UTF-8 encode and decode
You are encouraged to solve this task according to the task description, using any language you may know.
As described in UTF-8 and in Wikipedia, UTF-8 is a popular encoding of (multi-byte) Unicode code-points into eight-bit octets.
The goal of this task is to write a encoder that takes a unicode code-point (an integer representing a unicode character) and returns a sequence of 1–4 bytes representing that character in the UTF-8 encoding.
Then you have to write the corresponding decoder that takes a sequence of 1–4 UTF-8 encoded bytes and return the corresponding unicode character.
Demonstrate the functionality of your encoder and decoder on the following five characters:
Character Name Unicode UTF-8 encoding (hex) --------------------------------------------------------------------------------- A LATIN CAPITAL LETTER A U+0041 41 ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6 Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96 € EURO SIGN U+20AC E2 82 AC 𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
Provided below is a reference implementation in Common Lisp.
11l
F unicode_code(ch)
R ‘U+’hex(ch.code).zfill(4)
F utf8hex(ch)
R ch.encode(‘utf-8’).map(c -> hex(c)).join(‘ ’)
print(‘#<11 #<15 #<15’.format(‘Character’, ‘Unicode’, ‘UTF-8 encoding (hex)’))
V chars = [‘A’, ‘ö’, ‘Ж’, ‘€’]
L(char) chars
print(‘#<11 #<15 #<15’.format(char, unicode_code(char), utf8hex(char)))
- Output:
Character Unicode UTF-8 encoding (hex) A U+0041 41 ö U+00F6 C3 B6 Ж U+0416 D0 96 € U+20AC E2 82 AC
8th
hex \ so bytes print nicely
[
"\u0041",
"\u00F6",
"\u0416",
"\u20AC"
]
\ add the 0x1D11E one; the '\u' string notation requires four hex digits
"" 1D11E s:+ a:push
\ for each test, print it out and its bytes:
(
dup . space
b:new
( . space drop ) b:each
cr
) a:each! drop
cr
\ now the inverse:
[
[41],
[C3,B6],
[D0,96],
[E2,82,AC],
[$F0,9D,84,9E]
]
(
dup . space
b:new >s . cr
) a:each! drop
bye
Output:
A 41 ö c3 b6 Ж d0 96 € e2 82 ac 𝄞 f0 9d 84 9e [41] A [c3,b6] ö [d0,96] Ж [e2,82,ac] € [f0,9d,84,9e] 𝄞
Action!
TYPE Unicode=[BYTE bc1,bc2,bc3]
BYTE ARRAY hex=['0 '1 '2 '3 '4 '5 '6 '7 '8 '9 'A 'B 'C 'D 'E 'F]
BYTE FUNC DecodeHex(CHAR c)
BYTE i
FOR i=0 TO 15
DO
IF c=hex(i) THEN
RETURN (i)
FI
OD
Break()
RETURN (255)
BYTE FUNC DecodeHex2(CHAR c1,c2)
BYTE h1,h2,res
h1=DecodeHex(c1)
h2=DecodeHex(c2)
res=(h1 LSH 4)%h2
RETURN (res)
PROC ValUnicode(CHAR ARRAY s Unicode POINTER u)
BYTE i,len
len=s(0)
IF len<6 AND len>8 THEN Break() FI
IF s(1)#'U OR s(2)#'+ THEN Break() FI
IF len=6 THEN
u.bc1=0
ELSEIF len=7 THEN
u.bc1=DecodeHex(s(3))
IF u.bc1>$10 THEN Break() FI
ELSE
u.bc1=DecodeHex2(s(3),s(4))
FI
u.bc2=DecodeHex2(s(len-3),s(len-2))
u.bc3=DecodeHex2(s(len-1),s(len))
RETURN
PROC PrintHex2(BYTE x)
Put(hex(x RSH 4))
Put(hex(x&$0F))
RETURN
PROC StrUnicode(Unicode POINTER u)
Print("U+")
IF u.bc1>$F THEN
PrintHex2(u.bc1)
ELSEIF u.bc1>0 THEN
Put(hex(u.bc1))
FI
PrintHex2(u.bc2)
PrintHex2(u.bc3)
RETURN
PROC PrintArray(BYTE ARRAY a BYTE len)
BYTE i
Put('[)
FOR i=0 TO len-1
DO
IF i>0 THEN Put(32 )FI
PrintHex2(a(i))
OD
Put('])
RETURN
PROC Encode(Unicode POINTER u BYTE ARRAY buf BYTE POINTER len)
IF u.bc1>0 THEN
len^=4
buf(0)=$F0 % (u.bc1 RSH 2)
buf(1)=$80 % ((u.bc1 & $03) LSH 4) % (u.bc2 RSH 4)
buf(2)=$80 % ((u.bc2 & $0F) LSH 2) % (u.bc3 RSH 6)
buf(3)=$80 % (u.bc3 & $3F)
ELSEIF u.bc2>=$08 THEN
len^=3
buf(0)=$E0 % (u.bc2 RSH 4)
buf(1)=$80 % ((u.bc2 & $0F) LSH 2) % (u.bc3 RSH 6)
buf(2)=$80 % (u.bc3 & $3F)
ELSEIF u.bc2>0 OR u.bc3>=$80 THEN
len^=2
buf(0)=$C0 % (u.bc2 LSH 2) % (u.bc3 RSH 6)
buf(1)=$80 % (u.bc3 & $3F)
ELSE
len^=1
buf(0)=u.bc3
FI
RETURN
PROC Decode(BYTE ARRAY buf BYTE len Unicode POINTER u)
IF len=1 THEN
u.bc1=0
u.bc2=0
u.bc3=buf(0)
ELSEIF len=2 THEN
u.bc1=0
u.bc2=(buf(0) & $1F) RSH 2
u.bc3=(buf(0) LSH 6) % (buf(1) & $3F)
ELSEIF len=3 THEN
u.bc1=0
u.bc2=(buf(0) LSH 4) % ((buf(1) & $3F) RSH 2)
u.bc3=(buf(1) LSH 6) % (buf(2) & $3F)
ELSEIF len=4 THEN
u.bc1=((buf(0) & $07) LSH 2) % ((buf(1) & $3F) RSH 4)
u.bc2=(buf(1) LSH 4) % ((buf(2) & $3F) RSH 2)
u.bc3=((buf(2) & $03) LSH 6) % (buf(3) & $3F)
ELSE
Break()
FI
RETURN
PROC Main()
DEFINE PTR="CARD"
DEFINE COUNT="11"
PTR ARRAY case(COUNT)
Unicode uni,res
BYTE ARRAY buf(4)
BYTE i,len
case(0)="U+0041"
case(1)="U+00F6"
case(2)="U+0416"
case(3)="U+20AC"
case(4)="U+1D11E"
case(5)="U+0024"
case(6)="U+00A2"
case(7)="U+0939"
case(8)="U+20AC"
case(9)="U+D55C"
case(10)="U+10348"
FOR i=0 TO COUNT-1
DO
IF i=0 THEN
PrintE("From RosettaCode:")
ELSEIF i=5 THEN
PutE() PrintE("From Wikipedia:")
FI
ValUnicode(case(i),uni)
Encode(uni,buf,@len)
Decode(buf,len,res)
StrUnicode(uni) Print(" -> ")
PrintArray(buf,len) Print(" -> ")
StrUnicode(res) PutE()
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
From RosettaCode: U+0041 -> [41] -> U+0041 U+00F6 -> [C3 B6] -> U+00F6 U+0416 -> [D0 96] -> U+0416 U+20AC -> [E2 82 AC] -> U+20AC U+1D11E -> [F0 9D 84 9E] -> U+1D11E From Wikipedia: U+0024 -> [24] -> U+0024 U+00A2 -> [C2 A2] -> U+00A2 U+0939 -> [E0 A4 B9] -> U+0939 U+20AC -> [E2 82 AC] -> U+20AC U+D55C -> [ED 95 9C] -> U+D55C U+10348 -> [F0 90 8D 88] -> U+10348
Ada
with Ada.Strings.Fixed; use Ada.Strings.Fixed;
with Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
with Ada.Integer_Text_IO;
with Ada.Text_IO;
with Ada.Wide_Wide_Text_IO;
procedure UTF8_Encode_And_Decode
is
package TIO renames Ada.Text_IO;
package WWTIO renames Ada.Wide_Wide_Text_IO;
package WWS renames Ada.Strings.UTF_Encoding.Wide_Wide_Strings;
function To_Hex
(i : in Integer;
width : in Natural := 0;
fill : in Character := '0') return String
is
holder : String(1 .. 20);
begin
Ada.Integer_Text_IO.Put(holder, i, 16);
declare
hex : constant String := holder(Index(holder, "#")+1 .. holder'Last-1);
filled : String := Natural'Max(width, hex'Length) * fill;
begin
filled(filled'Last - hex'Length + 1 .. filled'Last) := hex;
return filled;
end;
end To_Hex;
input : constant Wide_Wide_String := "AöЖ€𝄞";
begin
TIO.Put_Line("Character Unicode UTF-8 encoding (hex)");
TIO.Put_Line(43 * '-');
for WWC of input loop
WWTIO.Put(WWC & " ");
declare
filled : String := 11 * ' ';
unicode : constant String := "U+" & To_Hex(Wide_Wide_Character'Pos(WWC), width => 4);
utf8_string : constant String := WWS.Encode((1 => WWC));
begin
filled(filled'First .. filled'First + unicode'Length - 1) := unicode;
TIO.Put(filled);
for C of utf8_string loop
TIO.Put(To_Hex(Character'Pos(C)) & " ");
end loop;
TIO.New_Line;
end;
end loop;
end UTF8_Encode_And_Decode;
- Output:
Character Unicode UTF-8 encoding (hex) ------------------------------------------- A U+0041 41 ö U+00F6 C3 B6 Ж U+0416 D0 96 € U+20AC E2 82 AC 𝄞 U+1D11E F0 9D 84 9E
ATS
The following code is long but consists largely of proofs. UTF-8 is a complicated encoding, but also a well defined one that lends itself to compile-time verification methods.
Despite this complexity, what actually gets generated is highly optimizable C code. Note that the following demonstration requires no ATS-specific library support whatsoever.
(*
UTF-8 encoding and decoding in ATS2.
This is adapted from library code I wrote long ago and actually
handles the original 1-to-6-byte encoding, as well. Valid Unicode
requires only 1 to 4 bytes.
What is remarkable about the following rather lengthy code is its
use of proofs of what is and what is not valid UTF-8. Much of what
follows is proofs rather than executable code. It seemed simpler to
"mostly copy" my old code, than to try to pare that code down to a
minimum that still demonstrated some of what makes ATS different
from all but a few (if any) other languages.
*)
#define ATS_EXTERN_PREFIX "utf8_encoding_"
#include "share/atspre_define.hats"
#include "share/atspre_staload.hats"
(* A variant of ‘andalso’, with dependent types. *)
fn {}
andalso1 {b1, b2 : bool} (b1 : bool b1, b2 : bool b2) :<>
[b3 : bool | b3 == (b1 && b2)] bool b3 =
if b1 then
b2
else
false
infixl (&&) &&&
macdef &&& = andalso1
(*###################### C CODE ####################################*)
%{^
_Static_assert (4 <= sizeof (int),
"sizeof(int) must equal at least 4");
#define utf8_encoding_2_entries(v) \
(v), (v)
#define utf8_encoding_4_entries(v) \
utf8_encoding_2_entries (v), \
utf8_encoding_2_entries (v)
#define utf8_encoding_8_entries(v) \
utf8_encoding_4_entries (v), \
utf8_encoding_4_entries (v)
#define utf8_encoding_16_entries(v) \
utf8_encoding_8_entries (v), \
utf8_encoding_8_entries (v)
#define utf8_encoding_32_entries(v) \
utf8_encoding_16_entries (v), \
utf8_encoding_16_entries (v)
#define utf8_encoding_64_entries(v) \
utf8_encoding_32_entries (v), \
utf8_encoding_32_entries (v)
#define utf8_encoding_128_entries(v) \
utf8_encoding_64_entries (v), \
utf8_encoding_64_entries (v)
static const atstype_int8 utf8_encoding_extended_utf8_lengths__[256] = {
utf8_encoding_128_entries (1),
utf8_encoding_64_entries (-1),
utf8_encoding_32_entries (2),
utf8_encoding_16_entries (3),
utf8_encoding_8_entries (4),
utf8_encoding_4_entries (5),
utf8_encoding_2_entries (6),
utf8_encoding_2_entries (-1)
};
static const atstype_int8 utf8_encoding_utf8_lengths__[256] = {
utf8_encoding_128_entries (1),
utf8_encoding_64_entries (-1),
utf8_encoding_32_entries (2),
utf8_encoding_16_entries (3),
utf8_encoding_8_entries (4),
utf8_encoding_4_entries (-1),
utf8_encoding_2_entries (-1),
utf8_encoding_2_entries (-1)
};
#define utf8_encoding_extended_utf8_character_length(c) \
(utf8_encoding_extended_utf8_lengths__[(atstype_uint8) (c)])
#define utf8_encoding_utf8_character_length(c) \
(utf8_encoding_utf8_lengths__[(atstype_uint8) (c)])
%}
(*###################### INTERFACE #################################*)
stadef
is_valid_unicode_code_point (u : int) : bool =
(0x0 <= u && u < 0xD800) || (0xE000 <= u && u <= 0x10FFFF)
extern fun {}
is_valid_unicode_code_point :
{u : int} int u -<>
[b : bool | b == is_valid_unicode_code_point u]
bool b
(*------------------------------------------------------------------*)
stadef
is_extended_utf8_1byte_first_byte (c0 : int) : bool =
0x00 <= c0 && c0 <= 0x7F
stadef
is_extended_utf8_2byte_first_byte (c0 : int) : bool =
0xC0 <= c0 && c0 <= 0xDF
stadef
is_extended_utf8_3byte_first_byte (c0 : int) : bool =
0xE0 <= c0 && c0 <= 0xEF
stadef
is_extended_utf8_4byte_first_byte (c0 : int) : bool =
0xF0 <= c0 && c0 <= 0xF7
stadef
is_extended_utf8_5byte_first_byte (c0 : int) : bool =
0xF8 <= c0 && c0 <= 0xFB
stadef
is_extended_utf8_6byte_first_byte (c0 : int) : bool =
0xFC <= c0 && c0 <= 0xFD
stadef
extended_utf8_character_length (c0 : int) : int =
ifint (is_extended_utf8_1byte_first_byte c0, 1,
ifint (is_extended_utf8_2byte_first_byte c0, 2,
ifint (is_extended_utf8_3byte_first_byte c0, 3,
ifint (is_extended_utf8_4byte_first_byte c0, 4,
ifint (is_extended_utf8_5byte_first_byte c0, 5,
ifint (is_extended_utf8_6byte_first_byte c0, 6, ~1))))))
stadef
extended_utf8_char_length_relation (c0 : int, n : int) : bool =
(n == 1 && is_extended_utf8_1byte_first_byte c0) ||
(n == 2 && is_extended_utf8_2byte_first_byte c0) ||
(n == 3 && is_extended_utf8_3byte_first_byte c0) ||
(n == 4 && is_extended_utf8_4byte_first_byte c0) ||
(n == 5 && is_extended_utf8_5byte_first_byte c0) ||
(n == 6 && is_extended_utf8_6byte_first_byte c0)
extern prfun
extended_utf8_char_length_relation_to_length :
{c0 : int}
{n : int | extended_utf8_char_length_relation (c0, n) ||
(n == ~1 && ((c0 < 0x00) ||
(0x7F < c0 && c0 < 0xC0) ||
(0xFD < c0)))}
() -<prf> [n == extended_utf8_character_length c0] void
extern prfun
extended_utf8_char_length_to_length_relation :
{c0 : int}
{n : int | n == extended_utf8_character_length c0}
() -<prf>
[extended_utf8_char_length_relation (c0, n) ||
(n == ~1 && ((c0 < 0x00) || (0x7F < c0 && c0 < 0xC0) || (0xFD < c0)))]
void
// extended_utf8_character_length:
//
// Return value = 1, 2, 3, or 4 indicates that there may be a valid
// UTF-8 character, of the given length. It may also be a `valid'
// overlong sequence. Otherwise there definitely is not a valid
// character of any sort starting with the given byte. Return
// value = 5 or 6 indicates the possible start of an `extended
// UTF-8' character of the given length, including code points up
// to 0xffffffff. Return value = ~1 means the byte is not the
// start of a valid sequence.
extern fun
extended_utf8_character_length :
{c0 : int | 0x00 <= c0; c0 <= 0xFF} int c0 -<>
[n : int | n == extended_utf8_character_length c0] int n = "mac#%"
stadef
utf8_character_length (c0 : int) : int =
ifint (is_extended_utf8_1byte_first_byte c0, 1,
ifint (is_extended_utf8_2byte_first_byte c0, 2,
ifint (is_extended_utf8_3byte_first_byte c0, 3,
ifint (is_extended_utf8_4byte_first_byte c0, 4, ~1))))
stadef
utf8_char_length_relation (c0 : int, n : int) : bool =
(n == 1 && is_extended_utf8_1byte_first_byte c0) ||
(n == 2 && is_extended_utf8_2byte_first_byte c0) ||
(n == 3 && is_extended_utf8_3byte_first_byte c0) ||
(n == 4 && is_extended_utf8_4byte_first_byte c0)
extern prfun
utf8_char_length_relation_to_length :
{c0 : int}
{n : int | utf8_char_length_relation (c0, n) ||
(n == ~1 && ((c0 < 0x00) ||
(0x7F < c0 && c0 < 0xC0) ||
(0xF7 < c0)))}
() -<prf> [n == utf8_character_length c0] void
extern prfun
utf8_char_length_to_length_relation :
{c0 : int}
{n : int | n == utf8_character_length c0}
() -<prf>
[utf8_char_length_relation (c0, n) ||
(n == ~1 && ((c0 < 0x00) || (0x7F < c0 && c0 < 0xC0) || (0xF7 < c0)))]
void
extern fun
utf8_character_length :
{c0 : int | 0x00 <= c0; c0 <= 0xFF} int c0 -<>
[n : int | n == utf8_character_length c0] int n = "mac#%"
(*------------------------------------------------------------------*)
stadef
is_valid_utf8_continuation_byte (c : int) : bool =
0x80 <= c && c <= 0xBF
stadef
is_invalid_utf8_continuation_byte (c : int) : bool =
c < 0x80 || 0xBF < c
extern fun {}
is_valid_utf8_continuation_byte :
{c : int} int c -<>
[b : bool | b == is_valid_utf8_continuation_byte c] bool b
(*------------------------------------------------------------------*)
stadef
extended_utf8_char_1byte_decoding (c0 : int) : int =
c0
stadef
extended_utf8_char_2byte_decoding (c0 : int, c1 : int) : int =
64 * (c0 - 0xC0) + (c1 - 0x80)
stadef
extended_utf8_char_3byte_decoding (c0 : int, c1 : int, c2 : int) : int =
64 * 64 * (c0 - 0xE0) + 64 * (c1 - 0x80) + (c2 - 0x80)
stadef
extended_utf8_char_4byte_decoding (c0 : int, c1 : int, c2 : int,
c3 : int) : int =
64 * 64 * 64 * (c0 - 0xF0) + 64 * 64 * (c1 - 0x80) +
64 * (c2 - 0x80) + (c3 - 0x80)
stadef
extended_utf8_char_5byte_decoding (c0 : int, c1 : int, c2 : int,
c3 : int, c4 : int) : int =
64 * 64 * 64 * 64 * (c0 - 0xF8) + 64 * 64 * 64 * (c1 - 0x80) +
64 * 64 * (c2 - 0x80) + 64 * (c3 - 0x80) + (c4 - 0x80)
stadef
extended_utf8_char_6byte_decoding (c0 : int, c1 : int, c2 : int,
c3 : int, c4 : int, c5 : int) : int =
64 * 64 * 64 * 64 * 64 * (c0 - 0xFC) + 64 * 64 * 64 * 64 * (c1 - 0x80) +
64 * 64 * 64 * (c2 - 0x80) + 64 * 64 * (c3 - 0x80) +
64 * (c4 - 0x80) + (c5 - 0x80)
dataprop EXTENDED_UTF8_CHAR (length : int, u : int, c0 : int, c1 : int,
c2 : int, c3 : int, c4 : int, c5 : int) =
| {u, c0 : int |
0 <= u; u <= 0x7F;
is_extended_utf8_1byte_first_byte c0;
u == extended_utf8_char_1byte_decoding (c0)}
EXTENDED_UTF8_CHAR_1byte (1, u, c0, ~1, ~1, ~1, ~1, ~1)
//
| {u, c0, c1 : int |
0 <= u; u <= 0x7FF;
is_extended_utf8_2byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
u == extended_utf8_char_2byte_decoding (c0, c1)}
EXTENDED_UTF8_CHAR_2byte (2, u, c0, c1, ~1, ~1, ~1, ~1)
//
| {u, c0, c1, c2 : int |
0 <= u; u <= 0xFFFF;
is_extended_utf8_3byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
u == extended_utf8_char_3byte_decoding (c0, c1, c2)}
EXTENDED_UTF8_CHAR_3byte (3, u, c0, c1, c2, ~1, ~1, ~1)
//
| {u, c0, c1, c2, c3 : int |
0 <= u; u <= 0x1FFFFF;
is_extended_utf8_4byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
u == extended_utf8_char_4byte_decoding (c0, c1, c2, c3)}
EXTENDED_UTF8_CHAR_4byte (4, u, c0, c1, c2, c3, ~1, ~1)
//
| {u, c0, c1, c2, c3, c4 : int |
0 <= u; u <= 0x3FFFFFF;
is_extended_utf8_5byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
is_valid_utf8_continuation_byte c4;
u == extended_utf8_char_5byte_decoding (c0, c1, c2, c3, c4)}
EXTENDED_UTF8_CHAR_5byte (5, u, c0, c1, c2, c3, c4, ~1)
//
| {u, c0, c1, c2, c3, c4, c5 : int |
0 <= u; u <= 0x7FFFFFFF;
is_extended_utf8_6byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
is_valid_utf8_continuation_byte c4;
is_valid_utf8_continuation_byte c5;
u == extended_utf8_char_6byte_decoding (c0, c1, c2, c3, c4, c5)}
EXTENDED_UTF8_CHAR_6byte (6, u, c0, c1, c2, c3, c4, c5)
extern prfun
decode_extended_utf8_istot :
{n : int | 1 <= n; n <= 6}
{c0, c1, c2, c3, c4, c5 : int |
extended_utf8_char_length_relation (c0, n);
n <= 1 || is_valid_utf8_continuation_byte c1;
n <= 2 || is_valid_utf8_continuation_byte c2;
n <= 3 || is_valid_utf8_continuation_byte c3;
n <= 4 || is_valid_utf8_continuation_byte c4;
n <= 5 || is_valid_utf8_continuation_byte c5;
1 < n || c1 == ~1;
2 < n || c2 == ~1;
3 < n || c3 == ~1;
4 < n || c4 == ~1;
5 < n || c5 == ~1}
() -<prf> [u : int] EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5)
extern prfun
decode_extended_utf8_isfun :
{na : int | 1 <= na; na <= 6}
{ua : int}
{c0a, c1a, c2a, c3a, c4a, c5a : int}
{nb : int | nb == na}
{ub : int}
{c0b, c1b, c2b, c3b, c4b, c5b : int |
c0b == c0a;
c1b == c1a;
c2b == c2a;
c3b == c3a;
c4b == c4a;
c5b == c5a}
(EXTENDED_UTF8_CHAR (na, ua, c0a, c1a, c2a, c3a, c4a, c5a),
EXTENDED_UTF8_CHAR (nb, ub, c0b, c1b, c2b, c3b, c4b, c5b)) -<prf>
[ua == ub] void
extern prfun
lemma_extended_utf8_char_length :
{n : int} {u : int} {c0, c1, c2, c3, c4, c5 : int}
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) -<prf>
[n == extended_utf8_character_length c0] void
extern fun {}
decode_extended_utf8_1byte :
{c0 : int | 0x00 <= c0; c0 <= 0x7F} int c0 -<>
[u : int] (EXTENDED_UTF8_CHAR (1, u, c0, ~1, ~1, ~1, ~1, ~1) | int u)
extern fun {}
decode_extended_utf8_2byte :
{c0, c1 : int | 0xC0 <= c0; c0 <= 0xDF;
is_valid_utf8_continuation_byte c1}
(int c0, int c1) -<>
[u : int] (EXTENDED_UTF8_CHAR (2, u, c0, c1, ~1, ~1, ~1, ~1) | int u)
extern fun {}
decode_extended_utf8_3byte :
{c0, c1, c2 : int | 0xE0 <= c0; c0 <= 0xEF;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2}
(int c0, int c1, int c2) -<>
[u : int] (EXTENDED_UTF8_CHAR (3, u, c0, c1, c2, ~1, ~1, ~1) | int u)
extern fun {}
decode_extended_utf8_4byte :
{c0, c1, c2, c3 : int | 0xF0 <= c0; c0 <= 0xF7;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3}
(int c0, int c1, int c2, int c3) -<>
[u : int] (EXTENDED_UTF8_CHAR (4, u, c0, c1, c2, c3, ~1, ~1) | int u)
extern fun {}
decode_extended_utf8_5byte :
{c0, c1, c2, c3, c4 : int | 0xF8 <= c0; c0 <= 0xFB;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
is_valid_utf8_continuation_byte c4}
(int c0, int c1, int c2, int c3, int c4) -<>
[u : int] (EXTENDED_UTF8_CHAR (5, u, c0, c1, c2, c3, c4, ~1) | int u)
extern fun {}
decode_extended_utf8_6byte :
{c0, c1, c2, c3, c4, c5 : int | 0xFC <= c0; c0 <= 0xFD;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
is_valid_utf8_continuation_byte c4;
is_valid_utf8_continuation_byte c5}
(int c0, int c1, int c2, int c3, int c4, int c5) -<>
[u : int]
(EXTENDED_UTF8_CHAR (6, u, c0, c1, c2, c3, c4, c5) | int u)
(*------------------------------------------------------------------*)
stadef extended_utf8_shortest_length (u : int) =
ifint (u < 0, ~1,
ifint (u <= 0x7F, 1,
ifint (u <= 0x7FF, 2,
ifint (u <= 0xFFFF, 3,
ifint (u <= 0x1FFFFF, 4,
ifint (u <= 0x3FFFFFF, 5,
ifint (u <= 0x7FFFFFFF, 6, ~1)))))))
dataprop EXTENDED_UTF8_SHORTEST (length : int, u : int, c0 : int, c1 : int,
c2 : int, c3 : int, c4 : int, c5 : int) =
| {u, c0 : int |
0 <= u; u <= 0x7F;
c0 == u}
EXTENDED_UTF8_SHORTEST_1byte (1, u, c0, ~1, ~1, ~1, ~1, ~1) of
EXTENDED_UTF8_CHAR (1, u, c0, ~1, ~1, ~1, ~1, ~1)
//
| {u, c0, c1 : int |
0x7F < u; u <= 0x7FF;
c0 == 0xC0 + (u \ndiv 64);
c1 == 0x80 + (u \nmod 64)}
EXTENDED_UTF8_SHORTEST_2byte (2, u, c0, c1, ~1, ~1, ~1, ~1) of
EXTENDED_UTF8_CHAR (2, u, c0, c1, ~1, ~1, ~1, ~1)
//
| {u, c0, c1, c2 : int |
0x7FF < u; u <= 0xFFFF;
c0 == 0xE0 + (u \ndiv (64 * 64));
c1 == 0x80 + ((u \ndiv 64) \nmod 64);
c2 == 0x80 + (u \nmod 64)}
EXTENDED_UTF8_SHORTEST_3byte (3, u, c0, c1, c2, ~1, ~1, ~1) of
EXTENDED_UTF8_CHAR (3, u, c0, c1, c2, ~1, ~1, ~1)
//
| {u, c0, c1, c2, c3 : int |
0xFFFF < u; u <= 0x1FFFFF;
c0 == 0xF0 + (u \ndiv (64 * 64 * 64));
c1 == 0x80 + ((u \ndiv (64 * 64)) \nmod 64);
c2 == 0x80 + ((u \ndiv 64) \nmod 64);
c3 == 0x80 + (u \nmod 64)}
EXTENDED_UTF8_SHORTEST_4byte (4, u, c0, c1, c2, c3, ~1, ~1) of
EXTENDED_UTF8_CHAR (4, u, c0, c1, c2, c3, ~1, ~1)
//
| {u, c0, c1, c2, c3, c4 : int |
0x1FFFFF < u; u <= 0x3FFFFFF;
c0 == 0xF8 + (u \ndiv (64 * 64 * 64 * 64));
c1 == 0x80 + ((u \ndiv (64 * 64 * 64)) \nmod 64);
c2 == 0x80 + ((u \ndiv (64 * 64)) \nmod 64);
c3 == 0x80 + ((u \ndiv 64) \nmod 64);
c4 == 0x80 + (u \nmod 64)}
EXTENDED_UTF8_SHORTEST_5byte (5, u, c0, c1, c2, c3, c4, ~1) of
EXTENDED_UTF8_CHAR (5, u, c0, c1, c2, c3, c4, ~1)
//
| {u, c0, c1, c2, c3, c4, c5 : int |
0x3FFFFFF < u; u <= 0x7FFFFFFF;
c0 == 0xFC + (u \ndiv (64 * 64 * 64 * 64 * 64));
c1 == 0x80 + ((u \ndiv (64 * 64 * 64 * 64)) \nmod 64);
c2 == 0x80 + ((u \ndiv (64 * 64 * 64)) \nmod 64);
c3 == 0x80 + ((u \ndiv (64 * 64)) \nmod 64);
c4 == 0x80 + ((u \ndiv 64) \nmod 64);
c5 == 0x80 + (u \nmod 64)}
EXTENDED_UTF8_SHORTEST_6byte (6, u, c0, c1, c2, c3, c4, c5) of
EXTENDED_UTF8_CHAR (6, u, c0, c1, c2, c3, c4, c5)
extern prfun
extended_utf8_shortest_is_char :
{n : int} {u : int} {c0, c1, c2, c3, c4, c5 : int}
EXTENDED_UTF8_SHORTEST (n, u, c0, c1, c2, c3, c4, c5) -<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5)
extern prfun
lemma_extended_utf8_shortest_length :
{n : int} {u : int} {c0, c1, c2, c3, c4, c5 : int}
EXTENDED_UTF8_SHORTEST (n, u, c0, c1, c2, c3, c4, c5) -<prf>
[n == extended_utf8_shortest_length u] void
extern fun {}
encode_extended_utf8_character :
{u : nat | u <= 0x7FFFFFFF}
int u -<>
[n : int] [c0, c1, c2, c3, c4, c5 : int]
@(EXTENDED_UTF8_SHORTEST (n, u, c0, c1, c2, c3, c4, c5) |
int n, int c0, int c1, int c2, int c3, int c4, int c5)
(*------------------------------------------------------------------*)
//
// A valid UTF-8 character is one that encodes a valid Unicode
// code point and is not overlong.
//
dataprop UTF8_CHAR_INVALID_CASES (c0 : int, c1 : int, c2 : int, c3 : int) =
// The cases are not mutually exclusive.
| {c0, c1, c2, c3 : int | extended_utf8_character_length c0 == ~1}
// We might not be using this case, presently (has that changed?),
// but it is included for completeness.
UTF8_CHAR_INVALID_bad_c0 (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int | 2 <= extended_utf8_character_length c0;
~(is_valid_utf8_continuation_byte c1)}
UTF8_CHAR_INVALID_bad_c1 (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int | 3 <= extended_utf8_character_length c0;
~(is_valid_utf8_continuation_byte c2)}
UTF8_CHAR_INVALID_bad_c2 (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int | extended_utf8_character_length c0 == 4;
~(is_valid_utf8_continuation_byte c3)}
UTF8_CHAR_INVALID_bad_c3 (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int |
extended_utf8_character_length c0 == 2;
extended_utf8_char_2byte_decoding (c0, c1) <= 0x7F}
UTF8_CHAR_INVALID_invalid_2byte (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int |
extended_utf8_character_length c0 == 3
&& (extended_utf8_char_3byte_decoding (c0, c1, c2) <= 0x7FF
|| ~(is_valid_unicode_code_point
(extended_utf8_char_3byte_decoding (c0, c1, c2))))}
UTF8_CHAR_INVALID_invalid_3byte (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int |
extended_utf8_character_length c0 == 4
&& (extended_utf8_char_4byte_decoding (c0, c1, c2, c3) <= 0xFFFF
|| ~(is_valid_unicode_code_point
(extended_utf8_char_4byte_decoding (c0, c1, c2, c3))))}
UTF8_CHAR_INVALID_invalid_4byte (c0, c1, c2, c3)
dataprop UTF8_CHAR_VALID_BYTES (c0 : int, c1 : int, c2 : int, c3 : int) =
| {c0 : int | 0 <= c0 && c0 <= 0x7F}
UTF8_CHAR_VALID_BYTES_1byte (c0, ~1, ~1, ~1)
| {c0, c1 : int | 0xC2 <= c0 && c0 <= 0xDF;
is_valid_utf8_continuation_byte c1}
UTF8_CHAR_VALID_BYTES_2byte (c0, c1, ~1, ~1)
| {c0, c1, c2 : int | (0xE1 <= c0 && c0 <= 0xEC)
|| c0 == 0xEE
|| c0 == 0xEF
|| (c0 == 0xE0 && 0xA0 <= c1)
|| (c0 == 0xED && c1 < 0xA0);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2}
UTF8_CHAR_VALID_BYTES_3byte (c0, c1, c2, ~1)
| {c0, c1, c2, c3 : int | (0xF1 <= c0 && c0 <= 0xF3)
|| (c0 == 0xF0 && 0x90 <= c1)
|| (c0 == 0xF4 && c1 < 0x90);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3}
UTF8_CHAR_VALID_BYTES_4byte (c0, c1, c2, c3)
dataprop UTF8_CHAR_INVALID_BYTES (c0 : int, c1 : int, c2 : int, c3 : int) =
| // This should never occur.
{c0 : int | is_extended_utf8_1byte_first_byte c0}
UTF8_CHAR_INVALID_BYTES_1byte (c0, ~1, ~1, ~1)
| {c0, c1 : int | is_extended_utf8_2byte_first_byte c0;
c0 == 0xC0 || c0 == 0xC1 ||
is_invalid_utf8_continuation_byte c1}
UTF8_CHAR_INVALID_BYTES_2byte (c0, c1, ~1, ~1)
| {c0, c1, c2 : int | is_extended_utf8_3byte_first_byte c0;
(c0 == 0xE0 && c1 < 0xA0) ||
(c0 == 0xED && 0xA0 <= c1) ||
is_invalid_utf8_continuation_byte c1 ||
is_invalid_utf8_continuation_byte c2}
UTF8_CHAR_INVALID_BYTES_3byte (c0, c1, c2, ~1)
| {c0, c1, c2, c3 : int | is_extended_utf8_4byte_first_byte c0;
0xF4 < c0 ||
(c0 == 0xF0 && c1 < 0x90) ||
(c0 == 0xF4 && 0x90 <= c1) ||
is_invalid_utf8_continuation_byte c1 ||
is_invalid_utf8_continuation_byte c2 ||
is_invalid_utf8_continuation_byte c3}
UTF8_CHAR_INVALID_BYTES_4byte (c0, c1, c2, c3)
| {c0, c1, c2, c3 : int | ~(is_extended_utf8_1byte_first_byte c0);
~(is_extended_utf8_2byte_first_byte c0);
~(is_extended_utf8_3byte_first_byte c0);
~(is_extended_utf8_4byte_first_byte c0)}
UTF8_CHAR_INVALID_BYTES_bad_c0 (c0, c1, c2, c3)
dataprop UTF8_CHAR_VALIDITY (n : int, u : int, c0 : int, c1 : int,
c2 : int, c3 : int, b : bool) =
| {n : int} {u : int | is_valid_unicode_code_point u}
{c0, c1, c2, c3 : int}
UTF8_CHAR_valid (n, u, c0, c1, c2, c3, true) of
(EXTENDED_UTF8_SHORTEST (n, u, c0, c1, c2, c3, ~1, ~1),
UTF8_CHAR_VALID_BYTES (c0, c1, c2, c3))
| {n : int} {u : int} {c0, c1, c2, c3 : int}
UTF8_CHAR_invalid (n, u, c0, c1, c2, c3, false) of
(UTF8_CHAR_INVALID_CASES (c0, c1, c2, c3),
UTF8_CHAR_INVALID_BYTES (c0, c1, c2, c3))
propdef UTF8_CHAR_VALID (n : int, u : int, c0 : int, c1 : int,
c2 : int, c3 : int) =
UTF8_CHAR_VALIDITY (n, u, c0, c1, c2, c3, true)
propdef UTF8_CHAR_INVALID (c0 : int, c1 : int, c2 : int, c3 : int) =
[n : int] [u : int] UTF8_CHAR_VALIDITY (n, u, c0, c1, c2, c3, false)
extern prfun
utf8_char_valid_implies_shortest :
{n : int} {u : int} {c0, c1, c2, c3 : int}
UTF8_CHAR_VALID (n, u, c0, c1, c2, c3) -<prf>
EXTENDED_UTF8_SHORTEST (n, u, c0, c1, c2, c3, ~1, ~1)
extern prfun
lemma_valid_utf8_character_1byte :
{u, c0 : int |
is_extended_utf8_1byte_first_byte c0;
u == extended_utf8_char_1byte_decoding c0;
0 <= u; u <= 0x7F}
() -<prf> UTF8_CHAR_VALID (1, u, c0, ~1, ~1, ~1)
extern prfun
lemma_valid_utf8_character_2byte :
{u, c0, c1 : int |
is_extended_utf8_2byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
u == extended_utf8_char_2byte_decoding (c0, c1);
0x7F < u; u <= 0x7FF}
() -<prf> UTF8_CHAR_VALID (2, u, c0, c1, ~1, ~1)
extern prfun
lemma_valid_utf8_character_3byte :
{u, c0, c1, c2 : int |
is_extended_utf8_3byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
u == extended_utf8_char_3byte_decoding (c0, c1, c2);
0x7FF < u; u <= 0xFFFF;
//
// Exclude the UTF-16 surrogate halves.
//
~(0xD800 <= u && u < 0xE000)}
() -<prf> UTF8_CHAR_VALID (3, u, c0, c1, c2, ~1)
extern prfun
lemma_valid_utf8_character_4byte :
{u, c0, c1, c2, c3 : int |
is_extended_utf8_4byte_first_byte c0;
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3;
u == extended_utf8_char_4byte_decoding (c0, c1, c2, c3);
0xFFFF < u; u <= 0x10FFFF}
() -<prf> UTF8_CHAR_VALID (4, u, c0, c1, c2, c3)
extern prfun
utf8_character_1byte_valid_bytes :
// This does not really do anything, but is included
// for completeness.
{u, c0 : int | is_extended_utf8_1byte_first_byte c0}
UTF8_CHAR_VALID (1, u, c0, ~1, ~1, ~1) -<prf> void
extern prfun
utf8_character_2byte_valid_bytes :
{u, c0, c1 : int | is_extended_utf8_2byte_first_byte c0}
UTF8_CHAR_VALID (2, u, c0, c1, ~1, ~1) -<prf>
[0xC2 <= c0; c0 <= 0xDF;
is_valid_utf8_continuation_byte c1]
void
extern prfun
utf8_character_3byte_valid_bytes :
{u, c0, c1, c2 : int | is_extended_utf8_3byte_first_byte c0}
UTF8_CHAR_VALID (3, u, c0, c1, c2, ~1) -<prf>
[(0xE1 <= c0 && c0 <= 0xEC)
|| c0 == 0xEE
|| c0 == 0xEF
|| (c0 == 0xE0 && 0xA0 <= c1)
|| (c0 == 0xED && c1 < 0xA0);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2]
void
extern prfun
utf8_character_4byte_valid_bytes :
{u, c0, c1, c2, c3 : int | is_extended_utf8_4byte_first_byte c0}
UTF8_CHAR_VALID (4, u, c0, c1, c2, c3) -<prf>
[(0xF1 <= c0 && c0 <= 0xF3)
|| (c0 == 0xF0 && 0x90 <= c1)
|| (c0 == 0xF4 && c1 < 0x90);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3]
void
extern prfun
utf8_character_1byte_invalid_bytes :
// This does not really do anything, but is included
// for completeness.
{c0 : int | is_extended_utf8_1byte_first_byte c0}
UTF8_CHAR_INVALID (c0, ~1, ~1, ~1) -<prf> void
extern prfun
utf8_character_2byte_invalid_bytes :
{c0, c1 : int | is_extended_utf8_2byte_first_byte c0}
UTF8_CHAR_INVALID (c0, c1, ~1, ~1) -<prf>
[c0 == 0xC0 || c0 == 0xc1 || is_invalid_utf8_continuation_byte c1]
void
extern prfun
utf8_character_3byte_invalid_bytes :
{c0, c1, c2 : int | is_extended_utf8_3byte_first_byte c0}
UTF8_CHAR_INVALID (c0, c1, c2, ~1) -<prf>
[(c0 == 0xE0 && c1 < 0xA0) ||
(c0 == 0xED && 0xA0 <= c1) ||
is_invalid_utf8_continuation_byte c1 ||
is_invalid_utf8_continuation_byte c2]
void
extern prfun
utf8_character_4byte_invalid_bytes :
{c0, c1, c2, c3 : int | is_extended_utf8_4byte_first_byte c0}
UTF8_CHAR_INVALID (c0, c1, c2, c3) -<prf>
[0xF4 < c0 ||
(c0 == 0xF0 && c1 < 0x90) ||
(c0 == 0xF4 && 0x90 <= c1) ||
is_invalid_utf8_continuation_byte c1 ||
is_invalid_utf8_continuation_byte c2 ||
is_invalid_utf8_continuation_byte c3]
void
extern fun {}
is_valid_utf8_character_1byte :
{c0 : int | is_extended_utf8_1byte_first_byte c0}
int c0 -<>
[b : bool | b == true] [u : int]
(UTF8_CHAR_VALIDITY (1, u, c0, ~1, ~1, ~1, b) | bool b)
extern fun {}
is_valid_utf8_character_2byte :
{c0, c1 : int | is_extended_utf8_2byte_first_byte c0}
(int c0, int c1) -<>
[b : bool] [u : int]
(UTF8_CHAR_VALIDITY (2, u, c0, c1, ~1, ~1, b) | bool b)
extern fun {}
is_valid_utf8_character_3byte :
{c0, c1, c2 : int | is_extended_utf8_3byte_first_byte c0}
(int c0, int c1, int c2) -<>
[b : bool] [u : int]
(UTF8_CHAR_VALIDITY (3, u, c0, c1, c2, ~1, b) | bool b)
extern fun {}
is_valid_utf8_character_4byte :
{c0, c1, c2, c3 : int | is_extended_utf8_4byte_first_byte c0}
(int c0, int c1, int c2, int c3) -<>
[b : bool] [u : int]
(UTF8_CHAR_VALIDITY (4, u, c0, c1, c2, c3, b) | bool b)
extern fun {}
decode_utf8_1byte :
{c0 : int | is_extended_utf8_1byte_first_byte c0}
int c0 -<> [u : int | 0 <= u; u <= 0x7F] int u
extern fun {}
decode_utf8_2byte :
{c0, c1 : int | 0xC2 <= c0; c0 <= 0xDF;
is_valid_utf8_continuation_byte c1}
(int c0, int c1) -<> [u : int | 0x7F < u; u <= 0x7FF] int u
extern fun {}
decode_utf8_3byte :
{c0, c1, c2 : int | (0xE1 <= c0 && c0 <= 0xEC)
|| c0 == 0xEE
|| c0 == 0xEF
|| (c0 == 0xE0 && 0xA0 <= c1)
|| (c0 == 0xED && c1 < 0xA0);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2}
(int c0, int c1, int c2) -<>
[u : int | 0x7FF < u; u <= 0xFFFF; u < 0xD800 || 0xE000 <= u] int u
extern fun {}
decode_utf8_4byte :
{c0, c1, c2, c3 : int | (0xF1 <= c0 && c0 <= 0xF3)
|| (c0 == 0xF0 && 0x90 <= c1)
|| (c0 == 0xF4 && c1 < 0x90);
is_valid_utf8_continuation_byte c1;
is_valid_utf8_continuation_byte c2;
is_valid_utf8_continuation_byte c3}
(int c0, int c1, int c2, int c3) -<>
[u : int | 0xFFFF < u; u <= 0x10FFFF] int u
extern fun {}
encode_utf8_character :
{u : int | is_valid_unicode_code_point u}
int u -<>
[n : int]
[c0, c1, c2, c3 : int | extended_utf8_char_length_relation (c0, n)]
@(UTF8_CHAR_VALID (n, u, c0, c1, c2, c3) |
int n, int c0, int c1, int c2, int c3)
(*------------------------------------------------------------------*)
#define utf8_decode_next_error_char ~1
(* Returns @(utf8_decode_next_error_char, ..) on error. *)
extern fun
utf8_array_decode_next {utf8len : int | 0 < utf8len}
{n_utf8arr : int | utf8len <= n_utf8arr}
{i : int | i < utf8len}
(utf8len : size_t utf8len,
utf8arr : &(@[char][n_utf8arr]),
i : size_t i) :<>
[c : int | is_valid_unicode_code_point c ||
c == utf8_decode_next_error_char]
[i_next : int | i_next == i + 1 || i_next == i + 2 ||
i_next == i + 3 || i_next == i + 4;
i_next <= utf8len]
@(int c, size_t i_next)
extern fun
utf8_string_decode_next {utf8len : int | 0 < utf8len}
{n_utf8str : int | utf8len <= n_utf8str}
{i : int | i < utf8len}
(utf8len : size_t utf8len,
utf8str : string n_utf8str,
i : size_t i) :<>
[c : int | is_valid_unicode_code_point c ||
c == utf8_decode_next_error_char]
[i_next : int | i_next == i + 1 || i_next == i + 2 ||
i_next == i + 3 || i_next == i + 4;
i_next <= utf8len]
@(int c, size_t i_next)
overload utf8_decode_next with utf8_array_decode_next
overload utf8_decode_next with utf8_string_decode_next
(*###################### IMPLEMENTATION ############################*)
// Integer division by 64 is equivalent to shifting right
// by 6 bits.
extern prfun _shift_right_twelve :
{x, y, z : nat | y == (x \ndiv 64);
z == (y \ndiv 64)}
(int x, int y, int z) -<prf> [z == (x \ndiv (64 * 64))] void
primplement _shift_right_twelve (x, y, z) =
()
extern prfun _shift_right_eighteen :
{x, y, z, u : nat | y == (x \ndiv 64);
z == (y \ndiv 64);
u == (z \ndiv 64)}
(int x, int y, int z, int u) -<prf> [u == (x \ndiv (64 * 64 * 64))] void
primplement _shift_right_eighteen (x, y, z, u) = ()
extern prfun _shift_right_twenty_four :
{x, y, z, u, v : nat | y == (x \ndiv 64);
z == (y \ndiv 64);
u == (z \ndiv 64);
v == (u \ndiv 64)}
(int x, int y, int z, int u, int v) -<prf>
[v == (x \ndiv (64 * 64 * 64 * 64))] void
primplement _shift_right_twenty_four (x, y, z, u, v) = ()
(*------------------------------------------------------------------*)
implement {}
is_valid_unicode_code_point u =
((0x0 <= u) * (u < 0xD800)) + ((0xE000 <= u) * (u <= 0x10FFFF))
(*------------------------------------------------------------------*)
primplement
extended_utf8_char_length_relation_to_length () = ()
primplement
extended_utf8_char_length_to_length_relation () = ()
primplement
utf8_char_length_relation_to_length () = ()
primplement
utf8_char_length_to_length_relation () = ()
(*------------------------------------------------------------------*)
implement {}
is_valid_utf8_continuation_byte c =
(0x80 <= c) * (c <= 0xBF)
(*------------------------------------------------------------------*)
primplement
decode_extended_utf8_istot {n} {c0, c1, c2, c3, c4, c5} () =
sif n == 1 then
let
prfn
make_pf {u : int | u == extended_utf8_char_1byte_decoding (c0)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_1byte ()
stadef u = extended_utf8_char_1byte_decoding (c0)
in
make_pf {u} ()
end
else sif n == 2 then
let
prfn
make_pf {u : int | u == extended_utf8_char_2byte_decoding (c0, c1)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_2byte ()
stadef u = extended_utf8_char_2byte_decoding (c0, c1)
in
make_pf {u} ()
end
else sif n == 3 then
let
prfn
make_pf {u : int | u == extended_utf8_char_3byte_decoding (c0, c1, c2)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_3byte ()
stadef u = extended_utf8_char_3byte_decoding (c0, c1, c2)
in
make_pf {u} ()
end
else sif n == 4 then
let
prfn
make_pf {u : int |
u == extended_utf8_char_4byte_decoding (c0, c1, c2, c3)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_4byte ()
stadef u = extended_utf8_char_4byte_decoding (c0, c1, c2, c3)
in
make_pf {u} ()
end
else sif n == 5 then
let
prfn
make_pf {u : int |
u == extended_utf8_char_5byte_decoding (c0, c1, c2, c3, c4)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_5byte ()
stadef u = extended_utf8_char_5byte_decoding (c0, c1, c2, c3, c4)
in
make_pf {u} ()
end
else
let
prfn
make_pf {u : int |
u == extended_utf8_char_6byte_decoding (c0, c1, c2, c3, c4, c5)}
() :<prf>
EXTENDED_UTF8_CHAR (n, u, c0, c1, c2, c3, c4, c5) =
EXTENDED_UTF8_CHAR_6byte ()
stadef u = extended_utf8_char_6byte_decoding (c0, c1, c2, c3, c4, c5)
in
make_pf {u} ()
end
primplement
decode_extended_utf8_isfun {na} (pf_a, pf_b) =
sif na == 1 then
let
prval EXTENDED_UTF8_CHAR_1byte () = pf_a
prval EXTENDED_UTF8_CHAR_1byte () = pf_b
in
end
else sif na == 2 then
let
prval EXTENDED_UTF8_CHAR_2byte () = pf_a
prval EXTENDED_UTF8_CHAR_2byte () = pf_b
in
end
else sif na == 3 then
let
prval EXTENDED_UTF8_CHAR_3byte () = pf_a
prval EXTENDED_UTF8_CHAR_3byte () = pf_b
in
end
else sif na == 4 then
let
prval EXTENDED_UTF8_CHAR_4byte () = pf_a
prval EXTENDED_UTF8_CHAR_4byte () = pf_b
in
end
else sif na == 5 then
let
prval EXTENDED_UTF8_CHAR_5byte () = pf_a
prval EXTENDED_UTF8_CHAR_5byte () = pf_b
in
end
else
let
prval EXTENDED_UTF8_CHAR_6byte () = pf_a
prval EXTENDED_UTF8_CHAR_6byte () = pf_b
in
end
primplement
lemma_extended_utf8_char_length pf_char =
case+ pf_char of
| EXTENDED_UTF8_CHAR_1byte () => ()
| EXTENDED_UTF8_CHAR_2byte () => ()
| EXTENDED_UTF8_CHAR_3byte () => ()
| EXTENDED_UTF8_CHAR_4byte () => ()
| EXTENDED_UTF8_CHAR_5byte () => ()
| EXTENDED_UTF8_CHAR_6byte () => ()
implement {}
decode_extended_utf8_1byte c0 =
(EXTENDED_UTF8_CHAR_1byte () | c0)
implement {}
decode_extended_utf8_2byte (c0, c1) =
let
val u0 = c0 - 0xC0
val u1 = c1 - 0x80
in
(EXTENDED_UTF8_CHAR_2byte () | 64 * u0 + u1)
end
implement {}
decode_extended_utf8_3byte (c0, c1, c2) =
let
val u0 = c0 - 0xE0
val u1 = c1 - 0x80
val u2 = c2 - 0x80
in
(EXTENDED_UTF8_CHAR_3byte () | 64 * (64 * u0 + u1) + u2)
end
implement {}
decode_extended_utf8_4byte (c0, c1, c2, c3) =
let
val u0 = c0 - 0xF0
val u1 = c1 - 0x80
val u2 = c2 - 0x80
val u3 = c3 - 0x80
in
(EXTENDED_UTF8_CHAR_4byte () | 64 * (64 * (64 * u0 + u1) + u2) + u3)
end
implement {}
decode_extended_utf8_5byte (c0, c1, c2, c3, c4) =
let
val u0 = c0 - 0xF8
val u1 = c1 - 0x80
val u2 = c2 - 0x80
val u3 = c3 - 0x80
val u4 = c4 - 0x80
in
(EXTENDED_UTF8_CHAR_5byte () |
64 * (64 * (64 * (64 * u0 + u1) + u2) + u3) + u4)
end
implement {}
decode_extended_utf8_6byte (c0, c1, c2, c3, c4, c5) =
let
val u0 = c0 - 0xFC
val u1 = c1 - 0x80
val u2 = c2 - 0x80
val u3 = c3 - 0x80
val u4 = c4 - 0x80
val u5 = c5 - 0x80
in
(EXTENDED_UTF8_CHAR_6byte () |
64 * (64 * (64 * (64 * (64 * u0 + u1) + u2) + u3) + u4) + u5)
end
(*------------------------------------------------------------------*)
primplement
extended_utf8_shortest_is_char pf_shortest =
case+ pf_shortest of
| EXTENDED_UTF8_SHORTEST_1byte pf_char => pf_char
| EXTENDED_UTF8_SHORTEST_2byte pf_char => pf_char
| EXTENDED_UTF8_SHORTEST_3byte pf_char => pf_char
| EXTENDED_UTF8_SHORTEST_4byte pf_char => pf_char
| EXTENDED_UTF8_SHORTEST_5byte pf_char => pf_char
| EXTENDED_UTF8_SHORTEST_6byte pf_char => pf_char
primplement
lemma_extended_utf8_shortest_length pf_shortest =
case+ pf_shortest of
| EXTENDED_UTF8_SHORTEST_1byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_1byte () = pf_char }
| EXTENDED_UTF8_SHORTEST_2byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_2byte () = pf_char }
| EXTENDED_UTF8_SHORTEST_3byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_3byte () = pf_char }
| EXTENDED_UTF8_SHORTEST_4byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_4byte () = pf_char }
| EXTENDED_UTF8_SHORTEST_5byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_5byte () = pf_char }
| EXTENDED_UTF8_SHORTEST_6byte pf_char =>
{ prval EXTENDED_UTF8_CHAR_6byte () = pf_char }
implement {}
encode_extended_utf8_character u =
if u <= 0x7F then
let
val c0 = u
in
@(EXTENDED_UTF8_SHORTEST_1byte (EXTENDED_UTF8_CHAR_1byte ()) |
1, c0, ~1, ~1, ~1, ~1, ~1)
end
else if u <= 0x7FF then
let
val c1 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c0 = 0xC0 + u1
in
@(EXTENDED_UTF8_SHORTEST_2byte (EXTENDED_UTF8_CHAR_2byte ()) |
2, c0, c1, ~1, ~1, ~1, ~1)
end
else if u <= 0xFFFF then
let
val c2 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c1 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c0 = 0xE0 + u2
in
@(EXTENDED_UTF8_SHORTEST_3byte (EXTENDED_UTF8_CHAR_3byte ()) |
3, c0, c1, c2, ~1, ~1, ~1)
end
else if u <= 0x1FFFFF then
let
val c3 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c2 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c1 = 0x80 + (u2 \nmod 64)
val u3 = u2 \ndiv 64
val c0 = 0xF0 + u3
prval () = _shift_right_twelve (u, u1, u2)
in
@(EXTENDED_UTF8_SHORTEST_4byte (EXTENDED_UTF8_CHAR_4byte ()) |
4, c0, c1, c2, c3, ~1, ~1)
end
else if u <= 0x3FFFFFF then
let
val c4 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c3 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c2 = 0x80 + (u2 \nmod 64)
val u3 = u2 \ndiv 64
val c1 = 0x80 + (u3 \nmod 64)
val u4 = u3 \ndiv 64
val c0 = 0xF8 + u4
prval () = _shift_right_twelve (u, u1, u2)
prval () = _shift_right_eighteen (u, u1, u2, u3)
in
@(EXTENDED_UTF8_SHORTEST_5byte (EXTENDED_UTF8_CHAR_5byte ()) |
5, c0, c1, c2, c3, c4, ~1)
end
else
let
val c5 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c4 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c3 = 0x80 + (u2 \nmod 64)
val u3 = u2 \ndiv 64
val c2 = 0x80 + (u3 \nmod 64)
val u4 = u3 \ndiv 64
val c1 = 0x80 + (u4 \nmod 64)
val u5 = u4 \ndiv 64
val c0 = 0xFC + u5
prval () = _shift_right_twelve (u, u1, u2)
prval () = _shift_right_eighteen (u, u1, u2, u3)
prval () = _shift_right_twenty_four (u, u1, u2, u3, u4)
in
@(EXTENDED_UTF8_SHORTEST_6byte (EXTENDED_UTF8_CHAR_6byte ()) |
6, c0, c1, c2, c3, c4, c5)
end
(*------------------------------------------------------------------*)
primplement
utf8_char_valid_implies_shortest pf_valid =
case+ pf_valid of
| UTF8_CHAR_valid (pf_shortest, _) => pf_shortest
primplement
lemma_valid_utf8_character_1byte {u, c0} () =
let
prfn
make_pf {u : int | u == extended_utf8_char_1byte_decoding (c0)}
() :<prf> EXTENDED_UTF8_CHAR (1, u, c0, ~1, ~1, ~1, ~1, ~1) =
EXTENDED_UTF8_CHAR_1byte ()
prval pf_char = make_pf {u} ()
prval pf_shortest = EXTENDED_UTF8_SHORTEST_1byte pf_char
prval pf_bytes = UTF8_CHAR_VALID_BYTES_1byte ()
prval pf_valid = UTF8_CHAR_valid (pf_shortest, pf_bytes)
in
pf_valid
end
primplement
lemma_valid_utf8_character_2byte {u, c0, c1} () =
let
prfn
make_pf {u : int | u == extended_utf8_char_2byte_decoding (c0, c1)}
() :<prf> EXTENDED_UTF8_CHAR (2, u, c0, c1, ~1, ~1, ~1, ~1) =
EXTENDED_UTF8_CHAR_2byte ()
prval pf_char = make_pf {u} ()
prval pf_shortest = EXTENDED_UTF8_SHORTEST_2byte pf_char
prval pf_bytes = UTF8_CHAR_VALID_BYTES_2byte ()
prval pf_valid = UTF8_CHAR_valid (pf_shortest, pf_bytes)
in
pf_valid
end
primplement
lemma_valid_utf8_character_3byte {u, c0, c1, c2} () =
let
prfn
make_pf {u : int | u == extended_utf8_char_3byte_decoding (c0, c1, c2)}
() :<prf> EXTENDED_UTF8_CHAR (3, u, c0, c1, c2, ~1, ~1, ~1) =
EXTENDED_UTF8_CHAR_3byte ()
prval pf_char = make_pf {u} ()
prfn lemma_c1 () :<prf> [c1 == 0x80 + ((u \ndiv 64) \nmod 64)] void =
{
// Convert to Horner form.
stadef u1 = 64 * (64 * (c0 - 0xE0) + (c1 - 0x80)) + (c2 - 0x80)
prval EQINT () = eqint_make {u, u1} ()
}
prval () = lemma_c1 ()
prval pf_shortest = EXTENDED_UTF8_SHORTEST_3byte pf_char
prval pf_bytes = UTF8_CHAR_VALID_BYTES_3byte ()
prval pf_valid = UTF8_CHAR_valid (pf_shortest, pf_bytes)
in
pf_valid
end
primplement
lemma_valid_utf8_character_4byte {u, c0, c1, c2, c3} () =
let
prfn
make_pf {u : int | u == extended_utf8_char_4byte_decoding (c0, c1, c2, c3)}
() :<prf> EXTENDED_UTF8_CHAR (4, u, c0, c1, c2, c3, ~1, ~1) =
EXTENDED_UTF8_CHAR_4byte ()
prval pf_char = make_pf {u} ()
prfn lemma_c1 () :<prf> [c1 == 0x80 + ((u \ndiv (64 * 64)) \nmod 64)] void =
{
prval EQINT () =
eqint_make {(64 * 64 * (c0 - 0xE0)) \ndiv (64 * 64), c0 - 0xE0} ()
prval pfd = divmod_istot {u \ndiv (64 * 64), 64} ()
prval pfm = divmod_elim pfd
prval () = mul_elim pfm
}
prval () = lemma_c1 ()
prfn lemma_c2 () :<prf> [c2 == 0x80 + ((u \ndiv 64) \nmod 64)] void =
{
// Convert to Horner form.
stadef u1 = 64 * (64 * (64 * (c0 - 0xF0) + (c1 - 0x80)) + (c2 - 0x80))
+ (c3 - 0x80)
prval EQINT () = eqint_make {u, u1} ()
}
prval () = lemma_c2 ()
prval pf_shortest = EXTENDED_UTF8_SHORTEST_4byte pf_char
prval pf_bytes = UTF8_CHAR_VALID_BYTES_4byte ()
prval pf_valid = UTF8_CHAR_valid (pf_shortest, pf_bytes)
in
pf_valid
end
primplement
utf8_character_1byte_valid_bytes pf_valid = ()
primplement
utf8_character_2byte_valid_bytes pf_valid =
{
prval UTF8_CHAR_valid (_, pf_bytes) = pf_valid
prval UTF8_CHAR_VALID_BYTES_2byte () = pf_bytes
}
primplement
utf8_character_3byte_valid_bytes pf_valid =
{
prval UTF8_CHAR_valid (_, pf_bytes) = pf_valid
prval UTF8_CHAR_VALID_BYTES_3byte () = pf_bytes
}
primplement
utf8_character_4byte_valid_bytes pf_valid =
{
prval UTF8_CHAR_valid (_, pf_bytes) = pf_valid
prval UTF8_CHAR_VALID_BYTES_4byte () = pf_bytes
}
primplement
utf8_character_1byte_invalid_bytes pf_invalid =
{
prval UTF8_CHAR_invalid (_, pf_bytes) = pf_invalid
prval UTF8_CHAR_INVALID_BYTES_1byte () = pf_bytes
}
primplement
utf8_character_2byte_invalid_bytes pf_invalid =
{
prval UTF8_CHAR_invalid (_, pf_bytes) = pf_invalid
prval UTF8_CHAR_INVALID_BYTES_2byte () = pf_bytes
}
primplement
utf8_character_3byte_invalid_bytes pf_invalid =
{
prval UTF8_CHAR_invalid (_, pf_bytes) = pf_invalid
prval UTF8_CHAR_INVALID_BYTES_3byte () = pf_bytes
}
primplement
utf8_character_4byte_invalid_bytes pf_invalid =
{
prval UTF8_CHAR_invalid (_, pf_bytes) = pf_invalid
prval UTF8_CHAR_INVALID_BYTES_4byte () = pf_bytes
}
implement {}
is_valid_utf8_character_1byte {c0} c0 =
let
stadef u = extended_utf8_char_1byte_decoding c0
in
(lemma_valid_utf8_character_1byte {u, c0} () | true)
end
implement {}
is_valid_utf8_character_2byte {c0, c1} (c0, c1) =
let
stadef u = extended_utf8_char_2byte_decoding (c0, c1)
in
if not (is_valid_utf8_continuation_byte c1) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c1 (),
UTF8_CHAR_INVALID_BYTES_2byte ()) |
false)
else if c0 < 0xC2 then
// The sequence is overlong.
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_invalid_2byte (),
UTF8_CHAR_INVALID_BYTES_2byte ()) |
false)
else
(lemma_valid_utf8_character_2byte {u, c0, c1} () | true)
end
implement {}
is_valid_utf8_character_3byte {c0, c1, c2} (c0, c1, c2) =
let
stadef u = extended_utf8_char_3byte_decoding (c0, c1, c2)
in
if not (is_valid_utf8_continuation_byte c1) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c1 (),
UTF8_CHAR_INVALID_BYTES_3byte ()) |
false)
else if not (is_valid_utf8_continuation_byte c2) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c2 (),
UTF8_CHAR_INVALID_BYTES_3byte ()) |
false)
else if (0xE1 <= c0) * (c0 <= 0xEC) then
(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | true)
else if c0 = 0xEE then
(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | true)
else if c0 = 0xEF then
(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | true)
else if (c0 = 0xE0) * (0xA0 <= c1) then
(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | true)
else if (c0 = 0xED) * (c1 < 0xA0) then
(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | true)
else
// Either the sequence is overlong or it decodes to
// an invalid code point.
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_invalid_3byte (),
UTF8_CHAR_INVALID_BYTES_3byte ()) |
false)
end
implement {}
is_valid_utf8_character_4byte {c0, c1, c2, c3} (c0, c1, c2, c3) =
let
stadef u = extended_utf8_char_4byte_decoding (c0, c1, c2, c3)
in
if not (is_valid_utf8_continuation_byte c1) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c1 (),
UTF8_CHAR_INVALID_BYTES_4byte ()) |
false)
else if not (is_valid_utf8_continuation_byte c2) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c2 (),
UTF8_CHAR_INVALID_BYTES_4byte ()) |
false)
else if not (is_valid_utf8_continuation_byte c3) then
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_bad_c3 (),
UTF8_CHAR_INVALID_BYTES_4byte ()) |
false)
else if (0xF1 <= c0) * (c0 <= 0xF3) then
(lemma_valid_utf8_character_4byte {u, c0, c1, c2, c3} () | true)
else if (c0 = 0xF0) * (0x90 <= c1) then
(lemma_valid_utf8_character_4byte {u, c0, c1, c2, c3} () | true)
else if (c0 = 0xF4) * (c1 < 0x90) then
(lemma_valid_utf8_character_4byte {u, c0, c1, c2, c3} () | true)
else
// Either the sequence is overlong or it decodes to
// an invalid code point.
(UTF8_CHAR_invalid (UTF8_CHAR_INVALID_invalid_4byte (),
UTF8_CHAR_INVALID_BYTES_4byte ()) |
false)
end
implement {}
decode_utf8_1byte c0 = c0
implement {}
decode_utf8_2byte (c0, c1) =
let
val u0 = c0 - 0xC0
val u1 = c1 - 0x80
in
64 * u0 + u1
end
implement {}
decode_utf8_3byte (c0, c1, c2) =
let
val u0 = c0 - 0xE0
val u1 = c1 - 0x80
val u2 = c2 - 0x80
in
64 * (64 * u0 + u1) + u2
end
implement {}
decode_utf8_4byte (c0, c1, c2, c3) =
let
val u0 = c0 - 0xF0
val u1 = c1 - 0x80
val u2 = c2 - 0x80
val u3 = c3 - 0x80
in
64 * (64 * (64 * u0 + u1) + u2) + u3
end
implement {}
encode_utf8_character {u} u =
if u <= 0x7F then
let
val c0 = u
stadef c0 = u
in
@(lemma_valid_utf8_character_1byte {u, c0} () | 1, c0, ~1, ~1, ~1)
end
else if u <= 0x7FF then
let
val c1 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c0 = 0xC0 + u1
stadef c1 = 0x80 + (u \nmod 64)
stadef u1 = u \ndiv 64
stadef c0 = 0xC0 + u1
in
@(lemma_valid_utf8_character_2byte {u, c0, c1} () | 2, c0, c1, ~1, ~1)
end
else if u <= 0xFFFF then
let
val c2 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c1 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c0 = 0xE0 + u2
stadef c2 = 0x80 + (u \nmod 64)
stadef u1 = u \ndiv 64
stadef c1 = 0x80 + (u1 \nmod 64)
stadef u2 = u1 \ndiv 64
stadef c0 = 0xE0 + u2
in
@(lemma_valid_utf8_character_3byte {u, c0, c1, c2} () | 3, c0, c1, c2, ~1)
end
else
let
val c3 = 0x80 + (u \nmod 64)
val u1 = u \ndiv 64
val c2 = 0x80 + (u1 \nmod 64)
val u2 = u1 \ndiv 64
val c1 = 0x80 + (u2 \nmod 64)
val u3 = u2 \ndiv 64
val c0 = 0xF0 + u3
stadef c3 = 0x80 + (u \nmod 64)
stadef u1 = u \ndiv 64
stadef c2 = 0x80 + (u1 \nmod 64)
stadef u2 = u1 \ndiv 64
stadef c1 = 0x80 + (u2 \nmod 64)
stadef u3 = u2 \ndiv 64
stadef c0 = 0xF0 + u3
prval () = _shift_right_twelve (u, u1, u2)
in
@(lemma_valid_utf8_character_4byte {u, c0, c1, c2, c3} () |
4, c0, c1, c2, c3)
end
(*------------------------------------------------------------------*)
implement
utf8_array_decode_next (utf8len, utf8arr, i) =
let
macdef getchr (j) = g1ofg0 (char2u2i (utf8arr[,(j)]))
macdef error_return = @(utf8_decode_next_error_char, i + i2sz 1)
prval _ = lemma_g1uint_param (i)
val c0 = getchr (i)
in
if 0x00 <= c0 &&& c0 <= 0xFF then
let
val seqlen = utf8_character_length c0
in
case+ seqlen of
| 1 => @(c0, i + i2sz 1)
| 2 =>
if utf8len < i + i2sz 2 then
error_return
else
let
val c1 = getchr (i + i2sz 1)
val (pf | valid) =
is_valid_utf8_character_2byte (c0, c1)
in
if valid then
let
prval _ = utf8_character_2byte_valid_bytes pf
val code_point = decode_utf8_2byte (c0, c1)
in
@(code_point, i + i2sz 2)
end
else
error_return
end
| 3 =>
if utf8len < i + i2sz 3 then
error_return
else
let
val c1 = getchr (i + i2sz 1)
val c2 = getchr (i + i2sz 2)
val (pf | valid) =
is_valid_utf8_character_3byte (c0, c1, c2)
in
if valid then
let
prval _ = utf8_character_3byte_valid_bytes pf
val code_point = decode_utf8_3byte (c0, c1, c2)
in
@(code_point, i + i2sz 3)
end
else
error_return
end
| 4 =>
if utf8len < i + i2sz 4 then
error_return
else
let
val c1 = getchr (i + i2sz 1)
val c2 = getchr (i + i2sz 2)
val c3 = getchr (i + i2sz 3)
val (pf | valid) =
is_valid_utf8_character_4byte (c0, c1, c2, c3)
in
if valid then
let
prval _ = utf8_character_4byte_valid_bytes pf
val code_point = decode_utf8_4byte (c0, c1, c2, c3)
in
@(code_point, i + i2sz 4)
end
else
error_return
end
| _ => error_return
end
else
(* This branch should never be run on a system
with 8-bit char. *)
error_return
end
implement
utf8_string_decode_next {..} {n_utf8str} (utf8len, utf8str, i) =
let
val [p : addr] p = string2ptr utf8str
val (pf, consume_pf | p) =
$UNSAFE.ptr1_vtake{@[char][n_utf8str]} p
val result = utf8_array_decode_next (utf8len, !p, i)
prval _ = consume_pf pf
in
result
end
(*###################### DEMONSTRATION #############################*)
fn
encode_LATIN_CAPITAL_LETTER_A () : void =
{
val u = 0x0041
(* Return both a proof of valid encoding and the encoding. *)
val (pf_valid | n, c0, c1, c2, c3) = encode_utf8_character (u)
(* Verify the encoding. *)
val _ = assertloc (n = 1)
val _ = assertloc (c0 = 0x41)
}
fn
decode_LATIN_CAPITAL_LETTER_A () : void =
{
val str = "\x41\0"
val n = length str
val (c, i) = utf8_decode_next (n, str, i2sz 0)
(* Verify that the decoding is correct. *)
val _ = assertloc (c = 0x0041)
(* Verify that the next index is 1. *)
val _ = assertloc (i = i2sz 1)
}
fn
encode_LATIN_SMALL_LETTER_O_WITH_DIAERESIS () : void =
{
val u = 0x00F6
(* Return both a proof of valid encoding and the encoding. *)
val (pf_valid | n, c0, c1, c2, c3) = encode_utf8_character (u)
(* Verify the encoding. *)
val _ = assertloc (n = 2)
val _ = assertloc (c0 = 0xC3)
val _ = assertloc (c1 = 0xB6)
}
fn
decode_LATIN_SMALL_LETTER_O_WITH_DIAERESIS () : void =
{
val str = "\xC3\xB6\0"
val n = length str
val (c, i) = utf8_decode_next (n, str, i2sz 0)
(* Verify that the decoding is correct. *)
val _ = assertloc (c = 0x00F6)
(* Verify that the next index is 2. *)
val _ = assertloc (i = i2sz 2)
}
fn
encode_CYRILLIC_CAPITAL_LETTER_ZHE () : void =
{
val u = 0x0416
(* Return both a proof of valid encoding and the encoding. *)
val (pf_valid | n, c0, c1, c2, c3) = encode_utf8_character (u)
(* Verify the encoding. *)
val _ = assertloc (n = 2)
val _ = assertloc (c0 = 0xD0)
val _ = assertloc (c1 = 0x96)
}
fn
decode_CYRILLIC_CAPITAL_LETTER_ZHE () : void =
{
val str = "\xD0\x96\0"
val n = length str
val (c, i) = utf8_decode_next (n, str, i2sz 0)
(* Verify that the decoding is correct. *)
val _ = assertloc (c = 0x0416)
(* Verify that the next index is 2. *)
val _ = assertloc (i = i2sz 2)
}
fn
encode_EURO_SIGN () : void =
{
val u = 0x20AC
(* Return both a proof of valid encoding and the encoding. *)
val (pf_valid | n, c0, c1, c2, c3) = encode_utf8_character (u)
(* Verify the encoding. *)
val _ = assertloc (n = 3)
val _ = assertloc (c0 = 0xE2)
val _ = assertloc (c1 = 0x82)
val _ = assertloc (c2 = 0xAC)
}
fn
decode_EURO_SIGN () : void =
{
val str = "\xE2\x82\xAC\0"
val n = length str
val (c, i) = utf8_decode_next (n, str, i2sz 0)
(* Verify that the decoding is correct. *)
val _ = assertloc (c = 0x20AC)
(* Verify that the next index is 3. *)
val _ = assertloc (i = i2sz 3)
}
fn
encode_MUSICAL_SYMBOL_G_CLEF () : void =
{
val u = 0x1D11E
(* Return both a proof of valid encoding and the encoding. *)
val (pf_valid | n, c0, c1, c2, c3) = encode_utf8_character (u)
(* Verify the encoding. *)
val _ = assertloc (n = 4)
val _ = assertloc (c0 = 0xF0)
val _ = assertloc (c1 = 0x9D)
val _ = assertloc (c2 = 0x84)
val _ = assertloc (c3 = 0x9E)
}
fn
decode_MUSICAL_SYMBOL_G_CLEF () : void =
{
val str = "\xF0\x9D\x84\x9E\0"
val n = length str
val (c, i) = utf8_decode_next (n, str, i2sz 0)
(* Verify that the decoding is correct. *)
val _ = assertloc (c = 0x1D11E)
(* Verify that the next index is 4. *)
val _ = assertloc (i = i2sz 4)
}
implement
main0 () =
begin
encode_LATIN_CAPITAL_LETTER_A ();
decode_LATIN_CAPITAL_LETTER_A ();
encode_LATIN_SMALL_LETTER_O_WITH_DIAERESIS ();
decode_LATIN_SMALL_LETTER_O_WITH_DIAERESIS ();
encode_CYRILLIC_CAPITAL_LETTER_ZHE ();
decode_CYRILLIC_CAPITAL_LETTER_ZHE ();
encode_EURO_SIGN ();
decode_EURO_SIGN ();
encode_MUSICAL_SYMBOL_G_CLEF ();
decode_MUSICAL_SYMBOL_G_CLEF ();
println! ("SUCCESS")
end
- Output:
$ patscc -O2 utf8_encoding.dats && ./a.out SUCCESS
AutoHotkey
Encode_UTF(hex){
Bytes := hex>=0x10000 ? 4 : hex>=0x0800 ? 3 : hex>=0x0080 ? 2 : hex>=0x0001 ? 1 : 0
Prefix := [0, 0xC0, 0xE0, 0xF0]
loop % Bytes {
if (A_Index < Bytes)
UTFCode := Format("{:X}", (hex&0x3F) + 0x80) . UTFCode ; 3F=00111111, 80=10000000
else
UTFCode := Format("{:X}", hex + Prefix[Bytes]) . UTFCode ; C0=11000000, E0=11100000, F0=11110000
hex := hex>>6
}
return "0x" UTFCode
}
;----------------------------------------------------------------------------------------
Decode_UTF(hex){
Bytes := hex>=0x10000 ? 4 : hex>=0x0800 ? 3 : hex>=0x0080 ? 2 : hex>=0x0001 ? 1 : 0
bin := ConvertBase(16, 2, hex)
loop, % Bytes {
B := SubStr(bin, -7)
if Bytes > 1
B := LTrim(B, 1) , B := StrReplace(B, 0,,, 1)
bin := SubStr(bin, 1, StrLen(bin)-8)
Uni := B . Uni
}
return "0x" ConvertBase(2, 16, Uni)
}
;----------------------------------------------------------------------------------------
; www.autohotkey.com/boards/viewtopic.php?f=6&t=3607#p18985
ConvertBase(InputBase, OutputBase, number){
static u := A_IsUnicode ? "_wcstoui64" : "_strtoui64"
static v := A_IsUnicode ? "_i64tow" : "_i64toa"
VarSetCapacity(s, 65, 0)
value := DllCall("msvcrt.dll\" u, "Str", number, "UInt", 0, "UInt", InputBase, "CDECL Int64")
DllCall("msvcrt.dll\" v, "Int64", value, "Str", s, "UInt", OutputBase, "CDECL")
return s
}
Examples:
data =
(comment
0x0041
0x00F6
0x0416
0x20AC
0x1D11E
)
output := "unicode`t`tUTF`t`tunicode`n"
for i, Hex in StrSplit(data, "`n", "`r"){
UTFCode := Encode_UTF(Hex)
output .= Hex "`t`t" UTFCode "`t`t" Decode_UTF(UTFCode) "`n"
}
MsgBox % output
return
- Output:
Unicode Encode_UTF Decode_UTF 0x0041 0x41 0x41 0x00F6 0xC3B6 0xf6 0x0416 0xD096 0x416 0x20AC 0xE282AC 0x20ac 0x1D11E 0xF09D849E 0x1d11e
BaCon
BaCon supports UTF8 natively.
DECLARE x TYPE STRING
CONST letter$ = "A ö Ж € 𝄞"
PRINT "Char", TAB$(1), "Unicode", TAB$(2), "UTF-8 (hex)"
PRINT "-----------------------------------"
FOR x IN letter$
PRINT x, TAB$(1), "U+", HEX$(UCS(x)), TAB$(2), COIL$(LEN(x), HEX$(x[_-1] & 255))
NEXT
- Output:
Char Unicode UTF-8 (hex) ----------------------------------- A U+41 41 ö U+F6 C3 B6 Ж U+416 D0 96 € U+20AC E2 82 AC 𝄞 U+1D11E F0 9D 84 9E
C
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>
typedef struct {
char mask; /* char data will be bitwise AND with this */
char lead; /* start bytes of current char in utf-8 encoded character */
uint32_t beg; /* beginning of codepoint range */
uint32_t end; /* end of codepoint range */
int bits_stored; /* the number of bits from the codepoint that fits in char */
}utf_t;
utf_t * utf[] = {
/* mask lead beg end bits */
[0] = &(utf_t){0b00111111, 0b10000000, 0, 0, 6 },
[1] = &(utf_t){0b01111111, 0b00000000, 0000, 0177, 7 },
[2] = &(utf_t){0b00011111, 0b11000000, 0200, 03777, 5 },
[3] = &(utf_t){0b00001111, 0b11100000, 04000, 0177777, 4 },
[4] = &(utf_t){0b00000111, 0b11110000, 0200000, 04177777, 3 },
&(utf_t){0},
};
/* All lengths are in bytes */
int codepoint_len(const uint32_t cp); /* len of associated utf-8 char */
int utf8_len(const char ch); /* len of utf-8 encoded char */
char *to_utf8(const uint32_t cp);
uint32_t to_cp(const char chr[4]);
int codepoint_len(const uint32_t cp)
{
int len = 0;
for(utf_t **u = utf; *u; ++u) {
if((cp >= (*u)->beg) && (cp <= (*u)->end)) {
break;
}
++len;
}
if(len > 4) /* Out of bounds */
exit(1);
return len;
}
int utf8_len(const char ch)
{
int len = 0;
for(utf_t **u = utf; *u; ++u) {
if((ch & ~(*u)->mask) == (*u)->lead) {
break;
}
++len;
}
if(len > 4) { /* Malformed leading byte */
exit(1);
}
return len;
}
char *to_utf8(const uint32_t cp)
{
static char ret[5];
const int bytes = codepoint_len(cp);
int shift = utf[0]->bits_stored * (bytes - 1);
ret[0] = (cp >> shift & utf[bytes]->mask) | utf[bytes]->lead;
shift -= utf[0]->bits_stored;
for(int i = 1; i < bytes; ++i) {
ret[i] = (cp >> shift & utf[0]->mask) | utf[0]->lead;
shift -= utf[0]->bits_stored;
}
ret[bytes] = '\0';
return ret;
}
uint32_t to_cp(const char chr[4])
{
int bytes = utf8_len(*chr);
int shift = utf[0]->bits_stored * (bytes - 1);
uint32_t codep = (*chr++ & utf[bytes]->mask) << shift;
for(int i = 1; i < bytes; ++i, ++chr) {
shift -= utf[0]->bits_stored;
codep |= ((char)*chr & utf[0]->mask) << shift;
}
return codep;
}
int main(void)
{
const uint32_t *in, input[] = {0x0041, 0x00f6, 0x0416, 0x20ac, 0x1d11e, 0x0};
printf("Character Unicode UTF-8 encoding (hex)\n");
printf("----------------------------------------\n");
char *utf8;
uint32_t codepoint;
for(in = input; *in; ++in) {
utf8 = to_utf8(*in);
codepoint = to_cp(utf8);
printf("%s U+%-7.4x", utf8, codepoint);
for(int i = 0; utf8[i] && i < 4; ++i) {
printf("%hhx ", utf8[i]);
}
printf("\n");
}
return 0;
}
Output
Character Unicode UTF-8 encoding (hex)
----------------------------------------
A U+0041 41
ö U+00f6 c3 b6
Ж U+0416 d0 96
€ U+20ac e2 82 ac
𝄞 U+1d11e f0 9d 84 9e
C#
using System;
using System.Text;
namespace Rosetta
{
class Program
{
static byte[] MyEncoder(int codepoint) => Encoding.UTF8.GetBytes(char.ConvertFromUtf32(codepoint));
static string MyDecoder(byte[] utf8bytes) => Encoding.UTF8.GetString(utf8bytes);
static void Main(string[] args)
{
Console.OutputEncoding = Encoding.UTF8; // makes sure it doesn't print rectangles...
foreach (int unicodePoint in new int[] { 0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E})
{
byte[] asUtf8bytes = MyEncoder(unicodePoint);
string theCharacter = MyDecoder(asUtf8bytes);
Console.WriteLine("{0,8} {1,5} {2,-15}", unicodePoint.ToString("X4"), theCharacter, BitConverter.ToString(asUtf8bytes));
}
}
}
}
/* Output:
* 0041 A 41
00F6 ö C3-B6
0416 Ж D0-96
20AC € E2-82-AC
1D11E 𝄞 F0-9D-84-9E */
C++
#include <codecvt>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <vector>
struct utf8 {
char mask; /* char data will be bitwise ANDed with this binary number */
char start; /* start index of the bytes of current char in a utf-8 encoded character */
uint32_t begin; /* beginning of codepoint range */
uint32_t end; /* end of codepoint range */
uint32_t bits_stored; /* the number of bits from the codepoint that fit in the char */
};
const std::vector<utf8> utf8s = {
/* mask start begin end bits */
utf8{ 0b00111111, static_cast<char>(0b10000000), 0, 0, 6 },
utf8{ 0b01111111, static_cast<char>(0b00000000), 0000, 0177, 7 },
utf8{ 0b00011111, static_cast<char>(0b11000000), 0200, 03777, 5 },
utf8{ 0b00001111, static_cast<char>(0b11100000), 04000, 0177777, 4 },
utf8{ 0b00000111, static_cast<char>(0b11110000), 0200000, 04177777, 3 } };
uint32_t codepoint_size(const uint32_t& codepoint) {
uint32_t size = 0;
for ( const utf8& utf : utf8s ) {
if ( ( codepoint >= utf.begin ) && ( codepoint <= utf.end ) ) {
break;
}
size++;
}
return size;
}
uint32_t utf8_size(const char& ch) {
uint32_t size = 0;
for ( const utf8& utf : utf8s ) {
if( ( ch & ~utf.mask ) == utf.start ) {
break;
}
size++;
}
return size;
}
std::vector<char> to_utf8(const uint32_t& codepoint) {
const uint32_t byte_count = codepoint_size(codepoint);
std::vector<char> result{ };
uint32_t shift = utf8s[0].bits_stored * ( byte_count - 1 );
result.emplace_back(( codepoint >> shift & utf8s[byte_count].mask ) | utf8s[byte_count].start);
shift -= utf8s[0].bits_stored;
for ( uint32_t i = 1; i < byte_count; ++i ) {
result.emplace_back(( codepoint >> shift & utf8s[0].mask ) | utf8s[0].start);
shift -= utf8s[0].bits_stored;
}
return result;
}
uint32_t to_codepoint(const std::vector<char>& chars) {
const uint32_t byte_count = utf8_size(chars[0]);
uint32_t shift = utf8s[0].bits_stored * ( byte_count - 1 );
uint32_t codepoint = ( chars[0] & utf8s[byte_count].mask ) << shift;
for ( uint32_t index = 1; index < byte_count; ++index ) {
shift -= utf8s[0].bits_stored;
codepoint |= ( chars[index] & utf8s[0].mask ) << shift;
}
return codepoint;
}
int main() {
const std::vector<uint32_t> tests = { 0x0041, 0x00f6, 0x0416, 0x20ac, 0x1d11e };
std::cout << "Character Unicode UTF-8 encoding (hex)" << "\n";
std::cout << "------------------------------------------" << "\n";
for ( const uint32_t& test : tests ) {
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> convert;
std::cout << convert.to_bytes(test) << "\t" << " ";
const std::vector<char> utf8 = to_utf8(test);
const uint32_t codepoint = to_codepoint(utf8);
std::cout << "U+" << std::setw(4) << std::setfill('0') << std::hex << codepoint << "\t";
for ( uint32_t i = 0; i < utf8.size(); ++i ) {
std::cout << std::setw(2) << ( utf8[i] & 0xff ) << " ";
}
std::cout << "\n";
}
}
- Output:
Character Unicode UTF-8 encoding (hex) ------------------------------------------ A U+0041 41 ö U+00f6 c3 b6 Ж U+0416 d0 96 € U+20ac e2 82 ac 𝄞 U+1d11e f0 9d 84 9e
Common Lisp
Helper functions
(defun ascii-byte-p (octet)
"Return t if octet is a single-byte 7-bit ASCII char.
The most significant bit is 0, so the allowed pattern is 0xxx xxxx."
(assert (typep octet 'integer))
(assert (<= (integer-length octet) 8))
(let ((bitmask #b10000000)
(template #b00000000))
;; bitwise and the with the bitmask #b11000000 to extract the first two bits.
;; check if the first two bits are equal to the template #b10000000.
(= (logand bitmask octet) template)))
(defun multi-byte-p (octet)
"Return t if octet is a part of a multi-byte UTF-8 sequence.
The multibyte pattern is 1xxx xxxx. A multi-byte can be either a lead byte or a trail byte."
(assert (typep octet 'integer))
(assert (<= (integer-length octet) 8))
(let ((bitmask #b10000000)
(template #b10000000))
;; bitwise and the with the bitmask #b11000000 to extract the first two bits.
;; check if the first two bits are equal to the template #b10000000.
(= (logand bitmask octet) template)))
(defun lead-byte-p (octet)
"Return t if octet is one of the leading bytes of an UTF-8 sequence, nil otherwise.
Allowed leading byte patterns are 0xxx xxxx, 110x xxxx, 1110 xxxx and 1111 0xxx."
(assert (typep octet 'integer))
(assert (<= (integer-length octet) 8))
(let ((bitmasks (list #b10000000 #b11100000 #b11110000 #b11111000))
(templates (list #b00000000 #b11000000 #b11100000 #b11110000)))
(some #'(lambda (a b) (= (logand a octet) b)) bitmasks templates)))
(defun n-trail-bytes (octet)
"Take a leading utf-8 byte, return the number of continuation bytes 1-3."
(assert (typep octet 'integer))
(assert (<= (integer-length octet) 8))
(let ((bitmasks (list #b10000000 #b11100000 #b11110000 #b11111000))
(templates (list #b00000000 #b11000000 #b11100000 #b11110000)))
(loop for i from 0 to 3
when (= (nth i templates) (logand (nth i bitmasks) octet))
return i)))
Encoder
(defun unicode-to-utf-8 (int)
"Take a unicode code point, return a list of one to four UTF-8 encoded bytes (octets)."
(assert (<= (integer-length int) 21))
(let ((n-trail-bytes (cond ((<= #x00000 int #x00007F) 0)
((<= #x00080 int #x0007FF) 1)
((<= #x00800 int #x00FFFF) 2)
((<= #x10000 int #x10FFFF) 3)))
(lead-templates (list #b00000000 #b11000000 #b11100000 #b11110000))
(trail-template #b10000000)
;; number of content bits in the lead byte.
(n-lead-bits (list 7 5 4 3))
;; number of content bits in the trail byte.
(n-trail-bits 6)
;; list to put the UTF-8 encoded bytes in.
(byte-list nil))
(if (= n-trail-bytes 0)
;; if we need 0 trail bytes, ist just an ascii single byte.
(push int byte-list)
(progn
;; if we need more than one byte, first fill the trail bytes with 6 bits each.
(loop for i from 0 to (1- n-trail-bytes)
do (push (+ trail-template
(ldb (byte n-trail-bits (* i n-trail-bits)) int))
byte-list))
;; then copy the remaining content bytes to the lead byte.
(push (+ (nth n-trail-bytes lead-templates)
(ldb (byte (nth n-trail-bytes n-lead-bits) (* n-trail-bytes n-trail-bits)) int))
byte-list)))
;; return the list of UTF-8 encoded bytes.
byte-list))
Decoder
(defun utf-8-to-unicode (byte-list)
"Take a list of one to four utf-8 encoded bytes (octets), return a code point."
(let ((b1 (car byte-list)))
(cond ((ascii-byte-p b1) b1) ; if a single byte, just return it.
((multi-byte-p b1)
(if (lead-byte-p b1)
(let ((n (n-trail-bytes b1))
;; Content bits we want to extract from each lead byte.
(lead-templates (list #b01111111 #b00011111 #b00001111 #b00000111))
;; Content bits we want to extract from each trail byte.
(trail-template #b00111111))
(if (= n (1- (list-length byte-list)))
;; add lead byte
(+ (ash (logand (nth 0 byte-list) (nth n lead-templates)) (* 6 n))
;; and the trail bytes
(loop for i from 1 to n sum
(ash (logand (nth i byte-list) trail-template) (* 6 (- n i)))))
(error "calculated number of bytes doesnt match the length of the byte list")))
(error "first byte in the list isnt a lead byte"))))))
The test
(defun test-utf-8 ()
"Return t if the chosen unicode points are encoded and decoded correctly."
(let* ((unicodes-orig (list 65 246 1046 8364 119070))
(unicodes-test (mapcar #'(lambda (x) (utf-8-to-unicode (unicode-to-utf-8 x)))
unicodes-orig)))
(mapcar #'(lambda (x)
(format t
"character ~A, code point: ~6x, utf-8: ~{~x ~}~%"
(code-char x)
x
(unicode-to-utf-8 x)))
unicodes-orig)
;; return t if all are t
(every #'= unicodes-orig unicodes-test)))
Test output
CL-USER> (test-utf-8)
character A, code point: 41, utf-8: 41
character ö, code point: F6, utf-8: C3 B6
character Ж, code point: 416, utf-8: D0 96
character €, code point: 20AC, utf-8: E2 82 AC
character 𝄞, code point: 1D11E, utf-8: F0 9D 84 9E
T
D
import std.conv;
import std.stdio;
immutable CHARS = ["A","ö","Ж","€","𝄞"];
void main() {
writeln("Character Code-Point Code-Units");
foreach (c; CHARS) {
auto bytes = cast(ubyte[]) c; //The raw bytes of a character can be accessed by casting
auto unicode = cast(uint) to!dstring(c)[0]; //Convert from a UTF8 string to a UTF32 string, and cast the first character to a number
writefln("%s %7X [%(%X, %)]", c, unicode, bytes);
}
}
- Output:
Character Code-Point Code-Units A 41 [41] ö F6 [C3, B6] Ж 416 [D0, 96] € 20AC [E2, 82, AC] 𝄞 1D11E [F0, 9D, 84, 9E]
DuckDB
Codepoint to utf-8-encoded string and return
DuckDB provides chr() for mapping a decimal integer codepoint to a UTF-8 encoded string, and unicode() for the return trip:
codepoint -> chr(codepoint) as s -> unicode(s)
For example:
D select 246 as codepoint, chr(codepoint) as string, unicode(string) == codepoint; ┌───────────┬─────────┬───────────────────────────────┐ │ codepoint │ string │ (unicode(string) = codepoint) │ │ int32 │ varchar │ boolean │ ├───────────┼─────────┼───────────────────────────────┤ │ 246 │ ö │ true │ └───────────┴─────────┴───────────────────────────────┘
Round-trip from codepoint via hex representation of the utf-8 bytes
The round-trip from codepoint via a hex-string representation of the UTF-8-encoded string can be made as follows:
codepoint -> hex(encode(chr(codepoint)) as x -> decode(from_hex(x))
create or replace function utf8x(codepoint) as (
select hex(encode(chr(codepoint)))
);
# Example:
select s,
unicode(s) as codepoint,
chr(codepoint) as c,
unicode(c),
utf8x(codepoint),
decode(from_hex(utf8x(codepoint))) as "decode(from_hex())"
from values ('A'), ('ö'), ('Ж'), ('€'), ('𝄞') t(s);
┌─────────┬───────────┬─────────┬────────────┬──────────────────┬────────────────────┐ │ s │ codepoint │ c │ unicode(c) │ utf8x(codepoint) │ decode(from_hex()) │ │ varchar │ int32 │ varchar │ int32 │ varchar │ varchar │ ├─────────┼───────────┼─────────┼────────────┼──────────────────┼────────────────────┤ │ A │ 65 │ A │ 65 │ 41 │ A │ │ ö │ 246 │ ö │ 246 │ C3B6 │ ö │ │ Ж │ 1046 │ Ж │ 1046 │ D096 │ Ж │ │ € │ 8364 │ € │ 8364 │ E282AC │ € │ │ 𝄞 │ 119070 │ 𝄞 │ 119070 │ F09D849E │ 𝄞 │ └─────────┴───────────┴─────────┴────────────┴──────────────────┴────────────────────┘
Elena
ELENA 6.x :
import system'routines;
import extensions;
extension op : String
{
string printAsString()
{
console.print(self," ")
}
string printAsUTF8Array()
{
self.toByteArray().forEach::(b){ console.print(b.toString(16)," ") }
}
string printAsUTF32()
{
self.toArray().forEach::(c){ console.print("U+",c.toInt().toString(16)," ") }
}
}
public program()
{
"A".printAsString().printAsUTF8Array().printAsUTF32();
console.printLine();
"ö".printAsString().printAsUTF8Array().printAsUTF32();
console.printLine();
"Ж".printAsString().printAsUTF8Array().printAsUTF32();
console.printLine();
"€".printAsString().printAsUTF8Array().printAsUTF32();
console.printLine();
"𝄞".printAsString().printAsUTF8Array().printAsUTF32();
console.printLine();
}
- Output:
A 41 U+41 ö C3 B6 U+F6 Ж D0 96 U+416 € E2 82 AC U+20AC 𝄞 F0 9D 84 9E U+1D11E
FreeBASIC
Function unicode_2_utf8(x As Long) As String
Dim As String y
Dim As Long r
Select Case x
Case 0 To &H7F
y = Chr(x)
Case &H80 To &H7FF
y = Chr(192 + x \ 64) + Chr(128 + x Mod 64)
Case &H800 To &H7FFF, 32768 To 65535
r = x \ 64
y = Chr(224 + r \ 64) + Chr(128 + r Mod 64) + Chr(128 + x Mod 64)
Case &H10000 To &H10FFFF
r = x \ 4096
y = Chr(240 + r \ 64) + Chr(128 + r Mod 64) + Chr(128 + (x \ 64) Mod 64) + Chr(128 + x Mod 64)
Case Else
Print "what else? " & x & " " & Hex(x)
End Select
Return y
End Function
Function utf8_2_unicode(x As String) As Long
Dim As Long primero, segundo, tercero, cuarto
Dim As Long total
Select Case Len(x)
Case 1 'one byte
If Asc(x) < 128 Then
total = Asc(x)
Else
Print "highest bit set error"
End If
Case 2 'two bytes and assume primero byte is leading byte
If Asc(x) \ 32 = 6 Then
primero = Asc(x) Mod 32
If Asc(Mid(x, 2, 1)) \ 64 = 2 Then
segundo = Asc(Mid(x, 2, 1)) Mod 64
Else
Print "mask error"
End If
Else
Print "leading byte error"
End If
total = 64 * primero + segundo
Case 3 'three bytes and assume primero byte is leading byte
If Asc(x) \ 16 = 14 Then
primero = Asc(x) Mod 16
If Asc(Mid(x, 2, 1)) \ 64 = 2 Then
segundo = Asc(Mid(x, 2, 1)) Mod 64
If Asc(Mid(x, 3, 1)) \ 64 = 2 Then
tercero = Asc(Mid(x, 3, 1)) Mod 64
Else
Print "mask error last byte"
End If
Else
Print "mask error middle byte"
End If
Else
Print "leading byte error"
End If
total = 4096 * primero + 64 * segundo + tercero
Case 4 'four bytes and assume primero byte is leading byte
If Asc(x) \ 8 = 30 Then
primero = Asc(x) Mod 8
If Asc(Mid(x, 2, 1)) \ 64 = 2 Then
segundo = Asc(Mid(x, 2, 1)) Mod 64
If Asc(Mid(x, 3, 1)) \ 64 = 2 Then
tercero = Asc(Mid(x, 3, 1)) Mod 64
If Asc(Mid(x, 4, 1)) \ 64 = 2 Then
cuarto = Asc(Mid(x, 4, 1)) Mod 64
Else
Print "mask error last byte"
End If
Else
Print "mask error tercero byte"
End If
Else
Print "mask error second byte"
End If
Else
Print "mask error leading byte"
End If
total = Clng(262144 * primero + 4096 * segundo + 64 * tercero + cuarto)
Case Else
Print "more bytes than expected"
End Select
Return total
End Function
Dim As Long cp(4) = {65, 246, 1046, 8364, 119070} '[{&H0041,&H00F6,&H0416,&H20AC,&H1D11E}]
Dim As String r, s
Dim As integer i, j
Print "ch unicode UTF-8 encoded decoded"
For i = Lbound(cp) To Ubound(cp)
Dim As Long cpi = cp(i)
r = unicode_2_utf8(cpi)
s = Hex(cpi)
Print Chr(cpi); Space(10 - Len(s)); s;
s = ""
For j = 1 To Len(r)
s &= Hex(Asc(Mid(r, j, 1))) & " "
Next j
Print Space(16 - Len(s)); s;
s = Hex(utf8_2_unicode(r))
Print Space(8 - Len(s)); s
Next i
Sleep
F#
// Unicode character point to UTF8. Nigel Galloway: March 19th., 2018
let fN g = match List.findIndex (fun n->n>g) [0x80;0x800;0x10000;0x110000] with
|0->[g]
|1->[0xc0+(g&&&0x7c0>>>6);0x80+(g&&&0x3f)]
|2->[0xe0+(g&&&0xf000>>>12);0x80+(g&&&0xfc0>>>6);0x80+(g&&&0x3f)]
|_->[0xf0+(g&&&0x1c0000>>>18);0x80+(g&&&0x3f000>>>12);0x80+(g&&&0xfc0>>>6);0x80+(g&&&0x3f)]
- Output:
for n in fN 0x41 do printf "%x " n -> 41 for n in fN 0xf6 do printf "%x " n -> c3 b6 for n in fN 0x416 do printf "%x " n -> d0 96 for n in fN 0x20ac do printf "%x " n -> e2 82 ac for n in fN 0x1d11e do printf "%x " n -> f0 9d 84 9e
Forth
Forth-2012 includes the words xc!+
and xc@+
that convert code point numbers into bytes and vice versa, respectively, for the encoding the system is using. If the system uses UTF-8 (e.g., in Gforth, if it is started in a UTF-8 environment), this converts between code point number and UTF-8.
So the following code just uses these words to perform the tests.
: showbytes ( c-addr u -- )
over + swap ?do
i c@ 3 .r loop ;
: test {: xc -- :}
xc xemit xc 6 .r xc pad xc!+ pad tuck - ( c-addr u )
2dup showbytes drop xc@+ xc <> abort" test failed" drop cr ;
hex
$41 test $f6 test $416 test $20ac test $1d11e test
\ can also be written as
\ 'A' test 'ö' test 'Ж' test '€' test '𝄞' test
- Output:
A 41 41 ö F6 C3 B6 Ж 416 D0 96 € 20AC E2 82 AC 𝄞 1D11E F0 9D 84 9E
If you also want to see the implementation of xc!+
and xc@+
, here it is (u8!+
is the UTF-8 implementation of xc!+
, and likewise for u8@+
):
-77 Constant UTF-8-err
$80 Constant max-single-byte
: u8@+ ( u8addr -- u8addr' u )
count dup max-single-byte u< ?EXIT \ special case ASCII
dup $C2 u< IF UTF-8-err throw THEN \ malformed character
$7F and $40 >r
BEGIN dup r@ and WHILE r@ xor
6 lshift r> 5 lshift >r >r count
dup $C0 and $80 <> IF UTF-8-err throw THEN
$3F and r> or
REPEAT rdrop ;
: u8!+ ( u u8addr -- u8addr' )
over max-single-byte u< IF tuck c! 1+ EXIT THEN \ special case ASCII
>r 0 swap $3F
BEGIN 2dup u> WHILE
2/ >r dup $3F and $80 or swap 6 rshift r>
REPEAT $7F xor 2* or r>
BEGIN over $80 u>= WHILE tuck c! 1+ REPEAT nip ;
Go
Implementation
This implementation is missing all checks for invalid data and so is not production-ready, but illustrates the basic UTF-8 encoding scheme.
package main
import (
"bytes"
"encoding/hex"
"fmt"
"log"
"strings"
)
var testCases = []struct {
rune
string
}{
{'A', "41"},
{'ö', "C3 B6"},
{'Ж', "D0 96"},
{'€', "E2 82 AC"},
{'𝄞', "F0 9D 84 9E"},
}
func main() {
for _, tc := range testCases {
// derive some things from test data
u := fmt.Sprintf("U+%04X", tc.rune)
b, err := hex.DecodeString(strings.Replace(tc.string, " ", "", -1))
if err != nil {
log.Fatal("bad test data")
}
// exercise encoder and decoder on test data
e := encodeUTF8(tc.rune)
d := decodeUTF8(b)
// show function return values
fmt.Printf("%c %-7s %X\n", d, u, e)
// validate return values against test data
if !bytes.Equal(e, b) {
log.Fatal("encodeUTF8 wrong")
}
if d != tc.rune {
log.Fatal("decodeUTF8 wrong")
}
}
}
const (
// first byte of a 2-byte encoding starts 110 and carries 5 bits of data
b2Lead = 0xC0 // 1100 0000
b2Mask = 0x1F // 0001 1111
// first byte of a 3-byte encoding starts 1110 and carries 4 bits of data
b3Lead = 0xE0 // 1110 0000
b3Mask = 0x0F // 0000 1111
// first byte of a 4-byte encoding starts 11110 and carries 3 bits of data
b4Lead = 0xF0 // 1111 0000
b4Mask = 0x07 // 0000 0111
// non-first bytes start 10 and carry 6 bits of data
mbLead = 0x80 // 1000 0000
mbMask = 0x3F // 0011 1111
)
func encodeUTF8(r rune) []byte {
switch i := uint32(r); {
case i <= 1<<7-1: // max code point that encodes into a single byte
return []byte{byte(r)}
case i <= 1<<11-1: // into two bytes
return []byte{
b2Lead | byte(r>>6),
mbLead | byte(r)&mbMask}
case i <= 1<<16-1: // three
return []byte{
b3Lead | byte(r>>12),
mbLead | byte(r>>6)&mbMask,
mbLead | byte(r)&mbMask}
default:
return []byte{
b4Lead | byte(r>>18),
mbLead | byte(r>>12)&mbMask,
mbLead | byte(r>>6)&mbMask,
mbLead | byte(r)&mbMask}
}
}
func decodeUTF8(b []byte) rune {
switch b0 := b[0]; {
case b0 < 0x80:
return rune(b0)
case b0 < 0xE0:
return rune(b0&b2Mask)<<6 |
rune(b[1]&mbMask)
case b0 < 0xF0:
return rune(b0&b3Mask)<<12 |
rune(b[1]&mbMask)<<6 |
rune(b[2]&mbMask)
default:
return rune(b0&b4Mask)<<18 |
rune(b[1]&mbMask)<<12 |
rune(b[2]&mbMask)<<6 |
rune(b[3]&mbMask)
}
}
- Output:
A U+0041 41 ö U+00F6 C3B6 Ж U+0416 D096 € U+20AC E282AC 𝄞 U+1D11E F09D849E
Library/language
package main
import (
"fmt"
"unicode/utf8"
)
func utf8encode(codepoint rune) []byte {
buffer := make([]byte, 4)
length := utf8.EncodeRune(buffer, codepoint)
return buffer[:length]
}
func utf8decode(bytes []byte) rune {
result, _ := utf8.DecodeRune(bytes)
return result
}
func main() {
fmt.Printf("%-7s %7s\t%s\t%s\n", "Char", "Unicode", "UTF-8 encoded", "Decoded");
for _, codepoint := range []rune{'A', 'ö', 'Ж', '€', '𝄞'} {
encoded := utf8encode(codepoint)
decoded := utf8decode(encoded)
fmt.Printf("%-7c U+%04X\t%-12X\t%c\n", codepoint, codepoint, encoded, decoded)
}
}
- Output:
Char Unicode UTF-8 encoded Decoded A U+0041 41 A ö U+00F6 C3B6 ö Ж U+0416 D096 Ж € U+20AC E282AC € 𝄞 U+1D11E F09D849E 𝄞
Alternately:
package main
import (
"fmt"
)
func utf8encode(codepoint rune) []byte {
return []byte(string([]rune{codepoint}))
}
func utf8decode(bytes []byte) rune {
return []rune(string(bytes))[0]
}
func main() {
fmt.Printf("%-7s %7s\t%s\t%s\n", "Char", "Unicode", "UTF-8 encoded", "Decoded");
for _, codepoint := range []rune{'A', 'ö', 'Ж', '€', '𝄞'} {
encoded := utf8encode(codepoint)
decoded := utf8decode(encoded)
fmt.Printf("%-7c U+%04X\t%-12X\t%c\n", codepoint, codepoint, encoded, decoded)
}
}
- Output:
Char Unicode UTF-8 encoded Decoded A U+0041 41 A ö U+00F6 C3B6 ö Ж U+0416 D096 Ж € U+20AC E282AC € 𝄞 U+1D11E F09D849E 𝄞
Groovy
import java.nio.charset.StandardCharsets
class UTF8EncodeDecode {
static byte[] utf8encode(int codePoint) {
char[] characters = [codePoint]
new String(characters, 0, 1).getBytes StandardCharsets.UTF_8
}
static int utf8decode(byte[] bytes) {
new String(bytes, StandardCharsets.UTF_8).codePointAt(0)
}
static void main(String[] args) {
printf "%-7s %-43s %7s\t%s\t%7s%n", "Char", "Name", "Unicode", "UTF-8 encoded", "Decoded"
([0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E]).each { int codePoint ->
byte[] encoded = utf8encode codePoint
Formatter formatter = new Formatter()
encoded.each { byte b ->
formatter.format "%02X ", b
}
String encodedHex = formatter.toString()
int decoded = utf8decode encoded
printf "%-7c %-43s U+%04X\t%-12s\tU+%04X%n", codePoint, Character.getName(codePoint), codePoint, encodedHex, decoded
}
}
}
- Output:
Char Name Unicode UTF-8 encoded Decoded A LATIN CAPITAL LETTER A U+0041 41 U+0041 ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6 U+00F6 Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96 U+0416 € EURO SIGN U+20AC E2 82 AC U+20AC 𝄞 MUSICAL SYMBOL G CLEF U+1D11E ED 84 9E U+D11E
Haskell
Example makes use of bytestring and text packages:
module Main (main) where
import qualified Data.ByteString as ByteString (pack, unpack)
import Data.Char (chr, ord)
import Data.Foldable (for_)
import Data.List (intercalate)
import qualified Data.Text as Text (head, singleton)
import qualified Data.Text.Encoding as Text (decodeUtf8, encodeUtf8)
import Text.Printf (printf)
encodeCodepoint :: Int -> [Int]
encodeCodepoint = map fromIntegral . ByteString.unpack . Text.encodeUtf8 . Text.singleton . chr
decodeToCodepoint :: [Int] -> Int
decodeToCodepoint = ord . Text.head . Text.decodeUtf8 . ByteString.pack . map fromIntegral
main :: IO ()
main = do
putStrLn "Character Unicode UTF-8 encoding (hex) Decoded"
putStrLn "-------------------------------------------------"
for_ [0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E] $ \codepoint -> do
let values = encodeCodepoint codepoint
codepoint' = decodeToCodepoint values
putStrLn $ printf "%c %-7s %-20s %c"
codepoint
(printf "U+%04X" codepoint :: String)
(intercalate " " (map (printf "%02X") values))
codepoint'
- Output:
Character Unicode UTF-8 encoding (hex) Decoded ------------------------------------------------- A U+0041 41 A ö U+00F6 C3 B6 ö Ж U+0416 D0 96 Ж € U+20AC E2 82 AC € 𝄞 U+1D11E F0 9D 84 9E 𝄞
J
Solution:
utf8=: 8&u: NB. converts to UTF-8 from unicode or unicode codepoint integer
ucp=: 9&u: NB. converts to unicode from UTF-8 or unicode codepoint integer
ucp_hex=: hfd@(3 u: ucp) NB. converts to unicode codepoint hexadecimal from UTF-8, unicode or unicode codepoint integer
Examples:
utf8 65 246 1046 8364 119070
AöЖ€𝄞
ucp 65 246 1046 8364 119070
AöЖ€𝄞
ucp 'AöЖ€𝄞'
AöЖ€𝄞
utf8 ucp 65 246 1046 8364 119070
AöЖ€𝄞
ucp_hex utf8 65 246 1046 8364 119070
00041
000f6
00416
020ac
1d11e
utf8@dfh ucp_hex utf8 65 246 1046 8364 119070
AöЖ€𝄞
Java
import java.nio.charset.StandardCharsets;
import java.util.Formatter;
public class UTF8EncodeDecode {
public static byte[] utf8encode(int codepoint) {
return new String(new int[]{codepoint}, 0, 1).getBytes(StandardCharsets.UTF_8);
}
public static int utf8decode(byte[] bytes) {
return new String(bytes, StandardCharsets.UTF_8).codePointAt(0);
}
public static void main(String[] args) {
System.out.printf("%-7s %-43s %7s\t%s\t%7s%n",
"Char", "Name", "Unicode", "UTF-8 encoded", "Decoded");
for (int codepoint : new int[]{0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E}) {
byte[] encoded = utf8encode(codepoint);
Formatter formatter = new Formatter();
for (byte b : encoded) {
formatter.format("%02X ", b);
}
String encodedHex = formatter.toString();
int decoded = utf8decode(encoded);
System.out.printf("%-7c %-43s U+%04X\t%-12s\tU+%04X%n",
codepoint, Character.getName(codepoint), codepoint, encodedHex, decoded);
}
}
}
- Output:
Char Name Unicode UTF-8 encoded Decoded A LATIN CAPITAL LETTER A U+0041 41 A ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6 ö Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96 Ж € EURO SIGN U+20AC E2 82 AC € 𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E 𝄞
JavaScript
An implementation in ECMAScript 2015 (ES6):
/***************************************************************************\
|* Pure UTF-8 handling without detailed error reporting functionality. *|
|***************************************************************************|
|* utf8encode *|
|* < String character or UInt32 code point *|
|* > Uint8Array encoded_character *|
|* | ErrorString *|
|* *|
|* utf8encode takes a string or uint32 representing a single code point *|
|* as its argument and returns an array of length 1 up to 4 containing *|
|* utf8 code units representing that character. *|
|***************************************************************************|
|* utf8decode *|
|* < Unit8Array [highendbyte highmidendbyte lowmidendbyte lowendbyte] *|
|* > uint32 character *|
|* | ErrorString *|
|* *|
|* utf8decode takes an array of one to four uint8 representing utf8 code *|
|* units and returns a uint32 representing that code point. *|
\***************************************************************************/
const
utf8encode=
n=>
(m=>
m<0x80
?Uint8Array.from(
[ m>>0&0x7f|0x00])
:m<0x800
?Uint8Array.from(
[ m>>6&0x1f|0xc0,m>>0&0x3f|0x80])
:m<0x10000
?Uint8Array.from(
[ m>>12&0x0f|0xe0,m>>6&0x3f|0x80,m>>0&0x3f|0x80])
:m<0x110000
?Uint8Array.from(
[ m>>18&0x07|0xf0,m>>12&0x3f|0x80,m>>6&0x3f|0x80,m>>0&0x3f|0x80])
:(()=>{throw'Invalid Unicode Code Point!'})())
( typeof n==='string'
?n.codePointAt(0)
:n&0x1fffff),
utf8decode=
([m,n,o,p])=>
m<0x80
?( m&0x7f)<<0
:0xc1<m&&m<0xe0&&n===(n&0xbf)
?( m&0x1f)<<6|( n&0x3f)<<0
:( m===0xe0&&0x9f<n&&n<0xc0
||0xe0<m&&m<0xed&&0x7f<n&&n<0xc0
||m===0xed&&0x7f<n&&n<0xa0
||0xed<m&&m<0xf0&&0x7f<n&&n<0xc0)
&&o===o&0xbf
?( m&0x0f)<<12|( n&0x3f)<<6|( o&0x3f)<<0
:( m===0xf0&&0x8f<n&&n<0xc0
||m===0xf4&&0x7f<n&&n<0x90
||0xf0<m&&m<0xf4&&0x7f<n&&n<0xc0)
&&o===o&0xbf&&p===p&0xbf
?( m&0x07)<<18|( n&0x3f)<<12|( o&0x3f)<<6|( p&0x3f)<<0
:(()=>{throw'Invalid UTF-8 encoding!'})()
The testing inputs:
const
str=
'AöЖ€𝄞'
,cps=
Uint32Array.from(str,s=>s.codePointAt(0))
,cus=
[ [ 0x41]
,[ 0xc3,0xb6]
,[ 0xd0,0x96]
,[ 0xe2,0x82,0xac]
,[ 0xf0,0x9d,0x84,0x9e]]
.map(a=>Uint8Array.from(a))
,zip3=
([a,...as],[b,...bs],[c,...cs])=>
0<as.length+bs.length+cs.length
?[ [ a,b,c],...zip3(as,bs,cs)]
:[ [ a,b,c]]
,inputs=zip3(str,cps,cus);
The testing code:
console.log(`\
${'Character'.padEnd(16)}\
${'CodePoint'.padEnd(16)}\
${'CodeUnits'.padEnd(16)}\
${'uft8encode(ch)'.padEnd(16)}\
${'uft8encode(cp)'.padEnd(16)}\
utf8decode(cu)`)
for(let [ch,cp,cu] of inputs)
console.log(`\
${ch.padEnd(16)}\
${cp.toString(0x10).padStart(8,'U+000000').padEnd(16)}\
${`[${[...cu].map(n=>n.toString(0x10))}]`.padEnd(16)}\
${`[${[...utf8encode(ch)].map(n=>n.toString(0x10))}]`.padEnd(16)}\
${`[${[...utf8encode(cp)].map(n=>n.toString(0x10))}]`.padEnd(16)}\
${utf8decode(cu).toString(0x10).padStart(8,'U+000000')}`)
and finally, the output from the test:
Character CodePoint CodeUnits uft8encode(ch) uft8encode(cp) utf8decode(cu) A U+000041 [41] [41] [41] U+000041 ö U+0000f6 [c3,b6] [c3,b6] [c3,b6] U+0000f6 Ж U+000416 [d0,96] [d0,96] [d0,96] U+000416 € U+0020ac [e2,82,ac] [e2,82,ac] [e2,82,ac] U+0020ac 𝄞 U+01d11e [f0,9d,84,9e] [f0,9d,84,9e] [f0,9d,84,9e] U+01d11e
Note that the misalign there on the last line is caused by the string length of astral characters being 2 so the padding functions break.
jq
Works with gojq, the Go implementation of jq
Preliminaries
# input: a decimal integer
# output: the corresponding binary array, most significant bit first
def binary_digits:
if . == 0 then 0
else [recurse( if . == 0 then empty else ./2 | floor end ) % 2]
| reverse
| .[1:] # remove the leading 0
end ;
# Input: an array of binary digits, msb first.
def binary_to_decimal:
reduce reverse[] as $b ({power:1, result:0};
.result += .power * $b
| .power *= 2)
| .result;
Encode to UTF-8
# input: an array of decimal integers representing the utf-8 bytes of a Unicode codepoint.
# output: the corresponding decimal number of that codepoint.
def utf8_encode:
def lpad($width): [(range(0;8)|0), .[]][- $width:];
def multibyte: [1,0, (.[-6: ]|lpad(6))[]];
def firstOf2: [1,1,0, (.[: -6]|lpad(5))[]];
def firstOf3: [1,1,1,0, (.[:-12]|lpad(4))[]];
def firstOf4: [1,1,1,1,0, (.[:-18]|lpad(3))[]];
. as $n
| binary_digits
| length as $len
| if $len <8 then [$n]
else if $len <= 12 then [ firstOf2, multibyte ]
elif $len <= 16 then [ firstOf3, (.[:-6] | multibyte), multibyte ]
else [firstOf4,
(.[ :-12] | multibyte),
(.[-12: -6] | multibyte),
multibyte]
end
| map(binary_to_decimal)
end;
Decode an array of UTF-8 bytes
# input: an array of decimal integers representing the utf-8 bytes of a Unicode codepoint.
# output: the corresponding decimal number of that codepoint.
def utf8_decode:
# Magic numbers:
# x80: 128, # 10000000
# xe0: 224, # 11100000
# xf0: 240 # 11110000
(-6) as $mb # non-first bytes start 10 and carry 6 bits of data
# first byte of a 2-byte encoding starts 110 and carries 5 bits of data
# first byte of a 3-byte encoding starts 1110 and carries 4 bits of data
# first byte of a 4-byte encoding starts 11110 and carries 3 bits of data
| map(binary_digits) as $d
| .[0]
| if . < 128 then $d[0]
elif . < 224 then $d[0][-5:] + $d[1][$mb:]
elif . < 240 then $d[0][-4:] + $d[1][$mb:] + $d[2][$mb:]
else $d[0][-3:] + $d[1][$mb:] + $d[2][$mb:] + $d[3][$mb:]
end
| binary_to_decimal ;
Task
def task:
[ "A", "ö", "Ж", "€", "𝄞" ][]
| . as $glyph
| explode[]
| utf8_encode as $encoded
| ($encoded|utf8_decode) as $decoded
| "Glyph \($glyph) => \($encoded) => \($decoded) => \([$decoded]|implode)" ;
task
- Output:
Glyph A => [65] => 65 => A Glyph ö => [195,182] => 246 => ö Glyph Ж => [208,150] => 1046 => Ж Glyph € => [226,130,172] => 8364 => € Glyph 𝄞 => [240,157,132,158] => 119070 => 𝄞
Julia
Julia supports the UTF-8 encoding (and others through packages).
for t in ("A", "ö", "Ж", "€", "𝄞")
println(t, " → ", codeunits(t))
end
- Output:
A → UInt8[0x41] ö → UInt8[0xc3, 0xb6] Ж → UInt8[0xd0, 0x96] € → UInt8[0xe2, 0x82, 0xac] 𝄞 → UInt8[0xf0, 0x9d, 0x84, 0x9e]
Kotlin
// version 1.1.2
fun utf8Encode(codePoint: Int) = String(intArrayOf(codePoint), 0, 1).toByteArray(Charsets.UTF_8)
fun utf8Decode(bytes: ByteArray) = String(bytes, Charsets.UTF_8).codePointAt(0)
fun main(args: Array<String>) {
val codePoints = intArrayOf(0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E)
println("Char Name Unicode UTF-8 Decoded")
for (codePoint in codePoints) {
var n = if(codePoint <= 0xFFFF) 4 else 5
System.out.printf("%-${n}c %-35s U+%05X ", codePoint, Character.getName(codePoint), codePoint)
val bytes = utf8Encode(codePoint)
var s = ""
for (byte in bytes) s += "%02X ".format(byte)
val decoded = utf8Decode(bytes)
n = if(decoded.toInt() <= 0xFFFF) 12 else 11
System.out.printf("%-${n}s %c\n", s, decoded)
}
}
- Output:
Char Name Unicode UTF-8 Decoded A LATIN CAPITAL LETTER A U+00041 41 A ö LATIN SMALL LETTER O WITH DIAERESIS U+000F6 C3 B6 ö Ж CYRILLIC CAPITAL LETTER ZHE U+00416 D0 96 Ж € EURO SIGN U+020AC E2 82 AC € 𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E 𝄞
langur
writeln "character Unicode UTF-8 encoding (hex)"
for cp in "AöЖ€𝄞" {
val utf8 = cp -> cp2s -> s2b
val cpstr = utf8 -> b2s
val utf8rep = join(map(utf8, by=fn b:"{{b:X02}}"), by=" ")
writeln "{{cpstr:-11}} U+{{cp:X04:-8}} {{utf8rep}}"
}
- Output:
character Unicode UTF-8 encoding (hex) A U+0041 41 ö U+00F6 C3 B6 Ж U+0416 D0 96 € U+20AC E2 82 AC 𝄞 U+1D11E F0 9D 84 9E
Lingo
Since UTF-8 is Lingo's native string encoding, and UTF-8 strings can be read into byteArrays (and v.v.), such UTF-8 encoding and decoding is built-in.
Relevant Lingo functions are:
- charToNum (string): converts single-character string to unicode code point (int)
- numToChar (int): converts unicode code point (int) to single-character string
- byteArray (string): creates byte array of UTF-8 bytes for string
- byteArray.toHexString (intStart, intLen): returns hex string representation of byte array (e.g. for printing)
- byteArray.readRawString (intLen, [strCharSet="UTF-8"]): reads a fixed number of bytes as a string
chars = ["A", "ö", "Ж", "€", "𝄞"]
put "Character Unicode (int) UTF-8 (hex) Decoded"
repeat with c in chars
ba = bytearray(c)
put col(c, 12) & col(charToNum(c), 16) & col(ba.toHexString(1, ba.length), 14) & ba.readRawString(ba.length)
end repeat
Helper function for table formatting
on col (val, len)
str = string(val)
repeat with i = str.length+1 to len
put " " after str
end repeat
return str
end
- Output:
Character Unicode (int) UTF-8 (hex) Decoded A 65 41 A ö 246 c3 b6 ö Ж 1046 d0 96 Ж € 8364 e2 82 ac € 𝄞 119070 f0 9d 84 9e 𝄞
Lua
-- Accept an integer representing a codepoint.
-- Return the values of the individual octets.
function encode (codepoint)
local codepoint_str = utf8.char(codepoint)
local result = {}
for i = 1, #codepoint_str do
result[#result + 1] = string.unpack("B", codepoint_str, i)
end
return table.unpack(result)
end
-- Accept a variable number of octets.
-- Return the corresponding Unicode character.
function decode (...)
local len = select("#", ...) -- the number of octets
local fmt = string.rep("B", len)
return string.pack(fmt, ...)
end
-- Run the given test cases.
function test_encode_decode ()
-- "A", "ö", "Ж", "€", "𝄞"
local tests = {tonumber("41", 16), tonumber("f6", 16), tonumber("416", 16),
tonumber("20ac", 16), tonumber("1d11e", 16)}
for i, test in ipairs(tests) do
print("Char: ", test)
print("Encoding: ", encode(test))
print("Decoding: ", decode(encode(test)))
end
end
- Output:
Char: 65 Encoding: 65 Decoding: A Char: 246 Encoding: 195 182 Decoding: ö Char: 1046 Encoding: 208 150 Decoding: Ж Char: 8364 Encoding: 226 130 172 Decoding: € Char: 119070 Encoding: 240 157 132 158 Decoding: 𝄞
M2000 Interpreter
Module EncodeDecodeUTF8 {
a$=string$("Hello" as UTF8enc)
Print Len(A$)=2.5 ' 2.5 words=5 bytes
b$=string$(a$ as UTF8dec)
Print b$
Print Len(b$)=5 ' 5 words = 10 bytes
Print Len(string$("A" as UTF8enc))=.5 ' 1 byte
Print Len(string$("ö" as UTF8enc))=1 ' 2 bytes
Print Len(string$("Ж" as UTF8enc))=1 ' 2 bytes
Print Len(string$("€" as UTF8enc))=1.5 ' 3 bytes
Print Len(string$("𝄞" as UTF8enc))=2 '4 bytes
a$=string$("𝄞" as UTF8enc)
Buffer Bytes as Byte*4
Return Bytes, 0:=a$
\\ F0 9D 84 9E
Hex Eval(bytes, 0), Eval(bytes, 1), Eval(bytes, 2), Eval(bytes, 3)
}
EncodeDecodeUTF8
- Output:
True Hello True True True True True True 0x00F0 0x009D 0x0084 0x009E
Mathematica /Wolfram Language
utf = ToCharacterCode[ToString["AöЖ€", CharacterEncoding -> "UTF8"]]
ToCharacterCode[FromCharacterCode[utf, "UTF8"]]
- Output:
{65, 195, 182, 208, 150, 226, 130, 172} {65, 246, 1046, 8364}
Nim
Using the standard library
Nim strings are encoded in UTF-8. The natural way to deal with UTF-8 and Unicode code points consists to use the module “unicode” which provides procedures to convert from strings to sequences of code points (names “runes”) and conversely. For this purpose, using sequences or bytes is not natural. Here is a way to proceed using the module “unicode”.
import unicode, sequtils, strformat, strutils
const UChars = ["\u0041", "\u00F6", "\u0416", "\u20AC", "\u{1D11E}"]
proc toSeqByte(r: Rune): seq[byte] =
let s = r.toUTF8
result = @(s.toOpenArrayByte(0, s.high))
proc toRune(s: seq[byte]): Rune =
s.mapIt(chr(it)).join().toRunes[0]
echo "Character Unicode UTF-8 encoding (hex)"
for uchar in UChars:
# Convert the UTF-8 string to a rune (codepoint).
var r = uchar.toRunes[0]
# Convert the rune to a sequence of bytes.
let s = r.toSeqByte
# Convert back the sequence of bytes to a rune.
r = s.toRune
# Display.
echo &"""{uchar:>5} U+{r.int.toHex(5)} {s.map(toHex).join(" ")}"""
- Output:
Character Unicode UTF-8 encoding (hex) A U+00041 41 ö U+000F6 C3 B6 Ж U+00416 D0 96 € U+020AC E2 82 AC 𝄞 U+1D11E F0 9D 84 9E
Implementation
In this section, we provide two procedures to convert a Unicode code point to a UTF-8 sequence of bytes and conversely, without using the module “unicode”. We provide also a procedure to convert a sequence of bytes to a string in order to print it. The algorithm is the one used by the Go solution.
import sequtils, strformat, strutils
const
# First byte of a 2-byte encoding starts 110 and carries 5 bits of data.
B2Lead = 0xC0 # 1100 0000
B2Mask = 0x1F # 0001 1111
# First byte of a 3-byte encoding starts 1110 and carries 4 bits of data.
B3Lead = 0xE0 # 1110 0000
B3Mask = 0x0F # 0000 1111
# First byte of a 4-byte encoding starts 11110 and carries 3 bits of data.
B4Lead = 0xF0 # 1111 0000
B4Mask = 0x07 # 0000 0111
# Non-first bytes start 10 and carry 6 bits of data.
MbLead = 0x80 # 1000 0000
MbMask = 0x3F # 0011 1111
type CodePoint = distinct int32
proc toUtf8(c: CodePoint): seq[byte] =
let i = int32(c)
result = if i <= 1 shl 7 - 1:
@[byte(i)]
elif i <= 1 shl 11 - 1:
@[B2Lead or byte(i shr 6),
MbLead or byte(i) and MbMask]
elif i <= 1 shl 16 - 1:
@[B3Lead or byte(i shr 12),
MbLead or byte(i shr 6) and MbMask,
MbLead or byte(i) and MbMask]
else:
@[B4Lead or byte(i shr 18),
MbLead or byte(i shr 12) and MbMask,
MbLead or byte(i shr 6) and MbMask,
MbLead or byte(i) and MbMask]
proc toCodePoint(b: seq[byte]): CodePoint =
let b0 = b[0].int32
result = CodePoint(
if b0 < 0x80: b0
elif b0 < 0xE0: (b0 and B2Mask) shl 6 or b[1].int32 and MbMask
elif b0 < 0xF0: (b0 and B3Mask) shl 12 or
(b[1].int32 and MbMask) shl 6 or b[2].int32 and MbMask
else: (b0 and B4Mask) shl 18 or (b[1].int32 and MbMask) shl 12 or
(b[2].int32 and MbMask) shl 6 or b[3].int32 and MbMask)
proc toString(s: seq[byte]): string =
s.mapIt(chr(it)).join()
const UChars = [CodePoint(0x00041),
CodePoint(0x000F6),
CodePoint(0x00416),
CodePoint(0x020AC),
CodePoint(0x1D11E)]
echo "Character Unicode UTF-8 encoding (hex)"
for uchar in UChars:
# Convert the code point to a sequence of bytes.
let s = uchar.toUtf8
# Convert back the sequence of bytes to a code point.
let c = s.toCodePoint
# Display.
echo &"""{s.toString:>5} U+{c.int.toHex(5)} {s.map(toHex).join(" ")}"""
- Output:
Same output as in the previous solution.
Perl
#!/usr/bin/perl
use strict;
use warnings;
use Unicode::UCD 'charinfo'; # getting the unicode name of the character
use utf8; # using non-ascii-characters in source code
binmode STDOUT, ":encoding(UTF-8)"; # printing non-ascii-characters to screen
my @chars = map {ord} qw/A ö Ж € 𝄞/; # @chars contains the unicode points
my $print_format = '%5s %-35s';
printf "$print_format %8s %s\n" , 'char', 'name', 'unicode', 'utf-8 encoding';
map{
my $name = charinfo($_)->{'name'}; # get unicode name
printf "$print_format %06x " , chr, lc $name, $_;
my $utf8 = chr; # single char (using implicit $_)
utf8::encode($utf8); # inplace encoding into utf8 parts
map{ # for each utf8 char print ord
printf " %x", ord;
} split //, $utf8;
print "\n";
} @chars;
- Output:
char name unicode utf-8 encoding A latin capital letter a 000041 41 ö latin small letter o with diaeresis 0000f6 c3 b6 Ж cyrillic capital letter zhe 000416 d0 96 € euro sign 0020ac e2 82 ac 𝄞 musical symbol g clef 01d11e f0 9d 84 9e
Phix
Standard autoinclude, see the manual and/or builtins/utfconv.e
( http://phix.x10.mx/docs/html/utfconv.htm and/or https://github.com/petelomax/Phix/blob/master/builtins/utfconv.e )
As requested in the task description:
constant tests = {#0041, #00F6, #0416, #20AC, #1D11E} function hex(sequence s, string fmt) -- output helper return join(apply(true,sprintf,{{fmt},s}),',') end function for i=1 to length(tests) do integer codepoint = tests[i] sequence s = utf32_to_utf8({codepoint}), r = utf8_to_utf32(s) printf(1,"#%04x -> {%s} -> {%s}\n",{codepoint, hex(s,"#%02x"),hex(r,"#%04x")}) end for
- Output:
#0041 -> {#41} -> {#0041} #00F6 -> {#C3,#B6} -> {#00F6} #0416 -> {#D0,#96} -> {#0416} #20AC -> {#E2,#82,#AC} -> {#20AC} #1D11E -> {#F0,#9D,#84,#9E} -> {#1D11E}
Processing
import java.nio.charset.StandardCharsets;
Integer[] code_points = {0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E};
void setup() {
size(850, 230);
background(255);
fill(0);
textSize(16);
int tel_1 = 80;
int tel_2 = 50;
text("Char Name Unicode UTF-8 (encoding) Decoded", 40, 40);
for (int cp : code_points) {
byte[] encoded = new String(new int[]{cp}, 0, 1).getBytes(StandardCharsets.UTF_8);
for (byte b : encoded) {
text(hex(b), tel_2+530, tel_1);
tel_2 += 30;
}
text(char(cp), 50, tel_1);
text(Character.getName(cp), 100, tel_1);
String unicode = hex(cp);
while (unicode.length() > 4 && unicode.indexOf("0") == 0) unicode = unicode.substring(1);
text("U+"+unicode, 450, tel_1);
Character decoded = char(new String(encoded, StandardCharsets.UTF_8).codePointAt(0));
text(decoded, 750, tel_1);
tel_1 += 30; tel_2 = 50;
}
}
PureBasic
The encoding and decoding procedure are kept simple and designed to work with an array of 5 elements for input/output of the UTF-8 encoding for a single code point at a time. It was decided not to use a more elaborate example that would have been able to operate on a buffer to encode/decode more than one code point at a time.
#UTF8_codePointMaxByteCount = 4 ;UTF-8 encoding uses only a maximum of 4 bytes to encode a codepoint
Procedure UTF8_encode(x, Array encoded_codepoint.a(1)) ;x is codepoint to encode, the array will contain output
;Array encoded_codepoint() is used for output.
;After encode element zero holds the count of significant bytes in elements 1 to 4
If ArraySize(encoded_codepoint()) < #UTF8_codePointMaxByteCount
ReDim encoded_codepoint.a(#UTF8_codePointMaxByteCount)
EndIf
Select x
Case 0 To $7F
encoded_codepoint(0) = 1
encoded_codepoint(1) = x ;all 7 bits
Case $80 To $7FF
encoded_codepoint(0) = 2
encoded_codepoint(2) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(1) = (x >> 6) | %11000000 ;highest bits 7 -> 11
Case $800 To $FFFF
encoded_codepoint(0) = 3
encoded_codepoint(3) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(2) = ((x >> 6) & %00111111) | %10000000 ;bits 7 -> 12
encoded_codepoint(1) = (x >> 12) | %11100000 ;highest bits 13 -> 16
Case $10000 To $10FFFF
encoded_codepoint(0) = 4
encoded_codepoint(4) = (x & %00111111) | %10000000 ;lowest 6 bits
encoded_codepoint(3) = ((x >> 6) & %00111111) | %10000000 ;bits 7 -> 12
encoded_codepoint(2) = ((x >> 12) & %00111111) | %10000000 ;bits 13 -> 18
encoded_codepoint(1) = (x >> 18) | %11110000 ;highest bits 19 -> 21
Default
encoded_codepoint(0) = 0 ;error, codepoint is not valid and can't be encoded
EndSelect
EndProcedure
Procedure UTF8_decode(Array encoded_codepoint.a(1))
;Array encoded_codepoint() holds the UTF-8 encoding in elements 1 to 4, element zero isn't used for decoding.
Protected x = -1 ;initialzie with error value for possible improper encoding
If ArraySize(encoded_codepoint()) < #UTF8_codePointMaxByteCount
ProcedureReturn x ;Input array was not dimensioned properly.
EndIf
;Determine the number of bytes in the UTF8 encoding by looking at first byte
;and then proceeding accordingly.
Select encoded_codepoint(1)
Case %00000000 To %01111111 ;1 byte encoding
x = encoded_codepoint(1)
Case %11000000 To %11011111 ;2 byte encoding
x = (encoded_codepoint(1) & %00011111) << 6 ;last 5 bits only
x | (encoded_codepoint(2) & %00111111)
Case %11100000 To %11101111 ;3 byte encoding
x = (encoded_codepoint(1) & %00001111) << 6 ;last 4 bits only
x << 6 + (encoded_codepoint(2) & %00111111)
x << 6 + (encoded_codepoint(3) & %00111111)
Case %11110000 To %11110111 ;4 byte encoding
x = (encoded_codepoint(1) & %00000111) << 6 ;last 3 bits only
x << 6 + (encoded_codepoint(2) & %00111111)
x << 6 + (encoded_codepoint(3) & %00111111)
x << 6 + (encoded_codepoint(4) & %00111111)
EndSelect
ProcedureReturn x
EndProcedure
;helper procedure to format output for this example
Procedure.s formatOutput(c$, c, Array encoded_utf.a(1), dcp) ;character, codepooint, UTf8 encoding, decoded codepoint
Protected o$, i, encoding$
o$ = " " + LSet(c$, 8) + LSet("U+" + RSet(Hex(c), 5, "0"), 10)
For i = 1 To encoded_utf(0)
encoding$ + RSet(Hex(encoded_utf(i)), 2, "0") + " "
Next
o$ + " " + LSet(encoding$, 11, " ") + " " + RSet(Hex(dcp), 5, "0")
ProcedureReturn o$
EndProcedure
DataSection
;unicode code points in hex
unicode_codepoints:
Data.i 5, $41, $F6, $416, $20AC, $1D11E
;The names for these codepoints are: latin capital letter a; latin small letter o With diaeresis
;cyrillic capital letter zhe; euro sign; musical symbol g clef.
EndDataSection
;read initial unicode codepoint values
Restore unicode_codepoints
Read num_codepoints
num_codepoints - 1
Dim codepoint(num_codepoints)
For i = 0 To num_codepoints
Read codepoint(i)
Next
;This array is used for input and output from the UTF8 encode and decode procedures. After encoding its elements
;hold the byte count of the encoding followed by the respective bytes. For decoding element zero is not used and
;elements 1 To 4 holds the bytes to be decoded.
Dim encoded_codepoint.a(#UTF8_codePointMaxByteCount)
If OpenConsole("", #PB_UTF8)
PrintN(LSet("", 11) + LSet("Unicode", 12) + LSet("UTF-8",14) + LSet("Decoded",12))
PrintN(LSet("Character", 11) + LSet("Code Point", 12) + LSet("Encoding",14) + LSet("Code Point",12))
PrintN(LSet("---------", 11) + LSet("----------", 12) + LSet("-----------",14) + LSet("-----------",12))
For i = 0 To num_codepoints
UTF8_encode(codepoint(i), encoded_codepoint())
dcp = UTF8_decode(encoded_codepoint()) ;Decoded UTF-8 encoding should match original codepoint that was encoded.
PrintN(formatOutput(Chr(codepoint(i)), codepoint(i), encoded_codepoint(), dcp))
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf
Sample output:
Unicode UTF-8 Decoded Character Code Point Encoding Code Point --------- ---------- ----------- ----------- A U+00041 41 00041 ö U+000F6 C3 B6 000F6 ? U+00416 D0 96 00416 ? U+020AC E2 82 AC 800AC ? U+1D11E F0 9D 84 9E 1D11E
Python
#!/usr/bin/env python3
from unicodedata import name
def unicode_code(ch):
return 'U+{:04x}'.format(ord(ch))
def utf8hex(ch):
return " ".join([hex(c)[2:] for c in ch.encode('utf8')]).upper()
if __name__ == "__main__":
print('{:<11} {:<36} {:<15} {:<15}'.format('Character', 'Name', 'Unicode', 'UTF-8 encoding (hex)'))
chars = ['A', 'ö', 'Ж', '€', '𝄞']
for char in chars:
print('{:<11} {:<36} {:<15} {:<15}'.format(char, name(char), unicode_code(char), utf8hex(char)))
- Output:
Character Name Unicode UTF-8 encoding (hex) A LATIN CAPITAL LETTER A U+0041 41 ö LATIN SMALL LETTER O WITH DIAERESIS U+00f6 C3 B6 Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96 € EURO SIGN U+20ac E2 82 AC 𝄞 MUSICAL SYMBOL G CLEF U+1d11e F0 9D 84 9E
Racket
#lang racket
(define char-map
'((LATIN-CAPITAL-LETTER-A . #\U0041)
(LATIN-SMALL-LETTER-O-WITH-DIAERESIS . #\U00F6)
(CYRILLIC-CAPITAL-LETTER-ZHE . #\U0416)
(EURO-SIGN . #\U20AC)
(MUSICAL-SYMBOL-G-CLEF . #\U1D11E)))
(for ((name.char (in-list char-map)))
(define name (car name.char))
(define chr (cdr name.char))
(let ((bites (bytes->list (string->bytes/utf-8 (list->string (list chr))))))
(printf "~s\t~a\t~a\t~a\t~a~%" chr chr
(map (curryr number->string 16) bites)
(bytes->string/utf-8 (list->bytes bites))
name)))
- Output:
#\A A (41) A LATIN-CAPITAL-LETTER-A #\ö ö (c3 b6) ö LATIN-SMALL-LETTER-O-WITH-DIAERESIS #\Ж Ж (d0 96) Ж CYRILLIC-CAPITAL-LETTER-ZHE #\€ € (e2 82 ac) € EURO-SIGN #\𝄞 𝄞 (f0 9d 84 9e) 𝄞 MUSICAL-SYMBOL-G-CLEF
Raku
(formerly Perl 6)
Pretty much all built in to the language.
say sprintf("%-18s %-36s|%8s| %7s |%14s | %s\n", 'Character|', 'Name', 'Ordinal', 'Unicode', 'UTF-8 encoded', 'decoded'), '-' x 100;
for < A ö Ж € 𝄞 😜 👨👩👧👦> -> $char {
printf " %-5s | %-43s | %6s | %-7s | %12s |%4s\n", $char, $char.uninames.join(','), $char.ords.join(' '),
('U+' X~ $char.ords».base(16)).join(' '), $char.encode('UTF8').list».base(16).Str, $char.encode('UTF8').decode;
}
- Output:
Character| Name | Ordinal| Unicode | UTF-8 encoded | decoded ---------------------------------------------------------------------------------------------------- A | LATIN CAPITAL LETTER A | 65 | U+41 | 41 | A ö | LATIN SMALL LETTER O WITH DIAERESIS | 246 | U+F6 | C3 B6 | ö Ж | CYRILLIC CAPITAL LETTER ZHE | 1046 | U+416 | D0 96 | Ж € | EURO SIGN | 8364 | U+20AC | E2 82 AC | € 𝄞 | MUSICAL SYMBOL G CLEF | 119070 | U+1D11E | F0 9D 84 9E | 𝄞 😜 | FACE WITH STUCK-OUT TONGUE AND WINKING EYE | 128540 | U+1F61C | F0 9F 98 9C | 😜 👨👩👧👦 | MAN,ZERO WIDTH JOINER,WOMAN,ZERO WIDTH JOINER,GIRL,ZERO WIDTH JOINER,BOY | 128104 8205 128105 8205 128103 8205 128102 | U+1F468 U+200D U+1F469 U+200D U+1F467 U+200D U+1F466 | F0 9F 91 A8 E2 80 8D F0 9F 91 A9 E2 80 8D F0 9F 91 A7 E2 80 8D F0 9F 91 A6 | 👨👩👧👦
Ruby
character_arr = ["A","ö","Ж","€","𝄞"]
for c in character_arr do
puts "Character: " + c.encode("utf-8")
puts "Code-Point: #{c.encode("utf-8").ord.to_s(16).upcase}"
puts "Code-Units: " + c.each_byte.map { |n| '%02X ' % (n & 0xFF) }.join
puts ""
end
- Output:
Character: A Code-Point: 41 Code-Units: 41 Character: ö Code-Point: F6 Code-Units: C3 B6 Character: Ж Code-Point: 416 Code-Units: D0 96 Character: € Code-Point: 20AC Code-Units: E2 82 AC Character: 𝄞 Code-Point: 1D11E Code-Units: F0 9D 84 9E
Rust
fn main() {
let chars = vec!('A', 'ö', 'Ж', '€', '𝄞');
chars.iter().for_each(|c| {
let mut encoded = vec![0; c.len_utf8()];
c.encode_utf8(&mut encoded);
let decoded = String::from_utf8(encoded.to_vec()).unwrap();
let encoded_string = encoded.iter().fold(String::new(), |acc, val| format!("{}{:X}", acc, val));
println!("Character: {}, Unicode:{}, UTF-8 encoded:{}, Decoded: {}", c, c.escape_unicode(), encoded_string , decoded);
});
}
- Output:
Character: A, Unicode:\u{41}, UTF-8 encoded:41, Decoded: A Character: ö, Unicode:\u{f6}, UTF-8 encoded:C3B6, Decoded: ö Character: Ж, Unicode:\u{416}, UTF-8 encoded:D096, Decoded: Ж Character: €, Unicode:\u{20ac}, UTF-8 encoded:E282AC, Decoded: € Character: 𝄞, Unicode:\u{1d11e}, UTF-8 encoded:F09D849E, Decoded: 𝄞
Scala
Imperative solution
object UTF8EncodeAndDecode extends App {
val codePoints = Seq(0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E)
def utf8Encode(codepoint: Int): Array[Byte] =
new String(Array[Int](codepoint), 0, 1).getBytes(StandardCharsets.UTF_8)
def utf8Decode(bytes: Array[Byte]): Int =
new String(bytes, StandardCharsets.UTF_8).codePointAt(0)
println("Char Name Unicode UTF-8 Decoded")
for (codePoint <- codePoints) {
val w = if (Character.isBmpCodePoint(codePoint)) 4 else 5 // Compute spacing
val bytes = utf8Encode(codePoint)
def leftAlignedHex = f"U+${codePoint}%04X"
val s = new StringBuilder()
bytes.foreach(byte => s ++= "%02X ".format(byte))
printf(s"%-${w}c %-36s %-7s %-${16 - w}s%c%n",
codePoint, Character.getName(codePoint), leftAlignedHex, s, utf8Decode(bytes))
}
Functional solution
import java.nio.charset.StandardCharsets
object UTF8EncodeAndDecode extends App {
val codePoints = Seq(0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E)
def utf8Encode(codepoint: Int): Array[Byte] =
new String(Array[Int](codepoint), 0, 1).getBytes(StandardCharsets.UTF_8)
def utf8Decode(bytes: Array[Byte]): Int =
new String(bytes, StandardCharsets.UTF_8).codePointAt(0)
println("Char Name Unicode UTF-8 Decoded")
codePoints.foreach{ codePoint =>
val w = if (Character.isBmpCodePoint(codePoint)) 4 else 5 // Compute spacing
val bytes = utf8Encode(codePoint)
def leftAlignedHex: String = f"U+${codePoint}%04X"
def utf: String = bytes.foldLeft("")(_ + "%02X ".format(_))
printf(s"%-${w}c %-36s %-7s %-${16 - w}s%c%n",
codePoint, Character.getName(codePoint), leftAlignedHex, utf, utf8Decode(bytes)) }
println(s"\nSuccessfully completed without errors. [total ${scala.compat.Platform.currentTime - executionStart} ms]")
}
Composable and testable solution
package example
object UTF8EncodeAndDecode extends TheMeat with App {
val codePoints = Seq(0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E)
println("Char Name Unicode UTF-8 Decoded")
codePoints.foreach { codepoint => print(composeString(codepoint)) }
println(s"\nSuccessfully completed without errors. [total ${scala.compat.Platform.currentTime - executionStart} ms]")
}
trait TheMeat {
import java.nio.charset.StandardCharsets
def composeString(codePoint: Int): String = {
val w = if (Character.isBmpCodePoint(codePoint)) 4 else 5 // Compute spacing
val bytes = utf8Encode(codePoint)
def leftAlignedHex: String = f"U+${codePoint}%04X"
def utf: String = bytes.foldLeft("")(_ + "%02X ".format(_))
s"%-${w}c %-36s %-7s %-${16 - w}s%c%n"
.format(codePoint, Character.getName(codePoint), leftAlignedHex, utf, utf8Decode(bytes))
}
def utf8Encode(codepoint: Int): Array[Byte] =
new String(Array[Int](codepoint), 0, 1).getBytes(StandardCharsets.UTF_8)
def utf8Decode(bytes: Array[Byte]): Int =
new String(bytes, StandardCharsets.UTF_8).codePointAt(0)
}
Seed7
$ include "seed7_05.s7i";
include "unicode.s7i";
include "console.s7i";
include "bytedata.s7i";
const proc: main is func
local
var char: ch is ' ';
var string: utf8 is "";
begin
OUT := STD_CONSOLE;
writeln("Character Unicode UTF-8 encoding (hex) Decoded");
writeln("-------------------------------------------------");
for ch range "AöЖ€𝄞" do
utf8 := toUtf8(str(ch));
writeln(ch rpad 11 <& "U+" <& ord(ch) radix 16 lpad0 4 rpad 7 <&
hex(utf8) rpad 22 <& fromUtf8(utf8));
end for;
end func;
- Output:
Character Unicode UTF-8 encoding (hex) Decoded ------------------------------------------------- A U+0041 41 A ö U+00f6 c3b6 ö Ж U+0416 d096 Ж € U+20ac e282ac € 𝄞 U+1d11e f09d849e 𝄞
Sidef
func utf8_encoder(Number code) {
code.chr.encode('UTF-8').bytes.map{.chr}
}
func utf8_decoder(Array bytes) {
bytes.map{.ord}.decode('UTF-8')
}
for n in ([0x0041, 0x00F6, 0x0416, 0x20AC, 0x1D11E]) {
var encoded = utf8_encoder(n)
var decoded = utf8_decoder(encoded)
assert_eq(n, decoded.ord)
say "#{decoded} -> #{encoded}"
}
- Output:
A -> ["A"] ö -> ["\xC3", "\xB6"] Ж -> ["\xD0", "\x96"] € -> ["\xE2", "\x82", "\xAC"] 𝄞 -> ["\xF0", "\x9D", "\x84", "\x9E"]
Swift
In Swift there's a difference between UnicodeScalar, which is a single unicode code point, and Character which may consist out of multiple UnicodeScalars, usually because of combining characters.
import Foundation
func encode(_ scalar: UnicodeScalar) -> Data {
return Data(String(scalar).utf8)
}
func decode(_ data: Data) -> UnicodeScalar? {
guard let string = String(data: data, encoding: .utf8) else {
assertionFailure("Failed to convert data to a valid String")
return nil
}
assert(string.unicodeScalars.count == 1, "Data should contain one scalar!")
return string.unicodeScalars.first
}
for scalar in "AöЖ€𝄞".unicodeScalars {
let bytes = encode(scalar)
let formattedBytes = bytes.map({ String($0, radix: 16)}).joined(separator: " ")
let decoded = decode(bytes)!
print("character: \(decoded), code point: U+\(String(scalar.value, radix: 16)), \tutf-8: \(formattedBytes)")
}
- Output:
character: A, code point: U+41, utf-8: 41 character: ö, code point: U+f6, utf-8: c3 b6 character: Ж, code point: U+416, utf-8: d0 96 character: €, code point: U+20ac, utf-8: e2 82 ac character: 𝄞, code point: U+1d11e, utf-8: f0 9d 84 9e
Tcl
Note: Tcl can handle Unicodes only up to U+FFFD, i.e. the Basic Multilingual Plane (BMP, 16 bits wide). Therefore, the fifth test fails as expected.
proc encoder int {
set u [format %c $int]
set bytes {}
foreach byte [split [encoding convertto utf-8 $u] ""] {
lappend bytes [format %02X [scan $byte %c]]
}
return $bytes
}
proc decoder bytes {
set str {}
foreach byte $bytes {
append str [format %c [scan $byte %x]]
}
return [encoding convertfrom utf-8 $str]
}
foreach test {0x0041 0x00f6 0x0416 0x20ac 0x1d11e} {
set res $test
lappend res [encoder $test] -> [decoder [encoder $test]]
puts $res
}
0x0041 41 -> A 0x00f6 {C3 B6} -> ö 0x0416 {D0 96} -> Ж 0x20ac {E2 82 AC} -> € 0x1d11e {EF BF BD} -> �
Alternative Implementation
While perhaps not as readable as the above, this version handles beyond-BMP codepoints by manually composing the utf-8 byte sequences and emitting raw bytes to the console. encoding convertto utf-8 command still does the heavy lifting where it can.
proc utf8 {codepoint} {
scan $codepoint %llx cp
if {$cp < 0x10000} {
set str [subst \\u$codepoint] ;# substitute per Tcl backslash rule
set bytes [encoding convertto utf-8 $str] ;# encode
} else { ;# codepoints beyond the BMP need manual approach
set bits [format %021b $cp] ;# format as binary string
set unibits 11110[string range $bits 0 2];# insert extra bits for utf-8 4-byte encoding
append unibits 10[string range $bits 3 8]
append unibits 10[string range $bits 9 14]
append unibits 10[string range $bits 15 20]
set bytes [binary format B* $unibits] ;# turn into a sequence of bytes
}
return $bytes
}
proc hexchars {s} {
binary scan $s H* hex
regsub -all .. $hex {\0 }
}
# for the test, we assume the tty is in utf-8 mode and can handle beyond-BMP chars
# so set output mode to binary so we can write raw bytes!
chan configure stdout -encoding binary
foreach codepoint { 41 F6 416 20AC 1D11E } {
set utf8 [utf8 $codepoint]
puts "[format U+%04s $codepoint]\t$utf8\t[hexchars $utf8]"
}
- Output:
U+0041 A 41U+00F6 ö c3 b6 U+0416 Ж d0 96 U+20AC € e2 82 ac U+1D11E 𝄞 f0 9d 84 9e
UNIX Shell
Works with locale set to UTF-8.
function encode {
typeset -i code_point=$1
printf "$(printf '\\U%08X\\n' "$code_point")"
}
function decode {
typeset character=$1
printf 'U+%04X\n' "'$character"
set +x
}
printf 'Char\tCode Point\tUTF-8 Bytes\n'
for test in A ö Ж € 𝄞; do
code_point=$(decode "$test")
utf8=$(encode "$(( 16#${code_point#U+} ))")
bytes=$(printf '%b' "$utf8" | od -An -tx1 | sed -nE '/./s/^ *| *$//p')
printf '%-4b\t%-10s\t%s\n' "$utf8" "$code_point" "$bytes"
done
- Output:
Char Code Point UTF-8 Bytes A U+0041 41 ö U+00F6 c3 b6 Ж U+0416 d0 96 € U+20AC e2 82 ac 𝄞 U+1D11E f0 9d 84 9e
VBA
Private Function unicode_2_utf8(x As Long) As Byte()
Dim y() As Byte
Dim r As Long
Select Case x
Case 0 To &H7F
ReDim y(0)
y(0) = x
Case &H80 To &H7FF
ReDim y(1)
y(0) = 192 + x \ 64
y(1) = 128 + x Mod 64
Case &H800 To &H7FFF
ReDim y(2)
y(2) = 128 + x Mod 64
r = x \ 64
y(1) = 128 + r Mod 64
y(0) = 224 + r \ 64
Case 32768 To 65535 '&H8000 To &HFFFF equals in VBA as -32768 to -1
ReDim y(2)
y(2) = 128 + x Mod 64
r = x \ 64
y(1) = 128 + r Mod 64
y(0) = 224 + r \ 64
Case &H10000 To &H10FFFF
ReDim y(3)
y(3) = 128 + x Mod 64
r = x \ 64
y(2) = 128 + r Mod 64
r = r \ 64
y(1) = 128 + r Mod 64
y(0) = 240 + r \ 64
Case Else
MsgBox "what else?" & x & " " & Hex(x)
End Select
unicode_2_utf8 = y
End Function
Private Function utf8_2_unicode(x() As Byte) As Long
Dim first As Long, second As Long, third As Long, fourth As Long
Dim total As Long
Select Case UBound(x) - LBound(x)
Case 0 'one byte
If x(0) < 128 Then
total = x(0)
Else
MsgBox "highest bit set error"
End If
Case 1 'two bytes and assume first byte is leading byte
If x(0) \ 32 = 6 Then
first = x(0) Mod 32
If x(1) \ 64 = 2 Then
second = x(1) Mod 64
Else
MsgBox "mask error"
End If
Else
MsgBox "leading byte error"
End If
total = 64 * first + second
Case 2 'three bytes and assume first byte is leading byte
If x(0) \ 16 = 14 Then
first = x(0) Mod 16
If x(1) \ 64 = 2 Then
second = x(1) Mod 64
If x(2) \ 64 = 2 Then
third = x(2) Mod 64
Else
MsgBox "mask error last byte"
End If
Else
MsgBox "mask error middle byte"
End If
Else
MsgBox "leading byte error"
End If
total = 4096 * first + 64 * second + third
Case 3 'four bytes and assume first byte is leading byte
If x(0) \ 8 = 30 Then
first = x(0) Mod 8
If x(1) \ 64 = 2 Then
second = x(1) Mod 64
If x(2) \ 64 = 2 Then
third = x(2) Mod 64
If x(3) \ 64 = 2 Then
fourth = x(3) Mod 64
Else
MsgBox "mask error last byte"
End If
Else
MsgBox "mask error third byte"
End If
Else
MsgBox "mask error second byte"
End If
Else
MsgBox "mask error leading byte"
End If
total = CLng(262144 * first + 4096 * second + 64 * third + fourth)
Case Else
MsgBox "more bytes than expected"
End Select
utf8_2_unicode = total
End Function
Public Sub program()
Dim cp As Variant
Dim r() As Byte, s As String
cp = [{65, 246, 1046, 8364, 119070}] '[{&H0041,&H00F6,&H0416,&H20AC,&H1D11E}]
Debug.Print "ch unicode UTF-8 encoded decoded"
For Each cpi In cp
r = unicode_2_utf8(CLng(cpi))
On Error Resume Next
s = CStr(Hex(cpi))
Debug.Print ChrW(cpi); String$(10 - Len(s), " "); s,
If Err.Number = 5 Then Debug.Print "?"; String$(10 - Len(s), " "); s,
s = ""
For Each yz In r
s = s & CStr(Hex(yz)) & " "
Next yz
Debug.Print String$(13 - Len(s), " "); s;
s = CStr(Hex(utf8_2_unicode(r)))
Debug.Print String$(8 - Len(s), " "); s
Next cpi
End Sub
- Output:
ch unicode UTF-8 encoded decodedA 41 41 41 ö F6 C3 B6 F6 ? 416 D0 96 416 € 20AC E2 82 AC 20AC ? 1D11E F0 9D 84 9E 1D11E
V (Vlang)
import encoding.hex
fn decode(s string) ?[]u8 {
return hex.decode(s)
}
fn main() {
println("${'Char':-7} ${'Unicode':7}\tUTF-8 encoded\tDecoded")
for codepoint in [`A`, `ö`, `Ж`, `€`, `𝄞`] {
encoded := codepoint.bytes().hex()
decoded := decode(encoded)?
println("${codepoint:-7} U+${codepoint:04X}\t${encoded:-12}\t${decoded.bytestr()}")
}
}
- Output:
Char Unicode UTF-8 encoded Decoded A U+0041 41 A ö U+00F6 c3b6 ö Ж U+0416 d096 Ж € U+20AC e282ac € 𝄞 U+1D11E f09d849e 𝄞
VBScript
Option Explicit
Dim m_1,m_2,m_3,m_4
Dim d_2,d_3,d_4
Dim h_0,h_2,h_3,h_4
Dim mc_0,mc_2,mc_3,mc_4
m_1=&h3F
d_2=m_1+1
m_2=m_1 * d_2
d_3= (m_2 Or m_1)+1
m_3= m_2* d_2
d_4=(m_3 Or m_2 Or m_1)+1
h_0=&h80
h_2=&hC0
h_3=&hE0
h_4=&hF0
mc_0=&h3f
mc_2=&h1F
mc_3=&hF
mc_4=&h7
Function cp2utf8(cp) 'cp as long, returns string
If cp<&h80 Then
cp2utf8=Chr(cp)
ElseIf (cp <=&H7FF) Then
cp2utf8=Chr(h_2 or (cp \ d_2) )&Chr(h_0 Or (cp And m_1))
ElseIf (cp <=&Hffff&) Then
cp2utf8= Chr(h_3 Or (cp\ d_3)) & Chr(h_0 Or (cp And m_2)\d_2) & Chr(h_0 Or (cp And m_1))
Else
cp2utf8= Chr(h_4 Or (cp\d_4))& Chr(h_0 Or ((cp And m_3) \d_3))& Chr(h_0 Or ((cp And m_2)\d_2)) & Chr(h_0 Or (cp And m_1))
End if
End Function
Function utf82cp(utf) 'utf as string, returns long
Dim a,b,m
m=strreverse(utf)
b= Len(utf)
a=asc(mid(m,1,1))
utf82cp=a And &h7f
if b=1 Then Exit Function
a=asc(mid(m,2,1))
If b=2 Then utf82cp= utf82cp Or (a And mc_2)*d_2 :Exit function
utf82cp= utf82cp Or (a And m_1)*d_2
a=asc(mid(m,3,1))
If b=3 Then utf82cp= utf82cp Or (a And mc_3)*d_3 :Exit function
utf82cp= utf82cp Or (a And m_1)*d_3 Or (a=asc(mid(m,4,1)) And mc_4)*d_4
End Function
Sub print(s):
On Error Resume Next
WScript.stdout.Write (s)
If err= &h80070006& Then WScript.Echo " Please run this script with CScript": WScript.quit
End Sub
Function utf8displ(utf)
Dim s,i
s=""
For i=1 To Len(utf)
s=s &" "& Hex(Asc(Mid(utf,i,1)))
Next
utf8displ= pad(s,12)
End function
function pad(s,n) if n<0 then pad= right(space(-n) & s ,-n) else pad= left(s& space(n),n) end if :end function
Sub check(i)
Dim c,c0,c1,c2,u
c=b(i):c0=pad(c(0),29) :c1=c(1) :c2=pad(c(2),12):u=cp2utf8(c1)
print c0 & " CP:" & pad("U+" & Hex(c1),-8) & " my utf8:" & utf8displ (u) & " should be:" & c2 & " back to CP:" & pad("U+" & Hex(utf82cp(u)),-8)& vbCrLf
End Sub
Dim b
b=Array(_
Array("LATIN CAPITAL LETTER A ",&h41," 41"),_
Array("LATIN SMALL LETTER O WITH DIAERESIS ",&hF6," C3 B6"),_
Array("CYRILLIC CAPITAL LETTER ZHE ",&h416," D0 96"),_
Array("EURO SIGN",&h20AC," E2 82 AC "),_
Array("MUSICAL SYMBOL G CLEF ",&h1D11E," F0 9D 84 9E"))
check 0
check 1
check 2
check 3
check 4
- Output:
LATIN CAPITAL LETTER A CP: U+41 my utf8: 41 should be: 41 back to CP: U+41 LATIN SMALL LETTER O WITH DIA CP: U+F6 my utf8: C3 B6 should be: C3 B6 back to CP: U+F6 CYRILLIC CAPITAL LETTER ZHE CP: U+416 my utf8: D0 96 should be: D0 96 back to CP: U+416 EURO SIGN CP: U+20AC my utf8: E2 82 AC should be: E2 82 AC back to CP: U+20AC MUSICAL SYMBOL G CLEF CP: U+1D11E my utf8: F0 9D 84 9E should be: F0 9D 84 9E back to CP: U+1D11E
Wren
The utf8_decode function was translated from the Go entry.
import "./fmt" for Fmt
var utf8_encode = Fn.new { |cp| String.fromCodePoint(cp).bytes.toList }
var utf8_decode = Fn.new { |b|
var mbMask = 0x3f // non-first bytes start 10 and carry 6 bits of data
var b0 = b[0]
if (b0 < 0x80) {
return b0
} else if (b0 < 0xe0) {
var b2Mask = 0x1f // first byte of a 2-byte encoding starts 110 and carries 5 bits of data
return (b0 & b2Mask) << 6 | (b[1] & mbMask)
} else if (b0 < 0xf0) {
var b3Mask = 0x0f // first byte of a 3-byte encoding starts 1110 and carries 4 bits of data
return (b0 & b3Mask) << 12 | (b[1] & mbMask) << 6 | (b[2] & mbMask)
} else {
var b4Mask = 0x07 // first byte of a 4-byte encoding starts 11110 and carries 3 bits of data
return (b0 & b4Mask) << 18 | (b[1] & mbMask) << 12 | (b[2] & mbMask) << 6 | (b[3] & mbMask)
}
}
var tests = [
["LATIN CAPITAL LETTER A", 0x41],
["LATIN SMALL LETTER O WITH DIAERESIS", 0xf6],
["CYRILLIC CAPITAL LETTER ZHE", 0x416],
["EURO SIGN", 0x20ac],
["MUSICAL SYMBOL G CLEF", 0x1d11e]
]
System.print("Character Name Unicode UTF-8 encoding (hex)")
System.print("---------------------------------------------------------------------------------")
for (test in tests) {
var cp = test[1]
var bytes = utf8_encode.call(cp)
var utf8 = bytes.map { |b| Fmt.Xz(2, b) }.join(" ")
var cp2 = utf8_decode.call(bytes)
var uni = String.fromCodePoint(cp2)
System.print("%(Fmt.s(-11, uni)) %(Fmt.s(-37, test[0])) U+%(Fmt.s(-8, Fmt.Xz(4, cp2))) %(utf8)")
}
- Output:
Character Name Unicode UTF-8 encoding (hex) --------------------------------------------------------------------------------- A LATIN CAPITAL LETTER A U+0041 41 ö LATIN SMALL LETTER O WITH DIAERESIS U+00F6 C3 B6 Ж CYRILLIC CAPITAL LETTER ZHE U+0416 D0 96 € EURO SIGN U+20AC E2 82 AC 𝄞 MUSICAL SYMBOL G CLEF U+1D11E F0 9D 84 9E
zkl
println("Char Unicode UTF-8");
foreach utf,unicode_int in (T( T("\U41;",0x41), T("\Uf6;",0xf6),
T("\U416;",0x416), T("\U20AC;",0x20ac), T("\U1D11E;",0x1d11e))){
utf_int:=utf.reduce(fcn(s,c){ 0x100*s + c.toAsc() },0);
char :=unicode_int.toString(-8); // Unicode int to UTF-8 string
// UTF-8 bytes to UTF-8 string:
char2:=Data(Void,utf_int.toBigEndian(utf_int.len())).text;
println("%s %s %9s %x".fmt(char,char2,"U+%x".fmt(unicode_int),utf_int));
}
Int.len() --> number of bytes in int. This could be hard coded because UTF-8 has a max of 6 bytes and (0x41).toBigEndian(6) --> 0x41,0,0,0,0,0 which is a zero terminated string ("A");
- Output:
Char Unicode UTF-8 A A U+41 41 ö ö U+f6 c3b6 Ж Ж U+416 d096 € € U+20ac e282ac 𝄞 𝄞 U+1d11e f09d849e
- Programming Tasks
- Solutions by Programming Task
- 11l
- 8th
- Action!
- Ada
- ATS
- AutoHotkey
- BaCon
- C
- C sharp
- C++
- Common Lisp
- D
- DuckDB
- Elena
- FreeBASIC
- F Sharp
- Forth
- Go
- Groovy
- Haskell
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Langur
- Lingo
- Lua
- M2000 Interpreter
- Mathematica
- Wolfram Language
- Nim
- Perl
- Phix
- Phix/basics
- Processing
- PureBasic
- Python
- Racket
- Raku
- Ruby
- Rust
- Scala
- Seed7
- Sidef
- Swift
- Tcl
- UNIX Shell
- VBA
- V (Vlang)
- VBScript
- Wren
- Zkl