# Anti-primes

Anti-primes
You are encouraged to solve this task according to the task description, using any language you may know.

The anti-primes (or highly composite numbers, sequence A002182 in the OEIS) are the natural numbers with more factors than any smaller than itself.

Generate and show here, the first twenty anti-primes.

## 11l

```V max_divisors = 0
V c = 0
V n = 1
L
V divisors = 1
L(i) 1 .. n I/ 2
I n % i == 0
divisors++

I divisors > max_divisors
max_divisors = divisors
print(n, end' ‘ ’)
c++
I c == 20
L.break

n++```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## 8086 Assembly

```puts:	equ	9	; MS-DOS print string syscall
amount:	equ	20 	; Amount of antiprimes to find
cpu	8086
org	100h
xor	si,si	; SI = current number
xor	cx,cx	; CH = max # of factors, CL = # of antiprimes
cand:	inc	si
mov	di,si	; DI = maximum factor to test
shr	di,1
mov	bp,1	; BP = current candidate
xor	bl,bl	; BL = factor count
.test:	mov	ax,si	; Test current candidate
xor	dx,dx
div	bp
test	dx,dx	; Evenly divisible?
jnz	.next
inc	bx	; Then increment factors
.next:	inc	bp	; Next possible factor
cmp	bp,si	; Are we there yet?
jbe	.test	; If not, try next factor
cmp	bl,ch	; Is it an antiprime?
jbe	cand	; If not, next candidate
inc	cx	; If so, increment the amount of antiprimes seen
mov	ch,bl	; Update maximum amount of factors
mov	bx,nbuf	; Convert current number to ASCII
mov	ax,si
mov	di,10
digit:	xor	dx,dx	; Extract a digit
div	di
dec	bx
mov 	[bx],dl	; Store it
test	ax,ax	; Any more digits?
jnz	digit	; If so, get next digit
mov	dx,bx
mov	ah,puts
int	21h	; Print using MS-DOS
cmp 	cl,amount	; Do we need any more antiprimes?
jb	cand	; If so, find the next one
ret		; Otherwise, back to DOS
db	'.....'	; Placeholder for decimal output
nbuf:	db	' \$'
```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 `

## AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
```/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program antiprime64.s   */

/************************************/
/* Constantes                       */
/************************************/
.include "../includeConstantesARM64.inc"

.equ NMAXI,      20
.equ MAXLINE,     5
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:        .asciz " @ "
szCarriageReturn:   .asciz "\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:                  .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                             // entry of program
ldr x3,qNMaxi                 // load limit
mov x5,#0                     // maxi
mov x6,#0                     // result counter
mov x7,#0                     // display counter
mov x4,#1                     // number begin
1:
mov x0,x4                     // number
bl decFactor                  // compute number factors
cmp x0,x5                     // maxi ?
cinc x4,x4,le                 // no -> increment indice
//addle x4,x4,#1                // no -> increment indice
ble 1b                        // and loop
mov x5,x0
mov x0,x4
bl displayResult
add x7,x7,#1                  // increment display counter
cmp x7,#MAXLINE               // line maxi ?
blt 2f
mov x7,#0
bl affichageMess              // display message
2:
add x6,x6,#1                  // increment result counter
add x4,x4,#1                  // increment number
cmp x6,x3                     // end ?
blt 1b

100:                              // standard end of the program
mov x0, #0                    // return code
mov x8,EXIT
svc #0                        // perform the system call
/***************************************************/
/*   display message number                        */
/***************************************************/
/* x0 contains number 1           */
/* x1 contains number 2               */
displayResult:
stp x1,lr,[sp,-16]!        // save  registers
bl conversion10            // call décimal conversion
ldr x1,qAdrsZoneConv       // insert conversion in message
bl strInsertAtCharInc

bl affichageMess           // display message
ldp x1,lr,[sp],16          // restaur  registers
ret
/***************************************************/
/*   compute factors sum                        */
/***************************************************/
/* x0 contains the number            */
decFactor:
stp x1,lr,[sp,-16]!       // save  registers
stp x2,x3,[sp,-16]!       // save  registers
stp x4,x5,[sp,-16]!       // save  registers
mov x5,#0                 // init number factors
mov x4,x0                 // save number
mov x1,#1                 // start factor -> divisor
1:
mov x0,x4                 // dividende
udiv x2,x0,x1
msub x3,x2,x1,x0
cmp x1,x2                 // divisor > quotient ?
bgt 3f
cmp x3,#0                 // remainder = 0 ?
bne 2f
add x5,x5,#1              // increment counter factors
cmp x1,x2                 // divisor = quotient ?
beq 3f                    // yes -> end
add x5,x5,#1              // no -> increment counter factors
2:
add x1,x1,#1              // increment factor
b 1b                      // and loop
3:
mov x0,x5                 // return counter
ldp x4,x5,[sp],16 // restaur  registers
ldp x2,x3,[sp],16 // restaur  registers
ldp x1,lr,[sp],16  // restaur  registers
ret
/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../includeARM64.inc"```
``` 1  2  4  6  12
24  36  48  60  120
180  240  360  720  840
1260  1680  2520  5040  7560
```

## Action!

```BYTE FUNC CountDivisors(INT a)
INT i
BYTE prod,count

prod=1 count=0
WHILE a MOD 2=0
DO
count==+1
a==/2
OD
prod==*(1+count)

i=3
WHILE i*i<=a
DO
count=0
WHILE a MOD i=0
DO
count==+1
a==/i
OD
prod==*(1+count)
i==+2
OD

IF a>2 THEN
prod==*2
FI
RETURN (prod)

PROC Main()
BYTE toFind=[20],found=[0],count,max=[0]
INT i=[1]

PrintF("The first %B Anti-primes are:%E",toFind)
WHILE found<toFind
DO
count=CountDivisors(i)
IF count>max THEN
max=count
found==+1
PrintI(i)
IF found<toFind THEN
Print(", ")
FI
FI
i==+1
OD
RETURN```
Output:
```The first 20 Anti-primes are:
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560
```

```with Ada.Text_IO; use Ada.Text_IO;

procedure Antiprimes is

function Count_Divisors (N : Integer) return Integer is
Count : Integer := 1;
begin
for i in 1 .. N / 2 loop
if N mod i = 0 then
Count := Count + 1;
end if;
end loop;
return Count;
end Count_Divisors;

Results      : array (1 .. 20) of Integer;
Candidate    : Integer := 1;
Divisors     : Integer;
Max_Divisors : Integer := 0;

begin
for i in Results'Range loop
loop
Divisors := Count_Divisors (Candidate);
if Max_Divisors < Divisors then
Results (i)  := Candidate;
Max_Divisors := Divisors;
exit;
end if;
Candidate := Candidate + 1;
end loop;
end loop;
Put_Line ("The first 20 anti-primes are:");
for I in Results'Range loop
Put (Integer'Image (Results (I)));
end loop;
New_Line;
end Antiprimes;
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## ALGOL 68

```BEGIN # find some anti-primes: numbers with more divisors than the     #
# previous numbers                                               #
REF[]INT ndc     := HEAP[ 1 : 0 ]INT; # table of divisor counts    #
INT max divisors := 0;
INT a count      := 0;
FOR n WHILE a count < 20 DO
IF n > UPB ndc THEN
# need a bigger table of divisor counts                    #
ndc := HEAP[ 1 : UPB ndc + 5 000 ]INT;
FOR i FROM 1 TO UPB ndc DO ndc[ i ] := 1 OD;
FOR i FROM 2 TO UPB ndc DO
FOR j FROM i BY i TO UPB ndc DO ndc[ j ] +:= 1 OD
OD
FI;
IF ndc[ n ] > max divisors THEN
print( ( " ", whole( n, 0 ) ) );
max divisors := ndc[ n ];
a count     +:= 1
FI
OD;
print( ( newline ) )
END```
Output:
``` 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## ALGOL W

```begin
% find some anti-primes - numbers with more factors than the numbers    %
% smaller than them                                                     %
% calculates the number of divisors of v                                %
integer procedure divisor_count( integer value v ) ; begin
integer total, n, p;
total := 1; n := v;
while not odd( n ) do begin
total := total + 1;
n     := n div 2
end while_not_odd_n ;
p := 3;
while ( p * p ) <= n do begin
integer count;
count := 1;
while n rem p = 0 do begin
count := count + 1;
n     := n div p
end while_n_rem_p_eq_0 ;
p     := p + 2;
total := total * count
end while_p_x_p_le_n ;
if n > 1 then total := total * 2;
total
end divisor_count ;
begin
integer maxAntiPrime, antiPrimeCount, maxDivisors, n;
maxAntiPrime := 20;
n := maxDivisors := antiPrimeCount := 0;
while antiPrimeCount < maxAntiPrime do begin
integer divisors;
n := n + 1;
divisors := divisor_count( n );
if divisors > maxDivisors then begin
writeon( i_w := 1, s_w := 0, " ", n );
maxDivisors    := divisors;
antiPrimeCount := antiPrimeCount + 1
end if_have_an_anti_prime
end while_antiPrimeCoiunt_lt_maxAntiPrime
end
end.```
Output:
``` 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## AppleScript

```on factorCount(n)
set counter to 0
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set counter to counter + 1
set limit to limit - 1
end if
repeat with i from limit to 1 by -1
if (n mod i is 0) then set counter to counter + 2
end repeat

return counter
end factorCount

on antiprimes(howMany)
set output to {}
set mostFactorsSoFar to 0
set n to 0
repeat until ((count output) = howMany)
set n to n + 1
tell (factorCount(n))
if (it > mostFactorsSoFar) then
set end of output to n
set mostFactorsSoFar to it
end if
end tell
end repeat

return output
end antiprimes

antiprimes(20)
```
Output:
```{1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560}
```

## APL

Works in Dyalog APL

```f←{⍸≠⌈\(⍴∘∪⊢∨⍳)¨⍳⍵}
```
Output:
```      f 8000
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```

## ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
```/* ARM assembly Raspberry PI or android with termux */
/*  program antiprime.s   */

/* REMARK 1 : this program use routines in a include file
see task Include a file language arm assembly
for the routine affichageMess conversion10
see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"

.equ NMAXI,      20
.equ MAXLINE,     5
/*********************************/
/* Initialized data              */
/*********************************/
.data
sMessResult:        .asciz " @ "
szCarriageReturn:   .asciz "\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss
sZoneConv:                  .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main
main:                             @ entry of program
ldr r3,iNMaxi                 @ load limit
mov r5,#0                     @ maxi
mov r6,#0                     @ result counter
mov r7,#0                     @ display counter
mov r4,#1                     @ number begin
1:
mov r0,r4                     @ number
bl decFactor                  @ compute number factors
cmp r0,r5                     @ maxi ?
addle r4,r4,#1                @ no -> increment indice
ble 1b                        @ and loop
mov r5,r0
mov r0,r4
bl displayResult
add r7,r7,#1                  @ increment display counter
cmp r7,#MAXLINE               @ line maxi ?
blt 2f
mov r7,#0
bl affichageMess              @ display message
2:
add r6,r6,#1                  @ increment result counter
add r4,r4,#1                  @ increment number
cmp r6,r3                     @ end ?
blt 1b

100:                              @ standard end of the program
mov r0, #0                    @ return code
mov r7, #EXIT                 @ request to exit program
svc #0                        @ perform the system call
iNMaxi:                       .int NMAXI
/***************************************************/
/*   display message number                        */
/***************************************************/
/* r0 contains number 1           */
/* r1 contains number 2               */
displayResult:
push {r1,lr}               @ save registers
bl conversion10            @ call décimal conversion
ldr r1,iAdrsZoneConv       @ insert conversion in message
bl strInsertAtCharInc

bl affichageMess           @ display message
pop {r1,pc}                @ restaur des registres
/***************************************************/
/*   compute factors sum                        */
/***************************************************/
/* r0 contains the number            */
decFactor:
push {r1-r5,lr}           @ save registers
mov r5,#0                 @ init number factors
mov r4,r0                 @ save number
mov r1,#1                 @ start factor -> divisor
1:
mov r0,r4                 @ dividende
bl division
cmp r1,r2                 @ divisor > quotient ?
bgt 3f
cmp r3,#0                 @ remainder = 0 ?
bne 2f
add r5,r5,#1              @ increment counter factors
cmp r1,r2                 @ divisor = quotient ?
beq 3f                    @ yes -> end
add r5,r5,#1              @ no -> increment counter factors
2:
add r1,r1,#1              @ increment factor
b 1b                      @ and loop
3:
mov r0,r5                 @ return counter
pop {r1-r5,pc}            @ restaur registers

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"```
``` 1            2            4            6            12
24           36           48           60           120
180          240          360          720          840
1260         1680         2520         5040         7560
```

## Arturo

```found: 0
i: 1
maxDiv: 0

while [found<20][
fac: size factors i
if fac > maxDiv [
print i
maxDiv: fac
found: found + 1
]
i: i + 1
]
```
Output:
```1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560```

## AWK

Translation of: Go
```# syntax: GAWK -f ANTI-PRIMES.AWK
BEGIN {
print("The first 20 anti-primes are:")
while (count < 20) {
d = count_divisors(++n)
if (d > max_divisors) {
printf("%d ",n)
max_divisors = d
count++
}
}
printf("\n")
exit(0)
}
function count_divisors(n,  count,i) {
if (n < 2) {
return(1)
}
count = 2
for (i=2; i<=n/2; i++) {
if (n % i == 0) {
count++
}
}
return(count)
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```

## BASIC

### BASIC256

```Dim Results(20)
Candidate = 1
max_divisors = 0

Print "Los primeros 20 anti-primos son:"
For j = 0 To 19
Do
divisors = count_divisors(Candidate)
If max_divisors < divisors Then
Results[j] = Candidate
max_divisors = divisors
Exit Do
End If
Candidate += 1
Until false
Print Results[j];" ";
Next j

Function count_divisors(n)
cont = 1
For i = 1 To n/2
If (n % i) = 0 Then cont += 1
Next i
count_divisors = cont
End Function
```
Output:
```Los primeros 20 anti-primos son:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

### FreeBASIC

```' convertido desde Ada
Declare Function count_divisors(n As Integer) As Integer

Dim As Integer max_divisors, divisors, results(1 To 20), candidate, j
candidate = 1

Function count_divisors(n As Integer) As Integer
Dim As Integer i, count = 1
For i = 1 To n/2
If (n Mod i) = 0 Then count += 1
Next i
count_divisors = count
End Function

Print "Los primeros 20 anti-primos son:"
For j = 1 To 20
Do
divisors = count_divisors(Candidate)
If max_divisors < divisors Then
Results(j) = Candidate
max_divisors = divisors
Exit Do
End If
Candidate += 1
Loop
Next j
For j = 1 To 20
Print Results(j);
Next j
Print
Sleep```
Output:
```Los primeros 20 anti-primos son:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

### Gambas

```Function count_divisors(n As Integer) As Integer

Dim i, count As Integer
If n < 2 Then Return 1

count = 2
For i = 2 To n / 2
If Not (n Mod i) Then Inc count
Next
Return count

End Function

Public Sub Main()

Dim count, max_divisors, n, d As Integer

Print "Los primeros 20 anti-primos son:"
While (count < 20)
Inc n
d = count_divisors(n)
If d > max_divisors Then
Print n; " ";
max_divisors = d
Inc count
End If
Wend

End```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ```

### GW-BASIC

Works with: BASICA
```10 REM Anti-primes
20 DEFINT A-Z
30 N=1
40 IF S>=20 THEN END ELSE F=1
50 IF N<2 GOTO 80 ELSE FOR I=1 TO N\2
60 IF N MOD I=0 THEN F=F+1
70 NEXT
80 IF F<=M GOTO 120
90 PRINT N,
100 M=F
110 S=S+1
120 N=N+1
130 GOTO 40```
Output:
``` 1             2             4             6             12
24            36            48            60            120
180           240           360           720           840
1260          1680          2520          5040          7560```

Another solution:

Works with: BASICA
```10 REM Anti-primes
20 C = -999
30 N = N + 1
40 GOSUB 70
50 IF T = 20 THEN END
60 GOTO 30
70 D = 0
80 FOR F = 1 TO INT(N/2)
90 IF N MOD F = 0 THEN D = D + 1
100 NEXT F
110 IF D > C THEN GOSUB 130
120 RETURN
130 C = D
140 T = T + 1
150 PRINT N
160 RETURN```
Output:
``` 1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560```

### Palo Alto Tiny BASIC

Translation of: Tiny BASIC
```100 REM ANTI-PRIMES
110 LET N=1,H=0
120 PRINT "THE FIRST 20 ANTI-PRIMES ARE:"
130 FOR A=1 TO 20
140 GOSUB 300
150 LET H=F
160 PRINT N
170 LET N=N+1
180 NEXT A
190 STOP
290 REM SEARCH NEXT ANTI-PRIME
300 GOSUB 400
310 IF F>H RETURN
320 LET N=N+1
330 GOTO 300
390 REM COUNT DIVISORS
400 LET F=1
410 IF N>1 LET F=2
420 LET C=2
430 IF C*C>=N GOTO 470
440 IF (N/C)*C=N LET F=F+2
450 LET C=C+1
460 GOTO 430
470 IF C*C=N F=F+1
480 RETURN
```
Output:
```THE FIRST 20 ANTI-PRIMES ARE:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
```

### PureBasic

Translation of: C
```Procedure.i cntDiv(n.i)
Define.i i, count
If n < 2 : ProcedureReturn 1 : EndIf
count = 2 : i = 2
While i <= n / 2
If n % i = 0 : count + 1 : EndIf
i + 1
Wend
ProcedureReturn count
EndProcedure

; - - - MAIN - - -
Define.i n = 1, d, maxDiv = 0, count = 0
If OpenConsole("")
PrintN("The first 20 anti-primes are: ")
While count < 20
d = cntDiv(n)
If d > maxDiv
Print(Str(n) + " ")
maxDiv = d : count + 1
EndIf
n + 1
Wend
PrintN("")
Input()
EndIf
End 0```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

### QBasic

Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
```MaxAntiPrime = 20
n = 0
MaxDivisors = 0
AntiPrimeCount = 0
PRINT "The first 20 anti-primes are: "
WHILE AntiPrimeCount < MaxAntiPrime
n = n + 1
Divisors = DivisorCount(n)
IF Divisors > MaxDivisors THEN
PRINT n;
MaxDivisors = Divisors
AntiPrimeCount = AntiPrimeCount + 1
END IF
WEND
END

FUNCTION DivisorCount (v)
total = 1
n = v
WHILE n MOD 2 = 0
total = total + 1
n = n \ 2
WEND
p = 3
WHILE (p * p) <= n
count = 1
WHILE n MOD p = 0
count = count + 1
n = n \ p
WEND
p = p + 2
total = total * count
WEND
IF n > 1 THEN total = total * 2
DivisorCount = total
END FUNCTION
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ```

### QuickBASIC

Translation of: ALGOL W
Works with: QBasic version 1.1
Works with: QuickBasic version 4.5
```' Anti-primes
DECLARE FUNCTION DivisorCount (V%)

MaxAntiPrime% = 20
N% = 0: MaxDivisors% = 0: AntiPrimeCount% = 0
WHILE AntiPrimeCount% < MaxAntiPrime%
N% = N% + 1
Divisors% = DivisorCount(N%)
IF Divisors% > MaxDivisors% THEN
PRINT STR\$(N%);
MaxDivisors% = Divisors%
AntiPrimeCount% = AntiPrimeCount% + 1
END IF
WEND
PRINT
END

FUNCTION DivisorCount (V%)
Total% = 1: N% = V%
WHILE N% MOD 2 = 0
Total% = Total% + 1
N% = N% \ 2
WEND
P% = 3
WHILE (P% * P%) <= N%
Count% = 1
WHILE N% MOD P% = 0
Count% = Count% + 1
N% = N% \ P%
WEND
P% = P% + 2
Total% = Total% * Count%
WEND
IF N% > 1 THEN Total% = Total% * 2
DivisorCount = Total%
END FUNCTION
```
Output:
``` 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

### Run BASIC

Works with: Just BASIC
Works with: Liberty BASIC
```MaxAntiPrime = 20
n = 0
MaxDivisors = 0
AntiPrimeCount = 0
print "The first 20 anti-primes are: "
while AntiPrimeCount < MaxAntiPrime
n = n +1
Divisors = DivisorCount(n)
if Divisors > MaxDivisors then
print n; " ";
MaxDivisors = Divisors
AntiPrimeCount = AntiPrimeCount +1
end if
wend
end

function DivisorCount(v)
total = 1
n = v
while n mod 2 = 0
total = total +1
n = int(n / 2)
wend
p = 3
while (p * p) <= n
count = 1
while n mod p = 0
count = count +1
n = int(n / p)
wend
p = p +2
total = total * count
wend
if n > 1 then total = total *2
DivisorCount = total
end function```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ```

### Tiny BASIC

Works with: TinyBasic
```100 REM Anti-primes
110 LET A=0
120 LET N=1
130 LET H=0
140 PRINT "The first 20 anti-primes are:"
150 GOSUB 300
160 LET H=F
170 LET A=A+1
180 PRINT N
190 LET N=N+1
200 IF A<20 THEN GOTO 150
210 END
290 REM Search next anti-prime
300 GOSUB 400
310 IF F>H THEN RETURN
320 LET N=N+1
330 GOTO 300
390 REM Count divisors
400 LET F=1
410 IF N>1 THEN LET F=2
420 LET C=2
430 IF C*C>=N THEN GOTO 470
440 IF (N/C)*C=N THEN LET F=F+2
450 LET C=C+1
460 GOTO 430
470 IF C*C=N THEN LET F=F+1
480 RETURN
```
Output:
```The first 20 anti-primes are:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
```

### VBA

Translation of: Phix
```Private Function factors(n As Integer) As Collection
Dim f As New Collection
For i = 1 To Sqr(n)
If n Mod i = 0 Then
If n / i <> i Then f.Add n / i
End If
Next i
Set factors = f
End Function
Public Sub anti_primes()
Dim n As Integer, maxd As Integer
Dim res As New Collection, lenght As Integer
Dim lf As Integer
n = 1: maxd = -1
Length = 0
Do While res.count < 20
lf = factors(n).count
If lf > maxd Then
maxd = lf
End If
n = n + IIf(n > 1, 2, 1)
Loop
Debug.Print "The first 20 anti-primes are:";
For Each x In res
Debug.Print x;
Next x
End Sub```
Output:
```The first 20 anti-primes are: 1  2  4  6  12  24  36  48  60  120  180  240  360  720  840  1260  1680  2520  5040  7560
```

### Visual Basic .NET

Translation of: D
```Module Module1

Function CountDivisors(n As Integer) As Integer
If n < 2 Then
Return 1
End If
Dim count = 2 '1 and n
For i = 2 To n \ 2
If n Mod i = 0 Then
count += 1
End If
Next
Return count
End Function

Sub Main()
Dim maxDiv, count As Integer
Console.WriteLine("The first 20 anti-primes are:")

Dim n = 1
While count < 20
Dim d = CountDivisors(n)

If d > maxDiv Then
Console.Write("{0} ", n)
maxDiv = d
count += 1
End If
n += 1
End While

Console.WriteLine()
End Sub

End Module
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```

### Yabasic

Translation of: AWK
```print "The first 20 anti-primes are:"

while (count < 20)
n = n + 1
d = count_divisors(n)
if d > max_divisors then
print n;
max_divisors = d
count = count + 1
end if
wend
print

sub count_divisors(n)
local count, i

if n < 2 return 1

count = 2
for i = 2 to n/2
if not(mod(n,  i)) count = count + 1
next
return count
end sub```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```
Translation of: Lua
```// First 20 antiprimes.

sub count_factors(number)
local count, attempt

for attempt = 1 to number
if not mod(number, attempt) count = count + 1
next
return count
end sub

sub antiprimes\$(goal)
local factors, list\$, number, mostFactors, nitems

number = 1

while nitems < goal
factors = count_factors(number)
if factors > mostFactors then
list\$ = list\$ + ", " + str\$(number)
nitems = nitems + 1
mostFactors = factors
endif
number = number + 1
wend
return list\$
end sub

print "The first 20 antiprimes:"
print mid\$(antiprimes\$(20), 3)
print "Done."```
Output:
```The first 20 antiprimes:
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560
Done.```

## BCPL

```get "libhdr"
manifest \$( LIMIT = 20 \$)

let nfactors(n) =
n < 2 -> 1, valof
\$(  let c = 2
for i=2 to n/2
if n rem i = 0 then c := c + 1
resultis c
\$)

let start() be
\$(  let max = 0 and seen = 0 and n = 1
while seen < LIMIT
\$(  let f = nfactors(n)
if f > max
\$(  writef("%N ",n)
max := f
seen := seen + 1
\$)
n := n + 1
\$)
wrch('*N')
\$)```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## C

Translation of: Go
```#include <stdio.h>

int countDivisors(int n) {
int i, count;
if (n < 2) return 1;
count = 2; // 1 and n
for (i = 2; i <= n/2; ++i) {
if (n%i == 0) ++count;
}
return count;
}

int main() {
int n, d, maxDiv = 0, count = 0;
printf("The first 20 anti-primes are:\n");
for (n = 1; count < 20; ++n) {
d = countDivisors(n);
if (d > maxDiv) {
printf("%d ", n);
maxDiv = d;
count++;
}
}
printf("\n");
return 0;
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## C#

Works with: C sharp version 7
```using System;
using System.Linq;
using System.Collections.Generic;

public static class Program
{
public static void Main() =>
Console.WriteLine(string.Join(" ", FindAntiPrimes().Take(20)));

static IEnumerable<int> FindAntiPrimes() {
int max = 0;
for (int i = 1; ; i++) {
int divisors = CountDivisors(i);
if (divisors > max) {
max = divisors;
yield return i;
}
}

int CountDivisors(int n) => Enumerable.Range(1, n / 2).Count(i => n % i == 0) + 1;
}
}
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## C++

Translation of: C
```#include <iostream>

int countDivisors(int n) {
if (n < 2) return 1;
int count = 2; // 1 and n
for (int i = 2; i <= n/2; ++i) {
if (n%i == 0) ++count;
}
return count;
}

int main() {
int maxDiv = 0, count = 0;
std::cout << "The first 20 anti-primes are:" << std::endl;
for (int n = 1; count < 20; ++n) {
int d = countDivisors(n);
if (d > maxDiv) {
std::cout << n << " ";
maxDiv = d;
count++;
}
}
std::cout << std::endl;
return 0;
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## CLU

```% Count factors
factors = proc (n: int) returns (int)
if n<2 then return(1) end
count: int := 2
for i: int in int\$from_to(2, n/2) do
if n//i = 0 then count := count + 1 end
end
return(count)
end factors

% Generate antiprimes
antiprimes = iter () yields (int)
max: int := 0
n: int := 1
while true do
f: int := factors(n)
if f > max then
yield(n)
max := f
end
n := n + 1
end
end antiprimes

% Show the first 20 antiprimes
start_up = proc ()
max = 20
po: stream := stream\$primary_output()
count: int := 0

for i: int in antiprimes() do
stream\$puts(po, int\$unparse(i) || " ")
count := count + 1
if count = max then break end
end
end start_up```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## COBOL

```      ******************************************************************
* COBOL solution to Anti-primes challange
* The program was run on OpenCobolIDE
******************************************************************
IDENTIFICATION DIVISION.
PROGRAM-ID. ANGLE-PRIMES.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77  ANTI-PRIMES-CTR              PIC 9(3) VALUE 0.
77  FACTORS-CTR                  PIC 9(3) VALUE 0.
77  WS-INTEGER                   PIC 9(5) VALUE 1.
77  WS-MAX                       PIC 9(5) VALUE 0.
77  WS-I                         PIc 9(5) VALUE 0.
77  WS-LIMIT                     PIC 9(5) VALUE 1.
77  WS-REMAINDER                 PIC 9(5).

01  OUT-HDR         PIC X(23)    VALUE 'SEQ ANTI-PRIME FACTORS'.
01  OUT-LINE.
05 OUT-SEQ      PIC 9(3).
05 FILLER       PIC X(3)     VALUE SPACES.
05 OUT-ANTI     PIC ZZZZ9.
05 FILLER       PIC X(4)     VALUE SPACES.
05 OUT-FACTORS  PIC ZZZZ9.

PROCEDURE DIVISION.
000-MAIN.
DISPLAY OUT-HDR.
PERFORM 100-GET-ANTI-PRIMES
VARYING WS-INTEGER FROM 1 By 1
UNTIL ANTI-PRIMES-CTR >= 20.
STOP RUN.

100-GET-ANTI-PRIMES.
SET FACTORS-CTR TO 0.
COMPUTE WS-LIMIT = 1 + WS-INTEGER ** .5.
PERFORM 200-COUNT-FACTORS
VARYING WS-I FROM 1 BY 1
UNTIL WS-I >= WS-LIMIT.
IF FACTORS-CTR > WS-MAX
ADD 1 TO ANTI-PRIMES-CTR
COMPUTE WS-MAX = FACTORS-CTR
MOVE ANTI-PRIMES-CTR TO OUT-SEQ
MOVE WS-INTEGER TO OUT-ANTI
MOVE FACTORS-CTR TO OUT-FACTORS
DISPLAY OUT-LINE
END-IF.

200-COUNT-FACTORS.
COMPUTE WS-REMAINDER =
FUNCTION MOD(WS-INTEGER WS-I).
IF WS-REMAINDER = ZERO
ADD 1 TO FACTORS-CTR
IF WS-INTEGER NOT = WS-I ** 2
ADD 1 TO FACTORS-CTR
END-IF
END-IF.

******************************************************************
*    OUTPUT:
******************************************************************
*     SEQ ANTI-PRIME FACTORS
*     001       1        1
*     002       2        2
*     003       4        3
*     004       6        4
*     005      12        6
*     006      24        8
*     007      36        9
*     008      48       10
*     009      60       12
*     010     120       16
*     011     180       18
*     012     240       20
*     013     360       24
*     014     720       30
*     015     840       32
*     016    1260       36
*     017    1680       40
*     018    2520       48
*     019    5040       60
*     020    7560       64
******************************************************************
```

## Common Lisp

```(defun factors (n &aux (lows '()) (highs '()))
(do ((limit (1+ (isqrt n))) (factor 1 (1+ factor)))
((= factor limit)
(when (= n (* limit limit))
(push limit highs))
(remove-duplicates (nreconc lows highs)))
(multiple-value-bind (quotient remainder) (floor n factor)
(when (zerop remainder)
(push factor lows)
(push quotient highs)))))

(defun anti-prime ()
(format t "The first 20 anti-primes are :~%")
(do ((dmax 0) (c 0) (i 0 (1+ i)))
((= c 20))
(setf facts (list-length (factors i)))
(when (< dmax facts)
(format t "~d " i)
(setq dmax facts)
(incf c))))
```
Output:
```The first 20 anti-primes are :
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```

## Cowgol

```include "cowgol.coh";
const AMOUNT := 20;

sub countFactors(n: uint16): (count: uint16) is
var i: uint16 := 1;
count := 1;
while i <= n/2 loop
if n%i == 0 then
count := count + 1;
end if;
i := i + 1;
end loop;
end sub;

var max: uint16 := 0;
var seen: uint8 := 0;
var n: uint16 := 1;
var f: uint16 := 0;

while seen < AMOUNT loop;
f := countFactors(n);
if f > max then
print_i16(n);
print_char(' ');
max := f;
seen := seen + 1;
end if;
n := n + 1;
end loop;
print_nl();```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## Crystal

Translation of: C++
```def count_divisors(n : Int64) : Int64
return 1_i64 if n < 2
count = 2_i64

i = 2
while i <= n // 2
count += 1 if n % i == 0
i += 1
end

count
end

max_div = 0_i64
count = 0_i64

print "The first 20 anti-primes are: "

n = 1_i64
while count < 20
d = count_divisors n

if d > max_div
print "#{n} "
max_div = d
count += 1
end

n += 1
end

puts ""
```
Output:
```The first 20 anti-primes are: 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## D

Translation of: C++
```import std.stdio;

int countDivisors(int n) {
if (n < 2) {
return 1;
}
int count = 2; // 1 and n
for (int i = 2; i <= n/2; ++i) {
if (n % i == 0) {
++count;
}
}
return count;
}

void main() {
int maxDiv, count;
writeln("The first 20 anti-primes are:");
for (int n = 1; count < 20; ++n) {
int d = countDivisors(n);
if (d > maxDiv) {
write(n, ' ');
maxDiv = d;
count++;
}
}
writeln;
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560```

## Dart

Translation of: C++
```int countDivisors(int n) {
if (n < 2) return 1;
int count = 2; // 1 and n
for (int i = 2; i <= n / 2; ++i) {
if (n % i == 0) ++count;
}
return count;
}

void main() {
int maxDiv = 0, count = 0;
print("The first 20 anti-primes are:");
for (int n = 1; count < 20; ++n) {
int d = countDivisors(n);
if (d > maxDiv) {
print("\$n ");
maxDiv = d;
count++;
}
}
print("");
}
```

See #Pascal.

## EasyLang

Translation of: FutureBasic
```func divcnt v .
n = v
tot = 1
p = 2
while p <= sqrt n
cnt = 1
while n mod p = 0
cnt += 1
n = n div p
.
p += 1
tot *= cnt
.
if n > 1
tot *= 2
.
.
while count < 20
n += 1
divs = divcnt n
if divs > max
print n
max = divs
count += 1
.
.```

## Elixir

Translation of: Erlang
```defmodule AntiPrimes do
def divcount(n) when is_integer(n), do: divcount(n, 1, 0)

def divcount(n, d, count) when d * d > n, do: count
def divcount(n, d, count) do
divs = case rem(n, d) do
0 ->
case n - d * d do
0 -> 1
_ -> 2
end
_ -> 0
end
divcount(n, d + 1, count + divs)
end

def antiprimes(n), do: antiprimes(n, 1, 0, [])

def antiprimes(0, _, _, l), do: Enum.reverse(l)
def antiprimes(n, m, max, l) do
count = divcount(m)
case count > max do
true -> antiprimes(n-1, m+1, count, [m|l])
false -> antiprimes(n, m+1, max, l)
end
end

def main() do
:io.format("The first 20 anti-primes are ~w~n", [antiprimes(20)])
end
end
```
Output:
```The first 20 anti-primes are [1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
```

## EMal

Translation of: Java
```fun countDivisors = int by int n
if n < 2 do return 1 end
int count = 2
for int i = 2; i <= n / 2; ++i
if n % i == 0 do ++count end
end
return count
end
int maxDiv = 0
int count = 0
writeLine("The first 20 anti-primes are:")
for int n = 1; count < 20; ++n
int d = countDivisors(n)
if d <= maxDiv do continue end # never nester version
write(n + " ")
maxDiv = d
++count
end
writeLine()```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Erlang

```divcount(N) -> divcount(N, 1, 0).

divcount(N, D, Count) when D*D > N -> Count;
divcount(N, D, Count) ->
Divs = case N rem D of
0 ->
case N - D*D of
0 -> 1;
_ -> 2
end;
_ -> 0
end,
divcount(N, D + 1, Count + Divs).

antiprimes(N) -> antiprimes(N, 1, 0, []).

antiprimes(0, _, _, L) -> lists:reverse(L);
antiprimes(N, M, Max, L) ->
Count = divcount(M),
case Count > Max of
true  -> antiprimes(N-1, M+1, Count, [M|L]);
false -> antiprimes(N, M+1, Max, L)
end.

main(_) ->
io:format("The first 20 anti-primes are ~w~n", [antiprimes(20)]).
```
Output:
```The first 20 anti-primes are [1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
```

## F#

### The Function

This task uses Extensible Prime Generator (F#)

```// Find Antı-Primes. Nigel Galloway: Secember 10th., 2018
let  N=200000000000000000000000000I
let fI,_=Seq.scan(fun (_,g) e->(e,e*g)) (2I,4I) (primes|>Seq.skip 1|>Seq.map bigint)|>Seq.takeWhile(fun(_,n)->n<N)|>List.ofSeq|>List.unzip
let fG g=Seq.unfold(fun ((n,i,e) as z)->Some(z,(n+1,i+1,(e*g)))) (1,2,g)|>Seq.takeWhile(fun(_,_,n)->n<N)
let fE n i=n|>Seq.collect(fun(n,e,g)->Seq.map(fun(a,c,b)->(a,c*e,g*b)) (i|>Seq.takeWhile(fun(g,_,_)->g<=n)) |> Seq.takeWhile(fun(_,_,n)->n<N))
let fL,_=Seq.concat(Seq.scan(fun n g->fE n (fG g)) (seq[(2147483647,1,1I)]) fI)|>List.ofSeq|>List.sortBy(fun(_,_,n)->n)|>List.fold(fun ((a,b) as z) (_,n,g)->if n>b then ((n,g)::a,n) else z) ([],0)
```

```printfn "The first 20 anti-primes are :-"; for (_,g) in (List.rev fL)|>List.take 20 do printfn "%A" g
```
Output:
```The first 20 anti-primes are :-
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
```

### Extra Credit

```printfn "There are %d anti-primes less than %A:-" (List.length fL) N; for (n,g) in (List.rev fL) do printfn "%A has %d dividers" g n
```
Output:
```There are 245 anti-primes less than 200000000000000000000000000:-
1 has 1 dividers
2 has 2 dividers
4 has 3 dividers
6 has 4 dividers
12 has 6 dividers
24 has 8 dividers
36 has 9 dividers
48 has 10 dividers
60 has 12 dividers
120 has 16 dividers
180 has 18 dividers
240 has 20 dividers
360 has 24 dividers
720 has 30 dividers
840 has 32 dividers
1260 has 36 dividers
1680 has 40 dividers
2520 has 48 dividers
5040 has 60 dividers
7560 has 64 dividers
10080 has 72 dividers
15120 has 80 dividers
20160 has 84 dividers
25200 has 90 dividers
27720 has 96 dividers
45360 has 100 dividers
50400 has 108 dividers
55440 has 120 dividers
83160 has 128 dividers
110880 has 144 dividers
166320 has 160 dividers
221760 has 168 dividers
277200 has 180 dividers
332640 has 192 dividers
498960 has 200 dividers
554400 has 216 dividers
665280 has 224 dividers
720720 has 240 dividers
1081080 has 256 dividers
1441440 has 288 dividers
2162160 has 320 dividers
2882880 has 336 dividers
3603600 has 360 dividers
4324320 has 384 dividers
6486480 has 400 dividers
7207200 has 432 dividers
8648640 has 448 dividers
10810800 has 480 dividers
14414400 has 504 dividers
17297280 has 512 dividers
21621600 has 576 dividers
32432400 has 600 dividers
36756720 has 640 dividers
43243200 has 672 dividers
61261200 has 720 dividers
73513440 has 768 dividers
110270160 has 800 dividers
122522400 has 864 dividers
147026880 has 896 dividers
183783600 has 960 dividers
245044800 has 1008 dividers
294053760 has 1024 dividers
367567200 has 1152 dividers
551350800 has 1200 dividers
698377680 has 1280 dividers
735134400 has 1344 dividers
1102701600 has 1440 dividers
1396755360 has 1536 dividers
2095133040 has 1600 dividers
2205403200 has 1680 dividers
2327925600 has 1728 dividers
2793510720 has 1792 dividers
3491888400 has 1920 dividers
4655851200 has 2016 dividers
5587021440 has 2048 dividers
6983776800 has 2304 dividers
10475665200 has 2400 dividers
13967553600 has 2688 dividers
20951330400 has 2880 dividers
27935107200 has 3072 dividers
41902660800 has 3360 dividers
48886437600 has 3456 dividers
64250746560 has 3584 dividers
73329656400 has 3600 dividers
80313433200 has 3840 dividers
97772875200 has 4032 dividers
128501493120 has 4096 dividers
146659312800 has 4320 dividers
160626866400 has 4608 dividers
240940299600 has 4800 dividers
293318625600 has 5040 dividers
321253732800 has 5376 dividers
481880599200 has 5760 dividers
642507465600 has 6144 dividers
963761198400 has 6720 dividers
1124388064800 has 6912 dividers
1606268664000 has 7168 dividers
1686582097200 has 7200 dividers
1927522396800 has 7680 dividers
2248776129600 has 8064 dividers
3212537328000 has 8192 dividers
3373164194400 has 8640 dividers
4497552259200 has 9216 dividers
6746328388800 has 10080 dividers
8995104518400 has 10368 dividers
9316358251200 has 10752 dividers
13492656777600 has 11520 dividers
18632716502400 has 12288 dividers
26985313555200 has 12960 dividers
27949074753600 has 13440 dividers
32607253879200 has 13824 dividers
46581791256000 has 14336 dividers
48910880818800 has 14400 dividers
55898149507200 has 15360 dividers
65214507758400 has 16128 dividers
93163582512000 has 16384 dividers
97821761637600 has 17280 dividers
130429015516800 has 18432 dividers
195643523275200 has 20160 dividers
260858031033600 has 20736 dividers
288807105787200 has 21504 dividers
391287046550400 has 23040 dividers
577614211574400 has 24576 dividers
782574093100800 has 25920 dividers
866421317361600 has 26880 dividers
1010824870255200 has 27648 dividers
1444035528936000 has 28672 dividers
1516237305382800 has 28800 dividers
1732842634723200 has 30720 dividers
2021649740510400 has 32256 dividers
2888071057872000 has 32768 dividers
3032474610765600 has 34560 dividers
4043299481020800 has 36864 dividers
6064949221531200 has 40320 dividers
8086598962041600 has 41472 dividers
10108248702552000 has 43008 dividers
12129898443062400 has 46080 dividers
18194847664593600 has 48384 dividers
20216497405104000 has 49152 dividers
24259796886124800 has 51840 dividers
30324746107656000 has 53760 dividers
36389695329187200 has 55296 dividers
48519593772249600 has 57600 dividers
60649492215312000 has 61440 dividers
72779390658374400 has 62208 dividers
74801040398884800 has 64512 dividers
106858629141264000 has 65536 dividers
112201560598327200 has 69120 dividers
149602080797769600 has 73728 dividers
224403121196654400 has 80640 dividers
299204161595539200 has 82944 dividers
374005201994424000 has 86016 dividers
448806242393308800 has 92160 dividers
673209363589963200 has 96768 dividers
748010403988848000 has 98304 dividers
897612484786617600 has 103680 dividers
1122015605983272000 has 107520 dividers
1346418727179926400 has 110592 dividers
1795224969573235200 has 115200 dividers
2244031211966544000 has 122880 dividers
2692837454359852800 has 124416 dividers
3066842656354276800 has 129024 dividers
4381203794791824000 has 131072 dividers
4488062423933088000 has 138240 dividers
6133685312708553600 has 147456 dividers
8976124847866176000 has 153600 dividers
9200527969062830400 has 161280 dividers
12267370625417107200 has 165888 dividers
15334213281771384000 has 172032 dividers
18401055938125660800 has 184320 dividers
27601583907188491200 has 193536 dividers
30668426563542768000 has 196608 dividers
36802111876251321600 has 207360 dividers
46002639845314152000 has 215040 dividers
55203167814376982400 has 221184 dividers
73604223752502643200 has 230400 dividers
92005279690628304000 has 245760 dividers
110406335628753964800 has 248832 dividers
131874234223233902400 has 258048 dividers
184010559381256608000 has 276480 dividers
263748468446467804800 has 294912 dividers
368021118762513216000 has 307200 dividers
395622702669701707200 has 322560 dividers
527496936892935609600 has 331776 dividers
659371171116169512000 has 344064 dividers
791245405339403414400 has 368640 dividers
1186868108009105121600 has 387072 dividers
1318742342232339024000 has 393216 dividers
1582490810678806828800 has 414720 dividers
1978113513348508536000 has 430080 dividers
2373736216018210243200 has 442368 dividers
3164981621357613657600 has 460800 dividers
3956227026697017072000 has 491520 dividers
4747472432036420486400 has 497664 dividers
5934340540045525608000 has 516096 dividers
7912454053394034144000 has 552960 dividers
11868681080091051216000 has 589824 dividers
15824908106788068288000 has 614400 dividers
17407398917466875116800 has 622080 dividers
18594267025475980238400 has 645120 dividers
23737362160182102432000 has 663552 dividers
30990445042459967064000 has 688128 dividers
34814797834933750233600 has 691200 dividers
37188534050951960476800 has 737280 dividers
52222196752400625350400 has 746496 dividers
55782801076427940715200 has 774144 dividers
61980890084919934128000 has 786432 dividers
74377068101903920953600 has 829440 dividers
92971335127379901192000 has 860160 dividers
111565602152855881430400 has 884736 dividers
148754136203807841907200 has 921600 dividers
185942670254759802384000 has 983040 dividers
223131204305711762860800 has 995328 dividers
278914005382139703576000 has 1032192 dividers
371885340509519604768000 has 1105920 dividers
557828010764279407152000 has 1179648 dividers
743770681019039209536000 has 1228800 dividers
818147749120943130489600 has 1244160 dividers
985496152350226952635200 has 1290240 dividers
1115656021528558814304000 has 1327104 dividers
1487541362038078419072000 has 1351680 dividers
1636295498241886260979200 has 1382400 dividers
1970992304700453905270400 has 1474560 dividers
2454443247362829391468800 has 1492992 dividers
2956488457050680857905600 has 1548288 dividers
3284987174500756508784000 has 1572864 dividers
3941984609400907810540800 has 1658880 dividers
4927480761751134763176000 has 1720320 dividers
5912976914101361715811200 has 1769472 dividers
7883969218801815621081600 has 1843200 dividers
9854961523502269526352000 has 1966080 dividers
11825953828202723431622400 has 1990656 dividers
14782442285253404289528000 has 2064384 dividers
19709923047004539052704000 has 2211840 dividers
29564884570506808579056000 has 2359296 dividers
39419846094009078105408000 has 2457600 dividers
43361830703409985915948800 has 2488320 dividers
54202288379262482394936000 has 2580480 dividers
59129769141013617158112000 has 2654208 dividers
78839692188018156210816000 has 2703360 dividers
86723661406819971831897600 has 2764800 dividers
108404576758524964789872000 has 2949120 dividers
130085492110229957747846400 has 2985984 dividers
162606865137787447184808000 has 3096576 dividers
193814243295544634018256000 has 3145728 dividers
```

## Factor

```USING: assocs formatting kernel locals make math
math.primes.factors sequences.extras ;
IN: rosetta-code.anti-primes

<PRIVATE

: count-divisors ( n -- m )
dup 1 = [ group-factors values [ 1 + ] map-product ] unless ;

: (n-anti-primes) ( md n count -- ?md' n' ?count' )
dup 0 >
[| max-div! n count! |
n count-divisors :> d
d max-div > [ d max-div! n , count 1 - count! ] when
max-div n dup 60 >= 20 1 ? + count (n-anti-primes)
] when ;

PRIVATE>

: n-anti-primes ( n -- seq )
[ 0 1 ] dip [ (n-anti-primes) 3drop ] { } make ;

: anti-primes-demo ( -- )
20 n-anti-primes "First 20 anti-primes:\n%[%d, %]\n" printf ;

MAIN: anti-primes-demo
```
Output:
```First 20 anti-primes:
{ 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560 }
```

## Forth

This task uses Factors of an Integer with vectored execution

```include ./factors.fs

: max-count ( n1 n2 -- n f )
\ n is max(n1, factor-count n2); if n is new maximum then f = true.
\
count-factors 2dup <
if   nip true
else drop false
then ;

: .anti-primes ( n -- )
0 1 rot  \ stack: max, candidate, count
begin
>r dup >r max-count
if   r> dup . r> 1-
else r> r>
then swap 1+ swap
dup 0= until drop 2drop ;

." The first 20 anti-primes are: " 20 .anti-primes cr
bye
```
Output:
```The first 20 anti-primes are: 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Fortran

Translation of: C
```program anti_primes
use iso_fortran_env, only: output_unit
implicit none

integer :: n, d, maxDiv, pCount

write(output_unit,*) "The first 20 anti-primes are:"
n = 1
maxDiv = 0
pCount = 0
do
if (pCount >= 20) exit

d = countDivisors(n)
if (d > maxDiv) then
maxDiv = d
pCount = pCount + 1
end if
n = n + 1
end do
write(output_unit,*)
contains
pure function countDivisors(n)
integer, intent(in) :: n
integer             :: countDivisors
integer             :: i

countDivisors = 1
if (n < 2) return
countDivisors = 2
do i = 2, n/2
if (modulo(n, i) == 0) countDivisors = countDivisors + 1
end do
end function countDivisors
end program anti_primes
```
Output:
``` The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Frink

```smallest = 0
n = 1
results = new array
do
{
len = length[allFactors[n]]
if len > smallest
{
results.push[n]
smallest = len
}
n = n + 1
} until length[results] == 20

println[join[" ", results]]```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## FutureBasic

```local fn DivisorCount( v as long ) as long
long total = 1, n = v, p, count

while ( n mod 2 ) == 0
total++
n = int( n / 2 )
wend
p = 3
while ( p * p ) <= n
count = 1
while ( n mod p ) == 0
count++
n = int( n / p )
wend
p = p + 2
total = total * count
wend
if n > 1 then total = total * 2
end fn = total

void local fn AntiPrimes( howMany as long )
long n = 0, count = 0, divisors, max_divisors = 0

printf @"The first %ld anti-primes are:", howMany

while ( count < howMany )
n++
divisors = fn DivisorCount( n )
if ( divisors > max_divisors )
printf @"%ld \b", n
max_divisors = divisors
count++
end if
wend
end fn

fn AntiPrimes( 20 )

HandleEvents```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Go

Simple brute force approach which is quick enough here.

```package main

import "fmt"

func countDivisors(n int) int {
if n < 2 {
return 1
}
count := 2 // 1 and n
for i := 2; i <= n/2; i++ {
if n%i == 0 {
count++
}
}
return count
}

func main() {
fmt.Println("The first 20 anti-primes are:")
maxDiv := 0
count := 0
for n := 1; count < 20; n++ {
d := countDivisors(n)
if d > maxDiv {
fmt.Printf("%d ", n)
maxDiv = d
count++
}
}
fmt.Println()
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Grain

```import File from "sys/file"
let mut maxDiv = 0
let mut count = 0
let numaprimes = 20
let countDivisors = n => {
if (n < 1) {
1
} else {
let mut count = 2
let mut target = n / 2
for (let mut i = 1; i <= target; i += 1) {
if (n % i == 0) {
count += 1
} else {
void
}
}
count
}
}
print("\nThe first 20 anti-primes are: ")
let mut d = 0
for (let mut j = 1; count < numaprimes; j += 1) {
d = countDivisors(j)
if (d > maxDiv) {
File.fdWrite(File.stdout, Pervasives.toString(j))
File.fdWrite(File.stdout, " ")
maxDiv = d
count += 1
}
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Groovy

Solution (uses Factors of an integer function "factorize()"):

```def getAntiPrimes(def limit = 10) {
def antiPrimes = []
def candidate = 1L
def maxFactors = 0

while (antiPrimes.size() < limit) {
def factors = factorize(candidate)
if (factors.size() > maxFactors) {
maxFactors = factors.size()
antiPrimes << candidate
}
candidate++
}
antiPrimes
}
```

Test:

```println (getAntiPrimes(20))
```

Output:

`[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]`

```import Data.List (find, group)
import Data.Maybe (fromJust)

firstPrimeFactor :: Int -> Int
firstPrimeFactor n = head \$ filter ((0 ==) . mod n) [2 .. n]

allPrimeFactors :: Int -> [Int]
allPrimeFactors 1 = []
allPrimeFactors n =
let first = firstPrimeFactor n
in first : allPrimeFactors (n `div` first)

factorCount :: Int -> Int
factorCount 1 = 1
factorCount n = product ((succ . length) <\$> group (allPrimeFactors n))

divisorCount :: Int -> (Int, Int)
divisorCount = (,) <*> factorCount

hcnNext :: (Int, Int) -> (Int, Int)
hcnNext (num, factors) =
fromJust \$ find ((> factors) . snd) (divisorCount <\$> [num ..])

hcnSequence :: [Int]
hcnSequence = fst <\$> iterate hcnNext (1, 1)

main :: IO ()
main = print \$ take 20 hcnSequence
```
Output:
```[1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
```

## J

```   NB. factor count is the product of the incremented powers of prime factors
factor_count =: [: */ [: >: _&q:

NB. N are the integers 1 to 10000
NB. FC are the corresponding factor counts
FC =: factor_count&> N=: >: i. 10000

NB. take from the integers N{~
NB. the indexes of truth   I.
NB. the vector which doesn't equal itself when rotated by one position  (~: _1&|.)
NB. where that vector is the maximum over all prefixes of the factor counts  >./\FC
N{~I.(~: _1&|.)>./\FC
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Java

Translation of: Go
```public class Antiprime {

static int countDivisors(int n) {
if (n < 2) return 1;
int count = 2; // 1 and n
for (int i = 2; i <= n/2; ++i) {
if (n%i == 0) ++count;
}
return count;
}

public static void main(String[] args) {
int maxDiv = 0, count = 0;
System.out.println("The first 20 anti-primes are:");
for (int n = 1; count < 20; ++n) {
int d = countDivisors(n);
if (d > maxDiv) {
System.out.printf("%d ", n);
maxDiv = d;
count++;
}
}
System.out.println();
}
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## JavaScript

```function factors(n) {
var factors = [];
for (var i = 1; i <= n; i++) {
if (n % i == 0) {
factors.push(i);
}
}
return factors;
}

function generateAntiprimes(n) {
var antiprimes = [];
var maxFactors = 0;
for (var i = 1; antiprimes.length < n; i++) {
var ifactors = factors(i);
if (ifactors.length > maxFactors) {
antiprimes.push(i);
maxFactors = ifactors.length;
}
}
return antiprimes;
}

function go() {
var number = document.getElementById("n").value;
document.body.removeChild(document.getElementById("result-list"));
document.body.appendChild(showList(generateAntiprimes(number)));
}

function showList(array) {
var list = document.createElement("ul");
list.id = "result-list";
for (var i = 0; i < array.length; i++) {
var item = document.createElement("li");
item.appendChild(document.createTextNode(array[i]));
list.appendChild(item);
}
return list;
}
```

Html to test with some styling

```<!DOCTYPE html>
<html lang="en">
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<script src="antiprimes.js"></script>
<title>Anti-Primes</title>
<style>
body {padding: 50px;width: 50%;box-shadow: 0 0 15px 0 rgba(0, 0, 0, 0.25);margin: 15px auto;font-family: "Gill Sans", "Gill Sans MT", Calibri, "Trebuchet MS", sans-serif;letter-spacing: 1px;}
a {color: #00aadd;text-decoration: none;}
input {width: 50px;text-align: center;}
ul {list-style: none;padding: 0;margin: 0;width: 25%;margin: auto;border: 1px solid #aaa;}
li {text-align: center;background-color: #eaeaea;}
li:nth-child(even) {background: #fff;}
</style>
<h1>Anti-Primes</h1>
<div class="info">
The <a href="https://youtu.be/2JM2oImb9Qg">anti-primes</a> (or
<a href="https://en.wikipedia.org/wiki/Highly_composite_number">highly composite numbers</a>, sequence
<a href="https://oeis.org/A002182">A002182</a> in the <a href="https://oeis.org/">OEIS</a>) are the natural numbers with more factors than any
smaller than itself.
</div>
<p>Generate first <input id="n" type="text" placeholder="Enter the number" value="20" /> anti-primes. <button onclick="go()">Go</button></p>
<ul id="result-list"></ul>
</body>
</html>
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

```# Compute the number of divisors, without calling sqrt
def ndivisors:
def sum(s): reduce s as \$x (null; .+\$x);
if . == 1 then 1
else . as \$n
| sum( label \$out
| range(1; \$n) as \$i
| (\$i * \$i) as \$i2
| if \$i2 > \$n then break \$out
else if \$i2 == \$n
then 1
elif (\$n % \$i) == 0
then 2
else empty
end
end)
end;

# Emit the antiprimes as a stream
def antiprimes:
1,
foreach range(2; infinite; 2) as \$i ({maxfactors: 1};
.emit = null
| (\$i | ndivisors) as \$nfactors
| if \$nfactors > .maxfactors
then .emit = \$i
| .maxfactors = \$nfactors
else .
end;
select(.emit).emit);

"The first 20 anti-primes are:", limit(20; antiprimes)```
Output:
```The first 20 anti-primes are:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
```

## Julia

```using Primes, Combinatorics

function antiprimes(N, maxn = 2000000)
antip = [1]  # special case: 1 is antiprime
count = 1
maxfactors = 1
for i in 2:2:maxn # antiprimes > 2 should be even
lenfac = length(unique(sort(collect(combinations(factor(Vector, i)))))) + 1
if lenfac > maxfactors
push!(antip, i)
if length(antip) >= N
return antip
end
maxfactors = lenfac
end
end
antip
end

println("The first 20 anti-primes are:\n", antiprimes(20))
println("The first 40 anti-primes are:\n", antiprimes(40))
```
Output:
```
The first 20 anti-primes are:
[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]
The first 40 anti-primes are:
[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560,
10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200,
332640, 498960, 554400, 665280, 720720, 1081080, 1441440]

```

## Kotlin

Translation of: Go
```// Version 1.3.10

fun countDivisors(n: Int): Int {
if (n < 2) return 1;
var count = 2 // 1 and n
for (i in 2..n / 2) {
if (n % i == 0) count++
}
return count;
}

fun main(args: Array<String>) {
println("The first 20 anti-primes are:")
var maxDiv = 0
var count = 0
var n = 1
while (count < 20) {
val d = countDivisors(n)
if (d > maxDiv) {
print("\$n ")
maxDiv = d
count++
}
n++
}
println()
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## 1) lambdatalk only

```{def factors
{def factors.filter
{lambda {:n :a :i}
{if {= {% :n :i} 0}
then {A.addlast! :i :a}
else}}}
{lambda {:n}
{S.last
{S.map {factors.filter :n {A.new}}
{S.serie 1 :n}}}}}
-> factors

{def antiprimes
{def antiprimes.filter
{lambda {:ap :max :i}
{let { {:ap :ap} {:max :max} {:i :i}
{:len {A.length {factors :i}}}
} {if {> :len {A.get 0 :max}}
then {A.addlast! :i :ap}
{A.set! 0 :len :max}
else} }}}
{lambda {:n}
{S.first
{S.map {antiprimes.filter {A.new 1} {A.new 1}}
{S.serie 1 :n}}}}}
-> antiprimes

{antiprimes 8000}  // 8000 choosen manually to reach 20 antiprimes
-> [1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
// in 105400ms on my iPad
```

## 2) using javascript

Lambdatalk can call javascript code, here simply copying the code written in the javascript entry.

```1) building the interface to the javascript function.

{script
LAMBDATALK.DICT['jsgenerateAntiprimes'] = function() {
function factors(n) {
var factors = [];
for (var i = 1; i <= n; i++) {
if (n % i == 0) {
factors.push(i);
}
}
return factors;
}

function generateAntiprimes(n) {
var antiprimes = [];
var maxFactors = 0;
for (var i = 1; antiprimes.length < n; i++) {
var ifactors = factors(i);
if (ifactors.length > maxFactors) {
antiprimes.push(i);
maxFactors = ifactors.length;
}
}
return antiprimes;
}
return generateAntiprimes( arguments[0].trim() )
};
}

2) and using it in the wiki page as a builtin primitive

{jsgenerateAntiprimes 20}
->
1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560  // in 100ms
```

## langur

Translation of: D
```val .countDivisors = fn(.n) {
if .n < 2: return 1
for[=2] .i = 2; .i <= .n\2; .i += 1 {
if .n div .i : _for += 1
}
}

writeln "The first 20 anti-primes are:"
var .maxDiv, .count = 0, 0
for .n = 1; .count < 20; .n += 1 {
val .d = .countDivisors(.n)
if .d > .maxDiv {
write .n, " "
.maxDiv = .d
.count += 1
}
}
writeln()```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Lua

### Counting the factors using modulo

```-- First 20 antiprimes.

function count_factors(number)
local count = 0
for attempt = 1, number do
local remainder = number % attempt
if remainder == 0 then
count = count + 1
end
end
return count
end

function antiprimes(goal)
local list, number, mostFactors = {}, 1, 0
while #list < goal do
local factors = count_factors(number)
if factors > mostFactors then
table.insert(list, number)
mostFactors = factors
end
number = number + 1
end
return list
end

function recite(list)
for index, item in ipairs(list) do
print(item)
end
end

print("The first 20 antiprimes:")
recite(antiprimes(20))
print("Done.")
```
Output:
```The first 20 antiprimes:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
Done.```

### Using a table of divisor counts

```-- Find the first 20 antiprimes.

-- returns a table of the first goal antiprimes
function antiprimes(goal)
local maxNumber        = 0
local ndc              = {} -- table of divisor counts - initially empty
local list, number, mostFactors = {}, 1, 0
while #list < goal do
if number > #ndc then
-- need a bigger table of divisor counts
maxNumber = maxNumber + 5000
ndc       = {}
for i = 1, maxNumber do ndc[ i ] = 1 end
for i = 2, maxNumber do
for j = i, maxNumber, i do ndc[ j ] = ndc[ j ] + 1 end
end
end
local factors = ndc[ number ]
if factors > mostFactors then
table.insert( list, number )
mostFactors = factors
end
number = number + 1
end
return list
end

-- display the antiprimes
oo.write( table.concat( antiprimes( 20 ), " " ) )
```

.

Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Maple

```antiprimes := proc(n)
local ap, i, max_divisors, num_divisors;
max_divisors := 0;
ap := [];

for i from 1 while numelems(ap) < n do
num_divisors := numelems(NumberTheory:-Divisors(i));
if num_divisors > max_divisors then
ap := [op(ap), i];
max_divisors := num_divisors;
end if;
end do;

return ap;
end proc:
antiprimes(20);```
Output:
`[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]`

## Mathematica / Wolfram Language

```sigma = DivisorSigma[0, #] &;
currentmax = -\[Infinity];
res = {};
Do[
s = sigma[v];
If[s > currentmax,
AppendTo[res, v];
currentmax = s;
];
If[Length[res] >= 25, Break[]]
,
{v, \[Infinity]}
]
res
```
Output:
`{1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720}`

## MiniScript

Translation of: Lua – Using a table of divisor counts
```// Find the first 20 antiprimes.

// returns a table of the first goal antiprimes
antiprimes = function(goal)
maxNumber = 0
ndc       = [] // table of divisor counts - initially empty
list      = [0] * goal; number = 1; mostFactors = 0
aCount    = 0
while aCount < goal
if number > maxNumber then
// need a bigger table of divisor counts
maxNumber = maxNumber + 5000
ndc       = [1] * ( maxNumber + 1 )
ndc[ 0 ]  = 0
for i in range( 2, maxNumber )
for j in range( i, maxNumber, i )
ndc[ j ] = ndc[ j ] + 1
end for
end for
end if
factors = ndc[ number ]
if factors > mostFactors then
list[ aCount ] = number
mostFactors = factors
aCount = aCount + 1
end if
number = number + 1
end while
return list
end function

// display the antiprimes
print antiprimes( 20 ).join( " " )
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Modula-2

```MODULE Antiprimes;
FROM InOut IMPORT WriteCard, WriteLn;

CONST Amount = 20;
VAR max, seen, n, f: CARDINAL;

PROCEDURE factors(n: CARDINAL): CARDINAL;
VAR facs, div: CARDINAL;
BEGIN
IF n<2 THEN RETURN 1; END;
facs := 2;
FOR div := 2 TO n DIV 2 DO
IF n MOD div = 0 THEN
INC(facs);
END;
END;
RETURN facs;
END factors;

BEGIN
max := 0;
seen := 0;
n := 1;
WHILE seen < Amount DO
f := factors(n);
IF f > max THEN
WriteCard(n,5);
max := f;
INC(seen);
IF seen MOD 10 = 0 THEN WriteLn(); END;
END;
INC(n);
END;
END Antiprimes.
```
Output:
```    1    2    4    6   12   24   36   48   60  120
180  240  360  720  840 1260 1680 2520 5040 7560```

## Modula-3

Translation of: Modula-2
```MODULE AntiPrimes EXPORTS Main;

IMPORT IO,Fmt;

CONST
Amount = 20;

VAR
Max,Seen,N,F:CARDINAL;

PROCEDURE Factors(N:CARDINAL):CARDINAL =
VAR
Facts:CARDINAL;
BEGIN
IF N < 2 THEN RETURN 1 END;
Facts := 2;
FOR Div := 2 TO N DIV 2 DO
IF N MOD Div = 0 THEN INC(Facts) END;
END;
RETURN Facts;
END Factors;

BEGIN
Max := 0;
Seen := 0;
N := 1;
WHILE Seen < Amount DO
F := Factors(N);
IF F > Max THEN
IO.Put(Fmt.F("%5s",Fmt.Int(N)));
Max := F;
INC(Seen);
IF Seen MOD 10 = 0 THEN IO.Put("\n") END;
END;
INC(N);
END;
END AntiPrimes.```
Output:
```    1    2    4    6   12   24   36   48   60  120
180  240  360  720  840 1260 1680 2520 5040 7560```

## Nanoquery

Translation of: C
```def countDivisors(n)
if (n < 2)
return 1
end
count = 2
for i in range(2, int(n/2))
if (n % i) = 0
count += 1
end
end
return count
end

maxDiv = 0
count = 0
println "The first 20 anti-primes are:"

for (n = 1) (count < 20) (n += 1)
d = countDivisors(n)
if d > maxDiv
print format("%d ", n)
maxDiv = d
count += 1
end
end
println```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ```

## Nim

```# First 20 antiprimes

proc countDivisors(n: int): int =
if n < 2:
return 1
var count = 2
for i in countup(2, (n / 2).toInt()):
if n %% i == 0:
count += 1
return count

proc antiPrimes(n: int) =
echo("The first ", n, " anti-primes:")
var maxDiv = 0
var count = 0
var i = 1
while count < n:
let d = countDivisors(i)
if d > maxDiv:
echo(i)
maxDiv = d
count += 1
i += 1

antiPrimes(20)
```
Output:
```The first 20 anti-primes:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560```

## Oberon-2

Translation of: Modula-2
```MODULE AntiPrimes;

IMPORT Out;

CONST
Amount = 20;

VAR
Max,Seen,N,F:INTEGER;

PROCEDURE Factors(N:INTEGER):INTEGER;
VAR
Facts,Div:INTEGER;
BEGIN
IF N < 2 THEN RETURN 1 END;
Facts := 2;
FOR Div := 2 TO N DIV 2 DO
IF N MOD Div = 0 THEN INC(Facts) END;
END;
RETURN Facts;
END Factors;

BEGIN
Max := 0;
Seen := 0;
N := 1;
WHILE Seen < Amount DO
F := Factors(N);
IF F > Max THEN
Out.Int(N,5);
Max := F;
INC(Seen);
IF Seen MOD 10 = 0 THEN Out.Ln END;
END;
INC(N);
END;
END AntiPrimes.```
Output:
```    1    2    4    6   12   24   36   48   60  120
180  240  360  720  840 1260 1680 2520 5040 7560
```

## Objeck

Translation of: Java
```class AntiPrimes {
function : Main(args : String[]) ~ Nil {
maxDiv := 0; count := 0;
"The first 20 anti-primes are:"->PrintLine();
for(n := 1; count < 20; ++n;) {
d := CountDivisors(n);
if(d > maxDiv) {
"{\$n} "->Print();
maxDiv := d;
count++;
};
};
'\n'->Print();
}

function : native : CountDivisors(n : Int) ~ Int {
if (n < 2) { return 1; };
count := 2;
for(i := 2; i <= n/2; ++i;) {
if(n%i = 0) { ++count; };
};
return count;
}
}```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Odin

Anti-Primes Odin Build: dev-2023-07-nightly:3072479c

```package antiprimes
import "core:fmt"

main :: proc() {
AntiPrimeCount, MaxDivisors, Divisors, n: u64
MaxAntiPrime: u64 = 20
fmt.print("\nFirst 20 anti-primes\n")
fmt.println("--------------------")
for (AntiPrimeCount < MaxAntiPrime) {
n += 1
Divisors = DivisorCount(n)
if Divisors > MaxDivisors {
fmt.print(n, " ")
MaxDivisors = Divisors
AntiPrimeCount += 1
}
}
}

DivisorCount :: proc(v: u64) -> u64 {
total: u64 = 1
a := v
if a == 0 {
return 0
}
for a % 2 == 0 {
total += 1
a /= 2
}
for p: u64 = 3; p * p <= a; p += 2 {
count: u64 = 1
for a % p == 0 {
count += 1
a /= p
}
total *= count
}
if a > 1 {
total *= 2
}
}
```
Output:
```First 20 anti-primes
--------------------
1  2  4  6  12  24  36  48  60  120  180  240  360  720  840  1260  1680  2520  5040  7560
```

## Pascal

Easy factoring without primes.Decided to show count of factors.

```program AntiPrimes;
{\$IFdef FPC}
{\$MOde Delphi}
{\$IFEND}
function getFactorCnt(n:NativeUint):NativeUint;
var
divi,quot,pot,lmt : NativeUint;
begin
result := 1;
divi  := 1;
lmt := trunc(sqrt(n));
while divi < n do
Begin
inc(divi);
pot := 0;
repeat
quot := n div divi;
if n <> quot*divi then
BREAK;
n := quot;
inc(pot);
until false;
result := result*(1+pot);
//IF n= prime leave now
if divi > lmt then
BREAK;
end;
end;

var
i,Count,FacCnt,lastCnt: NativeUint;
begin
count := 0;
lastCnt := 0;
i := 1;
repeat
FacCnt := getFactorCnt(i);
if  lastCnt < FacCnt then
Begin
write(i,'(',FacCnt,'),');
lastCnt:= FacCnt;
inc(Count);
if count = 12 then
Writeln;
end;
inc(i);
until Count >= 20;
writeln;
end.
```

;Output:

```1(1),2(2),4(3),6(4),12(6),24(8),36(9),48(10),60(12),120(16),180(18),240(20),
360(24),720(30),840(32),1260(36),1680(40),2520(48),5040(60),7560(64)```

## PARI/GP

```countfactors(n)={
my(count(m)= prod(i=1,#factor(m)~,factor(m)[i,2]+1));
v=vector(n);
v[1]=1;
for(x=2,n,
v[x]=v[x-1]+1;
while(count(v[x-1])>=count(v[x]),v[x]++));
return(v)}
countfactors(20)```

## Perl

Library: ntheory
```use ntheory qw(divisors);

my @anti_primes;

for (my (\$k, \$m) = (1, 0) ; @anti_primes < 20 ; ++\$k) {
my \$sigma0 = divisors(\$k);

if (\$sigma0 > \$m) {
\$m = \$sigma0;
push @anti_primes, \$k;
}
}

printf("%s\n", join(' ', @anti_primes));
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Phix

```with javascript_semantics
integer n=1, maxd = -1
sequence res = {}
while length(res)<20 do
integer lf = length(factors(n,1))
if lf>maxd then
res &= n
maxd = lf
end if
n += iff(n>1?2:1)
end while
printf(1,"The first 20 anti-primes are: %V\n",{res})
```
Output:
```The first 20 anti-primes are: {1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560}
```

## Phixmonti

```0 var count
0 var n
0 var max_divisors

"The first 20 anti-primes are:" print nl

def count_divisors
dup 2 < if
drop
1
else
2
swap 1 over 2 / 2 tolist
for
over swap mod not if swap 1 + swap endif
endfor
drop
endif
enddef

true
while
count 20 < dup if
n 1 + var n
n count_divisors
dup max_divisors > if
n print " " print
var max_divisors
count 1 + var count
else
drop
endif
endif
endwhile

nl
msec print```

## Picat

Translation of: Go
Works with: Picat
```count_divisors(1) = 1.

count_divisors(N) = Count, N >= 2 =>
Count = 2,
foreach (I in 2..N/2)
if (N mod I == 0) then
Count := Count + 1
end
end.

main =>
println("The first 20 anti-primes are:"),
MaxDiv = 0,
Count = 0,
N = 1,
while (Count < 20)
D := count_divisors(N),
if (D > MaxDiv) then
printf("%d ", N),
MaxDiv := D,
Count := Count + 1
end,
N := N + 1
end,
nl.```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## PicoLisp

```(de factors (N)
(let C 1
(when (>= N 2)
(inc 'C)
(for (I 2 (>= (/ N 2) I) (inc I))
(and (=0 (% N I)) (inc 'C)) ) )
C ) )
(de anti (X)
(let (M 0  I 0  N 0)
(make
(while (> X I)
(inc 'N)
(let R (factors N)
(when (> R M)
(setq M R)
(inc 'I) ) ) ) ) ) )
(println (anti 20))```
Output:
`(1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560)`

## PILOT

```C :n=1
:max=0
:seen=0

*number
U :*count
T (c>max):#n
C (c>max):seen=seen+1
C (c>max):max=c
:n=n+1
J (seen<20):*number
E :

*count
C (n=1):c=1
E (n=1):
C :c=2
:i=2
*cnloop
E (i>n/2):
C (i*(n/i)=n):c=c+1
:i=i+1
J :*cnloop```
Output:
```1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560```

## PL/0

Translation of: Tiny BASIC
```var i, n, maxdivcnt, divcnt;

procedure countdivs;
var p;
begin
divcnt := 1;
if n > 1 then divcnt := 2;
p := 2;
while p * p < n do
begin
if (n / p) * p = n then divcnt := divcnt + 2;
p := p + 1
end;
if p * p = n then divcnt := divcnt + 1
end;

procedure searchnext;
begin
call countdivs;
while divcnt <= maxdivcnt do
begin
n := n + 1;
call countdivs
end
end;

begin
i := 1; n := 1; maxdivcnt := 0;
while i <= 20 do
begin
call searchnext;
maxdivcnt := divcnt;
i := i + 1;
! n;
n := n + 1
end
end.
```
Output:
```       1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560
```

## PL/I

```antiprimes: procedure options(main);

/* count the factors of a number */
countFactors: procedure(n) returns(fixed);
declare (n, i, count) fixed;
if n<2 then return(1);
count = 1;
do i=1 to n/2;
if mod(n,i) = 0 then count = count + 1;
end;
return(count);
end countFactors;

declare maxFactors fixed static init (0);
declare seen fixed static init (0);
declare n fixed;
declare factors fixed;

do n=1 repeat(n+1) while(seen < 20);
factors = countFactors(n);
if factors > maxFactors then do;
put edit(n) (F(5));
maxFactors = factors;
seen = seen + 1;
if mod(seen,15) = 0 then put skip;
end;
end;
end antiprimes;```
Output:
```    1    2    4    6   12   24   36   48   60  120  180  240  360  720  840
1260 1680 2520 5040 7560```

## PL/M

```100H:
/* CP/M CALLS */
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

/* PRINT A NUMBER */
PRINT\$NUMBER: PROCEDURE (N);
DECLARE S (7) BYTE INITIAL ('..... \$');
DECLARE (N, P) ADDRESS, C BASED P BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = N MOD 10 + '0';
N = N / 10;
IF N > 0 THEN GO TO DIGIT;
CALL PRINT(P);
END PRINT\$NUMBER;

/* COUNT THE FACTORS OF A NUMBER */
COUNT\$FACTORS: PROCEDURE (N) ADDRESS;
DECLARE (N, I, COUNT) ADDRESS;
IF N<2 THEN RETURN 1;
COUNT = 1;
DO I=1 TO N/2;
IF N MOD I = 0 THEN COUNT = COUNT + 1;
END;
RETURN COUNT;
END COUNT\$FACTORS;

DECLARE MAX\$FACTORS ADDRESS INITIAL (0);
DECLARE SEEN BYTE INITIAL (0);
DECLARE N ADDRESS INITIAL (1);

DO WHILE SEEN < 20;
FACTORS = COUNT\$FACTORS(N);
IF FACTORS > MAX\$FACTORS THEN DO;
CALL PRINT\$NUMBER(N);
MAX\$FACTORS = FACTORS;
SEEN = SEEN + 1;
END;
N = N + 1;
END;
CALL EXIT;
EOF```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## Processing

```void setup() {
int most_factors = 0;
IntList anti_primes = new IntList();
int n = 1;
while (anti_primes.size() < 20) {
int counter = 1;
for (int i = 1; i <= n / 2; i++) {
if (n % i == 0) {
counter++;
}
}
if (counter > most_factors) {
anti_primes.append(n);
most_factors = counter;
}
n++;
}
for (int num : anti_primes) {
print(num + " ");
}
}```
Output:
`1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560`

## Prolog

Translation of: Erlang
```divcount(N, Count) :- divcount(N, 1, 0, Count).

divcount(N, D, C, C) :- D*D > N, !.
divcount(N, D, C, Count) :-
succ(D, D2),
divs(N, D, A), plus(A, C, C2),
divcount(N, D2, C2, Count).

divs(N, D, 0) :- N mod D =\= 0, !.
divs(N, D, 1) :- D*D =:= N, !.
divs(_, _, 2).

antiprimes(N, L) :- antiprimes(N, 1, 0, [], L).

antiprimes(0, _, _, L, R) :- reverse(L, R), !.
antiprimes(N, M, Max, L, R) :-
divcount(M, Count),
succ(M, M2),
(Count > Max
-> succ(N0, N), antiprimes(N0, M2, Count, [M|L], R)
; antiprimes(N, M2, Max, L, R)).

main :-
antiprimes(20, X),
write("The first twenty anti-primes are "), write(X), nl,
halt.

?- main.
```
Output:
```The first twenty anti-primes are [1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]
```

## Python

Uses the fast prime function from Factors of an integer#Python

```from itertools import chain, count, cycle, islice, accumulate

def factors(n):
def prime_powers(n):
for c in accumulate(chain([2, 1, 2], cycle([2,4]))):
if c*c > n: break
if n%c: continue
d,p = (), c
while not n%c:
n,p,d = n//c, p*c, d+(p,)
yield d
if n > 1: yield n,

r = [1]
for e in prime_powers(n):
r += [a*b for a in r for b in e]
return r

def antiprimes():
mx = 0
yield 1
for c in count(2,2):
if c >= 58: break
ln = len(factors(c))
if ln > mx:
yield c
mx = ln
for c in count(60,30):
ln = len(factors(c))
if ln > mx:
yield c
mx = ln

if __name__ == '__main__':
print(*islice(antiprimes(), 40)))
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 10080 15120 20160 25200 27720 45360 50400 55440 83160 110880 166320 221760 277200 332640 498960 554400 665280 720720 1081080 1441440
old algorithm (without count(60,30) part) time to find first 40 antiprimes: around 14 seconds
new algorithm (with count(60,30) part) time to find first 40 antiprimes: around 0.4 seconds```

## Quackery

`factors` is defined at Factors of an integer.

```  0 temp put
[] 0
[ 1+ dup factors size
dup temp share > iff
[ temp replace
dup dip join ]
else drop
over size 20 = until ]
temp release
drop echo```
Output:
`[ 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ]`

## R

Uses brute force. My first entry!

```# Antiprimes

max_divisors <- 0

findFactors <- function(x){
myseq <- seq(x)
myseq[(x %% myseq) == 0]
}

antiprimes <- vector()
x <- 1
n <- 1
while(length(antiprimes) < 20){
y <- findFactors(x)
if (length(y) > max_divisors){
antiprimes <- c(antiprimes, x)
max_divisors <- length(y)
n <- n + 1
}
x <- x + 1
}

antiprimes
```
Output:
` [1]    1    2    4    6   12   24   36   48   60  120  180  240  360  720  840 1260 1680 2520 5040 7560`

## Racket

```#lang racket

(require racket/generator
math/number-theory)

(define (get-divisors n)
(apply * (map (λ (factor) (add1 (second factor))) (factorize n))))

(define antiprimes
(in-generator
(for/fold ([prev 0]) ([i (in-naturals 1)])
(define divisors (get-divisors i))
(when (> divisors prev) (yield i))
(max prev divisors))))

(for/list ([i (in-range 20)] [antiprime antiprimes]) antiprime)
```
Output:
```'(1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560)
```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2018.11

At its heart, this task is almost exactly the same as Proper_Divisors, it is just asking for slightly different results. Much of this code is lifted straight from there.

Implemented as an auto-extending lazy list. Displaying the count of anti-primes less than 5e5 also because... why not.

```sub propdiv (\x) {
my @l = 1 if x > 1;
(2 .. x.sqrt.floor).map: -> \d {
unless x % d { @l.push: d; my \y = x div d; @l.push: y if y != d }
}
@l
}

my \$last = 0;

my @anti-primes = lazy 1, |(|(2..59), 60, *+60 … *).grep: -> \$c {
my \mx = +propdiv(\$c);
next if mx <= \$last;
\$last = mx;
\$c
}

my \$upto = 5e5;

put "First 20 anti-primes:\n{ @anti-primes[^20] }";

put "\nCount of anti-primes <= \$upto: {+@anti-primes[^(@anti-primes.first: * > \$upto, :k)]}";
```
Output:
```First 20 anti-primes:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560

Count of anti-primes <= 500000: 35```

## Red

```Red []
inc: func ['v] [set v 1 + get v]    ;; shortcut function for n: n + 1

n: 0  found: 0 max_div: 0
print "the first 20 anti-primes are:"
while  [ inc n] [
nDiv: 1      ;; count n / n extra
if n > 1 [ repeat div n / 2 [ if n % div = 0  [inc nDiv] ] ]
if nDiv > max_div [
max_div: nDiv
prin [n ""]
if 20 <= inc found [halt]
]
]
```
Output:
```
the first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 (halted)

```

## REXX

### even and odd numbers

This REXX version is using a modified version of a highly optimized   proper divisors   function.

Programming note:   although the solution to this Rosetta Code task is trivial, a fair amount of optimization was incorporated into the REXX program to find larger anti─primes (also known as   highly─composite numbers).

The   #DIVS   function could be further optimized by only processing   even   numbers, with unity being treated as a special case.

```/*REXX program finds and displays N number of anti-primes (highly-composite) numbers.*/
Parse Arg N .                              /* obtain optional argument from the CL.  */
If N=='' | N=="," Then N=20                /* Not specified?  Then use the default.  */
maxD=0                                     /* the maximum number of divisors so far  */
Say '-index- --anti-prime--'               /* display a title For the numbers shown  */
nn=0                                       /* the count of anti-primes found  "  "   */
Do i=1 For 59 While nn<N                   /* step through possible numbers by twos  */
d=nndivs(i)                              /* get nn divisors;                       */
If d>maxD Then Do                        /* found an anti-prime nn set new maxD    */
maxD=d
nn=nn+1
Say center(nn,7) right(i,10)           /* display the index and the anti-prime.  */
End
End /*i*/

Do i=60 by 20 While nn<N                   /* step through possible numbers by 20.   */
d=nndivs(i)
If d>maxD Then Do                        /* found an anti-prime nn set new maxD    */
maxD=d
nn=nn+1
Say center(nn,7) right(i,10)           /* display the index and the anti-prime.  */
End
End /*i*/
Exit                                       /* stick a fork in it, we're all done.    */
/*-----------------------------------------------------------------------------------*/
nndivs: Procedure                          /* compute the number of proper divisors  */
Parse Arg x
If x<2 Then
Return 1
odd=x//2
n=1                                      /* 1 is a proper divisor                  */
Do j=2+odd by 1+odd While j*j<x          /* test all possible integers             */
/* up To but excluding sqrt(x)            */
If x//j==0 Then                        /* j is a divisor,so is x%j               */
n=n+2
End
If j*j==x Then                           /* If x is a square                       */
n=n+1                                  /* sqrt(x) is a proper divisor            */
n=n+1                                    /* x is a proper divisor                  */
Return n
```
output   when using the default input of:     20
```─index─ ──anti─prime──
1             1
2             2
3             4
4             6
5            12
6            24
7            36
8            48
9            60
10           120
11           180
12           240
13           360
14           720
15           840
16          1260
17          1680
18          2520
19          5040
20          7560
```
output   when using the default input of:     55
```─index─ ──anti─prime──
1             1
2             2
3             4
4             6
5            12
6            24
7            36
8            48
9            60
10           120
11           180
12           240
13           360
14           720
15           840
16          1260
17          1680
18          2520
19          5040
20          7560
21         10080
22         15120
23         20160
24         25200
25         27720
26         45360
27         50400
28         55440
29         83160
30        110880
31        166320
32        221760
33        277200
34        332640
35        498960
36        554400
37        665280
38        720720
39       1081080
40       1441440
41       2162160
42       2882880
43       3603600
44       4324320
45       6486480
46       7207200
47       8648640
48      10810800
49      14414400
50      17297280
51      21621600
52      32432400
53      36756720
54      43243200
55      61261200
```

### only even numbers

This REXX version only processes   even   numbers   (unity is treated as a special case.)

It's about   17%   faster than the 1st REXX version.

```/*REXX program finds and displays  N  number of anti─primes or highly─composite numbers.*/
parse arg N .                                    /*obtain optional argument from the CL.*/
if N=='' | N==","  then N= 20                    /*Not specified?  Then use the default.*/
@.= .;    @.1= 1;     @.2= 2;     @.4= 3;     @.5= 2;     @.6= 4
say '─index─ ──anti─prime──'                     /*display a title for the numbers shown*/
#= 1                                             /*the count of anti─primes found  "  " */
maxD= 1                                          /*the maximum number of divisors so far*/
say center(#, 7)  right(1, 10)                   /*display the index and the anti─prime.*/
do once=1  for 1
do i=2  by  2  to 59                     /*step through possible numbers by twos*/
d= #divs(i);  if d<=maxD  then iterate   /*get # divisors;  Is too small?  Skip.*/
#= # + 1;     maxD= d                    /*found an anti─prime #;  set new minD.*/
say center(#, 7)  right(i, 10)           /*display the index and the anti─prime.*/
if #>=N  then leave once                 /*if we have enough anti─primes, done. */
end   /*i*/

do j=60  by 20                           /*step through possible numbers by 20. */
d= #divs(j);  if d<=maxD  then iterate   /*get # divisors;  Is too small?  Skip.*/
#= # + 1;     maxD= d                    /*found an anti─prime #;  set new minD.*/
say center(#, 7)  right(j, 10)           /*display the index and the anti─prime.*/
if #>=N  then leave once                 /*if we have enough anti─primes, done. */
L= length(j)                             /*obtain the length of the index  (J). */
if L>3  then j= j + left(4, L-2, 0) - 20 /*Length>3?  Then calculate a long jump*/
end   /*j*/
end      /*once*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
#divs: parse arg x;  if @.x\==.  then return @.x /*if pre─computed, then return shortcut*/
\$= 3;     y= x % 2
/* [↑]   start with known num of Pdivs.*/
do k=3  for x%2-3  while k<y
if x//k==0  then do;  \$= \$ + 2 /*if no remainder, then found a divisor*/
y= x % k /*bump  \$  Pdivs,  calculate limit  Y. */
if k>=y  then do; \$= \$ - 1; leave; end  /*limit?*/
end                         /*                   ___ */
else if k*k>x  then leave        /*only divide up to √ x  */
end   /*k*/                    /* [↑]  this form of DO loop is faster.*/
return \$+1                                /*bump "proper divisors" to "divisors".*/
```
output   is identical to the 1st REXX version.

## Ring

### Counting the divisors using modulo

```# Project : Anti-primes

see "working..." + nl
see "wait for done..." + nl + nl
see "the first 20 anti-primes are:" + nl + nl
maxDivisor = 0
num = 0
n = 0
result = list(20)
while num < 20
n = n + 1
div = factors(n)
if (div > maxDivisor)
maxDivisor = div
num = num + 1
result[num] = n
ok
end
see "["
for n = 1 to len(result)
if n < len(result)
see string(result[n]) + ","
else
see string(result[n]) + "]" + nl + nl
ok
next
see "done..." + nl

func factors(an)
ansum = 2
if an < 2
return(1)
ok
for nr = 2 to an/2
if an%nr = 0
ansum = ansum+1
ok
next
return ansum```
Output:
```working...
wait for done...

the first 20 anti-primes are:

[1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560]

done...
```

### Counting the divisors using a table

```# find the first 20 antiprimes
# - numbers woth more divisors than the previous numbers

numberOfDivisorCounts = 0
maxDivisor = 0
num = 0
n = 0
result = list(20)
while num < 20
n += 1
if n > numberOfDivisorCounts
# need a bigger table of divisor counts
numberOfDivisorCounts += 5000
ndc = list(numberOfDivisorCounts)
for i = 1 to numberOfDivisorCounts
ndc[ i ] = 1
next
for i = 2 to numberOfDivisorCounts
j = i
while j <= numberOfDivisorCounts
ndc[ j ] = ndc[ j ] + 1
j += i
end
next
ok
div = ndc[ n ]
if (div > maxDivisor)
maxDivisor = div
num += 1
result[num] = n
ok
end
see result[1]
for n = 2 to len(result)
see " " + string(result[n])
next```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## RPL

We use here complex numbers to limit the stack size and ease its handling.

Works with: Halcyon Calc version 4.2.7
```≪ → nb
≪ 1
1 nb 2 / FOR j
nb j MOD NOT +
NEXT
≫ ≫ ‘NDIV’ STO

≪ 1 - → items
≪ { } (2,0)
DO
DUP RE NDIV
IF OVER IM OVER < THEN
SWAP RE SWAP R→C
SWAP OVER RE + SWAP
ELSE DROP END
1 +
UNTIL OVER SIZE items > END
DROP
≫ ≫ ‘ANTIP’ STO
```
```15 ANTIP
```
Output:
```{ 1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 }
```

## Ruby

```require 'prime'
def num_divisors(n)
n.prime_division.inject(1){|prod, (_p,n)| prod * (n + 1) }
end

anti_primes = Enumerator.new do |y| # y is the yielder
max = 0
y << 1                            # yield 1
2.step(nil,2) do |candidate|      # nil is taken as Infinity
num = num_divisors(candidate)
if  num > max
y << candidate               # yield the candidate
max = num
end
end
end

puts anti_primes.take(20).join(" ")
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Rust

Translation of: Go
```fn count_divisors(n: u64) -> usize {
if n < 2 {
return 1;
}
2 + (2..=(n / 2)).filter(|i| n % i == 0).count()
}

fn main() {
println!("The first 20 anti-primes are:");
(1..)
.scan(0, |max, n| {
let d = count_divisors(n);
Some(if d > *max {
*max = d;
Some(n)
} else {
None
})
})
.flatten()
.take(20)
.for_each(|n| print!("{} ", n));
println!();
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560 ```

## Scala

This program uses an iterator to count the factors of a number, then builds a lazily evaluated list of all anti-primes. Finding the first 20 anti-primes involves merely taking the first 20 elements of the list.

```def factorCount(num: Int): Int = Iterator.range(1, num/2 + 1).count(num%_ == 0) + 1
def antiPrimes: LazyList[Int] = LazyList.iterate((1: Int, 1: Int)){case (n, facs) => Iterator.from(n + 1).map(i => (i, factorCount(i))).dropWhile(_._2 <= facs).next}.map(_._1)
```
Output:
```scala> print(antiPrimes.take(20).mkString(", "))
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560```

## Seed7

```\$ include "seed7_05.s7i";

const func integer: countDivisors (in integer: number) is func
result
var integer: count is 1;
local
var integer: num is 0;
begin
for num range 1 to number div 2 do
if number rem num = 0 then
incr(count);
end if;
end for;
end func;

const proc: main is func
local
var integer: maxDiv is 0;
var integer: count is 0;
var integer: number is 1;
var integer: divisors is 1;
begin
writeln("The first 20 anti-primes are:");
while count < 20 do
divisors := countDivisors(number);
if divisors > maxDiv then
write(number <& " ");
maxDiv := divisors;
incr(count);
end if;
incr(number);
end while;
writeln;
end func;```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Sidef

Using the built-in Number.sigma0 method to count the number of divisors.

```say with (0) {|max|
1..Inf -> lazy.grep { (.sigma0 > max) && (max = .sigma0) }.first(20)
}
```
Output:
```[1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]
```

## Swift

```extension BinaryInteger {
@inlinable
public func countDivisors() -> Int {
var workingN = self
var count = 1

while workingN & 1 == 0 {
workingN >>= 1

count += 1
}

var d = Self(3)

while d * d <= workingN {
var (quo, rem) = workingN.quotientAndRemainder(dividingBy: d)

if rem == 0 {
var dc = 0

while rem == 0 {
dc += count
workingN = quo

(quo, rem) = workingN.quotientAndRemainder(dividingBy: d)
}

count += dc
}

d += 2
}

return workingN != 1 ? count * 2 : count
}
}

var antiPrimes = [Int]()
var maxDivs = 0

for n in 1... {
guard antiPrimes.count < 20 else {
break
}

let divs = n.countDivisors()

if maxDivs < divs {
maxDivs = divs
antiPrimes.append(n)
}
}

print("First 20 anti-primes are \(Array(antiPrimes))")
```
Output:
`First 20 anti-primes are [1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560]`

## Tcl

Translation of: Java
```proc countDivisors {n} {
if {\$n < 2} {return 1}
set count 2
set n2 [expr \$n / 2]
for {set i 2} {\$i <= \$n2} {incr i} {
if {[expr \$n % \$i] == 0} {incr count}
}
return \$count
}

# main
set maxDiv 0
set count 0

puts "The first 20 anti-primes are:"
for {set n 1} {\$count < 20} {incr n} {
set d [countDivisors \$n]
if {\$d > \$maxDiv} {
puts \$n
set maxDiv \$d
incr count
}
}
```
Output:
```
./anti_primes.tcl

The first 20 anti-primes are:
1
2
4
6
12
24
36
48
60
120
180
240
360
720
840
1260
1680
2520
5040
7560

```

## Transd

```#lang transd

MainModule: {
countDivs: (λ n Int() ret_ Int()
(= ret_ 2)
(for i in Range(2 (to-Int (/ (to-Double n) 2) 1)) do
(if (not (mod n i)) (+= ret_ 1)))
(ret ret_)
),

_start: (λ locals: max 0 tmp 0 N 1 i 2
(textout 1 " ")
(while (< N 20)
(= tmp (countDivs i))
(if (> tmp max)
(textout i " ") (= max tmp) (+= N 1))
(+= i 1)
))
}
```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Vala

Translation of: C
```int count_divisors(int n) {
if (n < 2) return 1;
var count = 2;
for (int i = 2; i <= n/2; ++i)
if (n%i == 0) ++count;
return count;
}
void main() {
var max_div = 0;
var count = 0;
stdout.printf("The first 20 anti-primes are:\n");
for (int n = 1; count < 20; ++n) {
var d = count_divisors(n);
if (d > max_div) {
stdout.printf("%d ", n);
max_div = d;
count++;
}
}
stdout.printf("\n");
}
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## V (Vlang)

Translation of: go
```fn count_divisors(n int) int {
if n < 2 {
return 1
}
mut count := 2 // 1 and n
for i := 2; i <= n/2; i++ {
if n%i == 0 {
count++
}
}
return count
}

fn main() {
println("The first 20 anti-primes are:")
mut max_div := 0
mut count := 0
for n := 1; count < 20; n++ {
d := count_divisors(n)
if d > max_div {
print("\$n ")
max_div = d
count++
}
}
println('')
}```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## Wren

Library: Wren-math
```import "./math" for Int

System.print("The first 20 anti-primes are:")
var maxDiv = 0
var count = 0
var n = 1
while (count < 20) {
var d = Int.divisors(n).count
if (d > maxDiv) {
System.write("%(n) ")
maxDiv = d
count = count + 1
}
n = n + 1
}
System.print()
```
Output:
```The first 20 anti-primes are:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## XPL0

```int Counter, Num, Cnt, Div, Max;
[Counter:= 0;
Max:= 0;
Num:= 1;
loop    [Cnt:= 0;
Div:= 1;
repeat  if rem(Num/Div) = 0 then Cnt:= Cnt+1;
Div:= Div+1;
until   Div > Num;
if Cnt > Max then
[IntOut(0, Num);  ChOut(0, ^ );
Max:= Cnt;
Counter:= Counter+1;
if Counter >= 20 then quit;
];
Num:= Num+1;
];
]```
Output:
```1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```

## zkl

Translation of: Raku
```fcn properDivsN(n) //--> count of proper divisors. 1-->1, wrong but OK here
{ [1.. (n + 1)/2 + 1].reduce('wrap(p,i){ p + (n%i==0 and n!=i) }) }
fcn antiPrimes{		// -->iterator
Walker.chain([2..59],[60..*,30]).tweak(fcn(c,rlast){
last,mx := rlast.value, properDivsN(c);
if(mx<=last) return(Void.Skip);
rlast.set(mx);
c
}.fp1(Ref(0))).push(1);	// 1 has no proper divisors
}```
`println("First 20 anti-primes:\n  ",antiPrimes().walk(20).concat(" "));`
Output:
```First 20 anti-primes:
1 2 4 6 12 24 36 48 60 120 180 240 360 720 840 1260 1680 2520 5040 7560
```