Exponentiation order
You are encouraged to solve this task according to the task description, using any language you may know.
This task will demonstrate the order of exponentiation (xy) when there are multiple exponents.
(Many programming languages, especially those with extended─precision integer arithmetic, usually support one of **
, ^
, ↑
or some such for exponentiation.)
- Task requirements
Show the result of a language's evaluation of multiple exponentiation (either as an integer or floating point).
If your language's exponentiation operator is not one of the usual ones, please comment on how to recognize it.
Using whatever operator or syntax your language supports (if any), show the results in three lines (with identification):
- 5**3**2
- (5**3)**2
- 5**(3**2)
If there are other methods (or formats) of multiple exponentiations, show them as well.
- See also
- MathWorld entry: exponentiation
- Related tasks
- exponentiation operator
- arbitrary-precision integers (included)
- Exponentiation with infix operators in (or operating on) the base
11l
print(5 ^ 3 ^ 2)
print((5 ^ 3) ^ 2)
print(5 ^ (3 ^ 2))
- Output:
1.95313e+06 15625 1.95313e+06
Action!
There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient.
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
PROC Main()
REAL r2,r3,r5,tmp1,tmp2
Put(125) PutE() ;clear screen
IntToReal(2,r2)
IntToReal(3,r3)
IntToReal(5,r5)
PrintE("There is no power operator in Action!")
PrintE("Power function for REAL type is used.")
PrintE("But the precision is insufficient.")
Power(r5,r3,tmp1)
Power(tmp1,r2,tmp2)
Print("(5^3)^2=")
PrintRE(tmp2)
Power(r3,r2,tmp1)
Power(r5,tmp1,tmp2)
Print("5^(3^2)=")
PrintRE(tmp2)
RETURN
- Output:
Screenshot from Atari 8-bit computer
There is no power operator in Action! Power function for REAL type is used. But the precision is insufficient. (5^3)^2=15624.9977 5^(3^2)=1953124.17
Ada
5**3**2 is not a valid Ada expression. Parenthesis are mandatory.
with Ada.Text_IO;
procedure Exponentation_Order is
use Ada.Text_IO;
begin
-- Put_Line ("5**3**2 : " & Natural'(5**3**2)'Image);
Put_Line ("(5**3)**2 : " & Natural'((5**3)**2)'Image);
Put_Line ("5**(3**2) : " & Natural'(5**(3**2))'Image);
end Exponentation_Order;
- Output:
(5**3)**2 : 15625 5**(3**2) : 1953125
ALGOL 68
Algol 68 provides various alternative symbols for the exponentiation operator generally, "**", "^" and "UP" can be used.
print( ( "5**3**2: ", 5**3**2, newline ) );
print( ( "(5**3)**2: ", (5**3)**2, newline ) );
print( ( "5**(3**2): ", 5**(3**2), newline ) )
- Output:
5**3**2: +15625 (5**3)**2: +15625 5**(3**2): +1953125
ALGOL-M
The eponentiation operator ** in ALGOL-M works only on integer operands.
begin
write("5**3**2 = ", 5**3**2);
write("(5**3)**2 = ", (5**3)**2);
write("5**(3**2) = ", 5**(3**2));
end
- Output:
The third expression results in a value that exceeds the maximum integer value of 16383. Sadly, ALGOL-M emits no warning or error message when this occurs but simply gives the wrong answer.
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = -12955
ALGOL W
The Algol W exponentiation operator always produces a real result and requires an integer right operand, hence the round functions in the following.
begin
write( "5**3**2: ", round( 5 ** 3 ** 2 ) );
write( "(5**3)**2: ", round( ( 5 ** 3 ) ** 2 ) );
write( "5**(3**2): ", round( 5 ** round( 3 ** 2 ) ) )
end.
- Output:
5**3**2: 15625 (5**3)**2: 15625 5**(3**2): 1953125
APL
APL has no order of precedence other than right-to-left operation. * is the APL exponentiation operator.
5*3*2 1953125 (5*3)*2 15625 5*(3*2) 1953125
AppleScript
AppleScript's compiler inserts its own parentheses with 5 ^ 3 ^ 2.
set r1 to 5 ^ 3 ^ 2 -- Changes to 5 ^ (3 ^ 2) when compiled.
set r2 to (5 ^ 3) ^ 2
set r3 to 5 ^ (3 ^ 2)
return "5 ^ 3 ^ 2 = " & r1 & "
(5 ^ 3) ^ 2 = " & r2 & "
5 ^ (3 ^ 2) = " & r3
- Output:
"5 ^ 3 ^ 2 = 1.953125E+6 (5 ^ 3) ^ 2 = 1.5625E+4 5 ^ (3 ^ 2) = 1.953125E+6"
Arturo
print 5^3^2
print (5^3)^2
print 5^(3^2)
- Output:
1953125 15625 1953125
AWK
# syntax: GAWK -f EXPONENTIATION_ORDER.AWK
BEGIN {
printf("5^3^2 = %d\n",5^3^2)
printf("(5^3)^2 = %d\n",(5^3)^2)
printf("5^(3^2) = %d\n",5^(3^2))
exit(0)
}
output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
BASIC
Applesoft BASIC
?"5^3^2 = "5 ^ 3 ^ 2 CHR$ (13)"(5^3)^2 = "(5 ^ 3) ^ 2 CHR$ (13)"5^(3^2) = "5 ^ (3 ^ 2);
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125.01
BASIC256
print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
BBC BASIC
PRINT "5^3^2 = "; 5^3^2
PRINT "(5^3)^2 = "; (5^3)^2
PRINT "5^(3^2) = "; 5^(3^2)
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
Chipmunk Basic
10 print "5^3^2 = "5^3^2
20 print "(5^3)^2 = "(5^3)^2
30 print "5^(3^2) = "5^(3^2)
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
GW-BASIC
10 PRINT "5^3^2 =" 5^3^2
20 PRINT "(5^3)^2 =" (5^3)^2
30 PRINT "5^(3^2) =" 5^(3^2)
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
IS-BASIC
100 PRINT "5^3^2 =";5^3^2
110 PRINT "(5^3)^2 =";(5^3)^2
120 PRINT "5^(3^2) =";5^(3^2)
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
MSX Basic
10 PRINT "5^3^2 =" 5^3^2
20 PRINT "(5^3)^2 =" (5^3)^2
30 PRINT "5^(3^2) =" 5^(3^2)
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
PureBasic
In the PureBasic it is impossible to show the result of: 5^3^2
OpenConsole()
PrintN("(5^3)^2 = " + Str(Pow(Pow(5, 3), 2)))
PrintN("5^(3^2) = " + Str(Pow(5, (Pow(3, 2)))))
CloseConsole()
- Output:
(5^3)^2 = 15625 5^(3^2) = 1953125
QBasic
PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
Run BASIC
print "5^3^2 = "; 5^3^2
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
end
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
True BASIC
PRINT "5^3^2 ="; 5^3^2
PRINT "(5^3)^2 ="; (5^3)^2
PRINT "5^(3^2) ="; 5^(3^2)
END
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
XBasic
PROGRAM "Exponentiation order"
VERSION "0.0000"
DECLARE FUNCTION Entry ()
FUNCTION Entry ()
PRINT "5^3^2 ="; 5**3**2
PRINT "(5^3)^2 ="; (5**3)**2
PRINT "5^(3^2) ="; 5**(3**2)
END FUNCTION
END PROGRAM
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
Yabasic
print "5^3^2 = ", 5^3^2
print "(5^3)^2 = ", (5^3)^2
print "5^(3^2) = ", 5^(3^2)
end
- Output:
5^3^2 = 15625 (5^3)^2 = 15625 5^(3^2) = 1953125
Sinclair ZX81 BASIC
10 PRINT "5**3**2 = ";5**3**2
20 PRINT "(5**3)**2 = ";(5**3)**2
30 PRINT "5**(3**2) = ";5**(3**2)
- Output:
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = 1953125
Bracmat
put$str$("5^3^2: " 5^3^2 "\n(5^3)^2: " (5^3)^2 "\n5^(3^2): " 5^(3^2) \n)
- Output:
5^3^2: 1953125 (5^3)^2: 15625 5^(3^2): 1953125
C
C does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation in C. The function pow in the standard C Math library takes two arguments.
#include<stdio.h>
#include<math.h>
int main()
{
printf("(5 ^ 3) ^ 2 = %.0f",pow(pow(5,3),2));
printf("\n5 ^ (3 ^ 2) = %.0f",pow(5,pow(3,2)));
return 0;
}
- Output:
(5 ^ 3) ^ 2 = 15625 5 ^ (3 ^ 2) = 1953125
C++
#include <iostream>
#include <cmath>
int main() {
std::cout << "(5 ^ 3) ^ 2 = " << (uint) pow(pow(5,3), 2) << std::endl;
std::cout << "5 ^ (3 ^ 2) = "<< (uint) pow(5, (pow(3, 2)));
return EXIT_SUCCESS;
}
With permissive flag:
#include <iostream>
#include <cmath>
enum my_int {};
inline my_int operator^(my_int a, my_int b) { return static_cast<my_int>(pow(a,b)); }
int main() {
my_int x = 5, y = 3, z = 2;
std::cout << "(5 ^ 3) ^ 2 = " << ((x^y)^z) << std::endl;
std::cout << "5 ^ (3 ^ 2) = "<< (x^(y^z));
return EXIT_SUCCESS;
}
- Output:
(5 ^ 3) ^ 2 = 15625 5 ^ (3 ^ 2) = 1953125
C#
using System;
namespace exponents
{
class Program
{
static void Main(string[] args)
{
/*
* Like C, C# does not have an exponent operator.
* Exponentiation is done via Math.Pow, which
* only takes two arguments
*/
Console.WriteLine(Math.Pow(Math.Pow(5, 3), 2));
Console.WriteLine(Math.Pow(5, Math.Pow(3, 2)));
Console.Read();
}
}
}
- Output:
15625 1953125
Clojure
Clojure uses prefix notation and expt only takes 2 arguments for exponentiation, so "5**3**2" isn't represented.
(use 'clojure.math.numeric-tower)
;; (5**3)**2
(expt (expt 5 3) 2) ; => 15625
;; 5**(3**2)
(expt 5 (expt 3 2)) ; => 1953125
;; (5**3)**2 alternative: use reduce
(reduce expt [5 3 2]) ; => 15625
;; 5**(3**2) alternative: evaluating right-to-left with reduce requires a small modification
(defn rreduce [f coll] (reduce #(f %2 %) (reverse coll)))
(rreduce expt [5 3 2]) ; => 1953125
CLU
start_up = proc ()
po: stream := stream$primary_output()
stream$putl(po, "5**3**2 = " || int$unparse(5**3**2))
stream$putl(po, "(5**3)**2 = " || int$unparse((5**3)**2))
stream$putl(po, "5**(3**2) = " || int$unparse(5**(3**2)))
end start_up
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
Common Lisp
Because Common Lisp uses prefix notation and expt
accepts only two arguments, it doesn't have an expression for 5**3**2
. Just showing expressions for the latter two.
(expt (expt 5 3) 2)
(expt 5 (expt 3 2))
- Output:
15625 1953125
D
void main() {
import std.stdio, std.math, std.algorithm;
writefln("5 ^^ 3 ^^ 2 = %7d", 5 ^^ 3 ^^ 2);
writefln("(5 ^^ 3) ^^ 2 = %7d", (5 ^^ 3) ^^ 2);
writefln("5 ^^ (3 ^^ 2) = %7d", 5 ^^ (3 ^^ 2));
writefln("[5, 3, 2].reduce!pow = %7d", [5, 3, 2].reduce!pow);
}
- Output:
5 ^^ 3 ^^ 2 = 1953125 (5 ^^ 3) ^^ 2 = 15625 5 ^^ (3 ^^ 2) = 1953125 [5, 3, 2].reduce!pow = 15625
Delphi
Delphi doesn't have exponentiation but it does have the "Power" function in the math library
procedure ExponentDemo(Memo: TMemo);
begin
Memo.Lines.Add('5^3^2 = '+FloatToStrF(Power(5,Power(3,2)),ffNumber,18,0));
Memo.Lines.Add('(5^3)^2 = '+FloatToStrF(Power(Power(5,3),2),ffNumber,18,0));
Memo.Lines.Add('5^(3^2) = '+FloatToStrF(Power(5,Power(3,2)),ffNumber,18,0));
end;
- Output:
5^3^2 = 1,953,125 (5^3)^2 = 15,625 5^(3^2) = 1,953,125
Dart
import 'dart:math' show pow;
void main() {
print('(5 ^ 3) ^ 2 = ${pow(pow(5, 3), 2)}');
print('5 ^ (3 ^ 2) = ${pow(5, (pow(3, 2)))}');
}
- Output:
(5 ^ 3) ^ 2 = 15625 5 ^ (3 ^ 2) = 1953125
EasyLang
print "(5 ^ 3) ^ 2 = " & pow (pow 5 3) 2
print "5 ^ (3 ^ 2) = " & pow 5 pow 3 2
EchoLisp
;; the standard and secure way is to use the (expt a b) function
(expt 5 (expt 3 2)) ;; 5 ** ( 3 ** 2)
→ 1953125
(expt (expt 5 3) 2) ;; (5 ** 3) ** 2
→ 15625
;; infix EchoLisp may use the ** operator, which right associates
(lib 'match)
(load 'infix.glisp)
(5 ** 3 ** 2)
→ 1953125
((5 ** 3) ** 2)
→ 15625
(5 ** (3 ** 2))
→ 1953125
Factor
Factor is a stack language where expressions take the form of reverse Polish notation, so there is no ambiguity here. It is up to you, the programmer, to perform operations in the order you intend.
USING: formatting math.functions ;
5 3 2 ^ ^
"5 3 2 ^ ^ %d\n" printf
5 3 ^ 2 ^
"5 3 ^ 2 ^ %d\n" printf
- Output:
5 3 2 ^ ^ 1953125 5 3 ^ 2 ^ 15625
Factor also has syntax for infix arithmetic via the the infix
vocabulary.
USING: formatting infix ;
[infix 5**3**2 infix]
"5**3**2 = %d\n" printf
[infix (5**3)**2 infix]
"(5**3)**2 = %d\n" printf
[infix 5**(3**2) infix]
"5**(3**2) = %d\n" printf
- Output:
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = 1953125
Fortran
write(*, "(a, i0)") "5**3**2 = ", 5**3**2
write(*, "(a, i0)") "(5**3)**2 = ", (5**3)**2
write(*, "(a, i0)") "5**(3**2) = ", 5**(3**2)
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
FreeBASIC
' FB 1.05.0
' The exponentation operator in FB is ^ rather than **.
' In the absence of parenthesis this operator is
' left-associative. So the first example
' will have the same value as the second example.
Print "5^3^2 =>"; 5^3^2
Print "(5^3)^2 =>"; (5^3)^2
Print "5^(3^2) =>"; 5^(3^2)
Sleep
- Output:
5^3^2 => 15625 (5^3)^2 => 15625 5^(3^2) => 1953125
Frink
Frink correctly follows standard mathematical notation that exponent towers are performed from "top to bottom" or "right to left."
println["5^3^2 = " + 5^3^2]
println["(5^3)^2 = " + (5^3)^2]
println["5^(3^2) = " + 5^(3^2)]
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
FutureBasic
FB is translated into C which does not have an exponentiation operator. The caret operator '^' performs xor bitwise operation. FB also has an fn pow function, translated from the the standard C Math library, which takes two arguments.
print "(5^3)^2 = "; (5^3)^2
print "5^(3^2) = "; 5^(3^2)
print
print "fn pow( fn pow(5,3), 2 ) = "; fn pow( fn pow(5,3), 2 )
print "fn pow( 5, fn pow(3,2 ) ) = "; fn pow( 5, fn pow(3,2 ) )
HandleEvents
- Output:
(5^3)^2 = 15625 5^(3^2) = 1953125 fn pow( fn pow(5,3), 2 ) = 15625 fn pow( 5, fn pow(3,2 ) ) = 1953125
Go
package main
import "fmt"
import "math"
func main() {
var a, b, c float64
a = math.Pow(5, math.Pow(3, 2))
b = math.Pow(math.Pow(5, 3), 2)
c = math.Pow(5, math.Pow(3, 2))
fmt.Printf("5^3^2 = %.0f\n", a)
fmt.Printf("(5^3)^2 = %.0f\n", b)
fmt.Printf("5^(3^2) = %.0f\n", c)
}
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
Groovy
Solution:
println(" 5 ** 3 ** 2 == " + 5**3**2)
println("(5 ** 3)** 2 == " + (5**3)**2)
println(" 5 **(3 ** 2)== " + 5**(3**2))
Output:
5 ** 3 ** 2 == 15625 (5 ** 3)** 2 == 15625 5 **(3 ** 2)== 1953125
Haskell
Haskell has three infix exponentiation operators dealing with different domains:
λ> :i (^) (^) :: (Num a, Integral b) => a -> b -> a -- Defined in ‘GHC.Real’ infixr 8 ^ λ> :i (**) class Fractional a => Floating a where ... (**) :: a -> a -> a ... -- Defined in ‘GHC.Float’ infixr 8 ** λ> :i (^^) (^^) :: (Fractional a, Integral b) => a -> b -> a -- Defined in ‘GHC.Real’ infixr 8 ^^
All of them are right-associative.
λ> 5^3^2 1953125 λ> (5^3)^2 15625 λ> 5^(3^2) 1953125 λ> 5**3**2 == 5**(3**2) True
However natural chaining of (^^) operator is impossible:
5^^3^^2 = 5^^(3^^2)
but (3^^2) is not Integral any longer, so evaluation leads to the type error. Left-assiciative chain is Ok:
λ> (5^^3)^^2 15625.0 λ> ((5^^3)^^2)^^4 5.9604644775390624e16
Io
Io> 5**3**2 ==> 15625 Io> (5**3)**2 ==> 15625 Io> 5**(3**2) ==> 1953125 Io> 5 pow(3) pow(2) ==> 15625 Io> 5 **(3) **(2) ==> 15625 Io> Number getSlot("**") == Number getSlot("pow") ==> true Io>
Operators in Io are implemented as methods. Here the **
method is the same as the pow
method. Syntax sugar converts "normal" mathematical expressions to messages.
J
J uses the same evaluation order for exponentiation as it does for assignment. That is to say: the bottom up view is right-to-left and the top-down view is left-to-right.
5^3^2
1.95312e6
(5^3)^2
15625
5^(3^2)
1.95312e6
Java
Java has no exponentiation operator, but uses the static method java.lang.Math.pow(double a, double b). There are no associativity issues.
jq
Requires: jq 1.5 or higher
jq's built-in for exponentiation is an arity-two function and thus no ambiguity arising from infix-notation is possible. Here's an example:
jq -n 'pow(pow(5;3);2)'
15625
For chaining, one could use `reduce`:
def pow: reduce .[1:] as $i (.[0]; pow(.;$i))
[5,3,2] | pow
Result: 15625
Julia
@show 5 ^ 3 ^ 2 # default: power operator is read right-to-left
@show (5 ^ 3) ^ 2
@show 5 ^ (3 ^ 2)
@show reduce(^, [5, 3, 2])
@show foldl(^, [5, 3, 2]) # guarantees left associativity
@show foldr(^, [5, 3, 2]) # guarantees right associativity
- Output:
5 ^ (3 ^ 2) = 1953125 (5 ^ 3) ^ 2 = 15625 5 ^ (3 ^ 2) = 1953125 reduce(^, [5, 3, 2]) = 15625 foldl(^, [5, 3, 2]) = 15625 foldr(^, [5, 3, 2]) = 1953125
Kotlin
Kotlin does not have a dedicated exponentiation operator and we would normally use Java's Math.pow function instead. However, it's possible to define an infix function which would look like an operator and here we do so for integer base and exponent. For simplicity we disallow negative exponents altogether and consider 0 ** 0 == 1. Associativity would, of course, be the same as for a normal function call.
// version 1.0.5-2
infix fun Int.ipow(exp: Int): Int = when {
exp < 0 -> throw IllegalArgumentException("negative exponents not allowed")
exp == 0 -> 1
else -> {
var ans = 1
var base = this
var e = exp
while(e != 0) {
if (e and 1 == 1) ans *= base
e = e shr 1
base *= base
}
ans
}
}
fun main(args: Array<String>) {
println("5**3**2 = ${5 ipow 3 ipow 2}")
println("(5**3)**2 = ${(5 ipow 3) ipow 2}")
println("5**(3**2) = ${5 ipow (3 ipow 2)}")
}
- Output:
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = 1953125
Lambdatalk
Because lambdatalk uses prefix notation and {pow a b} accepts only two arguments, it doesn't have an expression for 5**3**2. Just showing expressions for the latter two.
'{pow {pow 5 3} 2}
-> {pow {pow 5 3} 2}
'{pow 5 {pow 3 2}}
-> {pow 5 {pow 3 2}}
langur
writeln " 5^3^2: ", 5^3^2
writeln "(5^3)^2: ", (5^3)^2
writeln "5^(3^2): ", 5^(3^2)
- Output:
5^3^2: 1953125 (5^3)^2: 15625 5^(3^2): 1953125
Latitude
5 ^ 3 ^ 2. ;; 1953125
(5 ^ 3) ^ 2. ;; 15625
5 ^ (3 ^ 2). ;; 1953125
Lua
print("5^3^2 = " .. 5^3^2)
print("(5^3)^2 = " .. (5^3)^2)
print("5^(3^2) = " .. 5^(3^2))
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
Lua also has math.pow(a, b), which is identical to pow(a, b) in C. Since function arguments are contained in brackets anyway, the associativity of nested uses of math.pow will be obvious.
Maple
5^3^2;
(5^3)^2;
5^(3^2);
- Output:
Error, ambiguous use of `^`, please use parentheses 15625 1953125
Mathematica / Wolfram Language
a = "5^3^2";
Print[a <> " = " <> ToString[ToExpression[a]]]
b = "(5^3)^2";
Print[b <> " = " <> ToString[ToExpression[b]]]
c = "5^(3^2)";
Print[c <> " = " <> ToString[ToExpression[c]]]
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
min
As with other postfix languages, there is no ambiguity because all operators have the same precedence.
5 3 2 pow pow
"5 3 2 ^ ^ " print! puts!
5 3 pow 2 pow
"5 3 ^ 2 ^ " print! puts!
- Output:
5 3 2 ^ ^ 1953125.0 5 3 ^ 2 ^ 15625.0
MiniScript
REPL output.
- Output:
]5^3^2 15625 ](5^3)^2 15625 ]5^(3^2) 1953125
Nanoquery
Nanoquery uses the '^' operator, which performs exponentiation in order like multiplication. Parenthesis are often needed to perform operations like 5^3^2 correctly.
% println 5^3^2
15625
% println (5^3)^2
15625
% println 5^(3^2)
1953125
Nim
import math, sequtils
echo "5^3^2 = ", 5^3^2
echo "(5^3)^2 = ", (5^3)^2
echo "5^(3^2) = ", 5^(3^2)
echo "foldl([5, 3, 2], a^b) = ", foldl([5, 3, 2], a^b)
echo "foldr([5, 3, 2], a^b) = ", foldr([5, 3, 2], a^b)
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125 foldl([5, 3, 2], a^b) = 15625 foldr([5, 3, 2], a^b) = 1953125
OCaml
OCaml language has '**' as an exponentiation symbol for floating point integers
# 5. ** 3. ** 2. ;;
# 5. **( 3. ** 2.) ;;
#(5. ** 3. ) **2. ;;
- Output:
- : float = 1953125. - : float = 1953125. - : float = 15625.
PARI/GP
Exponentiation is right-associative in GP.
f(s)=print(s" = "eval(s));
apply(f, ["5^3^2", "(5^3)^2", "5^(3^2)"]);
- Output:
5^3^2 = 1953125 (5^3)^2 = 15625 5^(3^2) = 1953125
Perl
say "$_ = " . eval($_) for qw/5**3**2 (5**3)**2 5**(3**2)/;
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
Phix
Phix has a power function rather than an infix power operator, hence there is no possible confusion.
?power(power(5,3),2)
?power(5,power(3,2))
- Output:
15625 1953125
Picat
main =>
X = 5**3**2, Y = (5**3)**2, Z = 5**(3**2),
print("5**3**2 = "), println(X),
print("(5**3)**2 = "), println(Y),
print("5**(3**2) = "), print(Z).
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
PicoLisp
The PicoLisp '**' exponentiation function takes 2 arguments
: (** (** 5 3) 2)
-> 15625
: (** 5 (** 3 2))
-> 1953125
PL/I
exponentiation: procedure options(main);
put skip edit('5**3**2 = ', 5**3**2) (A,F(7));
put skip edit('(5**3)**2 = ', (5**3)**2) (A,F(7));
put skip edit('5**(3**2) = ', 5**(3**2)) (A,F(7));
end exponentiation;
- Output:
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = 1953125
Python
>>> 5**3**2
1953125
>>> (5**3)**2
15625
>>> 5**(3**2)
1953125
>>> # The following is not normally done
>>> try: from functools import reduce # Py3K
except: pass
>>> reduce(pow, (5, 3, 2))
15625
>>>
Quackery
Quackery uses Reverse Polish Notation, so there is no ambiguity and no need for parenthesising.
As a dialogue in the Quackery Shell…
Welcome to Quackery. Enter "leave" to leave the shell. /O> $ "5 3 2 ** **" dup echo$ say " returns " quackery echo cr ... $ "5 3 ** 2 **" dup echo$ say " returns " quackery echo cr ... 5 3 2 ** ** returns 1953125 5 3 ** 2 ** returns 15625 Stack empty.
R
The 'Operator Syntax and Precedence' documentation tells us that "^" is "exponentiation (right to left)". The 'Arithmetic Operators' documentation also tells us that the parser translates "**" to "^", but its depreciation status is complicated.
It turns out that the parser is so blind to "**" that we cannot even quote it. The following are identical:
print(quote(5**3))
print(quote(5^3))
Another method is to use "^" as if it is an ordinary function of two arguments. It appears that "**" does not support this. As there is no potential for ambiguity in the operator precedence, we will not print this result below. For example:
'^'('^'(5, 3), 2)
is clearly (5^3)^2 i.e. 15625, whereas
'^'(5, '^'(3, 2))
is clearly 5^(3^2) i.e. 1953125.
As for actually solving the task, the requirement that each output be on a new line causes us a surprising amount of difficulty. To avoid repeating ourselves, we must almost resort to metaprogramming:
inputs <- alist(5^3^2, (5^3)^2, 5^(3^2), 5**3**2, (5**3)**2, 5**(3**2))
invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n")))
Alternatively, we could print out a matrix or data frame:
print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs")))
print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))))
- Output:
> print(quote(5**3)) 5^3 > print(quote(5^3)) 5^3 > invisible(sapply(inputs, function(x) cat(deparse(x), "returns: ", eval(x), "\n"))) 5^3^2 returns: 1953125 (5^3)^2 returns: 15625 5^(3^2) returns: 1953125 5^3^2 returns: 1953125 (5^3)^2 returns: 15625 5^(3^2) returns: 1953125 > print(matrix(sapply(inputs, eval), dimnames = list(inputs, "Outputs"))) Outputs 5^3^2 1953125 (5^3)^2 15625 5^(3^2) 1953125 5^3^2 1953125 (5^3)^2 15625 5^(3^2) 1953125 > print(data.frame(Inputs = sapply(inputs, deparse), Outputs = sapply(inputs, eval))) Inputs Outputs 1 5^3^2 1953125 2 (5^3)^2 15625 3 5^(3^2) 1953125 4 5^3^2 1953125 5 (5^3)^2 15625 6 5^(3^2) 1953125
Racket
#lang racket
;; 5**3**2 depends on associativity of ** : Racket's (scheme's) prefix function
;; calling syntax only allows for pairs of arguments for expt.
;; So no can do for 5**3**2
;; (5**3)**2
(displayln "prefix")
(expt (expt 5 3) 2)
;; (5**3)**2
(expt 5 (expt 3 2))
;; There is also a less-used infix operation (for all functions, not just expt)... which I suppose
;; might do with an airing. But fundamentally nothing changes.
(displayln "\"in\"fix")
((5 . expt . 3) . expt . 2)
(5 . expt . (3 . expt . 2))
;; everyone's doing a reduction, it seems
(displayln "reduction")
(require (only-in srfi/1 reduce reduce-right))
(reduce expt 1 '(5 3 2))
(reduce-right expt 1 '(5 3 2))
- Output:
prefix 15625 1953125 "in"fix 15625 1953125 reduction 14134776518227074636666380005943348126619871175004951664972849610340958208 1953125
Raku
(formerly Perl 6)
Note that the reduction forms automatically go right-to-left because the base operator is right-associative. Most other operators are left-associative and would automatically reduce left-to-right instead.
use MONKEY-SEE-NO-EVAL;
sub demo($x) { say " $x\t───► ", EVAL $x }
demo '5**3**2'; # show ** is right associative
demo '(5**3)**2';
demo '5**(3**2)';
demo '[**] 5,3,2'; # reduction form, show only final result
demo '[\**] 5,3,2'; # triangle reduction, show growing results
# Unicode postfix exponents are supported as well:
demo '(5³)²';
demo '5³²';
- Output:
5**3**2 ───► 1953125 (5**3)**2 ───► 15625 5**(3**2) ───► 1953125 [**] 5,3,2 ───► 1953125 [\**] 5,3,2 ───► 2 9 1953125 (5³)² ───► 15625 5³² ───► 23283064365386962890625
The Unicode exponent form without parentheses ends up raising to the 32nd power. Nor are you even allowed to parenthesize it the other way: 5(³²) would be a syntax error. Despite all that, for programs that do a lot of squaring or cubing, the postfix forms can enhance both readability and concision.
Red
In Red, operators simply evaluate left to right. As this differs from mathematical order of operations, Red provides the math
function which evaluates a block using math rules instead of Red's default evaluation. One could also use the power
function, sidestepping the issue of evaluation order entirely. All three approaches are shown.
Red["Exponentiation order"]
exprs: [
[5 ** 3 ** 2]
[(5 ** 3) ** 2]
[5 ** (3 ** 2)]
[power power 5 3 2] ;-- functions too
[power 5 power 3 2]
]
foreach expr exprs [
print [mold/only expr "=" do expr]
if find expr '** [
print [mold/only expr "=" math expr "using math"]
]
]
- Output:
5 ** 3 ** 2 = 15625 5 ** 3 ** 2 = 1953125 using math (5 ** 3) ** 2 = 15625 (5 ** 3) ** 2 = 15625 using math 5 ** (3 ** 2) = 1953125 5 ** (3 ** 2) = 1953125 using math power power 5 3 2 = 15625 power 5 power 3 2 = 1953125
REXX
/*REXX program demonstrates various ways of multiple exponentiations. */
/*┌────────────────────────────────────────────────────────────────────┐
│ The REXX language uses ** for exponentiation. │
│ Also, * * can be used. │
| and even */*power of*/* |
└────────────────────────────────────────────────────────────────────┘*/
say ' 5**3**2 ───► ' 5**3**2
say ' (5**3)**2 ───► ' (5**3)**2
say ' 5**(3**2) ───► ' 5**(3**2)
/*stick a fork in it, we're done.*/
output
5**3**2 ───► 15625 (5**3)**2 ───► 15625 5**(3**2) ───► 1953125
Ring
In the Ring it is impossible to show the result of: 5^3^2
see "(5^3)^2 =>" + pow(pow(5,3),2) + nl
see "5^(3^2) =>" + pow(5,pow(3,2)) + nl
Output:
(5^3)^2 =>15625 5^(3^2) =>1953125
RPL
When using reverse Polish notation, there is no parenthesis: the user must decide the exponentiation order. When using algebraic notation:
'5^3^2' →NUM '(5^3)^2' →NUM '5^(3^2)' →NUM
- Output:
3: 15625 2: 15625 1: 1953125
Ruby
ar = ["5**3**2", "(5**3)**2", "5**(3**2)", "[5,3,2].inject(:**)"]
ar.each{|exp| puts "#{exp}:\t#{eval exp}"}
- Output:
5**3**2: 1953125 (5**3)**2: 15625 5**(3**2): 1953125 [5,3,2].inject(:**): 15625
Rust
fn main() {
println!("5**3**2 = {:7}", 5u32.pow(3).pow(2));
println!("(5**3)**2 = {:7}", (5u32.pow(3)).pow(2));
println!("5**(3**2) = {:7}", 5u32.pow(3u32.pow(2)));
}
- Output:
5**3**2 = 15625 (5**3)**2 = 15625 5**(3**2) = 1953125
S-BASIC
The exponentiation operator ^ works on both integer and real operands. Numeric constants in expressions are taken to be of type real, which is useful here, because the third result exceeds S-BASIC's manximum integer value of 32767.
print "5^3^2 : "; 5 ^ 3 ^ 2
print "(5^3)^2 : "; (5 ^ 3) ^ 2
print "5^(3^2) : "; 5 ^ (3 ^ 2)
end
- Output:
5^3^2 : 15625 (5^3)^2 : 15625 5^(3^2) : 1.95312E+6
Scala
Scal has no exponentiation operator, but uses the function (scala.)math.pow(x: Double, y: Double): Double function in the Scala runtime library.
Integer exponentiation can be done with e.g. BigInt or BigInteger.pow(n: Int) method.
There are no associativity issues.
Seed7
$ include "seed7_05.s7i";
const proc: main is func
begin
writeln("5**3**2 = " <& 5**3**2);
writeln("(5**3)**2 = " <& (5**3)**2);
writeln("5**(3**2) = " <& 5**(3**2));
end func;
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
Sidef
In Sidef, the whitespace between the operands and the operator controls the precedence of the operation.
var a = [
'5**3**2',
'(5**3)**2',
'5**(3**2)',
'5 ** 3 ** 2',
'5 ** 3**2',
'5**3 ** 2',
'[5,3,2]«**»',
]
a.each {|e|
"%-12s == %s\n".printf(e, eval(e))
}
- Output:
5**3**2 == 1953125 (5**3)**2 == 15625 5**(3**2) == 1953125 5 ** 3 ** 2 == 15625 5 ** 3**2 == 1953125 5**3 ** 2 == 15625 [5,3,2]«**» == 15625
Simula
OutText("5** 3 **2: "); OutInt(5** 3 **2, 0); Outimage;
OutText("(5**3)**2: "); OutInt((5**3)**2, 0); Outimage;
OutText("5**(3**2): "); OutInt(5**(3**2), 0); Outimage
- Output:
5** 3 **2: 15625 (5**3)**2: 15625 5**(3**2): 1953125
Smalltalk
Works in Smalltalk/X ¹
Smalltalk strictly evaluates left to right; operators are not known to the language/parser, but instead message sends to the receiver on the left side (aka: virtual function calls) .
Transcript show:'5**3**2 => '; showCR: 5**3**2.
Transcript show:'(5**3)**2 => '; showCR: (5**3)**2.
Transcript show:'5**(3**2) => '; showCR: 5**(3**2).
- Output:
5**(3**2) => 1953125 5**3**2 => 15625 (5**3)**2 => 15625
Note ¹ other Smalltalk's may define ** to simply call "raisedTo:", which is standard.
Stata
. di (5^3^2)
15625
. di ((5^3)^2)
15625
. di (5^(3^2))
1953125
Likewise in Mata:
. mata (5^3^2)
15625
. mata ((5^3)^2)
15625
. mata (5^(3^2))
1953125
Swift
Swift doesn't have an exponentiation operator, however it's possible to define one, including the precedence and associativity.
precedencegroup ExponentiationPrecedence {
associativity: left
higherThan: MultiplicationPrecedence
}
infix operator ** : ExponentiationPrecedence
@inlinable
public func ** <T: BinaryInteger>(lhs: T, rhs: T) -> T {
guard lhs != 0 else {
return 1
}
var x = lhs
var n = rhs
var y = T(1)
while n > 1 {
switch n & 1 {
case 0:
n /= 2
case 1:
y *= x
n = (n - 1) / 2
case _:
fatalError()
}
x *= x
}
return x * y
}
print(5 ** 3 ** 2)
print((5 ** 3) ** 2)
print(5 ** (3 ** 2))
- Output:
15625 15625 1953125
Tcl
foreach expression {5**3**2 (5**3)**2 5**(3**2)} {
puts "${expression}:\t[expr $expression]"
}
- Output:
5**3**2: 1953125 (5**3)**2: 15625 5**(3**2): 1953125
There's also a binary pow()
expression function that always converts its arguments to floating point numbers and then applies the exponentiation operation; it's now largely obsolete because of the **
operator, but is retained for backward compatibility with older programs.
VBA
Public Sub exp()
Debug.Print "5^3^2", 5 ^ 3 ^ 2
Debug.Print "(5^3)^2", (5 ^ 3) ^ 2
Debug.Print "5^(3^2)", 5 ^ (3 ^ 2)
End Sub
- Output:
5^3^2 15625 (5^3)^2 15625 5^(3^2) 1953125
VBScript
WScript.StdOut.WriteLine "5^3^2 => " & 5^3^2
WScript.StdOut.WriteLine "(5^3)^2 => " & (5^3)^2
WScript.StdOut.WriteLine "5^(3^2) => " & 5^(3^2)
- Output:
5^3^2 => 15625 (5^3)^2 => 15625 5^(3^2) => 1953125
Verbexx
// Exponentiation order example:
@SAY "5**3**2 = " ( 5**3**2 );
@SAY "(5**3)**2 = " ( (5**3)**2 );
@SAY "5**(3**2) = " ( 5**(3**2) );
/] Output:
5**3**2 = 1953125
(5**3)**2 = 15625
5**(3**2) = 1953125
Wren
Wren doesn't have an exponentiation operator as such but the Num class has a pow method which does the same thing.
import "./fmt" for Fmt
var ops = [ "5**3**2", "(5**3)**2", "5**(3**2)" ]
var results = [ 5.pow(3).pow(2), (5.pow(3)).pow(2), 5.pow(3.pow(2)) ]
for (i in 0...ops.count) {
Fmt.print("$-9s -> $d", ops[i], results[i])
}
- Output:
5**3**2 -> 15625 (5**3)**2 -> 15625 5**(3**2) -> 1953125
XPL0
XPL0 doesn't have an exponentiation operator, but it does have a Pow intrinsic (in the 32-bit versions).
[Format(1, 0);
Text(0, "5**3**2 = "); RlOut(0, Pow(5., Pow(3., 2.))); CrLf(0); \right associative
Text(0, "(5**3)**2 = "); RlOut(0, Pow(Pow(5., 3.), 2.)); CrLf(0);
Text(0, "5**(3**2) = "); RlOut(0, Pow(5., Pow(3., 2.))); CrLf(0);
]
- Output:
5**3**2 = 1953125 (5**3)**2 = 15625 5**(3**2) = 1953125
zkl
zkl does not have an exponentiation operator but floats have a pow method.
println("5 ^ 3 ^ 2 = %,d".fmt((5.0).pow((3.0).pow(2))));
println("(5 ^ 3) ^ 2 = %,d".fmt((5.0).pow(3).pow(2)));
println("5 ^ (3 ^ 2) = %,d".fmt((5.0).pow((3.0).pow(2))));
- Output:
5 ^ 3 ^ 2 = 1,953,125 (5 ^ 3) ^ 2 = 15,625 5 ^ (3 ^ 2) = 1,953,125
- Programming Tasks
- Solutions by Programming Task
- 11l
- Action!
- Action! Tool Kit
- Ada
- ALGOL 68
- ALGOL-M
- ALGOL W
- APL
- AppleScript
- Arturo
- AWK
- BASIC
- Applesoft BASIC
- BASIC256
- BBC BASIC
- Chipmunk Basic
- GW-BASIC
- IS-BASIC
- MSX Basic
- PureBasic
- QBasic
- Run BASIC
- True BASIC
- XBasic
- Yabasic
- Sinclair ZX81 BASIC
- Bracmat
- C
- C++
- C sharp
- Clojure
- CLU
- Common Lisp
- D
- Delphi
- Math,SysUtils,StdCtrls
- Dart
- EasyLang
- EchoLisp
- Factor
- Fortran
- FreeBASIC
- Frink
- FutureBasic
- Go
- Groovy
- Haskell
- Io
- J
- Java
- Jq
- Julia
- Kotlin
- Lambdatalk
- Langur
- Latitude
- Lua
- Maple
- Mathematica
- Wolfram Language
- Min
- MiniScript
- Nanoquery
- Nim
- OCaml
- PARI/GP
- Perl
- Phix
- Phix/basics
- Picat
- PicoLisp
- PL/I
- Python
- Quackery
- R
- Racket
- Raku
- Red
- REXX
- Ring
- RPL
- Ruby
- Rust
- S-BASIC
- Scala
- Seed7
- Sidef
- Simula
- Smalltalk
- Stata
- Swift
- Tcl
- VBA
- VBScript
- Verbexx
- Wren
- Wren-fmt
- XPL0
- Zkl