }
}

class Line {
construct new(s, e) {
_s = s
_e = e
}

s { _s }
e { _e }
}

var findIntersection = Fn.new { |l1, l2|
var a1 = l1.e.y - l1.s.y
var b1 = l1.s.x - l1.e.x
var c1 = a1*l1.s.x + b1*l1.s.y

var a2 = l2.e.y - l2.s.y
var b2 = l2.s.x - l2.e.x
var c2 = a2*l2.s.x + b2*l2.s.y

var delta = a1*b2 - a2*b1
// if lines are parallel, intersection point will contain infinite values
return Point.new((b2*c1 - b1*c2)/delta, (a1*c2 - a2*c1)/delta)
}

var l1 = Line.new(Point.new(4, 0), Point.new(6, 10))
var l2 = Line.new(Point.new(0, 3), Point.new(10, 7))
System.print(findIntersection.call(l1, l2))
l1 = Line.new(Point.new(0, 0), Point.new(1, 1))
l2 = Line.new(Point.new(1, 2), Point.new(4, 5))
System.print(findIntersection.call(l1, l2))
```
Output:
```(5, 5)
(-infinity, -infinity)
```

## XPL0

```func real Det; real A0, B0, A1, B1;
return A0*B1 - A1*B0;

func Cramer; real A0, B0, C0, A1, B1, C1;
real Denom;
[Denom:= Det(A0, B0, A1, B1);
RlOut(0, Det(C0, B0, C1, B1) / Denom);
RlOut(0, Det(A0, C0, A1, C1) / Denom);
];

real L0, L1, M0, M1;
[L0:= [[ 4.,  0.], [ 6., 10.]];
L1:= [[ 0.,  3.], [10.,  7.]];
M0:= (L0(1,1) - L0(0,1)) / (L0(1,0) - L0(0,0));
M1:= (L1(1,1) - L1(0,1)) / (L1(1,0) - L1(0,0));
Cramer(M0, -1., M0*L0(0,0)-L0(0,1), M1, -1., M1*L1(0,0)-L1(0,1));
]```
Output:
```    5.00000    5.00000
```

## zkl

Translation of: C++
```fcn lineIntersect(ax,ay, bx,by,   cx,cy, dx,dy){	// --> (x,y)
detAB,detCD := det(ax,ay, bx,by), det(cx,cy, dx,dy);
abDx,cdDx := ax - bx, cx - dx;	// delta x
abDy,cdDy := ay - by, cy - dy;	// delta y

xnom,ynom := det(detAB,abDx, detCD,cdDx), det(detAB,abDy, detCD,cdDy);
denom     := det(abDx,abDy, cdDx,cdDy);
if(denom.closeTo(0.0, 0.0001))
throw(Exception.MathError("lineIntersect: Parallel lines"));

return(xnom/denom, ynom/denom);
}
fcn det(a,b,c,d){ a*d - b*c }	// determinant```
`lineIntersect(4.0,0.0, 6.0,10.0,  0.0,3.0, 10.0,7.0).println();`
Output:
```L(5,5)
```

References