I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Sum of the digits of n is substring of n

Sum of the digits of n is substring of n is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Find and show numbers   n   with property that the sum of the decimal digits of   n   is substring of   n,   where   n   <   1,000

## 11l

Translation of: Python
Translation of: Nim
`V count = 0L(n) 1000   I String(sum(String(n).map(Int))) C String(n)      count++      print(f:‘{n:3}’, end' I count % 8 == 0 {"\n"} E ‘ ’)`
Output:
```  0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919
```

## 8080 Assembly

`puts:	equ	9	org	100h	lxi	h,-1	; Numberloop:	inx	h	push	h	; Keep number	lxi	d,-1000	; Are we there yet?	dad	d	pop	d	rc		; If so, stop	push	d	; Keep number	lxi	h,buf0	call	digits	; Get digits	push	h	; Keep pointer to digits	call	dgsum	; Sum digits	lxi	h,buf1	call	digits	; Get digits for sum	pop	d	; Retrieve pointer to digits of original	push	d	call	find	; Does the original contain the sum of the digits?	pop	d	; Retrieve digit pointer	pop	h	; And number	jc	loop	; If the sum of the digits is not found, try next	push	h	call	print	; Otherwise, print it	pop 	h	jmp 	loop	;;;	Find digits of number in DE, store at HL.	;;;	Beginning of string returned in HL.digits:	lxi	b,-10	; Divisor	mvi	m,'\$'	; String terminator	push	h	; Output pointer on stackdigit:	xchg		; Number in HL	lxi	d,-1	; Quotientdgtdiv:	inx	d	; Trial subtaction	dad	b	jc 	dgtdiv	mvi	a,10	; Calculate value of digit	add	l	pop	h	; Store digit	dcx	h	mov	m,a	push	h	mov	a,d	; Done?	ora	e	jnz	digit	; If not, find next digit	pop	h	; Remove pointer from stack	ret	;;;	Calculate sum of digits starting at HLdgsum:	lxi	d,0dgloop:	mov	a,m	cpi	'\$'	rz	add	e	mov	e,a	inx	h	jmp	dgloop	;;;	See if the string at DE contains the string at HLfind:	ldax	d	; Load character from haystack	cpi	'\$'	; Reached the end?	stc		; Then it is not found	rz	push	d	; Save pointers	push	h	xchg		; Swap pointersfloop:	ldax 	d	; Load character from needle	cpi	'\$'	; Reached the end?	jz	found	; Then we found it	cmp	m	; Compare to haystack	inx	h	; Increment the pointers	inx	d	jz 	floop	; If equal, keep going	pop	h	; Restore pointers	pop	d	inx	d	; Try next position	jmp	findfound:	pop	h	; Clean up stack	pop 	d	ret	;;;	Print numberprint:	push	dploop:	ldax	d	cpi	'\$'	jz	pdone	adi	'0'	stax 	d	inx	d	jmp 	plooppdone:	xchg	mvi	m,13	inx	h	mvi	m,10	inx	h	mvi 	m,'\$'	pop 	d	mvi	c,puts	jmp	5buf0:	equ	\$+32buf1:	equ	\$+64`
Output:
```0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919```

## Action!

`INT FUNC SumDigits(INT num)  INT res,a   res=0  WHILE num#0  DO    res==+num MOD 10    num=num/10  ODRETURN (res) BYTE Func IsValidNumber(INT num)  CHAR ARRAY s(5),sub(5)  INT sum,v,len,start   sum=SumDigits(num)  StrI(num,s)  FOR len=1 TO s(0)  DO    FOR start=1 TO s(0)-len+1    DO      SCopyS(sub,s,start,start+len-1)      IF ValI(sub)=sum THEN        RETURN (1)      FI    OD  ODRETURN (0) PROC Main()  INT i,count=[0]   FOR i=0 TO 999  DO    IF IsValidNumber(i) THEN      PrintI(i) Put(32)      count==+1    FI  OD  PrintF("%E%EThere are %I numbers",count)RETURN`
Output:
```0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179
189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919

There are 48 numbers
```

## ALGOL 68

ALGOL 68G has the procedure "string in string" in the prelude, for other compilers, a version is available here: ALGOL_68/prelude.

`BEGIN # find n where the sum of the digits is a substring of the representaton of n #    INT max number = 1 000;    INT n count   := 0;    FOR n FROM 0 TO max number - 1 DO        INT d sum := 0;        INT v     := n;        WHILE v > 0 DO            d sum +:= v MOD 10;            v  OVERAB 10        OD;        IF string in string( whole( d sum, 0 ), NIL, whole( n, 0 ) ) THEN            # the string representaton of the digit sum is contained in the representation of n #            print( ( " ", whole( n, -4 ) ) );            n count +:= 1;            IF n count MOD 8 = 0 THEN print( ( newline ) ) FI        FI    ODEND`
Output:
```    0    1    2    3    4    5    6    7
8    9   10   20   30   40   50   60
70   80   90  100  109  119  129  139
149  159  169  179  189  199  200  300
400  500  600  700  800  900  910  911
912  913  914  915  916  917  918  919
```

## ALGOL-M

`begininteger function mod(a,b);integer a,b;mod := a-a/b*b; integer function digitsum(n);integer n;digitsum :=    if n=0 then 0    else mod(n,10) + digitsum(n/10); integer function chop(n);integer n;begin    integer i;    i := 1;    while i<n do i := i * 10;    i := i/10;    chop := if i=0 then 0 else mod(n, i);end; integer function infix(n,h);integer n,h;begin    integer pfx, sfx, r;    r := if n=h then 1 else 0;    pfx := h;    while pfx <> 0 do    begin        sfx := pfx;        while sfx <> 0 do        begin            if sfx = n then            begin                r := 1;                go to stop;            end;            sfx := chop(sfx);        end;        pfx := pfx/10;    end;stop:    infix := r;end; integer i, n, d;n := 0;for i := 0 step 1 until 999 dobegin    d := digitsum(i);    if infix(d, i) = 1 then    begin        if (n-1)/10 <> n/10 then write(i)        else writeon(i);        n := n + 1;    end;end;        end`
Output:
```     0     1     2     3     4     5     6     7     8     9
10    20    30    40    50    60    70    80    90   100
109   119   129   139   149   159   169   179   189   199
200   300   400   500   600   700   800   900   910   911
912   913   914   915   916   917   918   919```

## ALGOL W

`begin % find numbers n, where the sum of the digits is a substring of n %    % returns true if the digits of s contains the digits of t, false otherwise %    logical procedure containsDigits( integer value s, t ) ;    if s = t then true    else begin        integer tPower, v, u;        logical isContained;        % find the lowest power of 10 that is greater then t %        tPower := 10;        v      := abs t;        while v > 9 do begin            tPower := tPower * 10;            v      := v div 10        end while_v_gt_9 ;        isContained := false;        v           := abs t;        u           := abs s;        while not isContained and u > 0 do begin            isContained := ( u rem tPower ) = v;            u           := u div 10        end while_not_isContained_and_u_gt_0 ;        isContained    end containsDigits ;    % find and show the matching numbers up to 1000 %    integer nCount;    nCount    := 0;    for n := 0 until 999 do begin        integer dSum, v;        dSum := 0;        v    := n;        while v > 0 do begin            dSum := dSum + ( v rem 10 );            v    := v div 10        end while_v_gt_0 ;        if containsDigits( n, dSum ) then begin            writeon( i_w := 5, s_w := 0, n );            nCount := nCount + 1;            if nCount rem 8 = 0 then write()        end if_n_contains_dSum    end for_nend.`
Output:
```    0    1    2    3    4    5    6    7
8    9   10   20   30   40   50   60
70   80   90  100  109  119  129  139
149  159  169  179  189  199  200  300
400  500  600  700  800  900  910  911
912  913  914  915  916  917  918  919
```

## APL

Works with: Dyalog APL
`(⊢(/⍨)(∨/⍕∘(+/(⍎¨⍕))⍷⍕)¨)0,⍳999`
Output:
```0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900
910 911 912 913 914 915 916 917 918 919```

## Arturo

`print select 1..999 'num ->    contains? to :string num               to :string sum digits num`
Output:
`1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## AutoHotkey

`result := "", cntr := 1loop 1000{	n := A_Index-1, sum := 0	for i, v in StrSplit(n)		sum += v	if InStr(n, sum){		result .= n (mod(cntr, 8)?"`t":"`n")		if (++cntr = 50)			break	}}MsgBox % result`
Output:
```0	1	2	3	4	5	6	7
8	9	10	20	30	40	50	60
70	80	90	100	109	119	129	139
149	159	169	179	189	199	200	300
400	500	600	700	800	900	910	911
912	913	914	915	916	917	918	919```

## AWK

` # syntax: GAWK -f SUM_OF_THE_DIGITS_OF_N_IS_SUBSTRING_OF_N.AWKBEGIN {    start = 0    stop = 999    for (i=start; i<=stop; i++) {      if (i ~ ""sum_digits(i)) { # TAWK needs the ""        printf("%4d%1s",i,++count%10?"":"\n")      }    }    printf("\nSum of the digits of n is substring of n %d-%d: %d\n",start,stop,count)    exit(0)}function sum_digits(n,  i,sum) {    for (i=1; i<=length(n); i++) {      sum += substr(n,i,1)    }    return(sum)} `
Output:
```   0    1    2    3    4    5    6    7    8    9
10   20   30   40   50   60   70   80   90  100
109  119  129  139  149  159  169  179  189  199
200  300  400  500  600  700  800  900  910  911
912  913  914  915  916  917  918  919
Sum of the digits of n is substring of n 0-999: 48
```

## BASIC

`10 DEFINT I,J,K20 FOR I=0 TO 99930 J=0: K=I40 IF K>0 THEN J=J+K MOD 10: K=K\10: GOTO 4041 I\$=STR\$(I): I\$=RIGHT\$(I\$,LEN(I\$)-1)42 J\$=STR\$(J): J\$=RIGHT\$(J\$,LEN(J\$)-1)50 IF INSTR(I\$,J\$) THEN PRINT I,60 NEXT I`
Output:
``` 0             1             2             3             4
5             6             7             8             9
10            20            30            40            50
60            70            80            90            100
109           119           129           139           149
159           169           179           189           199
200           300           400           500           600
700           800           900           910           911
912           913           914           915           916
917           918           919
```

## BCPL

`get "libhdr" let dsum(n) = n=0 -> 0, n rem 10 + dsum(n/10) let chop(n) = valof\$(  let i=1    while i<n do i := i * 10    i := i / 10    resultis i=0 -> 0, n rem i\$) let infix(n,h) =    n = h            -> true,    h = 0            -> false,    infix(n,h/10)    -> true,    infix(n,chop(h)) -> true,    false let start() be\$(  let c=0    for i=0 to 999 do    \$(  if infix(dsum(i),i) then        \$(  writef("%I5",i)            c := c + 1            if c rem 10=0 then wrch('*N')        \$)    \$)    wrch('*N')\$)`
Output:
```    0    1    2    3    4    5    6    7    8    9
10   20   30   40   50   60   70   80   90  100
109  119  129  139  149  159  169  179  189  199
200  300  400  500  600  700  800  900  910  911
912  913  914  915  916  917  918  919```

## BQN

`DigitSum ← +´•Fmt-'0'˙Contains ← (∨´⍷˜ )○•Fmt∘‿6⥊ (⊢ Contains DigitSum)¨⊸/↕1000`
Output:
```┌─
╵   0   1   2   3   4   5
6   7   8   9  10  20
30  40  50  60  70  80
90 100 109 119 129 139
149 159 169 179 189 199
200 300 400 500 600 700
800 900 910 911 912 913
914 915 916 917 918 919
┘```

## C

`#include <stdio.h>#include <string.h> int digitSum(int n) {    int s = 0;    do {s += n % 10;} while (n /= 10);    return s;} int digitSumIsSubstring(int n) {    char s_n[32], s_ds[32];    sprintf(s_n, "%d", n);    sprintf(s_ds, "%d", digitSum(n));    return strstr(s_n, s_ds) != NULL;} int main() {    int i;    for (i=0; i<1000; i++)        if (digitSumIsSubstring(i))            printf("%d ",i);    printf("\n");     return 0;}`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## C++

`#include <iostream> int digitSum(int n) {    int s = 0;    do {s += n % 10;} while (n /= 10);    return s;} int main() {    for (int i=0; i<1000; i++) {        auto s_i = std::to_string(i);        auto s_ds = std::to_string(digitSum(i));        if (s_i.find(s_ds) != std::string::npos) {            std::cout << i << " ";        }    }    std::cout << std::endl;    return 0;}`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## CLU

`digit_sum = proc (n: int) returns (int)    sum: int := 0    while n > 0 do        sum := sum + n // 10        n := n / 10    end    return (sum)end digit_sum digit_sum_is_substring = proc (n: int) returns (bool)    n_str: string := int\$unparse(n)    ds_str: string := int\$unparse(digit_sum(n))    return (string\$indexs(ds_str, n_str) ~= 0)end digit_sum_is_substring match_range = iter (from, to: int, p: proctype (int) returns (bool))               yields (int)    for i: int in int\$from_to(from,to) do        if p(i) then yield(i) end    endend match_range start_up = proc ()    po: stream := stream\$primary_output()    col: int := 0     for i: int in match_range(0, 999, digit_sum_is_substring) do        stream\$putright(po, int\$unparse(i), 4)        col := col + 1        if col // 10 = 0 then stream\$putc(po, '\n') end    endend start_up`
Output:
```   0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919```

## COBOL

`        IDENTIFICATION DIVISION.        PROGRAM-ID. SUM-SUBSTRING.         DATA DIVISION.        WORKING-STORAGE SECTION.        01 CALCULATION.           02 N         PIC 9999.           02 X         PIC 9.           02 DSUM      PIC 99.           02 N-DIGITS  REDEFINES N.              03 ND     PIC 9 OCCURS 4 TIMES.           02 S-DIGITS  REDEFINES DSUM.              03 SUMD   PIC 9 OCCURS 2 TIMES.        01 OUTPUT-FORMAT.           02 N-OUT     PIC ZZZ9.         PROCEDURE DIVISION.        BEGIN.            PERFORM TESTNUMBER VARYING N FROM 0 BY 1                    UNTIL N IS EQUAL TO 1000.            STOP RUN.         TESTNUMBER SECTION.        BEGIN.            PERFORM SUM-DIGITS.            SET X TO 1.            IF DSUM IS LESS THAN 10 GO TO ONE-DIGIT-CHECK.         TWO-DIGIT-CHECK.            IF X IS GREATER THAN 3 GO TO DONE.            IF ND(X) = SUMD(1) AND ND(X + 1) = SUMD(2) GO TO SHOW.            ADD 1 TO X.            GO TO TWO-DIGIT-CHECK.         ONE-DIGIT-CHECK.            IF X IS GREATER THAN 4 GO TO DONE.            IF ND(X) = SUMD(2) GO TO SHOW.            ADD 1 TO X.            GO TO ONE-DIGIT-CHECK.         SHOW.            MOVE N TO N-OUT.            DISPLAY N-OUT.        DONE. EXIT.         SUM-DIGITS SECTION.        BEGIN.            SET DSUM TO 0.            SET X TO 1.        LOOP.                ADD ND(X) TO DSUM.            ADD 1 TO X.            IF X IS LESS THAN 5 GO TO LOOP.`
Output:
```   0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919```

## Comal

`0010 FUNC digit'sum#(n#) CLOSED0020   sum#:=00030   WHILE n# DO sum#:+n# MOD 10;n#:=n# DIV 100040   RETURN sum#0050 ENDFUNC digit'sum#0060 //0070 col#:=00080 ZONE 40090 FOR i#:=0 TO 999 DO0100   IF STR\$(digit'sum#(i#)) IN STR\$(i#) THEN0110     PRINT i#,0120     col#:+10130     IF col# MOD 15=0 THEN PRINT0140   ENDIF0150 ENDFOR i#0160 PRINT0170 END`
Output:
```0   1   2   3   4   5   6   7   8   9   10  20  30  40  50
60  70  80  90  100 109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911 912 913 914 915 916
917 918 919```

## Cowgol

`include "cowgol.coh"; sub digitSum(n: uint16): (s: uint16) is    s := 0;    while n != 0 loop        s := s + n % 10;        n := n / 10;    end loop;end sub; sub contains(haystack: [uint8], needle: [uint8]): (r: uint8) is    r := 0;    while [haystack] != 0 loop        var h := haystack;        var n := needle;        while [h] == [n] and [h] != 0 and [n] != 0 loop            h := @next h;            n := @next n;        end loop;        if [n] == 0 then            r := 1;            return;        end if;        haystack := @next haystack;    end loop;end sub; sub digitSumIsSubstring(n: uint16): (r: uint8) is    var s1: uint8[6];    var s2: uint8[6];    var dummy := UIToA(n as uint32, 10, &s1[0]);    dummy := UIToA(digitSum(n) as uint32, 10, &s2[0]);    r := contains(&s1[0], &s2[0]);end sub; var i: uint16 := 0;while i < 1000 loop    if digitSumIsSubstring(i) != 0 then        print_i16(i);        print_char(' ');    end if;    i := i + 1;end loop;print_nl();`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## D

Translation of: C++
`import std.algorithm;import std.conv;import std.stdio; int digitSum(int n) {    int s = 0;    do {        s += n % 10;    } while (n /= 10);    return s;} void main() {    foreach (i; 0 .. 1000) {        if (i.to!string.canFind(digitSum(i).to!string)) {            write(i, ' ');        }    }    writeln;}`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## Draco

`\util.g proc nonrec digit_sum(word n) word:    word sum;    sum := 0;    while n ~= 0 do        sum := sum + n % 10;        n := n / 10;    od;    sumcorp proc nonrec itoa(word n; *char buf) void:    channel output text ch;    open(ch, buf);    write(ch; n);    close(ch)corp proc nonrec digit_sum_is_substring(word n) bool:    [10] char dstr, dsub;    itoa(n, &dstr[0]);    itoa(digit_sum(n), &dsub[0]);    CharsIndex(&dstr[0], &dsub[0]) ~= -1corp proc nonrec main() void:    word i, seen;    seen := 0;    for i from 0 upto 999 do        if digit_sum_is_substring(i) then            write(i:4);            seen := seen + 1;            if seen % 20 = 0 then writeln() fi        fi    odcorp`
Output:
```   0   1   2   3   4   5   6   7   8   9  10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919```

## F#

` // Sum digits of n is substring of n: Nigel Galloway. April 16th., 2021let rec fG n g=match (n/10,n%(if g<10 then 10 else 100)) with (_,n) when n=g->true |(0,_)->false |(n,_)->fG n glet rec fN g=function n when n<10->n+g |n->fN(g+n%10)(n/10) {1..999}|>Seq.filter(fun n->fG n (fN 0 n))|>Seq.iter(printf "%d "); printfn "" `
Output:
```1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919
Real: 00:00:00.003
```

## Factor

Works with: Factor version 0.99 2021-02-05
`USING: grouping kernel math.text.utils present prettyprintsequences ; 1000 <iota>[ [ 1 digit-groups sum present ] [ present ] bi subseq? ] filter8 group simple-table.`
Output:
```0   1   2   3   4   5   6   7
8   9   10  20  30  40  50  60
70  80  90  100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919
```

## Fermat

No string conversion.

`Func Digsum(n, b) =    ds:=0;                   {digital sum of n in base b}    while n>0 do        ds:+(n|b);        n:=n\b;    od;    ds.; Func Numdig(n, b) =    nd:=0;                   {number of digits of n in base b}    while n > 0 do        nd:+;        n:=n\b;    od;    nd.; for n = 1 to 999 do    ds:=Digsum(n, 10);       {digital sum of n}    nd:=Numdig(ds, 10);      {how many digits does the digital sum itself have?}    nt:=n;                   {temporary copy of n}    while nt>0 do        if ds=(nt|(10^(nd))) then            !!n;             {if the last nt digits of n are the digital sum, print and exit the loop}            &>;        fi;        nt:=nt\10;    od;od;`
Output:
```
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919

```

## FOCAL

`01.10 F N=0,999;D 2;D 401.20 Q 02.10 S A=002.20 S B=N02.30 S C=FITR(B/10)02.40 S A=A+(B-C*10)02.50 S B=C02.60 I (-B)2.3 03.10 S B=103.20 S B=B*1003.30 I (B-M)3.2,3.203.40 S B=B/1003.50 S M=M-FITR(M/B)*B 04.10 S P=N04.20 S M=P04.30 I (M-A)4.4,4.9,4.404.40 D 304.50 I (M)4.3,4.6,4.304.60 S P=FITR(P/10)04.70 I (P)4.2,4.8,4.204.80 R04.90 T %3,N,!`
Output:
```=   0
=   1
=   2
=   3
=   4
=   5
=   6
=   7
=   8
=   9
=  10
=  20
=  30
=  40
=  50
=  60
=  70
=  80
=  90
= 100
= 109
= 119
= 129
= 139
= 149
= 159
= 169
= 179
= 189
= 199
= 200
= 300
= 400
= 500
= 600
= 700
= 800
= 900
= 910
= 911
= 912
= 913
= 914
= 915
= 916
= 917
= 918
= 919```

## FreeBASIC

`function is_substring( s as string, j as string ) as boolean    dim as integer nj = len(j), ns = len(s)    for i as integer = 1 to ns - nj + 1        if mid(s,i,nj) = j then return true    next i    return falseend function function sumdig( byval n as integer ) as integer    dim as integer sum    do        sum += n mod 10        n \= 10    loop until n = 0    return sumend function for i as uinteger = 0 to 999    if is_substring( str(i), str(sumdig(i))) then print i;" ";next i : print : end`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

## Go

Translation of: Wren
Library: Go-rcu
`package main import (    "fmt"    "rcu"    "strings") func main() {    var numbers []int    for n := 0; n < 1000; n++ {        ns := fmt.Sprintf("%d", n)        ds := fmt.Sprintf("%d", rcu.DigitSum(n, 10))        if strings.Contains(ns, ds) {            numbers = append(numbers, n)        }    }    fmt.Println("Numbers under 1,000 whose sum of digits is a substring of themselves:")    rcu.PrintTable(numbers, 8, 3, false)    fmt.Println()    fmt.Println(len(numbers), "such numbers found.")}`
Output:
```Numbers under 1,000 whose sum of digits is a substring of themselves:
0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

48 such numbers found.
```

`import Data.Char (digitToInt)import Data.List (isInfixOf)import Data.List.Split (chunksOf) -------- SUM OF THE DIGITS OF N IS A SUBSTRING OF N ------ digitSumIsSubString :: String -> BooldigitSumIsSubString =  isInfixOf    =<< show . foldr ((+) . digitToInt) 0  --------------------------- TEST -------------------------main :: IO ()main =  mapM_ putStrLn \$    showMatches digitSumIsSubString <\$> [999, 10000] showMatches :: (String -> Bool) -> Int -> StringshowMatches p limit =  ( show (length xs)      <> " matches in [0.."      <> show limit      <> "]\n"  )    <> unlines      ( unwords          <\$> chunksOf 10 (justifyRight w ' ' <\$> xs)      )    <> "\n"  where    xs = filter p \$ fmap show [0 .. limit]    w = length (last xs) justifyRight :: Int -> Char -> String -> StringjustifyRight n c = (drop . length) <*> (replicate n c <>)`
Output:
```48 matches in [0..999]
0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

365 matches in [0..10000]
0     1     2     3     4     5     6     7     8     9
10    20    30    40    50    60    70    80    90   100
109   119   129   139   149   159   169   179   189   199
200   300   400   500   600   700   800   900   910   911
912   913   914   915   916   917   918   919  1000  1009
1018  1027  1036  1045  1054  1063  1072  1081  1090  1108
1109  1118  1127  1128  1136  1138  1145  1148  1154  1158
1163  1168  1172  1178  1181  1188  1190  1198  1209  1218
1227  1236  1245  1254  1263  1272  1281  1290  1309  1318
1327  1336  1345  1354  1363  1372  1381  1390  1409  1418
1427  1436  1445  1454  1463  1472  1481  1490  1509  1518
1527  1536  1545  1554  1563  1572  1581  1590  1609  1618
1627  1636  1645  1654  1663  1672  1681  1690  1709  1718
1727  1736  1745  1754  1763  1772  1781  1790  1809  1810
1811  1812  1813  1814  1815  1816  1817  1818  1819  1827
1836  1845  1854  1863  1872  1881  1890  1909  1918  1927
1936  1945  1954  1963  1972  1981  1990  2000  2099  2107
2117  2127  2137  2147  2157  2167  2177  2187  2197  2199
2299  2399  2499  2599  2699  2710  2711  2712  2713  2714
2715  2716  2717  2718  2719  2799  2899  2999  3000  3106
3116  3126  3136  3146  3156  3166  3176  3186  3196  3610
3611  3612  3613  3614  3615  3616  3617  3618  3619  4000
4105  4115  4125  4135  4145  4155  4165  4175  4185  4195
4510  4511  4512  4513  4514  4515  4516  4517  4518  4519
5000  5104  5114  5124  5134  5144  5154  5164  5174  5184
5194  5410  5411  5412  5413  5414  5415  5416  5417  5418
5419  6000  6103  6113  6123  6133  6143  6153  6163  6173
6183  6193  6310  6311  6312  6313  6314  6315  6316  6317
6318  6319  7000  7102  7112  7122  7132  7142  7152  7162
7172  7182  7192  7210  7211  7212  7213  7214  7215  7216
7217  7218  7219  8000  8101  8110  8111  8112  8113  8114
8115  8116  8117  8118  8119  8121  8131  8141  8151  8161
8171  8181  8191  9000  9010  9011  9012  9013  9014  9015
9016  9017  9018  9019  9100  9110  9120  9130  9140  9150
9160  9170  9180  9190  9209  9219  9229  9239  9249  9259
9269  9279  9289  9299  9920  9921  9922  9923  9924  9925
9926  9927  9928  9929 10000```

## J

`([#~(":+./@E.~[:":+/@(10&#.^:_1))"0)i.999`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## jq

Works with: jq

Works with gojq, the Go implementation of jq

` def sum_of_digits_is_substring:  tostring  | . as \$s  | (explode | map([.]|implode))  | (map(tonumber)|add|tostring) as \$ss  | \$s | index(\$ss); [range(0;1000) | select(sum_of_digits_is_substring)]`
Output:
```[0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,109,119,129,139,149,159,169,179,189,199,200,300,400,500,600,700,800,900,910,911,912,913,914,915,916,917,918,919]
```

## Julia

`issumsub(n, base=10) = occursin(string(sum(digits(n, base=base)), base=base), string(n, base=base)) foreach(p -> print(rpad(p[2], 4), p[1] % 10 == 0 ? "\n" : ""), enumerate(filter(issumsub, 0:999))) `
Output:
```0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90  100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919
```

## Kotlin

Translation of: Go
`fun digitSum(n: Int): Int {    var nn = n    var sum = 0    while (nn > 0) {        sum += (nn % 10)        nn /= 10    }    return sum} fun main() {    var c = 0    for (i in 0 until 1000) {        val ds = digitSum(i)        if (i.toString().contains(ds.toString())) {            print("%3d ".format(i))             c += 1            if (c == 8) {                println()                c = 0            }        }    }    println()}`
Output:
```  0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919 ```

`            NORMAL MODE IS INTEGER             INTERNAL FUNCTION(A,B)            ENTRY TO REM.            FUNCTION RETURN A-A/B*B            END OF FUNCTION             INTERNAL FUNCTION(X)            ENTRY TO DSUM.            TEMP = X            SUM = 0SUML        WHENEVER TEMP.NE.0                SUM = SUM + REM.(TEMP,10)                TEMP = TEMP / 10                TRANSFER TO SUML            END OF CONDITIONAL            FUNCTION RETURN SUM            END OF FUNCTION             INTERNAL FUNCTION(X)            ENTRY TO DELFST.            FDGT = 1SIZE        WHENEVER FDGT.LE.X                FDGT = FDGT * 10                TRANSFER TO SIZE            END OF CONDITIONAL            FUNCTION RETURN REM.(X,FDGT/10)            END OF FUNCTION             INTERNAL FUNCTION(N,H)            ENTRY TO INFIX.            WHENEVER N.E.H, FUNCTION RETURN 1B            PFX = HPFXL        WHENEVER PFX.NE.0                SFX = PFXSFXL            WHENEVER SFX.NE.0                    WHENEVER SFX.E.N, FUNCTION RETURN 1B                    SFX = DELFST.(SFX)                    TRANSFER TO SFXL                END OF CONDITIONAL                 PFX = PFX/10                TRANSFER TO PFXL            END OF CONDITIONAL            FUNCTION RETURN 0B            END OF FUNCTION             THROUGH SHOW, FOR I=0, 1, I.GE.1000            WHENEVER INFIX.(DSUM.(I),I)                PRINT FORMAT FMT, I            END OF CONDITIONALSHOW        CONTINUE             VECTOR VALUES FMT = \$I3*\$            END OF PROGRAM `
Output:
```  0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919```

## Mathematica/Wolfram Language

`ClearAll[SumAsSubString]SumAsSubString[n_Integer] := Module[{id, s},  id = IntegerDigits[n];  s = Total[id];  SequenceCount[id, IntegerDigits[s]] > 0  ]Select[Range[999], SumAsSubString]`
Output:
`{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199, 200, 300, 400, 500, 600, 700, 800, 900, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919}`

## Nim

`import strutils func digitsum(n: Natural): int =  if n == 0: return 0  var n = n  while n != 0:    result += n mod 10    n = n div 10 var count = 0for n in 0..<1000:  let sn = \$n  if \$digitsum(n) in sn:    inc count    stdout.write sn.align(3), if count mod 8 == 0: '\n' else: ' '`
Output:
```  0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919```

## Perl

as one-liner ..

`// 20210415 Perl programming solution perl -e 'for(0..999){my\$n;s/(\d)/\$n+=\$1/egr;print"\$_ "if/\$n/}'`
Output:
```0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919
```

## Phix

```function sdn(integer n)
string sn = sprint(n)
return match(sprint(sum(sq_sub(sn,'0'))),sn)
end function
for n=999 to 10000 by 10000-999 do
sequence res = apply(filter(tagset(n,0),sdn),sprint)
printf(1,"Found %d such numbers < %d: %s\n",{length(res),n+1,join(shorten(res,"",5),", ")})
end for
```
Output:
```Found 48 such numbers < 1000: 0, 1, 2, 3, 4, ..., 915, 916, 917, 918, 919
Found 365 such numbers < 10001: 0, 1, 2, 3, 4, ..., 9926, 9927, 9928, 9929, 10000
```

## PL/I

`sumOfDigitsIsSubstring: procedure options(main);    digitSum: procedure(n) returns(fixed);        declare (ds, x, n) fixed;        ds = 0;        do x=n repeat(x/10) while(x>0);            ds = ds + mod(x, 10);        end;        return(ds);    end digitSum;     chop: procedure(n) returns(fixed);        declare (i, n) fixed;        i = 1;        do while(i<n);            i = i * 10;        end;        i = i/10;        if i=0 then return(0);        else return(mod(n, i));    end chop;     infix: procedure(n, h) returns(bit) recursive;        declare (n, h) fixed;        if n=h then return('1'b);        if h=0 then return('0'b);        if infix(n, h/10) then return('1'b);        return(infix(n, chop(h)));    end infix;     declare (i, col) fixed;    col = 0;    do i=0 to 999;        if infix(digitSum(i), i) then do;            put edit(i) (F(5));            col = col + 1;            if mod(col, 10)=0 then put skip;        end;    end;    put skip;end sumOfDigitsIsSubstring;`
Output:
```    0    1    2    3    4    5    6    7    8    9
10   20   30   40   50   60   70   80   90  100
109  119  129  139  149  159  169  179  189  199
200  300  400  500  600  700  800  900  910  911
912  913  914  915  916  917  918  919```

## PL/M

`100H:DIGIT\$SUM: PROCEDURE (N) BYTE;    DECLARE N ADDRESS, SUM BYTE;    SUM = 0;    DO WHILE N > 0;        SUM = SUM + N MOD 10;        N = N / 10;    END;    RETURN SUM;END DIGIT\$SUM; ITOA: PROCEDURE (N) ADDRESS;    DECLARE S (6) BYTE INITIAL ('.....\$');    DECLARE (N, P) ADDRESS, C BASED P BYTE;    P = .S(5);DIGIT:    P = P - 1;    C = N MOD 10 + '0';    IF (N := N / 10) > 0 THEN GO TO DIGIT;    RETURN P;END ITOA; COPY\$STRING: PROCEDURE (IN, OUT);    DECLARE (IN, OUT) ADDRESS;    DECLARE (I BASED IN, O BASED OUT) BYTE;    DO WHILE I <> '\$';        O = I;        IN = IN + 1;        OUT = OUT + 1;    END;    O = '\$';END COPY\$STRING; CONTAINS: PROCEDURE (HAYSTACK, NEEDLE) BYTE;    DECLARE (NEEDLE, HAYSTACK, NPOS, HPOS) ADDRESS;    DECLARE (N BASED NPOS, H BASED HPOS, HS BASED HAYSTACK) BYTE;     DO WHILE HS <> '\$';        NPOS = NEEDLE;        HPOS = HAYSTACK;        DO WHILE N = H AND H <> '\$' AND N <> '\$';            NPOS = NPOS + 1;            HPOS = HPOS + 1;        END;        IF N = '\$' THEN RETURN 1;        HAYSTACK = HAYSTACK + 1;    END;    RETURN 0;END CONTAINS; BDOS: PROCEDURE (FN, ARG);    DECLARE FN BYTE, ARG ADDRESS;    GO TO 5;END BDOS; PRINT: PROCEDURE (STRING);    DECLARE STRING ADDRESS;    CALL BDOS(9, STRING);END PRINT; DECLARE N ADDRESS;DECLARE S1 (6) BYTE, S2 (6) BYTE;DO N = 0 TO 999;    CALL COPY\$STRING(ITOA(N), .S1);    CALL COPY\$STRING(ITOA(DIGIT\$SUM(N)), .S2);    IF CONTAINS(.S1, .S2) THEN DO;        CALL PRINT(.S1);        CALL PRINT(.' \$');    END;END; CALL BDOS(0,0);EOF`
Output:
`0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 109 119 129 139 149 159 169 179 189 199 200 300 400 500 600 700 800 900 910 911 912 913 914 915 916 917 918 919`

## Python

Just using the command line:

`Python 3.9.0 (tags/v3.9.0:9cf6752, Oct  5 2020, 15:34:40) [MSC v.1927 64 bit (AMD64)] on win32Type "help", "copyright", "credits" or "license()" for more information.>>> x = [n for n in range(1000) if str(sum(int(d) for d in str(n))) in str(n)]>>> len(x)48>>> for i in range(0, len(x), (stride:= 10)): print(str(x[i:i+stride])[1:-1]) 0, 1, 2, 3, 4, 5, 6, 7, 8, 910, 20, 30, 40, 50, 60, 70, 80, 90, 100109, 119, 129, 139, 149, 159, 169, 179, 189, 199200, 300, 400, 500, 600, 700, 800, 900, 910, 911912, 913, 914, 915, 916, 917, 918, 919>>> `

or as a full script, taking an alternative route, and slightly reducing the number of str conversions required:

`'''Sum of the digits of n is substring of n''' from functools import reducefrom itertools import chain  # digitSumIsSubString :: String -> Booldef digitSumIsSubString(s):    '''True if the sum of the decimal digits in s       matches any contiguous substring of s.    '''    return str(        reduce(lambda a, c: a + int(c), s, 0)    ) in s  # ------------------------- TEST -------------------------# main :: IO ()def main():    '''Matches in [0..999]'''    print(        showMatches(            digitSumIsSubString        )(999)    )  # ----------------------- DISPLAY ------------------------ # showMatches :: (String -> Bool) -> Int -> Stringdef showMatches(p):    '''A listing of the integer strings [0..limit]       which match the predicate p.    '''    def go(limit):        def triage(n):            s = str(n)            return [s] if p(s) else []         xs = list(            chain.from_iterable(                map(triage, range(0, 1 + limit))            )        )        w = len(xs[-1])        return f'{len(xs)} matches < {limit}:\n' + (            '\n'.join(                ' '.join(cell.rjust(w, ' ') for cell in row)                for row in chunksOf(10)(xs)            )        )     return go  # ----------------------- GENERIC ------------------------ # chunksOf :: Int -> [a] -> [[a]]def chunksOf(n):    '''A series of lists of length n, subdividing the       contents of xs. Where the length of xs is not evenly       divible, the final list will be shorter than n.    '''    def go(xs):        return (            xs[i:n + i] for i in range(0, len(xs), n)        ) if 0 < n else None    return go  # MAIN ---if __name__ == '__main__':    main() `
Output:
```48 matches < 1000:

0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919```

## Raku

`say "{+\$_} matching numbers\n{.batch(10)».fmt('%3d').join: "\n"}" given (^1000).grep: { .contains: .comb.sum }`
Output:
```48 matching numbers
0   1   2   3   4   5   6   7   8   9
10  20  30  40  50  60  70  80  90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919```

## REXX

`/*REXX pgm finds integers whose sum of decimal digits is a substring of  N,   N < 1000. */parse arg hi cols .                              /*obtain optional argument from the CL.*/if   hi=='' |   hi==","  then   hi= 1000         /*Not specified?  Then use the default.*/if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */w= 10                                            /*width of a number in any column.     */@sdsN= ' integers whose sum of decimal digis of  N  is a substring of  N,  where  N  < ' ,                                                                           commas(hi)if cols>0 then say ' index │'center(@sdsN,    1 + cols*(w+1)     )if cols>0 then say '───────┼'center(""   ,    1 + cols*(w+1), '─')finds= 0;                  idx= 1                /*initialize # of found numbers & index*/\$=                                               /*a list of found integers  (so far).  */     do j=0  for hi;     #= sumDigs(j)           /*obtain sum of the decimal digits of J*/     if pos(#, j)==0     then iterate            /*Sum of dec. digs in J?  No, then skip*/     finds= finds + 1                            /*bump the number of found integers.   */     if cols==0          then iterate            /*Build the list  (to be shown later)? */     \$= \$  right( commas( commas(j) ),  w)       /*add a found number ──► the  \$  list. */     if finds//cols\==0  then iterate            /*have we populated a line of output?  */     say center(idx, 7)'│'  substr(\$, 2);   \$=   /*display what we have so far  (cols). */     idx= idx + cols                             /*bump the  index  count for the output*/     end   /*j*/ if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/if cols>0 then say '───────┴'center(""   ,    1 + cols*(w+1), '─')saysay 'Found '       commas(finds)      @sdsNexit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?sumDigs:procedure; parse arg x 1 s 2;do j=2 for length(x)-1;s=s+substr(x,j,1);end;return s`
output   when using the default inputs:
``` index │              integers whose sum of decimal digis of  N  is a substring of  N,  where  N  <  1,000
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1   │          0          1          2          3          4          5          6          7          8          9
11   │         10         20         30         40         50         60         70         80         90        100
21   │        109        119        129        139        149        159        169        179        189        199
31   │        200        300        400        500        600        700        800        900        910        911
41   │        912        913        914        915        916        917        918        919
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  48  integers whose sum of decimal digis of  N  is a substring of  N,  where  N  <  1,000
```

## Ring

` load "stdlib.ring"see "working..." + nlsee "Numbers n with property that the sum of the digits of n is substring of n are:" + nlsee "p p+2 p+6" + nlrow = 0limit = 1000 for n = 0 to limit-1    str = 0    strn = string(n)    for m = 1 to len(strn)        str = str + number(strn[m])            next    str = string(str)    ind = substr(strn,str)    if ind > 0       row = row + 1       see "" + n + " "       if row%10 = 0          see nl       ok    oknext see nl + "Found " + row + " numbers" + nlsee "done..." + nl `
Output:
```working...
Numbers n with property that the sum of the digits of n is substring of n are:
0 1 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90 100
109 119 129 139 149 159 169 179 189 199
200 300 400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919
Found 48 numbers
done...
```

## Sidef

`var upto = 1000var base = 10 var list = (^upto -> grep {    .digits(base).contains(.sumdigits(base).digits(base)...)}) say "Numbers under #{upto} whose sum of digits is a substring of themselves:" list.each_slice(8, {|*a|    say a.map { '%3s' % _ }.join(' ')}) say "\n#{list.len} such numbers found."`
Output:
```Numbers under 1000 whose sum of digits is a substring of themselves:
0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

48 such numbers found.
```

## SNOBOL4

`        define('digsum(n)')             :(digsum_end)digsum  digsum = 0dsloop  digsum = digsum + remdr(n,10)           n = ne(n,0) n / 10              :s(dsloop)f(return)digsum_end         define('sumsub(n)')             :(sumsub_end)sumsub  n digsum(n)                     :s(return)f(freturn)sumsub_end         i = 0loop    output = sumsub(i) i        i = lt(i,999) i + 1             :s(loop)end`
Output:
```0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
109
119
129
139
149
159
169
179
189
199
200
300
400
500
600
700
800
900
910
911
912
913
914
915
916
917
918
919```

## Wren

Library: Wren-math
Library: Wren-seq
Library: Wren-fmt
`import "/math" for Intimport "/seq" for Lstimport "/fmt" for Fmt var numbers = []for (n in 0..999) {    var ns = n.toString    var ds = Int.digitSum(n).toString    if (ns.contains(ds)) numbers.add(n)}System.print("Numbers under 1,000 whose sum of digits is a substring of themselves:")for (chunk in Lst.chunks(numbers, 8)) Fmt.print("\$3d", chunk)System.print("\n%(numbers.count) such numbers found.")`
Output:
```Numbers under 1,000 whose sum of digits is a substring of themselves:
0   1   2   3   4   5   6   7
8   9  10  20  30  40  50  60
70  80  90 100 109 119 129 139
149 159 169 179 189 199 200 300
400 500 600 700 800 900 910 911
912 913 914 915 916 917 918 919

48 such numbers found.
```

## XPL0

`func Check(N);  \Return 'true' if sum of digits of N is a substring of Nint     N, Sum, A, B, C;[N:= N/10;C:= rem(0);N:= N/10;B:= rem(0);A:= N;Sum:= A+B+C;if Sum=A or Sum=B or Sum=C then return true;if Sum = B*10 + C then return true;if Sum = A*10 + B then return true;return false;]; int Count, N;[Count:= 0;for N:= 0 to 1000-1 do    if Check(N) then        [IntOut(0, N);        Count:= Count+1;        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);        ];CrLf(0);IntOut(0, Count);Text(0, " such numbers found below 1000.");]`
Output:
```0       1       2       3       4       5       6       7       8       9
10      20      30      40      50      60      70      80      90      100
109     119     129     139     149     159     169     179     189     199
200     300     400     500     600     700     800     900     910     911
912     913     914     915     916     917     918     919
48 such numbers found below 1000.
```

## Yabasic

`// Rosetta Code problem: http://rosettacode.org/wiki/Sum_of_the_digits_of_n_is_substring_of_n// by Galileo, 04/2022 for n = 0 to 999    if isSubstring(n) print n using "####";nextprint sub isSubstring(n)    local n\$, lon, i, p     n\$ = str\$(n)    lon = len(n\$)    for i = 1 to lon        p = p + val(mid\$(n\$,i,1))    next     return instr(n\$, str\$(p))   end sub`
Output:
```   0    1    2    3    4    5    6    7    8    9   10   20   30   40   50   60   70   80   90  100  109  119  129  139  149  159  169  179  189  199  200  300  400  500  600  700  800  900  910  911  912  913  914  915  916  917  918  919
---Program done, press RETURN---```