Search a list of records
You are encouraged to solve this task according to the task description, using any language you may know.
Many programming languages provide convenient ways to look for a known value in a simple list of strings or numbers.
But what if the elements of the list are themselves compound records/objects/data-structures, and the search condition is more complex than a simple equality test?
Write a function/method/etc. that can find the first element in a given list matching a given condition.
It should be as generic and reusable as possible.
(Of course if your programming language already provides such a feature, you can use that instead of recreating it.)
Then to demonstrate its functionality, create the data structure specified under #Data set, and perform on it the searches specified under #Test cases.
The data structure to be used contains the names and populations (in millions) of the 10 largest metropolitan areas in Africa, and looks as follows when represented in JSON:
[
{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }
]
However, you shouldn't parse it from JSON, but rather represent it natively in your programming language.
- The top-level data structure should be an ordered collection (i.e. a list, array, vector, or similar).
- Each element in this list should be an associative collection that maps from keys to values (i.e. a struct, object, hash map, dictionary, or similar).
- Each of them has two entries: One string value with key "name", and one numeric value with key "population".
- You may rely on the list being sorted by population count, as long as you explain this to readers.
If any of that is impossible or unreasonable in your programming language, then feel free to deviate, as long as you explain your reasons in a comment above your solution.
Search | Expected result |
---|---|
Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam" | 6 |
Find the name of the first city in this list whose population is less than 5 million | Khartoum-Omdurman |
Find the population of the first city in this list whose name starts with the letter "A" | 4.58 |
If your programming language supports higher-order programming, then the most elegant way to implement the requested functionality in a generic and reusable way, might be to write a function (maybe called "find_index" or similar), that takes two arguments:
- The list to search through.
- A function/lambda/closure (the so-called "predicate"), which will be applied in turn to each element in the list, and whose boolean return value defines whether that element matches the search requirement.
If this is not the approach which would be most natural or idiomatic in your language, explain why, and show what is.
11l
T City
String name
Float population
F (name, population)
.name = name
.population = population
V cities = [
City(‘Lagos’, 21),
City(‘Cairo’, 15.2),
City(‘Kinshasa-Brazzaville’, 11.3),
City(‘Greater Johannesburg’, 7.55),
City(‘Mogadishu’, 5.85),
City(‘Khartoum-Omdurman’, 4.98),
City(‘Dar Es Salaam’, 4.7),
City(‘Alexandria’, 4.58),
City(‘Abidjan’, 4.4),
City(‘Casablanca’, 3.98)
]
F first_index(cities, condition)
L(city) cities
I condition(city)
R L.index
F first(cities, condition)
L(city) cities
I condition(city)
R city
print(first_index(cities, city -> city.name == ‘Dar Es Salaam’))
print(first(cities, city -> city.population < 5.0).name)
print(first(cities, city -> city.name[0] == ‘A’).population)
- Output:
6 Khartoum-Omdurman 4.58
8086 Assembly
Task-Specific Solution
This solution answers the questions as asked, and only those asked - it won't answer an arbitrary question regarding the list. All I/O subroutines that involve printing the results were left unimplemented to keep this entry brief.
.model small
.stack 1024
.data
Africa WORD LAGOS ;"jagged" arrays are the bane of assembly programming, so store the string's pointer here instead.
WORD 2100H ;this is a bit cheaty but it's easier to store these as BCD whole numbers
WORD CAIRO
WORD 1520H
WORD KB
WORD 1130H
WORD GJ
WORD 0755H
WORD MOGADISHU
WORD 0585H
WORD KO
WORD 0498H
WORD DES
WORD 0470H
WORD ALEXANDRIA
WORD 0458H
WORD ABIDJAN
WORD 0440H
WORD CASABLANCA
WORD 0398H
LAGOS BYTE "Lagos",0
CAIRO BYTE "Cairo",0
KB BYTE "Kinshasa-Brazzaville",0
GJ BYTE "Greater Johannesburg",0
MOGADISHU BYTE "Mogadishu",0
KO BYTE "Khartoum-Omdurman",0
DES BYTE "Dar Es Salaam",0
ALEXANDRIA BYTE "Alexandria"
ABIDJAN BYTE "Abidjan",0
CASABLANCA BYTE "Casablanca",0
.code
start:
mov ax,@data
mov ds,ax
mov ax,@code
mov es,ax
cld ;String functions are set to auto-increment
mov ax,2 ;clear screen by reloading the video mode we're in
int 10h
mov si,offset Africa
;test 1: find the index of the city whose name is Dar-Es-Salaam
mov di,offset DES ;it's easier to test the equality of two pointers than of two strings.
mov cx,10 ;ten cities to check
mov bx,0 ;our counter
test_case_1:
lodsw
cmp ax,di ;compare to the pointer of Dar-Es_Salaam
je done_test_case_1
add si,2 ;we know populations aren't going to match so skip them
inc bx ;increment the counter
loop test_case_1
done_test_case_1:
mov al,bl
call Printhex ;print the index of Dar-Es-Salaam
call Newline ;print CRLF
;test 2: print the name of the first city whose population is less than 5 million.
mov si,offset Africa
mov cx,10
test_case_2:
lodsw ;we know that the struct goes city:pop so skip the first word.
lodsw
cmp ax,0500h
jae skip
sub si,4 ;point SI back to the city name
mov si,[ds:si]
call PrintString
call NewLine
jmp done_test_case_2
skip:
loop test_case_2
done_test_case_2:
;test 3: find the population of the first city in this list whose name starts with A
mov si,offset Africa
mov cx,10
test_case_3:
lodsw
push si
mov si,ax
lodsb
cmp al,'A'
pop si
je FoundIt ;popping SI won't affect the compare result.
add si,2 ;skip population
loop test_case_3
ExitDOS:
mov ax,4C00h ;return to dos
int 21h
FoundIt:
lodsw
mov dx,ax
mov al,dh
call Printhex_NoLeadingZeroes
mov al,'.' ;we're faking floating point for simplicity's sake
call PrintChar
mov al,dl
call PrintHex
jmp ExitDos
end start
- Output:
06 Khartoum-Omdurman 4.58
8th
8th uses JSON as its native data representation, so using it is quite natural:
[
{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }
] var, cities-raw
"Index of first occurrence of 'Dar Es Salaam': " .
"Dar Es Salaam" >r cities-raw @
(
"name" m:@ r@ s:= if
drop . cr ;;
then
2drop
) a:each drop rdrop
"The name of the first city in this list whose population is less than 5 million: " .
5 >r cities-raw @
(
nip
"population" m:@ r@ n:< if
"name" m:@ . cr break
then
drop
) a:each drop rdrop
"The population of the first city in this list whose name starts with the letter \"A\": " .
'A >r cities-raw @
(
nip
"name" m:@ 0 s:@ r@ n:= if
drop "population" m:@ . cr break
then
2drop
) a:each drop rdrop
bye
- Output:
Index of first occurrence of 'Dar Es Salaam': 6 The name of the first city in this list whose population is less than 5 million: Khartoum-Omdurman The population of the first city in this list whose name starts with the letter "A": 4.58000
Action!
INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
DEFINE PTR="CARD"
DEFINE ENTRY_SIZE="4"
DEFINE STX="$8E"
DEFINE STA="$8D"
DEFINE JSR="$20"
DEFINE RTS="$60"
TYPE City=[
CARD
name, ;CHAR ARRAY
population] ;REAL POINTER
BYTE ARRAY cities(100)
BYTE count=[0]
CHAR ARRAY nameParam ;param for name predicate
REAL popParam ;param for population predicate
CHAR letterParam ;param for letter predicate
CITY POINTER c ;city used in predicates and actions
BYTE index ;index of city used in index action
PTR FUNC GetItemAddr(BYTE index)
PTR addr
addr=cities+index*ENTRY_SIZE
RETURN (addr)
PROC Append(CHAR ARRAY n REAL POINTER p)
City POINTER dst
dst=GetItemAddr(count)
dst.name=n
dst.population=p
count==+1
RETURN
PROC InitData()
REAL lg,ca,ki,gr,mo,kh,da,al,ab,cs
ValR("21.0",lg) ValR("15.2",ca)
ValR("11.3",ki) ValR("7.53",gr)
ValR("5.85",mo) ValR("4.98",kh)
ValR("4.7",da) ValR("4.58",al)
ValR("4.4",ab) ValR("3.98",cs)
Append("Lagos",lg)
Append("Cairo",ca)
Append("Kinshasa-Brazzaville",ki)
Append("Greater Johannesburg",gr)
Append("Mogadishu",mo)
Append("Khartoum-Omdurman",kh)
Append("Dar Es Salaam",da)
Append("Alexandria",al)
Append("Abidjan",ab)
Append("Casablanca",cs)
RETURN
BYTE FUNC NameEquals()
RETURN (SCompare(c.name,nameParam)+1)
BYTE FUNC PopulationLess()
REAL diff
BYTE ARRAY x
RealSub(popParam,c.population,diff)
x=diff
IF (x(0)&$80)=$00 THEN
RETURN (1)
FI
RETURN (0)
BYTE FUNC FirstLetter()
CHAR ARRAY n
n=c.name
IF n(0)>=1 AND n(1)=letterParam THEN
RETURN (1)
FI
RETURN (0)
;jump addr is stored in X and A registers
BYTE FUNC Predicate=*(PTR jumpAddr)
[STX Predicate+8
STA Predicate+7
JSR $00 $00
RTS]
PROC PrintIndex()
PrintF("index=%I%E",index)
RETURN
PROC PrintName()
PrintF("name=%S%E",c.name)
RETURN
PROC PrintPopulation()
Print("population=")
PrintRE(c.population)
RETURN
;jump addr is stored in X and A registers
PROC Action=*(PTR jumpAddr)
[STX Action+8
STA Action+7
JSR $00 $00
RTS]
PROC Find(PTR predicateFun,actionFun)
FOR index=0 TO count-1
DO
c=GetItemAddr(index)
IF Predicate(predicateFun) THEN
Action(actionFun)
EXIT
FI
OD
RETURN
PROC Main()
Put(125) PutE() ;clear screen
InitData()
nameParam="Dar Es Salaam"
Find(NameEquals,PrintIndex)
ValR("5.0",popParam)
Find(PopulationLess,PrintName)
letterParam='A
Find(FirstLetter,PrintPopulation)
RETURN
- Output:
Screenshot from Atari 8-bit computer
index=6 name=Khartoum-Omdurman population=4.58
Ada
This solution in inspired by how the Ada.Containers
child packages work. Usually a Cursor
contains two accesses: one to the container and one to the element. Since we want to get the index of the element as well, the index was stored instead.
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO;
procedure Search_A_List_Of_Records
is
function "+"(input : in String) return Unbounded_String renames To_Unbounded_String;
function "+"(input : in Unbounded_String) return String renames To_String;
type City is record
name : Unbounded_String;
population : Float;
end record;
type City_Array is array(Positive range <>) of City;
type City_Array_Access is access City_Array;
type Cursor is record
container : City_Array_Access;
index : Natural;
end record;
function Element(C : in Cursor) return City is
begin
if C.container = null or C.index = 0 then
raise Constraint_Error with "No element.";
end if;
return C.container.all(C.index);
end Element;
function Index_0(C : in Cursor) return Natural is
begin
if C.container = null or C.index = 0 then
raise Constraint_Error with "No element.";
end if;
return C.index - C.container.all'First;
end Index_0;
function Find
(container : in City_Array;
check : not null access function(Element : in City) return Boolean)
return Cursor
is
begin
for I in container'Range loop
if check.all(container(I)) then
return (new City_Array'(container), I);
end if;
end loop;
return (null, 0);
end;
function Dar_Es_Salaam(Element : in City) return Boolean is
begin
return Element.name = "Dar Es Salaam";
end Dar_Es_Salaam;
function Less_Than_Five_Million(Element : in City) return Boolean is
begin
return Element.population < 5.0;
end Less_Than_Five_Million;
function Starts_With_A(Item : in City) return Boolean is
begin
return Element(Item.name, 1) = 'A';
end Starts_With_A;
cities : constant City_Array :=
((+"Lagos", 21.0),
(+"Cairo", 15.2),
(+"Kinshasa-Brazzaville", 11.3),
(+"Greater Johannesburg", 7.55),
(+"Mogadishu", 5.85),
(+"Khartoum-Omdurman", 4.98),
(+"Dar Es Salaam", 4.7 ),
(+"Alexandria", 4.58),
(+"Abidjan", 4.4 ),
(+"Casablanca", 3.98));
begin
Ada.Text_IO.Put_Line(Index_0(Find(cities, Dar_Es_Salaam'Access))'Img);
Ada.Text_IO.Put_Line(+Element(Find(cities, Less_Than_Five_Million'Access)).name);
Ada.Text_IO.Put_Line(Element(Find(cities, Starts_With_A'Access)).population'Img);
end Search_A_List_Of_Records;
- Output:
6 Khartoum-Omdurman 4.58000E+00
ALGOL 68
# Algol 68 doesn't have generic array searches but we can easily provide #
# type specific ones #
# mode to hold the city/population info #
MODE CITYINFO = STRUCT( STRING name, REAL population in millions );
# operator to find the first city with the specified criteria, expressed as a procedure #
# returns the index of the CITYINFO. We can also overload FIND so it can be applied to #
# arrays of other types #
# If there is no city matching the criteria, a value greater than the upper bound of #
# the cities array is returned #
PRIO FIND = 1;
OP FIND = ( REF[]CITYINFO cities, PROC( REF CITYINFO )BOOL criteria )INT:
BEGIN
INT result := UPB cities + 1;
BOOL found := FALSE;
FOR pos FROM LWB cities TO UPB cities WHILE NOT found DO
IF criteria( cities[ pos ] )
THEN
found := TRUE;
result := pos
FI
OD;
result
END # FIND # ;
# convenience operator to determine whether a STRING starts with a particular character #
# returns TRUE if s starts with c, FALSE otherwise #
PRIO STARTSWITH = 9;
OP STARTSWITH = ( STRING s, CHAR c )BOOL:
IF LWB s > UPB s THEN FALSE # empty string #
ELSE s[ LWB s ] = c
FI # STARTSWITH # ;
BEGIN # tests #
# array of cities and populations #
[ 1 : 10 ]CITYINFO cities := ( ( "Lagos", 21.0 )
, ( "Cairo", 15.2 )
, ( "Kinshasa-Brazzaville", 11.3 )
, ( "Greater Johannesburg", 7.55 )
, ( "Mogadishu", 5.85 )
, ( "Khartoum-Omdurman", 4.98 )
, ( "Dar Es Salaam", 4.7 )
, ( "Alexandria", 4.58 )
, ( "Abidjan", 4.4 )
, ( "Casablanca", 3.98 )
);
INT city index := 0;
# find the 0-based index of Dar Es Salaam #
# ( if we remove the "[ @ 0 ]", it would find the 1-based index ) #
# NB - this assumes there is one - would get a subscript bound error if there isn't #
city index := cities[ @ 0 ] FIND ( ( REF CITYINFO city )BOOL: name OF city = "Dar Es Salaam" );
print( ( "index of Dar Es Salaam (from 0): ", whole( city index, 0 ), newline ) );
# find the first city with population under 5M #
# NB - this assumes there is one - would get a subscript bound error if there isn't #
city index := cities FIND ( ( REF CITYINFO city )BOOL: population in millions OF city < 5.0 );
print( ( name OF cities[ city index ], " has a population under 5M", newline ) );
# find the population of the first city whose name starts with "A" #
# NB - this assumes there is one - would get a subscript bound error if there isn't #
city index := cities FIND ( ( REF CITYINFO city )BOOL: name OF city STARTSWITH "A" );
print( ( "The population of a city named ""A..."" is: " ) );
print( ( fixed( population in millions OF cities[ city index ], 0, 2 ), newline ) )
END
- Output:
index of Dar Es Salaam (from 0): 6 Khartoum-Omdurman has a population under 5M The population of a city named "A..." is: 4.58
AppleScript
-- RECORDS
property lstCities : [¬
{|name|:"Lagos", population:21.0}, ¬
{|name|:"Cairo", population:15.2}, ¬
{|name|:"Kinshasa-Brazzaville", population:11.3}, ¬
{|name|:"Greater Johannesburg", population:7.55}, ¬
{|name|:"Mogadishu", population:5.85}, ¬
{|name|:"Khartoum-Omdurman", population:4.98}, ¬
{|name|:"Dar Es Salaam", population:4.7}, ¬
{|name|:"Alexandria", population:4.58}, ¬
{|name|:"Abidjan", population:4.4}, ¬
{|name|:"Casablanca", population:3.98}]
-- SEARCHES
-- nameIsDar :: Record -> Bool
on nameIsDar(rec)
|name| of rec = "Dar Es Salaam"
end nameIsDar
-- popBelow :: Record -> Bool
on popBelow5M(rec)
population of rec < 5
end popBelow5M
-- nameBeginsWith :: Record -> Bool
on nameBeginsWithA(rec)
text 1 of |name| of rec = "A"
end nameBeginsWithA
-- TEST
on run
return {¬
findIndex(nameIsDar, lstCities), ¬
¬
|name| of find(popBelow5M, lstCities), ¬
¬
population of find(nameBeginsWithA, lstCities)}
end run
-- GENERIC FUNCTIONS
-- find :: (a -> Bool) -> [a] -> Maybe a
on find(f, xs)
tell mReturn(f)
set lng to length of xs
repeat with i from 1 to lng
if lambda(item i of xs) then return item i of xs
end repeat
return missing value
end tell
end find
-- findIndex :: (a -> Bool) -> [a] -> Maybe Int
on findIndex(f, xs)
tell mReturn(f)
set lng to length of xs
repeat with i from 1 to lng
if lambda(item i of xs) then return i
end repeat
return missing value
end tell
end findIndex
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property lambda : f
end script
end if
end mReturn
- Output:
{6, "Khartoum-Omdurman", 4.58}
AppleScriptObjectiveC
While vanilla AppleScript doesn't provide filters for its own lists and records (and, by the way, has never officially supported square-bracket lists like the one used in the script above), its extension AppleScriptObjectiveC can filter the equivalent Foundation classes. So bridging between the classes may occasionally be useful. For efficiency, one would try to avoid repeatedly bridging the same objects.
use AppleScript version "2.4" -- OS X 10.10 (Yosemite) or later
use framework "Foundation"
-- Return the zero-based index of the first dictionary in an array which matches a given criterion or criteria.
on indexOfFirstDictionaryInArray:theArray |whose|:predicateText
set filter to current application's class "NSPredicate"'s predicateWithFormat:(predicateText)
set filteredArray to theArray's filteredArrayUsingPredicate:(filter)
if ((count filteredArray) > 0) then
return (theArray's indexOfObjectIdenticalTo:(filteredArray's firstObject())) as integer
else
return missing value -- No match.
end if
end indexOfFirstDictionaryInArray:|whose|:
on run
local listOfRecords, arrayOfDictionaries, result1, result2, result3
set listOfRecords to {¬
{|name|:"Lagos", population:21.0}, ¬
{|name|:"Cairo", population:15.2}, ¬
{|name|:"Kinshasa-Brazzaville", population:11.3}, ¬
{|name|:"Greater Johannesburg", population:7.55}, ¬
{|name|:"Mogadishu", population:5.85}, ¬
{|name|:"Khartoum-Omdurman", population:4.98}, ¬
{|name|:"Dar Es Salaam", population:4.7}, ¬
{|name|:"Alexandria", population:4.58}, ¬
{|name|:"Abidjan", population:4.4}, ¬
{|name|:"Casablanca", population:3.98}}
set arrayOfDictionaries to current application's class "NSArray"'s arrayWithArray:(listOfRecords)
set result1 to my indexOfFirstDictionaryInArray:arrayOfDictionaries |whose|:"name == 'Dar Es Salaam'"
set result2 to my indexOfFirstDictionaryInArray:arrayOfDictionaries |whose|:"population < 5"
if (result2 is not missing value) then set result2 to |name| of item (result2 + 1) of listOfRecords
set result3 to my indexOfFirstDictionaryInArray:arrayOfDictionaries |whose|:"name BEGINSWITH 'A'"
if (result3 is not missing value) then set result3 to population of item (result3 + 1) of listOfRecords
return {result1, result2, result3} --> {6, "Khartoum-Omdurman", 4.58}
end run
Arturo
; by @Krenium
define :city [name population][]
records: map [
["Lagos" 21.0]
["Cairo" 15.2]
["Kinshasa-Brazzaville" 11.3]
["Greater Johannesburg" 7.55]
["Mogadishu" 5.85]
["Khartoum-Omdurman" 4.98]
["Dar Es Salaam" 4.7]
["Alexandria" 4.58]
["Abidjan" 4.4]
["Casablanca" 3.98]
] => [to :city &]
find: function [block f][
loop.with: 'i block 'elt [
if f elt -> return @[elt i]
]
return false
]
; Print the index of the first city named Dar Es Salaam.
print last find records $[c][equal? c\name "Dar Es Salaam"]
; Print the name of the first city with under 5 million people.
print get first find records $[c][less? c\population 5] 'name
; Print the population of the first city starting with 'A'.
print get first find records $[c][equal? first c\name `A`] 'population
- Output:
6 Khartoum-Omdurman 4.58
BASIC
Commodore BASIC
C= BASIC has no associative data structure, so this just uses a two-dimensional array. It is written to accept a dynamically-sized list of cities and populations, with an empty-string sentinel indicating the end of the list. It also uses a form of pseudo-higher-order programming: the search function uses the query function `FNQ`, which is redefined by the caller to match the desired criteria for each test.
Note that in text mode (upper/lowercase), BASIC keywords are only recognized in lowercase.
100 nc=0
110 read n$
120 if n$="" then 160
130 read p$
140 nc=nc+1
150 goto 110
160 restore
170 dim ci$(nc-1,1)
180 for i=0 to nc-1
190 : for j=0 to 1
200 : read ci$(i,j)
210 : next j
220 next i
230 :
240 print chr$(14);:rem text mode
250 print: print "Test 1. name='Dar Es Salaam':"
260 rem search uses query function fnq
270 def fnq(i) = ci$(i,0) = "Dar Es Salaam"
280 gosub 500
290 if i<0 then print " None found.":goto 310
300 print " Index="i"."
310 print: print "Test 2. population < 5M:"
320 def fnq(i) = val(ci$(i,1)) < 5
330 gosub 500
340 if i<0 then print " None found.":goto 360
350 print " Name="ci$(i,0)"."
360 print: print "Test 3. name like 'A%':"
370 def fnq(i) = left$(ci$(i,0),1)="A"
380 gosub 500
390 if i<0 then print " None found.":goto 410
400 print " Population="ci$(i,1)"."
410 end
420 :
500 for i=0 to nc-1
510 : if fnq(i) then return
520 next i
530 i=-1
540 return
550 :
560 data "Lagos", 21.0
570 data "Cairo", 15.2
580 data "Kinshasa-Brazzaville", 11.3
590 data "Greater Johannesburg", 7.55
600 data "Mogadishu", 5.85
610 data "Khartoum-Omdurman", 4.98
620 data "Dar Es Salaam", 4.7
630 data "Alexandria", 4.58
640 data "Abidjan", 4.4
650 data "Casablanca", 3.98
660 data ""
- Output:
ready. run Test 1. name='Dar Es Salaam': Index= 6 . Test 2. population < 5M: Name=Khartoum-Omdurman. Test 3. name like 'A%': Population=4.58. ready.
FreeBASIC
Type Registro
name As String*20
population As Double
End Type
Dim cities(1 To 10) As Registro => { _
("Lagos",21.0 ), ("Cairo", 15.2 ), ("Kinshasa-Brazzaville", 11.3 ), _
("Greater Johannesburg", 7.55), ("Mogadishu", 5.85), ("Khartoum-Omdurman", 4.98), _
("Dar Es Salaam", 4.7 ), ("Alexandria", 4.58), ("Abidjan", 4.4 ), ("Casablanca", 3.98)}
Dim As Byte n
For n = 1 To Ubound(cities)
If cities(n).name = "Dar Es Salaam" Then Print n-1
Next n
For n = 1 To Ubound(cities)
If cities(n).population < 5.00 Then Print cities(n).name : Exit For
Next n
For n = 1 To Ubound(cities)
If Left(cities(n).name,1) = "A" Then Print cities(n).population : Exit For
Next n
Sleep
- Output:
6 Khartoum-Omdurman 4.58
QBasic
DIM cities$(10, 10)
cities$(1, 1) = "Lagos": cities$(1, 2) = "21.0"
cities$(2, 1) = "Cairo": cities$(2, 2) = "15.2"
cities$(3, 1) = "Kinshasa-Brazzaville": cities$(3, 2) = "11.3"
cities$(4, 1) = "Greater Johannesburg": cities$(4, 2) = "7.55"
cities$(5, 1) = "Mogadishu": cities$(5, 2) = "5.85"
cities$(6, 1) = "Khartoum-Omdurman": cities$(6, 2) = "4.98"
cities$(7, 1) = "Dar Es Salaam": cities$(7, 2) = "4.7"
cities$(8, 1) = "Alexandria": cities$(8, 2) = "4.58"
cities$(9, 1) = "Abidjan": cities$(9, 2) = "4.4"
cities$(10, 1) = "Casablanca": cities$(10, 2) = "3.98"
FOR n = 1 TO UBOUND(cities$)
IF cities$(n, 1) = "Dar Es Salaam" THEN PRINT n - 1
NEXT n
FOR n = 1 TO UBOUND(cities$)
IF VAL(cities$(n, 2)) < 5! THEN PRINT cities$(n, 1): EXIT FOR
NEXT n
FOR n = 1 TO UBOUND(cities$)
IF LEFT$(cities$(n, 1), 1) = "A" THEN PRINT cities$(n, 2): EXIT FOR
NEXT n
- Output:
Same as FreeBASIC entry.
True BASIC
DIM cities$(10, 10)
LET cities$(1, 1) = "Lagos"
LET cities$(1, 2) = "21.0"
LET cities$(2, 1) = "Cairo"
LET cities$(2, 2) = "15.2"
LET cities$(3, 1) = "Kinshasa-Brazzaville"
LET cities$(3, 2) = "11.3"
LET cities$(4, 1) = "Greater Johannesburg"
LET cities$(4, 2) = "7.55"
LET cities$(5, 1) = "Mogadishu"
LET cities$(5, 2) = "5.85"
LET cities$(6, 1) = "Khartoum-Omdurman"
LET cities$(6, 2) = "4.98"
LET cities$(7, 1) = "Dar Es Salaam"
LET cities$(7, 2) = "4.7"
LET cities$(8, 1) = "Alexandria"
LET cities$(8, 2) = "4.58"
LET cities$(9, 1) = "Abidjan"
LET cities$(9, 2) = "4.4"
LET cities$(10, 1) = "Casablanca"
LET cities$(10, 2) = "3.98"
FOR n = 1 TO UBOUND(cities$,1)
IF cities$(n, 1) = "Dar Es Salaam" THEN PRINT n-1
NEXT n
FOR n = 1 TO UBOUND(cities$,1)
IF VAL(cities$(n, 2)) < 5 THEN
PRINT cities$(n, 1)
EXIT FOR
END IF
NEXT n
FOR n = 1 TO UBOUND(cities$,1)
IF (cities$(n, 1))[1:1] = "A" THEN
PRINT cities$(n, 2)
EXIT FOR
END IF
NEXT n
END
- Output:
Same as FreeBASIC entry.
Yabasic
dim cities$(9, 9)
cities$(0, 0) = "Lagos" : cities$(0, 1) = "21.0"
cities$(1, 0) = "Cairo" : cities$(1, 1) = "15.2"
cities$(2, 0) = "Kinshasa-Brazzaville" : cities$(2, 1) = "11.3"
cities$(3, 0) = "Greater Johannesburg" : cities$(3, 1) = "7.55"
cities$(4, 0) = "Mogadishu" : cities$(4, 1) = "5.85"
cities$(5, 0) = "Khartoum-Omdurman" : cities$(5, 1) = "4.98"
cities$(6, 0) = "Dar Es Salaam" : cities$(6, 1) = "4.7"
cities$(7, 0) = "Alexandria" : cities$(7, 1) = "4.58"
cities$(8, 0) = "Abidjan" : cities$(8, 1) = "4.4"
cities$(9, 0) = "Casablanca" : cities$(9, 1) = "3.98"
for n = 1 to arraysize(cities$(), 1)
if cities$(n, 0) = "Dar Es Salaam" print n
next n
for n = 1 to arraysize(cities$(), 1)
if val(cities$(n, 1)) < 5 then print cities$(n, 0): break: fi
next n
for n = 1 to arraysize(cities$(), 1)
if left$(cities$(n, 0), 1) = "A" then print cities$(n, 1): break: fi
next n
- Output:
Same as FreeBASIC entry.
C
This solution makes use of the 'bsearch' and 'lfind' library functions. Note: 'lfind' is available only on Posix systems, and is found in the 'search.h' header. However it is also part of the Ming C Compiler for Windows.
#include <stdint.h> /* intptr_t */
#include <stdio.h>
#include <stdlib.h> /* bsearch */
#include <string.h>
#include <search.h> /* lfind */
#define LEN(x) (sizeof(x) / sizeof(x[0]))
struct cd {
char *name;
double population;
};
/* Return -1 if name could not be found */
int search_get_index_by_name(const char *name, const struct cd *data, const size_t data_length,
int (*cmp_func)(const void *, const void *))
{
struct cd key = { (char *) name, 0 };
struct cd *match = bsearch(&key, data, data_length,
sizeof(struct cd), cmp_func);
if (match == NULL)
return -1;
else
return ((intptr_t) match - (intptr_t) data) / sizeof(struct cd);
}
/* Return -1 if no matching record can be found */
double search_get_pop_by_name(const char *name, const struct cd *data, size_t data_length,
int (*cmp_func)(const void *, const void *))
{
struct cd key = { (char *) name, 0 };
struct cd *match = lfind(&key, data, &data_length,
sizeof(struct cd), cmp_func);
if (match == NULL)
return -1;
else
return match->population;
}
/* Return NULL if no value satisfies threshold */
char* search_get_pop_threshold(double pop_threshold, const struct cd *data, size_t data_length,
int (*cmp_func)(const void *, const void *))
{
struct cd key = { NULL, pop_threshold };
struct cd *match = lfind(&key, data, &data_length,
sizeof(struct cd), cmp_func);
if (match == NULL)
return NULL;
else
return match->name;
}
int cd_nameChar_cmp(const void *a, const void *b)
{
struct cd *aa = (struct cd *) a;
struct cd *bb = (struct cd *) b;
int i,len = strlen(aa->name);
for(i=0;i<len;i++)
if(bb->name[i]!=aa->name[i])
return -1;
return 0;
}
int cd_name_cmp(const void *a, const void *b)
{
struct cd *aa = (struct cd *) a;
struct cd *bb = (struct cd *) b;
return strcmp(bb->name, aa->name);
}
int cd_pop_cmp(const void *a, const void *b)
{
struct cd *aa = (struct cd *) a;
struct cd *bb = (struct cd *) b;
return bb->population >= aa->population;
}
int main(void)
{
const struct cd citydata[] = {
{ "Lagos", 21 },
{ "Cairo", 15.2 },
{ "Kinshasa-Brazzaville", 11.3 },
{ "Greater Johannesburg", 7.55 },
{ "Mogadishu", 5.85 },
{ "Khartoum-Omdurman", 4.98 },
{ "Dar Es Salaam", 4.7 },
{ "Alexandria", 4.58 },
{ "Abidjan", 4.4 },
{ "Casablanca", 3.98 }
};
const size_t citydata_length = LEN(citydata);
printf("%d\n", search_get_index_by_name("Dar Es Salaam", citydata, citydata_length, cd_name_cmp));
printf("%s\n", search_get_pop_threshold(5, citydata, citydata_length, cd_pop_cmp));
printf("%lf\n", search_get_pop_by_name("A", citydata, citydata_length, cd_nameChar_cmp));
return 0;
}
Output
6 Khartoum-Omdurman 4.580000
C#
using System;
using System.Collections.Generic;
namespace RosettaSearchListofRecords
{
class Program
{
static void Main(string[] args)
{
var dataset = new List<Dictionary<string, object>>() {
new Dictionary<string, object> {{ "name" , "Lagos"}, {"population", 21.0 }},
new Dictionary<string, object> {{ "name" , "Cairo"}, {"population", 15.2 }},
new Dictionary<string, object> {{ "name" , "Kinshasa-Brazzaville"}, {"population", 11.3 }},
new Dictionary<string, object> {{ "name" , "Greater Johannesburg"}, {"population", 7.55 }},
new Dictionary<string, object> {{ "name" , "Mogadishu"}, {"population", 5.85 }},
new Dictionary<string, object> {{ "name" , "Khartoum-Omdurman"}, {"population", 4.98 }},
new Dictionary<string, object> {{ "name" , "Dar Es Salaam"}, {"population", 4.7 }},
new Dictionary<string, object> {{ "name" , "Alexandria"}, {"population", 4.58 }},
new Dictionary<string, object> {{ "name" , "Abidjan"}, {"population", 4.4 }},
new Dictionary<string, object> {{ "name" , "Casablanca"}, {"population", 3.98 }}
};
// Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam"
var index = dataset.FindIndex(x => ((string)x["name"]) == "Dar Es Salaam");
Console.WriteLine(index);
// Find the name of the first city in this list whose population is less than 5 million
var name = (string)dataset.Find(x => (double)x["population"] < 5.0)["name"];
Console.WriteLine(name);
// Find the population of the first city in this list whose name starts with the letter "A"
var aNamePopulation = (double)dataset.Find(x => ((string)x["name"]).StartsWith("A"))["population"];
Console.WriteLine(aNamePopulation);
}
}
}
- Output:
6 Khartoum-Omdurman 4.58
C++
std::find_if accepts a lambda as predicate.
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
struct city {
std::string name;
float population;
};
int main()
{
std::vector<city> cities = {
{ "Lagos", 21 },
{ "Cairo", 15.2 },
{ "Kinshasa-Brazzaville", 11.3 },
{ "Greater Johannesburg", 7.55 },
{ "Mogadishu", 5.85 },
{ "Khartoum-Omdurman", 4.98 },
{ "Dar Es Salaam", 4.7 },
{ "Alexandria", 4.58 },
{ "Abidjan", 4.4 },
{ "Casablanca", 3.98 },
};
auto i1 = std::find_if( cities.begin(), cities.end(),
[](city c){ return c.name == "Dar Es Salaam"; } );
if (i1 != cities.end()) {
std::cout << i1 - cities.begin() << "\n";
}
auto i2 = std::find_if( cities.begin(), cities.end(),
[](city c){ return c.population < 5.0; } );
if (i2 != cities.end()) {
std::cout << i2->name << "\n";
}
auto i3 = std::find_if( cities.begin(), cities.end(),
[](city c){ return c.name.length() > 0 && c.name[0] == 'A'; } );
if (i3 != cities.end()) {
std::cout << i3->population << "\n";
}
}
- Output:
6 Khartoum-Omdurman 4.58
Clojure
In order to not rely on the input ordering of the data records, this example adds an "idx" value to the records, for purposes of being able to report the answer to the queries which rely on the original ordering. The data records are then re-sorted to be ordered by city name. This helps to make it clear that the query relying on sort-by-population is properly handled in the query itself.
(def records [{:idx 8, :name "Abidjan", :population 4.4}
{:idx 7, :name "Alexandria", :population 4.58}
{:idx 1, :name "Cairo", :population 15.2}
{:idx 9, :name "Casablanca", :population 3.98}
{:idx 6, :name "Dar Es Salaam", :population 4.7}
{:idx 3, :name "Greater Johannesburg", :population 7.55}
{:idx 5, :name "Khartoum-Omdurman", :population 4.98}
{:idx 2, :name "Kinshasa-Brazzaville", :population 11.3}
{:idx 0, :name "Lagos", :population 21.0}
{:idx 4, :name "Mogadishu", :population 5.85}])
(defn city->idx [recs city]
(-> (some #(when (= city (:name %)) %)
recs)
:idx))
(defn rec-with-max-population-below-n [recs limit]
(->> (sort-by :population > recs)
(drop-while (fn [r] (>= (:population r) limit)))
first))
(defn most-populous-city-below-n [recs limit]
(:name (rec-with-max-population-below-n recs limit)))
- Output:
(city->idx records "Dar Es Salaam") ; 6 (most-populous-city-below-n records 5.0) ; "Khartoum-Omdurman" (->> (sort-by :idx records) (drop-while #(not (clojure.string/starts-with? (:name %) "A"))) first :population) ; 4.58
Common Lisp
(defstruct city
(name nil :type string)
(population nil :type number))
(defparameter *cities*
(list (make-city :name "Lagos" :population 21.0)
(make-city :name "Cairo" :population 15.2)
(make-city :name "Kinshasa-Brazzaville" :population 11.3)
(make-city :name "Greater Johannesburg" :population 7.55)
(make-city :name "Mogadishu" :population 5.85)
(make-city :name "Khartoum-Omdurman" :population 4.98)
(make-city :name "Dar Es Salaam" :population 4.7)
(make-city :name "Alexandria" :population 4.58)
(make-city :name "Abidjan" :population 4.4)
(make-city :name "Casablanca" :population 3.98)))
(defun main ()
(let ((answer1 (position "Dar Es Salaam" *cities* :key #'city-name :test #'string=))
(answer2 (city-name (find-if (lambda (population) (< population 5))
*cities* :key #'city-population)))
(answer3 (city-population (find-if (lambda (name) (char= (char name 0) #\A))
*cities* :key #'city-name))))
(format t "Answer 1: ~A~%" answer1)
(format t "Answer 2: ~A~%" answer2)
(format t "Answer 3: ~A~%" answer3)))
- Output:
Answer 1: 6 Answer 2: Khartoum-Omdurman Answer 3: 4.58
DuckDB
For this entry, we first verified that after a few trivial syntactic changes to the SQL code presented at #SQL on this page, DuckDB produces the expected results.
Next, since the data in the task description is presented as JSON, we illustrate how easily DuckDB can import JSON data into a suitable table.
SQL
The syntactic changes to the SQL presented at #SQL were as follows:
- varchar2 => varchar
- number(3,2) => DECIMAL(6,2)
- the string delimiter must be changed from " to '
Importing JSON
One possibility is to create the table schema as before, but use read_json_auto() to insert the records:
create or replace table african_capitals(
name varchar(100), population_in_millions decimal(6,2) );
insert into african_capitals
from read_json_auto('input.json');
Even simpler would be to allow DuckDB to perform the name and type inference:
create or replace table african_capitals as
FROM read_json_auto('rc-search-a-list-of-records.json');
The results of the latter are shown below. The main difference is that the inferred name for `population` is `population`, and its inferred type is `DOUBLE`.
- Output:
┌──────────────────────┬────────────┐ │ name │ population │ │ varchar │ double │ ├──────────────────────┼────────────┤ │ Lagos │ 21.0 │ │ Cairo │ 15.2 │ │ Kinshasa-Brazzaville │ 11.3 │ │ Greater Johannesburg │ 7.55 │ │ Mogadishu │ 5.85 │ │ Khartoum-Omdurman │ 4.98 │ │ Dar Es Salaam │ 4.7 │ │ Alexandria │ 4.58 │ │ Abidjan │ 4.4 │ │ Casablanca │ 3.98 │ ├──────────────────────┴────────────┤ │ 10 rows 2 columns │ └───────────────────────────────────┘
EchoLisp
We demonstrate the vector-search primitive, which takes as input a vector, and a predicate.
(require 'struct)
(require 'json)
;; importing data
(define cities
#<<
[{"name":"Lagos", "population":21}, {"name":"Cairo", "population":15.2}, {"name":"Kinshasa-Brazzaville", "population":11.3}, {"name":"Greater Johannesburg", "population":7.55}, {"name":"Mogadishu", "population":5.85}, {"name":"Khartoum-Omdurman", "population":4.98}, {"name":"Dar Es Salaam", "population":4.7}, {"name":"Alexandria", "population":4.58}, {"name":"Abidjan", "population":4.4}, {"name":"Casablanca", "population":3.98}]
>>#)
;; define a structure matching data
;; heterogenous slots values
(struct city (name population))
;; convert JSON to EchoLisp instances of structures
(set! cities
(vector-map (lambda(x) (json->struct x struct:city)) (json-import cities)))
;; search by name, case indifferent
(define (city-index name)
(vector-search (lambda(x) (string-ci=? (city-name x) name)) cities))
;; returns first city name such as population < seuil
(define (city-pop seuil)
(define idx (vector-search (lambda(x) (< (city-population x) seuil)) cities))
(if idx
(city-name (vector-ref cities idx))
(cons seuil 'not-found)))
(city-index "Dar Es Salaam") → 6
(city-pop 5) → "Khartoum-Omdurman"
(city-pop -666) → (-666 . not-found)
(city-index "alexandra") → #f
Elena
ELENA 6.x :
import extensions;
import system'routines;
public program()
{
var dataset := new object[]
{
new { Name = "Lagos"; Population = 21.0r; },
new { Name = "Cairo"; Population = 15.2r; },
new { Name = "Kinshasa-Brazzaville"; Population = 11.3r; },
new { Name = "Greater Johannesburg"; Population = 7.55r; },
new { Name = "Mogadishu"; Population = 5.85r; },
new { Name = "Khartoum-Omdurman"; Population = 4.98r; },
new { Name = "Dar Es Salaam"; Population = 4.7r; },
new { Name = "Alexandria"; Population = 4.58r; },
new { Name = "Abidjan"; Population = 4.4r; },
new { Name = "Casablanca"; Population = 3.98r; }
};
var index := dataset.selectBy::(r => r.Name).toArray().indexOfElement("Dar Es Salaam");
console.printLine(index);
var name := dataset.filterBy::(c => c.Population < 5.0r).toArray().FirstMember.Name;
console.printLine(name);
var namePopulation := dataset.filterBy::(c => c.Name.startingWith("A")).toArray().FirstMember.Population;
console.printLine(namePopulation)
}
- Output:
6 Khartoum-Omdurman 4.58
Elixir
cities = [
[name: "Lagos", population: 21.0 ],
[name: "Cairo", population: 15.2 ],
[name: "Kinshasa-Brazzaville", population: 11.3 ],
[name: "Greater Johannesburg", population: 7.55],
[name: "Mogadishu", population: 5.85],
[name: "Khartoum-Omdurman", population: 4.98],
[name: "Dar Es Salaam", population: 4.7 ],
[name: "Alexandria", population: 4.58],
[name: "Abidjan", population: 4.4 ],
[name: "Casablanca", population: 3.98]
]
IO.puts Enum.find_index(cities, fn city -> city[:name] == "Dar Es Salaam" end)
IO.puts Enum.find(cities, fn city -> city[:population] < 5.0 end)[:name]
IO.puts Enum.find(cities, fn city -> String.first(city[:name])=="A" end)[:population]
- Output:
6 Khartoum-Omdurman 4.58
Factor
For our associative structure, we use the tuple: an object composed of named slots, each holding a value which can be accessed using automatically-generated accessors. Factor is built around combinators (Factor's word for higher-order functions), so completing the task as requested is idiomatic. find
is an existing combinator that takes a sequence and a predicate quotation (quotation being Factor's word for anonymous function) and returns the first element of the sequence for which the predicate quotation yields t
.
Not only does find
return the element, but also the index, which allows us to use find
for all of the required tasks. Since Factor is a stack-based concatenative language, multiple return values are elegant to use. We can simply drop
the sequence element on the top of the data stack if we are only interested in the index, or we can nip
the index if we are only interested in the sequence element on the top of the stack.
USING: accessors io kernel math prettyprint sequences ;
IN: rosetta-code.search-list
TUPLE: city name pop ;
CONSTANT: data {
T{ city f "Lagos" 21.0 }
T{ city f "Cairo" 15.2 }
T{ city f "Kinshasa-Brazzaville" 11.3 }
T{ city f "Greater Johannesburg" 7.55 }
T{ city f "Mogadishu" 5.85 }
T{ city f "Khartoum-Omdurman" 4.98 }
T{ city f "Dar Es Salaam" 4.7 }
T{ city f "Alexandria" 4.58 }
T{ city f "Abidjan" 4.4 }
T{ city f "Casablanca" 3.98 }
}
! Print the index of the first city named Dar Es Salaam.
data [ name>> "Dar Es Salaam" = ] find drop .
! Print the name of the first city with under 5 million people.
data [ pop>> 5 < ] find nip name>> print
! Print the population of the first city starting with 'A'.
data [ name>> first CHAR: A = ] find nip pop>> .
- Output:
6 Khartoum-Omdurman 4.58
Fortran
In order to employ a compound data aggregate such as CITY with components CITY.NAME and CITY.POPULATION, F90 is required. Earlier, one would have employed a collection of separate arrays with similar names, such as CNAME and CPOP. This may still be desirable when array parameters from a data aggregate will be passed via copy-in and copy-out instead of by reference. An alternative declaration would be to have the components of the aggregate use the array aspect, as in REAL POPULATION(10)
This would also avoid wasting storage due to multiple padding forced by any alignment requirements, as when a floating-point variable has to be aligned to a storage boundary. Otherwise, with "packed" storage, extra code required to access unaligned items consumes extra storage and of course, extra time. But the specification calls for multiplicity of the pairs. By contrast, pl/i offers "floating indexing" whereby CITY(i).NAME
and CITY.NAME(i)
would be acceptable usages for either form of declaration, thus concealing the issue.
As for the names, one must choose a maximum size for the city name, and 28 seems a perfect choice, even for names in Madagascar. Later fortran offers facilities for character variables "fitted to size", at the cost of extra indirection.
Fortran does not offer a "pass-by-name" facility, whereby the test function for the searches could be specified in the manner of Jensen's_Device, something like FINDFIRST(I,CITY(I).NAME .EQ. "Dar Es Salaam")
and FINDFIRST(I,CITY(I).POPULATION < 5)
in the form of boolean expressions evaluated in the calling environment, so one must devise a suitable procedure, and because the two components NAME and POPULATION have different types, the parameter matching protocol requires two different procedures. Via additional F90 syntax it is possible to define a "generic" routine with a single name that, when invoked, will in fact invoke the appropriate specific routine, however in this example one test is for equality, and the other is for "less than" so the commonality is weak. One could instead define two boolean functions (one each for the two types of test, say NAMEISEQUAL and POPULATIONISLESS) and pass the appropriate function as a parameter to a more general FINDFIRST routine, but this is both messy and restrictive: two functions to be defined separately and with FINDFIRST, all will only accept a type CITYSTAT as parameters. And as the TARGET parameter is of two different types, there can't be one FINDFIRST routine anyway.
Instead, two search functions. Using the function's name as a variable within the function could not be relied on prior to F90: some compilers would disallow it and in other cases odd results might be produced, so a local variable would have to be used. These functions turn out to be general in the sense that they're not limited to a type of CITYSTAT. Instead, FIRSTMATCH searches an array of texts, and FIRSTLESS an array of floating-point numbers - they could be applied to any such arrays. But sometimes at a cost. They are not prepared to deal with arrays having a "stride" other than one, such as the CITY.NAME entries, whose successive elements are not in successive storage locations. Instead, the compiler generates code to copy the desired elements from the CITY aggregate into a temporary variable having that arrangement, and passes that to the routine by reference. One could use the special declaration INTENT(IN)
for read-only activities, and that will at least abate the copy-back, but for small items and only ten at that, this overhead can be ignored; otherwise in-line code would be required for each search. On the other hand, it does allow the special usage CITY.NAME(1:1)
to search only the first character of each name.
Although F90 allows an array to be defined with a lower bound other than the default of one, this requires such a non-default lower bound to be specified in every declaration, which is tiresome, and leads to confusion over counting. Still, to suit the requirement, the index found for Dar Es Salaam is reduced by one. Returning a value of zero for "not found" is helpful (-1 would be good too, but this can't be an unsigned integer) and it is often useful to have an actual element zero with a dummy entry, such as CITYSTAT("--No such city!",3E33)
so that a WRITE statement need not be prefaced by a test so as to avoid an index-out-of-bounds error. The dummy population value, if printed, will likely overflow its format code and fill its space with asterisks in the standard behaviour. More modern systems include the reading or writing of the special mnemonic "NaN" for "Not a Number" but this mnemonic is not recognised in fortran source itself so something like PARAMETER (NaN = Z'FFFFFFFFFFFFFFFF')
would be needed if preferred - though readers may not recgnise that mnemonic either. With such a dummy-element scheme, the searches would be specified by FIRSTMATCH(CITY(1:).NAME,"Dar Es Salaam")
to signify that the zero'th element was not involved. Alternatively, the special entry could follow the "live" entries and "not found" would be an index value of eleven, there being ten entries in this example. If entries are to be added or removed, this becomes tiresome, but it does mean that there need no longer be an assignment of the "not found" value after the DO-loop's search, because that will be the value of the index variable on exit - though some argue that no such exit value should be relied upon. Coherent organisation is required for this! Incidentally, 0 (zero) in the source continuation field is treated as a space (meaning no continuation), thus the letter o instead: O would be asking for misreading.
The specification mentions an ordered list: here, the items are indeed ordered in storage (as first, second, etc) but ordering more usefully refers to the values of the components. The example is presented in reducing order of population. More generally, the storage order might be arbitrary, and one would use indices, arrays such as XCNAME which would list the entries in the order of their names, and XCPOP their populations. These arrays would each be produced by an indexed sort process that would not move the data about, and so long as entries were not frequently altered (requiring re-sorting) these indices could be used for searching. IT = FIRSTMATCH(CITY(XCNAME).NAME,"Dar Es Salaam")
would search the city names in alphabetical order rather than storage order and IT
would be its position in XCNAME so that CITY(XCNAME(IT)).POPULATION
would give the city's population. However, the "not found" result would be troublesome if not tested for. If zero was the value for that, arranging that XCNAME(0) was zero would help, however an often useful usage for XCNAME(0) is for it to contain the number of elements in its list.
Such arrays involve the ability to access an individual city's information at random, simply by specifying the index into the CITY array, however the given problem requires only sequential access. In such a case, the storage for the city elements could be formed as a linked-list which would be followed sequentially. Even so, random access can be regained via an array such as XCNAME, which now would hold the storage address of the corresponding CITY element. And as ever, how long is a piece of string? Here, ten.
If the data were stored as records in a disc file, a record zero won't exist and so appropriate testing for "not found" will be required. For this example however there is no attempt either to prepare a suitable "not found" entry nor to test and evade such a misfortune. The test data employed do not provoke such errors...
MODULE SEMPERNOVIS !Keep it together.
TYPE CITYSTAT !Define a compound data type.
CHARACTER*28 NAME !Long enough?
REAL POPULATION !Accurate enough.
END TYPE CITYSTAT !Just two parts, but different types.
TYPE(CITYSTAT) CITY(10) !Righto, I'll have some.
DATA CITY/ !Supply the example's data.
1 CITYSTAT("Lagos", 21.0 ),
2 CITYSTAT("Cairo", 15.2 ),
3 CITYSTAT("Kinshasa-Brazzaville",11.3 ),
4 CITYSTAT("Greater Johannesburg", 7.55),
5 CITYSTAT("Mogadishu", 5.85),
6 CITYSTAT("Khartoum-Omdurman", 4.98),
7 CITYSTAT("Dar Es Salaam", 4.7 ),
8 CITYSTAT("Alexandria", 4.58),
9 CITYSTAT("Abidjan", 4.4 ),
o CITYSTAT("Casablanca", 3.98)/
CONTAINS
INTEGER FUNCTION FIRSTMATCH(TEXT,TARGET) !First matching.
CHARACTER*(*) TEXT(:) !An array of texts.
CHARACTER*(*) TARGET !The text to look for.
DO FIRSTMATCH = 1,UBOUND(TEXT,DIM = 1) !Scan the array from the start.
IF (TEXT(FIRSTMATCH) .EQ. TARGET) RETURN !An exact match? Ignoring trailing spaces.
END DO !Try the next.
FIRSTMATCH = 0 !No match. Oh dear.
END FUNCTION FIRSTMATCH
INTEGER FUNCTION FIRSTLESS(VAL,TARGET) !First matching.
REAL VAL(:) !An array of values.
REAL TARGET !The value to look for.
DO FIRSTLESS = 1,UBOUND(VAL,DIM = 1) !Step through the array from the start.
IF (VAL(FIRSTLESS) .LT. TARGET) RETURN !Suitable?
END DO !Try the next.
FIRSTLESS = 0 !No match. Oh dear.
END FUNCTION FIRSTLESS
END MODULE SEMPERNOVIS
PROGRAM POKE
USE SEMPERNOVIS !Ex Africa, ...
CHARACTER*(*) BLAH !Save on some typing.
PARAMETER (BLAH = "The first city in the list whose ") !But also, for layout.
WRITE (6,1) BLAH,FIRSTMATCH(CITY.NAME,"Dar Es Salaam") - 1 !My array starts with one.
1 FORMAT (A,"name is Dar Es Salaam, counting with zero, is #",I0)
WRITE (6,2) BLAH,CITY(FIRSTLESS(CITY.POPULATION,5.0)).NAME
2 FORMAT (A,"population is less than 5 is ",A)
WRITE (6,3) BLAH,CITY(FIRSTMATCH(CITY.NAME(1:1),"A")).POPULATION
3 FORMAT (A,"whose name starts with A has population",F5.2)
END
The words NAME and TARGET can have special usages in F90, but fortran has no reserved words so these names can be put to ordinary use. Alas, the syntax highlighter does not recognise their non-special use and gives them colour. One could fuss further over the layout of the output, but here it is:
The first city in the list whose name is Dar Es Salaam, counting with zero, is #6 The first city in the list whose population is less than 5 is Khartoum-Omdurman The first city in the list whose whose name starts with 'A' has population 4.58
FutureBasic
void local fn LoadList
CFArrayRef list = @[¬
@{ @"name": @"Lagos", @"population": @21.0 },
@{ @"name": @"Cairo", @"population": @15.2 },
@{ @"name": @"Kinshasa-Brazzaville", @"population": @11.3 },
@{ @"name": @"Greater Johannesburg", @"population": @7.55 },
@{ @"name": @"Mogadishu", @"population": @5.85 },
@{ @"name": @"Khartoum-Omdurman", @"population": @4.98 },
@{ @"name": @"Dar Es Salaam", @"population": @4.7 },
@{ @"name": @"Alexandria", @"population": @4.58 },
@{ @"name": @"Abidjan", @"population": @4.4 },
@{ @"name": @"Casablanca", @"population": @3.98 }]
AppSetProperty( @"list", list )
end fn
local fn IndexOfCity( city as CFStringRef ) as int
CFArrayRef list = fn AppProperty( @"list" )
for int i = 0 to len(list) - 1
CFDictionaryRef dict = list[i]
if fn StringIsEqual( dict[@"name"], city ) then return i
next
end fn = -1
local fn FirstCityWithLessThan( population as CFNumberRef ) as CFStringRef
CFArrayRef list = fn AppProperty( @"list" )
for int i = 0 to len(list) - 1
CFDictionaryRef dict = list[i]
if fn NumberIntValue( dict[@"population"] ) < fn NumberIntValue( population ) then return dict[@"name"]
next
end fn = NULL
local fn PopulationByAlphabeticOrder( firstLetter as CFStringRef ) as float
CFArrayRef list = fn AppProperty( @"list" )
for int i = 0 to len(list) - 1
CFDictionaryRef dict = list[i]
CFStringRef firstListLetter = fn StringSubstringToIndex( dict[@"name"], 1 )
if fn StringIsEqual( firstListLetter, firstLetter ) then return fn NumberFloatValue( dict[@"population"] )
next
end fn = 0.0
fn LoadList
printf @"The index of Dar Es Salaam is: %d", fn IndexOfCity( @"Dar Es Salaam" )
printf @"The name of the first city whose population is less than 5 million: %@", fn FirstCityWithLessThan( @5 )
printf @"The population of the first city whose name starts with the letter \"A\': %.2f", fn PopulationByAlphabeticOrder( @"A" )
HandleEvents
- Output:
The index of Dar Es Salaam is: 6 The name of the first city whose population is less than 5 million: Khartoum-Omdurman The population of the first city whose name starts with the letter "A': 4.58
Go
Basic solution:
package main
import (
"fmt"
"strings"
)
type element struct {
name string
population float64
}
var list = []element{
{"Lagos", 21},
{"Cairo", 15.2},
{"Kinshasa-Brazzaville", 11.3},
{"Greater Johannesburg", 7.55},
{"Mogadishu", 5.85},
{"Khartoum-Omdurman", 4.98},
{"Dar Es Salaam", 4.7},
{"Alexandria", 4.58},
{"Abidjan", 4.4},
{"Casablanca", 3.98},
}
func find(cond func(*element) bool) int {
for i := range list {
if cond(&list[i]) {
return i
}
}
return -1
}
func main() {
fmt.Println(find(func(e *element) bool {
return e.name == "Dar Es Salaam"
}))
i := find(func(e *element) bool {
return e.population < 5
})
if i < 0 {
fmt.Println("*** not found ***")
} else {
fmt.Println(list[i].name)
}
i = find(func(e *element) bool {
return strings.HasPrefix(e.name, "A")
})
if i < 0 {
fmt.Println("*** not found ***")
} else {
fmt.Println(list[i].population)
}
}
- Output:
6 Khartoum-Omdurman 4.58
Data conversion solution:
The prohibition on parsing JSON is unreasonable in any language. The alternative to parsing by computer is parsing manually, reformatting data with human fingers on a keyboard. It's okay for ten lines of test data but would be unreasonable in any real application. But let's say than in real life you have a pointy-haired boss that decrees that no JSON parsing will be done — even though he has contracted a vendor that supplies JSON only. You would write a data converter that quietly converts data outside the application.
First, a package to define the data structure needed. This package will be imported by both the data conversion tool and the application.
package datadef
type Element struct {
Name string
Population float64
}
type List []Element
Then the data conversion tool. This program reads JSON from stdin and generates the Go code of a package "data" containing an equivalent Go literal.
package main
import (
"encoding/json"
"fmt"
"go/build"
"log"
"os"
"path/filepath"
"datadef"
)
func main() {
var l datadef.List
if err := json.NewDecoder(os.Stdin).Decode(&l); err != nil {
log.Fatal(err)
}
pp := filepath.Join(filepath.SplitList(build.Default.GOPATH)[0], "src/data")
f, err := os.Create(filepath.Join(pp, "data.go"))
if err != nil {
log.Fatal(err)
}
fmt.Fprintln(f, `package data
import "datadef"
var List = datadef.List {`)
for i, e := range l {
fmt.Fprintf(f, " %d: {%q, %g},\n", i, e.Name, e.Population)
}
fmt.Fprintln(f, "}")
}
- Output:
package data
import "datadef"
var List = datadef.List {
0: {"Lagos", 21},
1: {"Cairo", 15.2},
2: {"Kinshasa-Brazzaville", 11.3},
3: {"Greater Johannesburg", 7.55},
4: {"Mogadishu", 5.85},
5: {"Khartoum-Omdurman", 4.98},
6: {"Dar Es Salaam", 4.7},
7: {"Alexandria", 4.58},
8: {"Abidjan", 4.4},
9: {"Casablanca", 3.98},
}
The desired program imports the generated package containing the converted data. Program and imported data are JSON-free.
package main
import (
"fmt"
"strings"
"data"
"datadef"
)
func find(cond func(*datadef.Element) bool) int {
for i := range data.List {
if cond(&data.List[i]) {
return i
}
}
return -1
}
func main() {
i := find(func(e *datadef.Element) bool {
return e.Name == "Dar Es Salaam"
})
if i < 0 {
fmt.Println("*** not found ***")
} else {
fmt.Println(i)
}
i = find(func(e *datadef.Element) bool {
return e.Population < 5
})
if i < 0 {
fmt.Println("*** not found ***")
} else {
fmt.Println(data.List[i].Name)
}
i = find(func(e *datadef.Element) bool {
return strings.HasPrefix(e.Name, "A")
})
if i < 0 {
fmt.Println("*** not found ***")
} else {
fmt.Println(data.List[i].Population)
}
}
Output same as basic solution.
Solution using sorted population count:
The population ordering is useful only for queries against population and so cannot be used, at least not in any simple way, by the general find function shown above. The sort package of the Go standard library however contains a function for making general queries against an ordered list. This solution shows how the population query can be done with this function.
package main
import (
"fmt"
"sort"
"data"
)
func main() {
if !sort.SliceIsSorted(data.List, func(i, j int) bool {
return data.List[i].Population > data.List[j].Population
}) {
panic("data not sorted by decreasing population")
}
i := sort.Search(len(data.List), func(i int) bool {
return data.List[i].Population < 5
})
if i == len(data.List) {
fmt.Println("*** not found ***")
} else {
fmt.Println(data.List[i].Name)
}
}
- Output:
Khartoum-Omdurman
sort.Search for the other queries:
The same sort.Search function is general enough to be used for the other two queries of the task as long as appropriate indexes are constructed. sort.Search is interesting because it is in the standard library and is much like the function required by the task, being generalized to take a function as an argument. It does not completely meet task requirements though because it works on a single ordering that must already exist or already be computed. A function that would analyze a general query, use available orderings when possible, and fall back on linear search otherwise is surely beyond the task scope.
package main
import (
"fmt"
"sort"
"strings"
"data"
)
func main() {
nx := make([]int, len(data.List))
for i := range nx {
nx[i] = i
}
sort.Slice(nx, func(i, j int) bool {
return data.List[nx[i]].Name < data.List[nx[j]].Name
})
i := sort.Search(len(nx), func(i int) bool {
return data.List[nx[i]].Name >= "Dar Es Salaam"
})
if i == len(nx) || data.List[nx[i]].Name != "Dar Es Salaam" {
fmt.Println("*** not found ***")
} else {
fmt.Println(nx[i])
}
for i := range nx {
nx[i] = i
}
sort.SliceStable(nx, func(i, j int) bool {
return data.List[nx[i]].Name[0] < data.List[nx[j]].Name[0]
})
i = sort.Search(len(nx), func(i int) bool {
return data.List[nx[i]].Name >= "A"
})
if i == len(nx) || !strings.HasPrefix(data.List[nx[i]].Name, "A") {
fmt.Println("*** not found ***")
} else {
fmt.Println(data.List[nx[i]].Population)
}
}
- Output:
6 4.58
Haskell
import Data.List (findIndex, find)
data City = City
{ name :: String
, population :: Float
} deriving (Read, Show)
-- CITY PROPERTIES ------------------------------------------------------------
cityName :: City -> String
cityName (City x _) = x
cityPop :: City -> Float
cityPop (City _ x) = x
mbCityName :: Maybe City -> Maybe String
mbCityName (Just x) = Just (cityName x)
mbCityName _ = Nothing
mbCityPop :: Maybe City -> Maybe Float
mbCityPop (Just x) = Just (cityPop x)
mbCityPop _ = Nothing
-- EXAMPLES -------------------------------------------------------------------
mets :: [City]
mets =
[ City
{ name = "Lagos"
, population = 21.0
}
, City
{ name = "Cairo"
, population = 15.2
}
, City
{ name = "Kinshasa-Brazzaville"
, population = 11.3
}
, City
{ name = "Greater Johannesburg"
, population = 7.55
}
, City
{ name = "Mogadishu"
, population = 5.85
}
, City
{ name = "Khartoum-Omdurman"
, population = 4.98
}
, City
{ name = "Dar Es Salaam"
, population = 4.7
}
, City
{ name = "Alexandria"
, population = 4.58
}
, City
{ name = "Abidjan"
, population = 4.4
}
, City
{ name = "Casablanca"
, population = 3.98
}
]
-- TEST -----------------------------------------------------------------------
main :: IO ()
main = do
mbPrint $ findIndex (("Dar Es Salaam" ==) . cityName) mets
mbPrint $ mbCityName $ find ((< 5.0) . cityPop) mets
mbPrint $ mbCityPop $ find (("A" ==) . take 1 . cityName) mets
mbPrint
:: Show a
=> Maybe a -> IO ()
mbPrint (Just x) = print x
mbPrint x = print x
- Output:
6 "Khartoum-Omdurman" 4.58
J
To represent the data in the task description, we will be using a tabular format as follows:
colnumeric=: 0&".&.>@{`[`]}
data=: 1 colnumeric |: fixcsv 0 :0
Lagos, 21
Cairo, 15.2
Kinshasa-Brazzaville, 11.3
Greater Johannesburg, 7.55
Mogadishu, 5.85
Khartoum-Omdurman, 4.98
Dar Es Salaam, 4.7
Alexandria, 4.58
Abidjan, 4.4
Casablanca, 3.98
)
And here are the required computations:
(0 { data) i. <'Dar Es Salaam'
6
(i. >./)@(* 5&>)@:>@{: data
5
5 {:: 0 {data
Khartoum-Omdurman
(1 { data) {::~ 'A' i.~ {.&> 0 { data
4.58
The "general search function" mentioned in the task does not seem a natural fit for this set of data, because of the multi-column nature of this data. Nevertheless, we could for example define:
gsf=: 1 :0
:
I. u x { y
)
This uses the single argument aspect of the definition of I.
to convert a bit mask to the corresponding sequence of indices. And the column(s) we are searching on are exposed as a parameter for the interface, which allows us to ignore (for this problem) the irrelevant columns...
Thus, we could say:
1 (= >./)@(* 5&>)@:> gsf data
5
But this doesn't seem any clearer or more concise than our previous expression which finds the index of the first example of the most populous city with a population less than five million. Not only that, but if there were multiple cities which had the same population number which satisfied this constraint, this version would return all of those indices where the task explicitly required we return the first example.
J: Another approach
The following approach is arguably more natural in J than requiring a dictionary-type structure.
city=: <;._1 ';Lagos;Cairo;Kinshasa-Brazzaville;Greater Johannesburg;Mogadishu;Khartoum-Omdurman;Dar Es Salaam;Alexandria;Abidjan;Casablanca'
popln=: 21 15.2 11.3 7.55 5.85 4.98 4.7 4.58 4.4 3.98
city i. <'Dar Es Salaam' NB. index of Dar Es Salaam
6
(city i. boxopen) 'Dar Es Salaam' NB. anonymous search function with city name as argument
6
city {::~ (popln < 5) {.@# \: popln NB. name of first city with population less than 5 million
Khartoum-Omdurman
popln&(city {::~ \:@[ {.@#~ <) 5 NB. anonymous search function with popln limit as argument
Khartoum-Omdurman
popln {~ 'A' i.~ {.&> city NB. population of first city whose name starts with "A"
4.58
(popln {~ ({.&> city)&i.) 'A' NB. anonymous search function with first letter as argument
4.58
Java
Java (up to and including) version 7 was not capable of using Predicates or the mentioned higher-order-Programming without external libraries. Java 8 introduced Predicated and Streams (not to be confused with the Java-IO-Streams!) that changed the way how collections of objects can be processed. This example illustrates the changes by solving the three subtasks in different ways:
- "find the index of the fist city [...]" uses a predicate, but the actual search is done using classic iteration (this is also because the streams don't maintain anything "index-like" and so this would not be possible using stream-processing).
- "find city name by population [...]" uses a predicate to descibe the "search term" and returns the name of the city
- "find the population by letter [...]" uses a predicate as search term and accepts a "consumer" so the caller of the method specifies what to do with the found result.
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;
/**
* Represent a City and it's population.
* City-Objects do have a natural ordering, they are ordered by their poulation (descending)
*/
class City implements Comparable<City> {
private final String name;
private final double population;
City(String name, double population) {
this.name = name;
this.population = population;
}
public String getName() {
return this.name;
}
public double getPopulation() {
return this.population;
}
@Override
public int compareTo(City o) {
//compare for descending order. for ascending order, swap o and this
return Double.compare(o.population, this.population);
}
}
public class SearchListOfRecords {
public static void main(String[] args) {
//Array-of-City-Objects-Literal
City[] datasetArray = {new City("Lagos", 21.),
new City("Cairo", 15.2),
new City("Kinshasa-Brazzaville", 11.3),
new City("Greater Johannesburg", 7.55),
new City("Mogadishu", 5.85),
new City("Khartoum-Omdurman", 4.98),
new City("Dar Es Salaam", 4.7),
new City("Alexandria", 4.58),
new City("Abidjan", 4.4),
new City("Casablanca", 3.98)};
//Since this is about "collections smarter that arrays", the Array is converted to a List
List<City> dataset = Arrays.asList(datasetArray);
//the City-Objects know that they are supposed to be compared by population
Collections.sort(dataset);
//Find the first City that matches the given predicate and print it's index in the dataset
//the Predicate here is given in the form a Java 8 Lambda that returns true if the given name
//Note that the Predicate is not limited to searching for names. It can operate on anything one can done with
// and compared about City-Objects
System.out.println(findIndexByPredicate(dataset, city -> city.getName().equals("Dar Es Salaam")));
//Find the first City whose population matches the given Predicate (here: population <= 5.) and print it's name
//here the value is returned an printed by the caller
System.out.println(findFirstCityByPredicate(dataset, city -> city.getPopulation() <= 5.));
//Find the first City that matches the given predicate (here: name starts with "A") and
//apply the given consumer (here: print the city's population)
//here the caller specifies what to do with the object. This is the most generic solution and could also be used to solve Task 2
applyConsumerByPredicate(dataset, city -> city.getName().startsWith("A"), city -> System.out.println(city.getPopulation()));
}
/**
* Finds a City by Predicate.
* The predicate can be anything that can be done or compared about a City-Object.
* <p>
* Since the task was to "find the index" it is not possible to use Java 8's stream facilities to solve this.
* The Predicate is used very explicitly here - this is unusual.
*
* @param dataset the data to operate on, assumed to be sorted
* @param p the Predicate that wraps the search term.
* @return the index of the City in the dataset
*/
public static int findIndexByPredicate(List<City> dataset, Predicate<City> p) {
for (int i = 0; i < dataset.size(); i++) {
if (p.test(dataset.get(i)))
return i;
}
return -1;
}
/**
* Finds and returns the name of the first City where the population matches the Population-Predicate.
* This solutions makes use of Java 8's stream facilities.
*
* @param dataset the data to operate on, assumed to be sorted
* @param predicate a predicate that specifies the city searched. Can be "any predicate that can be applied to a City"
* @return the name of the first City in the dataset whose population matches the predicate
*/
private static String findFirstCityByPredicate(List<City> dataset, Predicate<City> predicate) {
//turn the List into a Java 8 stream, so it can used in stream-operations
//filter() by the specified predicate (to the right of this operation, only elements matching the predicate are left in the stream)
//find the first element (which is "the first city..." from the task)
//get() the actualy object (this is necessary because it is wrapped in a Java 8 Optional<T>
//getName() the name and return it.
return dataset.stream().filter(predicate).findFirst().get().getName();
}
/**
* In specified dataset, find the first City whose name matches the specified predicate, and apply the specified consumer
* <p>
* Since this can be solved pretty much like the "find a city by population", this has been varied. The caller specifies what to do with the result.
* So this method does not return anything, but requiers a "consumer" that processes the result.
*
* @param dataset the data to operate on, assumed to be sorted
* @param predicate a predicate that specifies the city searched. Can be "any predicate that can be applied to a City"
* @param doWithResult a Consumer that specified what to do with the results
*/
private static void applyConsumerByPredicate(List<City> dataset, Predicate<City> predicate, Consumer<City> doWithResult) {
//turn the List in to a Java 8 stream in stream-operations
//filter() by the specified predicate (to the right of this operation, only elements matching the predicate are left in the stream)
//find the first element (which is "the first city..." from the task)
// if there is an element found, feed it to the Consumer
dataset.stream().filter(predicate).findFirst().ifPresent(doWithResult);
}
}
- Output:
6 Khartoum-Omdurman 4.58
JavaScript
ES5
(function () {
'use strict';
// find :: (a -> Bool) -> [a] -> Maybe a
function find(f, xs) {
for (var i = 0, lng = xs.length; i < lng; i++) {
if (f(xs[i])) return xs[i];
}
return undefined;
}
// findIndex :: (a -> Bool) -> [a] -> Maybe Int
function findIndex(f, xs) {
for (var i = 0, lng = xs.length; i < lng; i++) {
if (f(xs[i])) return i;
}
return undefined;
}
var lst = [
{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }
];
return {
darEsSalaamIndex: findIndex(function (x) {
return x.name === 'Dar Es Salaam';
}, lst),
firstBelow5M: find(function (x) {
return x.population < 5;
}, lst)
.name,
firstApop: find(function (x) {
return x.name.charAt(0) === 'A';
}, lst)
.population
};
})();
- Output:
{"darEsSalaamIndex":6, "firstBelow5M":"Khartoum-Omdurman", "firstApop":4.58}
ES6
(() => {
'use strict';
let lst = [
{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }
];
return {
darEsSalaamIndex: lst.findIndex(x => x.name === 'Dar Es Salaam'),
firstBelow5M: lst.find(x => x.population < 5)
.name,
firstApop: lst.find(x => x.name[0] === 'A')
.population
};
})();
- Output:
{"darEsSalaamIndex":6, "firstBelow5M":"Khartoum-Omdurman", "firstApop":4.58}
jq
"jq" is so-name because it is a JSON Query Language, and thus all the abstractions are already available for the given searches, except that early versions of jq do not have `first/1` as a builtin. If your jq does not define `first/1`, then for present purposes, an appropriate definition would be:
def first(s): [s][0];
This will emit `null` if the stream, s, is empty.
In each case where `first/1` is used below, a less efficient alternative is also shown.
Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam"
map(.name) | index("Dar Es Salaam")
Find the name of the first city in this list whose population is less than 5 million
first(.[] | select(.population < 5)) | .name
# Alternatively:
map(select(.population < 5)) | .[0] | .name
Find the population of the first city in this list whose name starts with the letter "A"
first(.[] | select(.name[0:1] == "A")) | .population
# Alternatively:
map(select(.name[0:1] == "A")) | .[0] | .population
Julia
using DataFrames
dataset = DataFrame(name=["Lagos", "Cairo", "Kinshasa-Brazzaville", "Greater Johannesburg", "Mogadishu",
"Khartoum-Omdurman", "Dar Es Salaam", "Alexandria", "Abidjan", "Casablanca"],
population=[21.0, 15.2, 11.3, 7.55, 5.85, 4.98, 4.7, 4.58, 4.4, 3.98])
print("Find the (one-based) index of the first city in the list whose name is \"Dar Es Salaam\": ")
println(findfirst(dataset[:name], "Dar Es Salaam"))
print("Find the name of the first city in this list whose population is less than 5 million: ")
println(dataset[first(find(dataset[:population] .< 5)), :name])
print("Find the population of the first city in this list whose name starts with the letter \"A\": ")
println(dataset[first(find(startswith.(dataset[:name], 'A'))), :population])
- Output:
Find the (one-based) index of the first city in the list whose name is "Dar Es Salaam": 7 Find the name of the first city in this list whose population is less than 5 million: Khartoum-Omdurman Find the population of the first city in this list whose name starts with the letter "A": 4.58
Kotlin
// version 1.1.2
class City(val name: String, val pop: Double)
val cities = listOf(
City("Lagos", 21.0),
City("Cairo", 15.2),
City("Kinshasa-Brazzaville", 11.3),
City("Greater Johannesburg", 7.55),
City("Mogadishu", 5.85),
City("Khartoum-Omdurman", 4.98),
City("Dar Es Salaam", 4.7),
City("Alexandria", 4.58),
City("Abidjan", 4.4),
City("Casablanca", 3.98)
)
fun main(args: Array<String>) {
val index = cities.indexOfFirst { it.name == "Dar Es Salaam" }
println("Index of first city whose name is 'Dar Es Salaam' = $index")
val name = cities.first { it.pop < 5.0 }.name
println("Name of first city whose population is less than 5 million = $name")
val pop = cities.first { it.name[0] == 'A' }.pop
println("Population of first city whose name starts with 'A' = $pop")
}
- Output:
Index of first city whose name is 'Dar Es Salaam' = 6 Name of first city whose population is less than 5 million = Khartoum-Omdurman Population of first city whose name starts with 'A' = 4.58
Lingo
on findFirstRecord (data, condition)
cnt = data.count
repeat with i = 1 to cnt
record = data[i]
if value(condition) then return [#index:i-1, #record:record]
end repeat
end
data = [\
[ "name": "Lagos", "population": 21.0 ],\
[ "name": "Cairo", "population": 15.2 ],\
[ "name": "Kinshasa-Brazzaville", "population": 11.3 ],\
[ "name": "Greater Johannesburg", "population": 7.55 ],\
[ "name": "Mogadishu", "population": 5.85 ],\
[ "name": "Khartoum-Omdurman", "population": 4.98 ],\
[ "name": "Dar Es Salaam", "population": 4.7 ],\
[ "name": "Alexandria", "population": 4.58 ],\
[ "name": "Abidjan", "population": 4.4 ],\
[ "name": "Casablanca", "population": 3.98 ]\
]
q = QUOTE
-- Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam"
res = findFirstRecord(data, "record.name="&q&"Dar Es Salaam"&q)
if listP(res) then put res.index
-- 6
-- Find the name of the first city in this list whose population is less than 5 million
res = findFirstRecord(data, "record.population<5")
if listP(res) then put res.record.name
-- "Khartoum-Omdurman"
-- Find the population of the first city in this list whose name starts with the letter "A"
res = findFirstRecord(data, "record.name.char[1]="&q&"A"&q)
if listP(res) then put res.record.population
-- 4.5800
Lua
Lua tables are well suited as the element type for this task. The master data structure is a table of tables.
-- Dataset declaration
local cityPops = {
{name = "Lagos", population = 21.0},
{name = "Cairo", population = 15.2},
{name = "Kinshasa-Brazzaville", population = 11.3},
{name = "Greater Johannesburg", population = 7.55},
{name = "Mogadishu", population = 5.85},
{name = "Khartoum-Omdurman", population = 4.98},
{name = "Dar Es Salaam", population = 4.7},
{name = "Alexandria", population = 4.58},
{name = "Abidjan", population = 4.4},
{name = "Casablanca", population = 3.98}
}
-- Function to search a dataset using a custom match function
function recordSearch (dataset, matchFunction)
local returnValue
for index, element in pairs(dataset) do
returnValue = matchFunction(index, element)
if returnValue then return returnValue end
end
return nil
end
-- Main procedure
local testCases = {
function (i, e) if e.name == "Dar Es Salaam" then return i - 1 end end,
function (i, e) if e.population < 5 then return e.name end end,
function (i, e) if e.name:sub(1, 1) == "A" then return e.population end end
}
for _, func in pairs(testCases) do print(recordSearch(cityPops, func)) end
- Output:
6 Khartoum-Omdurman 4.58
Ksh
#!/bin/ksh
# Search a list of records
# # Variables:
#
json='{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }'
typeset -a African_Metro
integer i=0
typeset -T Metro_Africa_t=(
typeset -h 'Metro name' met_name=''
typeset -E3 -h 'Metro population' met_pop
function init_metro {
typeset name ; name="$1"
typeset pop ; typeset -E3 pop=$2
_.met_name=${name}
_.met_pop=${pop}
}
function prt_name {
print "${_.met_name}"
}
function prt_pop {
print "${_.met_pop}"
}
)
# # Functions:
#
# # Function _findcityindex(arr, name) - return array index of citry named "name"
#
function _findcityindex {
typeset _arr ; nameref _arr="$1"
typeset _name ; _name="$2"
typeset _i ; integer _i
for ((_i=0; _i<${#_arr[*]}; _i++)); do
[[ ${_name} == $(_arr[_i].prt_name) ]] && echo ${_i} && return 0
done
echo "-1"
return 1
}
# # Function _findcitynamepop(arr, pop, xx) - find 1st city name pop $3 of $2
#
function _findcitynamepop {
typeset _arr ; nameref _arr="$1"
typeset _pop ; typeset -E3 _pop=$2
typeset _comp ; _comp="$3"
typeset _i ; integer _i
for ((_i=0; _i<${#_arr[*]}; _i++)); do
case ${_comp} in
gt)
[[ $(_arr[_i].prt_pop) -gt ${_pop} ]] && _arr[_i].prt_name && return 0 ;;
lt)
[[ $(_arr[_i].prt_pop) -lt ${_pop} ]] && _arr[_i].prt_name && return 0 ;;
esac
done
echo "DNE"
return 1
}
# # Function _findcitypopname(arr, pat) - find pop of first city starting w/ pat
#
function _findcitypopname {
typeset _arr ; nameref _arr="$1"
typeset _pat ; _pat="$2"
typeset _i ; integer _i
for ((_i=0; _i<${#_arr[*]}; _i++)); do
[[ $(_arr[_i].prt_name) == ${_pat}* ]] && _arr[_i].prt_pop && return 0
done
echo "-1"
return 1
}
######
# main #
######
# # An indexed array of Type variable (objects)
#
echo "${json}" | while read; do
metro="${REPLY#*\"name\"\:\ }" ; metro="${metro%%\,*}" ; metro="${metro//\"/}"
population="${REPLY#*\"population\"\:\ }" ; population=${population%+(\ )\}*(\,)}
Metro_Africa_t African_Metro[i]
African_Metro[i++].init_metro "${metro}" ${population}
done
_findcityindex African_Metro "Dar Es Salaam"
_findcitynamepop African_Metro 5.0 lt
_findcitypopname African_Metro "A"
- Output:
6 Khartoum-Omdurman
4.58
Maple
rec := [table(["name"="Lagos","population"=21.0]),
table(["name"="Cairo","population"=15.2]),
table(["name"="Kinshasa-Brazzaville","population"=11.3]),
table(["name"="Greater Johannesburg","population"=7.55]),
table(["name"="Mogadishu","population"=5.85]),
table(["name"="Khartoum-Omdurman","population"=4.98]),
table(["name"="Dar Es Salaam","population"=4.7 ]),
table(["name"="Alexandria","population"=4.58]),
table(["name"="Abidjan","population"=4.4]),
table(["name"="Casablanca","population"=3.98])]:
searchRec := proc(rec, pred, operation)
local i:
for i to numelems(rec) do
if pred(rec[i]) then
return operation(rec[i],i):
fi:
od:
end proc:
searchRec(rec, x->x["name"] = "Dar Es Salaam", (x,i)->print(i-1)): # minus 1 since Maple is 1-indexed
searchRec(rec, x->x["population"]<5, (x,i)->print(x["name"])):
searchRec(rec, x->x["name"][1] = "A", (x,i)->print(x["population"])):
- Output:
6 "Khartoum-Omdurman" 4.58
Mathematica /Wolfram Language
data = Dataset[{
<|"name" -> "Lagos", "population" -> 21.|>,
<|"name" -> "Cairo", "population" -> 15.2|>,
<|"name" -> "Kinshasa-Brazzaville", "population" -> 11.3|>,
<|"name" -> "Greater Johannesburg", "population" -> 7.55|>,
<|"name" -> "Mogadishu", "population" -> 5.85|>,
<|"name" -> "Khartoum-Omdurman", "population" -> 4.98|>,
<|"name" -> "Dar Es Salaam", "population" -> 4.7|>,
<|"name" -> "Alexandria", "population" -> 4.58|>,
<|"name" -> "Abidjan", "population" -> 4.4|>,
<|"name" -> "Casablanca", "population" -> 3.98|>
}]
data[Position["Dar Es Salaam"], "name"][1, 1] - 1
data[Select[#population < 5 &]][1, "name"]
data[Select[StringMatchQ[#name, "A*"] &]][1, "population"]
Nim
To solve this task, we define a template “findIt” similar to the templates provided by the standard library module “sequtils”. As First argument it accepts any collection providing a “pairs” iterator (yielding an index and a value), for instance a sequence (list) or a table (hash). The second argument of the template is a predicate, i.e. an expression containing the “it” variable.
This way, the template is able to work in a lot of contexts.
template findIt(data, pred: untyped): int =
## Return the index of the first element in "data" satisfying
## the predicate "pred" or -1 if no such element is found.
var result = -1
for i, it {.inject.} in data.pairs:
if pred:
result = i
break
result
when isMainModule:
import strutils
type City = tuple[name: string; population: float]
const Cities: seq[City] = @[("Lagos", 21.0),
("Cairo", 15.2),
("Kinshasa-Brazzaville", 11.3),
("Greater Johannesburg", 7.55),
("Mogadishu", 5.85),
("Khartoum-Omdurman", 4.98),
("Dar Es Salaam", 4.7),
("Alexandria", 4.58),
("Abidjan", 4.4),
("Casablanca", 3.98)]
echo "Index of the first city whose name is “Dar Es Salaam”: ",
Cities.findIt(it.name == "Dar Es Salaam")
let idx1 = Cities.findIt(it.population < 5)
echo "Name of the first city whose population is less than 5 million: ",
if idx1 == -1: "<none>" else: Cities[idx1].name
let idx2 = Cities.findIt(it.name.startsWith("A"))
echo "Population of the first city whose name starts with the letter “A”: ",
if idx2 == -1: "<none>" else: $Cities[idx2].population
- Output:
Index of the first city whose name is “Dar Es Salaam”: 6 Name of the first city whose population is less than 5 million: Khartoum-Omdurman Population of the first city whose name starts with the letter “A”: 4.58
OCaml
#load "str.cma"
(* We are going to use literally a list of records as said in the title of the
* task. *)
(* First: Definition of the record type. *)
type city = {
name : string;
population : float
}
(* Second: The actual list of records containing the data. *)
let cities = [
{ name = "Lagos"; population = 21.0 };
{ name = "Cairo"; population = 15.2 };
{ name = "Kinshasa-Brazzaville"; population = 11.3 };
{ name = "Greater Johannesburg"; population = 7.55 };
{ name = "Mogadishu"; population = 5.85 };
{ name = "Khartoum-Omdurman"; population = 4.98 };
{ name = "Dar Es Salaam"; population = 4.7 };
{ name = "Alexandria"; population = 4.58 };
{ name = "Abidjan"; population = 4.4 };
{ name = "Casablanca"; population = 3.98 }
]
(* I can't find in the standard library any function in module List that returns
* an index. Well, never mind, I make my own... *)
let find_index pred =
let rec doloop i = function
| [] -> raise Not_found
| x :: xs -> if pred x then i else doloop (i + 1) xs
in
doloop 0
(* List.find returns the first element that satisfies the predicate.
* List.filter or List.find_all would return *all* the elements that satisfy the
* predicate. *)
let get_first pred = List.find pred
(* Simulate the 'startswith' function found in other languages. *)
let startswith sub s =
Str.string_match (Str.regexp sub) s 0
let () =
(* We use a typical dot notation to access the record fields. *)
find_index (fun c -> c.name = "Dar Es Salaam") cities
|> print_int
|> print_newline;
(get_first (fun c -> c.population < 5.0) cities).name
|> print_endline;
(get_first (fun c -> startswith "A" c.name) cities).population
|> print_float
|> print_newline;
- Output:
6 Khartoum-Omdurman 4.58
Pascal
Free Pascal
program Search_list_records;
{$mode ObjFPC}{$H+}
type
TCity = record
name: string;
population: real;
end;
const
Cities: array of TCity = (
(name: 'Lagos'; population: 21.0),
(name: 'Cairo'; population: 15.2),
(name: 'Kinshasa-Brazzaville'; population: 11.3),
(name: 'Greater Johannesburg'; population: 7.55),
(name: 'Mogadishu'; population: 5.85),
(name: 'Khartoum-Omdurman'; population: 4.98),
(name: 'Dar Es Salaam'; population: 4.7),
(name: 'Alexandria'; population: 4.58),
(name: 'Abidjan'; population: 4.4),
(name: 'Casablanca'; population: 3.98)
);
function FindCityIndex(const CityName: string): Integer;
var
i: Integer;
begin
Result := -1;
for i := 0 to High(Cities) do
if Cities[i].name = CityName then
Exit(i);
end;
function FindCityName(const pop: real): string;
var
City: TCity;
begin
Result := 'not found';
for City in Cities do
if City.population < pop then
Exit(City.name);
end;
function FindCityPopulation(const Start: Char): Real;
var
City: TCity;
begin
Result := -1;
for City in Cities do
if City.name[1] = Start then
Exit(City.population);
end;
begin
writeln('index: ', FindCityIndex('Dar Es Salaam'));
writeln('name: ', FindCityName(5.0));
writeln('population: ', FindCityPopulation('A'):4:2);
end.
- Output:
index: 6 name: Khartoum-Omdurman population: 4.58
PascalABC.NET
type
TCity = record
name: string;
population: real;
end;
const
Cities: array of TCity = (
(name: 'Lagos'; population: 21.0),
(name: 'Cairo'; population: 15.2),
(name: 'Kinshasa-Brazzaville'; population: 11.3),
(name: 'Greater Johannesburg'; population: 7.55),
(name: 'Mogadishu'; population: 5.85),
(name: 'Khartoum-Omdurman'; population: 4.98),
(name: 'Dar Es Salaam'; population: 4.7),
(name: 'Alexandria'; population: 4.58),
(name: 'Abidjan'; population: 4.4),
(name: 'Casablanca'; population: 3.98));
begin
cities.FindIndex(x -> x.name = 'Dar Es Salaam').Println;
cities.Find(x -> x.population < 5).name.Println;
cities.Find(x -> x.name[1] = 'A').population.Println;
end.
- Output:
6 Khartoum-Omdurman 4.58
Perl
The first function from the core module List::Util provides short-circuiting search using a block as predicate. However, it can only return the value of the found element, not its index – so for the first test-case we need to operate on the list of indices.
use feature 'say';
use List::Util qw(first);
my @cities = (
{ name => 'Lagos', population => 21.0 },
{ name => 'Cairo', population => 15.2 },
{ name => 'Kinshasa-Brazzaville', population => 11.3 },
{ name => 'Greater Johannesburg', population => 7.55 },
{ name => 'Mogadishu', population => 5.85 },
{ name => 'Khartoum-Omdurman', population => 4.98 },
{ name => 'Dar Es Salaam', population => 4.7 },
{ name => 'Alexandria', population => 4.58 },
{ name => 'Abidjan', population => 4.4 },
{ name => 'Casablanca', population => 3.98 },
);
my $index1 = first { $cities[$_]{name} eq 'Dar Es Salaam' } 0..$#cities;
say $index1;
my $record2 = first { $_->{population} < 5 } @cities;
say $record2->{name};
my $record3 = first { $_->{name} =~ /^A/ } @cities;
say $record3->{population};
- Output:
6 Khartoum-Omdurman 4.58
The CPAN module List::MoreUtils provides the first_index function which could be used to write that first case more elegantly:
use List::MoreUtils qw(first_index);
$index1 = first_index { $_->{name} eq 'Dar Es Salaam' } @cities;
Phix
constant CITY_NAME = 1, POPULATION = 2 constant municipalities = {{"Lagos",21}, {"Cairo",15.2}, {"Kinshasa-Brazzaville",11.3}, {"Greater Johannesburg",7.55}, {"Mogadishu",5.85}, {"Khartoum-Omdurman",4.98}, {"Dar Es Salaam",4.7}, {"Alexandria",4.58}, {"Abidjan",4.4}, {"Casablanca",3.98}} function searchfor(sequence s, integer rid, object user_data, bool return_index=false) for i=1 to length(s) do if rid(s[i],user_data) then return iff(return_index?i:s[i]) end if end for return 0 -- not found end function function city_named(sequence si, string city_name) return si[CITY_NAME]==city_name end function ?searchfor(municipalities,city_named,"Dar Es Salaam",true) function smaller_than(sequence si, atom population) return si[POPULATION]<population end function ?searchfor(municipalities,smaller_than,5)[CITY_NAME] function starts_with(sequence si, integer ch) return si[CITY_NAME][1]=ch end function ?searchfor(municipalities,starts_with,'A')[POPULATION]
The columnize function reorganises hetrogenous data into corresponding homogenous arrays, which can make this sort of thing much simpler, at least for exact matches.
constant {cities,populations} = columnize(municipalities) ?populations[find("Dar Es Salaam",cities)]
- Output:
7 "Khartoum-Omdurman" 4.58 4.7
Note that Phix subscripts are 1-based, hence the output of 7 not 6.
Phixmonti
include ..\Utilitys.pmt
(
( "Lagos" 21.0 )
( "Cairo" 15.2 )
( "Kinshasa-Brazzaville" 11.3 )
( "Greater Johannesburg" 7.55 )
( "Mogadishu" 5.85 )
( "Khartoum-Omdurman" 4.98 )
( "Dar Es Salaam" 4.7 )
( "Alexandria" 4.58 )
( "Abidjan" 4.4 )
( "Casablanca" 3.98 )
)
len for >ps
( tps 1 ) sget "Dar Es Salaam" == if ps> 1 - ? exitfor else cps endif
endfor
len for
get 2 get 5 < if 1 get ? drop exitfor else drop endif
endfor
len for >ps
( tps 1 1 ) sget 'A' == if ( ps> 2 ) sget ? exitfor else cps endif
endfor
- Output:
6 Khartoum-Omdurman 4.58 === Press any key to exit ===
PHP
<?php
$data_array = [
['name' => 'Lagos', 'population' => 21.0],
['name' => 'Cairo', 'population' => 15.2],
['name' => 'Kinshasa-Brazzaville', 'population' => 11.3],
['name' => 'Greater Johannesburg', 'population' => 7.55],
['name' => 'Mogadishu', 'population' => 5.85],
['name' => 'Khartoum-Omdurman', 'population' => 4.98],
['name' => 'Dar Es Salaam', 'population' => 4.7],
['name' => 'Alexandria', 'population' => 4.58],
['name' => 'Abidjan', 'population' => 4.4],
['name' => 'Casablanca', 'population' => 3.98],
];
$found=0;
$search_name = 'Dar Es Salaam';
echo "Find the (zero-based) index of the first city in the list whose name is \"$search_name\" - 6";
$index = array_search($search_name, array_column($data_array, 'name'));
$population = $data_array[$index]['population'];
echo "\nAnswer 1: Index: [$index] Population for $search_name is $population Million\n";
$search_val = 5;
echo "\nFind the name of the first city in this list whose population is less than $search_val million - Khartoum-Omdurman";
foreach ($data_array as $index => $row) {
if ($row['population'] < $search_val) {
$name = $row['name'];
echo "\nAnswer 2: Index [$index] Population for $row[name] is $row[population] Million\n";
break;
}
}
$search_term = 'A';
echo "\n\nFind the population of the first city in this list whose name starts with the letter \"$search_term\" - 4.58";
foreach ($data_array as $index => $row) {
if (strpos($row['name'], $search_term) === 0) {
echo "\nAnswer 3: Index: [$index] Population for $row[name] is $row[population] Million\n";
break;
}
}
echo "\nDone...";
Output:
Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam" - 6
Answer 1: Index: [6] Population for Dar Es Salaam is 4.7 Million
Find the name of the first city in this list whose population is less than 5 million - Khartoum-Omdurman
Answer 2: Index [5] Population for Khartoum-Omdurman is 4.98 Million
Find the population of the first city in this list whose name starts with the letter "A" - 4.58
Answer 3: Index: [7] Population for Alexandria is 4.58 Million
Done...
PicoLisp
(scl 2)
(de *Data
("Lagos" 21.0)
("Cairo" 15.2)
("Kinshasa-Brazzaville" 11.3)
("Greater Johannesburg" 7.55)
("Mogadishu" 5.85)
("Khartoum-Omdurman" 4.98)
("Dar Es Salaam" 4.7)
("Alexandria" 4.58)
("Abidjan" 4.4)
("Casablanca" 3.98) )
(test 6
(dec (index (assoc "Dar Es Salaam" *Data) *Data)) )
(test "Khartoum-Omdurman"
(car (find '((L) (> 5.0 (cadr L))) *Data)) )
(test 4.58
(cadr (find '((L) (pre? "A" (car L))) *Data)) )
PowerShell
The ConvertFrom-Json
cmdlet converts a JSON formatted string to a custom PSCustomObject object that has a property for each field in the JSON string:
$jsonData = @'
[
{ "Name": "Lagos", "Population": 21.0 },
{ "Name": "Cairo", "Population": 15.2 },
{ "Name": "Kinshasa-Brazzaville", "Population": 11.3 },
{ "Name": "Greater Johannesburg", "Population": 7.55 },
{ "Name": "Mogadishu", "Population": 5.85 },
{ "Name": "Khartoum-Omdurman", "Population": 4.98 },
{ "Name": "Dar Es Salaam", "Population": 4.7 },
{ "Name": "Alexandria", "Population": 4.58 },
{ "Name": "Abidjan", "Population": 4.4 },
{ "Name": "Casablanca", "Population": 3.98 }
]
'@
$cities = $jsonData | ConvertFrom-JSON
The $cities
variable contains an array of objects with Name and Population properties:
$cities
- Output:
Name Population ---- ---------- Lagos 21.0 Cairo 15.2 Kinshasa-Brazzaville 11.3 Greater Johannesburg 7.55 Mogadishu 5.85 Khartoum-Omdurman 4.98 Dar Es Salaam 4.7 Alexandria 4.58 Abidjan 4.4 Casablanca 3.98
Find the index of the first city in the list whose name is "Dar Es Salaam":
$cities.Name.IndexOf("Dar Es Salaam")
- Output:
6
Find the name of the first city in this list whose population is less than 5 million:
($cities | Where-Object -Property Population -LT 5)[0].Name
- Output:
Khartoum-Omdurman
Find the population of the first city in this list whose name starts with the letter "A":
($cities | Where-Object -Property Name -Match "^A")[0].Population
- Output:
4.58
Python
cities = [
{ "name": "Lagos", "population": 21.0 },
{ "name": "Cairo", "population": 15.2 },
{ "name": "Kinshasa-Brazzaville", "population": 11.3 },
{ "name": "Greater Johannesburg", "population": 7.55 },
{ "name": "Mogadishu", "population": 5.85 },
{ "name": "Khartoum-Omdurman", "population": 4.98 },
{ "name": "Dar Es Salaam", "population": 4.7 },
{ "name": "Alexandria", "population": 4.58 },
{ "name": "Abidjan", "population": 4.4 },
{ "name": "Casablanca", "population": 3.98 }
]
def first(query):
return next(query, None)
print(
first(index for index, city in enumerate(cities)
if city['name'] == "Dar Es Salaam"),
first(city['name'] for city in cities if city['population'] < 5),
first(city['population'] for city in cities if city['name'][0] == 'A'),
sep='\n')
- Output:
6 Khartoum-Omdurman 4.58
Racket
The more idiomatic functions for the task is findf
but it doesn't provide the position of the element in the list, so we write a variant. If the item is not found we return #f
as most of the Racket primitives do in these cases.
#lang racket
(define (findf/pos proc lst)
(let loop ([lst lst] [pos 0])
(cond
[(null? lst) #f]
[(proc (car lst)) pos]
[else (loop (cdr lst) (add1 pos))])))
Now we define the list that has the data for the task.
(define data '(#hash((name . "Lagos") (population . 21))
#hash((name . "Cairo") (population . 15.2))
#hash((name . "Kinshasa-Brazzaville") (population . 11.3))
#hash((name . "Greater Johannesburg") (population . 7.55))
#hash((name . "Mogadishu") (population . 5.85))
#hash((name . "Khartoum-Omdurman") (population . 4.98))
#hash((name . "Dar Es Salaam") (population . 4.7))
#hash((name . "Alexandria") (population . 4.58))
#hash((name . "Abidjan") (population . 4.4))
#hash((name . "Casablanca") (population . 3.98))))
We write tiny wrappers to retrieve values from the hash.
(define get-name
(lambda (x) (hash-ref x 'name)))
(define get-population
(lambda (x) (hash-ref x 'population)))
For completeness, ensure the data is sorted by population largest to smallest.
(define sorted-data (sort data > #:key get-population))
Use an unnamed function with our findf/pos function to get the position of "Dar Es Salaam".
(findf/pos (lambda (x) (equal? "Dar Es Salaam" (get-name x))) sorted-data)
;; -> 6
Use unnamed functions with findf for the other two test cases.
(get-name (findf (lambda (x) (< (get-population x) 5)) sorted-data))
;; -> "Khartoum-Omdurman"
(get-population (findf (lambda (x) (regexp-match? #rx"^A" (get-name x))) sorted-data))
;; -> 4.58
- Output:
6 "Khartoum-Omdurman" 4.58
Raku
(formerly Perl 6)
The built-in method .first fulfills the requirements of this task.
It takes any smart-matcher as a predicate. The :k adverb makes it return the key (i.e. numerical index) instead of the value of the element.
my @cities =
{ name => 'Lagos', population => 21.0 },
{ name => 'Cairo', population => 15.2 },
{ name => 'Kinshasa-Brazzaville', population => 11.3 },
{ name => 'Greater Johannesburg', population => 7.55 },
{ name => 'Mogadishu', population => 5.85 },
{ name => 'Khartoum-Omdurman', population => 4.98 },
{ name => 'Dar Es Salaam', population => 4.7 },
{ name => 'Alexandria', population => 4.58 },
{ name => 'Abidjan', population => 4.4 },
{ name => 'Casablanca', population => 3.98 },
;
say @cities.first(*<name> eq 'Dar Es Salaam', :k);
say @cities.first(*<population> < 5).<name>;
say @cities.first(*<name>.match: /^A/).<population>;
- Output:
6 Khartoum-Omdurman 4.58
REXX
It is more idiomatic in REXX to use sparse arrays to express a list of CSV values, especially those which have
embedded blanks in them (or other special characters).
Most REXX interpreters use (very efficient) hashing to index sparse arrays, which is much faster than performing an
incremental (sequential) search through an indexed array.
Only one loop is needed to find the result for the 2nd task requirement (although the loop could be eliminated).
The other two task requirements are found without using traditional IF statements.
The approach taken in this REXX program makes use of a DO WHILE and DO UNTIL structure which
makes it much simpler (and idiomatic) and easier to code (instead of adding multiple IF statements to a
generic search routine/function).
This REXX version does not rely on the list being sorted by population count.
/*REXX program (when using criteria) locates values (indices) from an associate array. */
$="Lagos=21, Cairo=15.2, Kinshasa-Brazzaville=11.3, Greater Johannesburg=7.55, Mogadishu=5.85,",
"Khartoum-Omdurman=4.98, Dar Es Salaam=4.7, Alexandria=4.58, Abidjan=4.4, Casablanca=3.98"
@.= '(city not found)'; city.= "(no city)" /*city search results for not found.*/
/* [↓] construct associate arrays. */
do #=0 while $\=''; parse var $ c '=' p "," $; c=space(c); parse var c a 2; @.c=#
city.#=c; pop.#=p; pop.c=#; if @.a==@. then @.a=c; /*assign city, pop, indices.*/
end /*#*/ /* [↑] city array starts at 0 index*/
/*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ task 1: show the INDEX of a city.*/
town= 'Dar Es Salaam' /*the name of a city for the search.*/
say 'The city of ' town " has an index of: " @.town /*show (zero─based) index of a city.*/
say /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ task 2: show 1st city whose pop<5 M*/
many=5 /*size of a city's pop in millions. */
do k=0 for # until pop.k<many; end /*find a city's pop from an index. */
say '1st city that has a population less than ' many " million is: " city.k
say /*▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ task 3: show 1st city with A* name.*/
c1= 'A' /*1st character of a city for search*/
say '1st city that starts with the letter' c1 "is: " @.c1 /*stick a fork in it, all done*/
output when using the default inputs:
The city of Dar Es Salaam has an index of: 6 1st city that has a population less than 5 million is: Khartoum-Omdurman 1st city that starts with the letter A is: Alexandria
Ring
# Project : Search a list of records
cities = [[:name = "Lagos",:population = 21.0 ],
[:name = "Cairo",:population = 15.2 ],
[:name = "Kinshasa-Brazzaville",:population = 11.3 ],
[:name = "Greater Johannesburg",:population = 7.55],
[:name = "Mogadishu",:population = 5.85],
[:name = "Khartoum-Omdurman",:population = 4.98],
[:name = "Dar Es Salaam",:population = 4.7 ],
[:name = "Alexandria",:population = 4.58],
[:name = "Abidjan",:population = 4.4 ],
[:name = "Casablanca",:population = 3.98]]
for n = 1 to len(cities)
if cities[n][:name] = "Dar Es Salaam"
see n-1 + nl
ok
next
for n = 1 to len(cities)
if cities[n][:population] < 5.00
see cities[n][:name] + nl
exit
ok
next
for n = 1 to len(cities)
if left(cities[n][:name],1) = "A"
see cities[n][:population] + nl
exit
ok
next
Output:
6 Khartoum-Omdurman 4.58
Ruby
cities = [
{name: "Lagos", population: 21},
{name: "Cairo", population: 15.2},
{name: "Kinshasa-Brazzaville", population: 11.3},
{name: "Greater Johannesburg", population: 7.55},
{name: "Mogadishu", population: 5.85},
{name: "Khartoum-Omdurman", population: 4.98},
{name: "Dar Es Salaam", population: 4.7},
{name: "Alexandria", population: 4.58},
{name: "Abidjan", population: 4.4},
{name: "Casablanca", population: 3.98},
]
puts cities.index{|city| city[:name] == "Dar Es Salaam"} # => 6
puts cities.find {|city| city[:population] < 5.0}[:name] # => Khartoum-Omdurman
puts cities.find {|city| city[:name][0] == "A"}[:population] # => 4.58
Rust
struct City {
name: &'static str,
population: f64,
}
fn main() {
let cities = [
City {
name: "Lagos",
population: 21.0,
},
City {
name: "Cairo",
population: 15.2,
},
City {
name: "Kinshasa-Brazzaville",
population: 11.3,
},
City {
name: "Greater Johannesburg",
population: 7.55,
},
City {
name: "Mogadishu",
population: 5.85,
},
City {
name: "Khartoum-Omdurman",
population: 4.98,
},
City {
name: "Dar Es Salaam",
population: 4.7,
},
City {
name: "Alexandria",
population: 4.58,
},
City {
name: "Abidjan",
population: 4.4,
},
City {
name: "Casablanca",
population: 3.98,
},
];
println!(
"{:?}",
cities.iter().position(|city| city.name == "Dar Es Salaam")
);
println!(
"{:?}",
cities
.iter()
.find(|city| city.population < 5.0)
.map(|city| city.name)
);
println!(
"{:?}",
cities
.iter()
.find(|city| city.name.starts_with('A'))
.map(|city| city.population)
);
}
- Output:
Some(6) Some("Khartoum-Omdurman") Some(4.58)
Scala
- Output:
See it in running in your browser by ScalaFiddle (JavaScript executed in browser) or by Scastie (remote JVM).
object SearchListOfRecords extends App {
val cities = Vector(
City("Lagos", 21.0e6),
City("Cairo", 15.2e6),
City("Kinshasa-Brazzaville", 11.3e6),
City("Greater Johannesburg", 7.55e6),
City("Mogadishu", 5.85e6),
City("Khartoum-Omdurman", 4.98e6),
City("Dar Es Salaam", 4.7e6),
City("Alexandria", 4.58e6),
City("Abidjan", 4.4e6),
City("Casablanca", 3.98e6)
)
def index = cities.indexWhere((_: City).name == "Dar Es Salaam")
def name = cities.find(_.pop < 5.0e6).map(_.name)
def pop = cities.find(_.name(0) == 'A').map(_.pop)
case class City(name: String, pop: Double)
println(
s"Index of first city whose name is 'Dar Es Salaam' = $index\n" +
s"Name of first city whose population is less than 5 million = ${name.get}\n" +
f"Population of first city whose name starts with 'A' = ${pop.get}%,.0f")
}
- Output:
Index of first city whose name is 'Dar Es Salaam' = 6 Name of first city whose population is less than 5 million = Khartoum-Omdurman Population of first city whose name starts with 'A' = 4,580,000
Scheme
High-level functions for finding items in lists are provided by the (srfi 1) library:
- (find pred? list) returns the first item matching the given pred? function, or #f if none match
- (list-index pred? list) is similar but returns the index of the match (or #f)
The predicate can be used to pick out the part of a compound structure we want to find.
In a similar way (srfi 132) provides sorting routines with user-defined predicates: one is illustrated to ensure the list of items is sorted in decreasing population order.
(import (scheme base)
(scheme char)
(scheme write)
(srfi 1) ; lists
(srfi 132)) ; sorting
(define-record-type <places> ; compound data type is a record with two fields
(make-place name population)
place?
(name place-name)
(population place-population))
(define *items*
(list-sort ; sort by decreasing population
(lambda (r1 r2) (> (place-population r1)
(place-population r2)))
(list (make-place "Lagos" 21.0)
(make-place "Cairo" 15.2)
(make-place "Kinshasa-Brazzaville" 11.3)
(make-place "Greater Johannesburg" 7.55)
(make-place "Mogadishu" 5.85)
(make-place "Khartoum-Omdurman" 4.98)
(make-place "Dar Es Salaam" 4.7)
(make-place "Alexandria" 4.58)
(make-place "Abidjan" 4.4)
(make-place "Casablanca" 3.98))))
;; Find the (zero-based) index of the first city in the list
;; whose name is "Dar Es Salaam"
(display "Test 1: ")
(display (list-index (lambda (item)
(string=? "Dar Es Salaam" (place-name item)))
*items*))
(newline)
;; Find the name of the first city in this list
;; whose population is less than 5 million
(display "Test 2: ")
(display (place-name
(find (lambda (item)
(< (place-population item) 5.0))
*items*)))
(newline)
;; Find the population of the first city in this list
;; whose name starts with the letter "A"
(display "Test 3: ")
(display (place-population
(find (lambda (item)
(char=? (string-ref (place-name item) 0)
#\A))
*items*)))
(newline)
- Output:
Test 1: 6 Test 2: Khartoum-Omdurman Test 3: 4.58
Sidef
struct City {
String name,
Number population,
}
var cities = [
City("Lagos", 21),
City("Cairo", 15.2),
City("Kinshasa-Brazzaville", 11.3),
City("Greater Johannesburg", 7.55),
City("Mogadishu", 5.85),
City("Khartoum-Omdurman", 4.98),
City("Dar Es Salaam", 4.7),
City("Alexandria", 4.58),
City("Abidjan", 4.4),
City("Casablanca", 3.98),
]
say cities.index{|city| city.name == "Dar Es Salaam"}
say cities.first{|city| city.population < 5.0}.name
say cities.first{|city| city.name.begins_with("A")}.population
- Output:
6 Khartoum-Omdurman 4.58
SQL
I probably wrote the C implementation for this problem. It has been quite some time, anyways, I got a notification that this page has been edited and while browsing it on my phone I found that this most database worthy of problems doesn't have a SQL implementation. Thus even after a long day, I logged back in again, to rosettacode, not work.
I am kind of fond of SQL, I am not a DBA but wanted to be one when I started my career. Databases are among the few things I still hold in respect :)
Credits : This wouldn't have been possible without https://sqliteonline.com , you can create your own tables and run queries on them without installing your own DB. The queries below should work on most DBs but some like Access ( is that really a DB ? ) doesn't have LIMIT, or so I read.
But to get started, first we create the table :
PS : I realised after posting this implementation that not all cities in this list are capitals, well, it was a long day :P
create table african_capitals(name varchar2(100), population_in_millions number(3,2));
Then we load the data :
insert into african_capitals values("Lagos", 21.0);
insert into african_capitals values("Cairo",15.2);
insert into african_capitals values("Kinshasa-Brazzaville",11.3);
insert into african_capitals values("Greater Johannesburg",7.55);
insert into african_capitals values("Mogadishu",5.85);
insert into african_capitals values("Khartoum-Omdurman",4.98);
insert into african_capitals values("Dar Es Salaam",4.7);
insert into african_capitals values("Alexandria",4.58);
insert into african_capitals values("Abidjan",4.4);
insert into african_capitals values("Casablanca",3.98);
If you are using sqliteonline.com, run the select query below to inspect your data :
select * from african_capitals;
Now we are ready to fire the queries to solve the problem statements, one note though : DB tables are 1 indexed, hence the capital of Tanzania is the 7th item, not 6th as is the case for C and it's vast family.
with temp as(select name,row_number() over() as rownum from african_capitals) select rownum from temp where name="Dar Es Salaam";
- Output:
7
The LIMIT keyword in the 2nd and 3rd queries is not supported by all DBs, it works on Oracle and SQLite though
select name from african_capitals where population_in_millions < 5 limit 1;
- Output:
Khartoum-Omdurman
select population_in_millions from african_capitals where name like "A%" limit 1;
- Output:
4.58
Standard ML
type city = { name : string, population : real }
val citys : city list = [
{ name = "Lagos", population = 21.0 },
{ name = "Cairo", population = 15.2 },
{ name = "Kinshasa-Brazzaville", population = 11.3 },
{ name = "Greater Johannesburg", population = 7.55 },
{ name = "Mogadishu", population = 5.85 },
{ name = "Khartoum-Omdurman", population = 4.98 },
{ name = "Dar Es Salaam", population = 4.7 },
{ name = "Alexandria", population = 4.58 },
{ name = "Abidjan", population = 4.4 },
{ name = "Casablanca", population = 3.98 } ]
val firstCityi = #1 (valOf (List.findi (fn (_, city) => #name(city) = "Dar Es Salaam") citys))
val firstBelow5M = #name (valOf (List.find (fn city => #population(city) < 5.0) citys))
val firstPopA = #population (valOf (List.find (fn city => String.substring (#name(city), 0, 1) = "A") citys))
- Output:
val firstCityi = 6 : int val firstBelow5M = "Khartoum-Omdurman" : string val firstPopA = 4.58 : real
Swift
Data:
struct Place {
var name: String
var population: Double
}
let places = [
Place(name: "Lagos", population: 21.0),
Place(name: "Cairo", population: 15.2),
Place(name: "Kinshasa-Brazzaville", population: 11.3),
Place(name: "Greater Johannesburg", population: 7.55),
Place(name: "Mogadishu", population: 5.85),
Place(name: "Khartoum-Omdurman", population: 4.98),
Place(name: "Dar Es Salaam", population: 4.7),
Place(name: "Alexandria", population: 4.58),
Place(name: "Abidjan", population: 4.4),
Place(name: "Casablanca", population: 3.98)
]
Using built-in methods
guard let salaamI = places.firstIndex(where: { $0.name == "Dar Es Salaam" }) else {
fatalError()
}
print("Dar Es Salaam has index: \(salaamI)")
guard let lessThan5 = places.first(where: { $0.population < 5 }) else {
fatalError()
}
print("First city with less than 5mil population: \(lessThan5.name)")
guard let startsWithA = places.first(where: { $0.name.hasPrefix("A") }) else {
fatalError()
}
print("Population of first city starting with A: \(startsWithA.population)")
- Output:
Dar Es Salaam has index: 6 First city with less than 5mil population: Khartoum-Omdurman Population of first city starting with A: 4.58
Custom method using Key Paths
extension Collection {
func firstIndex<V: Equatable>(
withProperty prop: KeyPath<Element, V>,
_ op: (V, V) -> Bool,
_ val: V
) -> Index? {
for i in indices where op(self[i][keyPath: prop], val) {
return i
}
return nil
}
}
guard let salaamI = places.firstIndex(withProperty: \.name, ==, "Dar Es Salaam") else {
fatalError()
}
print("Dar Es Salaam has index: \(salaamI)")
guard let lessThan5I = places.firstIndex(withProperty: \.population, <, 5) else {
fatalError()
}
print("First city with less than 5mil population: \(places[lessThan5I].name)")
guard let aI = places.firstIndex(withProperty: \.name, { $0.hasPrefix($1) }, "A") else {
fatalError()
}
print("Population of first city starting with A: \(places[aI].population)")
- Output:
Same as first method
Tcl
# records is a list of dicts.
set records {
{ name "Lagos" population 21.0 }
{ name "Cairo" population 15.2 }
{ name "Kinshasa-Brazzaville" population 11.3 }
{ name "Greater Johannesburg" population 7.55 }
{ name "Mogadishu" population 5.85 }
{ name "Khartoum-Omdurman" population 4.98 }
{ name "Dar Es Salaam" population 4.7 }
{ name "Alexandria" population 4.58 }
{ name "Abidjan" population 4.4 }
{ name "Casablanca" population 3.98 }
}
# Tcl's version of "higher order programming" is a bit unusual. Instead of passing lambda
# functions, it is often easier to pass script fragments. This command takes two such
# arguments: $test is an expression (as understood by [expr]), and $action is a script.
# thanks to [dict with], both $test and $action can refer to the fields of the current
# record by name - or to other variables used in the proc, like $index or $record.
proc search {records test action} {
set index 0
foreach record $records {
dict with record {}
if $test $action
incr index
}
error "No match found!"
}
# Find the (zero-based) index of the first city in the list whose name is "Dar Es Salaam"
puts [search $records {$name eq "Dar Es Salaam"} {return $index}]
# Find the name of the first city in this list whose population is less than 5 million
puts [search $records {$population < 5.0} {return $name}]
# Find the population of the first city in this list whose name starts with the letter "A"
puts [search $records {[string match A* $name]} {return $population}]
- Output:
6 Khartoum-Omdurman 4.58
V (Vlang)
const cities = {"Lagos": 21.0, "Cairo": 15.2, "Kinshasa-Brazzaville": 11.3, "Greater Johannesburg": 7.55, "Mogadishu": 5.85, "Khartoum-Omdurman": 4.98, "Dar Es Salaam": 4.7, "Alexandria": 4.58, "Abidjan": 4.4, "Casablanca": 3.98}
fn main() {
mut count := 0
mut result :=""
for city, population in cities {
count++
if city == "Dar Es Salaam" && !result.contains("Index") {
result += "Index of '${city}': ${count - 1}\n"
}
if population < 5 && !result.contains("million") {
result += "First city with less than 5 million: ${city}\n"
}
if city[0].ascii_str() == "A" && !result.contains("letter") {
result += "First population that starts with letter 'A': ${population}\n"
}
}
println(result.all_before_last("\n"))
}
- Output:
First city with less than 5 million: Khartoum-Omdurman Index of 'Dar Es Salaam': 6 First population that starts with letter 'A': 4.58
Wren
import "./dynamic" for Tuple
var Element = Tuple.create("Element", ["record", "index"])
var findFirst = Fn.new { |seq, pred|
var i = 0
for (e in seq) {
if (pred.call(e)) return Element.new(e, i)
i = i + 1
}
return Element.new(null, -1)
}
var City = Tuple.create("City", ["name", "pop"])
var cities = [
City.new("Lagos", 21.0),
City.new("Cairo", 15.2),
City.new("Kinshasa-Brazzaville", 11.3),
City.new("Greater Johannesburg", 7.55),
City.new("Mogadishu", 5.85),
City.new("Khartoum-Omdurman", 4.98),
City.new("Dar Es Salaam", 4.7),
City.new("Alexandria", 4.58),
City.new("Abidjan", 4.4),
City.new("Casablanca", 3.98)
]
var index = findFirst.call(cities) { |c| c.name == "Dar Es Salaam" }.index
System.print("Index of the first city whose name is 'Dar Es Salaam' is %(index).")
var city = findFirst.call(cities) { |c| c.pop < 5 }.record.name
System.print("First city whose population is less than 5 million is %(city).")
var pop = findFirst.call(cities) { |c| c.name[0] == "A" }.record.pop
System.print("The population of the first city whose name begins with 'A' is %(pop).")
- Output:
Index of the first city whose name is 'Dar Es Salaam' is 6. First city whose population is less than 5 million is Khartoum-Omdurman. The population of the first city whose name begins with 'A' is 4.58.
zkl
list:=T(SD("name","Lagos", "population",21.0), // SD is a fixed dictionary
SD("name","Cairo", "population",15.2),
SD("name","Kinshasa-Brazzaville", "population",11.3),
SD("name","Greater Johannesburg", "population", 7.55),
SD("name","Mogadishu", "population", 5.85),
SD("name","Khartoum-Omdurman", "population", 4.98),
SD("name","Dar Es Salaam", "population", 4.7),
SD("name","Alexandria", "population", 4.58),
SD("name","Abidjan", "population", 4.4),
SD("name","Casablanca", "population", 3.98));
// Test case 1:
n:=list.filter1n(fcn(city){ city["name"]=="Dar Es Salaam" }); // one way
n:=list.filter1n(fcn(city){ city["name"].matches("dar es salaam") }); // or this way
n.println("==index of ",list[n].values);
// Test case 2:
city:=list.filter1(fcn(city){ city["population"]<5.0 }); // stop after first match
city["name"].println(" is the first city with population under 5 million.");
// Test case 3:
city:=list.filter1(fcn(city){ city["name"][0]=="A" });
println("The first \"A*\" city (%s) with population under 5 million: %f".fmt(city.values.xplode()));
where a SD is a small read only dictionary and filter1 is a filter that stops at the first match (returning the matched item). The filter method returns False on failure. The YAJL library could be used to parse the JSON data directly (eg if the data is from the web).
- Output:
6==index of L("Dar Es Salaam",4.7) Khartoum-Omdurman is the first city with population under 5 million. The first "A*" city (Alexandria) with population under 5 million: 4.580000
- Programming Tasks
- List processing
- 11l
- 8086 Assembly
- 8th
- Action!
- Action! Tool Kit
- Ada
- ALGOL 68
- AppleScript
- Arturo
- BASIC
- Commodore BASIC
- FreeBASIC
- QBasic
- True BASIC
- Yabasic
- C
- C sharp
- C++
- Clojure
- Common Lisp
- DuckDB
- EchoLisp
- EchoLisp examples needing attention
- Examples needing attention
- Elena
- Elixir
- Factor
- Fortran
- FutureBasic
- Go
- Haskell
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lingo
- Lua
- Ksh
- Maple
- Mathematica
- Wolfram Language
- Nim
- OCaml
- Pascal
- Free Pascal
- PascalABC.NET
- Perl
- Phix
- Phix/basics
- Phixmonti
- PHP
- PicoLisp
- PowerShell
- Python
- Racket
- Raku
- REXX
- Ring
- Ruby
- Rust
- Scala
- Scheme
- Scheme/SRFIs
- Sidef
- SQL
- Standard ML
- Swift
- Tcl
- V (Vlang)
- Wren
- Wren-dynamic
- Zkl