Multiplication tables
You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Produce a formatted 12×12 multiplication table of the kind memorized by rote when in primary (or elementary) school.
Only print the top half triangle of products.
11l
V n = 12
L(j) 1..n
print(‘#3’.format(j), end' ‘ ’)
print(‘│’)
L 1..n
print(‘────’, end' ‘’)
print(‘┼───’)
L(i) 1..n
L(j) 1..n
print(I j < i {‘ ’} E ‘#3 ’.format(i * j), end' ‘’)
print(‘│ ’i)
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 │ ────────────────────────────────────────────────┼─── 1 2 3 4 5 6 7 8 9 10 11 12 │ 1 4 6 8 10 12 14 16 18 20 22 24 │ 2 9 12 15 18 21 24 27 30 33 36 │ 3 16 20 24 28 32 36 40 44 48 │ 4 25 30 35 40 45 50 55 60 │ 5 36 42 48 54 60 66 72 │ 6 49 56 63 70 77 84 │ 7 64 72 80 88 96 │ 8 81 90 99 108 │ 9 100 110 120 │ 10 121 132 │ 11 144 │ 12
360 Assembly
* 12*12 multiplication table 14/08/2015
MULTTABL CSECT
USING MULTTABL,R12
LR R12,R15
LA R10,0 buffer pointer
LA R3,BUFFER
MVC 0(4,R3),=C' | '
LA R10,4(R10)
LA R5,12
LA R4,1 i=1
LOOPN LA R3,BUFFER do i=1 to 12
AR R3,R10
XDECO R4,XDEC i
MVC 0(4,R3),XDEC+8 output i
LA R10,4(R10)
LA R4,1(R4)
BCT R5,LOOPN end i
XPRNT BUFFER,52
XPRNT PORT,52 border
LA R5,12
LA R4,1 i=1 (R4)
LOOPI LA R10,0 do i=1 to 12
MVC BUFFER,=CL52' '
LA R3,BUFFER
AR R3,R10
XDECO R4,XDEC
MVC 0(2,R3),XDEC+10
LA R10,2(R10)
LA R3,BUFFER
AR R3,R10
MVC 0(2,R3),=C'| '
LA R10,2(R10)
LA R7,12
LA R6,1 j=1 (R6)
LOOPJ CR R6,R4 do j=1 to 12
BNL MULT
LA R3,BUFFER
AR R3,R10
MVC 0(4,R3),=C' '
LA R10,4(R10)
B NEXTJ
MULT LR R9,R4 i
MR R8,R6 i*j in R8R9
LA R3,BUFFER
AR R3,R10
XDECO R9,XDEC
MVC 0(4,R3),XDEC+8
LA R10,4(R10)
NEXTJ LA R6,1(R6)
BCT R7,LOOPJ end j
ELOOPJ XPRNT BUFFER,52
LA R4,1(R4)
BCT R5,LOOPI end i
ELOOPI XR R15,R15
BR R14
BUFFER DC CL52' '
XDEC DS CL12
PORT DC C'--+-------------------------------------------------'
YREGS
END MULTTABL
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
8080 Assembly
org 100h
lxi h,output
;;; Make the header
call skip ; Four spaces,
mvi m,'|' ; separator,
inx h
lxi d,0C01h ; 12 fields starting at 1
fnum: mov a,e ; Field number
call num
inr e
dcr d ; If not 12 yet, next field number
jnz fnum
call nl ; Newline
mvi a,'-' ; Four dashes,
mvi b,4
call bchr
mvi m,'+' ; Plus,
inx h
mvi b,12*4 ; and 12*4 more dashes
call bchr
call nl ; Newline
;;; Write the 12 lines
mvi d,1 ; Start at line 1,
line: mov a,d ; Add the line number
call num
mvi m,'|' ; separator
inx h
mvi e,1 ; Start at column 1
mvi c,0 ; Cumulative sum at C
field: mov a,c ; Add line number giving next column
add d
mov c,a
mov a,e ; If column >= line, we need to print
cmp d
mov a,c ; the current total
cc skip ; skip field if column >= line
cnc num ; print field if column < line
inr e ; next column
mov a,e
cpi 13 ; column 13?
jnz field ; If not, next field on line
call nl ; But if so, add newline
inr d ; next line
mov a,d
cpi 13 ; line 13?
jnz line ; If not, next line
mvi m,'$' ; Write a CP/M string terminator,
mvi c,9 ; And use CP/M to print the string
lxi d,output
jmp 5
;;; Add the character in A to the string at HL, B times
bchr: mov m,a
inx h
dcr b
jnz bchr
ret
;;; Add newline to string at HL
nl: mvi m,13 ; CR
inx h
mvi m,10 ; LF
inx h
ret
;;; Add four spaces to string at HL (skip field)
skip: mvi b,' '
mov m,b
inx h
mov m,b
inx h
mov m,b
inx h
mov m,b
inx h
ret
;;; Add 3-digit number in A to string at HL
num: mvi m,' ' ; Separator space
inx h
ana a ; Clear carry
mvi b,100 ; 100s digit
call dspc
mvi b,10 ; 10s digit
call dspc
mvi b,1 ; 1s digit
dspc: jc dgt ; If carry, we need a digit
cmp b ; >= digit?
jnc dgt ; If not, we need a digit
mvi m,' ' ; Otherwise, fill with space
inx h
cmc ; Return with carry off
ret
dgt: mvi m,'0'-1 ; Calculate digit
dloop: inr m ; Increment digit
sub b ; while B can be subtracted
jnc dloop
add b
inx h
ret
output: equ $
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
AArch64 Assembly
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program multtable64.s */
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
.equ MAXI, 12
/*********************************/
/* Initialized data */
/*********************************/
.data
sMessValeur: .fill 11, 1, ' ' // size => 11
szCarriageReturn: .asciz "\n"
sBlanc1: .asciz " "
sBlanc2: .asciz " "
sBlanc3: .asciz " "
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: // entry of program
ldr x6,qAdrsBlanc1
ldr x7,qAdrsBlanc2
ldr x8,qAdrsBlanc3
// display first line
mov x4,#0
1: // begin loop
mov x0,x4
ldr x1,qAdrsMessValeur // display value
bl conversion10 // call function
strb wzr,[x1,x0] // final zéro on display value
ldr x0,qAdrsMessValeur
bl affichageMess // display message
cmp x4,#10 // one or two digit in résult
csel x0,x7,x8,ge // display 2 or 3 spaces
bl affichageMess // display message
add x4,x4,1 // increment counter
cmp x4,MAXI
ble 1b // loop
ldr x0,qAdrszCarriageReturn
bl affichageMess // display carriage return
mov x5,#1 // line counter
2: // begin loop lines
mov x0,x5 // display column 1 with N° line
ldr x1,qAdrsMessValeur // display value
bl conversion10 // call function
strb wzr,[x1,x0] // final zéro
ldr x0,qAdrsMessValeur
bl affichageMess // display message
cmp x5,#10 // one or two digit in N° line
csel x0,x7,x8,ge // display 2 or 3 spaces
bl affichageMess
mov x4,#1 // counter column
3: // begin loop columns
mul x0,x4,x5 // multiplication
mov x3,x0 // save résult
ldr x1,qAdrsMessValeur // display value
bl conversion10 // call function
strb wzr,[x1,x0]
ldr x0,qAdrsMessValeur
bl affichageMess // display message
cmp x3,100 // 3 digits in résult ?
csel x0,x6,x0,ge // display 1 spaces
bge 4f
cmp x3,10 // 2 digits in result
csel x0,x7,x8,ge // display 2 or 3 spaces
4:
bl affichageMess // display message
add x4,x4,1 // increment counter column
cmp x4,x5 // < counter lines
ble 3b // loop
ldr x0,qAdrszCarriageReturn
bl affichageMess // display carriage return
add x5,x5,1 // increment line counter
cmp x5,MAXI // MAXI ?
ble 2b // loop
100: // standard end of the program
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsMessValeur: .quad sMessValeur
qAdrszCarriageReturn: .quad szCarriageReturn
qAdrsBlanc1: .quad sBlanc1
qAdrsBlanc2: .quad sBlanc2
qAdrsBlanc3: .quad sBlanc3
/******************************************************************/
/* Converting a register to a decimal unsigned */
/******************************************************************/
/* x0 contains value and x1 address area */
/* x0 return size of result (no zero final in area) */
/* area size => 11 bytes */
.equ LGZONECAL, 10
conversion10:
stp x1,lr,[sp,-16]! // save registers
stp x2,x3,[sp,-16]! // save registers
stp x4,x5,[sp,-16]! // save registers
mov x3,x1
mov x2,#LGZONECAL
mov x4,10
1: // start loop
mov x5,x0
udiv x0,x5,x4
msub x1,x0,x4,x5 // x5 <- dividende. quotient ->x0 reste -> x1
add x1,x1,48 // digit
strb w1,[x3,x2] // store digit on area
cbz x0,2f // stop if quotient = 0
sub x2,x2,1 // else previous position
b 1b // and loop
// and move digit from left of area
2:
mov x4,0
3:
ldrb w1,[x3,x2]
strb w1,[x3,x4]
add x2,x2,1
add x4,x4,1
cmp x2,LGZONECAL
ble 3b
// and move spaces in end on area
mov x0,x4 // result length
mov x1,' ' // space
4:
strb w1,[x3,x4] // store space in area
add x4,x4,1 // next position
cmp x4,LGZONECAL
ble 4b // loop if x4 <= area size
100:
ldp x4,x5,[sp],16 // restaur 2 registers
ldp x2,x3,[sp],16 // restaur 2 registers
ldp x1,lr,[sp],16 // restaur 2 registers
ret // return to address lr x30
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
- Output:
0 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 2 4 3 3 6 9 4 4 8 12 16 5 5 10 15 20 25 6 6 12 18 24 30 36 7 7 14 21 28 35 42 49 8 8 16 24 32 40 48 56 64 9 9 18 27 36 45 54 63 72 81 10 10 20 30 40 50 60 70 80 90 100 11 11 22 33 44 55 66 77 88 99 110 121 12 12 24 36 48 60 72 84 96 108 120 132 144
Action!
PROC PrintRight(BYTE num,size)
BYTE i
IF num<10 THEN
size==-1
ELSEIF num<100 THEN
size==-2
ELSE
size==-3
FI
FOR i=1 TO size
DO
Put(' )
OD
PrintB(num)
RETURN
PROC Main()
BYTE ARRAY colw=[1 1 1 2 2 2 2 2 2 3 3 3]
BYTE i,j,x,w
;clear screen
Put(125)
;draw frame
Position(1,3)
FOR i=1 TO 38
DO Put($12) OD
FOR j=2 TO 15
DO
Position(36,j)
Put($7C)
OD
Position(36,3)
Put($13)
;draw numbers
FOR j=1 TO 12
DO
x=1
FOR i=1 TO 12
DO
w=colw(i-1)
IF i>=j THEN
IF j=1 THEN
Position(x,j+1)
PrintRight(i*j,w)
FI
IF i=12 THEN
Position(37,j+3)
PrintRight(j,2)
FI
Position(x,j+3)
PrintRight(i*j,w)
FI
x==+w+1
OD
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
1 2 3 4 5 6 7 8 9 10 11 12│ ───────────────────────────────────┼── 1 2 3 4 5 6 7 8 9 10 11 12│ 1 4 6 8 10 12 14 16 18 20 22 24│ 2 9 12 15 18 21 24 27 30 33 36│ 3 16 20 24 28 32 36 40 44 48│ 4 25 30 35 40 45 50 55 60│ 5 36 42 48 54 60 66 72│ 6 49 56 63 70 77 84│ 7 64 72 80 88 96│ 8 81 90 99 108│ 9 100 110 120│10 121 132│11 144│12
ActionScript
package {
import flash.display.Sprite;
import flash.events.Event;
import flash.text.TextField;
import flash.text.TextFieldAutoSize;
import flash.text.TextFormat;
[SWF (width = 550, height = 550)]
public class MultiplicationTable extends Sprite {
public function MultiplicationTable() {
if ( stage ) _init();
else addEventListener(Event.ADDED_TO_STAGE, _init);
}
private function _init(e:Event = null):void {
removeEventListener(Event.ADDED_TO_STAGE, _init);
var format:TextFormat = new TextFormat();
format.size = 15;
var blockSize:uint = 40;
var max:uint = 12;
var i:uint, j:uint;
var tf:TextField;
for ( i = 1; i <= max; i++ ) {
tf = new TextField();
tf.defaultTextFormat = format;
tf.x = blockSize * i;
tf.y = 0;
tf.width = tf.height = blockSize;
tf.autoSize = TextFieldAutoSize.CENTER;
tf.text = String(i);
addChild(tf);
tf = new TextField();
tf.defaultTextFormat = format;
tf.x = 0;
tf.y = blockSize * i;
tf.width = tf.height = blockSize;
tf.autoSize = TextFieldAutoSize.CENTER;
tf.text = String(i);
addChild(tf);
}
var yOffset:Number = tf.textHeight / 2;
y += yOffset;
graphics.lineStyle(1, 0x000000);
graphics.moveTo(blockSize, -yOffset);
graphics.lineTo(blockSize, (blockSize * (max + 1)) - yOffset);
graphics.moveTo(0, blockSize - yOffset);
graphics.lineTo(blockSize * (max + 1), blockSize - yOffset);
for ( i = 1; i <= max; i++ ) {
for ( j = 1; j <= max; j++ ) {
if ( j > i )
continue;
tf = new TextField();
tf.defaultTextFormat = format;
tf.x = blockSize * i;
tf.y = blockSize * j;
tf.width = tf.height = blockSize;
tf.autoSize = TextFieldAutoSize.CENTER;
tf.text = String(i * j);
addChild(tf);
}
}
}
}
}
Ada
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Strings.Fixed; use Ada.Strings.Fixed;
procedure Multiplication_Table is
package IO is new Integer_IO (Integer);
use IO;
begin
Put (" | ");
for Row in 1..12 loop
Put (Row, Width => 4);
end loop;
New_Line;
Put_Line ("--+-" & 12 * 4 * '-');
for Row in 1..12 loop
Put (Row, Width => 2);
Put ("| ");
for Column in 1..12 loop
if Column < Row then
Put (" ");
else
Put (Row * Column, Width => 4);
end if;
end loop;
New_Line;
end loop;
end Multiplication_Table;
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Agena
scope
# print a school style multiplication table
# NB: print outputs a newline at the end, write and printf do not
write( " " );
for i to 12 do printf( " %3d", i ) od;
printf( "\n +" );
for i to 12 do write( "----" ) od;
for i to 12 do
printf( "\n%3d|", i );
for j to i - 1 do write( " " ) od;
for j from i to 12 do printf( " %3d", i * j ) od;
od;
print()
epocs
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 +------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
ALGOL 68
main:(
INT max = 12;
INT width = ENTIER(log(max)*2)+1;
STRING empty = " "*width, sep="|", hr = "+" + (max+1)*(width*"-"+"+");
FORMAT ifmt = $g(-width)"|"$; # remove leading zeros #
printf(($gl$, hr));
print(sep + IF width<2 THEN "x" ELSE " "*(width-2)+"x " FI + sep);
FOR col TO max DO printf((ifmt, col)) OD;
printf(($lgl$, hr));
FOR row TO max DO
[row:max]INT product;
FOR col FROM row TO max DO product[col]:=row*col OD;
STRING prefix=(empty+sep)*(row-1);
printf(($g$, sep, ifmt, row, $g$, prefix, ifmt, product, $l$))
OD;
printf(($gl$, hr))
)
- Output:
+---+---+---+---+---+---+---+---+---+---+---+---+---+ | x | 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| +---+---+---+---+---+---+---+---+---+---+---+---+---+ | 1| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| | 2| | 4| 6| 8| 10| 12| 14| 16| 18| 20| 22| 24| | 3| | | 9| 12| 15| 18| 21| 24| 27| 30| 33| 36| | 4| | | | 16| 20| 24| 28| 32| 36| 40| 44| 48| | 5| | | | | 25| 30| 35| 40| 45| 50| 55| 60| | 6| | | | | | 36| 42| 48| 54| 60| 66| 72| | 7| | | | | | | 49| 56| 63| 70| 77| 84| | 8| | | | | | | | 64| 72| 80| 88| 96| | 9| | | | | | | | | 81| 90| 99|108| | 10| | | | | | | | | |100|110|120| | 11| | | | | | | | | | |121|132| | 12| | | | | | | | | | | |144| +---+---+---+---+---+---+---+---+---+---+---+---+---+
ALGOL W
begin
% print a school style multiplication table %
i_w := 3; s_w := 0; % set output formating %
write( " " );
for i := 1 until 12 do writeon( " ", i );
write( " +" );
for i := 1 until 12 do writeon( "----" );
for i := 1 until 12 do begin
write( i, "|" );
for j := 1 until i - 1 do writeon( " " );
for j := i until 12 do writeon( " ", i * j );
end;
end.
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 +------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
APL
A simple table is trivial:
(⍳12)∘.×⍳12
But that prints out all the duplicated results across the diagonal:
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 6 9 12 15 18 21 24 27 30 33 36 4 8 12 16 20 24 28 32 36 40 44 48 5 10 15 20 25 30 35 40 45 50 55 60 6 12 18 24 30 36 42 48 54 60 66 72 7 14 21 28 35 42 49 56 63 70 77 84 8 16 24 32 40 48 56 64 72 80 88 96 9 18 27 36 45 54 63 72 81 90 99 108 10 20 30 40 50 60 70 80 90 100 110 120 11 22 33 44 55 66 77 88 99 110 121 132 12 24 36 48 60 72 84 96 108 120 132 144
Getting just the top half, and some labels, requires a bit more work. Text alignment varies with implementation so the numbers will need some tweaking:
⎕←(' ×',2↑' '),4 0⍕⍳12⋄{⎕←((4 0⍕⍵),⊂1(4×(⍵-1))⍴' '),4 0⍕(⍵-1)↓(⍵×⍳12)}¨⍳12
After printing the table, GNU APL will will output the value of the expression that produced it, so in addition to adjusting the header spacing this solution uses ⍬⊣ to throw that value away.
⎕←(' ×',4↑' '),4 0⍕⍳12⋄⍬⊣{⎕←((4 0⍕⍵),⊂1(4×(⍵-1))⍴' '),4 0⍕(⍵-1)↓(⍵×⍳12)}¨⍳12
- Output:
× 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
AppleScript
Iteration
set n to 12 -- Size of table.
repeat with x from 0 to n
if x = 0 then set {table, x} to {{return}, -1}
repeat with y from 0 to n
if y's contents = 0 then
if x > 0 then set row to {f(x)}
if x = -1 then set {row, x} to {{f("x")}, 1}
else
if y ≥ x then set end of row to f(x * y)
if y < x then set end of row to f("")
end if
end repeat
set end of table to row & return
end repeat
return table as string
-- Handler/Function for formatting fixed width integer string.
on f(x)
set text item delimiters to ""
return (characters -4 thru -1 of (" " & x)) as string
end f
- Output:
" x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144 "
Functional composition
As an alternative to iteration, we could also write the top level more declaratively, composing a solution from a set of generic functions.
(ES5 functional version)
------------------- MULTIPLICATION TABLE -----------------
-- multiplicationTable :: Int -> Int -> String
on multiplicationTable(lower, upper)
tell ap(my tableText, my mulTable)
|λ|(enumFromTo(lower, upper))
end tell
end multiplicationTable
-- mulTable :: [Int]-> [[Int]]
on mulTable(axis)
script column
on |λ|(x)
script row
on |λ|(y)
if y < x then
{}
else
{x * y}
end if
end |λ|
end script
{{x} & map(row, axis)}
end |λ|
end script
concatMap(column, axis)
end mulTable
-- tableText :: [[Int]] -> String
on tableText(axis, rows)
set colWidth to 1 + (length of (|last|(|last|(rows)) as string))
set cell to replicate(colWidth, space)
script tableLine
on |λ|(xys)
script tableCell
on |λ|(int)
(characters (-colWidth) thru -1 of (cell & int)) as string
end |λ|
end script
intercalate(space, map(tableCell, xys))
end |λ|
end script
set legend to {{"x"} & axis}
intercalate(linefeed, map(tableLine, legend & {{}} & rows))
end tableText
--------------------------- TEST -------------------------
on run
multiplicationTable(1, 12) & linefeed & linefeed & ¬
multiplicationTable(30, 40)
end run
-------------------- GENERIC FUNCTIONS -------------------
-- ap :: (a -> b -> c) -> (a -> b) -> a -> c
on ap(f, g)
-- The application of f x to g x
script go
property mf : |λ| of mReturn(f)
property mg : |λ| of mReturn(g)
on |λ|(x)
mf(x, mg(x))
end |λ|
end script
end ap
-- concatMap :: (a -> [b]) -> [a] -> [b]
on concatMap(f, xs)
set lst to {}
set lng to length of xs
tell mReturn(f)
repeat with i from 1 to lng
set lst to (lst & |λ|(item i of xs, i, xs))
end repeat
end tell
return lst
end concatMap
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m > n then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- justifyRight :: Int -> Char -> Text -> Text
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight
-- last :: [a] -> a
on |last|(xs)
item -1 of xs
end |last|
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- replicate :: Int -> String -> String
on replicate(n, s)
set out to ""
if n < 1 then return out
set dbl to s
repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate
- Output:
x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144 x 30 31 32 33 34 35 36 37 38 39 40 30 900 930 960 990 1020 1050 1080 1110 1140 1170 1200 31 961 992 1023 1054 1085 1116 1147 1178 1209 1240 32 1024 1056 1088 1120 1152 1184 1216 1248 1280 33 1089 1122 1155 1188 1221 1254 1287 1320 34 1156 1190 1224 1258 1292 1326 1360 35 1225 1260 1295 1330 1365 1400 36 1296 1332 1368 1404 1440 37 1369 1406 1443 1480 38 1444 1482 1520 39 1521 1560 40 1600
ARM Assembly
/* ARM assembly Raspberry PI */
/* program multtable.s */
/************************************/
/* Constantes */
/************************************/
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
.equ MAXI, 12
/*********************************/
/* Initialized data */
/*********************************/
.data
sMessValeur: .fill 11, 1, ' ' @ size => 11
szCarriageReturn: .asciz "\n"
sBlanc1: .asciz " "
sBlanc2: .asciz " "
sBlanc3: .asciz " "
/*********************************/
/* UnInitialized data */
/*********************************/
.bss
/*********************************/
/* code section */
/*********************************/
.text
.global main
main: @ entry of program
push {fp,lr} @ saves 2 registers
@ display first line
mov r4,#0
1: @ begin loop
mov r0,r4
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
mov r2,#0 @ final zéro
strb r2,[r1,r0] @ on display value
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
cmp r4,#10 @ one or two digit in résult
ldrgt r0,iAdrsBlanc2 @ two display two spaces
ldrle r0,iAdrsBlanc3 @ one display 3 spaces
bl affichageMess @ display message
add r4,#1 @ increment counter
cmp r4,#MAXI
ble 1b @ loop
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display carriage return
mov r5,#1 @ line counter
2: @ begin loop lines
mov r0,r5 @ display column 1 with N° line
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
mov r2,#0 @ final zéro
strb r2,[r1,r0]
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
cmp r5,#10 @ one or two digit in N° line
ldrge r0,iAdrsBlanc2
ldrlt r0,iAdrsBlanc3
bl affichageMess
mov r4,#1 @ counter column
3: @ begin loop columns
mul r0,r4,r5 @ multiplication
mov r3,r0 @ save résult
ldr r1,iAdrsMessValeur @ display value
bl conversion10 @ call function
mov r2,#0
strb r2,[r1,r0]
ldr r0,iAdrsMessValeur
bl affichageMess @ display message
cmp r3,#100 @ 3 digits in résult ?
ldrge r0,iAdrsBlanc1 @ yes, display one space
bge 4f
cmp r3,#10 @ 2 digits in result
ldrge r0,iAdrsBlanc2 @ yes display 2 spaces
ldrlt r0,iAdrsBlanc3 @ no display 3 spaces
4:
bl affichageMess @ display message
add r4,#1 @ increment counter column
cmp r4,r5 @ < counter lines
ble 3b @ loop
ldr r0,iAdrszCarriageReturn
bl affichageMess @ display carriage return
add r5,#1 @ increment line counter
cmp r5,#MAXI @ MAXI ?
ble 2b @ loop
100: @ standard end of the program
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
svc #0 @ perform the system call
iAdrsMessValeur: .int sMessValeur
iAdrszCarriageReturn: .int szCarriageReturn
iAdrsBlanc1: .int sBlanc1
iAdrsBlanc2: .int sBlanc2
iAdrsBlanc3: .int sBlanc3
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {r0,r1,r2,r7,lr} @ save registres
mov r2,#0 @ counter length
1: @ loop length calculation
ldrb r1,[r0,r2] @ read octet start position + index
cmp r1,#0 @ if 0 its over
addne r2,r2,#1 @ else add 1 in the length
bne 1b @ and loop
@ so here r2 contains the length of the message
mov r1,r0 @ address message in r1
mov r0,#STDOUT @ code to write to the standard output Linux
mov r7, #WRITE @ code call system "write"
svc #0 @ call systeme
pop {r0,r1,r2,r7,lr} @ restaur des 2 registres */
bx lr @ return
/******************************************************************/
/* Converting a register to a decimal unsigned */
/******************************************************************/
/* r0 contains value and r1 address area */
/* r0 return size of result (no zero final in area) */
/* area size => 11 bytes */
.equ LGZONECAL, 10
conversion10:
push {r1-r4,lr} @ save registers
mov r3,r1
mov r2,#LGZONECAL
1: @ start loop
bl divisionpar10U @unsigned r0 <- dividende. quotient ->r0 reste -> r1
add r1,#48 @ digit
strb r1,[r3,r2] @ store digit on area
cmp r0,#0 @ stop if quotient = 0 */
subne r2,#1 @ else previous position
bne 1b @ and loop
@ and move digit from left of area
mov r4,#0
2:
ldrb r1,[r3,r2]
strb r1,[r3,r4]
add r2,#1
add r4,#1
cmp r2,#LGZONECAL
ble 2b
@ and move spaces in end on area
mov r0,r4 @ result length
mov r1,#' ' @ space
3:
strb r1,[r3,r4] @ store space in area
add r4,#1 @ next position
cmp r4,#LGZONECAL
ble 3b @ loop if r4 <= area size
100:
pop {r1-r4,lr} @ restaur registres
bx lr @return
/***************************************************/
/* division par 10 unsigned */
/***************************************************/
/* r0 dividende */
/* r0 quotient */
/* r1 remainder */
divisionpar10U:
push {r2,r3,r4, lr}
mov r4,r0 @ save value
mov r3,#0xCCCD @ r3 <- magic_number lower
movt r3,#0xCCCC @ r3 <- magic_number upper
umull r1, r2, r3, r0 @ r1<- Lower32Bits(r1*r0) r2<- Upper32Bits(r1*r0)
mov r0, r2, LSR #3 @ r2 <- r2 >> shift 3
add r2,r0,r0, lsl #2 @ r2 <- r0 * 5
sub r1,r4,r2, lsl #1 @ r1 <- r4 - (r2 * 2) = r4 - (r0 * 10)
pop {r2,r3,r4,lr}
bx lr @ leave function
Arturo
mulTable: function [n][
print [" |"] ++ map 1..n => [pad to :string & 3]
print "----+" ++ join map 1..n => "----"
loop 1..n 'x [
prints (pad to :string x 3) ++ " |"
if x>1 -> loop 1..x-1 'y [prints " "]
loop x..n 'y [prints " " ++ pad to :string x*y 3]
print ""
]
]
mulTable 12
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
AutoHotkey
Gui, -MinimizeBox
Gui, Margin, 0, 0
Gui, Font, s9, Fixedsys
Gui, Add, Edit, h0 w0
Gui, Add, Edit, w432 r14 -VScroll
Gosub, Table
Gui, Show,, Multiplication Table
Return
GuiClose:
GuiEscape:
ExitApp
Return
Table:
; top row
Table := " x |"
Loop, 12
Table .= SubStr(" " A_Index, -3)
Table .= "`n"
; underlines
Table .= "----+"
Loop, 48
Table .= "-"
Table .= "`n"
; table
Loop, 12 { ; rows
Table .= SubStr(" " Row := A_Index, -2) " |"
Loop, 12 ; columns
Table .= SubStr(" " (A_Index >= Row ? A_Index * Row : ""), -3)
Table .= "`n"
}
GuiControl,, Edit2, %Table%
Return
Message box shows:
x | 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
AutoIt
#AutoIt Version: 3.2.10.0
$tableupto=12
$table=""
for $i = 1 To $tableupto
for $j = $i to $tableupto
$prod=string($i*$j)
if StringLen($prod) == 1 then
$prod = " "& $prod
EndIf
if StringLen($prod) == 2 then
$prod = " "& $prod
EndIf
$table = $table&" "&$prod
Next
$table = $table&" - "&$i&@CRLF
for $k = 1 to $i
$table = $table&" "
Next
Next
msgbox(0,"Multiplication Tables",$table)
AWK
BEGIN {
for(i=1;i<=12;i++){
for(j=1;j<=12;j++){
if(j>=i||j==1){printf "%4d",i*j}
else {printf " "}
}
print
}
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Axe
Since the standard text output is poorly suited to this kind of formatted data, this example is implemented by writing to the screen buffer using the small font. Also, the limits were adjusted to 10x8 to make the table fit the screen.
Fix 5
ClrDraw
For(I,1,10)
Text(I-1*9,0,I▶Dec)
Text(91,I*7+1,I▶Dec)
End
For(J,1,8)
For(I,J,10)
Text(I-1*9,J*7+1,I*J▶Dec)
End
End
HLine(7)
VLine(89)
DispGraph
getKeyʳ
Fix 4
Approximate output:
1 2 3 4 5 6 7 8 9 10 | --------------------------------- 1 2 3 4 5 6 7 8 9 10 | 1 4 6 8 10 12 14 16 18 20 | 2 9 12 15 18 21 24 27 30 | 3 16 20 24 28 32 36 40 | 4 25 30 35 40 45 50 | 5 36 42 48 54 60 | 6 49 56 63 70 | 7 64 72 80 | 8
BASIC
Applesoft BASIC
100 M = 12
110 DEF FN T(X) = X * 3 + (X < 4) * (4 - X) + (X > 10) * (X - 10) - 1
120 FOR N = -1 TO M
130 IF NOT N THEN PRINT CHR$(13) TAB(5); : FOR J = 5 TO FN T(M + 1) - 2 : PRINT "-"; : NEXT J, N
140 I = ABS(N)
150 IF N > 0 THEN PRINT CHR$(13) MID$(" ", 1, I < 10) I" !";
160 FOR J = I TO M
170 V$ = STR$(I * J)
180 PRINT TAB(FN T(J)) MID$(" ", 1, 3 - LEN(V$) - (J < 4)) V$;
190 NEXT J, N
ASIC
REM Multiplication tables
N = 12
PREDN = N - 1
WDTH = 3
CLS
FOR J = 1 TO PREDN
INTVAL = J
GOSUB PRINTINT:
PRINT " ";
NEXT J
INTVAL = N
GOSUB PRINTINT:
PRINT
FOR J = 0 TO PREDN
PRINT "----";
NEXT J
PRINT "+"
FOR I = 1 TO N
WDTH = 3
FOR J = 1 TO N
IF J < I THEN
PRINT " ";
ELSE
INTVAL = I * J
GOSUB PRINTINT:
PRINT " ";
ENDIF
NEXT J
PRINT "| ";
INTVAL = I
WDTH = 2
GOSUB PRINTINT:
PRINT
NEXT I
END
PRINTINT:
REM Writes the value of INTVAL in a field of the given WDTH
S2$ = STR$(INTVAL)
S2$ = LTRIM$(S2$)
SPNUM = LEN(S2$)
SPNUM = WDTH - SPNUM
S1$ = SPACE$(SPNUM)
PRINT S1$;
PRINT S2$;
RETURN
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
BASIC256
print " X| 1 2 3 4 5 6 7 8 9 10 11 12"
print "---+------------------------------------------------"
for i = 1 to 12
nums$ = right(" " + string(i), 3) + "|"
for j = 1 to 12
if i <= j then
if j >= 1 then
nums$ += left(" ", (4 - length(string(i * j))))
end if
nums$ += string(i * j)
else
nums$ += " "
end if
next j
print nums$
next i
BBC BASIC
BBC BASIC automatically right-justifies numeric output.
@% = 5 : REM Set column width
FOR row% = 1 TO 12
PRINT row% TAB(row% * @%) ;
FOR col% = row% TO 12
PRINT row% * col% ;
NEXT col%
PRINT
NEXT row%
- Output:
1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Chipmunk Basic
100 cls
110 print tab (4);
120 for i = 1 to 12
130 print using " ###";i;
140 next
150 print
160 print " --+------------------------------------------------"
170 for i = 1 to 12
180 print using " ##|";i;
190 print tab (i*4);
200 for j = i to 12
210 print using " ###";i*j;
220 next
230 print
240 next
250 end
Commodore BASIC
The table consumes every one of the 1000 cells in a 40-column display, and even so has to cheat a little to fit 10x10=100 into the table. It uses the INSERT character (CHR$(148)) to push characters over to the right after printing them without triggering a scroll that would push the top line off the screen.
100 PRINT CHR$(14);CHR$(147);
110 PRINT " X";
120 W=2
130 FOR I=1 TO 10
140 : N=I
150 : GOSUB 520
160 : PRINT ":"N$;
170 NEXT I
180 W=3
190 FOR I=11 TO 12
200 : N=I
210 : GOSUB 520
220 : PRINT ":"N$;
230 NEXT
240 FOR I=1 TO 12
250 : PRINT "--";
260 : FOR J=1 TO 10
270 : PRINT "+--";
280 : NEXT J
290 : FOR J=11 TO 12
300 : PRINT "+---";
310 : NEXT J
320 : N=I:W=2:GOSUB 520:PRINT N$;
330 : FOR J=1 TO 10
340 : W=2
350 : IF J<I THEN N$=" ":GOSUB 530:GOTO 370
360 : N=I*J:GOSUB 520
370 : IF LEN(N$)<3 THEN PRINT ":";
380 : PRINT N$;
390 : NEXT J
400 : FOR J=11 TO 12
410 : W=3
420 : IF J<I THEN N$=" ":GOSUB 530:GOTO 440
430 : N=I*J:GOSUB 520
440 : PRINT N$;
450 : FOR K=1 TO LEN(N$): PRINT CHR$(157);:NEXT K
460 : PRINT CHR$(148);":";
470 : IF J<12 THEN FOR K=1 TO LEN(N$):PRINT CHR$(29);: NEXT K
480 : NEXT J: IF I<12 THEN PRINT
490 NEXT I
500 GET K$: IF K$="" THEN 500
510 END
520 N$=MID$(STR$(N),2)
530 IF LEN(N$)<W THEN N$=" "+N$:GOTO 530
540 RETURN
- Output:
x: 1: 2: 3: 4: 5: 6: 7: 8: 9:10: 11: 12 --+--+--+--+--+--+--+--+--+--+--+---+--- 1: 1: 2: 3: 4: 5: 6: 7: 8: 9:10: 11: 12 --+--+--+--+--+--+--+--+--+--+--+---+--- 2: : 4: 6: 8:10:12:14:16:18:20: 22: 24 --+--+--+--+--+--+--+--+--+--+--+---+--- 3: : : 9:12:15:18:21:24:27:30: 33: 36 --+--+--+--+--+--+--+--+--+--+--+---+--- 4: : : :16:20:24:28:32:36:40: 44: 48 --+--+--+--+--+--+--+--+--+--+--+---+--- 5: : : : :25:30:35:40:45:50: 55: 60 --+--+--+--+--+--+--+--+--+--+--+---+--- 6: : : : : :36:42:48:54:60: 66: 72 --+--+--+--+--+--+--+--+--+--+--+---+--- 7: : : : : : :49:56:63:70: 77: 84 --+--+--+--+--+--+--+--+--+--+--+---+--- 8: : : : : : : :64:72:80: 88: 96 --+--+--+--+--+--+--+--+--+--+--+---+--- 9: : : : : : : : :81:90: 99:108 --+--+--+--+--+--+--+--+--+--+--+---+--- 10: : : : : : : : : 100:110:120 --+--+--+--+--+--+--+--+--+--+--+---+--- 11: : : : : : : : : : :121:132 --+--+--+--+--+--+--+--+--+--+--+---+--- 12: : : : : : : : : : : :144
FreeBASIC
' FB 1.05.0 Win64
Print " X|";
For i As Integer = 1 To 12
Print Using "####"; i;
Next
Print
Print "---+"; String(48, "-")
For i As Integer = 1 To 12
Print Using "###"; i;
Print"|"; Spc(4 * (i - 1));
For j As Integer = i To 12
Print Using "####"; i * j;
Next j
Print
Next i
Print
Print "Press any key to quit"
Sleep
- Output:
X| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Gambas
Click this link to run this code
'Code 'stolen' from Free Basic and altered to work in Gambas
Public Sub Main()
Dim i, j As Integer
Print " X|";
For i = 1 To 12
Print Format(i, "####");
Next
Print
Print "---+"; String(48, "-")
For i = 1 To 12
Print Format(i, "###");
Print "|"; Space(4 * (i - 1));
For j = i To 12
Print Format(i * j, "####");
Next
Print
Next
End
Output:
X| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
GW-BASIC
10 ' Multiplication Tables
20 LET N% = 12
30 FOR J% = 1 TO N% - 1
40 PRINT USING "###"; J%;
50 PRINT " ";
60 NEXT J%
70 PRINT USING "###"; N%
80 FOR J% = 0 TO N% - 1
90 PRINT "----";
100 NEXT J%
110 PRINT "+"
120 FOR I% = 1 TO N%
130 FOR J% = 1 TO N%
140 IF J% < I% THEN PRINT " "; ELSE PRINT USING "###"; I% * J%;: PRINT " ";
150 NEXT J%
160 PRINT "| "; USING "##"; I%
170 NEXT I%
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
IS-BASIC
100 PROGRAM "Multipli.bas"
110 TEXT 80
120 PRINT TAB(7);
130 FOR I=1 TO 12
140 PRINT USING " ###":I;
150 NEXT
160 PRINT AT 2,5:"----------------------------------------------------"
170 FOR I=1 TO 12
180 PRINT USING "### |":I;:PRINT TAB(I*4+3);
190 FOR J=I TO 12
200 PRINT USING " ###":I*J;
210 NEXT
220 PRINT
230 NEXT
Liberty BASIC
Print " | 1 2 3 4 5 6 7 8 9 10 11 12"
Print "--+------------------------------------------------------------"
For i = 1 To 12
nums$ = Right$(" " + str$(i), 2) + "|"
For ii = 1 To 12
If i <= ii Then
If ii >= 1 Then
nums$ = nums$ + Left$(" ", (5 - Len(str$(i * ii))))
End If
nums$ = nums$ + str$(i * ii)
Else
nums$ = nums$ + " "
End If
Next ii
Print nums$
Next i
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Microsoft Small Basic
n = 12
For j = 1 To n - 1
TextWindow.CursorLeft = (j - 1) * 4 + (3 - Text.GetLength(j))
TextWindow.Write(j)
TextWindow.Write(" ")
EndFor
TextWindow.CursorLeft = (n - 1) * 4 + (3 - Text.GetLength(n))
TextWindow.Write(n)
TextWindow.WriteLine("")
For j = 0 To n - 1
TextWindow.Write("----")
EndFor
TextWindow.WriteLine("+")
For i = 1 To n
For j = 1 To n
If j < i Then
TextWindow.Write(" ")
Else
TextWindow.CursorLeft = (j - 1) * 4 + (3 - Text.GetLength(i * j))
TextWindow.Write(i * j)
TextWindow.Write(" ")
EndIf
EndFor
TextWindow.Write("| ")
TextWindow.CursorLeft = n * 4 + (4 - Text.GetLength(i))
TextWindow.Write(i)
TextWindow.WriteLine("")
EndFor
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
PureBasic
Procedure PrintMultiplicationTable(maxx, maxy)
sp = Len(Str(maxx*maxy)) + 1
trenner$ = "+"
For l1 = 1 To maxx + 1
For l2 = 1 To sp
trenner$ + "-"
Next
trenner$ + "+"
Next
header$ = "|" + RSet("x", sp) + "|"
For a = 1 To maxx
header$ + RSet(Str(a), sp)
header$ + "|"
Next
PrintN(trenner$)
PrintN(header$)
PrintN(trenner$)
For y = 1 To maxy
line$ = "|" + RSet(Str(y), sp) + "|"
For x = 1 To maxx
If x >= y
line$ + RSet(Str(x*y), sp)
Else
line$ + Space(sp)
EndIf
line$ + "|"
Next
PrintN(line$)
Next
PrintN(trenner$)
EndProcedure
OpenConsole()
PrintMultiplicationTable(12, 12)
Input()
Ouput similar to ALGOL 68
QBasic
CLS
'header row
PRINT " ";
FOR n = 1 TO 12
'do it this way for alignment purposes
o$ = " "
MID$(o$, LEN(o$) - LEN(STR$(n)) + 1) = STR$(n)
PRINT o$;
NEXT
PRINT : PRINT " "; STRING$(49, "-");
FOR n = 1 TO 12
PRINT
IF n < 10 THEN PRINT " ";
PRINT n; "|"; 'row labels
FOR m = 1 TO n - 1
PRINT " ";
NEXT
FOR m = n TO 12
'alignment again
o$ = " "
MID$(o$, LEN(o$) - LEN(STR$(m * n)) + 1) = STR$(m * n)
PRINT o$;
NEXT
NEXT
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
QB64
The QBasic solution works without any changes.
Run BASIC
html "<TABLE border=1 ><TR bgcolor=silver align=center><TD><TD>1<TD>2<TD>3<TD>4<TD>5<TD>6<TD>7<TD>8<TD>9<TD>10<TD>11<TD>12</td></TR>"
For i = 1 To 12
html "<TR align=right><TD>";i;"</td>"
For ii = 1 To 12
html "<td width=25>"
If ii >= i Then html i * ii
html "</td>"
Next ii
next i
html "</table>"
Output:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | |
3 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | ||
4 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | |||
5 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||||
6 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | |||||
7 | 49 | 56 | 63 | 70 | 77 | 84 | ||||||
8 | 64 | 72 | 80 | 88 | 96 | |||||||
9 | 81 | 90 | 99 | 108 | ||||||||
10 | 100 | 110 | 120 | |||||||||
11 | 121 | 132 | ||||||||||
12 | 144 |
SmallBASIC
print " | 1 2 3 4 5 6 7 8 9 10 11 12"
print "---+------------------------------------------------"
for a = 1 to 12
print format("##", a); " | ";
for b = 1 to 12
if(b < a)
print " ";
else
print format("###", a*b);" ";
endif
next
print
next
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ---+----------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
Tiny BASIC
10 REM MULTIPLICATION TABLES
20 LET N=12
30 REM TO ALIGN NUMBERS TO THE RIGHT
40 REM ASSUME THAT N IS AT MOST TWO-DIGIT.
50 LET J=1
60 PRINT " ";
70 IF J<10 THEN PRINT " ";
80 PRINT J;" ";
90 LET J=J+1
100 IF J=N THEN GOTO 120
110 GOTO 60
120 PRINT " ";
130 IF N<10 THEN PRINT " ";
140 PRINT N
150 LET J=0
160 PRINT "----";
170 J=J+1
180 IF J=N THEN GOTO 200
190 GOTO 160
200 PRINT "+"
210 LET I=1
220 LET J=1
230 IF J<I THEN GOTO 290
240 LET P=I*J
250 IF P<100 THEN PRINT " ";
260 IF P<10 THEN PRINT " ";
270 PRINT P;" ";
280 GOTO 300
290 PRINT " ";
300 IF J=N THEN GOTO 330
310 LET J=J+1
320 GOTO 230
330 PRINT "! ";
340 IF I<10 THEN PRINT " ";
350 PRINT I
360 IF I=N THEN GOTO 390
370 LET I=I+1
380 GOTO 220
390 END
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 ! 1 4 6 8 10 12 14 16 18 20 22 24 ! 2 9 12 15 18 21 24 27 30 33 36 ! 3 16 20 24 28 32 36 40 44 48 ! 4 25 30 35 40 45 50 55 60 ! 5 36 42 48 54 60 66 72 ! 6 49 56 63 70 77 84 ! 7 64 72 80 88 96 ! 8 81 90 99 108 ! 9 100 110 120 ! 10 121 132 ! 11 144 ! 12
True BASIC
PRINT " X| 1 2 3 4 5 6 7 8 9 10 11 12"
PRINT "---+------------------------------------------------"
FOR i = 1 TO 12
LET nums$ = (" " & STR$(i))[LEN(" " & STR$(i))-3+1:maxnum] & "|"
FOR j = 1 TO 12
IF i <= j THEN
IF j >= 1 THEN LET nums$ = nums$ & (" ")[1:(4-LEN(STR$(i*j)))]
LET nums$ = nums$ & STR$(i*j)
ELSE
LET nums$ = nums$ & " "
END IF
NEXT j
PRINT nums$
NEXT i
PRINT
END
uBasic/4tH
For R = 1 To 12
Print R;Tab(R * 5);
For C = R To 12
Print Using "_____";R * C;
Next
Print
Next
- Output:
1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144 0 OK, 0:105
VBA
Option Explicit
Sub Multiplication_Tables()
Dim strTemp As String, strBuff As String
Dim i&, j&, NbDigits As Byte
'You can adapt the following const :
Const NB_END As Byte = 12
Select Case NB_END
Case Is < 10: NbDigits = 3
Case 10 To 31: NbDigits = 4
Case 31 To 100: NbDigits = 5
Case Else: MsgBox "Number too large": Exit Sub
End Select
strBuff = String(NbDigits, " ")
For i = 1 To NB_END
strTemp = Right(strBuff & i, NbDigits)
For j = 2 To NB_END
If j < i Then
strTemp = strTemp & strBuff
Else
strTemp = strTemp & Right(strBuff & j * i, NbDigits)
End If
Next j
Debug.Print strTemp
Next i
End Sub
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Visual Basic
Sub Main()
Const nmax = 12, xx = 3
Const x = xx + 1
Dim i As Integer, j As Integer, s As String
s = String(xx, " ") & " |"
For j = 1 To nmax
s = s & Right(String(x, " ") & j, x)
Next j
Debug.Print s
s = String(xx, "-") & " +"
For j = 1 To nmax
s = s & " " & String(xx, "-")
Next j
Debug.Print s
For i = 1 To nmax
s = Right(String(xx, " ") & i, xx) & " |"
For j = 1 To nmax
If j >= i _
Then s = s & Right(String(x, " ") & i * j, x) _
Else s = s & String(x, " ")
Next j
Debug.Print s
Next i
End Sub 'Main
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --- + --- --- --- --- --- --- --- --- --- --- --- --- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
XBasic
PROGRAM "multiplicationtables"
VERSION "0.0001"
DECLARE FUNCTION Entry()
FUNCTION Entry()
$N = 12
FOR j@@ = 1 TO $N - 1
PRINT FORMAT$("### ", j@@);
NEXT j@@
PRINT FORMAT$("###", $N)
FOR j@@ = 0 TO $N - 1
PRINT "----";
NEXT j@@
PRINT "+"
FOR i@@ = 1 TO $N
FOR j@@ = 1 TO $N
IF j@@ < i@@ THEN
PRINT " ";
ELSE
PRINT FORMAT$("### ", i@@ * j@@);
END IF
NEXT j@@
PRINT "|"; FORMAT$(" ##", i@@)
NEXT i@@
END FUNCTION
END PROGRAM
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
Yabasic
print " X| 1 2 3 4 5 6 7 8 9 10 11 12"
print "---+------------------------------------------------"
for i = 1 to 12
nums$ = right$(" " + str$(i), 3) + "|"
for j = 1 to 12
if i <= j then
if j >= 1 then
nums$ = nums$ + left$(" ", (4 - len(str$(i * j))))
end if
nums$ = nums$ + str$(i * j)
else
nums$ = nums$ + " "
end if
next j
print nums$
next i
Batch File
@echo off
setlocal enabledelayedexpansion
::The Main Thing...
cls
set colum=12&set row=12
call :multable
echo.
pause
exit /b 0
::/The Main Thing.
::The Functions...
:multable
echo.
for /l %%. in (1,1,%colum%) do (
call :numstr %%.
set firstline=!firstline!!space!%%.
set seconline=!seconline!-----
)
echo !firstline!
echo !seconline!
::The next lines here until the "goto :EOF" prints the products...
for /l %%X in (1,1,%row%) do (
for /l %%Y in (1,1,%colum%) do (
if %%Y lss %%X (set "line%%X=!line%%X! ") else (
set /a ans=%%X*%%Y
call :numstr !ans!
set "line%%X=!line%%X!!space!!ans!"
)
)
echo.!line%%X! ^| %%X
)
goto :EOF
:numstr
::This function returns the number of whitespaces to be applied on each numbers.
set cnt=0&set proc=%1&set space=
:loop
set currchar=!proc:~%cnt%,1!
if not "!currchar!"=="" set /a cnt+=1&goto loop
set /a numspaces=5-!cnt!
for /l %%A in (1,1,%numspaces%) do set "space=!space! "
goto :EOF
::/The Functions.
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12 Press any key to continue . . .
Befunge
0>51p0>52p51g52g*:51g52g`!*\!51g52g+*+0\3>01p::55+%68*+\!28v
w^p2<y|!`+66:+1,+*84*"\"!:g25$_,#!>#:<$$_^#!:-1g10/+55\-**<<
"$9"^x>$55+,51g1+:66+`#@_055+68*\>\#<1#*-#9:#5_$"+---">:#,_$
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ---+----------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
BQN
Table
formats a multiplication table for any given n. The result is a character array and can be printed with •Out˘
. The overall structure is to build a 3-by-3 array of parts, then put them together with a two-dimensional join (∾
).
Table ← {
m ← •Repr¨ ×⌜˜1+↕𝕩 # The numbers, formatted individually
main ← ⟨ # Bottom part: three sections
>(-⌈10⋆⁼𝕩)↑¨⊏m # Original numbers
𝕩⥊'|' # Divider
∾˘(-1+⌈10⋆⁼𝕩×𝕩)↑¨(≤⌜˜↕𝕩)/¨m # Multiplied numbers, padded and joined
⟩
head ← ' '¨⌾⊑ ⊏¨ main # Header: first row but with space left of |
∾ >⟨head, "-+-"⊣¨¨head, main⟩ # Header, divider, and main
}
•Out˘ Table 12
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+----------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Bracmat
( multiplicationTable
= high i j row row2 matrix padFnc tmp
, celPad leftCelPad padFnc celDashes leftDashes
. !arg:?high
& ( padFnc
= L i w d
. @(!arg:? [?L)
& 1+(!L:?i):?L
& " ":?w
& "-":?d
& whl
' ( !i+-1:~<0:?i
& " " !w:?w
& "-" !d:?d
)
& str$!w:?w
& (
' (
. @(str$(rev$!arg ()$w):?arg [($L) ?)
& rev$!arg
)
. str$!d
)
)
& padFnc$(!high^2):((=?celPad).?celDashes)
& @(!high:?tmp [-2 ?)
& padFnc$!tmp:((=?leftCelPad).?leftDashes)
& 0:?i
& :?row:?row2
& whl
' ( 1+!i:~>!high:?i
& !row celPad$!i:?row
& !celDashes !row2:?row2
)
& str$(leftCelPad$X "|" !row \n !leftDashes "+" !row2 \n)
: ?matrix
& 0:?j
& whl
' ( 1+!j:~>!high:?j
& 0:?i
& :?row
& whl
' ( 1+!i:<!j:?i
& celPad$() !row:?row
)
& leftCelPad$!j "|" !row:?row
& whl
' ( 1+!i:~>!high:?i
& !row celPad$(!i*!j):?row
)
& !matrix str$(!row \n):?matrix
)
& str$!matrix
)
& out$(multiplicationTable$12)
& done;
- Output:
X| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
C
#include <stdio.h>
int main(void)
{
int i, j, n = 12;
for (j = 1; j <= n; j++) printf("%3d%c", j, j != n ? ' ' : '\n');
for (j = 0; j <= n; j++) printf(j != n ? "----" : "+\n");
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++)
printf(j < i ? " " : "%3d ", i * j);
printf("| %d\n", i);
}
return 0;
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
C#
using System;
namespace multtbl
{
class Program
{
static void Main(string[] args)
{
Console.Write(" X".PadRight(4));
for (int i = 1; i <= 12; i++)
Console.Write(i.ToString("####").PadLeft(4));
Console.WriteLine();
Console.Write(" ___");
for (int i = 1; i <= 12; i++)
Console.Write(" ___");
Console.WriteLine();
for (int row = 1; row <= 12; row++)
{
Console.Write(row.ToString("###").PadLeft(3).PadRight(4));
for (int col = 1; col <= 12; col++)
{
if (row <= col)
Console.Write((row * col).ToString("###").PadLeft(4));
else
Console.Write("".PadLeft(4));
}
Console.WriteLine();
}
Console.WriteLine();
Console.ReadLine();
}
}
}
- Output:
X 1 2 3 4 5 6 7 8 9 10 11 12 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
C++
This is a slightly more-generalized version that takes any minimum and maximum table value, and formats the table columns.
#include <iostream>
#include <iomanip>
#include <cmath> // for log10()
#include <algorithm> // for max()
size_t table_column_width(const int min, const int max)
{
unsigned int abs_max = std::max(max*max, min*min);
// abs_max is the largest absolute value we might see.
// If we take the log10 and add one, we get the string width
// of the largest possible absolute value.
// Add one more for a little whitespace guarantee.
size_t colwidth = 2 + std::log10(abs_max);
// If only one of them is less than 0, then some will
// be negative. If some values may be negative, then we need to add some space
// for a sign indicator (-)
if (min < 0 && max > 0)
++colwidth;
return colwidth;
}
struct Writer_
{
decltype(std::setw(1)) fmt_;
Writer_(size_t w) : fmt_(std::setw(w)) {}
template<class T_> Writer_& operator()(const T_& info) { std::cout << fmt_ << info; return *this; }
};
void print_table_header(const int min, const int max)
{
Writer_ write(table_column_width(min, max));
// table corner
write(" ");
for(int col = min; col <= max; ++col)
write(col);
// End header with a newline and blank line.
std::cout << std::endl << std::endl;
}
void print_table_row(const int num, const int min, const int max)
{
Writer_ write(table_column_width(min, max));
// Header column
write(num);
// Spacing to ensure only the top half is printed
for(int multiplicand = min; multiplicand < num; ++multiplicand)
write(" ");
// Remaining multiplicands for the row.
for(int multiplicand = num; multiplicand <= max; ++multiplicand)
write(num * multiplicand);
// End row with a newline and blank line.
std::cout << std::endl << std::endl;
}
void print_table(const int min, const int max)
{
// Header row
print_table_header(min, max);
// Table body
for(int row = min; row <= max; ++row)
print_table_row(row, min, max);
}
int main()
{
print_table(1, 12);
return 0;
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Chef
Multigrain Bread.
Prints out a multiplication table.
Ingredients.
12 cups flour
12 cups grains
12 cups seeds
1 cup water
9 dashes yeast
1 cup nuts
40 ml honey
1 cup sugar
Method.
Sift the flour.
Put flour into the 1st mixing bowl.
Put yeast into the 1st mixing bowl.
Shake the flour until sifted.
Put grains into the 2nd mixing bowl.
Fold flour into the 2nd mixing bowl.
Put water into the 2nd mixing bowl.
Add yeast into the 2nd mixing bowl.
Combine flour into the 2nd mixing bowl.
Fold nuts into the 2nd mixing bowl.
Liquify nuts.
Put nuts into the 1st mixing bowl.
Pour contents of the 1st mixing bowl into the baking dish.
Sieve the flour.
Put yeast into the 2nd mixing bowl.
Add water into the 2nd mixing bowl.
Sprinkle the seeds.
Put flour into the 2nd mixing bowl.
Combine seeds into the 2nd mixing bowl.
Put yeast into the 2nd mixing bowl.
Put seeds into the 2nd mixing bowl.
Remove flour from the 2nd mixing bowl.
Fold honey into the 2nd mixing bowl.
Put water into the 2nd mixing bowl.
Fold sugar into the 2nd mixing bowl.
Squeeze the honey.
Put water into the 2nd mixing bowl.
Remove water from the 2nd mixing bowl.
Fold sugar into the 2nd mixing bowl.
Set aside.
Drip until squeezed.
Scoop the sugar.
Crush the seeds.
Put yeast into the 2nd mixing bowl.
Grind the seeds until crushed.
Put water into the 2nd mixing bowl.
Fold seeds into the 2nd mixing bowl.
Set aside.
Drop until scooped.
Randomize the seeds until sprinkled.
Fold honey into the 2nd mixing bowl.
Put flour into the 2nd mixing bowl.
Put grains into the 2nd mixing bowl.
Fold seeds into the 2nd mixing bowl.
Shake the flour until sieved.
Put yeast into the 2nd mixing bowl.
Add water into the 2nd mixing bowl.
Pour contents of the 2nd mixing bowl into the 2nd baking dish.
Serves 2.
- Output:
x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Clojure
This is more generalized. Any size can be used and the table will be formatted appropriately.
(let [size 12
trange (range 1 (inc size))
fmt-width (+ (.length (str (* size size))) 1)
fmt-str (partial format (str "%" fmt-width "s"))
fmt-dec (partial format (str "% " fmt-width "d"))]
(doseq [s (cons
(apply str (fmt-str " ") (map #(fmt-dec %) trange))
(for [i trange]
(apply str (fmt-dec i) (map #(fmt-str (str %))
(map #(if (>= % i) (* i %) " ")
(for [j trange] j))))))]
(println s)))
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
COBOL
identification division.
program-id. multiplication-table.
environment division.
configuration section.
repository.
function all intrinsic.
data division.
working-storage section.
01 multiplication.
05 rows occurs 12 times.
10 colm occurs 12 times.
15 num pic 999.
77 cand pic 99.
77 ier pic 99.
77 ind pic z9.
77 show pic zz9.
procedure division.
sample-main.
perform varying cand from 1 by 1 until cand greater than 12
after ier from 1 by 1 until ier greater than 12
multiply cand by ier giving num(cand, ier)
end-perform
perform varying cand from 1 by 1 until cand greater than 12
move cand to ind
display "x " ind "| " with no advancing
perform varying ier from 1 by 1 until ier greater than 12
if ier greater than or equal to cand then
move num(cand, ier) to show
display show with no advancing
if ier equal to 12 then
display "|"
else
display space with no advancing
end-if
else
display " " with no advancing
end-if
end-perform
end-perform
goback.
end program multiplication-table.
- Output:
prompt$ cobc -xj multiplication-table.cob x 1| 1 2 3 4 5 6 7 8 9 10 11 12| x 2| 4 6 8 10 12 14 16 18 20 22 24| x 3| 9 12 15 18 21 24 27 30 33 36| x 4| 16 20 24 28 32 36 40 44 48| x 5| 25 30 35 40 45 50 55 60| x 6| 36 42 48 54 60 66 72| x 7| 49 56 63 70 77 84| x 8| 64 72 80 88 96| x 9| 81 90 99 108| x 10| 100 110 120| x 11| 121 132| x 12| 144|
CoffeeScript
print_multiplication_tables = (n) ->
width = 4
pad = (s, n=width, c=' ') ->
s = s.toString()
result = ''
padding = n - s.length
while result.length < padding
result += c
result + s
s = pad('') + '|'
for i in [1..n]
s += pad i
console.log s
s = pad('', width, '-') + '+'
for i in [1..n]
s += pad '', width, '-'
console.log s
for i in [1..n]
s = pad i
s += '|'
s += pad '', width*(i - 1)
for j in [i..n]
s += pad i*j
console.log s
print_multiplication_tables 12
- Output:
> coffee multiply.coffee | 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Common Lisp
(do ((m 0 (if (= 12 m) 0 (1+ m)))
(n 0 (if (= 12 m) (1+ n) n)))
((= n 13))
(if (zerop n)
(case m
(0 (format t " *|"))
(12 (format t " 12~&---+------------------------------------------------~&"))
(otherwise
(format t "~4,D" m)))
(case m
(0 (format t "~3,D|" n))
(12 (format t "~4,D~&" (* n m)))
(otherwise
(if (>= m n)
(format t "~4,D" (* m n))
(format t " "))))))
Output:
*| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
D
void main() {
import std.stdio, std.array, std.range, std.algorithm;
enum n = 12;
writefln(" %(%4d%)\n%s", iota(1, n+1), "-".replicate(4*n + 4));
foreach (immutable y; 1 .. n + 1)
writefln("%4d" ~ " ".replicate(4 * (y - 1)) ~ "%(%4d%)", y,
iota(y, n + 1).map!(x => x * y));
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ---------------------------------------------------- 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
DCL
$ max = 12
$ h = f$fao( "!4* " )
$ r = 0
$ loop1:
$ o = ""
$ c = 0
$ loop2:
$ if r .eq. 0 then $ h = h + f$fao( "!4SL", c )
$ p = r * c
$ if c .ge. r
$ then
$ o = o + f$fao( "!4SL", p )
$ else
$ o = o + f$fao( "!4* " )
$ endif
$ c = c + 1
$ if c .le. max then $ goto loop2
$ if r .eq. 0
$ then
$ write sys$output h
$ n = 4 * ( max + 2 )
$ write sys$output f$fao( "!''n*-" )
$ endif
$ write sys$output f$fao( "!4SL", r ) + o
$ r = r + 1
$ if r .le. max then $ goto loop1
- Output:
$ @multiplication_tables 0 1 2 3 4 5 6 7 8 9 10 11 12 -------------------------------------------------------- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Delphi
program MultiplicationTables;
{$APPTYPE CONSOLE}
uses SysUtils;
const
MAX_COUNT = 12;
var
lRow, lCol: Integer;
begin
Write(' | ');
for lRow := 1 to MAX_COUNT do
Write(Format('%4d', [lRow]));
Writeln('');
Writeln('--+-' + StringOfChar('-', MAX_COUNT * 4));
for lRow := 1 to MAX_COUNT do
begin
Write(Format('%2d', [lRow]));
Write('| ');
for lCol := 1 to MAX_COUNT do
begin
if lCol < lRow then
Write(' ')
else
Write(Format('%4d', [lRow * lCol]));
end;
Writeln;
end;
end.
Draco
/* Print N-by-N multiplication table */
proc nonrec multab(byte n) void:
byte i,j;
/* write header */
write(" |");
for i from 1 upto n do write(i:4) od;
writeln();
write("----+");
for i from 1 upto n do write("----") od;
writeln();
/* write lines */
for i from 1 upto n do
write(i:4, "|");
for j from 1 upto n do
if i <= j then write(i*j:4)
else write(" ")
fi
od;
writeln()
od
corp
/* Print 12-by-12 multiplication table */
proc nonrec main() void: multab(12) corp
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
DWScript
const size = 12;
var row, col : Integer;
Print(' | ');
for row:=1 to size do
Print(Format('%4d', [row]));
PrintLn('');
PrintLn('--+-'+StringOfChar('-', size*4));
for row:=1 to size do begin
Print(Format('%2d', [row]));
Print('| ');
for col:=1 to size do begin
if col<row then
Print(' ')
else Print(Format('%4d', [row*col]));
end;
PrintLn('');
end;
E
def size := 12
println(`{|style="border-collapse: collapse; text-align: right;"`)
println(`|`)
for x in 1..size {
println(`|style="border-bottom: 1px solid black; " | $x`)
}
for y in 1..size {
println(`|-`)
println(`|style="border-right: 1px solid black;" | $y`)
for x in 1..size {
println(`| ${if (x >= y) { x*y } else {""}}`)
}
}
println("|}")
Targets MediaWiki markup.
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
EasyLang
n = 12
numfmt 0 4
write " "
for i = 1 to n
write i
.
print ""
write " "
for i = 1 to n
write "----"
.
print ""
for i = 1 to n
write i
write "|"
for j = 1 to n
if j < i
write " "
else
write i * j
.
.
print ""
.
EchoLisp
(lib 'matrix)
(define (mtable i j)
(cond
((and (zero? i) (zero? j)) "😅")
((= i 0) j)
((= j 0) i)
((>= j i ) (* i j ))
(else " ")))
(array-print (build-array 13 13 mtable))
- Output:
😅 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Elixir
defmodule RC do
def multiplication_tables(n) do
IO.write " X |"
Enum.each(1..n, fn i -> :io.fwrite("~4B", [i]) end)
IO.puts "\n---+" <> String.duplicate("----", n)
Enum.each(1..n, fn j ->
:io.fwrite("~2B |", [j])
Enum.each(1..n, fn i ->
if i<j, do: (IO.write " "), else: :io.fwrite("~4B", [i*j])
end)
IO.puts ""
end)
end
end
RC.multiplication_tables(12)
- Output:
X | 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
EMal
int NUMBER = 12
for int j = 1; j <= NUMBER; ++j do write((text!j).padStart(3, " ") + " ") end
writeLine()
writeLine("----" * NUMBER + "+")
for int i = 1; i <= NUMBER; i++
for int j = 1; j <= NUMBER; ++j
write(when(j < i, " ", (text!(i * j)).padStart(3, " ") + " "))
end
writeLine("| " + (text!i).padStart(2, " "))
end
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
Erlang
-module( multiplication_tables ).
-export( [print_upto/1, task/0, upto/1] ).
print_upto( N ) ->
Upto_tuples = [{X, {Y, Sum}} || {X, Y, Sum} <- upto(N)],
io:fwrite( " " ),
[io:fwrite( "~5B", [X]) || X <- lists:seq(1, N)],
io:nl(),
io:nl(),
[print_upto(X, proplists:get_all_values(X, Upto_tuples)) || X <- lists:seq(1, N)].
task() -> print_upto( 12 ).
upto( N ) -> [{X, Y, X*Y} || X <- lists:seq(1, N), Y <- lists:seq(1, N), Y >= X].
print_upto( N, Uptos ) ->
io:fwrite( "~2B", [N] ),
io:fwrite( "~*s", [5*(N - 1), " "] ),
[io:fwrite("~5B", [Sum]) || {_Y, Sum} <- Uptos],
io:nl().
- Output:
25> multiplication_tables:task(). 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Euphoria
puts(1," x")
for i = 1 to 12 do
printf(1," %3d",i)
end for
puts(1,'\n')
for i = 1 to 12 do
printf(1,"%2d",i)
for j = 1 to 12 do
if j<i then
puts(1," ")
else
printf(1," %3d",i*j)
end if
end for
puts(1,'\n')
end for
- Output:
x 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Excel
LAMBDA
Binding the name FNOVERHALFCARTESIANPRODUCT to the following lambda expression in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
FNOVERHALFCARTESIANPRODUCT
=LAMBDA(f,
LAMBDA(n,
LET(
ixs, SEQUENCE(n, n, 1, 1),
REM, "1-based indices.",
x, 1 + MOD(ixs - 1, n),
y, 1 + QUOTIENT(ixs - 1, n),
IF(x >= y,
f(x)(y),
""
)
)
)
)
and also assuming the following generic bindings in the Name Manager for the WorkBook:
MUL
=LAMBDA(a, LAMBDA(b, a * b))
POW
=LAMBDA(n,
LAMBDA(e,
POWER(n, e)
)
)
(The single formula in cell B2 below populates the whole 12*12 grid)
- Output:
fx | =FNOVERHALFCARTESIANPRODUCT( MUL )(12) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | ||
1 | x*y | applied over every unique pair in a cartesian product of [1..12] with itself | ||||||||||||
2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
3 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | ||
4 | 3 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | |||
5 | 4 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | ||||
6 | 5 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | |||||
7 | 6 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | ||||||
8 | 7 | 49 | 56 | 63 | 70 | 77 | 84 | |||||||
9 | 8 | 64 | 72 | 80 | 88 | 96 | ||||||||
10 | 9 | 81 | 90 | 99 | 108 | |||||||||
11 | 10 | 100 | 110 | 120 | ||||||||||
12 | 11 | 121 | 132 | |||||||||||
13 | 12 | 144 |
fx | =FNOVERHALFCARTESIANPRODUCT( POW )(12) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | J | K | L | M | ||
1 | x^y | applied over every unique pair in a cartesian product of [1..12] with itself | ||||||||||||
2 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
3 | 2 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | ||
4 | 3 | 27 | 64 | 125 | 216 | 343 | 512 | 729 | 1000 | 1331 | 1728 | |||
5 | 4 | 256 | 625 | 1296 | 2401 | 4096 | 6561 | 10000 | 14641 | 20736 | ||||
6 | 5 | 3125 | 7776 | 16807 | 32768 | 59049 | 100000 | 161051 | 248832 | |||||
7 | 6 | 46656 | 117649 | 262144 | 531441 | 1000000 | 1771561 | 2985984 | ||||||
8 | 7 | 823543 | 2097152 | 4782969 | 10000000 | 19487171 | 35831808 | |||||||
9 | 8 | 16777216 | 43046721 | 100000000 | 214358881 | 429981696 | ||||||||
10 | 9 | 387420489 | 1000000000 | 2357947691 | 5159780352 | |||||||||
11 | 10 | 10000000000 | 25937424601 | 61917364224 | ||||||||||
12 | 11 | 285311670611 | 743008370688 | |||||||||||
13 | 12 | 8916100448256 |
F#
Translation of C#
open System
let multTable () =
Console.Write (" X".PadRight (4))
for i = 1 to 12 do Console.Write ((i.ToString "####").PadLeft 4)
Console.Write "\n ___"
for i = 1 to 12 do Console.Write " ___"
Console.WriteLine ()
for row = 1 to 12 do
Console.Write (row.ToString("###").PadLeft(3).PadRight(4))
for col = 1 to 12 do
if row <= col then Console.Write ((row * col).ToString("###").PadLeft(4))
else
Console.Write ("".PadLeft 4)
Console.WriteLine ()
Console.WriteLine ()
Console.ReadKey () |> ignore
multTable ()
- Output:
X 1 2 3 4 5 6 7 8 9 10 11 12 ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Factor
USING: io kernel math math.parser math.ranges sequences ;
IN: multiplication-table
: print-row ( n -- )
[ number>string 2 CHAR: space pad-head write " |" write ]
[ 1 - [ " " write ] times ]
[
dup 12 [a,b]
[ * number>string 4 CHAR: space pad-head write ] with each
] tri nl ;
: print-table ( -- )
" " write
1 12 [a,b] [ number>string 4 CHAR: space pad-head write ] each nl
" +" write
12 [ "----" write ] times nl
1 12 [a,b] [ print-row ] each ;
1 2 3 4 5 6 7 8 9 10 11 12 +------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
FALSE
[$100\>[" "]?$10\>[" "]?." "]p:
[$p;! m: 2[$m;\>][" "1+]# [$13\>][$m;*p;!1+]#%"
"]l:
1[$13\>][$l;!1+]#%
Fantom
class Main
{
static Void multiplicationTable (Int n)
{
// print column headings
echo (" |" + (1..n).map |Int a -> Str| { a.toStr.padl(4)}.join("") )
echo ("-----" + (1..n).map { "----" }.join("") )
// work through each row
(1..n).each |i|
{
echo ( i.toStr.padl(4) + "|" +
Str.spaces(4*(i-1)) +
(i..n).map |Int j -> Str| { (i*j).toStr.padl(4)}.join("") )
}
}
public static Void main ()
{
multiplicationTable (12)
}
}
Forth
: multiplication-table
cr 2 spaces 13 2 do i 4 u.r loop
cr
13 2 do
cr i 2 u.r
13 2 do
i j < if 4 spaces else i j * 4 u.r then
loop
loop ;
Fortran
program multtable
implicit none
integer :: i, j, k
write(*, "(a)") " x| 1 2 3 4 5 6 7 8 9 10 11 12"
write(*, "(a)") "--+------------------------------------------------"
do i = 1, 12
write(*, "(i2, a)", advance="no") i, "|"
do k = 2, i
write(*, "(a4)", advance="no") ""
end do
do j = i, 12
write(*, "(i4)", advance="no") i*j
end do
write(*, *)
end do
end program multtable
Traditional approach
The usual style is to write whole lines at a go, traditionally to fast lineprinters. Producing a tabular layout is easy (four characters per field to allow room to print 144 with a space separator), the difficulty lies in having blank parts at the start of the line followed by results. Having results followed by blanks is normal. The simplest way to achieve this would be to have a CHARACTER*4 function IFMT4(n) that returns four spaces for n <= 0, otherwise the digits, similar to the above example. But the plan is to write a line of such function calls at a go (with n = 0 for unwanted results), and alas, very few Fortran implementations allow recursive use of the formatted I/O system - here one level would be inside the function to produce the result for N > 0, and the other is the original WRITE statement that invokes the function.
So instead, write the table by first writing a line to a CHARACTER variable then blanking out the unwanted part.
Cast forth a twelve times table, suitable for chanting at school.
INTEGER I,J !Steppers.
CHARACTER*52 ALINE !Scratchpad.
WRITE(6,1) (I,I = 1,12) !Present the heading.
1 FORMAT (" ×|",12I4,/," --+",12("----")) !Alas, can't do overprinting with underlines now.
DO 3 I = 1,12 !Step down the lines.
WRITE (ALINE,2) I,(I*J, J = 1,12) !Prepare one line.
2 FORMAT (I3,"|",12I4) !Aligned with the heading.
ALINE(5:1 + 4*I) = "" !Scrub the unwanted part.
3 WRITE (6,"(A)") ALINE !Print the text.
END !"One one is one! One two is two! One three is three!...
Output in the same style as above, with underlining unavailable: those who have used a lineprinter's overprint facility to properly underline find the flabby modern requirement of a second line vexing, but, few output devices support underlining in so easy a way.
×| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Going to the trouble of preparing results, and then blanking some might seem a little too crude. An alternative would be to use a different FORMAT statement for each line of output. But, a collection of a dozen output statements hardly represents a programming solution. Instead, create and then use the text of FORMAT statements, as follows. Notice that there are no reserved words in Fortran.
Cast forth a twelve times table, suitable for chanting at school.
INTEGER I,J !Steppers.
CHARACTER*16 FORMAT !Scratchpad.
WRITE(6,1) (I,I = 1,12) !Present the heading.
1 FORMAT (" ×|",12I4,/," --+",12("----")) !Alas, can't do overprinting with underlines now.
DO 3 I = 1,12 !Step down the lines.
WRITE (FORMAT,2) (I - 1)*4,13 - I !Spacing for omitted fields, count of wanted fields.
2 FORMAT ("(I3,'|',",I0,"X,",I0,"I4)") !The format of the FORMAT statement.
3 WRITE (6,FORMAT) I,(I*J, J = I,12) !Use it.
END !"One one is one! One two is two! One three is three!...
The output is the same, so instead, here are the generated FORMAT texts:
(I3,'|',0X,12I4) (I3,'|',4X,11I4) (I3,'|',8X,10I4) (I3,'|',12X,9I4) (I3,'|',16X,8I4) (I3,'|',20X,7I4) (I3,'|',24X,6I4) (I3,'|',28X,5I4) (I3,'|',32X,4I4) (I3,'|',36X,3I4) (I3,'|',40X,2I4) (I3,'|',44X,1I4)
A zero count for spacing (the 0X, due to there being no omitted results on the first line) was possibly a weak point, but if not handled, the fallback position would have been to arrange that instead of 12I4 format, the first would be 1X,I3.
Some fortrans offer an extension to FORMAT statements, whereby a variable can appear in place of an integer constant, thus instead of say FORMAT (12I4) there could be FORMAT (<n>I4) for example. Then, during the interpretation of the FORMAT text, the current value of variable n would be accessed. Note that this is on-the-fly:
READ(in,"(I2,<N>I4)") N,(A(I),I = 1,N)
would read N as a two-digit integer, and, as the READ statement executes further, use that value of N both in the FORMAT text's interpretation and in the further processing of the READ statement.
VAX FORTRAN
PROGRAM TABLES
IMPLICIT NONE
C
C Produce a formatted multiplication table of the kind memorised by rote
C when in primary school. Only print the top half triangle of products.
C
C 23 Nov 15 - 0.1 - Adapted from original for VAX FORTRAN - MEJT
C
INTEGER I,J,K ! Counters.
CHARACTER*32 S ! Buffer for format specifier.
C
K=12
C
WRITE(S,1) K,K
1 FORMAT(8H(4H0 |,,I2.2,11HI4,/,4H --+,I2.2,9H(4H----)))
WRITE(6,S) (I,I = 1,K) ! Print heading.
C
DO 3 I=1,K ! Step down the lines.
WRITE(S,2) (I-1)*4+1,K ! Update format string.
2 FORMAT(12H(1H ,I2,1H|,,I2.2,5HX,I3,,I2.2,3HI4),8X) ! Format string includes an explicit carridge control character.
WRITE(6,S) I,(I*J, J = I,K) ! Use format to print row with leading blanks, unused fields are ignored.
3 CONTINUE
C
END
Based on the above code but with a slight modification as VAX FORTRAN doesn't allow zero width fields in a format statement. The number of rows and columns can also be altered by modifying the value of K which must be in the range 1 - 25.
FORTRAN-IV
PROGRAM TABLES
C
C Produce a formatted multiplication table of the kind memorised by rote
C when in primary school. Only print the top half triangle of products.
C
C 23 Nov 15 - 0.1 - Adapted from original for VAX FORTRAN - MEJT
C 24 Nov 15 - 0.2 - FORTRAN IV version adapted from VAX FORTRAN and
C compiled using Microsoft FORTRAN-80 - MEJT
C
DIMENSION K(12)
DIMENSION A(6)
DIMENSION L(12)
C
COMMON //A
EQUIVALENCE (A(1),L(1))
C
DATA A/'(1H ',',I2,','1H|,','01X,','I3,1','2I4)'/
C
WRITE(1,1) (I,I=1,12)
1 FORMAT(4H0 |,12I4,/,4H --+12(4H----))
C
C Overlaying the format specifier with an integer array makes it possibe
C to modify the number of blank spaces. The number of blank spaces is
C stored as two consecuitive ASCII characters that overlay on the
C integer value in L(7) in the ordr low byte, high byte.
C
DO 3 I=1,12
L(7)=(48+(I*4-3)-((I*4-3)/10)*10)*256+48+((I*4-3)/10)
DO 2 J=1,12
K(J)=I*J
2 CONTINUE
WRITE(1,A)I,(K(J), J = I,12)
3 CONTINUE
C
END
Rather more changes are needed to produce the same result, in particular we cannot modify the format specifier directly and have to rely on overlaying it with an integer array and calculating the ASCII values needed for each byte we need to modify. Nested implicit DO loops are allowed, but not used as it isn't possible to compute K on the fly so we have to calculate (and store) the results for each row before printing it. Note also that the unit numbers for the output devices are different and when using Hollerith strings to define values in a DATA statement the size of each string must match the size of the data type.
Microsoft FORTRAN-80
The use of a non standard(?) BYTE data type available in Microsoft FORTRAN-80 makes it easier to understand what is going on.
PROGRAM TABLES
C
C Produce a formatted multiplication table of the kind memorised by rote
C when in primary school. Only print the top half triangle of products.
C
C 23 Nov 15 - 0.1 - Adapted from original for VAX FORTRAN - MEJT
C 24 Nov 15 - 0.2 - FORTRAN IV version adapted from VAX FORTRAN and
C compiled using Microsoft FORTRAN-80 - MEJT
C 25 Nov 15 - 0.3 - Microsoft FORTRAN-80 version using a BYTE array
C which makes it easier to understand what is going
C on. - MEJT
C
BYTE A
DIMENSION A(24)
DIMENSION K(12)
C
DATA A/'(','1','H',' ',',','I','2',',','1','H','|',',',
+ '0','1','X',',','I','3',',','1','1','I','4',')'/
C
C Print a heading and (try to) underline it.
C
WRITE(1,1) (I,I=1,12)
1 FORMAT(4H |,12I4,/,4H --+12(4H----))
DO 3 I=1,12
A(13)=48+((I*4-3)/10)
A(14)=48+(I*4-3)-((I*4-3)/10)*10
DO 2 J=1,12
K(J)=I*J
2 CONTINUE
WRITE(1,A)I,(K(J), J = I,12)
3 CONTINUE
C
END
Inserting the following two lines before the inner DO loop will print the format specifier used to print each row of the table.
WRITE(1,4) (A(J), J = 1,24)
4 FORMAT(1x,24A1)
Running the program produces the following output
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Frink
a = makeArray[[13,13], {|a,b| a==0 ? b : (b==0 ? a : (a<=b ? a*b : ""))}]
formatTable[a,"right"]
- Output:
0 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
FutureBasic
long i, j
window 1, @"Multiplication Table", (0,0,420,220)
print " |";
for i = 1 to 12
print using "####"; i;
next
print :print "---+"; string$(48, "-")
for i = 1 to 12
print using "###"; i;
print"|"; spc(4 * (i - 1));
for j = i to 12
print using "####"; i * j;
next
print
next
HandleEvents
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Go
package main
import (
"fmt"
)
func main() {
fmt.Print(" x |")
for i := 1; i <= 12; i++ {
fmt.Printf("%4d", i)
}
fmt.Print("\n---+")
for i := 1; i <= 12; i++ {
fmt.Print("----")
}
for j := 1; j <= 12; j++ {
fmt.Printf("\n%2d |", j)
for i := 1; i <= 12; i++ {
if i >= j {
fmt.Printf("%4d", i*j)
} else {
fmt.Print(" ")
}
}
}
fmt.Println("")
}
Groovy
Solution:
def printMultTable = { size = 12 ->
assert size > 1
// factor1 line
print ' |'; (1..size).each { f1 -> printf('%4d', f1) }; println ''
// dividing line
print '--+'; (1..size).each { printf('----', it) }; println ''
// factor2 result lines
(1..size).each { f2 ->
printf('%2d|', f2)
(1..<f2).each{ print ' ' }
(f2..size).each{ f1 -> printf('%4d', f1*f2) }
println ''
}
}
printMultTable()
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Haskell
import Data.Maybe (fromMaybe, maybe)
------------------- MULTIPLICATION TABLE -----------------
mulTable :: [Int] -> [[Maybe Int]]
mulTable xs =
(Nothing : labels) :
zipWith
(:)
labels
[[upperMul x y | y <- xs] | x <- xs]
where
labels = Just <$> xs
upperMul x y
| x > y = Nothing
| otherwise = Just (x * y)
--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn . unlines $
showTable . mulTable
<$> [ [13 .. 20],
[1 .. 12],
[95 .. 100]
]
------------------------ FORMATTING ----------------------
showTable :: [[Maybe Int]] -> String
showTable xs = unlines $ head rows : [] : tail rows
where
w = succ $ (length . show) (fromMaybe 0 $ (last . last) xs)
gap = replicate w ' '
rows = (maybe gap (rjust w ' ' . show) =<<) <$> xs
rjust n c = (drop . length) <*> (replicate n c <>)
- Output:
13 14 15 16 17 18 19 20 13 169 182 195 208 221 234 247 260 14 196 210 224 238 252 266 280 15 225 240 255 270 285 300 16 256 272 288 304 320 17 289 306 323 340 18 324 342 360 19 361 380 20 400 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144 95 96 97 98 99 100 95 9025 9120 9215 9310 9405 9500 96 9216 9312 9408 9504 9600 97 9409 9506 9603 9700 98 9604 9702 9800 99 9801 9900 100 10000
Or, more roughly and directly:
import Data.List (groupBy)
import Data.Function (on)
import Control.Monad (join)
main :: IO ()
main =
mapM_ print $
fmap (uncurry (*)) <$>
groupBy
(on (==) fst)
(filter (uncurry (>=)) $ join ((<*>) . fmap (,)) [1 .. 12])
- Output:
[1] [2,4] [3,6,9] [4,8,12,16] [5,10,15,20,25] [6,12,18,24,30,36] [7,14,21,28,35,42,49] [8,16,24,32,40,48,56,64] [9,18,27,36,45,54,63,72,81] [10,20,30,40,50,60,70,80,90,100] [11,22,33,44,55,66,77,88,99,110,121] [12,24,36,48,60,72,84,96,108,120,132,144]
hexiscript
fun format n l
let n tostr n
while len n < l; let n (" " + n); endwhile
return n
endfun
print " |"
for let i 1; i <= 12; i++; print format i 4; endfor
print "\n --+"
for let i 1; i <= 12; i++; print "----"; endfor
println ""
for let i 1; i <= 12; i++
print format i 3 + "|"
for let j 1; j <= 12; j++
if j < i; print " "
else print format (i * j) 4; endif
endfor
println ""
endfor
HicEst
WRITE(Row=1) " x 1 2 3 4 5 6 7 8 9 10 11 12"
DO line = 1, 12
WRITE(Row=line+2, Format='i2') line
DO col = line, 12
WRITE(Row=line+2, Column=4*col, Format='i3') line*col
ENDDO
ENDDO
HolyC
U8 i, j, n = 12;
for (j = 1; j <= n; j++)
if (j != n)
Print("%3d%c", j, ' ');
else
Print("%3d%c", j, '\n');
for (j = 0; j <= n; j++)
if (j != n)
Print("----");
else
Print("+\n");
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++)
if (j < i)
Print(" ");
else
Print("%3d ", i * j);
Print("| %d\n", i);
}
Icon and Unicon
The above example is a somewhat exaggerated example of contractions. In both cases 'every' is used to force all alternatives including row labels, column headings, content, line terminators. The upper triangle is produced by embedding an 'if' expression inside the object of an 'every' (normally an error prone construct which would malfunction if not carefully separated from the generators for 'i' and 'j' - an all too tempting possibility once you get into this mind set.)
- Output:
* | 1 2 3 4 5 6 7 8 9 10 11 12 13 _____________________________________________________________________ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 13 2 | 4 6 8 10 12 14 16 18 20 22 24 26 3 | 9 12 15 18 21 24 27 30 33 36 39 4 | 16 20 24 28 32 36 40 44 48 52 5 | 25 30 35 40 45 50 55 60 65 6 | 36 42 48 54 60 66 72 78 7 | 49 56 63 70 77 84 91 8 | 64 72 80 88 96 104 9 | 81 90 99 108 117 10 | 100 110 120 130 11 | 121 132 143 12 | 144 156 13 | 169
Insitux
(var pad-num (comp str (pad-left " " 4)))
(join "\n"
(for y (range 1 13)
(... str "x" (pad-num y)
(for x (range 1 13)
(if (> y x)
" "
(pad-num (* x y)))))))
- Output:
x 1 1 2 3 4 5 6 7 8 9 10 11 12 x 2 4 6 8 10 12 14 16 18 20 22 24 x 3 9 12 15 18 21 24 27 30 33 36 x 4 16 20 24 28 32 36 40 44 48 x 5 25 30 35 40 45 50 55 60 x 6 36 42 48 54 60 66 72 x 7 49 56 63 70 77 84 x 8 64 72 80 88 96 x 9 81 90 99 108 x 10 100 110 120 x 11 121 132 x 12 144
J
multtable=: <:/~ * */~
format=: 'b4.0' 8!:2 ]
(('*' ; ,.) ,. ({. ; ])@format@multtable) >:i.12
┌──┬────────────────────────────────────────────────┐
│* │ 1 2 3 4 5 6 7 8 9 10 11 12│
├──┼────────────────────────────────────────────────┤
│ 1│ 1 2 3 4 5 6 7 8 9 10 11 12│
│ 2│ 4 6 8 10 12 14 16 18 20 22 24│
│ 3│ 9 12 15 18 21 24 27 30 33 36│
│ 4│ 16 20 24 28 32 36 40 44 48│
│ 5│ 25 30 35 40 45 50 55 60│
│ 6│ 36 42 48 54 60 66 72│
│ 7│ 49 56 63 70 77 84│
│ 8│ 64 72 80 88 96│
│ 9│ 81 90 99 108│
│10│ 100 110 120│
│11│ 121 132│
│12│ 144│
└──┴────────────────────────────────────────────────┘
That said, note that */~
is the core primitive used to construct a multiplication table and this is a general technique so that, for example, +/~
would make an addition table. The rest is just to make it look pretty (and to blank out the lower triangle -- we use a less than or equal table (<:/~
) to control that, and format zeros as spaces to blank them out).
Java
public class MultiplicationTable {
public static void main(String[] args) {
for (int i = 1; i <= 12; i++)
System.out.print("\t" + i);
System.out.println();
for (int i = 0; i < 100; i++)
System.out.print("-");
System.out.println();
for (int i = 1; i <= 12; i++) {
System.out.print(i + "|");
for(int j = 1; j <= 12; j++) {
System.out.print("\t");
if (j >= i)
System.out.print("\t" + i * j);
}
System.out.println();
}
}
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ---------------------------------------------------------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
JavaScript
Unicode output
The following example works with any (modern) JavaScript runtime:
function timesTable(){
let output = "";
const size = 12;
for(let i = 1; i <= size; i++){
output += i.toString().padStart(3);
output += i !== size ? " " : "\n";
}
for(let i = 0; i <= size; i++)
output += i !== size ? "════" : "╕\n";
for(let i = 1; i <= size; i++){
for(let j = 1; j <= size; j++){
output += j < i
? " "
: (i * j).toString().padStart(3) + " ";
}
output += `│ ${i}\n`;
}
return output;
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ════════════════════════════════════════════════╕ 1 2 3 4 5 6 7 8 9 10 11 12 │ 1 4 6 8 10 12 14 16 18 20 22 24 │ 2 9 12 15 18 21 24 27 30 33 36 │ 3 16 20 24 28 32 36 40 44 48 │ 4 25 30 35 40 45 50 55 60 │ 5 36 42 48 54 60 66 72 │ 6 49 56 63 70 77 84 │ 7 64 72 80 88 96 │ 8 81 90 99 108 │ 9 100 110 120 │ 10 121 132 │ 11 144 │ 12
HTML tables
The following examples require a browser or browser-like environment:
Imperative
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<title>12 times table</title>
<script type='text/javascript'>
function multiplication_table(n, target) {
var table = document.createElement('table');
var row = document.createElement('tr');
var cell = document.createElement('th');
cell.appendChild(document.createTextNode('x'));
row.appendChild(cell);
for (var x = 1; x <=n; x++) {
cell = document.createElement('th');
cell.appendChild(document.createTextNode(x));
row.appendChild(cell);
}
table.appendChild(row);
for (var x = 1; x <=n; x++) {
row = document.createElement('tr');
cell = document.createElement('th');
cell.appendChild(document.createTextNode(x));
row.appendChild(cell);
var y;
for (y = 1; y < x; y++) {
cell = document.createElement('td');
cell.appendChild(document.createTextNode('\u00a0'));
row.appendChild(cell);
}
for (; y <= n; y++) {
cell = document.createElement('td');
cell.appendChild(document.createTextNode(x*y));
row.appendChild(cell);
}
table.appendChild(row);
}
target.appendChild(table);
}
</script>
<style type='text/css'>
body {font-family: sans-serif;}
table {border-collapse: collapse;}
th, td {border: 1px solid black; text-align: right; width: 4ex;}
</style>
</head>
<body onload="multiplication_table(12, document.getElementById('target'));">
<div id='target'></div>
</body>
</html>
- Output:
(minus the style)
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | |
3 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | ||
4 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | |||
5 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||||
6 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | |||||
7 | 49 | 56 | 63 | 70 | 77 | 84 | ||||||
8 | 64 | 72 | 80 | 88 | 96 | |||||||
9 | 81 | 90 | 99 | 108 | ||||||||
10 | 100 | 110 | 120 | |||||||||
11 | 121 | 132 | ||||||||||
12 | 144 |
Functional
ES5
(function (m, n) {
// [m..n]
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
return m + i;
});
}
// Monadic bind (chain) for lists
function mb(xs, f) {
return [].concat.apply([], xs.map(f));
}
var rng = range(m, n),
lstTable = [['x'].concat( rng )]
.concat(mb(rng, function (x) {
return [[x].concat(mb(rng, function (y) {
return y < x ? [''] : [x * y]; // triangle only
}))]}));
/* FORMATTING OUTPUT */
// [[a]] -> bool -> s -> s
function wikiTable(lstRows, blnHeaderRow, strStyle) {
return '{| class="wikitable" ' + (
strStyle ? 'style="' + strStyle + '"' : ''
) + lstRows.map(function (lstRow, iRow) {
var strDelim = ((blnHeaderRow && !iRow) ? '!' : '|');
return '\n|-\n' + strDelim + ' ' + lstRow.map(function (v) {
return typeof v === 'undefined' ? ' ' : v;
}).join(' ' + strDelim + strDelim + ' ');
}).join('') + '\n|}';
}
// Formatted as WikiTable
return wikiTable(
lstTable, true,
'text-align:center;width:33em;height:33em;table-layout:fixed;'
) + '\n\n' +
// or simply stringified as JSON
JSON.stringify(lstTable);
})(1, 12);
- Output:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | |
3 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | ||
4 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | |||
5 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||||
6 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | |||||
7 | 49 | 56 | 63 | 70 | 77 | 84 | ||||||
8 | 64 | 72 | 80 | 88 | 96 | |||||||
9 | 81 | 90 | 99 | 108 | ||||||||
10 | 100 | 110 | 120 | |||||||||
11 | 121 | 132 | ||||||||||
12 | 144 |
[["x",1,2,3,4,5,6,7,8,9,10,11,12],
[1,1,2,3,4,5,6,7,8,9,10,11,12],
[2,"",4,6,8,10,12,14,16,18,20,22,24],
[3,"","",9,12,15,18,21,24,27,30,33,36],
[4,"","","",16,20,24,28,32,36,40,44,48],
[5,"","","","",25,30,35,40,45,50,55,60],
[6,"","","","","",36,42,48,54,60,66,72],
[7,"","","","","","",49,56,63,70,77,84],
[8,"","","","","","","",64,72,80,88,96],
[9,"","","","","","","","",81,90,99,108],
[10,"","","","","","","","","",100,110,120],
[11,"","","","","","","","","","",121,132],
[12,"","","","","","","","","","","",144]]
ES6
(() => {
"use strict";
// -------------- MULTIPLICATION TABLE ---------------
// multTable :: Int -> Int -> [[String]]
const multTable = m => n => {
const xs = enumFromTo(m)(n);
return [
["x", ...xs],
...xs.flatMap(x => [
[x, ...xs.flatMap(
y => y < x
? [""]
: [`${x * y}`]
)]
])
];
};
// ---------------------- TEST -----------------------
// main :: () -> IO String
const main = () =>
wikiTable({
class: "wikitable",
style: [
"text-align:center",
"width:33em",
"height:33em",
"table-layout:fixed"
]
.join(";")
})(
multTable(1)(12)
);
// ---------------- GENERIC FUNCTIONS ----------------
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
// Enumeration of the integers from m to n.
n => Array.from(
{ length: 1 + n - m },
(_, i) => m + i
);
// ------------------- FORMATTING --------------------
// wikiTable :: Dict -> [[a]] -> String
const wikiTable = opts =>
rows => {
const
style = ["class", "style"].reduce(
(a, k) => k in opts
? `${a}${k}="${opts[k]}" `
: a,
""
),
body = rows.map((row, i) => {
const
cells = row.map(
x => `${x}` || " "
)
.join(" || ");
return `${i ? "|" : "!"} ${cells}`;
})
.join("\n|-\n");
return `{| ${style}\n${body}\n|}`;
};
// MAIN ---
return main();
})();
- Output:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | |
3 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | ||
4 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | |||
5 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||||
6 | 36 | 42 | 48 | 54 | 60 | 66 | 72 | |||||
7 | 49 | 56 | 63 | 70 | 77 | 84 | ||||||
8 | 64 | 72 | 80 | 88 | 96 | |||||||
9 | 81 | 90 | 99 | 108 | ||||||||
10 | 100 | 110 | 120 | |||||||||
11 | 121 | 132 | ||||||||||
12 | 144 |
jq
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
def multiplication($n):
($n*$n|tostring|length) as $len
| ["x", range(0; $n + 1)] | map(lpad($len)) | join(" "),
(["", range(0; $n + 1)] | map($len*"-") | join(" ")),
( range(0; $n + 1) as $i
| [$i,
range(0; $n + 1) as $j
| if $j>=$i then $i*$j else "" end]
| map(lpad($len))
| join(" ") ) ;
multiplication(12)
- Output:
x 0 1 2 3 4 5 6 7 8 9 10 11 12 --- --- --- --- --- --- --- --- --- --- --- --- --- --- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Jsish
/* Multiplication tables, is Jsish */
var m, n, tableSize = 12;
if (console.args.length > 0) tableSize = parseInt(console.args[0]);
if (tableSize < 1 || tableSize > 20) tableSize = 12;
var width = String(tableSize * tableSize).length;
var spaces = ' '.repeat(width+1);
printf(spaces);
for (m = 1; m <= tableSize; m++) printf(' %*d', width, m);
printf('\n' + ' '.repeat(width) + '+');
printf('-'.repeat((width+1) * tableSize));
for (m = 1; m <= tableSize; m++) {
printf('\n%*d|', width, m);
for (n = m; n < m; n++) printf(spaces);
for (n = 1; n <= tableSize; n++) {
if (m <= n) printf(' %*d', width, m * n); else printf(spaces);
}
}
printf('\n');
- Output:
prompt$ jsish multiplication-tables.jsi 1 2 3 4 5 6 7 8 9 10 11 12 +------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144 prompt$ jsish multiplication-tables.jsi 4 1 2 3 4 +------------ 1| 1 2 3 4 2| 4 6 8 3| 9 12 4| 16
Julia
using Printf
println(" X | 1 2 3 4 5 6 7 8 9 10 11 12")
println("---+------------------------------------------------")
for i=1:12, j=0:12
if j == 0
@printf("%2d | ", i)
elseif i <= j
@printf("%3d%c", i * j, j == 12 ? '\n' : ' ')
else
print(" ")
end
end
- Output:
X | 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
Kotlin
// version 1.0.6
fun main(args: Array<String>) {
print(" x|")
for (i in 1..12) print("%4d".format(i))
println("\n---+${"-".repeat(48)}")
for (i in 1..12) {
print("%3d".format(i) +"|${" ".repeat(4 * i - 4)}")
for (j in i..12) print("%4d".format(i * j))
println()
}
}
- Output:
x| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Lambdatalk
Outputs are visible in http://lambdaway.free.fr/lambdawalks/?view=multiplication_table
{def format
{lambda {:w :c}
{@ style="width::wpx;
color::c;
text-align:right;"
}}}
-> format
{def operation
{lambda {:op :i :j}
{if {and {= :i 0} {= :j 0}} // left top cell
then {format 30 #fff} // is empty
else {if {= :i 0} // top row
then {format 30 #ff0}:j // is yellow
else {if {= :j 0} // left col
then {format 30 #0ff}:i // is cyan
else {format 30 #ccc} // is lightgrey
{if {<= :i :j} then {:op :i :j} else .} // cell [i,j]
}}}}}
-> operation
{def make_table
{lambda {:func :row :col}
{table {@ style="box-shadow:0 0 8px #000;"}
{S.map // apply
{{lambda {:func :col :j} // function row
{tr {S.map // apply
{{lambda {:func :i :j} // function cell
{td {:func :i :j}}} :func :j} // apply func on [i,j]
{S.serie 0 :col}}}} :func :col} // from 0 to col
{S.serie 0 :row} // from 0 to row
}}}}
-> make_table
The following calls:
1) {make_table {operation +} 5 15}
2) {make_table {operation *} 12 12}
3) {make_table {operation pow} 6 10}
Lasso
define printTimesTables(max::integer) => {
local(result) = ``
local(padSize) = string(#max*#max)->size + 1
// Print header row
#result->append((' ' * #padSize) + '|')
loop(#max) => {
#result->append(loop_count->asString(-padding=#padSize))
}
#result->append("\n" + (`-` * #padSize) + '+' + (`-` * (#padSize * #max)))
with left in 1 to #max do {
// left column
#result->append("\n" + #left->asString(-padding=#padSize) + '|')
// Table results
with right in 1 to #max do {
#result->append(
#right < #left
? ' ' * #padSize
| (#left * #right)->asString(-padding=#padSize)
)
}
}
return #result
}
printTimesTables(12)
- Output:
----+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Logo
to mult.table :n
type "| | for [i 2 :n] [type form :i 4 0] (print)
(print)
for [i 2 :n] [
type form :i 2 0
for [j 2 :n] [
type ifelse :i > :j ["| |] [form :i*:j 4 0]
]
(print)
]
end
mult.table 12
Lua
io.write( " |" )
for i = 1, 12 do
io.write( string.format( "%#5d", i ) )
end
io.write( "\n", string.rep( "-", 12*5+4 ), "\n" )
for i = 1, 12 do
io.write( string.format( "%#2d |", i ) )
for j = 1, 12 do
if j < i then
io.write( " " )
else
io.write( string.format( "%#5d", i*j ) )
end
end
io.write( "\n" )
end
| 1 2 3 4 5 6 7 8 9 10 11 12 ---------------------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
M2000 Interpreter
Using jagged array (arrays of arrays)
Module CheckIt {
Dim Base 1, A(12)
Mult=lambda (n)-> {
Flush ' empty stack
For i=1 to n : Data i*n : Next i
=Array([]) ' copy stack in an array, and return a pointer
}
i=Each(A())
Print " |";
while i {
Print Format$("{0:0:-4}",i^+1);
A(i^+1)=Mult(i^+1)
}
Print
Print "--+"+string$("-",4*12)
For i=1 to 12 {
Print Format$("{0:0:-2}|",i);
For j=1 to 12 {
If len(A(j)())>=i then {
Print Format$("{0:0:-4}",A(j)(i-1));
} Else Print " ";
}
Print
}
}
CheckIt
Final loop can be this, using Each() and r1 as pointer to array.
For i=1 to 12 { j=Each(A()) Print Format$("{0:0:-2}|",i); While j { r1=A(j^+1) If len(r1)>=i then { Print Format$("{0:0:-4}",Array(r1,i-1)); } Else Print " "; } Print }
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Maple
printf(" ");
for i to 12 do
printf("%-3d ", i);
end do;
printf("\n");
for i to 75 do
printf("-");
end do;
for i to 12 do
printf("\n%2d| ", i);
for j to 12 do
if j<i then
printf(" ");
else
printf("%-3d ", i * j);
end if
end do
end do
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 --------------------------------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Mathematica /Wolfram Language
Grid[{{Range[12]//Column,Grid[UpperTriangularize[KroneckerProduct[Range[12],Range[12]]]/.{0->""}]}}]
- Output:
1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
MATLAB / Octave
timesTable.m: (creates Times Table of N degree)
function table = timesTable(N)
table = [(0:N); (1:N)' triu( kron((1:N),(1:N)') )];
end
A minimally vectorized version of the above code:
function table = timesTable(N)
%Generates a column vector with integers from 1 to N
rowLabels = (1:N)';
%Generate a row vector with integers from 0 to N
columnLabels = (0:N);
%Generate the multiplication table using the kronecker tensor product
%of two vectors one a column vector and the other a row vector
table = kron((1:N),(1:N)');
%Make it upper triangular and concatenate the rowLabels and
%columnLabels to the table
table = [columnLabels; rowLabels triu(table)];
end
- Output:
For N=12:
timesTable(12) ans = 0 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 0 4 6 8 10 12 14 16 18 20 22 24 3 0 0 9 12 15 18 21 24 27 30 33 36 4 0 0 0 16 20 24 28 32 36 40 44 48 5 0 0 0 0 25 30 35 40 45 50 55 60 6 0 0 0 0 0 36 42 48 54 60 66 72 7 0 0 0 0 0 0 49 56 63 70 77 84 8 0 0 0 0 0 0 0 64 72 80 88 96 9 0 0 0 0 0 0 0 0 81 90 99 108 10 0 0 0 0 0 0 0 0 0 100 110 120 11 0 0 0 0 0 0 0 0 0 0 121 132 12 0 0 0 0 0 0 0 0 0 0 0 144
Maxima
for i: 1 thru 12 do (
for j: 1 thru 12 do (
if j>=i or j=1 then printf(true, "~4d", i*j) else printf(true, " ")
),
printf(true, "~%")
);
Constructing a function to handle cases like this one
/* Auxiliar function */
aux_table(n,k):=append([k],makelist(0,i,1,k-1),makelist(k*i,i,k,n))$
/* Function to construct the formatted table */
table_mult(n):=block(
append([makelist(i,i,0,n)],makelist(aux_table(n,k),k,1,n)),
makelist(at(%%[i],0=""),i,2,length(%%)),
table_form(%%))$
/* Test case */
table_mult(12);
МК-61/52
П0 КИП0 КИП4 КИП5 ИП4 ИП5 * С/П
ИП5 ИП0 - x=0 03
ИП4 ИП0 - x#0 22 ИП4 П5 БП 02
С/П
Input: 12 С/П ...
- Output:
(compiled)
1 2 3 4 5 6 7 8 9 10 11 12 4 6 8 10 12 14 16 18 20 22 24 9 12 15 18 21 24 27 30 33 36 16 20 24 28 32 36 40 44 48 25 30 35 40 45 50 55 60 36 42 48 54 60 66 72 49 56 63 70 77 84 64 72 80 88 96 81 90 99 108 100 110 120 121 132 144
Modula-2
MODULE MultiplicationTables;
FROM SWholeIO IMPORT
WriteInt;
FROM STextIO IMPORT
WriteString, WriteLn;
CONST
N = 12;
VAR
I, J: INTEGER;
BEGIN
FOR J := 1 TO N - 1 DO
WriteInt(J, 3);
WriteString(" ");
END;
WriteInt(N, 3);
WriteLn;
FOR J := 0 TO N - 1 DO
WriteString("----");
END;
WriteString("+");
WriteLn;
FOR I := 1 TO N DO
FOR J := 1 TO N DO
IF J < I THEN
WriteString(" ");
ELSE
WriteInt(I * J, 3);
WriteString(" ");
END;
END;
WriteString("| ");
WriteInt(I, 2);
WriteLn;
END;
END MultiplicationTables.
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
MOO
This quick example is designed to demonstrate raw MOO. In other words it does not use any of the helper functions available in popular DBs such as LambdaMOO.
@verb me:@tables none none none rxd
@program me:@tables
player:tell(" | 1 2 3 4 5 6 7 8 9 10 11 12");
player:tell("-------------------------------------------------------------------");
for i in [1..12]
line = ((i < 10) ? " " | " ") + tostr(i) + " | ";
for j in [1..12]
if (j >= i)
product = i * j;
"calculate spacing for right justification of values";
if (product >= 100)
spacer = "";
elseif (product >= 10)
spacer = " ";
else
spacer = " ";
endif
line = line + " " + spacer + tostr(product);
else
line = line + " ";
endif
endfor
player:tell(line);
endfor
.
LambdaMOO string utilities version:
@program me:@tables
player:tell(" | 1 2 3 4 5 6 7 8 9 10 11 12");
player:tell($string_utils:space(67, "-"));
for i in [1..12]
line = " " + $string_utils:right(i, 2) + " | ";
for j in [1..12]
line = line + " " + ((i > j) ? " " | $string_utils:right(j*i, 3));
endfor
player:tell(line);
endfor
.
- Output:
@tables | 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
MUMPS
MULTTABLE(SIZE)
;Print out a multiplication table
;SIZE is the size of the multiplication table to make
;MW is the maximum width of the numbers
;D is the down axis
;A is the across axis
;BAR is the horizontal bar under the operands
NEW MW,D,A,BAR
IF $DATA(SIZE)<1 SET SIZE=12
SET MW=$LENGTH(SIZE*SIZE)
SET BAR="" FOR I=1:1:(MW+2) SET BAR=BAR_"-"
FOR D=1:1:(SIZE+2) DO
.FOR A=1:1:(SIZE+1) DO
..WRITE:(D=1)&(A=1) !,$JUSTIFY("",MW-1)," X|"
..WRITE:(D=1)&(A>1) ?((A-1)*5),$JUSTIFY((A-1),MW)
..WRITE:(D=2)&(A=1) !,BAR
..WRITE:(D=2)&(A'=1) BAR
..WRITE:(D>2)&(A=1) !,$JUSTIFY((D-2),MW)," |"
..WRITE:((A-1)>=(D-2))&((D-2)>=1) ?((A-1)*5),$JUSTIFY((D-2)*(A-1),MW)
KILL MW,D,A,BAR
QUIT
- Output:
USER>D MULTTABLE^ROSETTA X| 1 2 3 4 5 6 7 8 9 10 11 12 ----------------------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
N/t/roff
Works with gnu nroff. Please note that the script example contains tab characters which are essential for the correct tabular output.
.nf
.ta T 2mR
.nr x 1 1
.nr y 2 1
.nr p 0
.while (\n[x] <= 12) \{\
.if (\n[x]<10) \0\c
\n[x]\c
.if (\n[x]=1) \c
.while (\n[y] <= 12) \{\
.nr p \n[x]*\n[y]
.ie (\n[y]>=\n[x]) \n[p] \c
.el \c
.nr y +1
.\}
.br
.nr x +1
.nr y 1 1
.\}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Neko
/**
Multiplication table, in Neko
Tectonics:
nekoc multiplication-table.neko
neko multiplication-table
*/
var sprintf = $loader.loadprim("std@sprintf", 2);
var i, j;
i = 1;
$print(" X |");
while i < 13 {
$print(sprintf("%4d", i));
i += 1;
}
$print("\n");
$print(" ---+");
i = 1;
while i < 13 {
$print("----");
i += 1;
}
$print("\n");
j = 1;
while j < 13 {
$print(sprintf("%3d", j));
$print(" |");
i = 1;
while i < 13 {
if j > i {
$print(" ");
} else {
$print(sprintf("%4d", i*j));
}
i += 1;
}
$print("\n");
j += 1;
}
- Output:
prompt$ nekoc multiplication-table.neko prompt$ neko multiplication-table X | 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
Nim
import strfmt
const n = 12
for j in 1..n:
stdout.write "{:3d}{:s}".fmt(j, if n-j>0: " " else: "\n")
for j in 0..n:
stdout.write if n-j>0: "----" else: "+\n"
for i in 1..n:
for j in 1..n:
stdout.write if j<i: " " else: "{:3d} ".fmt(i*j)
echo "| {:2d}".fmt(i)
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
Nu
1..12 | each {|x|
1..12 | each {|y|
if $x > $y and $y > 1 { '' } else { $x * $y }
}
| fill -a r -w 4 | str join
}
| str join "\n"
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
OCaml
let () =
let max = 12 in
let fmax = float_of_int max in
let dgts = int_of_float (ceil (log10 (fmax *. fmax))) in
let fmt = Printf.printf " %*d" dgts in
let fmt2 = Printf.printf "%*s%c" dgts in
fmt2 "" 'x';
for i = 1 to max do fmt i done;
print_string "\n\n";
for j = 1 to max do
fmt j;
for i = 1 to pred j do fmt2 "" ' '; done;
for i = j to max do fmt (i*j); done;
print_newline()
done;
print_newline()
PARI/GP
Quick and dirty one-liner:
for(y=1,12,printf("%2Ps| ",y);for(x=1,12,print1(if(y>x,"",x*y)"\t"));print)
Pascal
See Delphi
PascalABC.NET
##
write(' x|');
for var i := 1 to 12 do write(i:4);
writeln(#13, '---+', '-' * 48);
for var i := 1 to 12 do
begin
write(i:3, '|', ' ' * (4 * i - 4));
for var j := i to 12 do write(i * j:4);
writeln;
end;
- Output:
x| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Perl
our $max = 12;
our $width = length($max**2) + 1;
printf "%*s", $width, $_ foreach 'x|', 1..$max;
print "\n", '-' x ($width - 1), '+', '-' x ($max*$width), "\n";
foreach my $i (1..$max) {
printf "%*s", $width, $_
foreach "$i|", map { $_ >= $i and $_*$i } 1..$max;
print "\n";
}
- Output:
x| 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Phix
printf(1," | ") for col=1 to 12 do printf(1,"%4d",col) end for printf(1,"\n--+-"&repeat('-',12*4)) for row=1 to 12 do printf(1,"\n%2d| ",row) for col=1 to 12 do printf(1,iff(col<row?" ":sprintf("%4d",row*col))) end for end for
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Phixmonti
/# Rosetta Code problem: https://rosettacode.org/wiki/Multiplication_tables
by Galileo, 11/2022 #/
def tab 9 tochar print enddef
tab 12 for print tab endfor nl
tab '-' 12 8 * repeat print nl
12 for
dup print tab 8 tochar print "|" print
dup for
over * print tab
endfor
drop nl
endfor
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------------------------------------------------------ 1 |1 2 |2 4 3 |3 6 9 4 |4 8 12 16 5 |5 10 15 20 25 6 |6 12 18 24 30 36 7 |7 14 21 28 35 42 49 8 |8 16 24 32 40 48 56 64 9 |9 18 27 36 45 54 63 72 81 10 |10 20 30 40 50 60 70 80 90 100 11 |11 22 33 44 55 66 77 88 99 110 121 12 |12 24 36 48 60 72 84 96 108 120 132 144 === Press any key to exit ===
Picat
go =>
N=12,
make_table(N),
nl.
%
% Make a table of size N
%
make_table(N) =>
printf(" "),
foreach(I in 1..N) printf("%4w", I) end,
nl,
println(['-' : _ in 1..(N+1)*4+1]),
foreach(I in 1..N)
printf("%2d | ", I),
foreach(J in 1..N)
if J>=I then
printf("%4w", I*J)
else
printf(" ")
end
end,
nl
end,
nl.
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ----------------------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
PicoLisp
sp>(de mulTable (N)
(space 4)
(for X N
(prin (align 4 X)) )
(prinl)
(prinl)
(for Y N
(prin (align 4 Y))
(space (* (dec Y) 4))
(for (X Y (>= N X) (inc X))
(prin (align 4 (* X Y))) )
(prinl) ) )
(mulTable 12)
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
PL/I
/* 12 x 12 multiplication table. */
multiplication_table: procedure options (main);
declare (i, j) fixed decimal (2);
put skip edit ((i do i = 1 to 12)) (X(4), 12 F(4));
put skip edit ( (49)'_') (X(3), A);
do i = 1 to 12;
put skip edit (i, ' |', (i*j do j = i to 12))
(F(2), a, col(i*4+1), 12 F(4));
end;
end multiplication_table;
Result:
1 2 3 4 5 6 7 8 9 10 11 12 _________________________________________________ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
PowerShell
# For clarity
$Tab = "`t"
# Create top row
$Tab + ( 1..12 -join $Tab )
# For each row
ForEach ( $i in 1..12 )
{
$( # The number in the left column
$i
# An empty slot for the bottom triangle
@( "" ) * ( $i - 1 )
# Calculate the top triangle
$i..12 | ForEach { $i * $_ }
# Combine them all together
) -join $Tab
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
A more general solution
function Get-TimesTable ( [int]$Size )
{
# For clarity
$Tab = "`t"
# Create top row
$Tab + ( 1..$Size -join $Tab )
# For each row
ForEach ( $i in 1..$Size )
{
$( # The number in the left column
$i
# An empty slot for the bottom triangle
@( "" ) * ( $i - 1 )
# Calculate the top triangle
$i..$Size | ForEach { $i * $_ }
# Combine them all together (and send them to the out put stream, which in PowerShell implicityly returns them)
) -join $Tab
}
}
Get-TimesTable 18
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 3 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 4 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 5 25 30 35 40 45 50 55 60 65 70 75 80 85 90 6 36 42 48 54 60 66 72 78 84 90 96 102 108 7 49 56 63 70 77 84 91 98 105 112 119 126 8 64 72 80 88 96 104 112 120 128 136 144 9 81 90 99 108 117 126 135 144 153 162 10 100 110 120 130 140 150 160 170 180 11 121 132 143 154 165 176 187 198 12 144 156 168 180 192 204 216 13 169 182 195 208 221 234 14 196 210 224 238 252 15 225 240 255 270 16 256 272 288 17 289 306 18 324
Prolog
make_table(S,E) :-
print_header(S,E),
make_table_rows(S,E),
fail.
make_table(_,_).
print_header(S,E) :-
nl,
write(' '),
forall(between(S,E,X), print_num(X)),
nl,
Sp is E * 4 + 2,
write(' '),
forall(between(1,Sp,_), write('-')).
make_table_rows(S,E) :-
between(S,E,N),
nl,
print_num(N), write(': '),
between(S,E,N2),
X is N * N2,
print_row_item(N,N2,X).
print_row_item(N, N2, _) :-
N2 < N,
write(' ').
print_row_item(N, N2, X) :-
N2 >= N,
print_num(X).
print_num(X) :- X < 10, format(' ~p', X).
print_num(X) :- between(10,99,X), format(' ~p', X).
print_num(X) :- X > 99, format(' ~p', X).
- Output:
?- make_table(1,12). 1 2 3 4 5 6 7 8 9 10 11 12 -------------------------------------------------- 1: 1 2 3 4 5 6 7 8 9 10 11 12 2: 4 6 8 10 12 14 16 18 20 22 24 3: 9 12 15 18 21 24 27 30 33 36 4: 16 20 24 28 32 36 40 44 48 5: 25 30 35 40 45 50 55 60 6: 36 42 48 54 60 66 72 7: 49 56 63 70 77 84 8: 64 72 80 88 96 9: 81 90 99 108 10: 100 110 120 11: 121 132 12: 144 true. ?-
Python
Procedural
>>> size = 12
>>> width = len(str(size**2))
>>> for row in range(-1,size+1):
if row==0:
print("─"*width + "┼"+"─"*((width+1)*size-1))
else:
print("".join("%*s%1s" % ((width,) + (("x","│") if row==-1 and col==0
else (row,"│") if row>0 and col==0
else (col,"") if row==-1
else ("","") if row>col
else (row*col,"")))
for col in range(size+1)))
x│ 1 2 3 4 5 6 7 8 9 10 11 12
───┼───────────────────────────────────────────────
1│ 1 2 3 4 5 6 7 8 9 10 11 12
2│ 4 6 8 10 12 14 16 18 20 22 24
3│ 9 12 15 18 21 24 27 30 33 36
4│ 16 20 24 28 32 36 40 44 48
5│ 25 30 35 40 45 50 55 60
6│ 36 42 48 54 60 66 72
7│ 49 56 63 70 77 84
8│ 64 72 80 88 96
9│ 81 90 99 108
10│ 100 110 120
11│ 121 132
12│ 144
>>>
The above works with Python 3.X, which uses Unicode strings by default.
Declaring a file type of UTF-8 and adding a u to all string literals to transform them into Unicode literals would make the above work in Python 2.X.
(As would using ASCII minus, plus, and pipe characters: "-", "+", "|"; instead of the non-ASCII chars used to draw a frame).
Functional
We can define a multiplication table string first in terms of a list comprehension (mulTable function),
and then again, for comparison, as an equivalent list monad expression (mulTable2 function):
'''Multiplication table
1. by list comprehension (mulTable ),
2. by list monad. (mulTable2)'''
from itertools import chain
# mulTable :: Int -> String
def mulTable(n):
'''A multiplication table of dimension n,
without redundant entries beneath
the diagonal of squares.'''
# colWidth :: Int
colWidth = len(str(n * n))
# pad :: String -> String
def pad(s):
return s.rjust(colWidth, ' ')
xs = enumFromTo(1)(n)
return unlines([
pad(str(y) + ':') + unwords([
pad(str(x * y) if x >= y else '')
for x in xs
]) for y in xs
])
# mulTable2 :: Int -> String
def mulTable2(n):
'''Identical to mulTable above,
but the list comprehension is directly
desugared to an equivalent list monad expression.'''
# colWidth :: Int
colWidth = len(str(n * n))
# pad :: String -> String
def pad(s):
return s.rjust(colWidth, ' ')
xs = enumFromTo(1)(n)
return unlines(
bind(xs)(lambda y: [
pad(str(y) + ':') + unwords(
bind(xs)(lambda x: [
pad(str(x * y) if x >= y else '')
])
)
])
)
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Test'''
for s, f in [
('list comprehension', mulTable),
('list monad', mulTable2)
]:
print(
'By ' + s + ' (' + f.__name__ + '):\n\n',
f(12).strip() + '\n'
)
# GENERIC -------------------------------------------------
# bind (>>=) :: [a] -> (a -> [b]) -> [b]
def bind(xs):
'''The injection operator for the list monad.
Equivalent to concatMap with its arguments flipped.'''
return lambda f: list(
chain.from_iterable(
map(f, xs)
)
)
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# unlines :: [String] -> String
def unlines(xs):
'''A newline-delimited string derived from a list of lines.'''
return '\n'.join(xs)
# unwords :: [String] -> String
def unwords(xs):
'''A space-delimited string derived from a list of words.'''
return ' '.join(xs)
if __name__ == '__main__':
main()
- Output:
By list comprehension (mulTable): 1: 1 2 3 4 5 6 7 8 9 10 11 12 2: 4 6 8 10 12 14 16 18 20 22 24 3: 9 12 15 18 21 24 27 30 33 36 4: 16 20 24 28 32 36 40 44 48 5: 25 30 35 40 45 50 55 60 6: 36 42 48 54 60 66 72 7: 49 56 63 70 77 84 8: 64 72 80 88 96 9: 81 90 99 108 10: 100 110 120 11: 121 132 12: 144 By list monad (mulTable2): 1: 1 2 3 4 5 6 7 8 9 10 11 12 2: 4 6 8 10 12 14 16 18 20 22 24 3: 9 12 15 18 21 24 27 30 33 36 4: 16 20 24 28 32 36 40 44 48 5: 25 30 35 40 45 50 55 60 6: 36 42 48 54 60 66 72 7: 49 56 63 70 77 84 8: 64 72 80 88 96 9: 81 90 99 108 10: 100 110 120 11: 121 132 12: 144
Or, with a little more abstraction, and a complete separation of model from view:
'''Generalised multiplication tables'''
import collections
import itertools
import inspect
# table :: Int -> [[Maybe Int]]
def table(xs):
'''An option-type model of a multiplication table:
a tabulation of Just(x * y) values for all
pairings (x, y) of integers in xs where x > y,
and Nothing values where y <= x.
'''
axis = fmap(Just)(xs)
return list(cons(
cons(Nothing())(axis)
)(zipWith(cons)(axis)([
[
Nothing() if y > x else Just(x * y)
for x in xs
]
for y in xs
])))
# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Test'''
print('\n\n'.join(
fmap(fmap(fmap(showTable)(table))(
liftA2(enumFromTo)(fst)(snd)
))(
[(13, 20), (1, 12), (95, 100)]
)
))
# DISPLAY -------------------------------------------------
# showTable :: [[Maybe Int]] -> String
def showTable(xs):
'''A stringification of an abstract model
of a multiplication table.
'''
w = 1 + len(str(last(last(xs))['Just']))
gap = ' ' * w
rows = fmap(fmap(concat)(
fmap(maybe(gap)(
fmap(justifyRight(w)(' '))(str)
))
))(xs)
return unlines([rows[0]] + [''] + rows[1:])
# GENERIC -------------------------------------------------
# Just :: a -> Maybe a
def Just(x):
'''Constructor for an inhabited Maybe (option type) value.'''
return {'type': 'Maybe', 'Nothing': False, 'Just': x}
# Nothing :: Maybe a
def Nothing():
'''Constructor for an empty Maybe (option type) value.'''
return {'type': 'Maybe', 'Nothing': True}
# concat :: [[a]] -> [a]
# concat :: [String] -> String
def concat(xs):
'''The concatenation of all the elements
in a list or iterable.'''
chain = itertools.chain
def f(ys):
zs = list(chain(*ys))
return ''.join(zs) if isinstance(ys[0], str) else zs
return (
f(xs) if isinstance(xs, list) else (
chain.from_iterable(xs)
)
) if xs else []
# cons :: a -> [a] -> [a]
def cons(x):
'''Construction of a list from x as head,
and xs as tail.'''
chain = itertools.chain
return lambda xs: [x] + xs if (
isinstance(xs, list)
) else chain([x], xs)
# curry :: ((a, b) -> c) -> a -> b -> c
def curry(f):
'''A curried function derived
from an uncurried function.'''
signature = inspect.signature
if 1 < len(signature(f).parameters):
return lambda x: lambda y: f(x, y)
else:
return f
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))
# fmap :: Functor f => (a -> b) -> f a -> f b
def fmap(f):
'''A function f mapped over a functor.'''
def go(x):
defaultdict = collections.defaultdict
return defaultdict(list, [
('list', fmapList),
# ('iter', fmapNext),
# ('Either', fmapLR),
# ('Maybe', fmapMay),
# ('Tree', fmapTree),
# ('tuple', fmapTuple),
('function', fmapFn),
('type', fmapFn)
])[
typeName(x)
](f)(x)
return lambda v: go(v)
# fmapFn :: (a -> b) -> (r -> a) -> r -> b
def fmapFn(f):
'''fmap over a function.
The composition of f and g.
'''
return lambda g: lambda x: f(g(x))
# fmapList :: (a -> b) -> [a] -> [b]
def fmapList(f):
'''fmap over a list.
f lifted to a function over a list.
'''
return lambda xs: list(map(f, xs))
# fst :: (a, b) -> a
def fst(tpl):
'''First member of a pair.'''
return tpl[0]
# justifyRight :: Int -> Char -> String -> String
def justifyRight(n):
'''A string padded at left to length n,
using the padding character c.
'''
return lambda c: lambda s: s.rjust(n, c)
# last :: [a] -> a
def last(xs):
'''The last element of a non-empty list.'''
return xs[-1]
# liftA2 :: (a -> b -> c) -> f a -> f b -> f c
def liftA2(f):
'''Lift a binary function to the type of a.'''
def go(a, b):
defaultdict = collections.defaultdict
return defaultdict(list, [
# ('list', liftA2List),
# ('Either', liftA2LR),
# ('Maybe', liftA2May),
# ('Tree', liftA2Tree),
# ('tuple', liftA2Tuple),
('function', liftA2Fn)
])[
typeName(a)
](f)(a)(b)
return lambda a: lambda b: go(a, b)
# liftA2Fn :: (a0 -> b -> c) -> (a -> a0) -> (a -> b) -> a -> c
def liftA2Fn(op):
'''Lift a binary function to a composition
over two other functions.
liftA2 (*) (+ 2) (+ 3) 7 == 90
'''
def go(f, g):
return lambda x: curry(op)(
f(x)
)(g(x))
return lambda f: lambda g: go(f, g)
# maybe :: b -> (a -> b) -> Maybe a -> b
def maybe(v):
'''Either the default value v, if m is Nothing,
or the application of f to x,
where m is Just(x).
'''
return lambda f: lambda m: v if m.get('Nothing') else (
f(m.get('Just'))
)
# typeName :: a -> String
def typeName(x):
'''Name string for a built-in or user-defined type.
Selector for type-specific instances
of polymorphic functions.
'''
if isinstance(x, dict):
return x.get('type') if 'type' in x else 'dict'
else:
return 'iter' if hasattr(x, '__next__') else (
type(x).__name__
)
# snd :: (a, b) -> b
def snd(tpl):
'''Second member of a pair.'''
return tpl[1]
# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
'''A function over a pair of arguments,
derived from a vanilla or curried function.
'''
signature = inspect.signature
if 1 < len(signature(f).parameters):
return lambda xy: f(*xy)
else:
return lambda x, y: f(x)(y)
# unlines :: [String] -> String
def unlines(xs):
'''A single string derived by the intercalation
of a list of strings with the newline character.
'''
return '\n'.join(xs)
# zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
def zipWith(f):
'''A list constructed by zipping with a
custom function, rather than with the
default tuple constructor.
'''
return lambda xs: lambda ys: (
map(uncurry(f), xs, ys)
)
# MAIN ---
if __name__ == '__main__':
main()
- Output:
13 14 15 16 17 18 19 20 13 169 182 195 208 221 234 247 260 14 196 210 224 238 252 266 280 15 225 240 255 270 285 300 16 256 272 288 304 320 17 289 306 323 340 18 324 342 360 19 361 380 20 400 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144 95 96 97 98 99 100 95 9025 9120 9215 9310 9405 9500 96 9216 9312 9408 9504 9600 97 9409 9506 9603 9700 98 9604 9702 9800 99 9801 9900 100 10000
Quackery
[ swap number$
tuck size -
times sp echo$ ] is echo-rj ( n n --> )
say " * |"
12 times [ i^ 1+ 4 echo-rj ] cr
say " ---+"
char - 48 of echo$ cr
[ 12 times
[ i^ 1+
dup 3 echo-rj
say " |"
12 times
[ i^ 1+
2dup > iff
[ drop 4 times sp ]
else
[ dip dup
* 4 echo-rj ] ]
cr drop ] ]
- Output:
* | 1 2 3 4 5 6 7 8 9 10 11 12 ---+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
R
multiplication_table <- function(n=12)
{
one_to_n <- 1:n
x <- matrix(one_to_n) %*% t(one_to_n)
x[lower.tri(x)] <- 0
rownames(x) <- colnames(x) <- one_to_n
print(as.table(x), zero.print="")
invisible(x)
}
multiplication_table()
Racket
#lang racket
(define (show-line xs)
(for ([x xs]) (display (~a x #:width 4 #:align 'right)))
(newline))
(show-line (cons "" (range 1 13)))
(for ([y (in-range 1 13)])
(show-line (cons y (for/list ([x (in-range 1 13)])
(if (<= y x) (* x y) "")))))
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
Raku
(formerly Perl 6)
(my $f = "%{$_}s" given my $width = ($_**2).chars ) given my $max = 12;
say '×'.fmt($f) ~ ' ┃ ' ~ (1..$max).fmt($f);
say '━' x $width ~ '━╋' ~ '━' x $max × (1+$width);
for 1..$max -> $i {
say $i.fmt($f) ~ ' ┃ ' ~ ( $i ≤ $_ ?? $i×$_ !! '' for 1..$max ).fmt($f);
}
- Output:
x│ 1 2 3 4 5 6 7 8 9 10 11 12 ───┼──────────────────────────────────────────────── 1│ 1 2 3 4 5 6 7 8 9 10 11 12 2│ 4 6 8 10 12 14 16 18 20 22 24 3│ 9 12 15 18 21 24 27 30 33 36 4│ 16 20 24 28 32 36 40 44 48 5│ 25 30 35 40 45 50 55 60 6│ 36 42 48 54 60 66 72 7│ 49 56 63 70 77 84 8│ 64 72 80 88 96 9│ 81 90 99 108 10│ 100 110 120 11│ 121 132 12│ 144
REBOL
REBOL [
Title: "12x12 Multiplication Table"
URL: http://rosettacode.org/wiki/Print_a_Multiplication_Table
]
size: 12
; Because of REBOL's GUI focus, it doesn't really do pictured output,
; so I roll my own. See Formatted_Numeric_Output for more
; comprehensive version:
pad: func [pad n][
n: to-string n
insert/dup n " " (pad - length? n)
n
]
p3: func [v][pad 3 v] ; A shortcut, I hate to type...
--: has [x][repeat x size + 1 [prin "+---"] print "+"] ; Special chars OK.
.row: func [label y /local row x][
row: reduce ["|" label "|"]
repeat x size [append row reduce [either x < y [" "][p3 x * y] "|"]]
print rejoin row
]
-- .row " x " 1 -- repeat y size [.row p3 y y] --
print rejoin [ crlf "What about " size: 5 "?" crlf ]
-- .row " x " 1 -- repeat y size [.row p3 y y] --
print rejoin [ crlf "How about " size: 20 "?" crlf ]
-- .row " x " 1 -- repeat y size [.row p3 y y] --
- Output:
(only 12x12 shown)
+---+---+---+---+---+---+---+---+---+---+---+---+---+ | x | 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| +---+---+---+---+---+---+---+---+---+---+---+---+---+ | 1| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| | 2| | 4| 6| 8| 10| 12| 14| 16| 18| 20| 22| 24| | 3| | | 9| 12| 15| 18| 21| 24| 27| 30| 33| 36| | 4| | | | 16| 20| 24| 28| 32| 36| 40| 44| 48| | 5| | | | | 25| 30| 35| 40| 45| 50| 55| 60| | 6| | | | | | 36| 42| 48| 54| 60| 66| 72| | 7| | | | | | | 49| 56| 63| 70| 77| 84| | 8| | | | | | | | 64| 72| 80| 88| 96| | 9| | | | | | | | | 81| 90| 99|108| | 10| | | | | | | | | |100|110|120| | 11| | | | | | | | | | |121|132| | 12| | | | | | | | | | | |144| +---+---+---+---+---+---+---+---+---+---+---+---+---+
REXX
/*REXX program displays a NxN multiplication table (in a boxed grid) to the terminal.*/
parse arg sz . /*obtain optional argument from the CL.*/
if sz=='' | sz=="," then sz= 12 /*Not specified? Then use the default.*/
w= max(3, length(sz**2) ); __= copies('─', w) /*calculate the width of the table cell*/
___= __'──' /*literals used in the subroutines. */
do r=1 for sz /*calculate & format a row of the table*/
if r==1 then call top left('│(x)', w+1) /*show title of multiplication table. */
$= '│'center(r"x", w)"│" /*index for a multiplication table row.*/
do c=1 for sz; prod= /*build a row of multiplication table. */
if r<=c then prod= r * c /*only display when the row ≤ column. */
$= $ || right(prod, w+1) '|' /*append product to a cell in the row. */
end /*k*/
say $ /*show a row of multiplication table. */
if r\==sz then call sep /*show a separator except for last row.*/
end /*j*/
call bot /*show the bottom line of the table. */
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
hdr: $= ?'│'; do i=1 for sz; $=$ || right(i"x|", w+3); end; say $; call sep; return
dap: $= left($, length($) - 1)arg(1); return
top: $= '┌'__"┬"copies(___'┬', sz); call dap "┐"; ?= arg(1); say $; call hdr; return
sep: $= '├'__"┼"copies(___'┼', sz); call dap "┤"; say $; return
bot: $= '└'__"┴"copies(___'┴', sz); call dap "┘"; say $; return
- output when using the default input of: 12
┌───┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ │(x)│ 1x| 2x| 3x| 4x| 5x| 6x| 7x| 8x| 9x| 10x| 11x| 12x| ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │1x │ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │2x │ | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │3x │ | | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │4x │ | | | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │5x │ | | | | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │6x │ | | | | | 36 | 42 | 48 | 54 | 60 | 66 | 72 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │7x │ | | | | | | 49 | 56 | 63 | 70 | 77 | 84 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │8x │ | | | | | | | 64 | 72 | 80 | 88 | 96 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │9x │ | | | | | | | | 81 | 90 | 99 | 108 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │10x│ | | | | | | | | | 100 | 110 | 120 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │11x│ | | | | | | | | | | 121 | 132 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │12x│ | | | | | | | | | | | 144 | └───┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
- output when using the input of: 16
┌───┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ │(x)│ 1x| 2x| 3x| 4x| 5x| 6x| 7x| 8x| 9x| 10x| 11x| 12x| 13x| 14x| 15x| 16x| ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │1x │ 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │2x │ | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │3x │ | | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 | 39 | 42 | 45 | 48 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │4x │ | | | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 | 52 | 56 | 60 | 64 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │5x │ | | | | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | 75 | 80 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │6x │ | | | | | 36 | 42 | 48 | 54 | 60 | 66 | 72 | 78 | 84 | 90 | 96 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │7x │ | | | | | | 49 | 56 | 63 | 70 | 77 | 84 | 91 | 98 | 105 | 112 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │8x │ | | | | | | | 64 | 72 | 80 | 88 | 96 | 104 | 112 | 120 | 128 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │9x │ | | | | | | | | 81 | 90 | 99 | 108 | 117 | 126 | 135 | 144 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │10x│ | | | | | | | | | 100 | 110 | 120 | 130 | 140 | 150 | 160 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │11x│ | | | | | | | | | | 121 | 132 | 143 | 154 | 165 | 176 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │12x│ | | | | | | | | | | | 144 | 156 | 168 | 180 | 192 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │13x│ | | | | | | | | | | | | 169 | 182 | 195 | 208 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │14x│ | | | | | | | | | | | | | 196 | 210 | 224 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │15x│ | | | | | | | | | | | | | | 225 | 240 | ├───┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤ │16x│ | | | | | | | | | | | | | | | 256 | └───┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
Ring
multiplication_table(12)
func multiplication_table n
nSize = 4 See " | "
for t = 1 to n see fsize(t, nSize) next
see nl + "----+-" + copy("-", nSize*n) + nl
for t1 = 1 to n
see fsize(t1, nSize) + "| "
for t2 = 1 to n if t2 >= t1 see fsize(t1*t2,nSize) else see copy(" ", nSize) ok next
see nl
next
func fsize x,n return string(x) + copy(" ",n-len(string(x)))
Output
| 1 2 3 4 5 6 7 8 9 10 11 12
----+-------------------------------------------------
1 | 1 2 3 4 5 6 7 8 9 10 11 12
2 | 4 6 8 10 12 14 16 18 20 22 24
3 | 9 12 15 18 21 24 27 30 33 36
4 | 16 20 24 28 32 36 40 44 48
5 | 25 30 35 40 45 50 55 60
6 | 36 42 48 54 60 66 72
7 | 49 56 63 70 77 84
8 | 64 72 80 88 96
9 | 81 90 99 108
10 | 100 110 120
11 | 121 132
12 | 144
Ruby
def multiplication_table(n)
puts " |" + (" %3d" * n) % [*1..n]
puts "----+" + "----" * n
1.upto(n) do |x|
print "%3d |" % x
1.upto(x-1) {|y| print " "}
x.upto(n) {|y| print " %3d" % (x*y)}
puts
end
end
multiplication_table 12
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
Rust
const LIMIT: i32 = 12;
fn main() {
for i in 1..LIMIT+1 {
print!("{:3}{}", i, if LIMIT - i == 0 {'\n'} else {' '})
}
for i in 0..LIMIT+1 {
print!("{}", if LIMIT - i == 0 {"+\n"} else {"----"});
}
for i in 1..LIMIT+1 {
for j in 1..LIMIT+1 {
if j < i {
print!(" ")
} else {
print!("{:3} ", j * i)
}
}
println!("| {}", i);
}
}
or, in terms of map:
fn main() {
let xs = (1..=12)
.map(|a| {
(1..=12)
.map(|b| {
if a > b {
String::from(" ")
} else {
format!("{:4}", a * b)
}
})
.collect::<String>()
})
.collect::<Vec<String>>();
println!("{}", xs.join("\n"))
}
Scala
//Multiplication Table
print("%5s".format("|"))
for (i <- 1 to 12) print("%5d".format(i))
println()
println("-----" * 13)
for (i <- 1 to 12) {
print("%4d|".format(i))
for (j <- 1 to 12) {
if (i <= j)
print("%5d".format(i * j))
else
print("%5s".format(""))
}
println("")
}
case
implicit def intToString(i: Int) = i.toString
val cell = (x:String) => print("%5s".format(x))
for {
i <- 1 to 14
j <- 1 to 14
}
yield {
(i, j) match {
case (i, 13) => cell("|")
case (i, 14) if i > 12 => cell("\n")
case (13, j) => cell("-----")
case (i, 14) => cell(i + "\n")
case (14, j) => cell(j)
case (i, j) if i <= j => cell(i*j)
case (i, j) => cell("-")
}
}
Scheme
A better implementation of iota is provided by SRFI-1 [1].
(define iota
(lambda (count start step)
(let loop ((result (list (+ start (* (- count 1) step)))))
(let ((acc (car result)))
(if (= acc start)
result
(loop (cons (- acc step) result)))))))
(define table
(lambda (x)
(let loop ((count 1)
(numbers (iota x 1 1)))
(if (not (null? numbers))
(begin
(display (make-string (* 6 (- count 1)) #\space))
(for-each
(lambda (n)
(let ((number (number->string (* n count))))
(display (string-append
(make-string (- 6 (string-length number)) #\space)
number))))
numbers)
(newline)
(loop (+ count 1)
(cdr numbers)))))))
(table 12) 1 2 3 4 5 6 7 8 9 10 11 12 4 6 8 10 12 14 16 18 20 22 24 9 12 15 18 21 24 27 30 33 36 16 20 24 28 32 36 40 44 48 25 30 35 40 45 50 55 60 36 42 48 54 60 66 72 49 56 63 70 77 84 64 72 80 88 96 81 90 99 108 100 110 120 121 132 144
Scilab
nmax=12, xx=3
s= blanks(xx)+" |"
for j=1:nmax
s=s+part(blanks(xx)+string(j),$-xx:$)
end
printf("%s\n",s)
s=strncpy("-----",xx)+" +"
for j=1:nmax
s=s+" "+strncpy("-----",xx)
end
printf("%s\n",s)
for i=1:nmax
s=part(blanks(xx)+string(i),$-xx+1:$)+" |"
for j = 1:nmax
if j >= i then
s=s+part(blanks(xx)+string(i*j),$-xx:$)
else
s=s+blanks(xx+1)
end
end
printf("%s\n",s)
end
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --- + --- --- --- --- --- --- --- --- --- --- --- --- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
Seed7
$ include "seed7_05.s7i";
const proc: main is func
local
const integer: n is 12;
var integer: i is 0;
var integer: j is 0;
begin
for j range 1 to n do
write(j lpad 3 <& " ");
end for;
writeln;
writeln("-" mult 4 * n);
for i range 1 to n do
for j range 1 to n do
if j < i then
write(" ");
else
write(i * j lpad 3 <& " ");
end if;
end for;
writeln("|" <& i lpad 3);
end for;
end func;
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
Sidef
var max = 12
var width = (max**2 -> len+1)
func fmt_row(*items) {
items.map {|s| "%*s" % (width, s) }.join
}
say fmt_row('x┃', (1..max)...)
say "#{'━' * (width - 1)}╋#{'━' * (max * width)}"
{ |i|
say fmt_row("#{i}┃", {|j| i <= j ? i*j : ''}.map(1..max)...)
} << 1..max
- Output:
x┃ 1 2 3 4 5 6 7 8 9 10 11 12 ━━━╋━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1┃ 1 2 3 4 5 6 7 8 9 10 11 12 2┃ 4 6 8 10 12 14 16 18 20 22 24 3┃ 9 12 15 18 21 24 27 30 33 36 4┃ 16 20 24 28 32 36 40 44 48 5┃ 25 30 35 40 45 50 55 60 6┃ 36 42 48 54 60 66 72 7┃ 49 56 63 70 77 84 8┃ 64 72 80 88 96 9┃ 81 90 99 108 10┃ 100 110 120 11┃ 121 132 12┃ 144
Simula
begin
integer i, j;
outtext( " " );
for i := 1 step 1 until 12 do outint( i, 4 );
outimage;
outtext( " +" );
for i := 1 step 1 until 12 do outtext( "----" );
outimage;
for i := 1 step 1 until 12 do
begin
outint( i, 3 );
outtext( "|" );
for j := 1 step 1 until i - 1 do outtext( " " );
for j := i step 1 until 12 do outint( i * j, 4 );
outimage
end;
end
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 +------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Swift
import Foundation
let size = 12
func printRow(with:Int, upto:Int) {
print(String(repeating: " ", count: (with-1)*4), terminator: "")
for i in with...upto {
print(String(format: "%l4d", i*with), terminator: "")
}
print()
}
print(" ", terminator: ""); printRow( with: 1, upto: size)
print( String(repeating: "–", count: (size+1)*4 ))
for i in 1...size {
print(String(format: "%l4d",i), terminator:"")
printRow( with: i, upto: size)
}
Tailspin
templates formatN&{width:}
[ 1..$width -> ' ', '$;'... ] -> '$(last-$width+1..last)...;' !
end formatN
' |$:1..12 -> formatN&{width: 4};
' -> !OUT::write
'--+$:1..12*4 -> '-';
' -> !OUT::write
1..12 -> \( def row: $;
'$ -> formatN&{width:2};|$:1..($-1)*4 -> ' ';$:$..12 -> $*$row -> formatN&{width:4};
' ! \) -> !OUT::write
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| 4 6 8 10 12 14 16 18 20 22 24 3| 9 12 15 18 21 24 27 30 33 36 4| 16 20 24 28 32 36 40 44 48 5| 25 30 35 40 45 50 55 60 6| 36 42 48 54 60 66 72 7| 49 56 63 70 77 84 8| 64 72 80 88 96 9| 81 90 99 108 10| 100 110 120 11| 121 132 12| 144
Tcl
puts " x\u2502 1 2 3 4 5 6 7 8 9 10 11 12"
puts \u0020\u2500\u2500\u253c[string repeat \u2500 48]
for {set i 1} {$i <= 12} {incr i} {
puts -nonewline [format "%3d" $i]\u2502[string repeat " " [expr {$i*4-4}]]
for {set j 1} {$j <= 12} {incr j} {
if {$j >= $i} {
puts -nonewline [format "%4d" [expr {$i*$j}]]
}
}
puts ""
}
- Output:
x│ 1 2 3 4 5 6 7 8 9 10 11 12 ──┼──────────────────────────────────────────────── 1│ 1 2 3 4 5 6 7 8 9 10 11 12 2│ 4 6 8 10 12 14 16 18 20 22 24 3│ 9 12 15 18 21 24 27 30 33 36 4│ 16 20 24 28 32 36 40 44 48 5│ 25 30 35 40 45 50 55 60 6│ 36 42 48 54 60 66 72 7│ 49 56 63 70 77 84 8│ 64 72 80 88 96 9│ 81 90 99 108 10│ 100 110 120 11│ 121 132 12│ 144
TUSCRIPT
$$ MODE TUSCRIPT
x=y="1'2'3'4'5'6'7'8'9'10'11'12"
LOOP n,col=x,cnt=""
skip=n-1
LOOP m,row=y
IF (m==skip) THEN
td=""
ELSE
td=col*row
coleqrow=col*n
IF (td.lt.#coleqrow) td=""
ENDIF
td=CENTER (td,+3," ")
cnt=APPEND (cnt,td," ")
ENDLOOP
col=CENTER (col,+3," ")
PRINT col,cnt
ENDLOOP
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 2 4 6 8 10 12 14 16 18 20 22 24 3 9 12 15 18 21 24 27 30 33 36 4 16 20 24 28 32 36 40 44 48 5 25 30 35 40 45 50 55 60 6 36 42 48 54 60 66 72 7 49 56 63 70 77 84 8 64 72 80 88 96 9 81 90 99 108 10 100 110 120 11 121 132 12 144
TypeScript
// Multiplication tables
var n = 12;
console.clear();
for (j = 1; j < n; j++)
process.stdout.write(j.toString().padStart(3, ' ') + " ");
console.log(n.toString().padStart(3, ' '));
console.log("----".repeat(n) + "+");
for (i = 1; i <= n; i++) {
for (j = 1; j <= n; j++)
process.stdout.write(j < i ?
" " : (i * j).toString().padStart(3, ' ') + " ");
console.log("| " + i.toString().padStart(2, ' '));
}
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------------------+ 1 2 3 4 5 6 7 8 9 10 11 12 | 1 4 6 8 10 12 14 16 18 20 22 24 | 2 9 12 15 18 21 24 27 30 33 36 | 3 16 20 24 28 32 36 40 44 48 | 4 25 30 35 40 45 50 55 60 | 5 36 42 48 54 60 66 72 | 6 49 56 63 70 77 84 | 7 64 72 80 88 96 | 8 81 90 99 108 | 9 100 110 120 | 10 121 132 | 11 144 | 12
Ursala
It's no more difficult to express the general case than the size 12 case, so a table generating function parameterized by the size is used.
#import std
#import nat
table "n" =
~&plrTS(
~&xS pad` @xS <'x ','--'>-- --' | '*hS %nP* nrange/1 "n",
^CthPiC(`-!*h,~&) mat` *xSSK7 pad` *K7ihxPBSS (~&i&& %nP)** nleq&&product**iiK0lK2x nrange/1 "n")
#show+
main = table 12
A better way of using Ursala to make tables would be with the tbl
library included with
the standard package, which can generate LaTeX code for arbitrary heading hierarchies and typesetting options, but here it is in ASCII art.
x 1 2 3 4 5 6 7 8 9 10 11 12 ------------------------------------- 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
VBScript
function pad(s,n) if n<0 then pad= right(space(-n) & s ,-n) else pad= left(s& space(n),n) end if
End Function
Sub print(s):
On Error Resume Next
WScript.stdout.Write (s)
If err= &h80070006& Then WScript.Echo " Please run this script with CScript": WScript.quit
End Sub
For i=1 To 12
print pad(i,-4)
Next
print vbCrLf & String(48,"_")
For i=1 To 12
print vbCrLf
For j=1 To 12
if j<i Then print Space(4) Else print pad(i*j,-4)
Next
print "|"& pad(i,-2)
Next
- Output:
1 2 3 4 5 6 7 8 9 10 11 12 ________________________________________________ 1 2 3 4 5 6 7 8 9 10 11 12| 1 4 6 8 10 12 14 16 18 20 22 24| 2 9 12 15 18 21 24 27 30 33 36| 3 16 20 24 28 32 36 40 44 48| 4 25 30 35 40 45 50 55 60| 5 36 42 48 54 60 66 72| 6 49 56 63 70 77 84| 7 64 72 80 88 96| 8 81 90 99 108| 9 100 110 120|10 121 132|11 144|12
Wren
import "./fmt" for Fmt
var nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
Fmt.print(" x | $4d", nums)
System.print("----+%("-" * 60)")
for (i in 1..12) {
var nums2 = nums.map { |n| (n >= i) ? (n * i).toString : " " }.toList
Fmt.print("$3d | $4s", i, nums2)
}
- Output:
x | 1 2 3 4 5 6 7 8 9 10 11 12 ----+------------------------------------------------------------ 1 | 1 2 3 4 5 6 7 8 9 10 11 12 2 | 4 6 8 10 12 14 16 18 20 22 24 3 | 9 12 15 18 21 24 27 30 33 36 4 | 16 20 24 28 32 36 40 44 48 5 | 25 30 35 40 45 50 55 60 6 | 36 42 48 54 60 66 72 7 | 49 56 63 70 77 84 8 | 64 72 80 88 96 9 | 81 90 99 108 10 | 100 110 120 11 | 121 132 12 | 144
XPL0
include c:\cxpl\codes;
int X, Y;
[Format(4, 0);
Text(0, " |"); for X:= 1 to 12 do RlOut(0, float(X));
CrLf(0);
Text(0, " --+"); for X:= 1 to 12 do Text(0, "----");
CrLf(0);
for Y:= 1 to 12 do
[RlOut(0, float(Y)); ChOut(0, ^|);
for X:= 1 to 12 do
if X>=Y then RlOut(0, float(X*Y)) else Text(0, " . .");
CrLf(0);
];
]
- Output:
| 1 2 3 4 5 6 7 8 9 10 11 12 --+------------------------------------------------ 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| . . 4 6 8 10 12 14 16 18 20 22 24 3| . . . . 9 12 15 18 21 24 27 30 33 36 4| . . . . . . 16 20 24 28 32 36 40 44 48 5| . . . . . . . . 25 30 35 40 45 50 55 60 6| . . . . . . . . . . 36 42 48 54 60 66 72 7| . . . . . . . . . . . . 49 56 63 70 77 84 8| . . . . . . . . . . . . . . 64 72 80 88 96 9| . . . . . . . . . . . . . . . . 81 90 99 108 10| . . . . . . . . . . . . . . . . . . 100 110 120 11| . . . . . . . . . . . . . . . . . . . . 121 132 12| . . . . . . . . . . . . . . . . . . . . . . 144
zkl
fcn multiplicationTable(n){
w,fmt := (n*n).numDigits, " %%%dd".fmt(w).fmt; // eg " %3".fmt
header:=[1..n].apply(fmt).concat(); // 1 2 3 4 ...
println(" x ", header, "\n ", "-"*header.len());
dash:=String(" "*w,"-"); // eg " -"
foreach a in ([1..n]){
print("%2d|".fmt(a),dash*(a-1));
[a..n].pump(String,'*(a),fmt).println();
}
}(12);
- Output:
x 1 2 3 4 5 6 7 8 9 10 11 12 ----------------------------------------------- 1| 1 2 3 4 5 6 7 8 9 10 11 12 2| - 4 6 8 10 12 14 16 18 20 22 24 3| - - 9 12 15 18 21 24 27 30 33 36 4| - - - 16 20 24 28 32 36 40 44 48 5| - - - - 25 30 35 40 45 50 55 60 6| - - - - - 36 42 48 54 60 66 72 7| - - - - - - 49 56 63 70 77 84 8| - - - - - - - 64 72 80 88 96 9| - - - - - - - - 81 90 99 108 10| - - - - - - - - - 100 110 120 11| - - - - - - - - - - 121 132 12| - - - - - - - - - - - 144
- Programming Tasks
- Arithmetic operations
- Simple
- 11l
- 360 Assembly
- 8080 Assembly
- AArch64 Assembly
- Action!
- ActionScript
- Ada
- Agena
- ALGOL 68
- ALGOL W
- APL
- AppleScript
- ARM Assembly
- Arturo
- AutoHotkey
- AutoIt
- AWK
- Axe
- BASIC
- Applesoft BASIC
- ASIC
- BASIC256
- BBC BASIC
- Chipmunk Basic
- Commodore BASIC
- FreeBASIC
- Gambas
- GW-BASIC
- IS-BASIC
- Liberty BASIC
- Microsoft Small Basic
- PureBasic
- QBasic
- QB64
- Run BASIC
- SmallBASIC
- Tiny BASIC
- True BASIC
- UBasic/4tH
- VBA
- Visual Basic
- XBasic
- Yabasic
- Batch File
- Befunge
- BQN
- Bracmat
- C
- C sharp
- C++
- Chef
- Clojure
- COBOL
- CoffeeScript
- Common Lisp
- D
- DCL
- Delphi
- Draco
- DWScript
- E
- EasyLang
- EchoLisp
- Elixir
- EMal
- Erlang
- Euphoria
- Excel
- F Sharp
- Factor
- FALSE
- Fantom
- Forth
- Fortran
- Frink
- FutureBasic
- Go
- Groovy
- Haskell
- Hexiscript
- HicEst
- HolyC
- Icon
- Unicon
- Insitux
- J
- Java
- JavaScript
- Jq
- Jsish
- Julia
- Kotlin
- Lasso
- Logo
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- Maxima
- Pages with broken file links
- МК-61/52
- Modula-2
- MOO
- MUMPS
- N/t/roff
- Neko
- Nim
- Nu
- OCaml
- PARI/GP
- Pascal
- PascalABC.NET
- Perl
- Phix
- Phixmonti
- Picat
- PicoLisp
- PL/I
- PowerShell
- Prolog
- Python
- Quackery
- R
- Racket
- Raku
- REBOL
- REXX
- Ring
- Ruby
- Rust
- Scala
- Scheme
- Scilab
- Seed7
- Sidef
- Simula
- Swift
- Tailspin
- Tcl
- TUSCRIPT
- TypeScript
- Ursala
- VBScript
- Wren
- Wren-fmt
- XPL0
- Zkl
- Pages with too many expensive parser function calls