Numerical and alphabetical suffixes

From Rosetta Code
Numerical and alphabetical suffixes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

This task is about expressing numbers with an attached (abutted) suffix multiplier(s),   the suffix(es) could be:

  •   an alphabetic (named) multiplier which could be abbreviated
  •    metric  multiplier(s) which can be specified multiple times
  •   "binary" multiplier(s) which can be specified multiple times
  •   explanation marks (!) which indicate a factorial or multifactorial


The (decimal) numbers can be expressed generally as:

             {±}   {digits}   {.}   {digits}
                                 ────── or ──────
             {±}   {digits}   {.}   {digits}   {E or e}   {±}   {digits}

where:

  •   numbers won't have embedded blanks   (contrary to the expaciated examples above where whitespace was used for readability)
  •   this task will only be dealing with decimal numbers,   both in the   mantissa   and   exponent
  •   ±   indicates an optional plus or minus sign   (+   or   -)
  •   digits are the decimal digits   (0 ──► 9)
  •   the digits can have comma(s) interjected to separate the   periods   (thousands)   such as:   12,467,000
  •   .   is the decimal point, sometimes also called a   dot
  •   e   or   E   denotes the use of decimal exponentiation   (a number multiplied by raising ten to some power)


This isn't a pure or perfect definition of the way we express decimal numbers,   but it should convey the intent for this task.

The use of the word   periods   (thousands) is not meant to confuse, that word (as used above) is what the comma separates;
the groups of decimal digits are called periods,   and in almost all cases, are groups of three decimal digits.

If an   e   or   E   is specified, there must be a legal number expressed before it,   and there must be a legal (exponent) expressed after it.

Also, there must be some digits expressed in all cases,   not just a sign and/or decimal point.

Superfluous signs, decimal points, exponent numbers, and zeros   need not be preserved.

I.E.:       +7   007   7.00   7E-0   7E000   70e-1     could all be expressed as 7

All numbers to be "expanded" can be assumed to be valid and there won't be a requirement to verify their validity.


Abbreviated alphabetic suffixes to be supported   (where the capital letters signify the minimum abbreation that can be used)
     PAIRs         multiply the number by  2         (as in pairs of shoes or pants)
     SCOres        multiply the number by  20        (as 3score would be 60)
     DOZens        multiply the number by  12
     GRoss         multiply the number by  144       (twelve dozen)
     GREATGRoss    multiply the number by  1,728     (a dozen gross)
     GOOGOLs       multiply the number by  10^100    (ten raised to the 100&sup>th</sup> power)


Note that the plurals are supported, even though they're usually used when expressing exact numbers   (She has 2 dozen eggs, and dozens of quavas)


Metric suffixes to be supported   (whether or not they're officially sanctioned)
     K     multiply the number by  10^3              kilo      (1,000)
     M     multiply the number by  10^6              mega      (1,000,000)
     G     multiply the number by  10^9              giga      (1,000,000,000)
     T     multiply the number by  10^12             tera      (1,000,000,000,000)
     P     multiply the number by  10^15             peta      (1,000,000,000,000,000)
     E     multiply the number by  10^18             exa       (1,000,000,000,000,000,000)
     Z     multiply the number by  10^21             zetta     (1,000,000,000,000,000,000,000)
     Y     multiply the number by  10^24             yotta     (1,000,000,000,000,000,000,000,000)
     X     multiply the number by  10^27             xenta     (1,000,000,000,000,000,000,000,000,000)
     W     multiply the number by  10^30             wekta     (1,000,000,000,000,000,000,000,000,000,000)
     V     multiply the number by  10^33             vendeka   (1,000,000,000,000,000,000,000,000,000,000,000)
     U     multiply the number by  10^36             udekta    (1,000,000,000,000,000,000,000,000,000,000,000,000)


Binary suffixes to be supported   (whether or not they're officially sanctioned)
     Ki    multiply the number by  2^10              kibi      (1,024)
     Mi    multiply the number by  2^20              mebi      (1,048,576)
     Gi    multiply the number by  2^30              gibi      (1,073,741,824)
     Ti    multiply the number by  2^40              tebi      (1,099,571,627,776)
     Pi    multiply the number by  2^50              pebi      (1,125,899,906,884,629)
     Ei    multiply the number by  2^60              exbi      (1,152,921,504,606,846,976)
     Zi    multiply the number by  2^70              zeb1      (1,180,591,620,717,411,303,424)
     Yi    multiply the number by  2^80              yobi      (1,208,925,819,614,629,174,706,176)
     Xi    multiply the number by  2^90              xebi      (1,237,940,039,285,380,274,899,124,224)
     Wi    multiply the number by  2^100             webi      (1,267,650,600,228,229,401,496,703,205,376)
     Vi    multiply the number by  2^110             vebi      (1,298,074,214,633,706,907,132,624,082,305,024)
     Ui    multiply the number by  2^120             uebi      (1,329,227,995,784,915,872,903,807,060,280,344,576)


All of the metric and binary suffixes can be expressed in   lowercase,   uppercase,   or   mixed case.

All of the metric and binary suffixes can be   stacked   (expressed multiple times),   and also be intermixed:
I.E.:       123k   123K   123GKi   12.3GiGG   12.3e-7T   .78E100e


Factorial suffixes to be supported
     !      compute the (regular) factorial product:   5!   is  5 × 4 × 3 × 2 × 1  =  120
     !!     compute the  double   factorial product:   8!   is  8 × 6 × 4 × 2      =  384
     !!!    compute the  triple   factorial product:   8!   is  8 × 5 × 2          =   80
     !!!!   compute the quadruple factorial product:   8!   is  8 × 4              =   32
     !!!!!  compute the quintuple factorial product:   8!   is  8 × 3              =   24
     ··· the number of factorial symbols that can be specified is to be unlimited   (as per what can be entered/typed) ···


Note that these factorial products aren't   super─factorials   where (4!)! would be (24)!.

Factorial suffixes aren't, of course, the usual type of multipliers, but are used here in a similar vein.


Multifactorials aren't to be confused with   super─factorials     where   (4!)!   would be   (24)!.


Task
  •   Using the test cases (below),   show the "expanded" numbers here, on this page.
  •   For each list, show the input on one line,   and also show the output on one line.
  •   When showing the input line, keep the spaces (whitespace) and case (capitalizations) as is.
  •   For each result (list) displayed on one line, separate each number with two blanks.
  •   Add commas to the output numbers were appropriate.


Test cases
    2greatGRo   24Gros  288Doz  1,728pairs  172.8SCOre
    1,567      +1.567k    0.1567e-2m
    25.123kK    25.123m   2.5123e-00002G
    25.123kiKI  25.123Mi  2.5123e-00002Gi  +.25123E-7Ei
    -.25123e-34Vikki      2e-77gooGols
    9!   9!!   9!!!   9!!!!   9!!!!!   9!!!!!!   9!!!!!!!   9!!!!!!!!   9!!!!!!!!!

where the last number for the factorials has nine factorial symbols   (!)   after the   9


Related tasks



Factor[edit]

Functional[edit]

USING: combinators combinators.short-circuit formatting fry
grouping grouping.extras kernel literals math math.functions
math.parser math.ranges qw regexp sequences sequences.deep
sequences.extras sets splitting unicode ;
IN: rosetta-code.numerical-suffixes
 
CONSTANT: test-cases {
qw{ 2greatGRo 24Gros 288Doz 1,728pairs 172.8SCOre }
qw{ 1,567 +1.567k 0.1567e-2m }
qw{ 25.123kK 25.123m 2.5123e-00002G }
qw{ 25.123kiKI 25.123Mi 2.5123e-00002Gi +.25123E-7Ei }
qw{ -.25123e-34Vikki 2e-77gooGols }
qw{
9! 9!! 9!!! 9!!!! 9!!!!! 9!!!!!! 9!!!!!!! 9!!!!!!!!
9!!!!!!!!!
}
}
 
CONSTANT: alpha {
{ "PAIRs" 2 } { "DOZens" 12 } { "SCOres" 20 }
{ "GRoss" 144 } { "GREATGRoss" 1,728 }
${ "GOOGOLs" 10 100 ^ }
}
 
CONSTANT: metric qw{ K M G T P E Z Y X W V U }
 
! Multifactorial
: m! ( n degree -- m ) neg 1 swap <range> product ;
 
! Separate a number from its suffix(es).
! e.g. "+1.567k" -> 1.567 "k"
: num/suffix ( str -- n suffix(es) )
dup <head-clumps> <reversed> { } like "" map-like
[ string>number ] map [ ] find [ tail* ] dip swap ;
 
! Checks whether str1 is an abbreviation of str2.
! e.g. "greatGRo" "GREATGRoss" -> t
: abbrev? ( str1 str2 -- ? )
{
[ [ >upper ] [ [ LETTER? ] take-while head? ] bi* ]
[ [ length ] [email protected] <= ]
} 2&& ;
 
! Convert an alpha suffix to its multiplication function.
! e.g. "Doz" -> [ 12 * ]
: alpha>quot ( str -- quot )
[ alpha ] dip '[ first _ swap abbrev? ] find nip second
[ * ] curry ;
 
! Split a suffix composed of metric and binary suffixes into its
! constituent parts. e.g. "Vikki" -> { "Vi" "k" "ki" }
: split-compound ( str -- seq )
R/ (.i|.)/i all-matching-subseqs ;
 
! Convert a metric or binary suffix to its multiplication
! function. e.g. "k" -> [ 10 3 ^ * ]
: suffix>quot ( str -- quot )
dup [ [ 0 1 ] dip subseq >upper metric index 1 + ] dip
length 1 = [ 3 * '[ 10 _ ^ * ] ] [ 10 * '[ 2 _ ^ * ] ] if ;
 
! Apply suffix>quot to each member of a sequence.
! e.g. { "Vi" "k" "ki" } ->
! [ [ 2 110 ^ * ] [ 10 3 ^ * ] [ 2 10 ^ * ] ]
: map-suffix ( seq -- seq' ) [ suffix>quot ] [ ] map-as ;
 
! Tests whether a string is composed of metric and/or binary
! suffixes. e.g. "Vikki" -> t
: compound? ( str -- ? )
>upper metric concat "I" append without empty? ;
 
! Convert a float to an integer if it is numerically equivalent
! to an integer. e.g. 1.0 -> 1, 1.23 -> 1.23
: ?f>i ( x -- y/n )
dup >integer 2dup [ number= ] 2dip swap ? ;
 
! Convert a suffix string to a function that performs the
! calculations required by the suffix.
! e.g. "!!!" -> [ 3 m! ], "kiKI" -> [ 2 10 ^ * 2 10 ^ * ]
: parse-suffix ( str -- quot )
{
{ [ dup empty? ] [ drop [ ] ] }
{ [ dup first CHAR: ! = ] [ length [ m! ] curry ] }
{ [ dup compound? ] [ split-compound map-suffix ] }
[ alpha>quot ]
} cond flatten ;
 
GENERIC: commas ( n -- str )
 
! Add commas to an integer in triplets.
! e.g. 1567 -> "1,567"
M: integer commas number>string <reversed> 3 group
[ "," append ] map concat reverse rest ;
 
! Add commas to a float in triplets.
! e.g. 1567.12345 -> "1,567.12345"
M: float commas number>string "." split first2
[ string>number commas ] dip "." glue ;
 
! Parse any number with any numerical or alphabetical suffix.
! e.g. "288Doz" -> "3,456", "9!!" -> "945"
: parse-alpha ( str -- str' )
num/suffix parse-suffix curry call( -- x ) ?f>i commas ;
 
: main ( -- )
test-cases [
dup [ parse-alpha ] map
"Numbers: %[%s, %]\n Result: %[%s, %]\n\n" printf
] each ;
 
MAIN: main
Output:
Numbers: { 2greatGRo, 24Gros, 288Doz, 1,728pairs, 172.8SCOre }
 Result: { 3,456, 3,456, 3,456, 3,456, 3,456 }

Numbers: { 1,567, +1.567k, 0.1567e-2m }
 Result: { 1,567, 1,567, 1,567 }

Numbers: { 25.123kK, 25.123m, 2.5123e-00002G }
 Result: { 25,123,000, 25,123,000, 25,123,000 }

Numbers: { 25.123kiKI, 25.123Mi, 2.5123e-00002Gi, +.25123E-7Ei }
 Result: { 26,343,374.848, 26,343,374.848, 26,975,615.844352, 28,964,846,960.23782 }

Numbers: { -.25123e-34Vikki, 2e-77gooGols }
 Result: { -33,394.19493810444, 199,999,999,999,999,983,222,784 }

Numbers: { 9!, 9!!, 9!!!, 9!!!!, 9!!!!!, 9!!!!!!, 9!!!!!!!, 9!!!!!!!!, 9!!!!!!!!! }
 Result: { 362,880, 945, 162, 45, 36, 27, 18, 9, 9 }

EBNF[edit]

This solution uses Factor's extended Backus-Naur form (EBNF) language to define a grammar for parsing numerical/alphabetical suffix numbers. The goal was to describe as much of the suffix-number as possible in a declarative manner, minimizing the use of actions (Factor code that is run on a rule before being added to the abstract syntax tree) and helper functions. The biggest departure from this goal was to parse the metric/binary suffixes based on their index in a collection, as this method is less verbose than defining a rule for each suffix.

USING: formatting fry grouping kernel literals math
math.functions math.parser math.ranges multiline peg.ebnf
quotations qw sequences sequences.deep splitting strings unicode ;
IN: rosetta-code.numerical-suffixes.ebnf
 
CONSTANT: test-cases {
qw{ 2greatGRo 24Gros 288Doz 1,728pairs 172.8SCOre }
qw{ 1,567 +1.567k 0.1567e-2m }
qw{ 25.123kK 25.123m 2.5123e-00002G }
qw{ 25.123kiKI 25.123Mi 2.5123e-00002Gi +.25123E-7Ei }
qw{ -.25123e-34Vikki 2e-77gooGols }
qw{
9! 9!! 9!!! 9!!!! 9!!!!! 9!!!!!! 9!!!!!!! 9!!!!!!!!
9!!!!!!!!!
}
}
 
CONSTANT: metric qw{ K M G T P E Z Y X W V U }
 
: suffix>quot ( str -- quot )
dup [ [ 0 1 ] dip subseq >upper metric index 1 + ] dip
length 1 = [ 3 * '[ 10 _ ^ * ] ] [ 10 * '[ 2 _ ^ * ] ] if ;
 
: ?f>i ( x -- y/n ) dup >integer 2dup [ number= ] 2dip swap ? ;
 
GENERIC: commas ( n -- str )
M: integer commas number>string <reversed> 3 group
[ "," append ] map concat reverse rest ;
 
M: float commas number>string "." split first2
[ string>number commas ] dip "." glue ;
 
EBNF: suffix-num [=[
sign = [+-]
digit = [0-9]
triplet = digit digit digit
commas = (triplet | digit digit | digit) ([,] triplet)+
integer = sign? (commas | digit+)
exp = [Ee] sign? digit+
bfloat = (integer | sign)? [.] digit+ exp?
float = (bfloat | integer exp)
number = (float | integer) => [[ flatten "" like string>number ]]
pairs = [Pp] [Aa] [Ii] [Rr] [s]? => [[ [ 2 * ] ]]
dozens = [Dd] [Oo] [Zz] [e]? [n]? [s]? => [[ [ 12 * ] ]]
scores = [Ss] [Cc] [Oo] [r]? [e]? [s]? => [[ [ 20 * ] ]]
gross = [Gg] [Rr] [o]? [s]? [s]? => [[ [ 144 * ] ]]
gg = [Gg] [Rr] [Ee] [Aa] [Tt] gross => [[ [ 1728 * ] ]]
googols = [Gg] [Oo] [Oo] [Gg] [Oo] [Ll] [s]? => [[ [ $[ 10 100 ^ ] * ] ]]
alpha = (pairs | dozens | scores | gg | gross | googols)
numeric = ([KkMmGgPpEeT-Zt-z] [Ii]?) => [[ flatten "" like suffix>quot ]]
ncompnd = numeric+
fact = [!]+ => [[ length [ neg 1 swap <range> product ] curry ]]
suffix = (alpha | ncompnd | fact)
s-num = number suffix? !(.) =>
[[ >quotation flatten call( -- x ) ?f>i commas ]]
]=]
 
: num-alpha-suffix-demo ( -- )
test-cases [
dup [ suffix-num ] map
"Numbers: %[%s, %]\n Result: %[%s, %]\n\n" printf
] each ;
 
MAIN: num-alpha-suffix-demo
Output:
Numbers: { 2greatGRo, 24Gros, 288Doz, 1,728pairs, 172.8SCOre }
 Result: { 3,456, 3,456, 3,456, 3,456, 3,456 }

Numbers: { 1,567, +1.567k, 0.1567e-2m }
 Result: { 1,567, 1,567, 1,567 }

Numbers: { 25.123kK, 25.123m, 2.5123e-00002G }
 Result: { 25,123,000, 25,123,000, 25,123,000 }

Numbers: { 25.123kiKI, 25.123Mi, 2.5123e-00002Gi, +.25123E-7Ei }
 Result: { 26,343,374.848, 26,343,374.848, 26,975,615.844352, 28,964,846,960.23782 }

Numbers: { -.25123e-34Vikki, 2e-77gooGols }
 Result: { -33,394.19493810444, 199,999,999,999,999,983,222,784 }

Numbers: { 9!, 9!!, 9!!!, 9!!!!, 9!!!!!, 9!!!!!!, 9!!!!!!!, 9!!!!!!!!, 9!!!!!!!!! }
 Result: { 362,880, 945, 162, 45, 36, 27, 18, 9, 9 }

Go[edit]

package main
 
import (
"fmt"
"math"
"math/big"
"strconv"
"strings"
)
 
type minmult struct {
min int
mult float64
}
 
var abbrevs = map[string]minmult{
"PAIRs": {4, 2}, "SCOres": {3, 20}, "DOZens": {3, 12},
"GRoss": {2, 144}, "GREATGRoss": {7, 1728}, "GOOGOLs": {6, 1e100},
}
 
var metric = map[string]float64{
"K": 1e3, "M": 1e6, "G": 1e9, "T": 1e12, "P": 1e15, "E": 1e18,
"Z": 1e21, "Y": 1e24, "X": 1e27, "W": 1e30, "V": 1e33, "U": 1e36,
}
 
var binary = map[string]float64{
"Ki": b(10), "Mi": b(20), "Gi": b(30), "Ti": b(40), "Pi": b(50), "Ei": b(60),
"Zi": b(70), "Yi": b(80), "Xi": b(90), "Wi": b(100), "Vi": b(110), "Ui": b(120),
}
 
func b(e float64) float64 {
return math.Pow(2, e)
}
 
func googol() *big.Float {
g1 := new(big.Float).SetPrec(500)
g1.SetInt64(10000000000)
g := new(big.Float)
g.Set(g1)
for i := 2; i <= 10; i++ {
g.Mul(g, g1)
}
return g
}
 
func fact(num string, d int) int {
prod := 1
n, _ := strconv.Atoi(num)
for i := n; i > 0; i -= d {
prod *= i
}
return prod
}
 
func parse(number string) *big.Float {
bf := new(big.Float).SetPrec(500)
t1 := new(big.Float).SetPrec(500)
t2 := new(big.Float).SetPrec(500)
// find index of last digit
var i int
for i = len(number) - 1; i >= 0; i-- {
if '0' <= number[i] && number[i] <= '9' {
break
}
}
num := number[:i+1]
num = strings.Replace(num, ",", "", -1) // get rid of any commas
suf := strings.ToUpper(number[i+1:])
if suf == "" {
bf.SetString(num)
return bf
}
if suf[0] == '!' {
prod := fact(num, len(suf))
bf.SetInt64(int64(prod))
return bf
}
for k, v := range abbrevs {
kk := strings.ToUpper(k)
if strings.HasPrefix(kk, suf) && len(suf) >= v.min {
t1.SetString(num)
if k != "GOOGOLs" {
t2.SetFloat64(v.mult)
} else {
t2 = googol() // for greater accuracy
}
bf.Mul(t1, t2)
return bf
}
}
bf.SetString(num)
for k, v := range metric {
for j := 0; j < len(suf); j++ {
if k == suf[j:j+1] {
if j < len(suf)-1 && suf[j+1] == 'I' {
t1.SetFloat64(binary[k+"i"])
bf.Mul(bf, t1)
j++
} else {
t1.SetFloat64(v)
bf.Mul(bf, t1)
}
}
}
}
return bf
}
 
func commatize(s string) string {
if len(s) == 0 {
return ""
}
neg := s[0] == '-'
if neg {
s = s[1:]
}
frac := ""
if ix := strings.Index(s, "."); ix >= 0 {
frac = s[ix:]
s = s[:ix]
}
le := len(s)
for i := le - 3; i >= 1; i -= 3 {
s = s[0:i] + "," + s[i:]
}
if !neg {
return s + frac
}
return "-" + s + frac
}
 
func process(numbers []string) {
fmt.Print("numbers = ")
for _, number := range numbers {
fmt.Printf("%s ", number)
}
fmt.Print("\nresults = ")
for _, number := range numbers {
res := parse(number)
t := res.Text('g', 50)
fmt.Printf("%s ", commatize(t))
}
fmt.Println("\n")
}
 
func main() {
numbers := []string{"2greatGRo", "24Gros", "288Doz", "1,728pairs", "172.8SCOre"}
process(numbers)
 
numbers = []string{"1,567", "+1.567k", "0.1567e-2m"}
process(numbers)
 
numbers = []string{"25.123kK", "25.123m", "2.5123e-00002G"}
process(numbers)
 
numbers = []string{"25.123kiKI", "25.123Mi", "2.5123e-00002Gi", "+.25123E-7Ei"}
process(numbers)
 
numbers = []string{"-.25123e-34Vikki", "2e-77gooGols"}
process(numbers)
 
numbers = []string{"9!", "9!!", "9!!!", "9!!!!", "9!!!!!", "9!!!!!!",
"9!!!!!!!", "9!!!!!!!!", "9!!!!!!!!!"}
process(numbers)
}
Output:
numbers =  2greatGRo  24Gros  288Doz  1,728pairs  172.8SCOre  
results =  3,456  3,456  3,456  3,456  3,456  

numbers =  1,567  +1.567k  0.1567e-2m  
results =  1,567  1,567  1,567  

numbers =  25.123kK  25.123m  2.5123e-00002G  
results =  25,123,000  25,123,000  25,123,000  

numbers =  25.123kiKI  25.123Mi  2.5123e-00002Gi  +.25123E-7Ei  
results =  26,343,374.848  26,343,374.848  26,975,615.844352  28,964,846,960.237816578048  

numbers =  -.25123e-34Vikki  2e-77gooGols  
results =  -33,394.194938104441474962344775423096782848  200,000,000,000,000,000,000,000  

numbers =  9!  9!!  9!!!  9!!!!  9!!!!!  9!!!!!!  9!!!!!!!  9!!!!!!!!  9!!!!!!!!!  
results =  362,880  945  162  45  36  27  18  9  9 

Perl 6[edit]

Works with: Rakudo version 2018.09

Scientific notation, while supported in Perl 6, is limited to IEEE-754 64bit accuracy so there is some rounding on values using it. Implements a custom "high precision" conversion routine.

Unfortunately, this suffix routine is of limited use for practical everyday purposes. It focuses on handling excessively large and archaic units (googol, greatgross) and completely ignores or makes unusable (due to forcing case insensitivity) many common current ones: c(centi), m(milli), μ(micro). Ah well.

Note: I am blatantly and deliberately ignoring the task guidelines for formatting the output. It has no bearing on the core of the task. If you really, really, REALLY want to see badly formatted output, uncomment the last line.

use Rat::Precise;
 
my $googol = 10**100;
«PAIRs 2 SCOres 20 DOZens 12 GRoss 144 GREATGRoss 1728 GOOGOLs $googol»
~~ m:g/ ((<.:Lu>+) <.:Ll>*) \s+ (\S+) /;
 
my %abr = |$/.map: {
my $abbrv = .[0].Str.fc;
my $mag = +.[1];
|map { $abbrv.substr( 0, $_ ) => $mag },
.[0][0].Str.chars .. $abbrv.chars
}
 
my %suffix = flat %abr,
(<K M G T P E Z Y X W V U>».fc Z=> (1000, * * 1000*)),
(<Ki Mi Gi Ti Pi Ei Zi Yi Xi Wi Vi Ui>».fc Z=> (1024, * * 1024*));
 
my $reg = %suffix.keys.join('|');
 
sub comma ($i is copy) {
my $s = $i < 0 ?? '-' !! '';
my ($whole, $frac) = $i.split('.');
$frac = $frac.defined ?? ".$frac" !! '';
$s ~ $whole.abs.flip.comb(3).join(',').flip ~ $frac
}
 
sub units (Str $str) {
$str.fc ~~ /^(.+?)(<alpha>*)('!'*)$/;
my ($val, $unit, $fact) = $0, $1.Str.fc, $2.Str;
$val.=subst(',', '', :g);
if $val ~~ m:i/'e'/ {
my ($m,$e) = $val.split(/<[eE]>/);
$val = ($e < 0)
?? $m * FatRat.new(1,10**-$e)
!! $m * 10**$e;
}
my @suf = $unit;
unless %suffix{$unit}:exists {
$unit ~~ /(<$reg>)+/;
@suf = $0;
}
my $ret = $val<>;
$ret = [*] $ret, |@suf.map: { %suffix{$_} } if @suf[0];
$ret = [*] ($ret, * - $fact.chars^ * < 2) if $fact.chars;
$ret.?precise // $ret
}
 
my $test = q:to '===';
2greatGRo 24Gros 288Doz 1,728pairs 172.8SCOre
1,567 +1.567k 0.1567e-2m
25.123kK 25.123m 2.5123e-00002G
25.123kiKI 25.123Mi 2.5123e-00002Gi +.25123E-7Ei
-.25123e-34Vikki 2e-77gooGols
9! 9!! 9!!! 9!!!! 9!!!!! 9!!!!!! 9!!!!!!! 9!!!!!!!! 9!!!!!!!!!
.017k!!
===
 
printf "%16s: %s\n", $_, comma .&units for $test.words;
 
# Task required stupid layout
# say "\n In: $_\nOut: ", .words.map({comma .&units}).join(' ') for $test.lines;
Output:
       2greatGRo: 3,456
          24Gros: 3,456
          288Doz: 3,456
      1,728pairs: 3,456
      172.8SCOre: 3,456
           1,567: 1,567
         +1.567k: 1,567
      0.1567e-2m: 1,567
        25.123kK: 25,123,000
         25.123m: 25,123,000
  2.5123e-00002G: 25,123,000
      25.123kiKI: 26,343,374.848
        25.123Mi: 26,343,374.848
 2.5123e-00002Gi: 26,975,615.844352
    +.25123E-7Ei: 28,964,846,960.237816578048
-.25123e-34Vikki: -33,394.194938104441474962344775423096782848
    2e-77gooGols: 200,000,000,000,000,000,000,000
              9!: 362,880
             9!!: 945
            9!!!: 162
           9!!!!: 45
          9!!!!!: 36
         9!!!!!!: 27
        9!!!!!!!: 18
       9!!!!!!!!: 9
      9!!!!!!!!!: 9
         .017k!!: 34,459,425

REXX[edit]

/*REXX pgm converts numbers (with commas) with suffix multipliers──►pure decimal numbers*/
numeric digits 2000 /*allow the usage of ginormous numbers.*/
@.=; @.1= '2greatGRo 24Gros 288Doz 1,728pairs 172.8SCOre'
@.2= '1,567 +1.567k 0.1567e-2m'
@.3= '25.123kK 25.123m 2.5123e-00002G'
@.4= '25.123kiKI 25.123Mi 2.5123e-00002Gi +.25123E-7Ei'
@.5= '-.25123e-34Vikki 2e-77gooGols'
@.6= 9! 9!! 9!!! 9!!!! 9!!!!! 9!!!!!! 9!!!!!!! 9!!!!!!!! 9!!!!!!!!!
 
parse arg x /*obtain optional arguments from the CL*/
if x\=='' then do; @.2=; @.1=x /*use the number(s) specified on the CL*/
end /*allow user to specify their own list.*/
/* [↓] handle a list or multiple lists*/
do n=1 while @.n\==''; $= /*process each of the numbers in lists.*/
say 'numbers= ' @.n /*echo the original arg to the terminal*/
 
do j=1 for words(@.n); y= word(@.n, j) /*obtain a single number from the input*/
$= $ ' 'commas( num(y) ) /*process a number; add result to list.*/
end /*j*/ /* [↑] add commas to number if needed.*/
/* [↑] add extra blank betweenst nums.*/
say ' result= ' strip($); say /*echo the result(s) to the terminal. */
end /*n*/ /* [↑] elide the pre-pended blank. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isInt: return datatype( arg(1), 'Whole') /*return 1 if arg is an integer, or 0 */
isNum: return datatype( arg(1), 'Number') /* " " " " " a number. " " */
p: return word( arg(1), 1) /*pick 1st argument or 2nd argument. */
ser: say; say '***error*** ' arg(1); say; exit 13
shorten:procedure; parse arg a,n; return left(a, max(0, length(a) - p(n 1) ) )
/*──────────────────────────────────────────────────────────────────────────────────────*/
$fact!: procedure; parse arg x _ .; L= length(x); n= L - length(strip(x, 'T', "!") )
if n<=-n | _\=='' | arg()\==1 then return x; z= left(x, L - n)
if z<0 | \isInt(z) then return x; return $fact(z, n)
/*──────────────────────────────────────────────────────────────────────────────────────*/
$fact: procedure; parse arg x _ .; arg ,n ! .; n= p(n 1); if \isInt(n) then n= 0
if x<-n | \isInt(x) |n<1 | _||!\=='' |arg()>2 then return x||copies("!",max(1,n))
s= x // n; if s==0 then s= n /*compute where to start multiplying. */
 != 1 /*the initial factorial product so far.*/
do j=s to x by n;  != !*j /*perform the actual factorial product.*/
end /*j*/ /*{operator // is REXX's ÷ remainder}*/
return ! /* [↑] handles any level of factorial.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
$sfxa: parse arg u,s 1 c,m; upper u c /*get original version & upper version.*/
if pos( left(s, 2), u)\==0 then do j=length(s) to compare(s, c)-1 by -1
if right(u, j) \== left(c, j) then iterate
_= left(u, length(u) - j) /*get the num.*/
if isNum(_) then return m * _ /*good suffix.*/
leave /*return as is*/
end
return arg(1) /* [↑] handles an alphabetic suffixes.*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
$sfx!: parse arg y; if right(y, 1)=='!' then y= $fact!(y)
if \isNum(y) then y=$sfxz(); if isNum(y) then return y; return $sfxm(y)
/*──────────────────────────────────────────────────────────────────────────────────────*/
$sfxm: parse arg z 1 w; upper w; @= 'KMGTPEZYXWVU'; b= 1000
if right(w, 1)=='I' then do; z= shorten(z); w= z; upper w; b= 1024
end
_= pos( right(w, 1), @); if _==0 then return arg(1)
n= shorten(z); r= num(n, , 1); if isNum(r) then return r * b**_
return arg(1) /* [↑] handles metric or binary suffix*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
$sfxz: return $sfxa( $sfxa( $sfxa( $sfxa( $sfxa( $sfxa(y, 'PAIRs', 2), 'DOZens', 12), ,
'SCores', 20), 'GREATGRoss', 1728), 'GRoss', 144), 'GOOGOLs', 1e100)
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: procedure; parse arg _; n= _'.9'; #= 123456789; b= verify(n, #, "M")
e= verify(n, #'0', , verify(n, #"0.", 'M') ) - 4 /* [↑] add commas.*/
do j=e to b by -3; _= insert(',', _, j); end /*j*/; return _
/*──────────────────────────────────────────────────────────────────────────────────────*/
num: procedure; parse arg x .,,q; if x=='' then return x
if isNum(x) then return x/1; x= space( translate(x, , ','), 0)
if \isNum(x) then x= $sfx!(x); if isNum(x) then return x/1
if q==1 then return x
if q=='' then call ser "argument isn't numeric or doesn't have a legal suffix:" x
output   when using the default inputs:
numbers=  2greatGRo   24Gros  288Doz  1,728pairs  172.8SCOre
 result=  3,456  3,456  3,456  3,456  3,456

numbers=  1,567      +1.567k    0.1567e-2m
 result=  1,567  1,567  1,567

numbers=  25.123kK    25.123m   2.5123e-00002G
 result=  25,123,000  25,123,000  25,123,000

numbers=  25.123kiKI  25.123Mi  2.5123e-00002Gi  +.25123E-7Ei
 result=  26,343,374.848  26,343,374.848  26,975,615.844352  28,964,846,960.237816578048

numbers=  -.25123e-34Vikki      2e-77gooGols
 result=  -33,394.194938104441474962344775423096782848  200,000,000,000,000,000,000,000

numbers=  9! 9!! 9!!! 9!!!! 9!!!!! 9!!!!!! 9!!!!!!! 9!!!!!!!! 9!!!!!!!!!
 result=  362,880  945  162  45  36  27  18  9  9

zkl[edit]

Uses GMP (GNU Multiple Precision Arithmetic Library for big ints. Floats are limited to 64 bit IEEE754. Error checking is nonexistent.

var [const] BI=Import.lib("zklBigNum");  // GMP
var kRE,kD, aRE,aD;
 
kRE,kD = ki();
aRE,aD = abrevCreate();
 
fcn naSuffixes(numStr){
var [const]
numRE=RegExp(0'^([+-]*\.*\d+[.]*\d*E*[+-]*\d*)^),
bangRE=RegExp(0'^(!+)^);
 
nstr:=(numStr - " ,").toUpper();
numRE.search(nstr);
nstr,r := nstr[numRE.matched[0][1],*], numRE.matched[1];
if(r.matches("*[.E]*")) r=r.toFloat(); // arg!
if(r.matches("*[.E]*")) r=r.toFloat(); // arg!
else r=BI(r);
 
reg z;
do{
z=nstr; // use this to see if we actually did anything
if(aRE.search(nstr)){
ns,k := aRE.matched; // ((0,3),"SCO")
re,b := aD[k]; // (RegExp("R|RE|RES"),BI(20)),
nstr = nstr[ns[1],*];
if(re.search(nstr)) nstr=nstr[re.matched[0][1],*]; # remove abbrev tail
r=r*b;
continue;
}else if(kRE.search(nstr)){
r*=kD[kRE.matched[1]]; // "K":1000 ...
nstr=nstr[kRE.matched[0][1],*];
continue;
}else if(bangRE.search(nstr)){ // floats are converted to int
n,k,z := r.toInt(), bangRE.matched[0][1], n - k;
r,nstr = BI(n), nstr[k,*];
while(z>0){ r.mul(z); z-=k; }
continue;
}
}while(nstr and z!=nstr);
r
}
 
fcn ki{ // case insensitive: k, ki,
ss:="K M G T P E Z Y X W V U".split();
d:=Dictionary();
ss.zipWith(d.add,[3..3*(ss.len()),3].apply(BI(10).pow)); # E:1e+18
ss.apply("append","I")
.zipWith(d.add,[10..10*(ss.len()),10].apply(BI(2).pow)); # EI:1.15292e+18
re:="([%s]I\\?)".fmt(ss.concat()); // "([KMGTPEZYXWVU]I\?)"
return(RegExp(re),d);
}
fcn abrevCreate{
var upDown=RegExp("([A-Z]+)(.*)");
s:="PAIRs 2; SCOres 20; DOZens 12; GREATGRoss 1728; GRoss 144; GOOGOLs 10e100".split(";");
abrevs,re := Dictionary(), Sink(String);
foreach an in (s){
a,n := an.split();
upDown.search(a);
u,d := upDown.matched[1,2];
d=d.len().pump(List, // "R|RE|RES"
'+(1),d.get.fp(0),"toUpper").reverse().concat("|");
abrevs.add(u,T(RegExp(d),BI(n)));
re.write(u," ");
}
// "PAIR|SCO|DOZ|GR|GREATGR|GOOGOL"
re=RegExp("(%s)".fmt(re.close().strip().replace(" ","|")));
return(re,abrevs);
}
foreach na in (T("2greatGRo", "24Gros", "288Doz", "1,728pairs", "172.8SCOre",
"1,567", "+1.567k", "0.1567e-2m",
"25.123kK", "25.123m", "2.5123e-00002G",
"25.123kiKI", "25.123Mi", "2.5123e-00002Gi", "+.25123E-7Ei",
"-.25123e-34Vikki", "2e-77gooGols",
"9!", "9!!", "9!!!", "9!!!!", "9!!!!!", "9!!!!!!",
"9!!!!!!!", "9!!!!!!!!", "9!!!!!!!!!",
"9!!!!!!!!!k", ".017k!!", "4 dozensK", "2 dozen pairs")){
 
if((r:=naSuffixes(na)).isType(Float)) println("%16s : %,f".fmt(na,r));
else println("%16s : %,d".fmt(na,r));
}
Output:
       2greatGRo : 3,456
          24Gros : 3,456
          288Doz : 3,456
      1,728pairs : 3,456
      172.8SCOre : 3,456.000000
           1,567 : 1,567
         +1.567k : 1,567.000000
      0.1567e-2m : 1,567.000000
        25.123kK : 25,123,000.000000
         25.123m : 25,123,000.000000
  2.5123e-00002G : 25,123,000.000000
      25.123kiKI : 26,343,374.848000
        25.123Mi : 26,343,374.848000
 2.5123e-00002Gi : 26,975,615.844352
    +.25123E-7Ei : 28,964,846,960.237816
-.25123e-34Vikki : -33,394.194938
    2e-77gooGols : 1,999,999,999,999,999,698,010,112.000000
              9! : 362,880
             9!! : 945
            9!!! : 162
           9!!!! : 45
          9!!!!! : 36
         9!!!!!! : 27
        9!!!!!!! : 18
       9!!!!!!!! : 9
      9!!!!!!!!! : 9
     9!!!!!!!!!k : 9,000
         .017k!! : 34,459,425
       4 dozensK : 48,000
   2 dozen pairs : 48