ABC Problem

From Rosetta Code
Task
ABC Problem
You are encouraged to solve this task according to the task description, using any language you may know.

You are given a collection of ABC blocks   (maybe like the ones you had when you were a kid).

There are twenty blocks with two letters on each block.

A complete alphabet is guaranteed amongst all sides of the blocks.

The sample collection of blocks:

 (B O)
 (X K)
 (D Q)
 (C P)
 (N A)
 (G T)
 (R E)
 (T G)
 (Q D)
 (F S)
 (J W)
 (H U)
 (V I)
 (A N)
 (O B)
 (E R)
 (F S)
 (L Y)
 (P C)
 (Z M)


Task

Write a function that takes a string (word) and determines whether the word can be spelled with the given collection of blocks.


The rules are simple:

  1.   Once a letter on a block is used that block cannot be used again
  2.   The function should be case-insensitive
  3.   Show the output on this page for the following 7 words in the following example


Example
    >>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True



Contents

Acurity Architect[edit]

Using #HASH-OFF
 
FUNCTION bCAN_MAKE_WORD(zWord: STRING): BOOLEAN
VAR sBlockCount: SHORT
VAR sWordCount: SHORT
VAR sWordLength: SHORT
VAR zLetter: STRING
VAR zBlock: STRING
VAR zBlockList: STRING
VAR zUsedBlocks: STRING
VAR zWord: STRING
//
SET zWord = UPPER(zWord)
SET zBlockList = "BO,XK,DQ,CP,NA,GT,RE,TG,QD,FS,JW,HU,VI,AN,OB,ER,FS,LY,PC,ZM"
SET sWordLength = LENGTH(zWord)
//
DO sWordCount = 1 TO sWordLength
DO sBlockCount = 1 TO OCCURS(zBlockList, ",")
SET zLetter = SUBSTR(zWord, sWordCount, 1)
SET zBlock = GET_TOKEN(zBlockList, ",", sBlockCount)
IF INDEX(zBlock, zLetter, 1) > 0 AND INDEX(zUsedBlocks, zBlock + STR(sBlockCount), 1) = 0
SET zUsedBlocks = zUsedBlocks + zBlock + STR(sBlockCount) + ","
BREAK
ENDIF
ENDDO
ENDDO
RETURN OCCURS(zUsedBlocks, ",") = sWordLength
ENDFUNCTION
 
Output:
bCAN_MAKE_WORD("A") returns TRUE
bCAN_MAKE_WORD("BARK") returns TRUE
bCAN_MAKE_WORD("BOOK") returns FALSE
bCAN_MAKE_WORD("TREAT") returns TRUE
bCAN_MAKE_WORD("COMMON") returns FALSE
bCAN_MAKE_WORD("SQUAD") returns TRUE
bCAN_MAKE_WORD("CONFUSE") returns TRUE

Ada[edit]

Build with gnatchop abc.ada; gnatmake abc_problem
with Ada.Characters.Handling;
use Ada.Characters.Handling;
 
 
package Abc is
type Block_Faces is array(1..2) of Character;
type Block_List is array(positive range <>) of Block_Faces;
function Can_Make_Word(W: String; Blocks: Block_List) return Boolean;
end Abc;
 
 
package body Abc is
 
function Can_Make_Word(W: String; Blocks: Block_List) return Boolean is
Used : array(Blocks'Range) of Boolean := (Others => False);
subtype wIndex is Integer range W'First..W'Last;
wPos : wIndex;
begin
if W'Length = 0 then
return True;
end if;
wPos := W'First;
while True loop
declare
C : Character := To_Upper(W(wPos));
X : constant wIndex := wPos;
begin
for I in Blocks'Range loop
if (not Used(I)) then
if C = To_Upper(Blocks(I)(1)) or C = To_Upper(Blocks(I)(2)) then
Used(I) := True;
if wPos = W'Last then
return True;
end if;
wPos := wIndex'Succ(wPos);
exit;
end if;
end if;
end loop;
if X = wPos then
return False;
end if;
end;
end loop;
return False;
end Can_Make_Word;
 
end Abc;
 
with Ada.Text_IO, Ada.Strings.Unbounded, Abc;
use Ada.Text_IO, Ada.Strings.Unbounded, Abc;
 
procedure Abc_Problem is
Blocks : Block_List := (
('B','O'), ('X','K'), ('D','Q'), ('C','P')
, ('N','A'), ('G','T'), ('R','E'), ('T','G')
, ('Q','D'), ('F','S'), ('J','W'), ('H','U')
, ('V','I'), ('A','N'), ('O','B'), ('E','R')
, ('F','S'), ('L','Y'), ('P','C'), ('Z','M')
);
function "+" (S : String) return Unbounded_String renames To_Unbounded_String;
words : array(positive range <>) of Unbounded_String := (
+"A"
, +"BARK"
, +"BOOK"
, +"TREAT"
, +"COMMON"
, +"SQUAD"
, +"CONFUSE"
-- Border cases:
-- , +"CONFUSE2"
-- , +""
);
begin
for I in words'Range loop
Put_Line ( To_String(words(I)) & ": " & Boolean'Image(Can_Make_Word(To_String(words(I)),Blocks)) );
end loop;
end Abc_Problem;
 
Output:
A: TRUE
BARK: TRUE
BOOK: FALSE
TREAT: TRUE
COMMON: FALSE
SQUAD: TRUE
CONFUSE: TRUE

ALGOL 68[edit]

Works with: ALGOL 68G version Any - tested with release 2.8.win32
# determine whether we can spell words with a set of blocks                  #
 
# construct the list of blocks #
[][]STRING blocks = ( ( "B", "O" ), ( "X", "K" ), ( "D", "Q" ), ( "C", "P" )
, ( "N", "A" ), ( "G", "T" ), ( "R", "E" ), ( "T", "G" )
, ( "Q", "D" ), ( "F", "S" ), ( "J", "W" ), ( "H", "U" )
, ( "V", "I" ), ( "A", "N" ), ( "O", "B" ), ( "E", "R" )
, ( "F", "S" ), ( "L", "Y" ), ( "P", "C" ), ( "Z", "M" )
);
 
# Returns TRUE if we can spell the word using the blocks, FALSE otherwise #
# Returns TRUE for an empty string #
PROC can spell = ( STRING word, [][]STRING blocks )BOOL:
BEGIN
 
# construct a set of flags to indicate whether the blocks are used #
# or not #
[ 1 LWB blocks : 1 UPB blocks ]BOOL used;
FOR block pos FROM LWB used TO UPB used
DO
used[ block pos ] := FALSE
OD;
 
# initialliy assume we can spell the word #
BOOL result := TRUE;
 
# check we can spell the word with the set of blocks #
FOR word pos FROM LWB word TO UPB word WHILE result
DO
CHAR c = IF is lower( word[ word pos ] )
THEN to upper( word[ word pos ] )
ELSE word[ word pos ]
FI;
 
# look through the unused blocks for the current letter #
BOOL found := FALSE;
FOR block pos FROM 1 LWB blocks TO 1 UPB blocks
WHILE NOT found
DO
IF ( c = blocks[ block pos ][ 1 ][ 1 ]
OR c = blocks[ block pos ][ 2 ][ 1 ]
)
AND NOT used[ block pos ]
THEN
# found an unused block with the required letter #
found := TRUE;
used[ block pos ] := TRUE
FI
OD;
 
result := found
 
OD;
 
result
END; # can spell #
 
 
main: (
 
# test the can spell procedure #
PROC test can spell = ( STRING word, [][]STRING blocks )VOID:
write( ( ( "can spell: """
+ word
+ """ -> "
+ IF can spell( word, blocks ) THEN "yes" ELSE "no" FI
)
, newline
)
);
 
test can spell( "A", blocks );
test can spell( "BaRK", blocks );
test can spell( "BOOK", blocks );
test can spell( "TREAT", blocks );
test can spell( "COMMON", blocks );
test can spell( "SQUAD", blocks );
test can spell( "CONFUSE", blocks )
 
)
 

Output:

can spell: "A" -> yes
can spell: "BaRK" -> yes
can spell: "BOOK" -> no
can spell: "TREAT" -> yes
can spell: "COMMON" -> no
can spell: "SQUAD" -> yes
can spell: "CONFUSE" -> yes

ALGOL W[edit]

% determine whether we can spell words with a set of blocks                  %
begin
 % Returns true if we can spell the word using the blocks,  %
 % false otherwise  %
 % As strings are fixed length in Algol W, the length of the string is  %
 % passed as a separate parameter  %
logical procedure canSpell ( string(20) value word
 ; integer value wordLength
) ;
begin
 
 % convert a character to upper-case  %
 % assumes the letters are contiguous in the character set  %
 % as in ASCII and Unicode - not correct for EBCDIC  %
string(1) procedure toUpper( string(1) value c ) ;
if c < "a" or c > "z" then c
else code( ( decode( c ) - decode( "a" ) )
+ decode( "A" )
) ;
 
logical spellable;
integer wordPos, blockPos;
string(20) letters1, letters2;
 
 % make local copies the faces so we can remove the used blocks  %
letters1 := face1;
letters2 := face2;
 
 % check we can spell the word with the set of blocks  %
spellable := true;
wordPos  := 0;
while wordPos < wordLength and spellable do begin
string(1) letter;
letter  := toUpper( word( wordPos // 1 ) );
if letter not = " " then begin
spellable := false;
blockPos  := 0;
while blockPos < 20 and not spellable do begin
if letter = letters1( blockPos // 1 )
or letter = letters2( blockPos // 1 )
then begin
 % found the letter - remove the used block from the  %
 % remaining blocks  %
letters1( blockPos // 1 ) := " ";
letters2( blockPos // 1 ) := " ";
spellable := true
end;
blockPos := blockPos + 1
end
end;
wordPos := wordPos + 1;
end;
 
spellable
end canSpell ;
 
 % the letters available on the faces of the blocks  %
string(20) face1, face2;
face1 := "BXDCNGRTQFJHVAOEFLPZ";
face2 := "OKQPATEGDSWUINBRSYCM";
 
begin
 % test the can spell procedure  %
procedure testCanSpell ( string(20) value word
 ; integer value wordLength
) ;
write( if canSpell( word, wordLength ) then "can " else "cannot"
, " spell """
, word
, """"
);
 
testCanSpell( "a", 1 );
testCanSpell( "bark", 4 );
testCanSpell( "BOOK", 4 );
testCanSpell( "treat", 5 );
testCanSpell( "commoN", 6 );
testCanSpell( "Squad", 5 );
testCanSpell( "confuse", 7 )
end
end.
Output:
can    spell "a                   "
can    spell "bark                "
cannot spell "BOOK                "
can    spell "treat               "
cannot spell "commoN              "
can    spell "Squad               "
can    spell "confuse             "

Apex[edit]

static Boolean canMakeWord(List<String> src_blocks, String word) {
if (String.isEmpty(word)) {
return true;
}
 
List<String> blocks = new List<String>();
for (String block : src_blocks) {
blocks.add(block.toUpperCase());
}
 
for (Integer i = 0; i < word.length(); i++) {
Integer blockIndex = -1;
String c = word.mid(i, 1).toUpperCase();
 
for (Integer j = 0; j < blocks.size(); j++) {
if (blocks.get(j).contains(c)) {
blockIndex = j;
break;
}
}
 
if (blockIndex == -1) {
return false;
} else {
blocks.remove(blockIndex);
}
}
 
return true;
}
 
List<String> blocks = new List<String>{
'BO', 'XK', 'DQ', 'CP', 'NA',
'GT', 'RE', 'TG', 'QD', 'FS',
'JW', 'HU', 'VI', 'AN', 'OB',
'ER', 'FS', 'LY', 'PC', 'ZM'
};
System.debug('"": ' + canMakeWord(blocks, ''));
System.debug('"A": ' + canMakeWord(blocks, 'A'));
System.debug('"BARK": ' + canMakeWord(blocks, 'BARK'));
System.debug('"book": ' + canMakeWord(blocks, 'book'));
System.debug('"treat": ' + canMakeWord(blocks, 'treat'));
System.debug('"COMMON": ' + canMakeWord(blocks, 'COMMON'));
System.debug('"SQuAd": ' + canMakeWord(blocks, 'SQuAd'));
System.debug('"CONFUSE": ' + canMakeWord(blocks, 'CONFUSE'));
Output:
"": true
"A": true
"BARK": true
"book": false
"treat": true
"COMMON": false
"SQuAd": true
"CONFUSE": true

AppleScript[edit]

set blocks to {"bo", "xk", "dq", "cp", "na", "gt", "re", "tg", "qd", "fs", "jw", "hu", "vi", "an", "ob", "er", "fs", "ly", "pc", "zm"}
 
canMakeWordWithBlocks("a", blocks)
canMakeWordWithBlocks("bark", blocks)
canMakeWordWithBlocks("book", blocks)
canMakeWordWithBlocks("treat", blocks)
canMakeWordWithBlocks("common", blocks)
canMakeWordWithBlocks("squad", blocks)
canMakeWordWithBlocks("confuse", blocks)
 
on canMakeWordWithBlocks(theString, constBlocks)
copy constBlocks to theBlocks
if theString = "" then return true
set i to 1
repeat
if i > (count theBlocks) then exit repeat
if character 1 of theString is in item i of theBlocks then
set item i of theBlocks to missing value
set theBlocks to strings of theBlocks
if canMakeWordWithBlocks(rest of characters of theString as string, theBlocks) then
return true
end if
end if
set i to i + 1
end repeat
return false
end canMakeWordWithBlocks
 

AutoHotkey[edit]

Function

isWordPossible(blocks, word){
o := {}
loop, parse, blocks, `n, `r
o.Insert(A_LoopField)
loop, parse, word
if !(r := isWordPossible_contains(o, A_LoopField, word))
return 0
return 1
}
isWordPossible_contains(byref o, letter, word){
loop 2 {
for k,v in o
if Instr(v,letter)
{
StringReplace, op, v,% letter
if RegExMatch(op, "[" word "]")
sap := k
else added := 1 , sap := k
if added
return "1" o.remove(sap)
}
added := 1
}
}

Test Input (as per question)

blocks := "
(
BO
XK
DQ
CP
NA
GT
RE
TG
QD
FS
JW
HU
VI
AN
OB
ER
FS
LY
PC
ZM
)"

 
wordlist := "
(
A
BARK
BOOK
TREAT
COMMON
SQUAD
CONFUSE
)"

 
loop, parse, wordlist, `n
out .= A_LoopField " - " isWordPossible(blocks, A_LoopField) "`n"
msgbox % out
Output:
A - 1
BARK - 1
BOOK - 0
TREAT - 1
COMMON - 0
SQUAD - 1
CONFUSE - 1

Batch File[edit]

 
@echo off
::abc.bat
::
::Batch file to evaluate if a given string can be represented with a set of
::20 2-faced blocks.
::

::Check if a string was provided

if "%1"=="" goto ERROR

::Define blocks. Separate blocks by ':', and terminat with '::'

set "FACES=BO:XK:DQ:CP:NA:GT:RE:TG:QD:FS:JW:HU:VI:AN:OB:ER:FS:LY:PC:ZM::"
set INPUT=%1
set "COUNTER=0"

::The main loop steps through the input string, checking if an available

::block exists for each character
:LOOP_MAIN

 ::Get character, increase counter, and test if there are still characters

call set "char=%%INPUT:~%COUNTER%,1%%"
set /a "COUNTER+=1"
if "%CHAR%"=="" goto LOOP_MAIN_END
 
set "OFFSET=0"
 :LOOP_2

 ::Read in two characters (one block)

call set "BLOCK=%%FACES%:~%OFFSET%,2%%"

 ::Test if the all blocks were checked. If so, no match was found

if "%BLOCK%"==":" goto FAIL

 ::Test if current input string character is in the current block

if /i "%BLOCK:~0,1%"=="%CHAR%" goto FOUND
if /i "%BLOCK:~1,1%"=="%CHAR%" goto FOUND

 ::Increase offset to point to the next block

set /a "OFFSET+=3"
 
goto LOOP_2
 :LOOP_2_END

 ::If found, blank out the block used

 :FOUND
call set "FACES=%%FACES:%BLOCK%:=  :%%"
 
goto LOOP_MAIN
:LOOP_MAIN_END
 
echo %0: It is possible to write the '%INPUT%' with my blocks.
goto END
 
:FAIL
echo %0: It is NOT possible to write the '%INPUT%' with my blocks.
goto END
 
:ERROR
echo %0: Please enter a string to evaluate
echo.
 
:END
 

BASIC[edit]

Works with:VB-DOS, QB64, QBasic, QuickBASIC

 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
' ABC_Problem '
' '
' Developed by A. David Garza Marín in VB-DOS for '
' RosettaCode. November 29, 2016. '
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
 
' Comment the following line to run it in QB or QBasic
OPTION EXPLICIT ' Modify to OPTION _EXPLICIT for QB64
 
' SUBs and FUNCTIONs
DECLARE SUB doCleanBlocks ()
DECLARE FUNCTION ICanMakeTheWord (WhichWord AS STRING) AS INTEGER
DECLARE SUB doReadBlocks ()
 
' rBlock Data Type
TYPE regBlock
Block AS STRING * 2
Used AS INTEGER
END TYPE
 
' Initialize
CONST False = 0, True = NOT False, HMBlocks = 20
DATA "BO", "XK", "DQ", "CP", "NA", "GT","RE", "TG"
DATA "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER"
DATA "FS", "LY", "PC","ZM"
 
DIM rBlock(1 TO HMBlocks) AS regBlock
DIM i AS INTEGER, aWord AS STRING, YorN AS STRING
 
doReadBlocks ' Read the data in the blocks
 
'-------------- Main program cycle ------------------
CLS
PRINT "This program has the following blocks: ";
FOR i = 1 TO HMBlocks
PRINT rBlock(i).Block; "|";
NEXT i
PRINT : PRINT
PRINT "Please, write a word or a short sentence to see if the available"
PRINT "blocks can make it. If so, I will tell you."
DO
doCleanBlocks ' Clean all blocks
PRINT
INPUT "Which is the word"; aWord
aWord = LTRIM$(RTRIM$(aWord))
 
IF aWord <> "" THEN
IF ICanMakeTheWord(aWord) THEN
PRINT "Yes, i can make it."
ELSE
PRINT "No, I can't make it."
END IF
ELSE
PRINT "At least, you need to type a letter."
END IF
 
PRINT
PRINT "Do you want to try again (Y/N) ";
DO
YorN = INPUT$(1)
YorN = UCASE$(YorN)
LOOP UNTIL YorN = "Y" OR YorN = "N"
PRINT YorN
 
LOOP UNTIL YorN = "N"
' -------------- End of Main program ----------------
END
 
SUB doCleanBlocks ()
' Var
SHARED rBlock() AS regBlock
DIM i AS INTEGER
 
' Will clean the Used status of all blocks
FOR i = 1 TO HMBlocks
rBlock(i).Used = False
NEXT i
 
END SUB
 
SUB doReadBlocks ()
' Var
SHARED rBlock() AS regBlock
DIM i AS INTEGER
 
' Will read the block values from DATA
FOR i = 1 TO HMBlocks
READ rBlock(i).Block
NEXT i
END SUB
 
FUNCTION ICanMakeTheWord (WhichWord AS STRING) AS INTEGER ' Comment AS INTEGER to run in QBasic, QB64 and QuickBASIC
' Var
SHARED rBlock() AS regBlock
DIM i AS INTEGER, l AS INTEGER, j AS INTEGER, iYesICan AS INTEGER
DIM c AS STRING, sUWord AS STRING
 
' Will evaluate if can make the word
sUWord = UCASE$(WhichWord)
l = LEN(sUWord)
i = 0
 
DO
i = i + 1
iYesICan = False
c = MID$(sUWord, i, 1)
j = 0
DO
j = j + 1
IF NOT rBlock(j).Used THEN
iYesICan = (INSTR(rBlock(j).Block, c) > 0)
rBlock(j).Used = iYesICan
END IF
LOOP UNTIL j >= HMBlocks OR iYesICan
 
LOOP UNTIL i >= l OR NOT iYesICan
 
' The result will depend on the last value of
' iYesICan variable. If the last value is True
' is because the function found even the last
' letter analyzed.
ICanMakeTheWord = iYesICan
 
END FUNCTION
 

BBC BASIC[edit]

      BLOCKS$="BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"
PROCcan_make_word("A")
PROCcan_make_word("BARK")
PROCcan_make_word("BOOK")
PROCcan_make_word("TREAT")
PROCcan_make_word("COMMON")
PROCcan_make_word("SQUAD")
PROCcan_make_word("Confuse")
END
 
DEF PROCcan_make_word(word$)
LOCAL b$,p%
b$=BLOCKS$
PRINT word$ " -> ";
p%=INSTR(b$,CHR$(ASCword$ AND &DF))
WHILE p%>0 AND word$>""
MID$(b$,p%-1+(p% MOD 2),2)=".."
word$=MID$(word$,2)
p%=INSTR(b$,CHR$(ASCword$ AND &DF))
ENDWHILE
IF word$>"" PRINT "False" ELSE PRINT "True"
ENDPROC
Output:
A -> True
BARK -> True
BOOK -> False
TREAT -> True
COMMON -> False
SQUAD -> True
Confuse -> True

Bracmat[edit]

(
( can-make-word
= ABC blocks
. (B O)
+ (X K)
+ (D Q)
+ (C P)
+ (N A)
+ (G T)
+ (R E)
+ (T G)
+ (Q D)
+ (F S)
+ (J W)
+ (H U)
+ (V I)
+ (A N)
+ (O B)
+ (E R)
+ (F S)
+ (L Y)
+ (P C)
+ (Z M)
 : ?blocks
& ( ABC
= letter blocks A Z
.  !arg:(.?)
|  !arg:(@(?:%?letter ?arg).?blocks)
&  !blocks
 :  ?
+ ?*(? !letter ?:?block)
+ (?&ABC$(!arg.!blocks+-1*!block))
)
& out
$ ( !arg
( ABC$(upp$!arg.!blocks)&yes
| no
)
)
)
& can-make-word'A
& can-make-word'BARK
& can-make-word'BOOK
& can-make-word'TREAT
& can-make-word'COMMON
& can-make-word'SQUAD
& can-make-word'CONFUSE
);
Output:
A yes
BARK yes
BOOK no
TREAT yes
COMMON no
SQUAD yes
CONFUSE yes

C[edit]

Recursive solution. Empty string returns true.

#include <stdio.h>
#include <ctype.h>
 
int can_make_words(char **b, char *word)
{
int i, ret = 0, c = toupper(*word);
 
#define SWAP(a, b) if (a != b) { char * tmp = a; a = b; b = tmp; }
 
if (!c) return 1;
if (!b[0]) return 0;
 
for (i = 0; b[i] && !ret; i++) {
if (b[i][0] != c && b[i][1] != c) continue;
SWAP(b[i], b[0]);
ret = can_make_words(b + 1, word + 1);
SWAP(b[i], b[0]);
}
 
return ret;
}
 
int main(void)
{
char* blocks[] = {
"BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM",
0 };
 
char *words[] = {
"", "A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse", 0
};
 
char **w;
for (w = words; *w; w++)
printf("%s\t%d\n", *w, can_make_words(blocks, *w));
 
return 0;
}
Output:
        1
A       1
BARK    1
BOOK    0
TREAT   1
COMMON  0
SQUAD   1
Confuse 1


C++[edit]

Uses C++11. Build with g++-4.7 -Wall -std=c++0x abc.cpp

#include <iostream>
#include <vector>
#include <string>
#include <set>
#include <cctype>
 
 
typedef std::pair<char,char> item_t;
typedef std::vector<item_t> list_t;
 
bool can_make_word(const std::string& w, const list_t& vals) {
std::set<uint32_t> used;
while (used.size() < w.size()) {
const char c = toupper(w[used.size()]);
uint32_t x = used.size();
for (uint32_t i = 0, ii = vals.size(); i < ii; ++i) {
if (used.find(i) == used.end()) {
if (toupper(vals[i].first) == c || toupper(vals[i].second) == c) {
used.insert(i);
break;
}
}
}
if (x == used.size()) break;
}
return used.size() == w.size();
}
 
 
int main() {
list_t vals{ {'B','O'}, {'X','K'}, {'D','Q'}, {'C','P'}, {'N','A'}, {'G','T'}, {'R','E'}, {'T','G'}, {'Q','D'}, {'F','S'}, {'J','W'}, {'H','U'}, {'V','I'}, {'A','N'}, {'O','B'}, {'E','R'}, {'F','S'}, {'L','Y'}, {'P','C'}, {'Z','M'} };
std::vector<std::string> words{"A","BARK","BOOK","TREAT","COMMON","SQUAD","CONFUSE"};
for (const std::string& w : words) {
std::cout << w << ": " << std::boolalpha << can_make_word(w,vals) << ".\n";
}
 
}
Output:
A: true.
BARK: true.
BOOK: false.
TREAT: true.
COMMON: false.
SQUAD: true.
CONFUSE: true.

C#[edit]

Regex[edit]

This Method uses regular expressions to do the checking. Given that n = length of blocks string and m = length of word string, then CheckWord's time complexity comes out to about m*(n - (m-1)/2).

using System;
using System.IO;
// Needed for the method.
using System.Text.RegularExpressions;
using System.Collections.Generic;
 
void Main()
{
string blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM";
List<string> words = new List<string>() {
"A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"
};
 
foreach(var word in words)
{
Console.WriteLine("{0}: {1}", word, CheckWord(blocks, word));
}
}
 
bool CheckWord(string blocks, string word)
{
for(int i = 0; i < word.Length; ++i)
{
int length = blocks.Length;
Regex rgx = new Regex("([a-z]"+word[i]+"|"+word[i]+"[a-z])", RegexOptions.IgnoreCase);
blocks = rgx.Replace(blocks, "", 1);
if(blocks.Length == length) return false;
}
return true;
}
 
Output:
A: True
BARK: True
BOOK: False
TREAT: True
COMMON: False
SQUAD: True
CONFUSE: True

Unoptimized

using System.Collections.Generic;
using System.Linq;
 
void Main()
{
List<string> blocks =
new List<string>() { "bo", "xk", "dq", "cp", "na", "gt", "re", "tg", "qd", "fs",
"jw", "hu", "vi", "an", "ob", "er", "fs", "ly", "pc", "zm" };
List<string> words = new List<string>() {
"A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"};
 
var solver = new ABC(blocks);
 
foreach( var word in words)
{
Console.WriteLine("{0} :{1}", word, solver.CanMake(word));
}
}
 
class ABC
{
readonly Dictionary<char, List<int>> _blockDict = new Dictionary<char, List<int>>();
bool[] _used;
int _nextBlock;
 
readonly List<string> _blocks;
 
private void AddBlockChar(char c)
{
if (!_blockDict.ContainsKey(c))
{
_blockDict[c] = new List<int>();
}
_blockDict[c].Add(_nextBlock);
}
 
private void AddBlock(string block)
{
AddBlockChar(block[0]);
AddBlockChar(block[1]);
_nextBlock++;
}
 
public ABC(List<string> blocks)
{
_blocks = blocks;
foreach (var block in blocks)
{
AddBlock(block);
}
}
 
public bool CanMake(string word)
{
word = word.ToLower();
if (word.Length > _blockDict.Count)
{
return false;
}
_used = new bool[_blocks.Count];
return TryMake(word);
}
 
public bool TryMake(string word)
{
if (word == string.Empty)
{
return true;
}
var blocks = _blockDict[word[0]].Where(b => !_used[b]);
foreach (var block in blocks)
{
_used[block] = true;
if (TryMake(word.Substring(1)))
{
return true;
}
_used[block] = false;
}
return false;
}
}
 
Output:
A :True
BARK :True
BOOK :False
TREAT :True
COMMON :False
SQUAD :True
CONFUSE :True

Ceylon[edit]

Functional programming/recursive solution. No variable values.

module.ceylon

 
module rosetta.abc "1.0.0" {}
 

run.ceylon

 
shared void run() {
printAndCanMakeWord("A", blocks);
//True
printAndCanMakeWord("BARK", blocks);
//True
printAndCanMakeWord("BOOK", blocks);
//False
printAndCanMakeWord("TREAT", blocks);
//True
printAndCanMakeWord("COMMON", blocks);
//False
printAndCanMakeWord("SQUAD", blocks);
//True
printAndCanMakeWord("CONFUSE", blocks);
//True
}
 
Block[] blocks =
[
Block('B','O'),
Block('X','K'),
Block('D','Q'),
Block('C','P'),
Block('N','A'),
Block('G','T'),
Block('R','E'),
Block('T','G'),
Block('Q','D'),
Block('F','S'),
Block('J','W'),
Block('H','U'),
Block('V','I'),
Block('A','N'),
Block('O','B'),
Block('E','R'),
Block('F','S'),
Block('L','Y'),
Block('P','C'),
Block('Z','M')
];
 
void printAndCanMakeWord(String word, Block[] blocks) {
print("``word``:``canMakeWord(word, blocks)``");
}
 
class Block(Character firstLetter, Character secondLetter) {
shared Character firstLetterUpper = firstLetter.uppercased;
shared Character secondLetterUpper = secondLetter.uppercased;
 
shared Boolean containsLetter(Character letter)
=> let (letterUpper = letter.uppercased)
firstLetterUpper == letterUpper || secondLetterUpper == letterUpper;
 
shared actual String string = "``firstLetterUpper``,``secondLetterUpper``";
}
 
Boolean canMakeWord(String word, Block[] blocks)
=> canMakeWordRecursive(word.uppercased.sequence(), 0, blocks, word.indexes());
 
Boolean canMakeWordRecursive(Character[] word,
Integer index,
Block[] remainingBlocks,
Integer[] remainingLetterIndexes)
=> if (exists wordFirst = word.first, // first is the Ceylon attribute for head
exists remainingBlock = remainingBlocks.find((remainingBlock) => remainingBlock.containsLetter(wordFirst)))
then
let (myRemainingLetterIndexes = remainingLetterIndexes.filter((theIndex) => index != theIndex).sequence())
if (myRemainingLetterIndexes.empty)
then true
else canMakeWordRecursive(word.rest,// rest is the Ceylon attribute for tail
index+1, // move through the letter indexes
remainingBlocks.filter((block) => remainingBlock != block).sequence(), // one less block
myRemainingLetterIndexes)
else false;
 
Output:
A:true
BARK:true
BOOK:false
TREAT:true
COMMON:false
SQUAD:true
CONFUSE:true

Clojure[edit]

A translation of the Haskell solution.

 
(def blocks
(-> "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM" (.split " ") vec))
 
(defn omit
"return bs with (one instance of) b omitted"
[bs b]
(let [[before after] (split-with #(not= b %) bs)]
(concat before (rest after))))
 
(defn abc
"return lazy sequence of solutions (i.e. block lists)"
[blocks [c & cs]]
(if-some c
(for [b blocks :when (some #(= c %) b)
bs (abc (omit blocks b) cs)]
(cons b bs))
[[]]))
 
 
(doseq [word ["A" "BARK" "Book" "treat" "COMMON" "SQUAD" "CONFUSE"]]
(->> word .toUpperCase (abc blocks) first (printf "%s: %b\n" word)))
Output:
A: true
BARK: true
Book: false
treat: true
COMMON: false
SQUAD: true
CONFUSE: true

CoffeeScript[edit]

blockList = [ 'BO', 'XK', 'DQ', 'CP', 'NA', 'GT', 'RE', 'TG', 'QD', 'FS', 'JW', 'HU', 'VI', 'AN', 'OB', 'ER', 'FS', 'LY', 'PC', 'ZM' ]
 
canMakeWord = (word="") ->
# Create a shallow clone of the master blockList
blocks = blockList.slice 0
# Check if blocks contains letter
checkBlocks = (letter) ->
# Loop through every remaining block
for block, idx in blocks
# If letter is in block, blocks.splice will return an array, which will evaluate as true
return blocks.splice idx, 1 if letter.toUpperCase() in block
false
# Return true if there are no falsy values
false not in (checkBlocks letter for letter in word)
 
# Expect true, true, false, true, false, true, true, true
for word in ["A", "BARK", "BOOK", "TREAT", "COMMON", "squad", "CONFUSE", "STORM"]
console.log word + " -> " + canMakeWord(word)
Output:
A -> true
BARK -> true
BOOK -> false
TREAT -> true
COMMON -> false
squad -> true
CONFUSE -> true
STORM -> true

Common Lisp[edit]

 
(defun word-possible-p (word blocks)
(cond
((= (length word) 0) t)
((null blocks) nil)
(t (let*
((c (aref word 0))
(bs (remove-if-not #'(lambda (b)
(find c b :test #'char-equal))
blocks)))
(some #'identity
(loop for b in bs
collect (word-possible-p
(subseq word 1)
(remove b blocks))))))))
Output:
> (defparameter *blocks* 
    '("BO" "XK" "DQ" "CP" "NA" "GT" "RE" "TG" "QD" "FS" 
      "JW" "HU" "VI" "AN" "OB" "ER" "FS" "LY" "PC" "ZM"))
> (dolist (w '("" "A" "bArk" "BOOK" "trEAt" "CoMmoN" "squad" "conFUse"))
    (format t "~s is possible: ~a~%" w (word-possible-p w *blocks*)))
"" is possible: T
"A" is possible: T
"bArk" is possible: T
"BOOK" is possible: NIL
"trEAt" is possible: T
"CoMmoN" is possible: NIL
"squad" is possible: T
"conFUse" is possible: T
NIL
> (word-possible-p "abba" '("AB" "AB" "AC" "AC"))
T

D[edit]

Basic Version[edit]

Translation of: Python

A simple greedy algorithm is enough for the given sequence of blocks. canMakeWord is true on an empty word because you can compose it using zero blocks.

import std.stdio, std.algorithm, std.string;
 
bool canMakeWord(in string word, in string[] blocks) pure /*nothrow*/ @safe {
auto bs = blocks.dup;
outer: foreach (immutable ch; word.toUpper) {
foreach (immutable block; bs)
if (block.canFind(ch)) {
bs = bs.remove(bs.countUntil(block));
continue outer;
}
return false;
}
return true;
}
 
void main() @safe {
immutable blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI
AN OB ER FS LY PC ZM"
.split;
 
foreach (word; "" ~ "A BARK BoOK TrEAT COmMoN SQUAD conFUsE".split)
writefln(`"%s" %s`, word, canMakeWord(word, blocks));
}
Output:
"" true
"A" true
"BARK" true
"BoOK" false
"TrEAT" true
"COmMoN" false
"SQUAD" true
"conFUsE" true

@nogc Version[edit]

The same as the precedent version, but it avoids all heap allocations and it's lower-level and ASCII-only.

import std.ascii, core.stdc.stdlib;
 
bool canMakeWord(in string word, in string[] blocks) nothrow @nogc
in {
foreach (immutable char ch; word)
assert(ch.isASCII);
foreach (const block; blocks)
assert(block.length == 2 && block[0].isASCII && block[1].isASCII);
} body {
auto ptr = cast(string*)alloca(blocks.length * string.sizeof);
if (ptr == null)
exit(1);
auto blocks2 = ptr[0 .. blocks.length];
blocks2[] = blocks[];
 
outer: foreach (immutable i; 0 .. word.length) {
immutable ch = word[i].toUpper;
foreach (immutable j; 0 .. blocks2.length) {
if (blocks2[j][0] == ch || blocks2[j][1] == ch) {
if (blocks2.length > 1)
blocks2[j] = blocks2[$ - 1];
blocks2 = blocks2[0 .. $ - 1];
continue outer;
}
}
return false;
}
return true;
}
 
void main() {
import std.stdio, std.string;
 
immutable blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI
AN OB ER FS LY PC ZM"
.split;
 
foreach (word; "" ~ "A BARK BoOK TrEAT COmMoN SQUAD conFUsE".split)
writefln(`"%s" %s`, word, canMakeWord(word, blocks));
}

Recursive Version[edit]

This version is able to find the solution for the word "abba" given the blocks AB AB AC AC.

Translation of: C
import std.stdio, std.ascii, std.algorithm, std.array;
 
alias Block = char[2];
 
// Modifies the order of the given blocks.
bool canMakeWord(Block[] blocks, in string word) pure nothrow
in {
assert(blocks.all!(w => w[].all!isAlpha));
assert(word.all!isAlpha);
} body {
if (word.empty)
return true;
 
immutable c = word[0].toUpper;
foreach (ref b; blocks) {
if (b[0].toUpper != c && b[1].toUpper != c)
continue;
blocks[0].swap(b);
if (blocks[1 .. $].canMakeWord(word[1 .. $]))
return true;
blocks[0].swap(b);
}
 
return false;
}
 
void main() {
enum Block[] blocks = "BO XK DQ CP NA GT RE TG QD FS
JW HU VI AN OB ER FS LY PC ZM"
.split;
 
foreach (w; "" ~ "A BARK BoOK TrEAT COmMoN SQUAD conFUsE".split)
writefln(`"%s" %s`, w, blocks.canMakeWord(w));
 
// Extra test.
Block[] blocks2 = ["AB", "AB", "AC", "AC"];
immutable word = "abba";
writefln(`"%s" %s`, word, blocks2.canMakeWord(word));
}
Output:
"" true
"A" true
"BARK" true
"BoOK" false
"TrEAT" true
"COmMoN" false
"SQUAD" true
"conFUsE" true
"abba" true

Alternative Recursive Version[edit]

This version doesn't shuffle the input blocks, but it's more complex and it allocates an array of indexes.

import std.stdio, std.ascii, std.algorithm, std.array, std.range;
 
alias Block = char[2];
 
bool canMakeWord(immutable Block[] blocks, in string word) pure nothrow
in {
assert(blocks.all!(w => w[].all!isAlpha));
assert(word.all!isAlpha);
} body {
bool inner(size_t[] indexes, in string w) pure nothrow {
if (w.empty)
return true;
 
immutable c = w[0].toUpper;
foreach (ref idx; indexes) {
if (blocks[idx][0].toUpper != c &&
blocks[idx][1].toUpper != c)
continue;
indexes[0].swap(idx);
if (inner(indexes[1 .. $], w[1 .. $]))
return true;
indexes[0].swap(idx);
}
 
return false;
}
 
return inner(blocks.length.iota.array, word);
}
 
void main() {
enum Block[] blocks = "BO XK DQ CP NA GT RE TG QD FS
JW HU VI AN OB ER FS LY PC ZM"
.split;
 
foreach (w; "" ~ "A BARK BoOK TrEAT COmMoN SQUAD conFUsE".split)
writefln(`"%s" %s`, w, blocks.canMakeWord(w));
 
// Extra test.
immutable Block[] blocks2 = ["AB", "AB", "AC", "AC"];
immutable word = "abba";
writefln(`"%s" %s`, word, blocks2.canMakeWord(word));
}

The output is the same.

Delphi[edit]

Just to be different I implemented a block as a set of (2) char rather than as an array of (2) char.

program ABC;
{$APPTYPE CONSOLE}
 
uses SysUtils;
 
type
TBlock = set of char;
 
const
TheBlocks : array [0..19] of TBlock =
(
[ 'B', 'O' ], [ 'X', 'K' ], [ 'D', 'Q' ], [ 'C', 'P' ], [ 'N', 'A' ],
[ 'G', 'T' ], [ 'R', 'E' ], [ 'T', 'G' ], [ 'Q', 'D' ], [ 'F', 'S' ],
[ 'J', 'W' ], [ 'H', 'U' ], [ 'V', 'I' ], [ 'A', 'N' ], [ 'O', 'B' ],
[ 'E', 'R' ], [ 'F', 'S' ], [ 'L', 'Y' ], [ 'P', 'C' ], [ 'Z', 'M' ]
);
 
function SolveABC(Target : string; Blocks : array of TBlock) : boolean;
var
iChr : integer;
Used : array [0..19] of boolean;
 
function FindUnused(TargetChr : char) : boolean; // Nested routine
var
iBlock : integer;
begin
Result := FALSE;
for iBlock := low(Blocks) to high(Blocks) do
if (not Used[iBlock]) and ( TargetChr in Blocks[iBlock] ) then
begin
Result := TRUE;
Used[iBlock] := TRUE;
Break;
end;
end;
 
begin
FillChar(Used, sizeof(Used), ord(FALSE));
Result := TRUE;
iChr := 1;
while Result and (iChr <= length(Target)) do
if FindUnused(Target[iChr]) then inc(iChr)
else Result := FALSE;
end;
 
procedure CheckABC(Target : string);
begin
if SolveABC(uppercase(Target), TheBlocks) then
writeln('Can make ' + Target)
else
writeln('Can NOT make ' + Target);
end;
 
begin
CheckABC('A');
CheckABC('BARK');
CheckABC('BOOK');
CheckABC('TREAT');
CheckABC('COMMON');
CheckABC('SQUAD');
CheckABC('CONFUSE');
readln;
end.
 
Output:
Output:
Can make A
Can make BARK
Can NOT make BOOK
Can make TREAT
Can NOT make COMMON
Can make SQUAD
Can make CONFUSE

EchoLisp[edit]

 
(lib 'list) ;; list-delete
 
(define BLOCKS '("BO" "XK" "DQ" "CP" "NA" "GT" "RE" "TG" "QD" "FS"
"JW" "HU" "VI" "AN" "OB" "ER" "FS" "LY" "PC" "ZM" ))
 
(define WORDS '("A" "BARK" "BOOK" "TREAT" "COMMON" "SQUAD" "CONFUSE"))
 
(define (spell word blocks)
(cond
((string-empty? word) #t)
((empty? blocks) #f)
(else
(for/or [(block blocks)]
#:continue (not (string-match block (string-first word)))
(spell (string-rest word) (list-delete blocks block))))))
 
 
Output:
(for ((w WORDS)) 
  (writeln 
    (string-randcase w) 
    (spell (string-upcase w) BLOCKS)))
	
A     #t    
bARK     #t    
BooK     #f    
TReAt     #t    
ComMOn     #f    
sqUAd     #t    
COnfUSe     #t  

Ela[edit]

Translation of: Haskell
open list monad io char
 
:::IO
 
null = foldr (\_ _ -> false) true
 
mapM_ f = foldr ((>>-) << f) (return ())
 
abc _ [] = [[]]
abc blocks (c::cs) =
[b::ans \\ b <- blocks | c `elem` b, ans <- abc (delete b blocks) cs]
 
blocks = ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"]
 
mapM_ (\w -> putLn (w, not << null $ abc blocks (map char.upper w)))
["", "A", "BARK", "BoOK", "TrEAT", "COmMoN", "SQUAD", "conFUsE"]
Output:
("conFUsE",true)
("SQUAD",true)
("COmMoN",false)
("TrEAT",true)
("BoOK",false)
("BARK",true)
("A",true)
("",true)

Elena[edit]

#import system.
#import system'routines.
#import system'collections.
#import extensions.
#import extensions'routines.
 
#class(extension)op
{
#method canMakeWord &from:blocks
[
#var list := ArrayList new:blocks.
 
^ $nil == self literal upperCase seek &each:ch
[
#var index := list indexOf:(word [ word indexOf:ch &at:0 != -1 ] asComparer).
 
(index>=0)
 ? [ list remove &at:index. ^ false. ]
 ! [ ^ true. ].
].
]
}
 
#symbol program =
[
#var blocks := ("BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM").
 
#var words := ("", "A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse").
 
words run &each:word
[
console writeLine:"can make '":word:"' : ":(word canMakeWord &from:blocks).
].
].
Output:
can make '' : true
can make 'A' : true
can make 'BARK' : true
can make 'BOOK' : false
can make 'TREAT' : true
can make 'COMMON' : false
can make 'SQUAD' : true
can make 'Confuse' : true

Elixir[edit]

Translation of: Erlang
defmodule ABC do
def can_make_word(word, avail) do
can_make_word(String.upcase(word) |> to_char_list, avail, [])
end
 
defp can_make_word([], _, _), do: true
defp can_make_word(_, [], _), do: false
defp can_make_word([l|tail], [b|rest], tried) do
(Enum.member?(b,l) and can_make_word(tail, rest++tried, []))
or can_make_word([l|tail], rest, [b|tried])
end
end
 
blocks = ~w(BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM)c
~w(A Bark Book Treat Common Squad Confuse) |>
Enum.map(fn(w) -> IO.puts "#{w}: #{ABC.can_make_word(w, blocks)}" end)
Output:
A: true
Bark: true
Book: false
Treat: true
Common: false
Squad: true
Confuse: true

Erlang[edit]

-module(abc).
-export([can_make_word/1, can_make_word/2, blocks/0]).
 
blocks() -> ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"].
 
can_make_word(Word) -> can_make_word(Word, blocks()).
can_make_word(Word, Avail) -> can_make_word(string:to_upper(Word), Avail, []).
can_make_word([], _, _) -> true;
can_make_word(_, [], _) -> false;
can_make_word([L|Tail], [B|Rest], Tried) ->
(lists:member(L,B) andalso can_make_word(Tail, lists:append(Rest, Tried),[]))
orelse can_make_word([L|Tail], Rest, [B|Tried]).
 
main(_) -> lists:map(fun(W) -> io:fwrite("~s: ~s~n", [W, can_make_word(W)]) end,
["A","Bark","Book","Treat","Common","Squad","Confuse"]).
 
Output:
A: true
Bark: true
Book: false
Treat: true
Common: false
Squad: true
Confuse: true

ERRE[edit]

 
PROGRAM BLOCKS
 
!$INCLUDE="PC.LIB"
 
PROCEDURE CANMAKEWORD(WORD$)
LOCAL B$,P%
B$=BLOCKS$
PRINT(WORD$;" -> ";)
P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF))
WHILE P%>0 AND WORD$>"" DO
CHANGE(B$,P%-1+(P% MOD 2),".."->B$)
WORD$=MID$(WORD$,2)
EXIT IF WORD$=""
P%=INSTR(B$,CHR$(ASC(WORD$) AND $DF))
END WHILE
IF WORD$>"" THEN PRINT("False") ELSE PRINT("True") END IF
END PROCEDURE
 
BEGIN
BLOCKS$="BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"
CANMAKEWORD("A")
CANMAKEWORD("BARK")
CANMAKEWORD("BOOK")
CANMAKEWORD("TREAT")
CANMAKEWORD("COMMON")
CANMAKEWORD("SQUAD")
CANMAKEWORD("Confuse")
END PROGRAM
 

Euphoria[edit]

implemented using OpenEuphoria

 
include std/text.e
 
sequence blocks = {{'B','O'},{'X','K'},{'D','Q'},{'C','P'},{'N','A'},
{'G','T'},{'R','E'},{'T','G'},{'Q','D'},{'F','S'},
{'J','W'},{'H','U'},{'V','I'},{'A','N'},{'O','B'},
{'E','R'},{'F','S'},{'L','Y'},{'P','C'},{'Z','M'}}
sequence words = {"A","BarK","BOOK","TrEaT","COMMON","SQUAD","CONFUSE"}
 
sequence current_word
sequence temp
integer matches
 
for i = 1 to length(words) do
current_word = upper(words[i])
temp = blocks
matches = 0
for j = 1 to length(current_word) do
for k = 1 to length(temp) do
if find(current_word[j],temp[k]) then
temp = remove(temp,k)
matches += 1
exit
end if
end for
if length(current_word) = matches then
printf(1,"%s: TRUE\n",{words[i]})
exit
end if
end for
if length(current_word) != matches then
printf(1,"%s: FALSE\n",{words[i]})
end if
end for
 
if getc(0) then end if
 
Output:
A: TRUE
BarK: TRUE
BOOK: FALSE
TrEaT: TRUE
COMMON: FALSE
SQUAD: TRUE
CONFUSE: TRUE

..press Enter..

F#[edit]

This solution does not depend on the order of the blocks, neither on the symmetry of blocks we see in the example block set. (Symmetry: if AB is a block, an A comes only with another AB|BA)

let rec spell_word_with blocks w =
let rec look_for_right_candidate candidates noCandidates c rest =
match candidates with
| [] -> false
| c0::cc ->
if spell_word_with ([email protected]) rest then true
else look_for_right_candidate cc (c0::noCandidates) c rest
 
match w with
| "" -> true
| w ->
let c = w.[0]
let rest = w.Substring(1)
let (candidates, noCandidates) = List.partition(fun (c1,c2) -> c = c1 || c = c2) blocks
look_for_right_candidate candidates noCandidates c rest
 
[<EntryPoint>]
let main argv =
let default_blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM"
let blocks =
(if argv.Length > 0 then argv.[0] else default_blocks).Split()
|> List.ofArray
|> List.map(fun s -> s.ToUpper())
|> List.map(fun s2 -> s2.[0], s2.[1])
let words =
(if argv.Length > 0 then List.ofArray(argv).Tail else [])
|> List.map(fun s -> s.ToUpper())
 
List.iter (fun w -> printfn "Using the blocks we can make the word '%s': %b" w (spell_word_with blocks w)) words
0
Output:
h:\RosettaCode\ABC\Fsharp>RosettaCode "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM" a bark book threat common squad confuse
Using the blocks we can make the word 'A': true
Using the blocks we can make the word 'BARK': true
Using the blocks we can make the word 'BOOK': false
Using the blocks we can make the word 'THREAT': true
Using the blocks we can make the word 'COMMON': false
Using the blocks we can make the word 'SQUAD': true
Using the blocks we can make the word 'CONFUSE': true

h:\RosettaCode\ABC\Fsharp>RosettaCode  "aB aB Ac Ac" abba
Using the blocks we can make the word 'ABBA': true

h:\RosettaCode\ABC\Fsharp>RosettaCode "US TZ AO QA" Auto
Using the blocks we can make the word 'AUTO': true

FBSL[edit]

This approach uses a string, blanking out the pair previously found. Probably faster than array manipulation.

 
#APPTYPE CONSOLE
SUB MAIN()
BlockCheck("A")
BlockCheck("BARK")
BlockCheck("BooK")
BlockCheck("TrEaT")
BlockCheck("comMON")
BlockCheck("sQuAd")
BlockCheck("Confuse")
pause
END SUB
 
FUNCTION BlockCheck(str)
PRINT str " " iif( Blockable( str ), "can", "cannot" ) " be spelled with blocks."
END FUNCTION
 
FUNCTION Blockable(str AS STRING)
DIM blocks AS STRING = "BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"
DIM C AS STRING = ""
DIM POS AS INTEGER = 0
 
FOR DIM I = 1 TO LEN(str)
C = str{i}
POS = INSTR(BLOCKS, C, 0, 1) 'case insensitive
IF POS > 0 THEN
'if the pos is odd, it's the first of the pair
IF POS MOD 2 = 1 THEN
'so clear the first and the second
POKE(@blocks + POS - 1," ")
POKE(@blocks + POS," ")
'otherwise, it's the last of the pair
ELSE
'clear the second and the first
POKE(@blocks + POS - 1," ")
POKE(@blocks + POS - 2," ")
END IF
ELSE
'not found, so can't be spelled
RETURN FALSE
END IF
NEXT
'got thru to here, so can be spelled
RETURN TRUE
END FUNCTION
 
Output:
A can be spelled with blocks.
BARK can be spelled with blocks.
BooK cannot be spelled with blocks.
TrEaT can be spelled with blocks.
comMON cannot be spelled with blocks.
sQuAd can be spelled with blocks.
Confuse can be spelled with blocks.

Press any key to continue...

Fortran[edit]

Attempts to write the word read from unit 5. Please find the output, bash command, and gfortran compilation instructions as commentary at the start of the source, which starts right away!

!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Thu Jun 5 01:52:03
!
!make f && for a in '' a bark book treat common squad confuse ; do echo $a | ./f ; done
!gfortran -std=f2008 -Wall -fopenmp -ffree-form -fall-intrinsics -fimplicit-none -g f.f08 -o f
! T
! T A NA
! T BARK BO NA RE XK
! F BOOK OB BO -- --
! T TREAT GT RE ER NA TG
! F COMMON PC OB ZM -- -- --
! T SQUAD FS DQ HU NA QD
! T CONFUSE CP BO NA FS HU FS RE
!
!Compilation finished at Thu Jun 5 01:52:03
 
program abc
implicit none
integer, parameter :: nblocks = 20
character(len=nblocks) :: goal
integer, dimension(nblocks) :: solution
character(len=2), dimension(0:nblocks) :: blocks_copy, blocks = &
&(/'--','BO','XK','DQ','CP','NA','GT','RE','TG','QD','FS','JW','HU','VI','AN','OB','ER','FS','LY','PC','ZM'/)
logical :: valid
integer :: i, iostat
read(5,*,iostat=iostat) goal
if (iostat .ne. 0) goal = ''
call ucase(goal)
solution = 0
blocks_copy = blocks
valid = assign_block(goal(1:len_trim(goal)), blocks, solution, 1)
write(6,*) valid, ' '//goal, (' '//blocks_copy(solution(i)), i=1,len_trim(goal))
 
contains
 
recursive function assign_block(goal, blocks, solution, n) result(valid)
implicit none
logical :: valid
character(len=*), intent(in) :: goal
character(len=2), dimension(0:), intent(inout) :: blocks
integer, dimension(:), intent(out) :: solution
integer, intent(in) :: n
integer :: i
character(len=2) :: backing_store
valid = .true.
if (len(goal)+1 .eq. n) return
do i=1, size(blocks)
if (index(blocks(i),goal(n:n)) .ne. 0) then
backing_store = blocks(i)
blocks(i) = ''
solution(n) = i
if (assign_block(goal, blocks, solution, n+1)) return
blocks(i) = backing_store
end if
end do
valid = .false.
return
end function assign_block
 
subroutine ucase(a)
implicit none
character(len=*), intent(inout) :: a
integer :: i, j
do i = 1, len_trim(a)
j = index('abcdefghijklmnopqrstuvwxyz',a(i:i))
if (j .ne. 0) a(i:i) = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'(j:j)
end do
end subroutine ucase
 
end program abc

But if backtracking might be needed[edit]

The example set does not exercise the possible need for backtracking, as when an initial selection of blocks prevents completion because available letters have been used up. This can only arise when the same letter appears on more than one block and does so with different partners. The example set does contain duplicated letters, but they appear only via blocks with the same letters. Suppose instead that the block collection was AB, BC, CD, ... XY, YZ so that every letter appears twice except for A and Z. If the target word was STOPPED then both OP and PQ would be needed to supply P, but if the O had been supplied via OP then the second P would be unavailable. If instead the O were to be supplied by NO then all would be well.

The method involves the stack-style usage of array MOVE, but there is no explicit attempt at recursion. The array contains the possible moves at each level, and if necessary, a move made can later be retracted and an alternative sought. This is the standard style of playing board games such as chess via developing a "game tree", but in this case the tree traversal is not a large task.

The following source begins with some support routines. Subroutine PLAY inspects the collection of blocks to make various remarks, and function CANBLOCK reports on whether a word can be spelled out with the supplied blocks. The source requires only a few of the F90 features. The MODULE protocol eases communication, but the key feature is that subprograms can now declare arrays of a size determined on entry via parameters. Previously, a constant with the largest-possible size would be required.

 
MODULE PLAYPEN !Messes with a set of alphabet blocks.
INTEGER MSG !Output unit number.
PARAMETER (MSG = 6) !Standard output.
INTEGER MS !I dislike unidentified constants...
PARAMETER (MS = 2) !So this is the maximum number of lettered sides.
INTEGER LETTER(26),SUPPLY(26) !For counting the alphabet.
CONTAINS
SUBROUTINE SWAP(I,J) !This really should be known to the compiler.
INTEGER I,J,K !Which could generate in-place code,
K = I !Using registers, maybe.
I = J !Or maybe, there are special op-codes.
J = K !Rather than this clunkiness.
END SUBROUTINE SWAP !And it should be for any type of thingy.
 
INTEGER FUNCTION LSTNB(TEXT) !Sigh. Last Not Blank.
Concocted yet again by R.N.McLean (whom God preserve) December MM.
Code checking reveals that the Compaq compiler generates a copy of the string and then finds the length of that when using the latter-day intrinsic LEN_TRIM. Madness!
Can't DO WHILE (L.GT.0 .AND. TEXT(L:L).LE.' ') !Control chars. regarded as spaces.
Curse the morons who think it good that the compiler MIGHT evaluate logical expressions fully.
Crude GO TO rather than a DO-loop, because compilers use a loop counter as well as updating the index variable.
Comparison runs of GNASH showed a saving of ~3% in its mass-data reading through the avoidance of DO in LSTNB alone.
Crappy code for character comparison of varying lengths is avoided by using ICHAR which is for single characters only.
Checking the indexing of CHARACTER variables for bounds evoked astounding stupidities, such as calculating the length of TEXT(L:L) by subtracting L from L!
Comparison runs of GNASH showed a saving of ~25-30% in its mass data scanning for this, involving all its two-dozen or so single-character comparisons, not just in LSTNB.
CHARACTER*(*),INTENT(IN):: TEXT !The bumf. If there must be copy-in, at least there need not be copy back.
INTEGER L !The length of the bumf.
L = LEN(TEXT) !So, what is it?
1 IF (L.LE.0) GO TO 2 !Are we there yet?
IF (ICHAR(TEXT(L:L)).GT.ICHAR(" ")) GO TO 2 !Control chars are regarded as spaces also.
L = L - 1 !Step back one.
GO TO 1 !And try again.
2 LSTNB = L !The last non-blank, possibly zero.
RETURN !Unsafe to use LSTNB as a variable.
END FUNCTION LSTNB !Compilers can bungle it.
 
SUBROUTINE LETTERCOUNT(TEXT) !Count the occurrences of A-Z.
CHARACTER*(*) TEXT !The text to inspect.
INTEGER I,K !Assistants.
DO I = 1,LEN(TEXT) !Step through the text.
K = ICHAR(TEXT(I:I)) - ICHAR("A") + 1 !This presumes that A-Z have contiguous codes!
IF (K.GE.1 .AND. K.LE.26) LETTER(K) = LETTER(K) + 1 !Not so with EBCDIC!!
END DO !On to the next letter.
END SUBROUTINE LETTERCOUNT !Be careful with LETTER.
 
SUBROUTINE UPCASE(TEXT) !In the absence of an intrinsic...
Converts any lower case letters in TEXT to upper case...
Concocted yet again by R.N.McLean (whom God preserve) December MM.
Converting from a DO loop evades having both an iteration counter to decrement and an index variable to adjust.
CHARACTER*(*) TEXT !The stuff to be modified.
c CHARACTER*26 LOWER,UPPER !Tables. a-z may not be contiguous codes.
c PARAMETER (LOWER = "abcdefghijklmnopqrstuvwxyz")
c PARAMETER (UPPER = "ABCDEFGHIJKLMNOPQRSTUVWXYZ")
CAREFUL!! The below relies on a-z and A-Z being contiguous, as is NOT the case with EBCDIC.
INTEGER I,L,IT !Fingers.
L = LEN(TEXT) !Get a local value, in case LEN engages in oddities.
I = L !Start at the end and work back..
1 IF (I.LE.0) RETURN !Are we there yet? Comparison against zero should not require a subtraction.
c IT = INDEX(LOWER,TEXT(I:I)) !Well?
c IF (IT .GT. 0) TEXT(I:I) = UPPER(IT:IT) !One to convert?
IT = ICHAR(TEXT(I:I)) - ICHAR("a") !More symbols precede "a" than "A".
IF (IT.GE.0 .AND. IT.LE.25) TEXT(I:I) = CHAR(IT + ICHAR("A")) !In a-z? Convert!
I = I - 1 !Back one.
GO TO 1 !Inspect..
END SUBROUTINE UPCASE !Easy.
 
SUBROUTINE ORDERSIDE(LETTER) !Puts the letters into order.
CHARACTER*(*) LETTER !The letters.
INTEGER I,N,H !Assistants.
CHARACTER*1 T !A scratchpad.
LOGICAL CURSE !A bit.
N = LEN(LETTER) !So, how many letters?
H = N - 1 !Last - First, and not +1.
IF (H.LE.0) RETURN !Ha ha.
1 H = MAX(1,H*10/13) !The special feature.
IF (H.EQ.9 .OR. H.EQ.10) H = 11 !A twiddle.
CURSE = .FALSE. !So far, so good.
DO I = N - H,1,-1 !If H = 1, this is a BubbleSort.
IF (LETTER(I:I).LT.LETTER(I + H:I + H)) THEN !One compare.
T = LETTER(I:I) !One swap.
LETTER(I:I) = LETTER(I + H:I + H) !Alas, no SWAP(A,B)
LETTER(I + H:I + H) = T !Is recognised by the compiler.
CURSE = .TRUE. !If once a tiger is seen...
END IF !So much for that comparison.
END DO !On to the next.
IF (CURSE .OR. H.GT.1) GO TO 1!Another pass?
END SUBROUTINE ORDERSIDE !Simple enough.
SUBROUTINE ORDERBLOCKS(N,SOME) !Puts the collection of blocks into order.
INTEGER N !The number of blocks.
CHARACTER*(*) SOME(:) !Their lists of letters.
INTEGER I,H !Assistants.
CHARACTER*(LEN(SOME(1))) T !A scratchpad matching an element of SOME.
LOGICAL CURSE !Since there is still no SWAP(SOME(I),SOME(I + H)).
H = N - 1 !So here comes another CombSort.
IF (H.LE.0) RETURN !With standard suspicion.
1 H = MAX(1,H*10/13) !This is the outer loop.
IF (H.EQ.9 .OR. H.EQ.10) H = 11 !This is a fiddle.
CURSE = .FALSE. !Start the next pass in hope.
DO I = N - H,1,-1 !Going backwards, just for fun.
IF (SOME(I).LT.SOME(I + H)) THEN !So then?
T = SOME(I) !Disorder.
SOME(I) = SOME(I + H) !So once again,
SOME(I + H) = T !Swap the two miscreants.
CURSE = .TRUE. !And remember.
END IF !So much for that comparison.
END DO !On to the next.
IF (CURSE .OR. H.GT.1) GO TO 1!Are we there yet?
END SUBROUTINE ORDERBLOCKS !Not much code, but ringing the changes is still tedious.
 
SUBROUTINE PLAY(N,SOME) !Mess about with the collection of blocks.
INTEGER N !Their number.
CHARACTER*(*) SOME(:) !Their letters.
INTEGER NH,HIT(N) !A list of blocks.
INTEGER B,I,J,K,L,M !Assistants.
CHARACTER*1 C !A letter of the moment.
L = LEN(SOME(1)) !The maximum number of letters to any block.
Cast the collection on to the floor.
WRITE (MSG,1) N,L,SOME !Announce the set as it is supplied.
1 FORMAT (I7," blocks, with at most",I2," letters:",66(1X,A))
Change the "orientation" of some blocks.
DO B = 1,N !Step through each block.
CALL UPCASE(SOME(B)) !Paranoia rules.
CALL ORDERSIDE(SOME(B)) !Put its letter list into order.
END DO !On to the next block.
WRITE (MSG,2) SOME !Reveal the orderly array.
2 FORMAT (6X,"... the letters in reverse order:",66(1X,A))
Collate the collection of blocks.
CALL ORDERBLOCKS(N,SOME) !Now order the blocks by their letters.
WRITE (MSG,3) SOME !Reveal them in neato order.
3 FORMAT (7X,"... the blocks in reverse order:",66(1X,A))
Count the appearances of the letters of the alphabet.
LETTER = 0 !Enough of shuffling blocks around.
DO B = 1,N !Now inspect their collective letters.
CALL LETTERCOUNT(SOME(B)) !A block's worth at a go.
END DO !On to the next block.
SUPPLY = LETTER !Save the counts of supplied letters.
WRITE (MSG,4) (CHAR(ICHAR("A") + I - 1),I = 1,26),SUPPLY !Results.
4 FORMAT (15X,"Letters of the alphabet:",26A<MS + 1>,/, !First, a line with A ... Z.
1 11X,"... number thereof supplied:",26I<MS + 1>) !Then a line of the associated counts.
Check for blocks with duplicated letters.
WRITE (MSG,5) !Announce.
5 FORMAT (8X,"Blocks with duplicated letters:",$) !Further output impends.
M = 0 !No duplication found.
DO B = 1,N !So step through each block.
JJ:DO J = 2,L !Inspecting successive letters of the block,
IF (SOME(B)(J:J).LE." ") EXIT JJ !Provided they've not run out.
DO K = 1,J - 1 !To see if it has appeared earlier.
IF (SOME(B)(K:K).LE." ") EXIT JJ!Reverse order means that spaces will be at the end!
IF (SOME(B)(J:J).EQ.SOME(B)(K:K)) THEN !Well?
M = M + 1 !A match!
WRITE (MSG,6) SOME(B) !Name the block.
6 FORMAT (1X,A,$) !With further output still impending,
EXIT JJ !And give up on this block.
END IF !One duplicated letter is sufficient for its downfall.
END DO !Next letter up.
END DO JJ !On to the next letter of the block.
END DO !On to the next block.
CALL HIC(M) !Show the count and end the line.
Check for duplicate blocks, knowing that the array of blocks is ordered.
WRITE (MSG,7) !Announce.
7 FORMAT (21X,"Duplicated blocks:",$) !Again, leave the line dangling.
K = 0 !No duplication found.
B = 1 !Syncopation.
70 B = B + 1 !Advance one.
IF (B.GT.N) GO TO 72 !Are we there yet?
IF (SOME(B).NE.SOME(B - 1)) GO TO 70 !No match? Search on.
K = K + 1 !A match is counted.
WRITE (MSG,6) SOME(B) !Name it.
71 B = B + 1 !And speed through continued matching.
IF (B.GT.N) GO TO 72 !Unless we're of the end.
IF (SOME(B).EQ.SOME(B - 1)) GO TO 71 !Continued matching?
GO TO 70 !Mismatch: resume the normal scan.
72 CALL HIC(K) !So much for that.
Check for duplicated letters across different blocks.
IF (ALL(SUPPLY.LE.1)) RETURN !Unless there are no duplicated letters.
WRITE (MSG,8) !Announce.
8 FORMAT ("Duplicated letters on different blocks:",$) !More to come.
K = 0 !Start another count.
DO I = 1,26 !A well-known span.
IF (SUPPLY(I).LE.1) CYCLE !Any duplicated letters?
C = CHAR(ICHAR("A") + I - 1)!Yes. This is the character.
NH = 0 !So, how many blocks contribute?
DO B = 1,N !Find out.
IF (INDEX(SOME(B),C).GT.0) THEN !On this block?
NH = NH + 1 !Yes.
HIT(NH) = B !Keep track of which.
END IF !So much for that block.
END DO !On to the next.
IF (ANY(SOME(HIT(2:NH)) .NE. SOME(HIT(1)))) THEN !All have the same collection of letters?
K = K + 1 !No!
WRITE (MSG,9) C !Name the heterogenously supported letter.
9 FORMAT (A<MS + 1>,$) !Use the same spacing even though one character only.
END IF !So much for that letter's search.
END DO !On to the next letter.
CALL HIC(K) !Finish the line with the count report.
CONTAINS !This is used often enough.
SUBROUTINE HIC(N) !But has very specific context.
INTEGER N !The count.
IF (N.LE.0) WRITE (MSG,*) "None." !Yes, we have no bananas.
IF (N.GT.0) WRITE (MSG,*) N !Either way, end the line.
END SUBROUTINE HIC !This service routine is not needed elsewhere.
END SUBROUTINE PLAY !Look mummy! All the blockses are neatened!
 
LOGICAL FUNCTION CANBLOCK(WORD,N,SOME) !Can the blocks spell out the word?
Creates a move tree based on the letters of WORD and for each, the blocks available.
CHARACTER*(*) WORD !The word to spell out.
INTEGER N !The number of blocks.
CHARACTER*(*) SOME(:) !The blocks and their letters.
INTEGER NA,AVAIL(N) !Say not the struggle naught availeth!
INTEGER NMOVE(LEN(WORD)) !I need a list of acceptable blocks,
INTEGER MOVE(LEN(WORD),N) !One list for each letter of WORD.
INTEGER I,L,S !Assistants.
CHARACTER*1 C !The letter of the moment.
CANBLOCK = .FALSE. !Initial pessimism.
L = LSTNB(WORD) !Ignore trailing spaces.
IF (L.GT.N) RETURN !Enough blocks?
LETTER = 0 !To make rabbit stew,
CALL LETTERCOUNT(WORD(1:L)) !First catch your rabbit.
IF (ANY(SUPPLY .LT. LETTER)) RETURN !The larder is lacking.
NA = N !Prepare a list.
FORALL (I = 1:N) AVAIL(I) = I !That fingers every block.
I = 0 !Step through the letters of the WORD.
Chug through the letters of the WORD.
1 I = I + 1 !One letter after the other.
IF (I.GT.L) GO TO 100 !Yay! We're through!
C = WORD(I:I) !The letter of the moment.
NMOVE(I) = 0 !No moves known at this new level.
DO S = 1,NA !So, look for them amongst the available slots.
IF (INDEX(SOME(AVAIL(S)),C) .GT. 0) THEN !A hit?
NMOVE(I) = NMOVE(I) + 1 !Yes! Count up another possible move.
MOVE(I,NMOVE(I)) = S !Remember its slot.
END IF !So much for that block.
END DO !On to the next.
2 IF (NMOVE(I).GT.0) THEN !Have we any moves?
S = MOVE(I,NMOVE(I)) !Yes! Recover the last found.
NMOVE(I) = NMOVE(I) - 1 !Uncount, as it is about to be used.
IF (S.NE.NA) CALL SWAP(AVAIL(S),AVAIL(NA)) !This block is no longer available.
NA = NA - 1 !Shift the boundary back.
GO TO 1 !Try the next letter!
END IF !But if we can't find a move at that level...
I = I - 1 !Retreat a level.
IF (I.LE.0) RETURN !Oh dear!
S = MOVE(I,NMOVE(I) + 1) !Undo the move that had been made at this level.
NA = NA + 1 !And make its block is re-available.
IF (S.NE.NA) CALL SWAP(AVAIL(S),AVAIL(NA)) !Move it back.
GO TO 2 !See what moves remain at this level.
Completed!
100 CANBLOCK = .TRUE. !That's a relief.
END FUNCTION CANBLOCK !Some revisions might have been made.
END MODULE PLAYPEN !No sand here.
 
USE PLAYPEN !Just so.
INTEGER HAVE,TESTS !Parameters for the specified problem.
PARAMETER (HAVE = 20, TESTS = 7) !Number of blocks, number of tests.
CHARACTER*(MS) BLOCKS(HAVE) !Have blocks, will juggle.
DATA BLOCKS/"BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS", !The specified set
1 "JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"/ !Of letter blocks.
CHARACTER*8 WORD(TESTS) !Now for the specified test words.
LOGICAL ANS(TESTS),T,F !And the given results.
PARAMETER (T = .TRUE., F = .FALSE.) !Enable a more compact specification.
DATA WORD/"A","BARK","BOOK","TREAT","COMMON","SQUAD","CONFUSE"/ !So that these
DATA ANS/ T , T , F , T , F , T , T / !Can be aligned.
LOGICAL YAY
INTEGER I
 
WRITE (MSG,1)
1 FORMAT ("Arranges alphabet blocks, attending only to the ",
1 "letters on the blocks, and ignoring case and orientation.",/)
 
CALL PLAY(HAVE,BLOCKS) !Some fun first.
 
WRITE (MSG,'(/"Now to see if some words can be spelled out.")')
DO I = 1,TESTS
CALL UPCASE(WORD(I))
YAY = CANBLOCK(WORD(I),HAVE,BLOCKS)
WRITE (MSG,*) YAY,ANS(I),YAY.EQ.ANS(I),WORD(I)
END DO
END
 

Output: the first column of T/F is the report from CANBLOCK, the second is the expected answer from the example, and the third is whether the two are in agreement.

Arranges alphabet blocks, attending only to the letters on the blocks, and ignoring case and orientation.

     20 blocks, with at most 2 letters: BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM
      ... the letters in reverse order: OB XK QD PC NA TG RE TG QD SF WJ UH VI NA OB RE SF YL PC ZM
       ... the blocks in reverse order: ZM YL XK WJ VI UH TG TG SF SF RE RE QD QD PC PC OB OB NA NA
               Letters of the alphabet:  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z
           ... number thereof supplied:  2  2  2  2  2  2  2  1  1  1  1  1  1  2  2  2  2  2  2  2  1  1  1  1  1  1
        Blocks with duplicated letters: None.
                     Duplicated blocks: TG SF RE QD PC OB NA           7
Duplicated letters on different blocks: None.

Now to see if some words can be spelled out.
 T T T A
 T T T BARK
 F F T BOOK
 T T T TREAT
 F F T COMMON
 T T T SQUAD
 T T T CONFUSE

Go[edit]

package main
 
import (
"fmt"
"strings"
)
 
func newSpeller(blocks string) func(string) bool {
bl := strings.Fields(blocks)
return func(word string) bool {
return r(word, bl)
}
}
 
func r(word string, bl []string) bool {
if word == "" {
return true
}
c := word[0] | 32
for i, b := range bl {
if c == b[0]|32 || c == b[1]|32 {
bl[i], bl[0] = bl[0], b
if r(word[1:], bl[1:]) == true {
return true
}
bl[i], bl[0] = bl[0], bl[i]
}
}
return false
}
 
func main() {
sp := newSpeller(
"BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM")
for _, word := range []string{
"A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"} {
fmt.Println(word, sp(word))
}
}
Output:
A true
BARK true
BOOK false
TREAT true
COMMON false
SQUAD true
CONFUSE true

Groovy[edit]

Solution:

class ABCSolver {
def blocks
 
ABCSolver(blocks = []) { this.blocks = blocks }
 
boolean canMakeWord(rawWord) {
if (rawWord == '' || rawWord == null) { return true; }
def word = rawWord.toUpperCase()
def blocksLeft = [] + blocks
word.every { letter -> blocksLeft.remove(blocksLeft.find { block -> block.contains(letter) }) }
}
}

Test:

def a = new ABCSolver(["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"])
 
['', 'A', 'BARK', 'book', 'treat', 'COMMON', 'SQuAd', 'CONFUSE'].each {
println "'${it}': ${a.canMakeWord(it)}"
}
Output:
'': true
'A': true
'BARK': true
'book': false
'treat': true
'COMMON': false
'SQuAd': true
'CONFUSE': true

Harbour[edit]

Harbour Project implements a cross-platform Clipper/xBase compiler.

PROCEDURE Main()
 
LOCAL cStr
 
FOR EACH cStr IN { "A", "BARK", "BooK", "TrEaT", "comMON", "sQuAd", "Confuse" }
? PadL( cStr, 10 ), iif( Blockable( cStr ), "can", "cannot" ), "be spelled with blocks."
NEXT
 
RETURN
 
STATIC FUNCTION Blockable( cStr )
 
LOCAL blocks := { ;
"BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", ;
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM" }
 
LOCAL cFinal := ""
LOCAL i, j
 
cStr := Upper( cStr )
 
FOR i := 1 TO Len( cStr )
FOR EACH j IN blocks
IF SubStr( cStr, i, 1 ) $ j
cFinal += SubStr( cStr, i, 1 )
j := ""
EXIT
ENDIF
NEXT
NEXT
 
RETURN cFinal == cStr
Output:
         A can be spelled with blocks.
      BARK can be spelled with blocks.
      BooK cannot be spelled with blocks.
     TrEaT can be spelled with blocks.
    comMON cannot be spelled with blocks.
     sQuAd can be spelled with blocks.
   Confuse can be spelled with blocks.

Haskell[edit]

The following function returns a list of all the solutions. Since Haskell is lazy, testing whether the list is null will only do the minimal amount of work necessary to determine whether a solution exists.

import Data.List (delete)
import Data.Char (toUpper)
 
-- returns list of all solutions, each solution being a list of blocks
abc :: (Eq a) => [[a]] -> [a] -> [[[a]]]
abc _ [] = [[]]
abc blocks (c:cs) = [b:ans | b <- blocks, c `elem` b,
ans <- abc (delete b blocks) cs]
 
blocks = ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"]
 
main :: IO ()
main = mapM_ (\w -> print (w, not . null $ abc blocks (map toUpper w)))
["", "A", "BARK", "BoOK", "TrEAT", "COmMoN", "SQUAD", "conFUsE"]
Output:
("",True)
("A",True)
("BARK",True)
("BoOK",False)
("TrEAT",True)
("COmMoN",False)
("SQUAD",True)
("conFUsE",True)

Icon and Unicon[edit]

Translation of: C

Works in both languages:

procedure main(A)
blocks := ["bo","xk","dq","cp","na","gt","re","tg","qd","fs",
"jw","hu","vi","an","ob","er","fs","ly","pc","zm",&null]
every write("\"",word := !A,"\" ",checkSpell(map(word),blocks)," with blocks.")
end
 
procedure checkSpell(w,blocks)
blks := copy(blocks)
w ? return if canMakeWord(blks) then "can be spelled"
else "can not be spelled"
end
 
procedure canMakeWord(blks)
c := move(1) | return
if /blks[1] then fail
every i := 1 to *blks do {
if /blks[i] then (move(-1),fail)
if c == !blks[i] then {
blks[1] :=: blks[i]
if canMakeWord(blks[2:0]) then return
blks[1] :=: blks[i]
}
}
end

Sample run:

->abc "" A BARK BOOK TREAT COMMON SQUAD CONFUSE
"" can be spelled with blocks.
"A" can be spelled with blocks.
"BARK" can be spelled with blocks.
"BOOK" can not be spelled with blocks.
"TREAT" can be spelled with blocks.
"COMMON" can not be spelled with blocks.
"SQUAD" can be spelled with blocks.
"CONFUSE" can be spelled with blocks.
->

J[edit]

Solution:

reduce=: verb define
'rows cols'=. i.&.> $y
for_c. cols do.
r=. 1 i.~ c {"1 y NB. row idx of first 1 in col
if. r = #rows do. continue. end.
y=. 0 (<((r+1)}.rows);c) } y NB. zero rest of col
y=. 0 (<(r;(c+1)}.cols)) } y NB. zero rest of row
end.
)
 
abc=: *./@(+./)@reduce@(e."1~ ,)&toupper :: 0:

Examples:

   Blocks=:  ];._2 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM '
ExampleWords=: <;._2 'A BaRK BOoK tREaT COmMOn SqUAD CoNfuSE '
 
Blocks&abc &> ExampleWords
1 1 0 1 0 1 1
require 'format/printf'
'%10s  %s' printf (dquote ; 'FT' {~ Blocks&abc) &> ExampleWords
"A" T
"BaRK" T
"BOoK" F
"tREaT" T
"COmMOn" F
"SqUAD" T
"CoNfuSE" T

Tacit version

delElem=: {~<@<@<
uppc=:(-32*96&<*.123&>)&.(3&u:)
reduc=: ] delElem 1 i.~e."0 1
forms=: (1 - '' -: (reduc L:0/ :: (a:"_)@(<"0@],<@[))&uppc) L:0
Output:
   (,.Blocks&forms) ExampleWords
┌───────┬─┐
│A      │1│
├───────┼─┤
│BaRK   │1│
├───────┼─┤
│BOoK   │0│
├───────┼─┤
│tREaT  │1│
├───────┼─┤
│COmMOn │0│
├───────┼─┤
│SqUAD  │1│
├───────┼─┤
│CoNfuSE│1│
└───────┴─┘

Alternative Implementation[edit]

Another approach might be:

Blocks=:  >;:'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM '
ExampleWords=: ;: 'A BaRK BOoK tREaT COmMOn SqUAD CoNfuSE '
 
canform=:4 :0
word=: toupper y
need=: #/.~ word,word
relevant=: (x [email protected]"1 word) # x
candidates=: word,"1>,{{relevant
+./(((#need){. #/.~)"1 candidates) */ .>:need
)

Example use:

   Blocks canform 0{::ExampleWords
1
Blocks canform 1{::ExampleWords
1
Blocks canform 2{::ExampleWords
0
Blocks canform 3{::ExampleWords
1
Blocks canform 4{::ExampleWords
0
Blocks canform 5{::ExampleWords
1
Blocks canform 6{::ExampleWords
1

Explanation:

We only need to consider blocks which contain letters in common with a normalized (upper case) version of the desired word. But we do need to consider all possible combinations of letters from those blocks (see talk page discussion of words like 'ABBA' for more on this issue).

We can classify possibilities by counting how many of each letter occur. If a candidate has at least as many of the required letters as a test case constructed from the word itself, it's a valid candidate.

For example:

   Blocks canform 0{::ExampleWords
1
word
A
need
2
relevant
NA
AN
candidates
ANA
ANN
AAA
AAN

Here, the word is simply 'A', and we have two blocks to consider for our word: AN and NA. So we form all possible combinations of the letters of those two bocks, prefix each of them with our word and test whether any of them contain two copies of the letters of our word. (As it happens, all of the candidates are valid, for this trivial example.)

Java[edit]

Translation of: D
Translation of: C
Works with: Java version 1.6+
import java.util.Arrays;
 
public class ABC{
private static void swap(int i, int j, Object... arr){
Object tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
 
public static boolean canMakeWord(String word, String... blocks) {
if(word.length() == 0)
return true;
 
char c = Character.toUpperCase(word.charAt(0));
for(int i = 0; i < blocks.length; i++) {
String b = blocks[i];
if(Character.toUpperCase(b.charAt(0)) != c && Character.toUpperCase(b.charAt(1)) != c)
continue;
swap(0, i, blocks);
if(canMakeWord(word.substring(1), Arrays.copyOfRange(blocks, 1, blocks.length)))
return true;
swap(0, i, blocks);
}
 
return false;
}
 
public static void main(String[] args){
String[] blocks = {"BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM"};
 
System.out.println("\"\": " + canMakeWord("", blocks));
System.out.println("A: " + canMakeWord("A", blocks));
System.out.println("BARK: " + canMakeWord("BARK", blocks));
System.out.println("book: " + canMakeWord("book", blocks));
System.out.println("treat: " + canMakeWord("treat", blocks));
System.out.println("COMMON: " + canMakeWord("COMMON", blocks));
System.out.println("SQuAd: " + canMakeWord("SQuAd", blocks));
System.out.println("CONFUSE: " + canMakeWord("CONFUSE", blocks));
 
}
}
Output:
"": true
A: true
BARK: true
book: false
treat: true
COMMON: false
SQuAd: true
CONFUSE: true

JavaScript[edit]

Regex[edit]

The following method uses regular expressions and the string replace function to allow more support for older browsers.

var blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM";
 
function CheckWord(blocks, word) {
// Makes sure that word only contains letters.
if(word !== /([a-z]*)/i.exec(word)[1]) return false;
// Loops through each character to see if a block exists.
for(var i = 0; i < word.length; ++i)
{
// Gets the ith character.
var letter = word.charAt(i);
// Stores the length of the blocks to determine if a block was removed.
var length = blocks.length;
// The regexp gets constructed by eval to allow more browsers to use the function.
var reg = eval("/([a-z]"+letter+"|"+letter+"[a-z])/i");
// This does the same as above, but some browsers do not support...
//var reg = new RegExp("([a-z]"+letter+"|"+letter+"[a-z])", "i");
// Removes all occurrences of the match.
blocks = blocks.replace(reg, "");
// If the length did not change then a block did not exist.
if(blocks.length === length) return false;
}
// If every character has passed then return true.
return true;
};
 
var words = [
"A",
"BARK",
"BOOK",
"TREAT",
"COMMON",
"SQUAD",
"CONFUSE"
];
 
for(var i = 0;i<words.length;++i)
console.log(words[i] + ": " + CheckWord(blocks, words[i]));
 

Result:

A: true
BARK: true
BOOK: false
TREAT: true
COMMON: false
SQUAD: true
CONFUSE: true

Functional (ES 5)[edit]

(function (strWords) {
 
var strBlocks =
'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM',
blocks = strBlocks.split(' ');
 
function abc(lstBlocks, strWord) {
var lngChars = strWord.length;
 
if (!lngChars) return [];
 
var b = lstBlocks[0],
c = strWord[0];
 
return chain(lstBlocks, function (b) {
return (b.indexOf(c.toUpperCase()) !== -1) ? [
(b + ' ').concat(
abc(removed(b, lstBlocks), strWord.slice(1)))
] : [];
})
}
 
// Monadic bind (chain) for lists
function chain(xs, f) {
return [].concat.apply([], xs.map(f));
}
 
// a -> [a] -> [a]
function removed(x, xs) {
var h = xs.length ? xs[0] : null,
t = h ? xs.slice(1) : [];
 
return h ? (
h === x ? t : [h].concat(removed(x, t))
) : [];
}
 
function solution(strWord) {
var strAttempt = abc(blocks, strWord)[0].split(',')[0];
 
// two chars per block plus one space -> 3
return strWord + ((strAttempt.length === strWord.length * 3) ?
' -> ' + strAttempt : ': [no solution]');
}
 
return strWords.split(' ').map(solution).join('\n');
 
})('A bark BooK TReAT COMMON squAD conFUSE');
Output:
A -> NA 
bark -> BO NA RE XK
BooK: [no solution]
TReAT -> GT RE ER NA TG
COMMON: [no solution]
squAD -> FS DQ HU NA QD
conFUSE -> CP BO NA FS HU FS RE

ES6[edit]

let characters = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM";
let blocks = characters.split(" ").map(pair => pair.split(""));
 
function isWordPossible(word) {
var letters = [...word.toUpperCase()];
var length = letters.length;
var copy = new Set(blocks);
 
for (let letter of letters) {
for (let block of copy) {
let index = block.indexOf(letter);
 
if (index !== -1) {
length--;
copy.delete(block);
break;
}
}
 
}
return !length;
}
 
[
"A",
"BARK",
"BOOK",
"TREAT",
"COMMON",
"SQUAD",
"CONFUSE"
].forEach(word => console.log(`${word}: ${isWordPossible(word)}`));
 

Result:

A: true
BARK: true
BOOK: false
TREAT: true
COMMON: false
SQUAD: true
CONFUSE: true

jq[edit]

The problem description seems to imply that if a letter, X, appears on more than one block, its partner will be the same on all blocks. This makes the problem trivial.
 
# when_index(cond;ary) returns the index of the first element in ary
# that satisfies cond; it uses a helper function that takes advantage
# of tail-recursion optimization in recent versions of jq.
def index_when(cond; ary):
# state variable: counter
def when: if . >= (ary | length) then null
elif ary[.] | cond then .
else (.+1) | when
end;
0 | when;
 
# Attempt to match a single letter with a block;
# return null if no match, else the remaining blocks
def match_letter(letter):
. as $ary | index_when( index(letter); $ary ) as $ix
| if $ix == null then null
else del( .[$ix] )
end;
 
# Usage: string | abc(blocks)
def abc(blocks):
if length == 0 then true
else
.[0:1] as $letter
| (blocks | match_letter( $letter )) as $blks
| if $blks == null then false
else .[1:] | abc($blks)
end
end;
Task:
def task:
["BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS",
"JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"] as $blocks
| ("A", "BARK","BOOK","TREAT","COMMON","SQUAD","CONFUSE")
| "\(.) : \( .|abc($blocks) )" ;task
Output:
A : true
BARK : true
BOOK : false
TREAT : true
COMMON : false
SQUAD : true
CONFUSE : true

Julia[edit]

function abc (str, list)
isempty(str) && return true
for i = eachindex(list)
str[end] in list[i] &&
any([abc(str[1:end-1], deleteat!(copy(list), i))]) &&
return true
end
false
end
Output:
julia> let test = ["A", "BARK","BOOK","TREAT","COMMON","SQUAD","CONFUSE"],
           list = ["BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS",
                     "JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"]
         for str in test
           @printf("%-8s |  %s\n", str, abc(str, list)) 
         end
       end
A        |  true
BARK     |  true
BOOK     |  false
TREAT    |  true
COMMON   |  false
SQUAD    |  true
CONFUSE  |  true

Kotlin[edit]

Translation of: Java
package abc
 
object ABC_block_checker {
fun run() {
val blocks = arrayOf("BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM")
 
println("\"\": " + blocks.canMakeWord(""))
val words = arrayOf("A", "BARK", "book", "treat", "COMMON", "SQuAd", "CONFUSE")
for (w in words) println("$w: " + blocks.canMakeWord(w))
}
 
private fun Array<String>.swap(i: Int, j: Int) {
val tmp = this[i]
this[i] = this[j]
this[j] = tmp
}
 
private fun Array<String>.canMakeWord(word: String): Boolean {
if (word.length == 0)
return true
 
val c = Character.toUpperCase(word.first())
var i = 0
forEach { b ->
if (b.first().toUpperCase() == c || b[1].toUpperCase() == c) {
swap(0, i)
if (drop(1).toTypedArray().canMakeWord(word.substring(1)))
return true
swap(0, i)
}
i++
}
 
return false
}
}
 
fun main(args: Array<String>) = ABC_block_checker.run()
Output:
"": true
A: true
BARK: true
book: false
treat: true
COMMON: false
SQuAd: true
CONFUSE: true

Liberty BASIC[edit]

Recursive solution[edit]

 
print "Rosetta Code - ABC problem (recursive solution)"
print
blocks$="BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM"
data "A"
data "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"
data "XYZZY"
 
do
read text$
if text$="XYZZY" then exit do
print ">>> can_make_word("; chr$(34); text$; chr$(34); ")"
if canDo(text$,blocks$) then print "True" else print "False"
loop while 1
print "Program complete."
end
 
function canDo(text$,blocks$)
'endcase
if len(text$)=1 then canDo=(instr(blocks$,text$)<>0): exit function
'get next letter
ltr$=left$(text$,1)
'cut
if instr(blocks$,ltr$)=0 then canDo=0: exit function
'recursion
text$=mid$(text$,2) 'rest
'loop by all word in blocks. Need to make "newBlocks" - all but taken
'optimisation: take only fitting blocks
wrd$="*"
i=0
while wrd$<>""
i=i+1
wrd$=word$(blocks$, i)
if instr(wrd$, ltr$) then
'newblocks without wrd$
pos=instr(blocks$,wrd$)
newblocks$=left$(blocks$, pos-1)+mid$(blocks$, pos+3)
canDo=canDo(text$,newblocks$)
'first found cuts
if canDo then exit while
end if
wend
end function
 
Output:
Rosetta Code - ABC problem (recursive solution)

>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Program complete.

Procedural solution[edit]

 
print "Rosetta Code - ABC problem (procedural solution)"
print
w$(1)="A"
w$(2)="BARK"
w$(3)="BOOK"
w$(4)="TREAT"
w$(5)="COMMON"
w$(6)="SQUAD"
w$(7)="CONFUSE"
 
for x=1 to 7
print ">>> can_make_word("; chr$(34); w$(x); chr$(34); ")"
if CanMakeWord(w$(x)) then print "True" else print "False"
next x
print "Program complete."
end
 
function CanMakeWord(x$)
global DoneWithWord, BlocksUsed, LetterOK, Possibility
dim block$(20,2), block(20,2)
'numeric blocks, col 0 flags used block
block(1,1)=asc("B")-64: block(1,2)=asc("O")-64
block(2,1)=asc("X")-64: block(2,2)=asc("K")-64
block(3,1)=asc("D")-64: block(3,2)=asc("Q")-64
block(4,1)=asc("C")-64: block(4,2)=asc("P")-64
block(5,1)=asc("N")-64: block(5,2)=asc("A")-64
block(6,1)=asc("G")-64: block(6,2)=asc("T")-64
block(7,1)=asc("R")-64: block(7,2)=asc("E")-64
block(8,1)=asc("T")-64: block(8,2)=asc("G")-64
block(9,1)=asc("Q")-64: block(9,2)=asc("D")-64
block(10,1)=asc("F")-64: block(10,2)=asc("S")-64
block(11,1)=asc("J")-64: block(11,2)=asc("W")-64
block(12,1)=asc("H")-64: block(12,2)=asc("U")-64
block(13,1)=asc("V")-64: block(13,2)=asc("I")-64
block(14,1)=asc("A")-64: block(14,2)=asc("N")-64
block(15,1)=asc("O")-64: block(15,2)=asc("B")-64
block(16,1)=asc("E")-64: block(16,2)=asc("R")-64
block(17,1)=asc("F")-64: block(17,2)=asc("S")-64
block(18,1)=asc("L")-64: block(18,2)=asc("Y")-64
block(19,1)=asc("P")-64: block(19,2)=asc("C")-64
block(20,1)=asc("Z")-64: block(20,2)=asc("M")-64
 
x$=upper$(x$)
for x=1 to len(x$)
y$=mid$(x$,x,1)
if y$>="A" and y$<="Z" then w$=w$+y$
next x
if w$="" then exit function
DoneWithWord=0: BlocksUsed=0
l=len(w$)
dim LetterOK(l)
dim alphabet(26,1) 'clear letter-usage array
for x=1 to 20 'load block letters into letter-usage array col 0
alphabet(block(x,1),0)+=1
alphabet(block(x,2),0)+=1
next x
for x=1 to l 'load current word into letter-usage aray col 1
wl$=mid$(w$,x,1): w=asc(wl$)-64
alphabet(w,1)+=1
next x
 
for x=1 to 26 ' test for more of any letter in the word than in the blocks
if alphabet(x,1)>alphabet(x,0) then exit function
next x
 
[NextLetter]
if wl<l then wl=wl+1 else goto [DoneWithWord]
wl$=mid$(w$,wl,1): w=asc(wl$)-64
LetterOK=0
' if there's only one of the letter in the blocks then you must use that block
if alphabet(w,0)=1 then
call OnlyBlock w
LetterOK(wl)=1
if DoneWithWord then goto [DoneWithWord] else goto [NextLetter]
end if
' if more than one of the letter in the blocks, then try to use one that has
' an unused letter on other side (a "Free Block")
call FindFreeBlock w
if LetterOK then LetterOK(wl)=1
goto [NextLetter]
 
[DoneWithWord]
if BlocksUsed=l then CanMakeWord=1: exit function
if DoneWithWord then exit function
for x=1 to l
if not(LetterOK(x)) then
NumericLetter=asc(mid$(w$,x,1))-64
LetterOK=0
call OnlyBlock NumericLetter
if LetterOK then LetterOK(x)=1 else exit for
end if
next x
goto [DoneWithWord]
end function
 
sub OnlyBlock NumericLetter
for x=1 to 20
if (block(x, 1)=NumericLetter or block(x, 2)=NumericLetter) _
and block(x, 0)=0 then
call UseBlock x, NumericLetter
exit sub
end if
next x
DoneWithWord=1
end sub
 
sub FindFreeBlock NumericLetter
Possibility=0
for x=1 to 20
if block(x, 0)=0 then 'block not used
if block(x,1)=NumericLetter then
if alphabet(block(x,2),1)=0 then
call UseBlock x, NumericLetter
exit sub
end if
Possibility=Possibility+1
end if
if block(x,2)=NumericLetter then
if alphabet(block(x,1),1)=0 then
call UseBlock x, NumericLetter
exit sub
end if
Possibility=Possibility+1
end if
end if
next x
end sub
 
sub UseBlock BlockNumber, NumericLetter
block(BlockNumber, 0)=1 'Mark block as used
BlocksUsed=BlocksUsed+1
LetterOK=1
end sub
 
Output:
Rosetta Code - ABC problem (procedural solution)

>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
Program complete.

[edit]

make "blocks [[B O] [X K] [D Q] [C P] [N A] [G T] [R E] [T G] [Q D] [F S]
[J W] [H U] [V I] [A N] [O B] [E R] [F S] [L Y] [P C] [Z M]]
 
to can_make? :word [:avail :blocks]
if empty? :word [output "true]
local "letter make "letter first :word
foreach :avail [
local "i make "i #
local "block make "block ?
if member? :letter :block [
if (can_make? bf :word filter [notequal? # :i] :avail) [output "true]
]
]
output "false
end
 
foreach [A BARK BOOK TREAT COMMON SQUAD CONFUSE] [
print sentence word ? ": can_make? ?
]
 
bye
Output:
A: true
BARK: true
BOOK: false
TREAT: true
COMMON: false
SQUAD: true
CONFUSE: true

Lua[edit]

blocks = {
{"B","O"}; {"X","K"}; {"D","Q"}; {"C","P"};
{"N","A"}; {"G","T"}; {"R","E"}; {"T","G"};
{"Q","D"}; {"F","S"}; {"J","W"}; {"H","U"};
{"V","I"}; {"A","N"}; {"O","B"}; {"E","R"};
{"F","S"}; {"L","Y"}; {"P","C"}; {"Z","M"};
};
 
function canUse(table, letter)
for i,v in pairs(blocks) do
if (v[1] == letter:upper() or v[2] == letter:upper()) and table[i] then
table[i] = false;
return true;
end
end
return false;
end
 
function canMake(Word)
local Taken = {};
for i,v in pairs(blocks) do
table.insert(Taken,true);
end
local found = true;
for i = 1,#Word do
if not canUse(Taken,Word:sub(i,i)) then
found = false;
end
end
print(found)
end
Output:
canMake("A"): true
canMake("BARK"): true
canMake("BOOK"): false
canMake("TREAT"): true
canMake("COMMON"): false
canMake("SQUAD"): true
canMake("CONFUSE"): true

Maple[edit]

canSpell := proc(w)
local blocks, i, j, word, letterFound;
blocks := [["B", "O"], ["X", "K"], ["D", "Q"], ["C", "P"], ["N", "A"], ["G", "T"], ["R", "E"], ["T", "G"], ["Q", "D"], ["F", "S"],
["J", "W"], ["H", "U"], ["V", "I"], ["A", "N"], ["O", "B"], ["E", "R"], ["F", "S"], ["L", "Y"], ["P", "C"], ["Z", "M"]];
word := StringTools[UpperCase](convert(w, string));
for i to length(word) do
letterFound := false;
for j to numelems(blocks) do
if not letterFound and (substring(word, i) = blocks[j][1] or substring(word, i) = blocks[j][2]) then
blocks[j][1] := undefined;
blocks[j][2] := undefined;
letterFound := true;
end if;
end do;
if not letterFound then
return false;
end if;
end do;
return true;
end proc:
 
seq(printf("%a: %a\n", i, canSpell(i)), i in [a, Bark, bOok, treat, COMMON, squad, confuse]);
Output:
a: true
Bark: true
bOok: false
treat: true
COMMON: false
squad: true
confuse: true

Mathematica / Wolfram Language[edit]

 
blocks=Partition[Characters[ToLowerCase["BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"]],2];
ClearAll[DoStep,ABCBlockQ]
DoStep[chars_List,blcks_List,chosen_List]:=Module[{opts},
If[chars=!={},
opts=Select[blcks,MemberQ[#,First[chars]]&];
{Rest[chars],DeleteCases[blcks,#,1,1],Append[chosen,#]}&[email protected]
,
{{chars,blcks,chosen}}
]
]
DoStep[opts_List]:=Flatten[DoStep@@@opts,1]
ABCBlockQ[str_String]:=(FixedPoint[DoStep,{{Characters[ToLowerCase[str]],blocks,{}}}]=!={})
 
Output:
ABCBlockQ["A"]
ABCBlockQ["BARK"]
ABCBlockQ["BOOK"]
ABCBlockQ["TREAT"]
ABCBlockQ["COMMON"]
ABCBlockQ["SQUAD"]
ABCBlockQ["CONFUSE"]
True
True
False
True
False
True
True

MATLAB[edit]

function testABC
combos = ['BO' ; 'XK' ; 'DQ' ; 'CP' ; 'NA' ; 'GT' ; 'RE' ; 'TG' ; 'QD' ; ...
'FS' ; 'JW' ; 'HU' ; 'VI' ; 'AN' ; 'OB' ; 'ER' ; 'FS' ; 'LY' ; ...
'PC' ; 'ZM'];
words = {'A' 'BARK' 'BOOK' 'TREAT' 'COMMON' 'SQUAD' 'CONFUSE'};
for k = 1:length(words)
possible = canMakeWord(words{k}, combos);
fprintf('Can%s make word %s.\n', char(~possible.*'NOT'), words{k})
end
end
 
function isPossible = canMakeWord(word, combos)
word = lower(word);
combos = lower(combos);
isPossible = true;
k = 1;
while isPossible && k <= length(word)
[r, c] = find(combos == word(k), 1);
if ~isempty(r)
combos(r, :) = '';
else
isPossible = false;
end
k = k+1;
end
end
Output:
Can make word A.
Can make word BARK.
CanNOT make word BOOK.
Can make word TREAT.
CanNOT make word COMMON.
Can make word SQUAD.
Can make word CONFUSE.

MAXScript[edit]

Recursive[edit]

Recursively checks if the word is possible if a block is removed from the array.

 
-- This is the blocks array
global GlobalBlocks = #("BO","XK","DQ","CP","NA", \
"GT","RE","TG","QD","FS", \
"JW","HU","VI","AN","OB", \
"ER","FS","LY","PC","ZM")
 
-- This function returns true if "_str" is part of "_word", false otherwise
fn occurs _str _word =
(
if _str != undefined and _word != undefined then
(
matchpattern _word pattern:("*"+_str+"*")
) else return false
)
 
-- This is the main function
fn isWordPossible word blocks: = -- blocks is a keyword argument
(
word = toupper word -- convert the string to upper case, to make it case insensitive
if blocks == unsupplied do blocks = GlobalBlocks
-- if blocks (keyword argument) is unsupplied, use the global blocks array (this is for recursion)
 
blocks = deepcopy blocks
 
local pos = 1 -- start at the beginning of the word
local solvedLetters = #() -- this array stores the indices of solved letters
 
while pos <= word.count do -- loop through every character in the word
(
local possibleBlocks = #() -- this array stores the blocks which can be used to make that letter
for b = 1 to Blocks.count do -- this loop finds all the possible blocks that can be used to make that letter
(
if occurs word[pos] blocks[b] do
(
appendifunique possibleBlocks b
)
)
if possibleBlocks.count > 0 then -- if it found any blocks
(
if possibleBlocks.count == 1 then -- if it found one block, then continue
(
appendifunique solvedLetters pos
deleteitem blocks possibleblocks[1]
pos += 1
)
else -- if it found more than one
(
for b = 1 to possibleBlocks.count do -- loop through every possible block
(
local possibleBlock = blocks[possibleBlocks[b]]
local blockFirstLetter = possibleBlock[1]
local blockSecondLetter = possibleBlock[2]
local matchingLetter = if blockFirstLetter == word[pos] then 1 else 2
-- ^ this is the index of the matching letter on the block
 
local notMatchingIndex = if matchingLetter == 1 then 2 else 1
local notMatchingLetter = possibleBlock[notMatchingIndex]
-- ^ this is the other letter on the block
 
if occurs notMatchingLetter (substring word (pos+1) -1) then
( -- if the other letter occurs in the rest of the word
local removedBlocks = deepcopy blocks -- copy the current blocks array
deleteitem removedBlocks possibleBlocks[b] -- remove the item from the copied array
 
-- recursively check if the word is possible if that block is taken away from the array:
if (isWordPossible (substring word (pos+1) -1) blocks:removedBlocks) then
( -- if it is, then remove the block and move to next character
appendifunique solvedLetters pos
deleteitem blocks possibleblocks[1]
pos += 1
exit
)
else
( -- if it isn't and it looped through every possible block, then the word is not possible
if b == possibleBlocks.count do return false
)
)
else
( -- if the other letter on this block doesn't occur in the rest of the word, then the letter is solved, continue
appendifunique solvedLetters pos
deleteitem blocks possibleblocks[b]
pos += 1
exit
)
)
)
) else return false -- if it didn't find any blocks, then return false
)
 
makeuniquearray solvedLetters -- make sure there are no duplicates in the solved array
if solvedLetters.count != word.count then return false -- if number of solved letters is not equal to word length
else
( -- this checks if all the solved letters are the same as the word
check = ""
for bit in solvedLetters do append check word[bit]
if check == word then return true else return false
)
)
 

Output:

 
iswordpossible "a"
true
iswordpossible "bark"
true
iswordpossible "book"
false
iswordpossible "treat"
true
iswordpossible "common"
false
iswordpossible "squad"
true
iswordpossible "confuse"
true
 


Non-recursive[edit]

 
fn isWordPossible2 word =
(
Blocks = #("BO","XK","DQ","CP","NA", \
"GT","RE","TG","QD","FS", \
"JW","HU","VI","AN","OB", \
"ER","FS","LY","PC","ZM")
word = toupper word
local pos = 1
local solvedLetters = #()
while pos <= word.count do
(
for i = 1 to blocks.count do
(
if (matchpattern blocks[i] pattern:("*"+word[pos]+"*")) then
(
deleteitem blocks i
appendifunique solvedLetters pos
pos +=1
exit
)
else if i == blocks.count do return false
)
)
if solvedLetters.count == word.count then
(
local check = ""
for bit in solvedLetters do append check word[bit]
if check == word then return true else return false
) else return false
)
 

Both versions are good for this example, but the non-recursive version won't work if the blocks are more random, because it just takes the first found block, and the recursive version decides which one to use. For example, if blocks are: #("RT","WA","WO","TB","RE") Then:

 
iswordpossible "water"
true
iswordpossible2 "water"
false
 

Non-recursive version quickly decides that it's not possible, even though it clearly is.

Nim[edit]

from strutils import contains, format, toUpper
from sequtils import delete
 
proc canMakeWord(s: string): bool =
var
abcs = @["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"]
matched = newSeq[string]()
 
if s.len > abcs.len:
return false
 
for i in 0 .. s.len - 1:
var
letter = s[i].toUpper
n = 0
for abc in abcs:
if contains(abc, letter):
delete(abcs, n, n)
matched = matched & abc
break
else:
inc(n)
 
if matched.len == s.len:
return true
else:
return false
 
var words = @["A", "bArK", "BOOK", "treat", "common", "sQuAd", "CONFUSE"]
for word in words:
echo format("Can the blocks make the word \"$1\"? $2", word,
(if canMakeWord(word): "yes" else: "no"))
Output:
Can the blocks make the word "A"? yes
Can the blocks make the word "bArK"? yes
Can the blocks make the word "BOOK"? no
Can the blocks make the word "treat"? yes
Can the blocks make the word "common"? no
Can the blocks make the word "sQuAd"? yes
Can the blocks make the word "CONFUSE"? yes

Oberon-2[edit]

Works with oo2c Version 2

 
MODULE ABCBlocks;
IMPORT
Object,
Out;
 
VAR
blocks: ARRAY 20 OF STRING;
 
PROCEDURE CanMakeWord(w: STRING): BOOLEAN;
VAR
used: ARRAY 20 OF LONGINT;
wChars: Object.CharsLatin1;
i,j: LONGINT;
 
PROCEDURE IsUsed(i: LONGINT): BOOLEAN;
VAR
b: LONGINT;
BEGIN
b := 0;
WHILE (b < LEN(used) - 1) & (used[b] # -1) DO
IF used[b] = i THEN RETURN TRUE END;
INC(b)
END;
RETURN FALSE
END IsUsed;
 
PROCEDURE GetBlockFor(blocks: ARRAY OF STRING; c: CHAR): LONGINT;
VAR
i: LONGINT;
BEGIN
i := 0;
WHILE (i < LEN(blocks)) DO
IF (blocks[i].IndexOf(c,0) >= 0) & (~IsUsed(i)) THEN RETURN i END;
INC(i)
END;
 
RETURN -1;
END GetBlockFor;
 
BEGIN
FOR i := 0 TO LEN(used) - 1 DO used[i] := -1 END;
wChars := w(Object.String8).CharsLatin1();
 
i := 0;
WHILE (i < LEN(wChars^) - 1) DO
j := GetBlockFor(blocks,CAP(wChars[i]));
IF j < 0 THEN RETURN FALSE END;
used[i] := j;
INC(i)
END;
RETURN TRUE
END CanMakeWord;
 
BEGIN
blocks[0] := "BO";
blocks[1] := "XK";
blocks[2] := "DQ";
blocks[3] := "CP";
blocks[4] := "NA";
blocks[5] := "GT";
blocks[6] := "RE";
blocks[7] := "TG";
blocks[8] := "QD";
blocks[9] := "FS";
blocks[10] := "JW";
blocks[11] := "HU";
blocks[12] := "VI";
blocks[13] := "AN";
blocks[14] := "OB";
blocks[15] := "ER";
blocks[16] := "FS";
blocks[17] := "LY";
blocks[18] := "PC";
blocks[19] := "ZM";
 
Out.String("A: ");Out.Bool(CanMakeWord("A"));Out.Ln;
Out.String("BARK: ");Out.Bool(CanMakeWord("BARK"));Out.Ln;
Out.String("BOOK: ");Out.Bool(CanMakeWord("BOOK"));Out.Ln;
Out.String("TREAT: ");Out.Bool(CanMakeWord("TREAT"));Out.Ln;
Out.String("COMMON: ");Out.Bool(CanMakeWord("COMMON"));Out.Ln;
Out.String("SQAD: ");Out.Bool(CanMakeWord("SQUAD"));Out.Ln;
Out.String("confuse: ");Out.Bool(CanMakeWord("confuse"));Out.Ln;
END ABCBlocks.
 

Output:

A: TRUE
BARK: TRUE
BOOK: FALSE
TREAT: TRUE
COMMON: FALSE
SQAD: TRUE
confuse: TRUE

Objeck[edit]

Translation of: Java
class Abc {
function : Main(args : String[]) ~ Nil {
blocks := ["BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM"];
 
IO.Console->Print("\"\": ")->PrintLine(CanMakeWord("", blocks));
IO.Console->Print("A: ")->PrintLine(CanMakeWord("A", blocks));
IO.Console->Print("BARK: ")->PrintLine(CanMakeWord("BARK", blocks));
IO.Console->Print("book: ")->PrintLine(CanMakeWord("book", blocks));
IO.Console->Print("treat: ")->PrintLine(CanMakeWord("treat", blocks));
IO.Console->Print("COMMON: ")->PrintLine(CanMakeWord("COMMON", blocks));
IO.Console->Print("SQuAd: ")->PrintLine(CanMakeWord("SQuAd", blocks));
IO.Console->Print("CONFUSE: ")->PrintLine(CanMakeWord("CONFUSE", blocks));
}
 
function : CanMakeWord(word : String, blocks : String[]) ~ Bool {
if(word->Size() = 0) {
return true;
};
 
c := word->Get(0)->ToUpper();
for(i := 0; i < blocks->Size(); i++;) {
b := blocks[i];
if(<>(b->Get(0)->ToUpper() <> c & b->Get(1)->ToUpper() <> c)) {
Swap(0, i, blocks);
new_word := word->SubString(1, word->Size() - 1);
new_blocks := String->New[blocks->Size() - 1];
Runtime->Copy(new_blocks, 0, blocks, 1, blocks->Size() - 1);
if(CanMakeWord(new_word, new_blocks)) {
return true;
};
Swap(0, i, blocks);
};
};
 
return false;
}
 
function : native : Swap(i : Int, j : Int, arr : String[]) ~ Nil {
tmp := arr[i];
arr[i] := arr[j];
arr[j] := tmp;
}
}
"": true
A: true
BARK: true
book: false
treat: true
COMMON: false
SQuAd: true
CONFUSE: true

OCaml[edit]

let blocks = [
('B', 'O'); ('X', 'K'); ('D', 'Q'); ('C', 'P');
('N', 'A'); ('G', 'T'); ('R', 'E'); ('T', 'G');
('Q', 'D'); ('F', 'S'); ('J', 'W'); ('H', 'U');
('V', 'I'); ('A', 'N'); ('O', 'B'); ('E', 'R');
('F', 'S'); ('L', 'Y'); ('P', 'C'); ('Z', 'M');
]
 
let find_letter blocks c =
let found, remaining =
List.partition (fun (c1, c2) -> c1 = c || c2 = c) blocks
in
match found with
| _ :: res -> Some (res @ remaining)
| _ -> None
 
let can_make_word w =
let n = String.length w in
let rec aux i _blocks =
if i >= n then true else
match find_letter _blocks w.[i] with
| None -> false
| Some rem_blocks ->
aux (succ i) rem_blocks
in
aux 0 blocks
 
let test label f (word, should) =
Printf.printf "- %s %S = %B (should: %B)\n" label word (f word) should
 
let () =
List.iter (test "can make word" can_make_word) [
"A", true;
"BARK", true;
"BOOK", false;
"TREAT", true;
"COMMON", false;
"SQUAD", true;
"CONFUSE", true;
]
Output:
 $ ocaml canmakeword.ml
 - can make word "A" = true  (should: true)
 - can make word "BARK" = true  (should: true)
 - can make word "BOOK" = false  (should: false)
 - can make word "TREAT" = true  (should: true)
 - can make word "COMMON" = false  (should: false)
 - can make word "SQUAD" = true  (should: true)
 - can make word "CONFUSE" = true  (should: true)

Oforth[edit]

["BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS","JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"] const: ABCBlocks
 
: canMakeWord(w, blocks)
| i |
w isEmpty ifTrue: [ true return ]
blocks size loop: i [
blocks at(i) include(w first toUpper) ifFalse: [ continue ]
canMakeWord(w right(w size 1 -), blocks del(i, i)) ifTrue: [ true return ]
]
false ;
Output:
["A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"] map(#[ ABCBlocks canMakeWord]) println
[1, 1, 0, 1, 0, 1, 1]

OpenEdge/Progress[edit]

FUNCTION canMakeWord RETURNS LOGICAL (INPUT pWord AS CHARACTER) FORWARD.
 
/* List of blocks */
DEFINE TEMP-TABLE ttBlocks NO-UNDO
FIELD ttFaces AS CHARACTER FORMAT "x(1)" EXTENT 2
FIELD ttUsed AS LOGICAL.
 
/* Fill in list of blocks */
RUN AddBlock("BO").
RUN AddBlock("XK").
RUN AddBlock("DQ").
RUN AddBlock("CP").
RUN AddBlock("NA").
RUN AddBlock("GT").
RUN AddBlock("Re").
RUN AddBlock("TG").
RUN AddBlock("QD").
RUN AddBlock("FS").
RUN AddBlock("JW").
RUN AddBlock("HU").
RUN AddBlock("VI").
RUN AddBlock("AN").
RUN AddBlock("OB").
RUN AddBlock("ER").
RUN AddBlock("FS").
RUN AddBlock("LY").
RUN AddBlock("PC").
RUN AddBlock("ZM").
 
DEFINE VARIABLE chWords AS CHARACTER EXTENT 7 NO-UNDO.
ASSIGN chWords[1] = "A"
chWords[2] = "BARK"
chWords[3] = "BOOK"
chWords[4] = "TREAT"
chWords[5] = "COMMON"
chWords[6] = "SQUAD"
chWords[7] = "CONFUSE".
 
DEFINE FRAME frmResult
WITH NO-LABELS 7 DOWN USE-TEXT.
 
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DO i = 1 TO 7:
DISPLAY chWords[i] + " = " + STRING(canMakeWord(chWords[i])) FORMAT "x(25)" WITH FRAME frmResult.
DOWN WITH FRAME frmResult.
END.
 
 
PROCEDURE AddBlock:
DEFINE INPUT PARAMETER i-chBlockvalue AS CHARACTER NO-UNDO.
 
IF (LENGTH(i-chBlockValue) <> 2)
THEN RETURN ERROR.
 
CREATE ttBlocks.
ASSIGN ttBlocks.ttFaces[1] = SUBSTRING(i-chBlockValue, 1, 1)
ttBlocks.ttFaces[2] = SUBSTRING(i-chBlockValue, 2, 1).
END PROCEDURE.
 
 
FUNCTION blockInList RETURNS LOGICAL (pChar AS CHARACTER):
/* Find first unused block in list */
FIND FIRST ttBlocks WHERE (ttBlocks.ttFaces[1] = pChar
OR ttBlocks.ttFaces[2] = pChar)
AND NOT ttBlocks.ttUsed NO-ERROR.
IF (AVAILABLE ttBlocks) THEN DO:
/* found it! set to used and return true */
ASSIGN ttBlocks.ttUsed = TRUE.
RETURN TRUE.
END.
ELSE RETURN FALSE.
END FUNCTION.
 
 
FUNCTION canMakeWord RETURNS LOGICAL (INPUT pWord AS CHARACTER):
DEFINE VARIABLE i AS INTEGER NO-UNDO.
DEFINE VARIABLE chChar AS CHARACTER NO-UNDO.
 
/* Word has to be valid */
IF (LENGTH(pWord) = 0)
THEN RETURN FALSE.
 
DO i = 1 TO LENGTH(pWord):
/* get the char */
chChar = SUBSTRING(pWord, i, 1).
 
/* Check to see if this is a letter? */
IF ((ASC(chChar) < 65) OR (ASC(chChar) > 90) AND
(ASC(chChar) < 97) OR (ASC(chChar) > 122))
THEN RETURN FALSE.
 
/* Is block is list (and unused) */
IF NOT blockInList(chChar)
THEN RETURN FALSE.
END.
 
/* Reset all blocks */
FOR EACH ttBlocks:
ASSIGN ttUsed = FALSE.
END.
RETURN TRUE.
END FUNCTION.
 
Output:
A = yes
BARK = yes
BOOK = no
TREAT = yes
COMMON = no
SQUAD = yes
CONFUSE = yes

PARI/GP[edit]

BLOCKS = "BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM";
WORDS = ["A","Bark","BOOK","Treat","COMMON","SQUAD","conFUSE"];
 
can_make_word(w) = check(Vecsmall(BLOCKS), Vecsmall(w))
 
check(B,W,l=1,n=1) =
{
if (l > #W, return(1), n > #B, return(0));
 
forstep (i = 1, #B-2, 2,
if (B[i] != bitand(W[l],223) && B[i+1] != bitand(W[l],223), next());
B[i] = B[i+1] = 0;
if (check(B, W, l+1, n+2), return(1))
);
0
}
 
for (i = 1, #WORDS, printf("%s\t%d\n", WORDS[i], can_make_word(WORDS[i])));
Output:
A	1
Bark	1
BOOK	0
Treat	1
COMMON	0
SQUAD	1
conFUSE	1


Pascal[edit]

Works with: Free Pascal version 2.6.2
 
#!/usr/bin/instantfpc
//program ABCProblem;
 
{$mode objfpc}{$H+}
 
uses SysUtils, Classes;
 
const
// every couple of chars is a block
// remove one by replacing its 2 chars by 2 spaces
Blocks = 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM';
BlockSize = 3;
 
function can_make_word(Str: String): boolean;
var
wkBlocks: string = Blocks;
c: Char;
iPos : Integer;
begin
// all chars to uppercase
Str := UpperCase(Str);
Result := Str <> '';
if Result then
begin
for c in Str do
begin
iPos := Pos(c, wkBlocks);
if (iPos > 0) then
begin
// Char found
wkBlocks[iPos] := ' ';
// Remove the other face
if (iPos mod BlockSize = 1) then
wkBlocks[iPos + 1] := ' '
else
wkBlocks[iPos - 1] := ' ';
end
else
begin
// missed
Result := False;
break;
end;
end;
end;
// Debug...
//WriteLn(Blocks);
//WriteLn(wkBlocks);
End;
 
procedure TestABCProblem(Str: String);
const
boolStr : array[boolean] of String = ('False', 'True');
begin
WriteLn(Format('>>> can_make_word("%s")%s%s', [Str, LineEnding, boolStr[can_make_word(Str)]]));
End;
 
begin
TestABCProblem('A');
TestABCProblem('BARK');
TestABCProblem('BOOK');
TestABCProblem('TREAT');
TestABCProblem('COMMON');
TestABCProblem('SQUAD');
TestABCProblem('CONFUSE');
END.
Output:
./ABCProblem.pas 
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True

Perl[edit]

Recursive solution that can handle characters appearing on different blocks:

#!/usr/bin/perl
use warnings;
use strict;
 
 
sub can_make_word {
my ($word, @blocks) = @_;
$_ = uc join q(), sort split // for @blocks;
my %blocks;
$blocks{$_}++ for @blocks;
return _can_make_word(uc $word, %blocks)
}
 
 
sub _can_make_word {
my ($word, %blocks) = @_;
my $char = substr $word, 0, 1, q();
 
my @candidates = grep 0 <= index($_, $char), keys %blocks;
for my $candidate (@candidates) {
next if $blocks{$candidate} <= 0;
local $blocks{$candidate} = $blocks{$candidate} - 1;
return 1 if q() eq $word or _can_make_word($word, %blocks);
}
return
}

Testing:

use Test::More tests => 8;
 
my @blocks1 = qw(BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM);
is(can_make_word("A", @blocks1), 1);
is(can_make_word("BARK", @blocks1), 1);
is(can_make_word("BOOK", @blocks1), undef);
is(can_make_word("TREAT", @blocks1), 1);
is(can_make_word("COMMON", @blocks1), undef);
is(can_make_word("SQUAD", @blocks1), 1);
is(can_make_word("CONFUSE", @blocks1), 1);
 
my @blocks2 = qw(US TZ AO QA);
is(can_make_word('auto', @blocks2), 1);
 

Perl 6[edit]

Works with: rakudo version 6.0.c

Blocks are stored as precompiled regexes. We do an initial pass on the blockset to include in the list only those regexes that match somewhere in the current word. Conveniently, regexes scan the word for us.

multi can-spell-word(Str $word, @blocks) {
my @regex = @blocks.map({ my @c = .comb; rx/<@c>/ }).grep: { .ACCEPTS($word.uc) }
can-spell-word $word.uc.comb.list, @regex;
}
 
multi can-spell-word([$head,*@tail], @regex) {
for @regex -> $re {
if $head ~~ $re {
return True unless @tail;
return False if @regex == 1;
return True if can-spell-word @tail, list @regex.grep: * !=== $re;
}
}
False;
}
 
my @b = <BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM>;
 
for <A BaRK BOoK tREaT COmMOn SqUAD CoNfuSE> {
say "$_ &can-spell-word($_, @b)";
}
Output:
A	True
BaRK	True
BOoK	False
tREaT	True
COmMOn	False
SqUAD	True
CoNfuSE	True

Phix[edit]

 
-- Here is my recursive solution which also solves the extra problems on the discussion page:
 
sequence blocks = {"BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS",
"JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"}
 
sequence words = {"","A","BarK","BOOK","TrEaT","COMMON","SQUAD","CONFUSE"}
 
--sequence blocks = {"US","TZ","AO","QA"}
--sequence words = {"AuTO"}
 
--sequence blocks = {"AB","AB","AC","AC"}
--sequence words = {"abba"}
 
sequence used = repeat(0,length(blocks))
 
function ABC_Solve(sequence word, integer idx)
integer ch
integer res = 0
if idx>length(word) then
res = 1
else
ch = word[idx]
for k=1 to length(blocks) do
if used[k]=0
and find(ch,blocks[k]) then
used[k] = 1
res = ABC_Solve(word,idx+1)
used[k] = 0
if res then exit end if
end if
end for
end if
return res
end function
 
constant TF = {"False","True"}
procedure ABC_Problem()
for i=1 to length(words) do
printf(1,"%s: %s\n",{words[i],TF[ABC_Solve(upper(words[i]),1)+1]})
end for
if getc(0) then end if
end procedure
 
ABC_Problem()
 
 
Output:
: True
A: True
BarK: True
BOOK: False
TrEaT: True
COMMON: False
SQUAD: True
CONFUSE: True

PHP[edit]

 
<?php
$words = array("A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse");
 
function canMakeWord($word) {
$word = strtoupper($word);
$blocks = array(
"BO", "XK", "DQ", "CP", "NA",
"GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB",
"ER", "FS", "LY", "PC", "ZM",
);
 
foreach (str_split($word) as $char) {
foreach ($blocks as $k => $block) {
if (strpos($block, $char) !== FALSE) {
unset($blocks[$k]);
continue(2);
}
}
return false;
}
return true;
}
 
foreach ($words as $word) {
echo $word.': ';
echo canMakeWord($word) ? "True" : "False";
echo "\r\n";
}
Output:
A: True
BARK: True
BOOK: False
TREAT: True
COMMON: False
SQUAD: True
Confuse: True

PicoLisp[edit]

Mapping and recursion.

(setq *Blocks
'((B O) (X K) (D Q) (C P) (N A) (G T) (R E)
(T G) (Q D) (F S) (J W) (H U) (V I) (A N)
(O B) (E R) (F S) (L Y) (P C) (Z M) ) )
(setq *Words '("" "1" "A" "BARK" "BOOK" "TREAT"
"Bbb" "COMMON" "SQUAD" "Confuse"
"abba" "ANBOCPDQERSFTGUVWXLZ") )
 
(de abc (W B)
(let Myblocks (copy B)
(fully
'((C)
(when (seek '((Lst) (member C (car Lst))) Myblocks)
(set @)
T ) )
(chop (uppc W)) ) ) )
 
(de abcR (W B)
(nond
((car W) T)
((car B) NIL)
(NIL
(setq W (chop W))
(let? I
(find
'((Lst) (member (uppc (car W)) Lst))
B )
(abcR (cdr W) (delete I B)) ) ) ) )
 
(for Word *Words
(println Word (abc Word *Blocks) (abcR Word *Blocks)) )
 
(bye)

PL/I[edit]

version 1[edit]

ABC: procedure options (main);   /* 12 January 2014 */
 
declare word character (20) varying, blocks character (200) varying initial
('((B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S)
(J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M))'
);
declare tblocks character (200) varying;
declare (true value ('1'b), false value ('0'b), flag) bit (1);
declare ch character (1);
declare (i, k) fixed binary;
 
do word = 'A', 'BARK', 'BOOK', 'TREAT', 'COMMON', 'SQuAd', 'CONFUSE';
flag = true;
tblocks = blocks;
do i = 1 to length(word);
ch = substr(word, i, 1);
k = index(tblocks, uppercase(ch));
if k = 0 then
flag = false;
else /* Found a block with the letter on it. */
substr(tblocks, k-1, 4) = ' '; /* Delete the block. */
end;
if flag then put skip list (word, 'true'); else put skip list (word, 'false');
end;
 
end ABC;
A                       true 
BARK                    true 
BOOK                    false 
TREAT                   true 
COMMON                  false 
SQuAd                   true 
CONFUSE                 true

version 2[edit]

*process source attributes xref or(!) options nest;
abc: Proc Options(main);
/* REXX --------------------------------------------------------------
* 10.01.2013 Walter Pachl counts the number of possible ways
* translated from Rexx version 2
*-------------------------------------------------------------------*/

 
Dcl (ADDR,HBOUND,INDEX,LEFT,LENGTH,MAX,SUBSTR,TRANSLATE) builtin;
Dcl sysprint Print;
Dcl (i,j,k,m,mm,wi,wj,wlen,ways,lw) Bin Fixed(15);
Dcl blocks(20) Char(2)
Init('BO','XK','DQ','CP','NA','GT','RE','TG','QD','FS','JW',
'HU','VI','AN','OB','ER','FS','LY','PC','ZM');
Dcl blk Char(2);
Dcl words(8) Char(7) Var
Init('$','A','baRk','bOOk','trEat','coMMon','squaD','conFuse');
Dcl word Char(7) Var;
Dcl c Char(1);
Dcl (show,cannot) Bit(1) Init('0'b);
Dcl poss(100,0:100) Pic'99'; poss=0;
Dcl s(20,100) char(100) Var;
Dcl str Char(100);
Dcl 1 *(30) Based(addr(str)),
2 strp Pic'99',
2 * Char(1);
Dcl ns(20) Bin Fixed(15) Init((20)0);
Dcl ol(100) Char(100) Var;
Dcl os Char(100) Var;
wlen=0;
Dcl lower Char(26) Init('abcdefghijklmnopqrstuvwxyz');
Dcl upper Char(26) Init('ABCDEFGHIJKLMNOPQRSTUVWXYZ');
Do wi=1 To hbound(words);
wlen=max(wlen,length(words(wi)));
End;
Do wi=1 To hbound(words);
word = translate(words(wi),upper,lower);
ways=0;
lw=length(word);
cannot='0'b;
poss=0;
ns=0;
ol='';
iloop:
Do i=1 To lw; /* loop over the characters */
c=substr(word,i,1); /* the current character */
Do j=1 To hbound(blocks); /* loop over blocks */
blk=blocks(j);
If index(blk,c)>0 Then Do; /* block can be used in this pos( */
poss(i,0)+=1; /* number of possible blocks for pos i */
poss(i,poss(i,0))=j;
End;
End;
If poss(i,0)=0 Then Do;
Leave iloop;
End;
End;
If i>lw Then Do; /* no prohibitive character */
ns=0;
Do j=1 To poss(1,0); /* build possible strings for char 1 */
ns(1)+=1;;
s(1,j)=poss(1,j);
End;
Do m=2 To lw; /* build possible strings for chars 1 to i */
mm=m-1;
Do j=1 To ns(mm);
Do k=1 To poss(m,0);
ns(m)+=1;
s(m,ns(m))=s(mm,j)!!' '!!poss(m,k);
End;
End;
End;
Do m=1 To ns(lw);
If valid(s(lw,m)) Then Do;
ways+=1;
str=s(lw,m);
Do k=1 To lw;
ol(ways)=ol(ways)!!blocks(strp(k))!!' ';
End;
End;
End;
End;
/*--------------------------------------------------------------------
* now show the result
*-------------------------------------------------------------------*/

os=left(''''!!word!!'''',wlen+2);
Select;
When(ways=0)
os=os!!' cannot be spelt.';
When(ways=1)
os=os!!' can be spelt.';
Otherwise
os=os!!' can be spelt in'!!ways!!' ways.';
End;
Put Skip List(os);
If show Then Do;
Do wj=1 To ways;
Put Edit(' '!!ol(wj))(Skip,a);
End;
End;
End;
Return;
 
valid: Procedure(list) Returns(bit(1));
/*--------------------------------------------------------------------
* Check if the same block is used more than once -> 0
* Else: the combination is valid
*-------------------------------------------------------------------*/

Dcl list Char(*) Var;
Dcl i Bin Fixed(15);
Dcl used(20) Bit(1);
str=list;
used='0'b;
Do i=1 To lw;
If used(strp(i)) Then
Return('0'b);
used(strp(i))='1'b;
End;
Return('1'b);
End;
 
End;
Output:
'$'       cannot be spelt.
'A'       can be spelt in        2 ways.
'BARK'    can be spelt in        8 ways.
'BOOK'    cannot be spelt.
'TREAT'   can be spelt in        8 ways.
'COMMON'  cannot be spelt.
'SQUAD'   can be spelt in        8 ways.
'CONFUSE' can be spelt in       32 ways.

PowerBASIC[edit]

Works with PowerBASIC 6 Console Compiler

#COMPILE EXE
#DIM ALL
'
' A B C p r o b l e m . b a s
'
' by Geary Chopoff
' for Chopoff Consulting and RosettaCode.org
' on 2014Jul23
'
'2014Jul23
'
'You are given a collection of ABC blocks. Just like the ones you had when you were a kid.
'There are twenty blocks with two letters on each block. You are guaranteed to have a complete
'alphabet amongst all sides of the blocks. The sample blocks are:
'((B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G) (Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R) (F S) (L Y) (P C) (Z M))
'The goal of this task is to write a function that takes a string and can determine whether
'you can spell the word with the given collection of blocks.
'
'The rules are simple:
'1.Once a letter on a block is used that block cannot be used again
'2.The function should be case-insensitive
'3. Show your output on this page for the following words:
' A, BARK, BOOK, TREAT, COMMON, SQUAD, CONFUSE
'-----------------------------------------------------------------------------
' G l o b a l C o n s t a n t s
'
%Verbose = 0 'make this 1 to have a lot of feedback
%MAX_BLOCKS = 20 'total number of blocks
%MAX_SIDES = 2 'total number of sides containing a unique letter per block
 
%MAX_ASC = 255
%FALSE = 0 'this is correct because there is ONLY ONE value for FALSE
%TRUE = (NOT %FALSE) 'this is one of MANY values of TRUE!
$FLAG_TRUE = "1"
$FLAG_FALSE = "0"
'-----------------------------------------------------------------------------
' G l o b a l V a r i a b l e s
'
GLOBAL blk() AS STRING
'-----------------------------------------------------------------------------
'i n i t B l o c k s
'
' as we will use this array only once we build it each time program is run
'
SUB initBlocks
LOCAL j AS INTEGER
j=1
blk(j)="BO"
j=j+1
blk(j)="XK"
j=j+1
blk(j)="DQ"
j=j+1
blk(j)="CP"
j=j+1
blk(j)="NA"
j=j+1
blk(j)="GT"
j=j+1
blk(j)="RE"
j=j+1
blk(j)="TG"
j=j+1
blk(j)="QD"
j=j+1
blk(j)="FS"
j=j+1
blk(j)="JW"
j=j+1
blk(j)="HU"
j=j+1
blk(j)="VI"
j=j+1
blk(j)="AN"
j=j+1
blk(j)="OB"
j=j+1
blk(j)="ER"
j=j+1
blk(j)="FS"
j=j+1
blk(j)="LY"
j=j+1
blk(j)="PC"
j=j+1
blk(j)="ZM"
IF j <> %MAX_BLOCKS THEN
STDOUT "initBlocks:Error: j is not same as MAX_BLOCKS!",j,%MAX_BLOCKS
END IF
END SUB
'-----------------------------------------------------------------------------
' m a k e W o r d
'
FUNCTION makeWord(tryWord AS STRING) AS BYTE
LOCAL retTF AS BYTE
LOCAL j AS INTEGER
LOCAL s AS INTEGER 'which side of block we are looking at
LOCAL k AS INTEGER
LOCAL c AS STRING 'character in tryWord we are looking for
 
 
FOR j = 1 TO LEN(tryWord)
c = UCASE$(MID$(tryWord,j,1)) 'character we want to show with block
 
retTF = %FALSE 'we assume this will fail
 
FOR k = 1 TO %MAX_BLOCKS
IF LEN(blk(k)) = %MAX_SIDES THEN
FOR s = 1 TO %MAX_SIDES
IF c = MID$(blk(k),s,1) THEN
retTF = %TRUE 'this block has letter we want
blk(k) = "" 'remove this block from further consideration
EXIT FOR
END IF
NEXT s
END IF
IF retTF THEN EXIT FOR 'can go on to next character in word
NEXT k
IF ISFALSE retTF THEN EXIT FOR 'if character not found then all is done
NEXT j
 
FUNCTION = retTF
END FUNCTION
'-----------------------------------------------------------------------------
' P B M A I N
'
FUNCTION PBMAIN () AS LONG
DIM blk(1 TO %MAX_BLOCKS, 1 TO %MAX_SIDES) AS STRING
LOCAL cmdLine AS STRING
 
initBlocks 'setup global array of blocks
 
cmdLine=COMMAND$
IF LEN(cmdLine)= 0 THEN
STDOUT "Useage for ABCproblem Version 1.00:"
STDOUT ""
STDOUT " >ABCproblem tryThisWord"
STDOUT ""
STDOUT "Where tryThisWord is a word you want to see if"+STR$(%MAX_BLOCKS)+" blocks can make."
STDOUT "If word can be made TRUE is returned."
STDOUT "Otherwise FALSE is returned."
EXIT FUNCTION
END IF
 
IF INSTR(TRIM$(cmdLine)," ") = 0 THEN
IF makeWord(cmdLine) THEN
STDOUT "TRUE"
ELSE
STDOUT "FALSE"
END IF
ELSE
STDOUT "Error:Missing word to try to make with blocks! <" & cmdLine & ">"
EXIT FUNCTION
END IF
END FUNCTION
 
Output:
$ FALSE
A TRUE
bark TRUE
bOOk FALSE
treAT TRUE
COmmon FALSE
sQuaD TRUE
CONFUSE TRUE
GearyChopoff TRUE

PowerShell[edit]

<#
.Synopsis
ABC Problem
.DESCRIPTION
You are given a collection of ABC blocks. Just like the ones you had when you were a kid.
There are twenty blocks with two letters on each block. You are guaranteed to have a
complete alphabet amongst all sides of the blocks
blocks = "BO","XK","DQ","CP","NA","GT","RE","TG","QD","FS","JW","HU","VI","AN","OB","ER","FS","LY","PC","ZM"
The goal of this task is to write a function that takes a string and can determine whether
you can spell the word with the given collection of blocks.
 
The rules are simple:
1.Once a letter on a block is used that block cannot be used again
2.The function should be case-insensitive
3. Show your output on this page for the following words:
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True
 
Using the examples below you can either see just the value or
status and the values using the verbose switch
 
.EXAMPLE
test-blocks -testword confuse
 
.EXAMPLE
test-blocks -testword confuse -verbose
 
#>

 
function test-blocks
{
[CmdletBinding()]
# [OutputType([int])]
Param
(
# word to test against blocks
[Parameter(Mandatory = $true,
ValueFromPipelineByPropertyName = $true)]
$testword
 
)
 
$word = $testword
 
#define array of blocks
[System.Collections.ArrayList]$blockarray = "BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"
 
#send word to chararray
$chararray = $word.ToCharArray()
$chars = $chararray
 
#get the character count
$charscount = $chars.count
 
#get the initial count of the blocks
$blockcount = $blockarray.Count
 
#find out how many blocks should be left from the difference
#of the blocks and characters in the word - 1 letter/1 block
$correctblockcount = $blockcount - $charscount
 
#loop through the characters in the word
foreach ($char in $chars)
{
 
#loop through the blocks
foreach ($block in $blockarray)
{
 
#check the current character against each letter on the current block
#and break if found so the array can reload
if ($char -in $block[0] -or $char -in $block[1])
{
 
write-verbose "match for letter - $char - removing block $block"
$blockarray.Remove($block)
break
 
}
 
}
 
}
#get final count of blocks left in array to determine if the word was
#correctly made
$finalblockcount = $blockarray.count
if ($finalblockcount -ne $correctblockcount)
{
write-verbose "$word : $false "
return $false
}
else
{
write-verbose "$word : $true "
return $true
}
 
}
 
#loop all the words and pass them to the function
$wordlist = "a", "bark", "book", "treat", "common", "squad", "confuse"
foreach ($word in $wordlist)
{
test-blocks -testword $word -Verbose
}
Output:
VERBOSE: match for letter - a - removing block NA
VERBOSE: a : True 
True
VERBOSE: match for letter - b - removing block BO
VERBOSE: match for letter - a - removing block NA
VERBOSE: match for letter - r - removing block RE
VERBOSE: match for letter - k - removing block XK
VERBOSE: bark : True 
True
VERBOSE: match for letter - b - removing block BO
VERBOSE: match for letter - o - removing block OB
VERBOSE: match for letter - k - removing block XK
VERBOSE: book : False 
False
VERBOSE: match for letter - t - removing block GT
VERBOSE: match for letter - r - removing block RE
VERBOSE: match for letter - e - removing block ER
VERBOSE: match for letter - a - removing block NA
VERBOSE: match for letter - t - removing block TG
VERBOSE: treat : True 
True
VERBOSE: match for letter - c - removing block CP
VERBOSE: match for letter - o - removing block BO
VERBOSE: match for letter - m - removing block ZM
VERBOSE: match for letter - o - removing block OB
VERBOSE: match for letter - n - removing block NA
VERBOSE: common : False 
False
VERBOSE: match for letter - s - removing block FS
VERBOSE: match for letter - q - removing block DQ
VERBOSE: match for letter - u - removing block HU
VERBOSE: match for letter - a - removing block NA
VERBOSE: match for letter - d - removing block QD
VERBOSE: squad : True 
True
VERBOSE: match for letter - c - removing block CP
VERBOSE: match for letter - o - removing block BO
VERBOSE: match for letter - n - removing block NA
VERBOSE: match for letter - f - removing block FS
VERBOSE: match for letter - u - removing block HU
VERBOSE: match for letter - s - removing block FS
VERBOSE: match for letter - e - removing block RE
VERBOSE: confuse : True 
True

or without verbose

True
True
False
True
False
True
True

Prolog[edit]

Traditional[edit]

Works with SWI-Prolog 6.5.3

abc_problem :-
maplist(abc_problem, ['', 'A', bark, bOOk, treAT, 'COmmon', sQuaD, 'CONFUSE']).
 
 
abc_problem(Word) :-
L = [[b,o],[x,k],[d,q],[c,p],[n,a],[g,t],[r,e],[t,g],[q,d],[f,s],
[j,w],[h,u],[v,i],[a,n],[o,b],[e,r],[f,s],[l,y],[p,c],[z,m]],
 
( abc_problem(L, Word)
-> format('~w OK~n', [Word])
; format('~w KO~n', [Word])).
 
abc_problem(L, Word) :-
atom_chars(Word, C_Words),
maplist(downcase_atom, C_Words, D_Words),
can_makeword(L, D_Words).
 
can_makeword(_L, []).
 
can_makeword(L, [H | T]) :-
( select([H, _], L, L1); select([_, H], L, L1)),
can_makeword(L1, T).
 
Output:
 ?- abc_problem.
 OK
A OK
bark OK
bOOk KO
treAT OK
COmmon KO
sQuaD OK
CONFUSE OK
true.


Constraint Handling Rules[edit]

An approach using [CHR https://dtai.cs.kuleuven.be/CHR/] via SWI-Prolog's [library(chr) http://www.swi-prolog.org/pldoc/man?section=chr] and a module I'm working on for composing predicates composer:

Works with: SWI Prolog 7
:- use_module([ library(chr),
abathslib(protelog/composer) ]).
 
:- chr_constraint blocks, block/1, letter/1, word_built.
 
can_build_word(Word) :-
maplist(block, [(b,o),(x,k),(d,q),(c,p),(n,a),(g,t),(r,e),(t,g),(q,d),(f,s),
(j,w),(h,u),(v,i),(a,n),(o,b),(e,r),(f,s),(l,y),(p,c),(z,m)]),
maplist(letter) <- string_chars <- string_lower(Word), %% using the `composer` module
word_built,
!.
 
'take letter and block' @ letter(L), block((A,B)) <=> L == A ; L == B | true.
'fail if letters remain' @ word_built, letter(_) <=> false.
 
%% These rules, removing remaining constraints from the store, are just cosmetic:
'clean up blocks' @ word_built \ block(_) <=> true.
'word was built' @ word_built <=> true.


Demonstration:

?- can_build_word("A").
true.
?- can_build_word("BARK").
true.
?- can_build_word("BOOK").
false.
?- can_build_word("TREAT").
true.
?- can_build_word("COMMON").
false.
?- can_build_word("SQUAD").
true.
?- can_build_word("CONFUSE").
true.

PureBasic[edit]

PureBasic: Iterative[edit]

EnableExplicit
#LETTERS = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM "
 
Procedure.s can_make_word(word.s)
Define.s letters = #LETTERS, buffer
Define.i index1, index2
Define.b match
For index1=1 To Len(word)
index2=1 : match=#False
Repeat
buffer=StringField(letters,index2,Space(1))
If FindString(buffer,Mid(word,index1,1),1,#PB_String_NoCase)
letters=RemoveString(letters,buffer+Chr(32),0,1,1)
match=#True
Break
EndIf
index2+1
Until index2>CountString(letters,Space(1))
If Not match : ProcedureReturn word+#TAB$+"FALSE" : EndIf
Next
ProcedureReturn word+#TAB$+"TRUE"
EndProcedure
 
OpenConsole()
PrintN(can_make_word("a"))
PrintN(can_make_word("BaRK"))
PrintN(can_make_word("BOoK"))
PrintN(can_make_word("TREAt"))
PrintN(can_make_word("cOMMON"))
PrintN(can_make_word("SqUAD"))
PrintN(can_make_word("COnFUSE"))
Input()

PureBasic: Recursive[edit]

Define.i
#LETTERS = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM "
 
Macro test(t)
Print(t+#TAB$+#TAB$+"= ") : If can_make_word(t) : PrintN("True") : Else : PrintN("False") : EndIf
EndMacro
 
Procedure.s residue(s$,n.i)
ProcedureReturn Left(s$,Int(n/3)*3)+Mid(s$,Int(n/3)*3+4)
EndProcedure
 
Procedure.b can_make_word(word$,letters$=#LETTERS)
n=FindString(letters$,Left(word$,1),1,#PB_String_NoCase)
If Len(word$) And n : ProcedureReturn can_make_word(Mid(word$,2),residue(letters$,n)) : EndIf
If Not Len(word$)  : ProcedureReturn #True : Else : ProcedureReturn #False  : EndIf
EndProcedure
 
OpenConsole()
test("a")  : test("BaRK")  : test("BOoK")  : test("TREAt")
test("cOMMON")  : test("SqUAD")  : test("COnFUSE")
Input()
Output:
a               = True
BaRK            = True
BOoK            = False
TREAt           = True
cOMMON          = False
SqUAD           = True
COnFUSE         = True

Python[edit]

Python: Iterative, with tests[edit]

 
blocks = [("B", "O"),
("X", "K"),
("D", "Q"),
("C", "P"),
("N", "A"),
("G", "T"),
("R", "E"),
("T", "G"),
("Q", "D"),
("F", "S"),
("J", "W"),
("H", "U"),
("V", "I"),
("A", "N"),
("O", "B"),
("E", "R"),
("F", "S"),
("L", "Y"),
("P", "C"),
("Z", "M")]
 
 
def can_make_word(word, block_collection=blocks):
"""
Return True if `word` can be made from the blocks in `block_collection`.
 
>>> can_make_word("")
False
>>> can_make_word("a")
True
>>> can_make_word("bark")
True
>>> can_make_word("book")
False
>>> can_make_word("treat")
True
>>> can_make_word("common")
False
>>> can_make_word("squad")
True
>>> can_make_word("coNFused")
True
"""

if not word:
return False
 
blocks_remaining = block_collection[:]
for char in word.upper():
for block in blocks_remaining:
if char in block:
blocks_remaining.remove(block)
break
else:
return False
return True
 
 
if __name__ == "__main__":
import doctest
doctest.testmod()
print(", ".join("'%s': %s" % (w, can_make_word(w)) for w in
["", "a", "baRk", "booK", "treat",
"COMMON", "squad", "Confused"]))
 
Output:
'': False, 'a': True, 'baRk': True, 'booK': False, 'treat': True, 'COMMON': False, 'squad': True, 'Confused': True

Python: Recursive[edit]

BLOCKS = 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM'.split()
 
def _abc(word, blocks):
for i, ch in enumerate(word):
for blk in (b for b in blocks if ch in b):
whatsleft = word[i + 1:]
blksleft = blocks[:]
blksleft.remove(blk)
if not whatsleft:
return True, blksleft
if not blksleft:
return False, blksleft
ans, blksleft = _abc(whatsleft, blksleft)
if ans:
return ans, blksleft
else:
break
return False, blocks
 
def abc(word, blocks=BLOCKS):
return _abc(word.upper(), blocks)[0]
 
if __name__ == '__main__':
for word in [''] + 'A BARK BoOK TrEAT COmMoN SQUAD conFUsE'.split():
print('Can we spell %9r? %r' % (word, abc(word)))
Output:
Can we spell       ''? False
Can we spell       'A'? True
Can we spell    'BARK'? True
Can we spell    'BoOK'? False
Can we spell   'TrEAT'? True
Can we spell  'COmMoN'? False
Can we spell   'SQUAD'? True
Can we spell 'conFUsE'? True

Python: Recursive, telling how[edit]

def mkword(w, b):
if not w: return []
 
c,w = w[0],w[1:]
for i in range(len(b)):
if c in b[i]:
m = mkword(w, b[0:i] + b[i+1:])
if m != None: return [b[i]] + m
 
def abc(w, blk):
return mkword(w.upper(), [a.upper() for a in blk])
 
blocks = 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM'.split()
 
for w in ", A, bark, book, treat, common, SQUAD, conFUsEd".split(', '):
print '\'' + w + '\'' + ' ->', abc(w, blocks)
Output:

Note the case of empty list returned for empty string; whether it means true or false is up to you.

'' -> []
'A' -> ['NA']
'bark' -> ['BO', 'NA', 'RE', 'XK']
'book' -> None
'treat' -> ['GT', 'RE', 'ER', 'NA', 'TG']
'common' -> None
'SQUAD' -> ['FS', 'DQ', 'HU', 'NA', 'QD']
'conFUsEd' -> ['CP', 'BO', 'NA', 'FS', 'HU', 'FS', 'RE', 'DQ']

R[edit]

With recursion[edit]

Vectorised function for R which will take a character vector and return a logical vector of equal length with TRUE and FALSE as appropriate for words which can/cannot be made with the blocks.

blocks <- rbind(c("B","O"),
c("X","K"),
c("D","Q"),
c("C","P"),
c("N","A"),
c("G","T"),
c("R","E"),
c("T","G"),
c("Q","D"),
c("F","S"),
c("J","W"),
c("H","U"),
c("V","I"),
c("A","N"),
c("O","B"),
c("E","R"),
c("F","S"),
c("L","Y"),
c("P","C"),
c("Z","M"))
 
canMake <- function(x) {
x <- toupper(x)
used <- rep(FALSE, dim(blocks)[1L])
charList <- strsplit(x, character(0))
tryChars <- function(chars, pos, used, inUse=NA) {
if (pos > length(chars)) {
TRUE
} else {
used[inUse] <- TRUE
possible <- which(blocks == chars[pos] & !used, arr.ind=TRUE)[, 1L]
any(vapply(possible, function(possBlock) tryChars(chars, pos + 1, used, possBlock), logical(1)))
}
}
setNames(vapply(charList, tryChars, logical(1), 1L, used), x)
}
canMake(c("A",
"BARK",
"BOOK",
"TREAT",
"COMMON",
"SQUAD",
"CONFUSE"))
Output:
      A    BARK    BOOK   TREAT  COMMON   SQUAD CONFUSE 
   TRUE    TRUE   FALSE    TRUE   FALSE    TRUE    TRUE

Without recursion[edit]

Second version without recursion and giving every unique combination of blocks for each word:

canMakeNoRecursion <- function(x) {
x <- toupper(x)
charList <- strsplit(x, character(0))
getCombos <- function(chars) {
charBlocks <- data.matrix(expand.grid(lapply(chars, function(char) which(blocks == char, arr.ind=TRUE)[, 1L])))
charBlocks <- charBlocks[!apply(charBlocks, 1, function(row) any(duplicated(row))), , drop=FALSE]
if (dim(charBlocks)[1L] > 0L) {
t(apply(charBlocks, 1, function(row) apply(blocks[row, , drop=FALSE], 1, paste, collapse="")))
} else {
character(0)
}
}
setNames(lapply(charList, getCombos), x)
}
canMakeNoRecursion(c("A",
"BARK",
"BOOK",
"TREAT",
"COMMON",
"SQUAD",
"CONFUSE"))
Output:
$A
     [,1] [,2]
[1,] "AN" "NA"

$BARK
     [,1] [,2] [,3] [,4]
[1,] "BO" "AN" "RE" "XK"
[2,] "OB" "AN" "RE" "XK"
[3,] "BO" "NA" "RE" "XK"
[4,] "OB" "NA" "RE" "XK"
[5,] "BO" "AN" "ER" "XK"
[6,] "OB" "AN" "ER" "XK"
[7,] "BO" "NA" "ER" "XK"
[8,] "OB" "NA" "ER" "XK"

$BOOK
character(0)

$TREAT
     [,1] [,2] [,3] [,4] [,5]
[1,] "GT" "RE" "ER" "AN" "TG"
[2,] "GT" "ER" "RE" "AN" "TG"
[3,] "GT" "RE" "ER" "NA" "TG"
[4,] "GT" "ER" "RE" "NA" "TG"
[5,] "TG" "RE" "ER" "AN" "GT"
[6,] "TG" "ER" "RE" "AN" "GT"
[7,] "TG" "RE" "ER" "NA" "GT"
[8,] "TG" "ER" "RE" "NA" "GT"

$COMMON
character(0)

$SQUAD
     [,1] [,2] [,3] [,4] [,5]
[1,] "FS" "QD" "HU" "AN" "DQ"
[2,] "FS" "QD" "HU" "AN" "DQ"
[3,] "FS" "QD" "HU" "NA" "DQ"
[4,] "FS" "QD" "HU" "NA" "DQ"
[5,] "FS" "DQ" "HU" "AN" "QD"
[6,] "FS" "DQ" "HU" "AN" "QD"
[7,] "FS" "DQ" "HU" "NA" "QD"
[8,] "FS" "DQ" "HU" "NA" "QD"

$CONFUSE
      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
 [1,] "CP" "OB" "NA" "FS" "HU" "FS" "ER"
 [2,] "PC" "OB" "NA" "FS" "HU" "FS" "ER"
 [3,] "CP" "BO" "NA" "FS" "HU" "FS" "ER"
 [4,] "PC" "BO" "NA" "FS" "HU" "FS" "ER"
 [5,] "CP" "OB" "AN" "FS" "HU" "FS" "ER"
 [6,] "PC" "OB" "AN" "FS" "HU" "FS" "ER"
 [7,] "CP" "BO" "AN" "FS" "HU" "FS" "ER"
 [8,] "PC" "BO" "AN" "FS" "HU" "FS" "ER"
 [9,] "CP" "OB" "NA" "FS" "HU" "FS" "ER"
[10,] "PC" "OB" "NA" "FS" "HU" "FS" "ER"
[11,] "CP" "BO" "NA" "FS" "HU" "FS" "ER"
[12,] "PC" "BO" "NA" "FS" "HU" "FS" "ER"
[13,] "CP" "OB" "AN" "FS" "HU" "FS" "ER"
[14,] "PC" "OB" "AN" "FS" "HU" "FS" "ER"
[15,] "CP" "BO" "AN" "FS" "HU" "FS" "ER"
[16,] "PC" "BO" "AN" "FS" "HU" "FS" "ER"
[17,] "CP" "OB" "NA" "FS" "HU" "FS" "RE"
[18,] "PC" "OB" "NA" "FS" "HU" "FS" "RE"
[19,] "CP" "BO" "NA" "FS" "HU" "FS" "RE"
[20,] "PC" "BO" "NA" "FS" "HU" "FS" "RE"
[21,] "CP" "OB" "AN" "FS" "HU" "FS" "RE"
[22,] "PC" "OB" "AN" "FS" "HU" "FS" "RE"
[23,] "CP" "BO" "AN" "FS" "HU" "FS" "RE"
[24,] "PC" "BO" "AN" "FS" "HU" "FS" "RE"
[25,] "CP" "OB" "NA" "FS" "HU" "FS" "RE"
[26,] "PC" "OB" "NA" "FS" "HU" "FS" "RE"
[27,] "CP" "BO" "NA" "FS" "HU" "FS" "RE"
[28,] "PC" "BO" "NA" "FS" "HU" "FS" "RE"
[29,] "CP" "OB" "AN" "FS" "HU" "FS" "RE"
[30,] "PC" "OB" "AN" "FS" "HU" "FS" "RE"
[31,] "CP" "BO" "AN" "FS" "HU" "FS" "RE"
[32,] "PC" "BO" "AN" "FS" "HU" "FS" "RE"

Racket[edit]

I believe you can make an empty word by using no blocks. So '(can-make-word? "")' is true for me.

#lang racket
(define block-strings
(list "BO" "XK" "DQ" "CP" "NA"
"GT" "RE" "TG" "QD" "FS"
"JW" "HU" "VI" "AN" "OB"
"ER" "FS" "LY" "PC" "ZM"))
(define BLOCKS (map string->list block-strings))
 
(define (can-make-word? w)
(define (usable-block blocks word-char)
(for/first ((b (in-list blocks)) #:when (memf (curry char-ci=? word-char) b)) b))
 
(define (inner word-chars blocks tried-blocks)
(cond
[(null? word-chars) #t]
[(usable-block blocks (car word-chars))
=>
(lambda (b)
(or
(inner (cdr word-chars) (append tried-blocks (remove b blocks)) null)
(inner word-chars (remove b blocks) (cons b tried-blocks))))]
[else #f]))
(inner (string->list w) BLOCKS null))
 
(define WORD-LIST '("" "A" "BARK" "BOOK" "TREAT" "COMMON" "SQUAD" "CONFUSE"))
(define (report-word w)
(printf "Can we make: ~a? ~a~%"
(~s w #:min-width 9)
(if (can-make-word? w) "yes" "no")))
 
(module+ main
(for-each report-word WORD-LIST))
 
(module+ test
(require rackunit)
(check-true (can-make-word? ""))
(check-true (can-make-word? "A"))
(check-true (can-make-word? "BARK"))
(check-false (can-make-word? "BOOK"))
(check-true (can-make-word? "TREAT"))
(check-false (can-make-word? "COMMON"))
(check-true (can-make-word? "SQUAD"))
(check-true (can-make-word? "CONFUSE")))
Output:
Can we make: ""       ? yes
Can we make: "A"      ? yes
Can we make: "BARK"   ? yes
Can we make: "BOOK"   ? no
Can we make: "TREAT"  ? yes
Can we make: "COMMON" ? no
Can we make: "SQUAD"  ? yes
Can we make: "CONFUSE"? yes

RapidQ[edit]

dim Blocks as string
dim InWord as string
 
Function CanMakeWord (FInWord as string, FBlocks as string) as integer
dim WIndex as integer, BIndex as integer
 
FBlocks = UCase$(FBlocks) - " " - ","
FInWord = UCase$(FInWord)
 
for WIndex = 1 to len(FInWord)
BIndex = instr(FBlocks, FInWord[WIndex])
 
if BIndex then
FBlocks = Replace$(FBlocks,"**",iif(BIndex mod 2,BIndex,BIndex-1))
else
Result = 0
exit function
end if
next
 
Result = 1
end function
 
InWord = "Confuse"
Blocks = "BO, XK, DQ, CP, NA, GT, RE, TG, QD, FS, JW, HU, VI, AN, OB, ER, FS, LY, PC, ZM"
showmessage "Can make: " + InWord + " = " + iif(CanMakeWord(InWord, Blocks), "True", "False")
 
Output:
Can make: A = TRUE
Can make: BARK = TRUE
Can make: BOOK = FALSE
Can make: TREAT = TRUE
Can make: COMMON = FALSE
Can make: SQUAD = TRUE
Can make: CONFUSE = TRUE

REXX[edit]

version 1[edit]

/*REXX program determines if words can be spelt from a pool of toy blocks.    */
list= 'A bark bOOk treat common squaD conFuse' /*words can be in any case. */
blocks= 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM'
do k=1 for words(list) /*traipse through a list of seven words*/
call spell word(list,k) /*display if word can be spelt (or not)*/
end /*k*/ /* [↑] tests each word in the list. */
exit /*stick a fork in it, we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
spell: procedure expose blocks; arg x; p.=0 /*uppercase word to be spelt. */
parse upper var blocks theBlocks; L=length(x) /*uppercase the block letters.*/
/* [↓] try to spell the word.*/
do try=1 for L; z=theBlocks /*use a fresh copy of Z blocks*/
do n=1 for L; y=substr(x,n,1) /*attempt another block letter*/
p.n=pos(y,z,1+p.n); if p.n==0 then iterate try /*not found? Try again.*/
z=overlay(' ',z,p.n) /*mutate block ───► a onesy.*/
do k=1 for words(blocks) /*scrub block pool (not 1s). */
if length(word(z,k))==1 then z=delword(z,k,1) /*single char? Delete.*/
end /*k*/ /* [↑] elide any onesy block.*/
if n==L then leave try /*was the last letter spelt? */
end /*n*/ /* [↑] end of a block attempt*/
end /*try*/ /* [↑] end of "TRY" permute. */
 
say right(arg(1),30) right(word("can't can", (n==L)+1), 6) 'be spelt.'
return

output:     [Spelling note:   "spelt" is an alternate version of "spelled".]

                             A    can be spelt.
                          bark    can be spelt.
                          bOOk  can't be spelt.
                         treat    can be spelt.
                        common  can't be spelt.
                         squaD    can be spelt.
                       conFuse    can be spelt.  

version 2[edit]

/* REXX ---------------------------------------------------------------
* 10.01.2014 Walter Pachl counts the number of possible ways
* 12.01.2014 corrected date and output
*--------------------------------------------------------------------*/

show=(arg(1)<>'')
blocks = 'BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM'
list = '$ A baRk bOOk trEat coMMon squaD conFuse'
list=translate(list)
Do i=1 To words(blocks)
blkn.i=word(blocks,i)'-'i
blk.i=word(blocks,i)
End
w.=''
wlen=0
Do i=1 To words(list)
w.i=word(list,i)
wlen=max(wlen,length(w.i))
End
Do wi=0 To words(list)
word = w.wi
ways=0
poss.=0
lw=length(word)
cannot=0
Do i=1 To lw /* loop over the characters */
c=substr(word,i,1) /* the current character */
Do j=1 To words(blocks) /* loop over blocks */
blk=word(blocks,j)
If pos(c,blk)>0 Then Do /* block can be used in this position */
z=poss.i.0+1
poss.i.z=j
poss.i.0=z /* number of possible blocks for pos i */
End
End
If poss.i.0=0 Then Do
cannot=1
Leave i
End
End
 
If cannot=0 Then Do /* no prohibitive character */
s.=0
Do j=1 To poss.1.0 /* build possible strings for char 1 */
z=s.1.0+1
s.1.z=poss.1.j
s.1.0=z
End
Do i=2 To lw /* build possible strings for chars 1 to i */
ii=i-1
Do j=1 To poss.i.0
Do k=1 To s.ii.0
z=s.i.0+1
s.i.z=s.ii.k poss.i.j
s.i.0=z
End
End
End
Do p=1 To s.lw.0 /* loop through all possible strings */
v=valid(s.lw.p) /* test if the string is valid*/
If v Then Do /* it is */
ways=ways+1 /* increment number of ways */
way.ways='' /* and store the string's blocks */
Do ii=1 To lw
z=word(s.lw.p,ii)
way.ways=way.ways blk.z
End
End
End
End
/*---------------------------------------------------------------------
* now show the result
*--------------------------------------------------------------------*/

ol=left(''''word'''',wlen+2)
Select
When ways=0 Then
ol=ol 'cannot be spelt'
When ways=1 Then
ol=ol 'can be spelt'
Otherwise
ol=ol 'can be spelt in' ways 'ways'
End
Say ol'.'
If show Then Do
Do wj=1 To ways
Say copies(' ',10) way.wj
End
End
End
Exit
 
valid: Procedure
/*---------------------------------------------------------------------
* Check if the same block is used more than once -> 0
* Else: the combination is valid
*--------------------------------------------------------------------*/

Parse Arg list
used.=0
Do i=1 To words(list)
w=word(list,i)
If used.w Then Return 0
used.w=1
End
Return 1
Output:
''        cannot be spelt.
'$'       cannot be spelt.
'A'       can be spelt in 2 ways.
'BARK'    can be spelt in 8 ways.
'BOOK'    cannot be spelt.
'TREAT'   can be spelt in 8 ways.
'COMMON'  cannot be spelt.
'SQUAD'   can be spelt in 8 ways.
'CONFUSE' can be spelt in 32 ways.
Output:
extended
''        cannot be spelt.
'$'       cannot be spelt.
'A'       can be spelt in 2 ways.
            NA
            AN
'BARK'    can be spelt in 8 ways.
            BO NA RE XK
            OB NA RE XK
            BO AN RE XK
            OB AN RE XK
            BO NA ER XK
            OB NA ER XK
            BO AN ER XK
            OB AN ER XK
'BOOK'    cannot be spelt.
'TREAT'   can be spelt in 8 ways.
            TG ER RE NA GT
            TG RE ER NA GT
            TG ER RE AN GT
            TG RE ER AN GT
            GT ER RE NA TG
            GT RE ER NA TG
            GT ER RE AN TG
            GT RE ER AN TG
'COMMON'  cannot be spelt.
'SQUAD'   can be spelt in 8 ways.
            FS QD HU NA DQ
            FS QD HU NA DQ
            FS QD HU AN DQ
            FS QD HU AN DQ
            FS DQ HU NA QD
            FS DQ HU NA QD
            FS DQ HU AN QD
            FS DQ HU AN QD
'CONFUSE' can be spelt in 32 ways.
            CP BO NA FS HU FS RE
            PC BO NA FS HU FS RE
            CP OB NA FS HU FS RE
            PC OB NA FS HU FS RE
            CP BO AN FS HU FS RE
            PC BO AN FS HU FS RE
            CP OB AN FS HU FS RE
            PC OB AN FS HU FS RE
            CP BO NA FS HU FS RE
            PC BO NA FS HU FS RE
            CP OB NA FS HU FS RE
            PC OB NA FS HU FS RE
            CP BO AN FS HU FS RE
            PC BO AN FS HU FS RE
            CP OB AN FS HU FS RE
            PC OB AN FS HU FS RE
            CP BO NA FS HU FS ER
            PC BO NA FS HU FS ER
            CP OB NA FS HU FS ER
            PC OB NA FS HU FS ER
            CP BO AN FS HU FS ER
            PC BO AN FS HU FS ER
            CP OB AN FS HU FS ER
            PC OB AN FS HU FS ER
            CP BO NA FS HU FS ER
            PC BO NA FS HU FS ER
            CP OB NA FS HU FS ER
            PC OB NA FS HU FS ER
            CP BO AN FS HU FS ER
            PC BO AN FS HU FS ER
            CP OB AN FS HU FS ER
            PC OB AN FS HU FS ER

Ring[edit]

Blocks = [ :BO, :XK, :DQ, :CP, :NA, :GT, :RE, :TG, :QD, :FS, :JW, :HU, :VI, :AN, :OB, :ER, :FS, :LY, :PC, :ZM ]
Words = [ :A, :BARK, :BOOK, :TREAT, :COMMON, :SQUAD, :CONFUSE ]
 
for x in words
see '>>> can_make_word("' + upper(x) + '")' + nl
if checkword(x,blocks) see "True" + nl
else see "False" + nl
ok
next
 
func CheckWord Word,Blocks
cBlocks = BLocks
for x in word
Found = false
for y = 1 to len(cblocks)
if x = cblocks[y][1] or x = cblocks[y][2]
cblocks[y] = "--"
found = true
exit
ok
next
if found = false return false ok
next
return true
Output:
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
 >>> can_make_word("CONFUSE")
True

Ruby[edit]

This one uses a case insensitive regular expression. The 'sub!' method substitutes the first substring it finds and returns nil if nothing is found.

words = %w(A BaRK BOoK tREaT COmMOn SqUAD CoNfuSE) << ""
 
words.each do |word|
blocks = "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM"
res = word.each_char.all?{|c| blocks.sub!(/\w?#{c}\w?/i, "")} #regexps can be interpolated like strings
puts "#{word.inspect}: #{res}"
end
 
Output:
"A": true
"BaRK": true
"BOoK": false
"tREaT": true
"COmMOn": false
"SqUAD": true
"CoNfuSE": true
"": true

Run BASIC[edit]

blocks$    = "BO,XK,DQ,CP,NA,GT,RE,TG,QD,FS,JW,HU,VI,AN,OB,ER,FS,LY,PC,ZM"
makeWord$ = "A,BARK,BOOK,TREAT,COMMON,SQUAD,Confuse"
b = int((len(blocks$) /3) + 1)
dim blk$(b)
 
for i = 1 to len(makeWord$)
wrd$ = word$(makeWord$,i,",")
dim hit(b)
n = 0
if wrd$ = "" then exit for
for k = 1 to len(wrd$)
w$ = upper$(mid$(wrd$,k,1))
for j = 1 to b
if hit(j) = 0 then
if w$ = left$(word$(blocks$,j,","),1) or w$ = right$(word$(blocks$,j,","),1) then
hit(j) = 1
n = n + 1
exit for
end if
end if
next j
next k
print wrd$;chr$(9);
if n = len(wrd$) then print " True" else print " False"
next i
A	 True
BARK	 True
BOOK	 False
TREAT	 True
COMMON	 False
SQUAD	 True
Confuse	 True

Rust[edit]

This implementation uses a backtracking search.

use std::iter::repeat;
 
fn rec_can_make_word(index: usize, word: &str, blocks: &[&str], used: &mut[bool]) -> bool {
let c = word.chars().nth(index).unwrap().to_uppercase().next().unwrap();
for i in 0..blocks.len() {
if !used[i] && blocks[i].chars().any(|s| s == c) {
used[i] = true;
if index == 0 || rec_can_make_word(index - 1, word, blocks, used) {
return true;
}
used[i] = false;
}
}
false
}
 
fn can_make_word(word: &str, blocks: &[&str]) -> bool {
return rec_can_make_word(word.chars().count() - 1, word, blocks,
&mut repeat(false).take(blocks.len()).collect::<Vec<_>>());
}
 
fn main() {
let blocks = [("BO"), ("XK"), ("DQ"), ("CP"), ("NA"), ("GT"), ("RE"), ("TG"), ("QD"), ("FS"),
("JW"), ("HU"), ("VI"), ("AN"), ("OB"), ("ER"), ("FS"), ("LY"), ("PC"), ("ZM")];
let words = ["A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSE"];
for word in &words {
println!("{} -> {}", word, can_make_word(word, &blocks))
}
}
 
Output:
A -> true
BARK -> true
BOOK -> false
TREAT -> true
COMMON -> false
SQUAD -> true
CONFUSE -> true

Scala[edit]

Library: Scala
object AbcBlocks extends App {
 
protected class Block(face1: Char, face2: Char) {
 
def isFacedWith(that: Char) = { that == face1 || that == face2 }
override def toString() = face1.toString + face2
}
protected object Block {
def apply(faces: String) = new Block(faces.head, faces.last)
}
 
type word = Seq[Block]
 
private val blocks = List(Block("BO"), Block("XK"), Block("DQ"), Block("CP"), Block("NA"),
Block("GT"), Block("RE"), Block("TG"), Block("QD"), Block("FS"),
Block("JW"), Block("HU"), Block("VI"), Block("AN"), Block("OB"),
Block("ER"), Block("FS"), Block("LY"), Block("PC"), Block("ZM"))
 
private def isMakeable(word: String, blocks: word) = {
 
def getTheBlocks(word: String, blocks: word) = {
 
def inner(word: String, toCompare: word, rest: word, accu: word): word = {
if (word.isEmpty || rest.isEmpty || toCompare.isEmpty) accu
else if (toCompare.head.isFacedWith(word.head)) {
val restant = rest diff List(toCompare.head)
inner(word.tail, restant, restant, accu :+ toCompare.head)
} else inner(word, toCompare.tail, rest, accu)
}
inner(word, blocks, blocks, Nil)
}
 
word.lengthCompare(getTheBlocks(word, blocks).size) == 0
}
 
val words = List("A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "CONFUSED", "ANBOCPDQERSFTGUVWXLZ")
// Automatic tests
assert(isMakeable(words(0), blocks))
assert(isMakeable(words(1), blocks))
assert(!isMakeable(words(2), blocks)) // BOOK not
assert(isMakeable(words(3), blocks))
assert(!isMakeable(words(4), blocks)) // COMMON not
assert(isMakeable(words(5), blocks))
assert(isMakeable(words(6), blocks))
assert(isMakeable(words(7), blocks))
 
//words(7).mkString.permutations.foreach(s => assert(isMakeable(s, blocks)))
 
words.foreach(w => println(s"$w can${if (isMakeable(w, blocks)) " " else "not "}be made."))
}

Scheme[edit]

In R5RS:

(define *blocks*
'((#\B #\O) (#\X #\K) (#\D #\Q) (#\C #\P) (#\N #\A)
(#\G #\T) (#\R #\E) (#\T #\G) (#\Q #\D) (#\F #\S)
(#\J #\W) (#\H #\U) (#\V #\I) (#\A #\N) (#\O #\B)
(#\E #\R) (#\F #\S) (#\L #\Y) (#\P #\C) (#\Z #\M)))
 
(define (exists p? li)
(and (not (null? li))
(or (p? (car li))
(exists p? (cdr li)))))
 
(define (remove-one x li)
(cond
((null? li) '())
((equal? (car li) x) (cdr li))
(else (cons (car li) (remove-one x (cdr li))))))
 
(define (can-make-list? li blocks)
(or (null? li)
(exists
(lambda (block)
(and
(member (char-upcase (car li)) block)
(can-make-list? (cdr li) (remove-one block blocks))))
blocks)))
 
(define (can-make-word? word)
(can-make-list? (string->list word) *blocks*))
 
 
(define *words*
'("A" "Bark" "book" "TrEaT" "COMMON" "squaD" "CONFUSE"))
 
(for-each
(lambda (word)
(display (if (can-make-word? word)
" Can make word: "
"Cannot make word: "))
(display word)
(newline))
*words*)
Output:
   Can make word: A
   Can make word: Bark
Cannot make word: book
   Can make word: TrEaT
Cannot make word: COMMON
   Can make word: squaD
   Can make word: CONFUSE

Seed7[edit]

$ include "seed7_05.s7i";
 
const func boolean: canMakeWords (in array string: blocks, in string: word) is func
result
var boolean: okay is FALSE;
local
var integer: index is 1;
begin
if word = "" then
okay := TRUE;
elsif length(blocks) <> 0 then
while index <= length(blocks) and not okay do
if blocks[index][1] = word[1] or blocks[index][2] = word[1] then
okay := canMakeWords(blocks[.. pred(index)] & blocks[succ(index) ..], word[2 ..]);
end if;
incr(index);
end while;
end if;
end func;
 
const array string: blocks is [] ("BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM");
 
const func boolean: canMakeWords (in string: word) is
return canMakeWords(blocks, upper(word));
 
const proc: main is func
local
var string: word is "";
begin
for word range [] ("", "A", "BARK", "BOOK", "TREAT", "COMMON", "SQUAD", "Confuse") do
writeln(word rpad 10 <& canMakeWords(word));
end for;
end func;
Output:
          TRUE
A         TRUE
BARK      TRUE
BOOK      FALSE
TREAT     TRUE
COMMON    FALSE
SQUAD     TRUE
Confuse   TRUE

SequenceL[edit]

Recursive Search Version[edit]

import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
 
main(args(2)) :=
let
result[i] := args[i] ++ ": " ++ boolToString(can_make_word(args[i], InitBlocks));
in
delimit(result, '\n');
 
InitBlocks := ["BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", "JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM"];
 
can_make_word(word(1), blocks(2)) :=
let
choices[i] := i when some(blocks[i] = toUpper(head(word)));
blocksAfterChoice[i] := blocks[(1 ... (choices[i] - 1)) ++ ((choices[i] + 1) ... size(blocks))];
in
true when size(word) = 0
else
false when size(choices) = 0
else
some(can_make_word(tail(word), blocksAfterChoice));
 
toUpper(letter(0)) :=
let
ascii := asciiToInt(letter);
in
letter when ascii >= 65 and ascii <= 90
else
intToAscii(ascii - 32);
Output:
cmd:> main.exe A BARK BOOK TREAT COMMON SQUAD CONFUSE
"A: true
BARK: true
BOOK: false
TREAT: true
COMMON: false
SQUAD: true
CONFUSE: true"

RegEx Version[edit]

import <Utilities/Conversion.sl>;
import <Utilities/Sequence.sl>;
import <RegEx/RegEx.sl>;
 
main(args(2)) :=
let
result[i] := args[i] ++ ": " ++ boolToString(can_make_word(args[i], InitBlocks));
in
delimit(result, '\n');
 
InitBlocks := "BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM";
 
can_make_word(word(1), blocks(1)) :=
let
regEx := "(\\a" ++ [toUpper(head(word))] ++ "|" ++ [toUpper(head(word))] ++ "\\a)";
 
newBlocks := replaceFirst(blocks, regEx, "");
in
true when size(word) = 0
else
false when size(newBlocks) = size(blocks)
else
can_make_word(tail(word), newBlocks);
 
toUpper(letter(0)) :=
let
ascii := asciiToInt(letter);
in
letter when ascii >= 65 and ascii <= 90
else
intToAscii(ascii - 32);

Sidef[edit]

Translation of: Perl
func can_make_word(word, blocks) {
 
blocks.map! { |b| b.uc.chars.sort.join }.freq!
 
func(word, blocks) {
var char = word.shift
var candidates = blocks.keys.grep { |k| 0 <= k.index(char) }
 
for candidate in candidates {
blocks{candidate} <= 0 && next;
local blocks{candidate} = (blocks{candidate} - 1);
return true if (word.is_empty || __FUNC__(word, blocks));
}
 
return false;
}(word.uc.chars, blocks)
}

Tests:

var b1 = %w(BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM)
var b2 = %w(US TZ AO QA)
 
var tests = [
["A", true, b1],
["BARK", true, b1],
["BOOK", false, b1],
["TREAT", true, b1],
["COMMON", false, b1],
["SQUAD", true, b1],
["CONFUSE", true, b1],
["auto", true, b2],
];
 
tests.each { |t|
var bool = can_make_word(t[0], t[2]);
say ("%7s -> %s" % (t[0], bool));
assert(bool == t[1])
}
Output:
      A -> true
   BARK -> true
   BOOK -> false
  TREAT -> true
 COMMON -> false
  SQUAD -> true
CONFUSE -> true
   auto -> true

Smalltalk[edit]

Recursive solution. Tested in Pharo.

 
ABCPuzzle>>test
#('A' 'BARK' 'BOOK' 'TreaT' 'COMMON' 'sQUAD' 'CONFuSE') do: [ :each |
Transcript crShow: each, ': ', (self solveFor: each) asString ]
 
ABCPuzzle>>solveFor: letters
| blocks |
blocks := #('BO' 'XK' 'DQ' 'CP' 'NA' 'GT' 'RE' 'TG' 'QD' 'FS' 'JW' 'HU' 'VI' 'AN' 'OB' 'ER' 'FS' 'LY' 'PC' 'ZM').
^ self solveFor: letters asUppercase with: blocks asOrderedCollection
 
ABCPuzzle>>solveFor: letters with: blocks
| l ldash matches |
letters isEmpty ifTrue: [ ^ true ].
l := letters first.
ldash := letters allButFirst.
matches := blocks select: [  :b | b includes: l ].
matches isEmpty ifTrue: [ ^ false ].
matches do: [  :m | | bdash |
bdash := blocks copy.
bdash remove: m.
(self solveFor: ldash with: bdash) ifTrue: [ ^ true ] ].
^ false
 
Output:
ABCPuzzle new test

A: true
BARK: true
BOOK: false
TreaT: true
COMMON: false
sQUAD: true
CONFuSE: true

SPAD[edit]

 
blocks:List Tuple Symbol:= _
[(B,O),(X,K),(D,Q),(C,P),(N,A),(G,T),(R,E),(T,G),(Q,D),(F,S), _
(J,W),(H,U),(V,I),(A,N),(O,B),(E,R),(F,S),(L,Y),(P,C),(Z,M)]
 
 
findComb(l:List List NNI):List List NNI ==
#l=0 => []
#l=1 => [[s] for s in first l]
r:List List NNI:=[]
for y in findComb(rest l) repeat
r:=concat(r,[concat(x,y) for x in first l])
return r
 
canMakeWord?(word,blocks) ==
word:=upperCase word
bchr:=[map(char,map(string,s::List(Symbol))) for s in blocks]
c:=[[j for j in 1..#blocks | member?(word.k,bchr.j)] for k in 1..#word]
reduce(_or,[test(#removeDuplicates(l)=#word) for l in findComb(c)])
 
 
Example:=["a","bark","book","treat","common","squad","confuse"]
 
[canMakeWord?(s,blocks) for s in Example]
 
 

Programming details:UserGuide

Output:

  [true,true,false,true,false,true,true]
                                                     Type: List(Boolean) 

There is optimization potential of course.


Swift[edit]

import Foundation
 
func Blockable(str: String) -> Bool {
 
var blocks = [
"BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS",
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM" ]
 
var strUp = str.uppercaseString
var final = ""
 
for char: Character in strUp {
var CharString: String = ""; CharString.append(char)
for j in 0..<blocks.count {
if blocks[j].hasPrefix(CharString) ||
blocks[j].hasSuffix(CharString) {
final.append(char)
blocks[j] = ""
break
}
}
}
 
return final == strUp
}
 
func CanOrNot(can: Bool) -> String {
return can ? "can" : "cannot"
}
 
for str in [ "A", "BARK", "BooK", "TrEaT", "comMON", "sQuAd", "Confuse" ] {
println("'\(str)' \(CanOrNot(Blockable(str))) be spelled with blocks.")
}
Output:
'A' can be spelled with blocks.
'BARK' can be spelled with blocks.
'BooK' cannot be spelled with blocks.
'TrEaT' can be spelled with blocks.
'comMON' cannot be spelled with blocks.
'sQuAd' can be spelled with blocks.
'Confuse' can be spelled with blocks.

Tcl[edit]

Works with: Tcl version 8.6
package require Tcl 8.6
 
proc abc {word {blocks {BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM}}} {
set abc {{letters blocks abc} {
set rest [lassign $letters ch]
set i 0
foreach blk $blocks {
if {$ch in $blk && (![llength $rest]
|| [apply $abc $rest [lreplace $blocks $i $i] $abc])} {
return true
}
incr i
}
return false
}}
return [apply $abc [split $word ""] [lmap b $blocks {split $b ""}] $abc]
}
 
foreach word {"" A BARK BOOK TREAT COMMON SQUAD CONFUSE} {
puts [format "Can we spell %9s? %s" '$word' [abc $word]]
}
Output:
Can we spell        ''? false
Can we spell       'A'? true
Can we spell    'BARK'? true
Can we spell    'BOOK'? false
Can we spell   'TREAT'? true
Can we spell  'COMMON'? false
Can we spell   'SQUAD'? true
Can we spell 'CONFUSE'? true

TUSCRIPT[edit]

set words = "A'BARK'BOOK'TREAT'COMMON'SQUAD'CONFUSE"
set result = *
loop word = words
set blocks = "BO'XK'DQ'CP'NA'GT'RE'TG'QD'FS'JW'HU'VI'AN'OB'ER'FS'LY'PC'ZM"
set wordx = split (word, |"~</~")
set cond = "true"
loop char = wordx
set n = filter_index (blocks, "~*{char}*~", -)
if (n.eq."") then
set cond = "false"
exit
endif
set n2 = select (n, 1)
set n3 = select (blocks, #n2, blocks)
endloop
set out = concat (word, " ", cond)
set result = append (result, out)
endloop
Output:
A true
BARK true
BOOK false
TREAT true
COMMON false
SQUAD true
CONFUSE true

TXR[edit]

@(do
(defvar blocks '((B O) (X K) (D Q) (C P) (N A) (G T) (R E) (T G)
(Q D) (F S) (J W) (H U) (V I) (A N) (O B) (E R)
(F S) (L Y) (P C) (Z M)))
 
 ;; Define and build hash which maps each letter that occurs in blocks
 ;; to a list of the blocks in which that letter occurs.
 
(defvar alpha2blocks [hash-uni [group-by first blocks]
[group-by second blocks]
append])
 
 ;; convert, e.g. "abc" -> (A B C)
 ;; intern -- convert a string to an interned symbol "A" -> A
 ;; tuples -- turn string into 1-element tuples: "ABC" -> ("A" "B" "C")
 ;; square brackets around mapcar -- Lisp-1 style evaluation, allowing
 ;; the intern function binding to be treated as a variable binding.
 
(defun string-to-syms (str)
[mapcar intern (tuples 1 (upcase-str str))])
 
 ;; Recursive part of algorithm working purely with Lisp symbols.
 ;; alpha -- single symbol denoting a letter
 ;; [alpha2blocks alpha] -- look up list of blocks for given letter
 ;; (memq item list) -- is item a member of list, under eq equality?
 ;; (remq item list) -- remove items from list which are eq to item.
 
(defun can-make-word-guts (letters blocks)
(cond
((null letters) t)
((null blocks) nil)
(t (let ((alpha (first letters)))
(each ((bl [alpha2blocks alpha]))
(if (and (memq bl blocks)
(can-make-word-guts (rest letters)
(remq bl blocks)))
(return-from can-make-word-guts t)))))))
 
(defun can-make-word (str)
(can-make-word-guts (string-to-syms str) blocks)))
@(repeat)
@w
@(output)
>>> can_make_word("@(upcase-str w)")
@(if (can-make-word w) "True" "False")
@(end)
@(end)

Run:

$ cat abc-problem.data
a
bark
book
treat
common
squad
confuse
$ txr abc-problem.txr abc-problem.data
>>> can_make_word("A")
True
>>> can_make_word("BARK")
True
>>> can_make_word("BOOK")
False
>>> can_make_word("TREAT")
True
>>> can_make_word("COMMON")
False
>>> can_make_word("SQUAD")
True
>>> can_make_word("CONFUSE")
True

UNIX Shell[edit]

Works with: bash
can_build_word() {
if [[ $1 ]]; then
can_build_word_rec "$1" BO XK DQ CP NA GT RE TG QD FS JW HU VI AN OB ER FS LY PC ZM
else
return 1
fi
}
 
can_build_word_rec() {
[[ -z $1 ]] && return 0
 
local -u word=$1 # uppercase the first parameter
shift
local blocks=("$@")
 
# see if we have a block for the first letter
local letter=${word:0:1} indices=() i
for (( i=0; i<${#blocks[@]}; i++ )); do
if [[ ${blocks[i]} == *$letter* ]]; then
indices+=($i)
fi
done
(( ${#indices[@]} == 0 )) && return 1
 
local tmp
for i in ${indices[@]}; do
tmp=( "${blocks[@]}" )
unset "tmp[$i]"
can_build_word_rec "${word:1}" "${tmp[@]}" && return 0
done
 
return 1
}
 
words=( "" A BARK Book treat COMMON Squad confuse )
for word in "${words[@]}"; do
can_build_word "$word" "${blocks[@]}" && ans=yes || ans=no
printf "%s\t%s\n" "$word" $ans
done
Output:
	no
A	yes
BARK	yes
Book	no
treat	yes
COMMON	no
Squad	yes
confuse	yes

zkl[edit]

Translation of: C
var blocks=T("BO", "XK", "DQ", "CP", "NA", "GT", "RE", "TG", "QD", "FS", 
"JW", "HU", "VI", "AN", "OB", "ER", "FS", "LY", "PC", "ZM", );
 
fcn can_make_word(word){
fcn(blks,word){
if (not word) return(True); // bottom of recursion
foreach b in (blks){ n:=__bWalker.idx;
if(not b.holds(word[0])) continue; // letter not on this block
blks.del(n); // remove this block from pile
if (self.fcn(blks,word[1,*])) return(True); // try remaining blocks
blks.insert(n,b); // put block back in pile: backtracking
}
False; // out of blocks but not out of word
}(blocks.copy(),word.toUpper())
}
 
foreach word in (T("","A","BarK","BOOK","TREAT","COMMON","SQUAD","Confuse","abba")){
can_make_word(word).println(": ",word);
}
Output:
True: 
True: A
True: BarK
False: BOOK
True: TREAT
False: COMMON
True: SQUAD
True: Confuse
True: abba

ZX Spectrum Basic[edit]

10 LET b$="BOXKDQCPNAGTRETGQDFSJWHUVIANOBERFSLYPCZM"
20 READ p
30 FOR c=1 TO p
40 READ p$
50 GO SUB 100
60 NEXT c
70 STOP
80 DATA 7,"A","BARK","BOOK","TREAT","COMMON","SQUAD","CONFUSE"
90 REM Can make?
100 LET u$=b$
110 PRINT "Can make word ";p$;"? ";
120 FOR i=1 TO LEN p$
130 FOR j=1 TO LEN u$
140 IF p$(i)=u$(j) THEN GO SUB 200: GO TO 160
150 NEXT j
160 IF j>LEN u$ THEN PRINT "No": RETURN
170 NEXT i
180 PRINT "Yes": RETURN
190 REM Erase pair
200 IF j/2=INT (j/2) THEN LET u$(j-1 TO j)=" ": RETURN
210 LET u$(j TO j+1)=" ": RETURN
Output:
Can make word A? Yes
Can make word BARK? Yes
Can make word BOOK? No
Can make word TREAT? Yes
Can make word COMMON? No
Can make word SQUAD? Yes
Can make word CONFYUSE? Yes