Superpermutation minimisation

From Rosetta Code
Superpermutation minimisation is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

A superpermutation of N different characters is a string consisting of an arrangement of multiple copies of those N different characters in which every permutation of those characters can be found as a substring.

For example, representing the characters as A..Z, using N=2 we choose to use the first three characters 'AB'. The permutations of 'AB' are the two (i.e. N!), strings: 'AB' and 'BA'.

A too obvious method of generating a superpermutation is to just join all the permutations together forming 'ABBA'.

A little thought will produce the shorter (in fact the shortest) superpermutation of 'ABA' - it contains 'AB' at the beginning and contains 'BA' from the middle to the end.

The "too obvious" method of creation generates a string of length N!*N. Using this as a yardstick, the task is to investigate other methods of generating superpermutations of N from 1-to-7 characters, that never generate larger superpermutations.

Show descriptions and comparisons of algorithms used here, and select the "Best" algorithm as being the one generating shorter superpermutations.

The problem of generating the shortest superpermutation for each N might be NP complete, although the minimal strings for small values of N have been found by brute -force searches.

Reference



C[edit]

Finding a string whose length follows OEIS A007489. Complexity is the length of output string. It is know to be not optimal.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
#define MAX 12
char *super = 0;
int pos, cnt[MAX];
 
// 1! + 2! + ... + n!
int fact_sum(int n)
{
int s, x, f;
for (s = 0, x = 0, f = 1; x < n; f *= ++x, s += f);
return s;
}
 
int r(int n)
{
if (!n) return 0;
 
char c = super[pos - n];
if (!--cnt[n]) {
cnt[n] = n;
if (!r(n-1)) return 0;
}
super[pos++] = c;
return 1;
}
 
void superperm(int n)
{
int i, len;
 
pos = n;
len = fact_sum(n);
super = realloc(super, len + 1);
super[len] = '\0';
 
for (i = 0; i <= n; i++) cnt[i] = i;
for (i = 1; i <= n; i++) super[i - 1] = i + '0';
 
while (r(n));
}
 
int main(void)
{
int n;
for (n = 0; n < MAX; n++) {
printf("superperm(%2d) ", n);
superperm(n);
printf("len = %d", (int)strlen(super));
// uncomment next line to see the string itself
// printf(": %s", super);
putchar('\n');
}
 
return 0;
}
Output:
superperm( 0) len = 0
superperm( 1) len = 1
superperm( 2) len = 3
superperm( 3) len = 9
superperm( 4) len = 33
superperm( 5) len = 153
superperm( 6) len = 873
superperm( 7) len = 5913
superperm( 8) len = 46233
superperm( 9) len = 409113
superperm(10) len = 4037913
superperm(11) len = 43954713

D[edit]

The greedy algorithm from the Python entry. This is a little more complex than the Python code because it uses some helper arrays to avoid some allocations inside the loops, to increase performance.

import std.stdio, std.ascii, std.algorithm, core.memory, permutations2;
 
/** Uses greedy algorithm of adding another char (or two, or three, ...)
until an unseen perm is formed in the last n chars. */

string superpermutation(in uint n) nothrow
in {
assert(n > 0 && n < uppercase.length);
} out(result) {
// It's a superpermutation.
assert(uppercase[0 .. n].dup.permutations.all!(p => result.canFind(p)));
} body {
string result = uppercase[0 .. n];
 
bool[const char[]] toFind;
GC.disable;
foreach (const perm; result.dup.permutations)
toFind[perm] = true;
GC.enable;
toFind.remove(result);
 
auto trialPerm = new char[n];
auto auxAdd = new char[n];
 
while (toFind.length) {
MIDDLE: foreach (immutable skip; 1 .. n) {
auxAdd[0 .. skip] = result[$ - n .. $ - n + skip];
foreach (const trialAdd; auxAdd[0 .. skip].permutations!false) {
trialPerm[0 .. n - skip] = result[$ + skip - n .. $];
trialPerm[n - skip .. $] = trialAdd[];
if (trialPerm in toFind) {
result ~= trialAdd;
toFind.remove(trialPerm);
break MIDDLE;
}
}
}
}
 
return result;
}
 
void main() {
foreach (immutable n; 1 .. 8)
n.superpermutation.length.writeln;
}
Output:
1
3
9
35
164
932
6247

Using the ldc2 compiler with n=10, it finds the result string of length 4_235_533 in less than 9 seconds.

Faster Version[edit]

Translation of: C

From the C version with some improvements.

import std.stdio, std.range, std.algorithm, std.ascii;
 
enum uint nMax = 12;
 
__gshared char[] superperm;
__gshared uint pos;
__gshared uint[nMax] count;
 
/// factSum(n) = 1! + 2! + ... + n!
uint factSum(in uint n) pure nothrow @nogc @safe {
return iota(1, n + 1).map!(m => reduce!q{ a * b }(1u, iota(1, m + 1))).sum;
}
 
bool r(in uint n) nothrow @nogc {
if (!n)
return false;
 
immutable c = superperm[pos - n];
if (!--count[n]) {
count[n] = n;
if (!r(n - 1))
return false;
}
superperm[pos++] = c;
return true;
}
 
void superPerm(in uint n) nothrow {
static immutable chars = digits ~ uppercase;
static assert(chars.length >= nMax);
pos = n;
superperm.length = factSum(n);
 
foreach (immutable i; 0 .. n + 1)
count[i] = i;
foreach (immutable i; 1 .. n + 1)
superperm[i - 1] = chars[i];
 
while (r(n)) {}
}
 
void main() {
foreach (immutable n; 0 .. nMax) {
superPerm(n);
writef("superPerm(%2d) len = %d", n, superperm.length);
// Use -version=doPrint to see the string itself.
version (doPrint) write(": ", superperm);
writeln;
}
}
Output:
superPerm( 0) len = 0
superPerm( 1) len = 1
superPerm( 2) len = 3
superPerm( 3) len = 9
superPerm( 4) len = 33
superPerm( 5) len = 153
superPerm( 6) len = 873
superPerm( 7) len = 5913
superPerm( 8) len = 46233
superPerm( 9) len = 409113
superPerm(10) len = 4037913
superPerm(11) len = 43954713

Run-time: about 0.40 seconds.

Elixir[edit]

Translation of: Ruby
defmodule Superpermutation do
def minimisation(1), do: [1]
def minimisation(n) do
Enum.chunk(minimisation(n-1), n-1, 1)
|> Enum.reduce({[],nil}, fn sub,{acc,last} ->
if Enum.uniq(sub) == sub do
i = if acc==[], do: 0, else: Enum.find_index(sub, &(&1==last)) + 1
{acc ++ (Enum.drop(sub,i) ++ [n] ++ sub), List.last(sub)}
else
{acc, last}
end
end)
|> elem(0)
end
end
 
to_s = fn list -> Enum.map_join(list, &Integer.to_string(&1,16)) end
Enum.each(1..8, fn n ->
result = Superpermutation.minimisation(n)
 :io.format "~3w: len =~8w : ", [n, length(result)]
IO.puts if n<5, do: Enum.join(result),
else: to_s.(Enum.take(result,20)) <> "...." <> to_s.(Enum.slice(result,-20..-1))
end)
Output:
  1: len =       1 : 1
  2: len =       3 : 121
  3: len =       9 : 123121321
  4: len =      33 : 123412314231243121342132413214321
  5: len =     153 : 12345123415234125341....14352143251432154321
  6: len =     873 : 12345612345162345126....62154326154321654321
  7: len =    5913 : 12345671234561723456....65432716543217654321
  8: len =   46233 : 12345678123456718234....43281765432187654321

J[edit]

If there's an 872 long superpermutation for a six letter alphabet, this is not optimal.

approxmin=:3 :0
seqs=. y{~(A.&i.~ !)#y
r=.{.seqs
seqs=.}.seqs
while.#seqs do.
for_n. i.-#y do.
tail=. (-n){. r
b=. tail -:"1 n{."1 seqs
if. 1 e.b do.
j=. b i.1
r=. r, n}.j{seqs
seqs=. (<<<j) { seqs
break.
end.
end.
end.
r
)

Some sequence lengths:

   (#, [email protected])@> (1+i.8) {.&.> <'abcdefghijk'
1 1
2 3
3 9
4 33
5 153
6 873
7 5913
8 46233

Java[edit]

Translation of C via D

Works with: Java version 8
import static java.util.stream.IntStream.rangeClosed;
 
public class Test {
final static int nMax = 12;
 
static char[] superperm;
static int pos;
static int[] count = new int[nMax];
 
static int factSum(int n) {
return rangeClosed(1, n)
.map(m -> rangeClosed(1, m).reduce(1, (a, b) -> a * b)).sum();
}
 
static boolean r(int n) {
if (n == 0)
return false;
 
char c = superperm[pos - n];
if (--count[n] == 0) {
count[n] = n;
if (!r(n - 1))
return false;
}
superperm[pos++] = c;
return true;
}
 
static void superPerm(int n) {
String chars = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 
pos = n;
superperm = new char[factSum(n)];
 
for (int i = 0; i < n + 1; i++)
count[i] = i;
for (int i = 1; i < n + 1; i++)
superperm[i - 1] = chars.charAt(i);
 
while (r(n)) {
}
}
 
public static void main(String[] args) {
for (int n = 0; n < nMax; n++) {
superPerm(n);
System.out.printf("superPerm(%2d) len = %d", n, superperm.length);
System.out.println();
}
}
}
superPerm( 0) len = 0
superPerm( 1) len = 1
superPerm( 2) len = 3
superPerm( 3) len = 9
superPerm( 4) len = 33
superPerm( 5) len = 153
superPerm( 6) len = 873
superPerm( 7) len = 5913
superPerm( 8) len = 46233
superPerm( 9) len = 409113
superPerm(10) len = 4037913
superPerm(11) len = 43954713

Perl[edit]

This uses a naive method of just concatenating the new permutation to the end (or prepending to the front) if it is not already in the string. Adding to the end is similar to Python's s_perm1() function.

Library: ntheory
use ntheory qw/forperm/;
for my $len (1..8) {
my($pre, $post, $t) = ("","");
forperm {
$t = join "",@_;
$post .= $t unless index($post ,$t) >= 0;
$pre = $t . $pre unless index($pre, $t) >= 0;
} $len;
printf "%2d: %8d %8d\n", $len, length($pre), length($post);
}
Output:
 1:        1        1
 2:        4        4
 3:       12       15
 4:       48       64
 5:      240      325
 6:     1440     1956
 7:    10080    13699
 8:    80640   109600

The permutations are generated in lexicographic order, and it seems prepending them leads to smaller strings than adding to the end. These are still quite a bit larger than the heuristic methods.

Python[edit]

"Generate a short Superpermutation of n characters A... as a string using various algorithms."
 
 
from __future__ import print_function, division
 
from itertools import permutations
from math import factorial
import string
import datetime
import gc
 
 
 
MAXN = 7
 
 
def s_perm0(n):
"""
Uses greedy algorithm of adding another char (or two, or three, ...)
until an unseen perm is formed in the last n chars
"""

allchars = string.ascii_uppercase[:n]
allperms = [''.join(p) for p in permutations(allchars)]
sp, tofind = allperms[0], set(allperms[1:])
while tofind:
for skip in range(1, n):
for trial_add in (''.join(p) for p in permutations(sp[-n:][:skip])):
#print(sp, skip, trial_add)
trial_perm = (sp + trial_add)[-n:]
if trial_perm in tofind:
#print(sp, skip, trial_add)
sp += trial_add
tofind.discard(trial_perm)
trial_add = None # Sentinel
break
if trial_add is None:
break
assert all(perm in sp for perm in allperms) # Check it is a superpermutation
return sp
 
def s_perm1(n):
"""
Uses algorithm of concatenating all perms in order if not already part
of concatenation.
"""

allchars = string.ascii_uppercase[:n]
allperms = [''.join(p) for p in sorted(permutations(allchars))]
perms, sp = allperms[::], ''
while perms:
nxt = perms.pop()
if nxt not in sp:
sp += nxt
assert all(perm in sp for perm in allperms)
return sp
 
def s_perm2(n):
"""
Uses algorithm of concatenating all perms in order first-last-nextfirst-
nextlast... if not already part of concatenation.
"""

allchars = string.ascii_uppercase[:n]
allperms = [''.join(p) for p in sorted(permutations(allchars))]
perms, sp = allperms[::], ''
while perms:
nxt = perms.pop(0)
if nxt not in sp:
sp += nxt
if perms:
nxt = perms.pop(-1)
if nxt not in sp:
sp += nxt
assert all(perm in sp for perm in allperms)
return sp
 
def _s_perm3(n, cmp):
"""
Uses algorithm of concatenating all perms in order first,
next_with_LEASTorMOST_chars_in_same_position_as_last_n_chars, ...
"""

allchars = string.ascii_uppercase[:n]
allperms = [''.join(p) for p in sorted(permutations(allchars))]
perms, sp = allperms[::], ''
while perms:
lastn = sp[-n:]
nxt = cmp(perms,
key=lambda pm:
sum((ch1 == ch2) for ch1, ch2 in zip(pm, lastn)))
perms.remove(nxt)
if nxt not in sp:
sp += nxt
assert all(perm in sp for perm in allperms)
return sp
 
def s_perm3_max(n):
"""
Uses algorithm of concatenating all perms in order first,
next_with_MOST_chars_in_same_position_as_last_n_chars, ...
"""

return _s_perm3(n, max)
 
def s_perm3_min(n):
"""
Uses algorithm of concatenating all perms in order first,
next_with_LEAST_chars_in_same_position_as_last_n_chars, ...
"""

return _s_perm3(n, min)
 
 
longest = [factorial(n) * n for n in range(MAXN + 1)]
weight, runtime = {}, {}
print(__doc__)
for algo in [s_perm0, s_perm1, s_perm2, s_perm3_max, s_perm3_min]:
print('\n###\n### %s\n###' % algo.__name__)
print(algo.__doc__)
weight[algo.__name__], runtime[algo.__name__] = 1, datetime.timedelta(0)
for n in range(1, MAXN + 1):
gc.collect()
gc.disable()
t = datetime.datetime.now()
sp = algo(n)
t = datetime.datetime.now() - t
gc.enable()
runtime[algo.__name__] += t
lensp = len(sp)
wt = (lensp / longest[n]) ** 2
print(' For N=%i: SP length %5i Max: %5i Weight: %5.2f'
 % (n, lensp, longest[n], wt))
weight[algo.__name__] *= wt
weight[algo.__name__] **= 1 / n # Geometric mean
weight[algo.__name__] = 1 / weight[algo.__name__]
print('%*s Overall Weight: %5.2f in %.1f seconds.'
 % (29, '', weight[algo.__name__], runtime[algo.__name__].total_seconds()))
 
print('\n###\n### Algorithms ordered by shortest superpermutations first\n###')
print('\n'.join('%12s (%.3f)' % kv for kv in
sorted(weight.items(), key=lambda keyvalue: -keyvalue[1])))
 
print('\n###\n### Algorithms ordered by shortest runtime first\n###')
print('\n'.join('%12s (%.3f)' % (k, v.total_seconds()) for k, v in
sorted(runtime.items(), key=lambda keyvalue: keyvalue[1])))
 
Output:
Generate a short Superpermutation of n characters A... as a string using various algorithms.

###
### s_perm0
###

    Uses greedy algorithm of adding another char (or two, or three, ...)
    until an unseen perm is formed in the last n chars
    
  For N=1: SP length     1 Max:     1 Weight:  1.00
  For N=2: SP length     3 Max:     4 Weight:  0.56
  For N=3: SP length     9 Max:    18 Weight:  0.25
  For N=4: SP length    35 Max:    96 Weight:  0.13
  For N=5: SP length   164 Max:   600 Weight:  0.07
  For N=6: SP length   932 Max:  4320 Weight:  0.05
  For N=7: SP length  6247 Max: 35280 Weight:  0.03
                              Overall Weight:  6.50 in 0.1 seconds.

###
### s_perm1
###

    Uses algorithm of concatenating all perms in order if not already part
    of concatenation.
    
  For N=1: SP length     1 Max:     1 Weight:  1.00
  For N=2: SP length     4 Max:     4 Weight:  1.00
  For N=3: SP length    15 Max:    18 Weight:  0.69
  For N=4: SP length    64 Max:    96 Weight:  0.44
  For N=5: SP length   325 Max:   600 Weight:  0.29
  For N=6: SP length  1956 Max:  4320 Weight:  0.21
  For N=7: SP length 13699 Max: 35280 Weight:  0.15
                              Overall Weight:  2.32 in 0.1 seconds.

###
### s_perm2
###

    Uses algorithm of concatenating all perms in order first-last-nextfirst-
    nextlast... if not already part of concatenation.
    
  For N=1: SP length     1 Max:     1 Weight:  1.00
  For N=2: SP length     4 Max:     4 Weight:  1.00
  For N=3: SP length    15 Max:    18 Weight:  0.69
  For N=4: SP length    76 Max:    96 Weight:  0.63
  For N=5: SP length   420 Max:   600 Weight:  0.49
  For N=6: SP length  3258 Max:  4320 Weight:  0.57
  For N=7: SP length 24836 Max: 35280 Weight:  0.50
                              Overall Weight:  1.49 in 0.3 seconds.

###
### s_perm3_max
###

    Uses algorithm of concatenating all perms in order first,
    next_with_MOST_chars_in_same_position_as_last_n_chars, ...
    
  For N=1: SP length     1 Max:     1 Weight:  1.00
  For N=2: SP length     4 Max:     4 Weight:  1.00
  For N=3: SP length    15 Max:    18 Weight:  0.69
  For N=4: SP length    56 Max:    96 Weight:  0.34
  For N=5: SP length   250 Max:   600 Weight:  0.17
  For N=6: SP length  1482 Max:  4320 Weight:  0.12
  For N=7: SP length 10164 Max: 35280 Weight:  0.08
                              Overall Weight:  3.06 in 50.2 seconds.

###
### s_perm3_min
###

    Uses algorithm of concatenating all perms in order first,
    next_with_LEAST_chars_in_same_position_as_last_n_chars, ...
    
  For N=1: SP length     1 Max:     1 Weight:  1.00
  For N=2: SP length     4 Max:     4 Weight:  1.00
  For N=3: SP length    15 Max:    18 Weight:  0.69
  For N=4: SP length    88 Max:    96 Weight:  0.84
  For N=5: SP length   540 Max:   600 Weight:  0.81
  For N=6: SP length  3930 Max:  4320 Weight:  0.83
  For N=7: SP length 33117 Max: 35280 Weight:  0.88
                              Overall Weight:  1.16 in 49.8 seconds.

###
### Algorithms ordered by shortest superpermutations first
###
     s_perm0 (6.501)
 s_perm3_max (3.057)
     s_perm1 (2.316)
     s_perm2 (1.494)
 s_perm3_min (1.164)

###
### Algorithms ordered by shortest runtime first
###
     s_perm0 (0.099)
     s_perm1 (0.102)
     s_perm2 (0.347)
 s_perm3_min (49.764)
 s_perm3_max (50.192)

Alternative Version[edit]

Translation of: D
from array import array
from string import ascii_uppercase, digits
from operator import mul
 
try:
import psyco
psyco.full()
except:
pass
 
N_MAX = 12
 
# fact_sum(n) = 1! + 2! + ... + n!
def fact_sum(n):
return sum(reduce(mul, xrange(1, m + 1), 1) for m in xrange(1, n + 1))
 
 
def r(n, superperm, pos, count):
if not n:
return False
 
c = superperm[pos - n]
count[n] -= 1
if not count[n]:
count[n] = n
if not r(n - 1, superperm, pos, count):
return False
 
superperm[pos] = c
pos += 1
return True
 
 
def super_perm(n, superperm, pos, count, chars = digits + ascii_uppercase):
assert len(chars) >= N_MAX
pos = n
superperm += array("c", " ") * (fact_sum(n) - len(superperm))
 
for i in xrange(n + 1):
count[i] = i
for i in xrange(1, n + 1):
superperm[i - 1] = chars[i]
 
while r(n, superperm, pos, count):
pass
 
 
def main():
superperm = array("c", "")
pos = 0
count = array("l", [0]) * N_MAX
 
for n in xrange(N_MAX):
super_perm(n, superperm, pos, count)
print "Super perm(%2d) len = %d" % (n, len(superperm)),
#print superperm.tostring(),
print
 
main()

It is four times slower than the D entry. The output is about the same as the D entry.

Racket[edit]

Translation of: Ruby
#lang racket/base
(require racket/list racket/format)
 
(define (index-of1 x l) (for/first ((i (in-naturals 1)) (m (in-list l)) #:when (equal? m x)) i))
 
(define (sprprm n)
(define n-1 (- n 1))
(define sp:n-1 (superperm n-1))
(let loop ((subs (let loop ((sp sp:n-1) (i (- (length sp:n-1) n-1 -1)) (rv null))
(cond
[(zero? i) (reverse rv)]
[else
(define sub (take sp n-1))
(loop (cdr sp)
(- i 1)
(if (check-duplicates sub) rv (cons sub rv)))])))
(ary null))
(if (null? subs)
ary
(let ((sub (car subs)))
(define i (if (null? ary) 0 (index-of1 (last ary) sub)))
(loop (cdr subs) (append ary (drop sub i) (list n) sub))))))
 
(define superperm
(let ((hsh (make-hash (list (cons 1 (list 1))))))
(lambda (n) (hash-ref! hsh n (lambda () (sprprm n))))))
 
 
(define (20..20 ary)
(if (< (length ary) 41) ary (append (take ary 20) (cons '.. (take-right ary 20)))))
 
(for* ((n (in-range 1 (add1 8))) (ary (in-value (superperm n))))
(printf "~a: len = ~a : ~a~%" (~a n #:width 3) (~a (length ary) #:width 8) (20..20 ary)))
Output:
1  : len = 1        : (1)
2  : len = 3        : (1 2 1)
3  : len = 9        : (1 2 3 1 2 1 3 2 1)
4  : len = 33       : (1 2 3 4 1 2 3 1 4 2 3 1 2 4 3 1 2 1 3 4 2 1 3 2 4 1 3 2 1 4 3 2 1)
5  : len = 153      : (1 2 3 4 5 1 2 3 4 1 5 2 3 4 1 2 5 3 4 1 .. 1 4 3 5 2 1 4 3 2 5 1 4 3 2 1 5 4 3 2 1)
6  : len = 873      : (1 2 3 4 5 6 1 2 3 4 5 1 6 2 3 4 5 1 2 6 .. 6 2 1 5 4 3 2 6 1 5 4 3 2 1 6 5 4 3 2 1)
7  : len = 5913     : (1 2 3 4 5 6 7 1 2 3 4 5 6 1 7 2 3 4 5 6 .. 6 5 4 3 2 7 1 6 5 4 3 2 1 7 6 5 4 3 2 1)
8  : len = 46233    : (1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 1 8 2 3 4 .. 4 3 2 8 1 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1)

REXX[edit]

version 1[edit]

This REXX version just does simple finds for the permutations.

/*REXX program attempts  to find better  minimizations  for computing superpermutations.*/
parse arg cycles . /*obtain optional arguments from the CL*/
if cycles=='' | cycles=="," then cycles=7 /*Not specified? Then use the default.*/
 
do n=0 to cycles
#=0; $.= /*populate the first permutation. */
do pop=1 for n; @.pop=d2x(pop); $.0=$.0 || @.pop; end /*pop*/
 
do while aPerm(n, 0)
if n\==0 then #=#+1; $.#=; do j=1 for n; $.#=$.# || @.j; end /*j*/
end /*while*/
z=$.0
nm=n-1
do ?=1 for #; if $.j=='' then iterate; if pos($.?, z)\==0 then iterate
parse var $.? h 2 R 1 L =(n)
if left(z, nm)==R then do; z=h || z; iterate; end
if right(z, 1)==h then do; z=z || R; iterate; end
z=z || $.?
end /*?*/ /* [↑] more IFs could be added for opt*/
 
say 'length of superpermutation('n") =" length(z)
end /*cycle*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
aPerm: procedure expose @.; parse arg n,i; nm=n-1; if n==0 then return 0
do k=nm by -1 for nm; kp=k+1; if @.k<@.kp then do; i=k;leave; end; end /*k*/
do j=i+1 while j<n; parse value @.j @.n with @.n @.j; n=n-1; end /*j*/
if i==0 then return 0
do m=i+1 while @.m<@.i; end /*m*/; parse value @.m @.i with @.i @.m
return 1

output   when the input used is:   8

length of superpermutation(0) = 0
length of superpermutation(1) = 1
length of superpermutation(2) = 2
length of superpermutation(3) = 9
length of superpermutation(4) = 50
length of superpermutation(5) = 302
length of superpermutation(6) = 1922
length of superpermutation(7) = 13652
length of superpermutation(8) = 109538

version 2[edit]

/*REXX program attempts  to find better  minimizations  for computing superpermutations.*/
parse arg cycles . /*obtain optional arguments from the CL*/
if cycles=='' | cycles=="," then cycles=7 /*Not specified? Then use the default.*/
 
do n=0 to cycles
#=0; $.= /*populate the first permutation. */
do pop=1 for n; @.pop=d2x(pop); $.0=$.0 || @.pop; end /*pop*/
 
do while aPerm(n,0);
if n\==0 then #=#+1; $.#=; do j=1 for n; $.#=$.# || @.j; end /*j*/
end /*while*/
z=$.0
c=0 /*count of found permutations (so far).*/
do j=1 while c\==#
if j># then do; c=c+1 /*exhausted finds and shortcuts; concat*/
z=z || $.j; $.j=
j=1
end
if $.j=='' then iterate /*Already found? Then ignore this perm.*/
if pos($.j,z)\==0 then do; c=c+1
$.j=
iterate
end
 
do k=n-1 to 1 by -1 /*handle the shortcuts in perm finding.*/
if substr($.j, k)==left(z, k) then do; c=c+1 /*found a rightish shortcut*/
z=left($.j, k-1) || z; $.j=
iterate j
end
if left($.j, k) ==right(z, k) then do; c=c+1 /*found a leftish shortcut*/
z=z || substr($.j, k+1); $.j=
iterate j
end
end /*k*/ /* [↑] more IFs could be added for opt*/
end /*j*/
say 'length of superpermutation('n") =" length(z)
end /*cycle*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
aPerm: procedure expose @.; parse arg n,i; nm=n-1; if n==0 then return 0
do k=nm by -1 for nm; kp=k+1; if @.k<@.kp then do; i=k;leave; end; end /*k*/
do j=i+1 while j<n; parse value @.j @.n with @.n @.j; n=n-1; end /*j*/
if i==0 then return 0
do m=i+1 while @.m<@.i; end /*m*/; parse value @.m @.i with @.i @.m
return 1

output   when using the default input:

superpermutation(0) = 0
superpermutation(1) = 1
superpermutation(2) = 3
superpermutation(3) = 9
superpermutation(4) = 35
superpermutation(5) = 183
superpermutation(6) = 1411
superpermutation(7) = 12137

Ruby[edit]

Non Recursive Version[edit]

#A straight forward implementation of N. Johnston's algorithm. I prefer to look at this as 2n+1 where
#the second n is first n reversed, and the 1 is always the second symbol. This algorithm will generate
#just the left half of the result by setting l to [1,2] and looping from 3 to 6. For the purpose of
#this task I am going to start from an empty array and generate the whole strings using just the
#rules.
#
#Nigel Galloway: December 16th., 2014
#
l = []
(1..6).each{|e|
a, i = [], e-2
(0..l.length-e+1).each{|g|
if not (n = l[g..g+e-2]).uniq!
a.concat(n[(a[0]? i : 0)..-1]).push(e).concat(n)
i = e-2
else
i -= 1
end
}
a.each{|n| print n}; puts "\n\n"
l = a
}
Output:
1

121

123121321

123412314231243121342132413214321

123451234152341253412354123145231425314235142315423124531243512431524312543121345213425134215342135421324513241532413524132541321453214352143251432154321

123456123451623451263451236451234651234156234152634152364152346152341652341256341253641253461253416253412653412356412354612354162354126354123654123145623145263145236145231645231465231425631425361425316425314625314265314235614235164235146235142635142365142315642315462315426315423615423165423124563124536124531624531264531246531243561243516243512643512463512436512431562431526431524631524361524316524312564312546312543612543162543126543121345621345261345216345213645213465213425613425163425136425134625134265134215634215364215346215342615342165342135642135462135426135421635421365421324561324516324513624513264513246513241563241536241532641532461532416532413562413526413524613524163524136524132564132546132541632541362541326541321456321453621453261453216453214653214356214352614352164352146352143652143256143251643251463251436251432651432156432154632154362154326154321654321

Recursive Version[edit]

def superperm(n)
return [1] if n==1
superperm(n-1).each_cons(n-1).with_object([]) do |sub, ary|
next if sub.uniq!
i = ary.empty? ? 0 : sub.index(ary.last)+1
ary.concat(sub[i..-1] + [n] + sub)
end
end
 
def to_16(a) a.map{|x| x.to_s(16)}.join end
 
for n in 1..10
ary = superperm(n)
print "%3d: len =%8d :" % [n, ary.size]
puts n<5 ? ary.join : to_16(ary.first(20)) + "...." + to_16(ary.last(20))
end
Output:
  1: len =       1 :1
  2: len =       3 :121
  3: len =       9 :123121321
  4: len =      33 :123412314231243121342132413214321
  5: len =     153 :12345123415234125341....14352143251432154321
  6: len =     873 :12345612345162345126....62154326154321654321
  7: len =    5913 :12345671234561723456....65432716543217654321
  8: len =   46233 :12345678123456718234....43281765432187654321
  9: len =  409113 :12345678912345678192....29187654321987654321
 10: len = 4037913 :123456789a1234567891....1987654321a987654321

Sidef[edit]

Translation of: Perl
for len in (1..8) {
var (pre="", post="")
@^len -> permutations {|*p|
var t = p.join
post.append!(t) if !post.contains(t)
pre.prepend!(t) if !pre.contains(t)
}
printf("%2d: %8d %8d\n", len, pre.len, post.len)
}
Output:
 1:        1        1
 2:        4        4
 3:       12       15
 4:       48       64
 5:      240      325
 6:     1440     1956
 7:    10080    13699
 8:    80640   109600

zkl[edit]

Translation of: C

It crawls ...

const MAX = 12;
var super=Data(), pos, cnt; // global state, ick
 
fcn fact_sum(n){ // -->1! + 2! + ... + n!
[1..n].reduce(fcn(s,n){ s + [2..n].reduce('*,1) },0)
}
 
fcn r(n){
if (not n) return(0);
 
c := super[pos - n];
if (not (cnt[n]-=1)){
cnt[n] = n;
if (not r(n-1)) return(0);
}
super[pos] = c; pos+=1;
1
}
 
fcn superperm(n){
pos = n;
len := fact_sum(n);
super.fill(0,len); // this is pretty close to recalloc()
 
cnt = (n+1).pump(List()); //-->(0,1,2,3,..n)
foreach i in (n){ super[i] = i + 0x31; } //-->"1" ... "123456789:;"
while (r(n)){}
}
 
foreach n in (MAX){
superperm(n);
print("superperm(%2d) len = %d".fmt(n,super.len()));
// uncomment next line to see the string itself
//print(": %s".fmt(super.text));
println();
}
Output:
superperm( 0) len = 0: 
superperm( 1) len = 1: 1
superperm( 2) len = 3: 121
superperm( 3) len = 9: 123121321
superperm( 4) len = 33: 123412314231243121342132413214321
superperm( 5) len = 153: 123451234152341253412354123145231425314235142315423124531243512431524312543121345213425134215342135421324513241532413524132541321453214352143251432154321
superperm( 6) len = 873
superperm( 7) len = 5913
superperm( 8) len = 46233
superperm( 9) len = 409113
superperm(10) len = 4037913
superperm(11) len = 43954713