CloudFlare suffered a massive security issue affecting all of its customers, including Rosetta Code. All passwords not changed since February 19th 2017 have been expired, and session cookie longevity will be reduced until late March.--Michael Mol (talk) 05:15, 25 February 2017 (UTC)

Price fraction

From Rosetta Code
Task
Price fraction
You are encouraged to solve this task according to the task description, using any language you may know.

A friend of mine runs a pharmacy.   He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value.   This value is regulated by a government department.


Task

Given a floating point value between   0.00   and   1.00,   rescale according to the following table:

>=  0.00  <  0.06  :=  0.10
>=  0.06  <  0.11  :=  0.18
>=  0.11  <  0.16  :=  0.26
>=  0.16  <  0.21  :=  0.32
>=  0.21  <  0.26  :=  0.38
>=  0.26  <  0.31  :=  0.44
>=  0.31  <  0.36  :=  0.50
>=  0.36  <  0.41  :=  0.54
>=  0.41  <  0.46  :=  0.58
>=  0.46  <  0.51  :=  0.62
>=  0.51  <  0.56  :=  0.66
>=  0.56  <  0.61  :=  0.70
>=  0.61  <  0.66  :=  0.74
>=  0.66  <  0.71  :=  0.78
>=  0.71  <  0.76  :=  0.82
>=  0.76  <  0.81  :=  0.86
>=  0.81  <  0.86  :=  0.90
>=  0.86  <  0.91  :=  0.94
>=  0.91  <  0.96  :=  0.98
>=  0.96  <  1.01  :=  1.00



Ada[edit]

 
type Price is delta 0.01 digits 3 range 0.0..1.0;
function Scale (Value : Price) return Price is
X : constant array (1..19) of Price :=
( 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51,
0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96
);
Y : constant array (1..20) of Price :=
( 0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.0
);
Low  : Natural := X'First;
High  : Natural := X'Last;
Middle : Natural;
begin
loop
Middle := (Low + High) / 2;
if Value = X (Middle) then
return Y (Middle + 1);
elsif Value < X (Middle) then
if Low = Middle then
return Y (Low);
end if;
High := Middle - 1;
else
if High = Middle then
return Y (High + 1);
end if;
Low := Middle + 1;
end if;
end loop;
end Scale;
 

The solution uses fixed point type to prevent rounding and representation issues. With the above declarations a full coverage test:

 
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Price_Fraction is
-- Put the declarations here
Value : Price := Price'First;
begin
loop
Put_Line (Price'Image (Value) & "->" & Price'Image (Scale (Value)));
exit when Value = Price'Last;
Value := Price'Succ (Value);
end loop;
end Test_Price_Fraction;
 
Output:
 0.00-> 0.10
 0.01-> 0.10
 0.02-> 0.10
 0.03-> 0.10
 0.04-> 0.10
 0.05-> 0.10
 0.06-> 0.18
 0.07-> 0.18
 0.08-> 0.18
 0.09-> 0.18
 0.10-> 0.18
 0.11-> 0.26
 0.12-> 0.26
 0.13-> 0.26
 0.14-> 0.26
 0.15-> 0.26
 0.16-> 0.32
 0.17-> 0.32
 0.18-> 0.32
 0.19-> 0.32
 0.20-> 0.32
 0.21-> 0.38
 0.22-> 0.38
 0.23-> 0.38
 0.24-> 0.38
 0.25-> 0.38
 0.26-> 0.44
 0.27-> 0.44
 0.28-> 0.44
 0.29-> 0.44
 0.30-> 0.44
 0.31-> 0.50
 0.32-> 0.50
 0.33-> 0.50
 0.34-> 0.50
 0.35-> 0.50
 0.36-> 0.54
 0.37-> 0.54
 0.38-> 0.54
 0.39-> 0.54
 0.40-> 0.54
 0.41-> 0.58
 0.42-> 0.58
 0.43-> 0.58
 0.44-> 0.58
 0.45-> 0.58
 0.46-> 0.62
 0.47-> 0.62
 0.48-> 0.62
 0.49-> 0.62
 0.50-> 0.62
 0.51-> 0.66
 0.52-> 0.66
 0.53-> 0.66
 0.54-> 0.66
 0.55-> 0.66
 0.56-> 0.70
 0.57-> 0.70
 0.58-> 0.70
 0.59-> 0.70
 0.60-> 0.70
 0.61-> 0.74
 0.62-> 0.74
 0.63-> 0.74
 0.64-> 0.74
 0.65-> 0.74
 0.66-> 0.78
 0.67-> 0.78
 0.68-> 0.78
 0.69-> 0.78
 0.70-> 0.78
 0.71-> 0.82
 0.72-> 0.82
 0.73-> 0.82
 0.74-> 0.82
 0.75-> 0.82
 0.76-> 0.86
 0.77-> 0.86
 0.78-> 0.86
 0.79-> 0.86
 0.80-> 0.86
 0.81-> 0.90
 0.82-> 0.90
 0.83-> 0.90
 0.84-> 0.90
 0.85-> 0.90
 0.86-> 0.94
 0.87-> 0.94
 0.88-> 0.94
 0.89-> 0.94
 0.90-> 0.94
 0.91-> 0.98
 0.92-> 0.98
 0.93-> 0.98
 0.94-> 0.98
 0.95-> 0.98
 0.96-> 1.00
 0.97-> 1.00
 0.98-> 1.00
 0.99-> 1.00
 1.00-> 1.00

AutoHotkey[edit]

; Submitted by MasterFocus --- http://tiny.cc/iTunis
 
Loop
{
InputBox, OutputVar, Price Fraction Example, Insert the value to be rounded.`n* [ 0 < value < 1 ]`n* Press ESC or Cancel to exit, , 200, 150
If ErrorLevel
Break
MsgBox % "Input: " OutputVar "`nResult: " PriceFraction( OutputVar )
}
 
;-----------------------------------------
 
PriceFraction( p_Input )
{
 
If p_Input is not float ; returns 0 if input is not a float
Return 0
 
If ( ( p_Input <= 0 ) OR ( p_Input >= 1 ) ) ; returns 0 is input is out of range
Return 0
 
; declaring the table (arbitrary delimiters in use are '§' and '|')
l_List := "0.06|0.10§0.11|0.18§0.16|0.26§0.21|0.32§0.26|0.38§0.31|0.44§0.36|0.50§0.41|0.54§0.46|0.58§0.51|0.62§0.56|0.66§0.61|0.70§0.66|0.74§0.71|0.78§0.76|0.82§0.81|0.86§0.86|0.90§0.91|0.94§0.96|0.98§1.01|1.00"
 
Loop, Parse, l_List, § ; retrieves each field (delimited by '§')
{
StringSplit, l_Array, A_LoopField, | ; splits current field (using delimiter '|')
If ( p_Input <= l_Array1 )
Return l_Array2 ; returns the second value if input <= first value
}
 
Return 0 ; returns 0, indicating failure (shouldn't be reached though)
 
}

ALGOL 68[edit]

Translation of: C
- note: This specimen retains the original C coding style.
Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
main:
(
# Just get a random price between 0 and 1 #
# srand(time(NIL)); #
REAL price := random;
REAL tops := 0.06;
REAL std val := 0.10;
 
# Conditionals are a little odd here "(price-0.001 < tops AND
price+0.001 > tops)" is to check if they are equal. Stupid
C floats, right?  :) #

WHILE ( price>tops OR (price-0.001 < tops AND price+0.001 > tops) ) AND tops<=1.01
DO
tops+:=0.05;
 
IF std val < 0.26 THEN
std val +:= 0.08
ELIF std val < 0.50 THEN
std val +:= 0.06
ELSE
std val +:= 0.04
FI;
 
IF std val > 0.98 THEN
std val := 1.0
FI
OD;
 
printf(($"Value : "z.2dl,"Converted to standard : "z.2dl$, price, std val))
)
Output:
Value :   0.38
Converted to standard :   0.54

AWK[edit]

 
BEGIN {
O = ".06 .11 .16 .21 .26 .31 .36 .41 .46 .51 .56 .61 .66 .71 .76 .81 .86 .91 .96 1.01"
N = ".10 .18 .26 .32 .38 .44 .50 .54 .58 .62 .66 .70 .74 .78 .82 .86 .90 .94 .98 1.00"
fields = split(O,Oarr," ") # original values
split(N,Narr," ") # replacement values
for (i=-.01; i<=1.02; i+=.01) { # test
printf("%5.2f = %4.2f\n",i,lookup(i))
}
}
function lookup(n, i) {
if (n < 0 || n > 1.01) {
return(0) # when input is out of range
}
for (i=1; i<=fields; i++) {
# +10 is used because .11 returned .18 instead of .26
# under AWK95, GAWK, and MAWK; Thompson Automation's TAWK worked correctly
if (n+10 < Oarr[i]+10) {
return(Narr[i])
}
}
}
 

BASIC[edit]

Works with: QBasic

This could also be done by building an array, but I felt that this was simpler.

DECLARE FUNCTION PriceFraction! (price AS SINGLE)
 
RANDOMIZE TIMER
DIM x AS SINGLE
x = RND
PRINT x, PriceFraction(x)
 
FUNCTION PriceFraction! (price AS SINGLE)
'returns price unchanged if invalid value
SELECT CASE price
CASE IS < 0!
PriceFraction! = price
CASE IS < .06
PriceFraction! = .1
CASE IS < .11
PriceFraction! = .18
CASE IS < .16
PriceFraction! = .26
CASE IS < .21
PriceFraction! = .32
CASE IS < .26
PriceFraction! = .38
CASE IS < .31
PriceFraction! = .44
CASE IS < .36
PriceFraction! = .5
CASE IS < .41
PriceFraction! = .54
CASE IS < .46
PriceFraction! = .58
CASE IS < .51
PriceFraction! = .62
CASE IS < .56
PriceFraction! = .66
CASE IS < .61
PriceFraction! = .7
CASE IS < .66
PriceFraction! = .74
CASE IS < .71
PriceFraction! = .78
CASE IS < .76
PriceFraction! = .82
CASE IS < .81
PriceFraction! = .86
CASE IS < .86
PriceFraction! = .9
CASE IS < .91
PriceFraction! = .94
CASE IS < .96
PriceFraction! = .98
CASE IS < 1.01
PriceFraction! = 1!
CASE ELSE
PriceFraction! = price
END SELECT
END FUNCTION
Output:
(run 5 times):
.7388727      .82
.8593103      .9
.826687       .9
.3444635      .5
.0491907      .1

BBC BASIC[edit]

      PRINT FNpricefraction(0.5)
END
 
DEF FNpricefraction(p)
IF p < 0.06 THEN = 0.10
IF p < 0.11 THEN = 0.18
IF p < 0.16 THEN = 0.26
IF p < 0.21 THEN = 0.32
IF p < 0.26 THEN = 0.38
IF p < 0.31 THEN = 0.44
IF p < 0.36 THEN = 0.50
IF p < 0.41 THEN = 0.54
IF p < 0.46 THEN = 0.58
IF p < 0.51 THEN = 0.62
IF p < 0.56 THEN = 0.66
IF p < 0.61 THEN = 0.70
IF p < 0.66 THEN = 0.74
IF p < 0.71 THEN = 0.78
IF p < 0.76 THEN = 0.82
IF p < 0.81 THEN = 0.86
IF p < 0.86 THEN = 0.90
IF p < 0.91 THEN = 0.94
IF p < 0.96 THEN = 0.98
= 1.00

Bracmat[edit]

Bracmat has no native support for floating point variables nor for the fixed point values in the conversion table. Instead this solution just applies a string comparison.

( ( convert
=
. ("0.06"."0.10")
("0.11"."0.18")
("0.16"."0.26")
("0.21"."0.32")
("0.26"."0.38")
("0.31"."0.44")
("0.36"."0.50")
("0.41"."0.54")
("0.46"."0.58")
("0.51"."0.62")
("0.56"."0.66")
("0.61"."0.70")
("0.66"."0.74")
("0.71"."0.78")
("0.76"."0.82")
("0.81"."0.86")
("0.86"."0.90")
("0.91"."0.94")
("0.96"."0.98")
("1.01"."1.00")
 : ? (>!arg.?arg) ?
& !arg
| "invalid input"
)
& -1:?n
& whl
' ( !n+1:?n:<103
& ( @(!n:? [<2)&str$("0.0" !n):?a
| @(!n:? [<3)&str$("0." !n):?a
| @(!n:?ones [-3 ?decimals)
& str$(!ones "." !decimals):?a
)
& out$(!a "-->" convert$!a)
)
)
Output:
0.00 --> 0.10
0.01 --> 0.10
0.02 --> 0.10
0.03 --> 0.10
0.04 --> 0.10
0.05 --> 0.10
0.06 --> 0.18
0.07 --> 0.18
0.08 --> 0.18
0.09 --> 0.18
0.10 --> 0.18
0.11 --> 0.26
0.12 --> 0.26
0.13 --> 0.26
0.14 --> 0.26
0.15 --> 0.26
0.16 --> 0.32
0.17 --> 0.32
  ...
0.85 --> 0.90
0.86 --> 0.94
0.87 --> 0.94
0.88 --> 0.94
0.89 --> 0.94
0.90 --> 0.94
0.91 --> 0.98
0.92 --> 0.98
0.93 --> 0.98
0.94 --> 0.98
0.95 --> 0.98
0.96 --> 1.00
0.97 --> 1.00
0.98 --> 1.00
0.99 --> 1.00
1.00 --> 1.00
1.01 --> invalid input
1.02 --> invalid input

C[edit]

#include<stdio.h>
 
double table[][2] = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00},
{-1, 0}, /* guarding element */
};
 
double price_fix(double x)
{
int i;
for (i = 0; table[i][0] > 0; i++)
if (x < table[i][0]) return table[i][1];
 
abort(); /* what else to do? */
}
 
int main()
{
int i;
for (i = 0; i <= 100; i++)
printf("%.2f %.2f\n", i / 100., price_fix(i / 100.));
 
return 0;
}

C#[edit]

namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
for (int x = 0; x < 10; x++)
{
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10, SpecialRound(((double)x) / 10));
}
 
Console.WriteLine();
 
for (int x = 0; x < 10; x++)
{
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10 + 0.05, SpecialRound(((double)x) / 10 + 0.05));
}
 
Console.WriteLine();
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", 1.01, SpecialRound(1.01));
 
Console.Read();
}
 
private static double SpecialRound(double inValue)
{
if (inValue > 1) return 1;
 
double[] Splitters = new double[] {
0.00 , 0.06 , 0.11 , 0.16 , 0.21 ,
0.26 , 0.31 , 0.36 , 0.41 , 0.46 ,
0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
0.76 , 0.81 , 0.86 , 0.91 , 0.96 };
 
double[] replacements = new double[] {
0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
0.44 , 0.50 , 0.54 , 0.58 , 0.62 ,
0.66 , 0.70 , 0.74 , 0.78 , 0.82 ,
0.86 , 0.90 , 0.94 , 0.98 , 1.00 };
 
for (int x = 0; x < Splitters.Length - 1; x++)
{
if (inValue >= Splitters[x] &&
inValue < Splitters[x + 1])
{
return replacements[x];
}
}
 
return inValue;
}
}
}

C++[edit]

#include <iostream>
#include <cmath>
 
int main( ) {
double froms[ ] = { 0.00 , 0.06 , 0.11 , 0.16 , 0.21 , 0.26 ,
0.31 , 0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 ,
0.71 , 0.76 , 0.81 , 0.86 , 0.91 , 0.96 } ;
double tos[ ] = { 0.06 , 0.11 , 0.16 , 0.21 , 0.26 , 0.31 ,
0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
0.76 , 0.81 , 0.86 , 0.91 , 0.96 , 1.01 } ;
double replacements [] = { 0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
0.44 , 0.50 , 0.54 , 0.58 , 0.62 , 0.66 , 0.70 , 0.74 ,
0.78 , 0.82 , 0.86 , 0.90 , 0.94 , 0.98 , 1.00 } ;
double number = 0.1 ;
std::cout << "Enter a fractional number between 0 and 1 ( 0 to end )!\n" ;
std::cin >> number ;
while ( number != 0 ) {
if ( number < 0 || number > 1 ) {
std::cerr << "Error! Only positive values between 0 and 1 are allowed!\n" ;
return 1 ;
}
int n = 0 ;
while ( ! ( number >= froms[ n ] && number < tos[ n ] ) )
n++ ;
std::cout << "-->" << replacements[ n ] << '\n' ;
std::cout << "Enter a fractional number ( 0 to end )!\n" ;
std::cin >> number ;
}
return 0 ;
}
 
Output:
Enter a fractional number between 0 and 1 ( 0 to end )!
0.7
-->0.78
Enter a fractional number ( 0 to end )!
0.32
-->0.5
Enter a fractional number ( 0 to end )!
0.12
-->0.26
Enter a fractional number ( 0 to end )!
0

Clipper[edit]

FUNCTION PriceFraction( npQuantDispensed )
LOCAL aPriceFraction := { {0,.06,.1},;
{.06,.11,.18}, ;
{.11,.16,.26}, ;
{.16,.21,.32}, ;
{.21,.26,.38}, ;
{.26,.31,.44}, ;
{.31,.36,.5}, ;
{.36,.41,.54}, ;
{.41,.46,.58}, ;
{.46,.51,.62}, ;
{.51,.56,.66}, ;
{.56,.61,.7}, ;
{.61,.66,.74}, ;
{.66,.71,.78}, ;
{.71,.76,.82}, ;
{.76,.81,.86}, ;
{.81,.86,.9}, ;
{.86,.91,.94}, ;
{.91,.96,.98} }
LOCAL nResult
LOCAL nScan
IF npQuantDispensed = 0
nResult = 0
ELSEIF npQuantDispensed >= .96
nResult = 1
ELSE
nScan := ASCAN( aPriceFraction, ;
{ |aItem| npQuantDispensed >= aItem[ 1 ] .AND.;
npQuantDispensed < aItem[ 2 ] } )
nResult := aPriceFraction[ nScan ][ 3 ]
END IF
RETURN nResult

The function above crashes with an array access bound error if the value passed is negative. Also, the spec. indicates that 0.00 should be replaced with standard value 0.10, not 0. The following is a more concise solution:

Procedure Main()
Local i
For i := -0.02 to 1.02 STEP 0.03
 ? i, "->", PriceFraction(i), i+0.02, "->", PriceFraction(i+0.02)
Next
Return
 
 
Static Function PriceFraction( nValue )
Local nResult
Local n
// Function is only defined for values 0 to 1.00
// Return NIL for anything else
// Table of values {V1, V2} = {Threshhold, Standard value}
#define TV_THRESHHOLD 1
#define TV_STD_VALUE 2
Local aTable := { {0, NIL },;
{0.06, 0.10},;
{0.11, 0.18},;
{0.16, 0.26},;
{0.21, 0.32},;
{0.26, 0.38},;
{0.31, 0.44},;
{0.36, 0.50},;
{0.41, 0.54},;
{0.46, 0.58},;
{0.51, 0.62},;
{0.56, 0.66},;
{0.61, 0.70},;
{0.66, 0.74},;
{0.71, 0.78},;
{0.76, 0.82},;
{0.81, 0.86},;
{0.86, 0.90},;
{0.91, 0.94},;
{0.96, 0.98},;
{1.01, 1.00} }
n := AScan( aTable, {|x| nValue < x[TV_THRESHHOLD] })
If n > 0
nResult := aTable[n][TV_STD_VALUE]
Else
nResult := NIL
Endif
Return nResult
Output:
        -0.02 -> NIL          0.00 ->          0.10
         0.01 ->          0.10          0.03 ->          0.10
         0.04 ->          0.10          0.06 ->          0.18
         0.07 ->          0.18          0.09 ->          0.18
         0.10 ->          0.18          0.12 ->          0.26
         0.13 ->          0.26          0.15 ->          0.26
         0.16 ->          0.32          0.18 ->          0.32
         0.19 ->          0.32          0.21 ->          0.38
         0.22 ->          0.38          0.24 ->          0.38
         0.25 ->          0.38          0.27 ->          0.44
         0.28 ->          0.44          0.30 ->          0.44
         0.31 ->          0.50          0.33 ->          0.50
         0.34 ->          0.50          0.36 ->          0.54
         0.37 ->          0.54          0.39 ->          0.54
         0.40 ->          0.54          0.42 ->          0.58
         0.43 ->          0.58          0.45 ->          0.58
         0.46 ->          0.62          0.48 ->          0.62
         0.49 ->          0.62          0.51 ->          0.66
         0.52 ->          0.66          0.54 ->          0.66
         0.55 ->          0.66          0.57 ->          0.70
         0.58 ->          0.70          0.60 ->          0.70
         0.61 ->          0.74          0.63 ->          0.74
         0.64 ->          0.74          0.66 ->          0.78
         0.67 ->          0.78          0.69 ->          0.78
         0.70 ->          0.78          0.72 ->          0.82
         0.73 ->          0.82          0.75 ->          0.82
         0.76 ->          0.86          0.78 ->          0.86
         0.79 ->          0.86          0.81 ->          0.90
         0.82 ->          0.90          0.84 ->          0.90
         0.85 ->          0.90          0.87 ->          0.94
         0.88 ->          0.94          0.90 ->          0.94
         0.91 ->          0.98          0.93 ->          0.98
         0.94 ->          0.98          0.96 ->          1.00
         0.97 ->          1.00          0.99 ->          1.00
         1.00 ->          1.00          1.02 -> NIL

Clojure[edit]

Translation of: JavaScript
(def values [10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100])
 
(defn price [v]
(format "%.2f" (double (/ (values (int (/ (- (* v 100) 1) 5))) 100))))



Output:
user=> (price 0.50)
"0.62"
user=> (let [k (map #(double (/ % 100)) (range 101))] (sort (zipmap k (map #(price %) k))))
([0.0 "0.10"] [0.01 "0.10"] [0.02 "0.10"] [0.03 "0.10"] [0.04 "0.10"] [0.05 "0.10"]
 [0.06 "0.18"] [0.07 "0.18"] [0.08 "0.18"] [0.09 "0.18"] [0.1 "0.18"] 
 [0.11 "0.26"] [0.12 "0.26"] [0.13 "0.26"] [0.14 "0.26"] [0.15 "0.26"] 
 [0.16 "0.32"] [0.17 "0.32"] [0.18 "0.32"] [0.19 "0.32"] [0.2 "0.32"] 
 [0.21 "0.38"] [0.22 "0.38"] [0.23 "0.38"] [0.24 "0.38"] [0.25 "0.38"]
 [0.26 "0.44"] [0.27 "0.44"] [0.28 "0.44"] [0.29 "0.44"] [0.3 "0.44"]
 [0.31 "0.50"] [0.32 "0.50"] [0.33 "0.50"] [0.34 "0.50"] [0.35 "0.50"] 
 [0.36 "0.54"] [0.37 "0.54"] [0.38 "0.54"] [0.39 "0.54"] [0.4 "0.54"] 
 [0.41 "0.58"] [0.42 "0.58"] [0.43 "0.58"] [0.44 "0.58"] [0.45 "0.58"] 
 [0.46 "0.62"] [0.47 "0.62"] [0.48 "0.62"] [0.49 "0.62"] [0.5 "0.62"] 
 [0.51 "0.66"] [0.52 "0.66"] [0.53 "0.66"] [0.54 "0.66"] [0.55 "0.66"] 
 [0.56 "0.70"] [0.57 "0.70"] [0.58 "0.70"] [0.59 "0.70"] [0.6 "0.70"] 
 [0.61 "0.74"] [0.62 "0.74"] [0.63 "0.74"] [0.64 "0.74"] [0.65 "0.74"] 
 [0.66 "0.78"] [0.67 "0.78"] [0.68 "0.78"] [0.69 "0.78"] [0.7 "0.78"] 
 [0.71 "0.82"] [0.72 "0.82"] [0.73 "0.82"] [0.74 "0.82"] [0.75 "0.82"] 
 [0.76 "0.86"] [0.77 "0.86"] [0.78 "0.86"] [0.79 "0.86"] [0.8 "0.86"] 
 [0.81 "0.90"] [0.82 "0.90"] [0.83 "0.90"] [0.84 "0.90"] [0.85 "0.90"] 
 [0.86 "0.94"] [0.87 "0.94"] [0.88 "0.94"] [0.89 "0.94"] [0.9 "0.94"] 
 [0.91 "0.98"] [0.92 "0.98"] [0.93 "0.98"] [0.94 "0.98"] [0.95 "0.98"] 
 [0.96 "1.00"] [0.97 "1.00"] [0.98 "1.00"] [0.99 "1.00"] [1.0 "1.00"])

Common Lisp[edit]

(defun scale (value)
(cond ((minusp value) (error "invalid value: ~A" value))
((< value 0.06) 0.10)
((< value 0.11) 0.18)
((< value 0.16) 0.26)
((< value 0.21) 0.32)
((< value 0.26) 0.38)
((< value 0.31) 0.44)
((< value 0.36) 0.50)
((< value 0.41) 0.54)
((< value 0.46) 0.58)
((< value 0.51) 0.62)
((< value 0.56) 0.66)
((< value 0.61) 0.70)
((< value 0.66) 0.74)
((< value 0.71) 0.78)
((< value 0.76) 0.82)
((< value 0.81) 0.86)
((< value 0.86) 0.90)
((< value 0.91) 0.94)
((< value 0.96) 0.98)
((< value 1.01) 1.00)
(t (error "invalid value: ~A" value))))

D[edit]

import std.stdio, std.range;
 
double priceRounder(in double price) pure nothrow
in {
assert(price >= 0 && price <= 1.0);
} body {
static immutable cin = [.06, .11, .16, .21, .26, .31, .36, .41,
.46, .51, .56, .61, .66, .71, .76, .81,
.86, .91, .96, 1.01],
cout = [.10, .18, .26, .32, .38, .44, .50, .54,
.58, .62, .66, .70, .74, .78, .82, .86,
.90, .94, .98, 1.00];
return cout[cin.assumeSorted.lowerBound(price).length];
}
 
void main() {
foreach (const price; [0.7388727, 0.8593103, 0.826687, 0.3444635])
price.priceRounder.writeln;
}
Output:
0.82
0.9
0.9
0.5

Eiffel[edit]

 
class
APPLICATION
 
create
make
 
feature
 
make
--Tests the price_adjusted feature.
local
i: REAL
do
create price_fraction.initialize
from
i := 5
until
i = 100
loop
io.put_string ("Given: ")
io.put_real (i / 100)
io.put_string ("%TAdjusted:")
io.put_real (price_fraction.adjusted_price (i / 100))
io.new_line
i := i + 5
end
end
 
price_fraction: PRICE_FRACTION
 
end
 
 
class
PRICE_FRACTION
 
create
initialize
 
feature
 
initialize
-- Initializes limit and price to the given values.
do
limit := <<0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01>>
price := <<0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.81, 0.86, 0.90, 0.94, 0.98, 1.00>>
end
 
adjusted_price (n: REAL): REAL
-- Adjusted price according to the given price values.
local
i: INTEGER
found: BOOLEAN
do
from
i := 1
until
i > limit.count or found
loop
if n <= limit [i] then
Result := (price [i])
found := True
end
i := i + 1
end
end
 
feature {NONE}
 
limit: ARRAY [REAL]
 
price: ARRAY [REAL]
 
end
 
Output:
Given: 0.05    Adjusted:0.1
Given: 0.1     Adjusted:0.18
Given: 0.15    Adjusted:0.26
Given: 0.2     Adjusted:0.32
Given: 0.25    Adjusted:0.38
Given: 0.3     Adjusted:0.44
Given: 0.35    Adjusted:0.5
Given: 0.4     Adjusted:0.54
Given: 0.45    Adjusted:0.58
Given: 0.5     Adjusted:0.62
Given: 0.55    Adjusted:0.66
Given: 0.6     Adjusted:0.7
Given: 0.65    Adjusted:0.74
Given: 0.7     Adjusted:0.78
Given: 0.75    Adjusted:0.81
Given: 0.8     Adjusted:0.86
Given: 0.85    Adjusted:0.9
Given: 0.9     Adjusted:0.94
Given: 0.95    Adjusted:0.98

Elixir[edit]

defmodule Price do
@table [ {0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32}, {0.26, 0.38},
{0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54}, {0.46, 0.58}, {0.51, 0.62},
{0.56, 0.66}, {0.61, 0.70}, {0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82},
{0.81, 0.86}, {0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00} ]
 
def fraction(value) when value in 0..1 do
{_, standard_value} = Enum.find(@table, fn {upper_limit, _} -> value < upper_limit end)
standard_value
end
end
 
val = for i <- 0..100, do: i/100
Enum.each(val, fn x ->
 :io.format "~5.2f ->~5.2f~n", [x, Price.fraction(x)]
end)
Output:
 0.00 -> 0.10
 0.01 -> 0.10
 0.02 -> 0.10
 0.03 -> 0.10
 0.04 -> 0.10
 0.05 -> 0.10
 0.06 -> 0.18
 0.07 -> 0.18
 0.08 -> 0.18
 0.09 -> 0.18
 0.10 -> 0.18
 0.11 -> 0.26
...
 0.95 -> 0.98
 0.96 -> 1.00
 0.97 -> 1.00
 0.98 -> 1.00
 0.99 -> 1.00
 1.00 -> 1.00

Erlang[edit]

priceFraction(N) when N < 0 orelse N > 1 ->
erlang:error('Values must be between 0 and 1.');
priceFraction(N) when N < 0.06 -> 0.10;
priceFraction(N) when N < 0.11 -> 0.18;
priceFraction(N) when N < 0.16 -> 0.26;
priceFraction(N) when N < 0.21 -> 0.32;
priceFraction(N) when N < 0.26 -> 0.38;
priceFraction(N) when N < 0.31 -> 0.44;
priceFraction(N) when N < 0.36 -> 0.50;
priceFraction(N) when N < 0.41 -> 0.54;
priceFraction(N) when N < 0.46 -> 0.58;
priceFraction(N) when N < 0.51 -> 0.62;
priceFraction(N) when N < 0.56 -> 0.66;
priceFraction(N) when N < 0.61 -> 0.70;
priceFraction(N) when N < 0.66 -> 0.74;
priceFraction(N) when N < 0.71 -> 0.78;
priceFraction(N) when N < 0.76 -> 0.82;
priceFraction(N) when N < 0.81 -> 0.86;
priceFraction(N) when N < 0.86 -> 0.90;
priceFraction(N) when N < 0.91 -> 0.94;
priceFraction(N) when N < 0.96 -> 0.98;
priceFraction(N) -> 1.00.

Euphoria[edit]

Translation of: C
constant table = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}
}
 
function price_fix(atom x)
for i = 1 to length(table) do
if x < table[i][1] then
return table[i][2]
end if
end for
return -1
end function
 
for i = 0 to 99 do
printf(1, "%.2f %.2f\n", { i/100, price_fix(i/100) })
end for


F#[edit]

Inspired by Python's bisect solution. Using decimal (System.Decimal) to avoid number representation problems with floats.

let cin = [ 0.06m .. 0.05m ..1.01m ]
let cout = [0.1m; 0.18m] @ [0.26m .. 0.06m .. 0.44m] @ [0.50m .. 0.04m .. 0.98m] @ [1.m]
 
let priceadjuster p =
let rec bisect lo hi =
if lo < hi then
let mid = (lo+hi)/2.
let left = p < cin.[int mid]
bisect (if left then lo else mid+1.) (if left then mid else hi)
else lo
 
if p < 0.m || 1.m < p then p
else cout.[int (bisect 0. (float cin.Length))]
 
[ 0.m .. 0.01m .. 1.m ]
|> Seq.ofList
|> Seq.iter (fun p -> printfn "%.2f -> %.2f" p (priceadjuster p))
Output:

The same as shown by Ada as of 2013-11-03T17:42Z (apart from whitespace formatting)

Factor[edit]

CONSTANT: dispensary-data {
{ 0.06 0.10 }
{ 0.11 0.18 }
{ 0.16 0.26 }
{ 0.21 0.32 }
{ 0.26 0.38 }
{ 0.31 0.44 }
{ 0.36 0.50 }
{ 0.41 0.54 }
{ 0.46 0.58 }
{ 0.51 0.62 }
{ 0.56 0.66 }
{ 0.61 0.70 }
{ 0.66 0.74 }
{ 0.71 0.78 }
{ 0.76 0.82 }
{ 0.81 0.86 }
{ 0.86 0.90 }
{ 0.91 0.94 }
{ 0.96 0.98 }
{ 1.01 1.00 } }
 
: price-fraction ( n -- n ) dispensary-data [ first over >= ] find 2nip second ;
 
{ 0 0.5 0.65 0.66 1 } [ price-fraction ] map
Output:

{ 0.1 0.62 0.74 0.74 1.0 }

Fantom[edit]

 
class Defn // to hold the three numbers from a 'row' in the table
{
Float low
Float high
Float value
new make (Float low, Float high, Float value)
{
this.low = low
this.high = high
this.value = value
}
}
 
class PriceConverter
{
Defn[] defns := [,]
new make (Str table) // process given table and store numbers from each row in a defn
{
table.split('\n').each |Str line|
{
data := line.split
defns.add (Defn(Float.fromStr(data[1]), Float.fromStr(data[3]), Float.fromStr(data[5])))
}
}
 
public Float convert (Float price) // convert by looking through list of defns
{
Float result := price
defns.each |Defn defn|
{
if (price >= defn.low && price < defn.high)
result = defn.value
}
return result
}
}
 
class Main
{
public static Void main ()
{
table := ">= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00"
converter := PriceConverter (table)
10.times // simple test with random values
{
price := (0..100).random.toFloat / 100
echo ("$price -> ${converter.convert (price)}")
}
}
}
 

Forth[edit]

A floating-point version wouldn't be hard -- four words would change ( , @ @ cell+ -to- f, f@ f@ float+ ), EVALUATE would be replaced with a small word that forced a floating-point interpretation, and the return stack would not be used in ROUND -- but it would be strikingly unusual. See this page's discussion.

: as begin parse-word dup while evaluate , repeat 2drop ;
 
create bounds as 96 91 86 81 76 71 66 61 56 51 46 41 36 31 26 21 16 11 6 0
create official as 100 98 94 90 86 82 78 74 70 66 62 58 54 50 44 38 32 26 18 10
 
: official@ ( a-bounds -- +n )
\ (a+n) - a + b = (a+n) + (b - a) = (b+n)
[ official bounds - ] literal + @ ;
 
: round ( n-cents -- n-cents' )
>r bounds begin dup @ r@ > while cell+ repeat
r> drop official@ ;

Fortran[edit]

Works with: Fortran version 90 and later
program price_fraction
 
implicit none
integer, parameter :: i_max = 10
integer :: i
real, dimension (20), parameter :: in = &
& (/0.00, 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, &
& 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96/)
real, dimension (20), parameter :: out = &
& (/0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, &
& 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00/)
real :: r
 
do i = 1, i_max
call random_number (r)
write (*, '(f8.6, 1x, f4.2)') r, out (maxloc (in, r >= in))
end do
 
end program price_fraction
Output:
0.997560 1.00
0.566825 0.70
0.965915 1.00
0.747928 0.82
0.367391 0.54
0.480637 0.62
0.073754 0.18
0.005355 0.10
0.347081 0.50
0.342244 0.50

FreeBASIC[edit]

' FB 1.050.0 Win64
 
Function rescale(price As Double) As Double
If price < 0.00 OrElse price > 1.00 Then Return price
Select Case price
Case Is < 0.06 : Return 0.10
Case Is < 0.11 : Return 0.18
Case Is < 0.16 : Return 0.26
Case Is < 0.21 : Return 0.32
Case Is < 0.26 : Return 0.38
Case Is < 0.31 : Return 0.44
Case Is < 0.36 : Return 0.50
Case Is < 0.41 : Return 0.54
Case Is < 0.46 : Return 0.58
Case Is < 0.51 : Return 0.62
Case Is < 0.56 : Return 0.66
Case Is < 0.61 : Return 0.70
Case Is < 0.66 : Return 0.74
Case Is < 0.71 : Return 0.78
Case Is < 0.76 : Return 0.82
Case Is < 0.81 : Return 0.86
Case Is < 0.86 : Return 0.90
Case Is < 0.91 : Return 0.94
Case Is < 0.96 : Return 0.98
End Select
Return 1.00
End Function
 
For i As Integer = 1 To 100
Dim d As Double = i/100.0
Print Using "#.##"; d;
Print " -> ";
Print Using "#.##"; rescale(d);
Print " ";
If i Mod 5 = 0 Then Print
Next
 
Print
Print "Press any key to quit"
Sleep
Output:
0.01 -> 0.10  0.02 -> 0.10  0.03 -> 0.10  0.04 -> 0.10  0.05 -> 0.10
0.06 -> 0.18  0.07 -> 0.18  0.08 -> 0.18  0.09 -> 0.18  0.10 -> 0.18
0.11 -> 0.26  0.12 -> 0.26  0.13 -> 0.26  0.14 -> 0.26  0.15 -> 0.26
0.16 -> 0.32  0.17 -> 0.32  0.18 -> 0.32  0.19 -> 0.32  0.20 -> 0.32
0.21 -> 0.38  0.22 -> 0.38  0.23 -> 0.38  0.24 -> 0.38  0.25 -> 0.38
0.26 -> 0.44  0.27 -> 0.44  0.28 -> 0.44  0.29 -> 0.44  0.30 -> 0.44
0.31 -> 0.50  0.32 -> 0.50  0.33 -> 0.50  0.34 -> 0.50  0.35 -> 0.50
0.36 -> 0.54  0.37 -> 0.54  0.38 -> 0.54  0.39 -> 0.54  0.40 -> 0.54
0.41 -> 0.58  0.42 -> 0.58  0.43 -> 0.58  0.44 -> 0.58  0.45 -> 0.58
0.46 -> 0.62  0.47 -> 0.62  0.48 -> 0.62  0.49 -> 0.62  0.50 -> 0.62
0.51 -> 0.66  0.52 -> 0.66  0.53 -> 0.66  0.54 -> 0.66  0.55 -> 0.66
0.56 -> 0.70  0.57 -> 0.70  0.58 -> 0.70  0.59 -> 0.70  0.60 -> 0.70
0.61 -> 0.74  0.62 -> 0.74  0.63 -> 0.74  0.64 -> 0.74  0.65 -> 0.74
0.66 -> 0.78  0.67 -> 0.78  0.68 -> 0.78  0.69 -> 0.78  0.70 -> 0.78
0.71 -> 0.82  0.72 -> 0.82  0.73 -> 0.82  0.74 -> 0.82  0.75 -> 0.82
0.76 -> 0.86  0.77 -> 0.86  0.78 -> 0.86  0.79 -> 0.86  0.80 -> 0.86
0.81 -> 0.90  0.82 -> 0.90  0.83 -> 0.90  0.84 -> 0.90  0.85 -> 0.90
0.86 -> 0.94  0.87 -> 0.94  0.88 -> 0.94  0.89 -> 0.94  0.90 -> 0.94
0.91 -> 0.98  0.92 -> 0.98  0.93 -> 0.98  0.94 -> 0.98  0.95 -> 0.98
0.96 -> 1.00  0.97 -> 1.00  0.98 -> 1.00  0.99 -> 1.00  1.00 -> 1.00

Go[edit]

func pf(v float64) float64 {
switch {
case v < .06: return .10
case v < .11: return .18
case v < .16: return .26
case v < .21: return .32
case v < .26: return .38
case v < .31: return .44
case v < .36: return .50
case v < .41: return .54
case v < .46: return .58
case v < .51: return .62
case v < .56: return .66
case v < .61: return .70
case v < .66: return .74
case v < .71: return .78
case v < .76: return .82
case v < .81: return .86
case v < .86: return .90
case v < .91: return .94
case v < .96: return .98
}
return 1
}

Groovy[edit]

def priceFraction(value) {
assert value >= 0.0 && value <= 1.0
 
def priceMappings = [(0.06): 0.10, (0.11): 0.18, (0.16): 0.26, (0.21): 0.32, (0.26): 0.38,
(0.31): 0.44, (0.36): 0.50, (0.41): 0.54, (0.46): 0.58, (0.51): 0.62,
(0.56): 0.66, (0.61): 0.70, (0.66): 0.74, (0.71): 0.78, (0.76): 0.82,
(0.81): 0.86, (0.86): 0.90, (0.91): 0.94, (0.96): 0.98]
 
for (price in priceMappings.keySet()) {
if (value < price) return priceMappings[price]
}
1.00
}
 
for (def v = 0.00; v <= 1.00; v += 0.01) {
println "$v --> ${priceFraction(v)}"
}
Output:
0.00 --> 0.10
0.01 --> 0.10
0.02 --> 0.10
0.03 --> 0.10
0.04 --> 0.10
0.05 --> 0.10
0.06 --> 0.18
0.07 --> 0.18
0.08 --> 0.18
0.09 --> 0.18
0.10 --> 0.18
0.11 --> 0.26
0.12 --> 0.26
0.13 --> 0.26
0.14 --> 0.26
0.15 --> 0.26
0.16 --> 0.32
0.17 --> 0.32
0.18 --> 0.32
0.19 --> 0.32
0.20 --> 0.32
0.21 --> 0.38
0.22 --> 0.38
0.23 --> 0.38
0.24 --> 0.38
0.25 --> 0.38
0.26 --> 0.44
0.27 --> 0.44
0.28 --> 0.44
0.29 --> 0.44
0.30 --> 0.44
0.31 --> 0.50
0.32 --> 0.50
0.33 --> 0.50
0.34 --> 0.50
0.35 --> 0.50
0.36 --> 0.54
0.37 --> 0.54
0.38 --> 0.54
0.39 --> 0.54
0.40 --> 0.54
0.41 --> 0.58
0.42 --> 0.58
0.43 --> 0.58
0.44 --> 0.58
0.45 --> 0.58
0.46 --> 0.62
0.47 --> 0.62
0.48 --> 0.62
0.49 --> 0.62
0.50 --> 0.62
0.51 --> 0.66
0.52 --> 0.66
0.53 --> 0.66
0.54 --> 0.66
0.55 --> 0.66
0.56 --> 0.70
0.57 --> 0.70
0.58 --> 0.70
0.59 --> 0.70
0.60 --> 0.70
0.61 --> 0.74
0.62 --> 0.74
0.63 --> 0.74
0.64 --> 0.74
0.65 --> 0.74
0.66 --> 0.78
0.67 --> 0.78
0.68 --> 0.78
0.69 --> 0.78
0.70 --> 0.78
0.71 --> 0.82
0.72 --> 0.82
0.73 --> 0.82
0.74 --> 0.82
0.75 --> 0.82
0.76 --> 0.86
0.77 --> 0.86
0.78 --> 0.86
0.79 --> 0.86
0.80 --> 0.86
0.81 --> 0.90
0.82 --> 0.90
0.83 --> 0.90
0.84 --> 0.90
0.85 --> 0.90
0.86 --> 0.94
0.87 --> 0.94
0.88 --> 0.94
0.89 --> 0.94
0.90 --> 0.94
0.91 --> 0.98
0.92 --> 0.98
0.93 --> 0.98
0.94 --> 0.98
0.95 --> 0.98
0.96 --> 1.00
0.97 --> 1.00
0.98 --> 1.00
0.99 --> 1.00
1.00 --> 1.00

Haskell[edit]

price_fraction n
| n < 0 || n > 1 = error "Values must be between 0 and 1."
| n < 0.06 = 0.10
| n < 0.11 = 0.18
| n < 0.16 = 0.26
| n < 0.21 = 0.32
| n < 0.26 = 0.38
| n < 0.31 = 0.44
| n < 0.36 = 0.50
| n < 0.41 = 0.54
| n < 0.46 = 0.58
| n < 0.51 = 0.62
| n < 0.56 = 0.66
| n < 0.61 = 0.70
| n < 0.66 = 0.74
| n < 0.71 = 0.78
| n < 0.76 = 0.82
| n < 0.81 = 0.86
| n < 0.86 = 0.90
| n < 0.91 = 0.94
| n < 0.96 = 0.98
| otherwise = 1.00
Alternative
Translation of: OCaml
:
table = [
(0.06, 0.10), (0.11, 0.18), (0.16, 0.26), (0.21, 0.32), (0.26, 0.38),
(0.31, 0.44), (0.36, 0.50), (0.41, 0.54), (0.46, 0.58), (0.51, 0.62),
(0.56, 0.66), (0.61, 0.70), (0.66, 0.74), (0.71, 0.78), (0.76, 0.82),
(0.81, 0.86), (0.86, 0.90), (0.91, 0.94), (0.96, 0.98), (1.01, 1.00),
]
 
price_fraction n
| n < 0 || n > 1 = error "Values must be between 0 and 1."
| otherwise = snd $ head $ dropWhile ((<= n) . fst) table

HicEst[edit]

DIMENSION upperbound(20), rescaleTo(20), temp(20)
upperbound = (.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01)
rescaleTo = (.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.00)
 
DO test = 1, 10
value = RAN(0.5, 0.5)
temp = value > upperbound
PriceFraction = rescaleTo( INDEX(temp, 0) )
WRITE(Format="F8.6, F6.2") value, PriceFraction
ENDDO
0.589230  0.70
0.017623  0.10
0.314343  0.50
0.553303  0.66
0.676283  0.78
0.016883  0.10
0.265656  0.44
0.460880  0.62
0.837450  0.90
0.228953  0.38

Icon and Unicon[edit]

 
record Bounds(low,high,new)
 
# rescale given value according to a list of bounds
procedure rescale (i, bounds)
every bound := !bounds do
if bound.low <= i < bound.high
then return bound.new
return fail # could not find i in bounds
end
 
procedure main ()
bounds := [
Bounds(0.00, 0.06, 0.10),
Bounds(0.06, 0.11, 0.18),
Bounds(0.11, 0.16, 0.26),
Bounds(0.16, 0.21, 0.32),
Bounds(0.21, 0.26, 0.38),
Bounds(0.26, 0.31, 0.44),
Bounds(0.31, 0.36, 0.50),
Bounds(0.36, 0.41, 0.54),
Bounds(0.41, 0.46, 0.58),
Bounds(0.46, 0.51, 0.62),
Bounds(0.51, 0.56, 0.66),
Bounds(0.56, 0.61, 0.70),
Bounds(0.61, 0.66, 0.74),
Bounds(0.66, 0.71, 0.78),
Bounds(0.71, 0.76, 0.82),
Bounds(0.76, 0.81, 0.86),
Bounds(0.81, 0.86, 0.90),
Bounds(0.86, 0.91, 0.94),
Bounds(0.91, 0.96, 0.98),
Bounds(0.96, 1.01, 1.00)
]
 
# test the procedure
every i := 0.00 to 1.00 by 0.1 do {
write (i || " rescaled is " || rescale(i, bounds))
}
end
 
Output:
0.0 rescaled is 0.1
0.1 rescaled is 0.18
0.2 rescaled is 0.32
0.3 rescaled is 0.44
0.4 rescaled is 0.54
0.5 rescaled is 0.62
0.6 rescaled is 0.7
0.7 rescaled is 0.78
0.8 rescaled is 0.86
0.9 rescaled is 0.94
1.0 rescaled is 1.0

Inform 7[edit]

Inform doesn't have native floating-point support; this version uses fixed point numbers with two decimal places.

Home is a room.
 
Price is a kind of value. 0.99 specifies a price.
 
Table of Price Standardization
upper bound replacement
0.06 0.10
0.11 0.18
0.16 0.26
0.21 0.32
0.26 0.38
0.31 0.44
0.36 0.50
0.41 0.54
0.46 0.58
0.51 0.62
0.56 0.66
0.61 0.70
0.66 0.74
0.71 0.78
0.76 0.82
0.81 0.86
0.86 0.90
0.91 0.94
0.96 0.98
1.01 1.00
 
To decide which price is the standardized value of (P - price):
repeat with N running from 1 to the number of rows in the Table of Price Standardization:
choose row N in the Table of Price Standardization;
if P is less than the upper bound entry, decide on the replacement entry.
 
When play begins:
repeat with N running from 1 to 5:
let P be a random price between 0.00 and 1.00;
say "[P] -> [standardized value of P].";
end the story.

J[edit]

Solution:

le  =: -0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0
out =: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1
 
priceFraction =: out {~ le I. -

Example:

   priceFraction 0.34 0.070145 0.06 0.05 0.50214 0.56 1 0.99 0   
0.5 0.18 0.18 0.1 0.62 0.7 1 1 0.1

This implementation performs a binary search on the boundary values, and then uses the resulting index to select from the result values.

To prevent J's binary search from doing the wrong thing for values equal to a boundary, both the boundary values and the search value are negated.

Java[edit]

import java.util.Random;
 
public class Main {
private static float priceFraction(float f) {
if (0.00f <= f && f < 0.06f) return 0.10f;
else if (f < 0.11f) return 0.18f;
else if (f < 0.16f) return 0.26f;
else if (f < 0.21f) return 0.32f;
else if (f < 0.26f) return 0.38f;
else if (f < 0.31f) return 0.44f;
else if (f < 0.36f) return 0.50f;
else if (f < 0.41f) return 0.54f;
else if (f < 0.46f) return 0.58f;
else if (f < 0.51f) return 0.62f;
else if (f < 0.56f) return 0.66f;
else if (f < 0.61f) return 0.70f;
else if (f < 0.66f) return 0.74f;
else if (f < 0.71f) return 0.78f;
else if (f < 0.76f) return 0.82f;
else if (f < 0.81f) return 0.86f;
else if (f < 0.86f) return 0.90f;
else if (f < 0.91f) return 0.94f;
else if (f < 0.96f) return 0.98f;
else if (f < 1.01f) return 1.00f;
else throw new IllegalArgumentException();
}
 
public static void main(String[] args) {
Random rnd = new Random();
for (int i = 0; i < 5; i++) {
float f = rnd.nextFloat();
System.out.format("%8.6f -> %4.2f%n", f, priceFraction(f));
}
}
}
Output:
0.149969 -> 0.26
0.310605 -> 0.50
0.616683 -> 0.74
0.194047 -> 0.32
0.724852 -> 0.82


JavaScript[edit]

In the task definition, the first step is 0.06, the rest are 0.05 so a re-factoring can subtract 0.01 from the value and divide by 0.05 to get the step.

Working with decimal numbers in JavaScript has issues, e.g. 0.06 - 0.01 = 0.049999999999999996 due to using IEEE 754 double precision numbers that can't accurately represent all decimals. So values are multiplied by 100 and integer arithmetic is used.

Note that multiplying a string by a number produces a number, the bitwise OR (|) truncates floating point numbers to integer, making it a concise replacement for Math.floor.

Passing a value outside the range 0 <= x < 1.01 will return undefined.

function getScaleFactor(v) {
 
var values = ['0.10','0.18','0.26','0.32','0.38','0.44','0.50','0.54',
'0.58','0.62','0.66','0.70','0.74','0.78','0.82','0.86',
'0.90','0.94','0.98','1.00'];
 
return values[(v * 100 - 1) / 5 | 0];
}

jq[edit]

The solution given here is based on the JavaScript solution.

def getScaleFactor:
["0.10","0.18","0.26","0.32","0.38","0.44","0.50","0.54",
"0.58","0.62","0.66","0.70","0.74","0.78","0.82","0.86",
"0.90","0.94","0.98","1.00"] as $values
| $values[ (. * 100 - 1) / 5 | floor ] ;

The full coverage test as given in the Ada example:

def test:
(range(0;10) | "0.0\(.) -> \( 0.01 * . | getScaleFactor)"),
(range(10;100) | "0.\(.) -> \( 0.01 * . | getScaleFactor)");
 
test

Run the test, showing the first few lines of output:

$ jq -n -r -f Price_fraction.jq
0.00 -> 1.00
0.01 -> 0.10
0.02 -> 0.10
0.03 -> 0.10
0.04 -> 0.10
0.05 -> 0.10
0.06 -> 0.18
0.07 -> 0.18
0.08 -> 0.18
0.09 -> 0.18
0.10 -> 0.18
0.11 -> 0.26
...

Julia[edit]

This solution is somewhat straightforward but does highlight a couple of Julia features. The interval cut-offs and values are exactly represented by rational numbers. The interval to which an input value belongs is identified by applying the findfirst (true value) function to an element-wise comparison (.<) of this value to the cut-off array.

 
const PFCUT = [6:5:101]//100
const PFVAL = [10:8:26, 32:6:50, 54:4:98, 100]//100
 
function pricefraction{T<:FloatingPoint}(a::T)
zero(T) <= a || error("a = ", a, ", but it must be >= 0.")
a <= one(T) || error("a = ", a, ", but it must be <= 1.")
convert(T, PFVAL[findfirst(a .< PFCUT)])
end
 
test = [0.:0.05:1., 0.51, 0.56, 0.61, rand(), rand(), rand(), rand()]
 
println("Testing the price fraction function")
for t in test
println(@sprintf "  %.4f -> %.4f" t pricefraction(t))
end
 
Output:
Testing the price fraction function
    0.0000 -> 0.1000
    0.0500 -> 0.1000
    0.1000 -> 0.1800
    0.1500 -> 0.2600
    0.2000 -> 0.3200
    0.2500 -> 0.3800
    0.3000 -> 0.4400
    0.3500 -> 0.5000
    0.4000 -> 0.5400
    0.4500 -> 0.5800
    0.5000 -> 0.6200
    0.5500 -> 0.6600
    0.6000 -> 0.7000
    0.6500 -> 0.7400
    0.7000 -> 0.7800
    0.7500 -> 0.8200
    0.8000 -> 0.8600
    0.8500 -> 0.9000
    0.9000 -> 0.9400
    0.9500 -> 0.9800
    1.0000 -> 1.0000
    0.5100 -> 0.6600
    0.5600 -> 0.7000
    0.6100 -> 0.7400
    0.5603 -> 0.7000
    0.9812 -> 1.0000
    0.5127 -> 0.6600
    0.4821 -> 0.6200

K[edit]

Translation of the J solution:

 
le:- 0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0
out: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1
 
pf:{out@_bin[le;-x]}'
 
Output:
   pf 0.6094701 0.5003597 0.8512954 0.08951883 0.6868076
0.7 0.62 0.9 0.18 0.78

Kotlin[edit]

// version 1.0.6
 
fun rescale(price: Double): Double =
when {
price < 0.06 -> 0.10
price < 0.11 -> 0.18
price < 0.16 -> 0.26
price < 0.21 -> 0.32
price < 0.26 -> 0.38
price < 0.31 -> 0.44
price < 0.36 -> 0.50
price < 0.41 -> 0.54
price < 0.46 -> 0.58
price < 0.51 -> 0.62
price < 0.56 -> 0.66
price < 0.61 -> 0.70
price < 0.66 -> 0.74
price < 0.71 -> 0.78
price < 0.76 -> 0.82
price < 0.81 -> 0.86
price < 0.86 -> 0.90
price < 0.91 -> 0.94
price < 0.96 -> 0.98
else -> 1.00
}
 
fun main(args: Array<String>) {
var d: Double
for (i in 1..100) {
d = i / 100.0
print(String.format("%4.2f -> %4.2f ", d, rescale(d)))
if (i % 5 == 0) println()
}
}
Output:
0.01 -> 0.10  0.02 -> 0.10  0.03 -> 0.10  0.04 -> 0.10  0.05 -> 0.10
0.06 -> 0.18  0.07 -> 0.18  0.08 -> 0.18  0.09 -> 0.18  0.10 -> 0.18
0.11 -> 0.26  0.12 -> 0.26  0.13 -> 0.26  0.14 -> 0.26  0.15 -> 0.26
0.16 -> 0.32  0.17 -> 0.32  0.18 -> 0.32  0.19 -> 0.32  0.20 -> 0.32
0.21 -> 0.38  0.22 -> 0.38  0.23 -> 0.38  0.24 -> 0.38  0.25 -> 0.38
0.26 -> 0.44  0.27 -> 0.44  0.28 -> 0.44  0.29 -> 0.44  0.30 -> 0.44
0.31 -> 0.50  0.32 -> 0.50  0.33 -> 0.50  0.34 -> 0.50  0.35 -> 0.50
0.36 -> 0.54  0.37 -> 0.54  0.38 -> 0.54  0.39 -> 0.54  0.40 -> 0.54
0.41 -> 0.58  0.42 -> 0.58  0.43 -> 0.58  0.44 -> 0.58  0.45 -> 0.58
0.46 -> 0.62  0.47 -> 0.62  0.48 -> 0.62  0.49 -> 0.62  0.50 -> 0.62
0.51 -> 0.66  0.52 -> 0.66  0.53 -> 0.66  0.54 -> 0.66  0.55 -> 0.66
0.56 -> 0.70  0.57 -> 0.70  0.58 -> 0.70  0.59 -> 0.70  0.60 -> 0.70
0.61 -> 0.74  0.62 -> 0.74  0.63 -> 0.74  0.64 -> 0.74  0.65 -> 0.74
0.66 -> 0.78  0.67 -> 0.78  0.68 -> 0.78  0.69 -> 0.78  0.70 -> 0.78
0.71 -> 0.82  0.72 -> 0.82  0.73 -> 0.82  0.74 -> 0.82  0.75 -> 0.82
0.76 -> 0.86  0.77 -> 0.86  0.78 -> 0.86  0.79 -> 0.86  0.80 -> 0.86
0.81 -> 0.90  0.82 -> 0.90  0.83 -> 0.90  0.84 -> 0.90  0.85 -> 0.90
0.86 -> 0.94  0.87 -> 0.94  0.88 -> 0.94  0.89 -> 0.94  0.90 -> 0.94
0.91 -> 0.98  0.92 -> 0.98  0.93 -> 0.98  0.94 -> 0.98  0.95 -> 0.98
0.96 -> 1.00  0.97 -> 1.00  0.98 -> 1.00  0.99 -> 1.00  1.00 -> 1.00

Liberty BASIC[edit]

 
dim DR(38) 'decimal range
dim PF(38) 'corresponding price fraction
range$="0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96 0.01"
frac$="0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00"
for i = 1 to 38
DR(i)=val(word$(range$,i))
PF(i)=val(word$(frac$,i))
next
 
for i = 0 to .99 step 0.03
print i;" -> ";PriceFraction(i)
next
end
 
Function PriceFraction(n)
PriceFraction=n 'return original if outside test bounds
for i = 1 to 38
if n<=DR(i) then
PriceFraction=PF(i)
exit for
end if
next
end function
 

Lua[edit]

scaleTable = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}
}
 
function rescale (price)
if price < 0 or price > 1 then return "Out of range!" end
for k, v in pairs(scaleTable) do
if price < v[1] then return v[2] end
end
end
 
math.randomseed(os.time())
for i = 1, 5 do
rnd = math.random()
print("Random value:", rnd)
print("Adjusted price:", rescale(rnd))
print()
end
Output:
Random value:   0.61946413522022
Adjusted price: 0.74

Random value:   0.81141947958698
Adjusted price: 0.9

Random value:   0.55691473099814
Adjusted price: 0.66

Random value:   0.19704311677601
Adjusted price: 0.32

Random value:   0.36528313938816
Adjusted price: 0.54

Maple[edit]

priceFraction := proc(price)
local values, standard, newPrice, i;
values := [0, 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61,
0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01];
standard := [0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70,
0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00];
for i to numelems(standard) do
if price >= values[i] and price < values[i+1] then
newPrice := standard[i];
end if;
end do;
printf("%f --> %.2f\n", price, newPrice);
end proc:
 
randomize():
for i to 5 do
priceFraction (rand(0.0..1.0)());
end do;
Output:
0.524386 --> 0.66
0.887957 --> 0.94
0.670196 --> 0.78
0.875601 --> 0.94
0.540447 --> 0.66

Mathematica[edit]

PriceFraction[x_]:=Piecewise[{{.1, 0 <= x < 0.06}, {.18, x < .11}, {.26,x < 0.16}, 
{.32, x < .21}, {.38, x < .26}, {.44, x < 0.31}, {.5, x < .36},
{.54, x < .41}, {.58, x < .46}, {.62, x < .51}, {.66, x < .56},
{.70, x < .61}, {.74, x < .66}, {.78, x < .71}, {.82, x < .76},
{.86, x < .81}, {.90, x < .86}, {.94, x < .91}, {.98, x < .96}}, 1]


MATLAB / Octave[edit]

  function y = rescale(x) 
 
L = [0,.06:.05:1.02];
V = [.1,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.9,.94,.98,1];
 
y = x;
for k=1:numel(x);
y(k) = V(sum(L<=x(k)));
end;
end;
 
t=0:0.001:1;
plot(t,rescale(t));

Mercury[edit]

:- module price.
:- interface.
:- import_module int.
:- type price == int.
:- func standard(price) = price.
 
:- implementation.
:- import_module require, list.
 
standard(P) = SP :-
require(P >= 0, "P must be positive"),
Cents = P `mod` 100,
P + adjust(Cents) = SP.
 
:- func adjust(int) = int.
adjust(Cents) = adjust(Cents, rules).
 
:- func adjust(int, list(price_rule)) = int.
adjust(_, []) = unexpected("price", "adjust/2", "exhausted rules").
adjust(N, [rule(Low, High, To)|T]) = R :-
( N >= Low, N < High -> To - N = R ; adjust(N, T) = R ).
 
:- type price_rule ---> rule(int, int, int).
:- func rules = list(price_rule).
rules = [rule(00, 06, 10),
rule(06, 11, 18),
rule(11, 16, 26),
rule(16, 21, 32),
rule(21, 26, 38),
rule(26, 31, 44),
rule(31, 36, 50),
rule(36, 41, 54),
rule(41, 46, 58),
rule(46, 51, 62),
rule(51, 56, 66),
rule(56, 61, 70),
rule(61, 66, 74),
rule(66, 71, 78),
rule(71, 76, 82),
rule(76, 81, 86),
rule(81, 86, 90),
rule(86, 91, 94),
rule(91, 96, 98),
rule(96, 101, 100)].

A build system might turn the text of the table into the definition of a hundred-element array of adjustments. In that case,

adjust(Cents) = array.lookup(price_table, Cents).

MUMPS[edit]

PRICFRAC(X)
 ;Outputs a specified value dependent upon the input value
 ;The non-inclusive upper limits are encoded in the PFMAX string, and the values
 ;to convert to are encoded in the PFRES string.
NEW PFMAX,PFRES,I,RESULT
SET PFMAX=".06^.11^.16^.21^.26^.31^.36^.41^.46^.51^.56^.61^.66^.71^.76^.81^.86^.91^.96^1.01"
SET PFRES=".10^.18^.26^.32^.38^.44^.50^.54^.58^.62^.66^.70^.74^.78^.82^.86^.90^.94^.98^1.00"
Q:(X<0)!(X>1.01) ""
FOR I=1:1:$LENGTH(PFMAX,"^") Q:($DATA(RESULT)'=0) SET:X<$P(PFMAX,"^",I) RESULT=$P(PFRES,"^",I)
KILL PFMAX,PFRES,I
QUIT RESULT
Output:
USER>W $$PRICFRAC^ROSETTA(.04)
.10
USER>W $$PRICFRAC^ROSETTA(.06)
.18
USER>W $$PRICFRAC^ROSETTA(.40)
.54
USER>W $$PRICFRAC^ROSETTA(1.40)
 
USER>W $$PRICFRAC^ROSETTA(.81)
.90

NetRexx[edit]

/* NetRexx */
options replace format comments java crossref symbols nobinary
 
runSample(arg)
return
 
-- -----------------------------------------------------------------------------
method runSample(arg) public static
parse arg in_val .
if in_val \= '' then test_vals = [in_val]
else test_vals = getTestData()
 
say 'Input Adjustment'
loop tv = 0 to test_vals.length - 1
in_val = test_vals[tv]
adjust = priceFraction(in_val)
say in_val.format(null, 2).right(5) adjust.format(null, 2).right(10)
end tv
 
return
 
-- -----------------------------------------------------------------------------
method priceFraction(in_val) public static
out_val = -1
limit_table = getLimitTable()
limit_table_K = limit_table.length
loop p1 = 0 to limit_table_K - 1
pair = limit_table[p1]
hi_limit = pair[0]
adjustmt = pair[1]
if in_val < hi_limit then do
out_val = adjustmt
leave p1
end
end p1
if out_val = -1 then signal IllegalArgumentException('Input' in_val 'is outside of acceptable range.')
 
return out_val
 
-- -----------------------------------------------------------------------------
method getLimitTable() public static returns Rexx[,]
limit_table = [ -
[0.06, 0.10], [0.11, 0.18], [0.16, 0.26], [0.21, 0.32], [0.26, 0.38], -
[0.31, 0.44], [0.36, 0.50], [0.41, 0.54], [0.46, 0.58], [0.51, 0.62], -
[0.56, 0.66], [0.61, 0.70], [0.66, 0.74], [0.71, 0.78], [0.76, 0.82], -
[0.81, 0.86], [0.86, 0.90], [0.91, 0.94], [0.96, 0.98], [1.01, 1.00] -
]
return limit_table
 
-- -----------------------------------------------------------------------------
method getTestData() private static returns Rexx[]
test_vals = Rexx[5]
rng = Random(1024)
loop tv = 0 to test_vals.length - 1
test_vals[tv] = rng.nextFloat()
end tv
return test_vals
 
Output:
Input Adjustment
 0.64       0.74
 0.32       0.50
 0.85       0.90
 0.93       0.98
 0.62       0.74

Nim[edit]

import strutils, math
 
const
pricemap: array[0 .. 19, int] = [10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100]
 
# outputs an int (=>float*100)
proc floatToPrice100(f: float): int =
# indx: 0.1-0.05->0, 0.06-0.10->1, 0.11-0.15->2, .....
var valu: int = toInt(f*100)
if valu == 0:
result = 10
else:
dec(valu)
# inc indx every 5 of valu, so value of 1..100 translates to indx of 0..19
var indx: int = 2*int(valu/10)+int((valu%%10)/5)
result = pricemap[indx]
 
# str representation of an int (that is a representation of a float price)
proc price100ToStr(p: int): string =
if p < 10:
result = "0.0" & $p
if p < 100:
result = "0." & $p
else:
result = "1.00"
 
randomize()
var i: int = 0
 
for x in 0 .. 10:
i = random(101)
echo("Price for ", i.price100ToStr(), ", is: ", float(i/100).floatToPrice100().price100ToStr())
Output:

A random output something like:

Price for 0.73, is: 0.82
Price for 0.29, is: 0.44
Price for 0.25, is: 0.38
Price for 0.52, is: 0.66
Price for 0.66, is: 0.78
Price for 0.23, is: 0.38
Price for 0.62, is: 0.74
Price for 0.26, is: 0.44
Price for 0.70, is: 0.78
Price for 0.69, is: 0.78
Price for 0.39, is: 0.54

OCaml[edit]

let price_fraction v =
if v < 0.0 || v >= 1.01 then
invalid_arg "price_fraction";
let rec aux = function
| (x,r)::tl ->
if v < x then r
else aux tl
| [] -> assert false
in
aux [
0.06, 0.10; 0.11, 0.18; 0.16, 0.26; 0.21, 0.32; 0.26, 0.38;
0.31, 0.44; 0.36, 0.50; 0.41, 0.54; 0.46, 0.58; 0.51, 0.62;
0.56, 0.66; 0.61, 0.70; 0.66, 0.74; 0.71, 0.78; 0.76, 0.82;
0.81, 0.86; 0.86, 0.90; 0.91, 0.94; 0.96, 0.98; 1.01, 1.00;
]
let () =
let ok_tests = [
(0.3793, 0.54);
(0.4425, 0.58);
(0.0746, 0.18);
(0.6918, 0.78);
(0.2993, 0.44);
(0.5486, 0.66);
(0.7848, 0.86);
(0.9383, 0.98);
(0.2292, 0.38);
] in
Printf.printf " input res ok\n";
List.iter (fun (v,ok) ->
let r = price_fraction v in
Printf.printf " %6g  %g  %b\n" v r (r = ok);
) ok_tests;
;;

Oforth[edit]

[.06, .11, .16, .21, .26, .31, .36, .41, .46, .51, .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01] const: IN
[.10, .18, .26, .32, .38, .44, .50, .54, .58, .62, .66, .70, .74, .78, .82, .86, .90, .94, .98, 1.00] const: OUT
 
: priceFraction(f)
| i |
IN size loop: i [ f IN at(i) < ifTrue: [ OUT at(i) return ] ]
null ;
Output:
>[0.7388727, 0.8593103, 0.826687, 0.3444635] map(#priceFraction) .
[0.82, 0.9, 0.9, 0.5] ok

Oz[edit]

Using a for-loop with return and a default value for values >= 1.01. For out-of-range input, a "failed value" is returned, i.e. a value that throws an exception when it is accessed.

fun {PriceFraction X}
OutOfRange = {Value.failed outOfRange(X)}
in
for Limit#Result in
[0.00#OutOfRange
0.06#0.10 0.11#0.18 0.16#0.26 0.21#0.32 0.26#0.38 0.31#0.44 0.36#0.5
0.41#0.54 0.46#0.58 0.51#0.62 0.56#0.66 0.61#0.70 0.66#0.74 0.71#0.78
0.76#0.82 0.81#0.86 0.86#0.90 0.91#0.94 0.96#0.98 1.01#1.00
]
return:Return
default:OutOfRange
do
if X < Limit then {Return Result} end
end
end

PARI/GP[edit]

priceLookup=[6,11,16,21,26,31,41,46,51,56,61,66,71,76,81,86,91,96,101];
priceReplace=[10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100];
pf(x)={
x*=100;
for(i=1,19,
if(x<priceLookup[i], return(priceReplace[i]))
);
"nasal demons"
};

Pascal[edit]

Program PriceFraction(output);
 
const
limit: array [1..20] of real =
(0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51,
0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01);
price: array [1..20] of real =
(0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.81, 0.86, 0.90, 0.94, 0.98, 1.00);
 
var
cost: real;
i, j: integer;
 
begin
randomize;
for i := 1 to 10 do
begin
cost := random;
j := high(limit);
while cost < limit[j] do
dec(j);
writeln (cost:6:4, ' -> ', price[j+1]:4:2);
end;
end.
Output:
% ./PriceFraction
0.8145 -> 0.90
0.6347 -> 0.74
0.0464 -> 0.10
0.9603 -> 1.00
0.3629 -> 0.54
0.5074 -> 0.62
0.4516 -> 0.58
0.2340 -> 0.38
0.4142 -> 0.58
0.8327 -> 0.90

Perl[edit]

my @table = map [ /([\d\.]+)/g ], split "\n", <<'TBL';
>= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00
TBL

 
sub convert {
my $money = shift;
for (@table) {
return $_->[2] if $_->[0] <= $money and $_->[1] > $money
}
die "Can't find currency conversion for $money. Counterfeit?"
}
 
# try it out
for (1 .. 10) {
my $m = rand(1);
printf "%.3f -> %g\n", $m, convert($m);
}
 

Perl 6[edit]

Simple solution, doing a linear search.
Note that in Perl 6 we don't have to worry about floating-point misrepresentations of decimals, because decimal fractions are stored as rationals.

Works with: rakudo version 2016.07
sub price-fraction ($n where 0..1) {
when $n < 0.06 { 0.10 }
when $n < 0.11 { 0.18 }
when $n < 0.16 { 0.26 }
when $n < 0.21 { 0.32 }
when $n < 0.26 { 0.38 }
when $n < 0.31 { 0.44 }
when $n < 0.36 { 0.50 }
when $n < 0.41 { 0.54 }
when $n < 0.46 { 0.58 }
when $n < 0.51 { 0.62 }
when $n < 0.56 { 0.66 }
when $n < 0.61 { 0.70 }
when $n < 0.66 { 0.74 }
when $n < 0.71 { 0.78 }
when $n < 0.76 { 0.82 }
when $n < 0.81 { 0.86 }
when $n < 0.86 { 0.90 }
when $n < 0.91 { 0.94 }
when $n < 0.96 { 0.98 }
default { 1.00 }
}
 
while prompt("value: ") -> $value {
say price-fraction(+$value);
}

If we expect to rescale many prices, a better approach would be to build a look-up array of 101 entries. Memory is cheap, and array indexing is blazing fast.

my @price = map *.value, flat
( 0 ..^ 6 X=> 0.10),
( 6 ..^ 11 X=> 0.18),
(11 ..^ 16 X=> 0.26),
(16 ..^ 21 X=> 0.32),
(21 ..^ 26 X=> 0.38),
(26 ..^ 31 X=> 0.44),
(31 ..^ 36 X=> 0.50),
(36 ..^ 41 X=> 0.54),
(41 ..^ 46 X=> 0.58),
(46 ..^ 51 X=> 0.62),
(51 ..^ 56 X=> 0.66),
(56 ..^ 61 X=> 0.70),
(61 ..^ 66 X=> 0.74),
(66 ..^ 71 X=> 0.78),
(71 ..^ 76 X=> 0.82),
(76 ..^ 81 X=> 0.86),
(81 ..^ 86 X=> 0.90),
(86 ..^ 91 X=> 0.94),
(91 ..^ 96 X=> 0.98),
(96 ..^101 X=> 1.00),
;
 
while prompt("value: ") -> $value {
say @price[$value * 100] // "Out of range";
}

We can also build this same look-up array by parsing the table as formatted in the task description:

Works with: rakudo version 2016.07
my $table = q:to/END/;
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
END
 
my @price;
 
for $table.lines {
/:s '>=' (\S+) '<' (\S+) ':=' (\S+)/;
@price[$0*100 ..^ $1*100] »=» +$2;
}
 
while prompt("value: ") -> $value {
say @price[$value * 100] // "Out of range";
}

Phix[edit]

constant TBL=split("""
>= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00""",'\n')
 
sequence limits = {0},
prices = {-1}
atom lt,price
for i=1 to length(TBL) do
{{?,lt,price}} = scanf(TBL[i],">=  %.2f <  %.2f  :=  %.2f")
limits = append(limits,lt)
prices = append(prices,price)
end for
 
function price_fix(atom p)
for i=1 to length(limits) do
if p<limits[i] then
return prices[i]
end if
end for
return -1
end function
 
for i=-1 to 101 do
printf(1, "%5.2f %5.2f\n", {i/100,price_fix(i/100)})
end for

PicoLisp[edit]

(scl 2)
 
(de price (Pr)
(format
(cdr
(rank Pr
(quote
(0.00 . 0.10)
(0.06 . 0.18)
(0.11 . 0.26)
(0.16 . 0.32)
(0.21 . 0.38)
(0.26 . 0.44)
(0.31 . 0.50)
(0.36 . 0.54)
(0.41 . 0.58)
(0.46 . 0.62)
(0.51 . 0.66)
(0.56 . 0.70)
(0.61 . 0.74)
(0.66 . 0.78)
(0.71 . 0.82)
(0.76 . 0.86)
(0.81 . 0.90)
(0.86 . 0.94)
(0.91 . 0.98)
(0.96 . 1.00) ) ) )
*Scl ) )
 
(for N (0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292)
(prinl (price N)) )
Output:
0.54
0.58
0.18
0.78
0.44
0.66
0.86
0.98
0.38

PL/I[edit]

version 1[edit]

declare t(20) fixed decimal (3,2) static initial (
.06, .11, .16, .21, .26, .31, .36, .41, .46, .51,
.56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01);
declare r(20) fixed decimal (3,2) static initial (
.10, .18, .26, .32, .38, .44, .50, .54, .58, .62,
.66, .70, .74, .78, .82, .86, .90, .94, .98, 1);
declare x float, d fixed decimal (3,2);
declare i fixed binary;
 
loop:
do i = 1 to 20;
if x < t(i) then
do; d = r(i); leave loop; end;
end;

version 2[edit]

Translation of: REXX version2
cpt: Proc Options(main); 
Dcl x Dec Fixed(4,2);
Do x=0 To 1 By 0.01;
Put Edit(x,' -> ',cp(x))(Skip,f(4,2),a,f(4,2));
End;
cp: Proc(p) Returns(Dec Fixed(4,2));
Dcl r(20) Dec Fixed(4,2) static init(
.10, .18, .26, .32, .38, .44, .50, .54, .58, .62,
.66, .70, .74, .78, .82, .86, .90, .94, .98, 1);
Dcl p Dec Fixed(4,2);
Dcl i Bin Fixed;
i=trunc((100*p-1)/5)+1;
Return(r(i));
End;
End;

PowerShell[edit]

 
function Convert-PriceFraction
{
[CmdletBinding()]
[OutputType([double])]
Param
(
[Parameter(Mandatory=$true,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=$true,
Position=0)]
[ValidateScript({$_ -ge 0.0 -and $_ -le 1.0})]
[double]
$InputObject
)
 
Process
{
foreach ($fraction in $InputObject)
{
switch ($fraction)
{
{$_ -lt 0.06} {0.10; break}
{$_ -lt 0.11} {0.18; break}
{$_ -lt 0.16} {0.26; break}
{$_ -lt 0.21} {0.32; break}
{$_ -lt 0.26} {0.38; break}
{$_ -lt 0.31} {0.44; break}
{$_ -lt 0.36} {0.50; break}
{$_ -lt 0.41} {0.54; break}
{$_ -lt 0.46} {0.58; break}
{$_ -lt 0.51} {0.62; break}
{$_ -lt 0.56} {0.66; break}
{$_ -lt 0.61} {0.70; break}
{$_ -lt 0.66} {0.74; break}
{$_ -lt 0.71} {0.78; break}
{$_ -lt 0.76} {0.82; break}
{$_ -lt 0.81} {0.86; break}
{$_ -lt 0.86} {0.90; break}
{$_ -lt 0.91} {0.94; break}
{$_ -lt 0.96} {0.98; break}
Default {1.00}
}
}
}
}
 
 
.7388727, .8593103, .826687, .3444635, .0491907 | Convert-PriceFraction | ForEach-Object {"{0:C}" -f $_}
 
Output:
$0.82
$0.90
$0.90
$0.50
$0.10

PureBasic[edit]

Procedure.f PriceFraction(price.f)
;returns price unchanged if value is invalid
Protected fraction
Select price * 100
Case 0 To 5
fraction = 10
Case 06 To 10
fraction = 18
Case 11 To 15
fraction = 26
Case 16 To 20
fraction = 32
Case 21 To 25
fraction = 38
Case 26 To 30
fraction = 44
Case 31 To 35
fraction = 5
Case 36 To 40
fraction = 54
Case 41 To 45
fraction = 58
Case 46 To 50
fraction = 62
Case 51 To 55
fraction = 66
Case 56 To 60
fraction = 7
Case 61 To 65
fraction = 74
Case 66 To 70
fraction = 78
Case 71 To 75
fraction = 82
Case 76 To 80
fraction = 86
Case 81 To 85
fraction = 9
Case 86 To 90
fraction = 94
Case 91 To 95
fraction = 98
Case 96 To 100
fraction = 100
Default
ProcedureReturn price
EndSelect
 
ProcedureReturn fraction / 100
EndProcedure
 
If OpenConsole()
Define x.f, i
 
For i = 1 To 10
x = Random(10000)/10000
PrintN(StrF(x, 4) + " -> " + StrF(PriceFraction(x), 2))
Next
 
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
Output:
0.3793 -> 0.54
0.4425 -> 0.58
0.0746 -> 0.18
0.6918 -> 0.78
0.2993 -> 0.44
0.5486 -> 0.66
0.7848 -> 0.86
0.9383 -> 0.98
0.2292 -> 0.38
0.9560 -> 1.00

Python[edit]

Using the bisect standard module to reduce the comparisons with members of the cin array.

>>> import bisect
>>> _cin = [.06, .11, .16, .21, .26, .31, .36, .41, .46, .51, .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01]
>>> _cout = [.10, .18, .26, .32, .38, .44, .50, .54, .58, .62, .66, .70, .74, .78, .82, .86, .90, .94, .98, 1.00]
>>> def pricerounder(pricein):
return _cout[ bisect.bisect_right(_cin, pricein) ]

When dealing with money it is good to think about possible loss of precision. If we change the units to be integer cents we could use the following exact routine:

>>> import bisect
>>> _cin = [ 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101]
>>> _cout = [10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100]
>>> def centsrounder(centsin):
return _cout[ bisect.bisect_right(_cin, centsin) ]

Other options are to use the fractions or decimals modules for calculating money to a known precision.


Bisection library code

The bisect Python standard library function uses the following code that improves on a simple linear scan through a sorted list:
def bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted.
 
The return value i is such that all e in a[:i] have e <= x, and all e in
a[i:] have e > x. So if x already appears in the list, a.insert(x) will
insert just after the rightmost x already there.
 
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""

 
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if x < a[mid]: hi = mid
else: lo = mid+1
return lo

R[edit]

 
price_fraction <- function(x)
{
stopifnot(all(x >= 0 & x <= 1))
breaks <- seq(0.06, 1.01, 0.05)
values <- c(.1, .18, .26, .32, .38, .44, .5, .54, .58, .62, .66, .7, .74, .78, .82, .86, .9, .94, .98, 1)
indices <- sapply(x, function(x) which(x < breaks)[1])
values[indices]
}
 
#Example usage:
price_fraction(c(0, .01, 0.06, 0.25, 1)) # 0.10 0.10 0.18 0.38 1.00
 

You can extract the contents of the table as follows:

 
dfr <- read.table(tc <- textConnection(
">= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00")); close(tc)
breaks <- dfr$V4
values <- dfr$V6
 

Racket[edit]

 
#lang racket
 
(define table
'([0 #f]
[0.06 0.10] [0.11 0.18] [0.16 0.26] [0.21 0.32] [0.26 0.38] [0.31 0.44]
[0.36 0.50] [0.41 0.54] [0.46 0.58] [0.51 0.62] [0.56 0.66] [0.61 0.70]
[0.66 0.74] [0.71 0.78] [0.76 0.82] [0.81 0.86] [0.86 0.90] [0.91 0.94]
[0.96 0.98] [1.01 1.00])
 
 ;; returns #f for negatives or values >= 1.01
(define (convert x) (for/or ([c table]) (and (< x (car c)) (cadr c))))
 

Raven[edit]

Translation of: JavaScript
define getScaleFactor use $v
[ 0.1 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.0 ] as $vals
$v 100 * 1 - 5 / 20 min 0 max 1 prefer dup $v "val: %g indx: %d\n" print $vals swap get
 
0 100 9 range each
100.0 / dup getScaleFactor swap "%.2g -> %.2g\n" print
Output:
0 -> 0.1
0.09 -> 0.18
0.18 -> 0.32
0.27 -> 0.44
0.36 -> 0.54
0.45 -> 0.58
0.54 -> 0.66
0.63 -> 0.74
0.72 -> 0.82
0.81 -> 0.9
0.9 -> 0.94
0.99 -> 1

REXX[edit]

version 1[edit]

/*REXX program to  rescale a  (decimal fraction)  price (0.99 ──► 1.00).*/
pad=' ' /*for inserting spaces into msg. */
do j=0 to 1 by .01; if j==0 then j=0.00 /*special case.*/
say pad 'original price ──►' j pad adjPrice(j) " ◄── adjusted price"
end /*j*/
exit /*stick a fork in it, we're done.*/
/*──────────────────────────────────ADJPRICE subroutine─────────────────*/
adjPrice: procedure; parse arg ?
select
when ?<0.06 then ?=0.10
when ?<0.11 then ?=0.18
when ?<0.16 then ?=0.26
when ?<0.21 then ?=0.32
when ?<0.26 then ?=0.38
when ?<0.31 then ?=0.44
when ?<0.36 then ?=0.50
when ?<0.41 then ?=0.54
when ?<0.46 then ?=0.58
when ?<0.51 then ?=0.62
when ?<0.56 then ?=0.66
when ?<0.61 then ?=0.70
when ?<0.66 then ?=0.74
when ?<0.71 then ?=0.78
when ?<0.76 then ?=0.82
when ?<0.81 then ?=0.86
when ?<0.86 then ?=0.90
when ?<0.91 then ?=0.94
when ?<0.96 then ?=0.98
when ?<1.01 then ?=1.00
otherwise nop
end /*select*/
return ?
Output:
      original price ──► 0.00       0.10  ◄── adjusted price
      original price ──► 0.01       0.10  ◄── adjusted price
      original price ──► 0.02       0.10  ◄── adjusted price
      original price ──► 0.03       0.10  ◄── adjusted price
      original price ──► 0.04       0.10  ◄── adjusted price
      original price ──► 0.05       0.10  ◄── adjusted price
      original price ──► 0.06       0.18  ◄── adjusted price
      original price ──► 0.07       0.18  ◄── adjusted price
      original price ──► 0.08       0.18  ◄── adjusted price
      original price ──► 0.09       0.18  ◄── adjusted price
      original price ──► 0.10       0.18  ◄── adjusted price
      original price ──► 0.11       0.26  ◄── adjusted price
      original price ──► 0.12       0.26  ◄── adjusted price
      original price ──► 0.13       0.26  ◄── adjusted price
      original price ──► 0.14       0.26  ◄── adjusted price
      original price ──► 0.15       0.26  ◄── adjusted price
      original price ──► 0.16       0.32  ◄── adjusted price
      original price ──► 0.17       0.32  ◄── adjusted price
      original price ──► 0.18       0.32  ◄── adjusted price
      original price ──► 0.19       0.32  ◄── adjusted price
      original price ──► 0.20       0.32  ◄── adjusted price
      original price ──► 0.21       0.38  ◄── adjusted price
      original price ──► 0.22       0.38  ◄── adjusted price
      original price ──► 0.23       0.38  ◄── adjusted price
      original price ──► 0.24       0.38  ◄── adjusted price
      original price ──► 0.25       0.38  ◄── adjusted price
      original price ──► 0.26       0.44  ◄── adjusted price
      original price ──► 0.27       0.44  ◄── adjusted price
      original price ──► 0.28       0.44  ◄── adjusted price
      original price ──► 0.29       0.44  ◄── adjusted price
      original price ──► 0.30       0.44  ◄── adjusted price
      original price ──► 0.31       0.50  ◄── adjusted price
      original price ──► 0.32       0.50  ◄── adjusted price
      original price ──► 0.33       0.50  ◄── adjusted price
      original price ──► 0.34       0.50  ◄── adjusted price
      original price ──► 0.35       0.50  ◄── adjusted price
      original price ──► 0.36       0.54  ◄── adjusted price
      original price ──► 0.37       0.54  ◄── adjusted price
      original price ──► 0.38       0.54  ◄── adjusted price
      original price ──► 0.39       0.54  ◄── adjusted price
      original price ──► 0.40       0.54  ◄── adjusted price
      original price ──► 0.41       0.58  ◄── adjusted price
      original price ──► 0.42       0.58  ◄── adjusted price
      original price ──► 0.43       0.58  ◄── adjusted price
      original price ──► 0.44       0.58  ◄── adjusted price
      original price ──► 0.45       0.58  ◄── adjusted price
      original price ──► 0.46       0.62  ◄── adjusted price
      original price ──► 0.47       0.62  ◄── adjusted price
      original price ──► 0.48       0.62  ◄── adjusted price
      original price ──► 0.49       0.62  ◄── adjusted price
      original price ──► 0.50       0.62  ◄── adjusted price
      original price ──► 0.51       0.66  ◄── adjusted price
      original price ──► 0.52       0.66  ◄── adjusted price
      original price ──► 0.53       0.66  ◄── adjusted price
      original price ──► 0.54       0.66  ◄── adjusted price
      original price ──► 0.55       0.66  ◄── adjusted price
      original price ──► 0.56       0.70  ◄── adjusted price
      original price ──► 0.57       0.70  ◄── adjusted price
      original price ──► 0.58       0.70  ◄── adjusted price
      original price ──► 0.59       0.70  ◄── adjusted price
      original price ──► 0.60       0.70  ◄── adjusted price
      original price ──► 0.61       0.74  ◄── adjusted price
      original price ──► 0.62       0.74  ◄── adjusted price
      original price ──► 0.63       0.74  ◄── adjusted price
      original price ──► 0.64       0.74  ◄── adjusted price
      original price ──► 0.65       0.74  ◄── adjusted price
      original price ──► 0.66       0.78  ◄── adjusted price
      original price ──► 0.67       0.78  ◄── adjusted price
      original price ──► 0.68       0.78  ◄── adjusted price
      original price ──► 0.69       0.78  ◄── adjusted price
      original price ──► 0.70       0.78  ◄── adjusted price
      original price ──► 0.71       0.82  ◄── adjusted price
      original price ──► 0.72       0.82  ◄── adjusted price
      original price ──► 0.73       0.82  ◄── adjusted price
      original price ──► 0.74       0.82  ◄── adjusted price
      original price ──► 0.75       0.82  ◄── adjusted price
      original price ──► 0.76       0.86  ◄── adjusted price
      original price ──► 0.77       0.86  ◄── adjusted price
      original price ──► 0.78       0.86  ◄── adjusted price
      original price ──► 0.79       0.86  ◄── adjusted price
      original price ──► 0.80       0.86  ◄── adjusted price
      original price ──► 0.81       0.90  ◄── adjusted price
      original price ──► 0.82       0.90  ◄── adjusted price
      original price ──► 0.83       0.90  ◄── adjusted price
      original price ──► 0.84       0.90  ◄── adjusted price
      original price ──► 0.85       0.90  ◄── adjusted price
      original price ──► 0.86       0.94  ◄── adjusted price
      original price ──► 0.87       0.94  ◄── adjusted price
      original price ──► 0.88       0.94  ◄── adjusted price
      original price ──► 0.89       0.94  ◄── adjusted price
      original price ──► 0.90       0.94  ◄── adjusted price
      original price ──► 0.91       0.98  ◄── adjusted price
      original price ──► 0.92       0.98  ◄── adjusted price
      original price ──► 0.93       0.98  ◄── adjusted price
      original price ──► 0.94       0.98  ◄── adjusted price
      original price ──► 0.95       0.98  ◄── adjusted price
      original price ──► 0.96       1.00  ◄── adjusted price
      original price ──► 0.97       1.00  ◄── adjusted price
      original price ──► 0.98       1.00  ◄── adjusted price
      original price ──► 0.99       1.00  ◄── adjusted price
      original price ──► 1.00       1.00  ◄── adjusted price

version 2[edit]

/* REXX ***************************************************************
* Inspired by some other solutions tested with version 1 (above)
* 20.04.2013 Walter Pachl
* 03.11.2013 -"- move r. computation (once is enough)
**********************************************************************/

rl='0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62',
'0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00'
Do i=1 To 20
Parse Var rl r.i rl
End
Do x=0 To 1 By 0.01
old=adjprice(x)
new=adjprice2(x)
If old<>new Then tag='??'
else tag=''
Say x old new tag
End
Exit
 
adjprice2: Procedure Expose r.
i=((100*arg(1)-1)%5+1)
Return r.i

Ring[edit]

 
see pricefraction(0.5)
 
func pricefraction n
if n < 0.06 return 0.10 ok
if n < 0.11 return 0.18 ok
if n < 0.16 return 0.26 ok
if n < 0.21 return 0.32 ok
if n < 0.26 return 0.38 ok
if n < 0.31 return 0.44 ok
if n < 0.36 return 0.50 ok
if n < 0.41 return 0.54 ok
if n < 0.46 return 0.58 ok
if n < 0.51 return 0.62 ok
if n < 0.56 return 0.66 ok
if n < 0.61 return 0.70 ok
if n < 0.66 return 0.74 ok
if n < 0.71 return 0.78 ok
if n < 0.76 return 0.82 ok
if n < 0.81 return 0.86 ok
if n < 0.86 return 0.90 ok
if n < 0.91 return 0.94 ok
if n < 0.96 return 0.98 ok
return 1
 
 

Ruby[edit]

A simple function with hardcoded values.

def rescale_price_fraction(value)
raise ArgumentError, "value=#{value}, must have: 0 <= value < 1.01" if value < 0 || value >= 1.01
if value < 0.06 then 0.10
elsif value < 0.11 then 0.18
elsif value < 0.16 then 0.26
elsif value < 0.21 then 0.32
elsif value < 0.26 then 0.38
elsif value < 0.31 then 0.44
elsif value < 0.36 then 0.50
elsif value < 0.41 then 0.54
elsif value < 0.46 then 0.58
elsif value < 0.51 then 0.62
elsif value < 0.56 then 0.66
elsif value < 0.61 then 0.70
elsif value < 0.66 then 0.74
elsif value < 0.71 then 0.78
elsif value < 0.76 then 0.82
elsif value < 0.81 then 0.86
elsif value < 0.86 then 0.90
elsif value < 0.91 then 0.94
elsif value < 0.96 then 0.98
elsif value < 1.01 then 1.00
end
end

Or, where we can cut and paste the textual table in one place

Works with: Ruby version 1.8.7+
for the String#lines method.

For Ruby 1.8.6, use String#each_line

class Price
ConversionTable = <<-END_OF_TABLE
>= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00
END_OF_TABLE
 
RE = %r{ ([<>=]+) \s* (\d\.\d\d) \s* ([<>=]+) \s* (\d\.\d\d) \D+ (\d\.\d\d) }x
 
# extract the comparison operators and numbers from the table
CONVERSION_TABLE = ConversionTable.lines.inject([]) do |table, line|
m = line.match(RE)
if not m.nil? and m.length == 6
table << [m[1], m[2].to_f, m[3], m[4].to_f, m[5].to_f]
end
table
end
 
MIN_COMP, MIN = CONVERSION_TABLE[0][0..1]
MAX_COMP, MAX = CONVERSION_TABLE[-1][2..3]
 
def initialize(value)
if (not value.send(MIN_COMP, MIN)) or (not value.send(MAX_COMP, MAX))
raise ArgumentError, "value=#{value}, must have: #{MIN} #{MIN_COMP} value #{MAX_COMP} #{MAX}"
end
@standard_value = CONVERSION_TABLE.find do |comp1, lower, comp2, upper, standard|
value.send(comp1, lower) and value.send(comp2, upper)
end.last
end
attr_reader :standard_value
end

And a test suite

require 'test/unit'
 
class PriceFractionTests < Test::Unit::TestCase
@@ok_tests = [
[0.3793, 0.54],
[0.4425, 0.58],
[0.0746, 0.18],
[0.6918, 0.78],
[0.2993, 0.44],
[0.5486, 0.66],
[0.7848, 0.86],
[0.9383, 0.98],
[0.2292, 0.38],
]
@@bad_tests = [1.02, -3]
 
def test_ok
@@ok_tests.each do |val, exp|
assert_equal(exp, rescale_price_fraction(val))
assert_equal(exp, Price.new(val).standard_value)
end
@@bad_tests.each do |val|
assert_raise(ArgumentError) {rescale_price_fraction(val)}
assert_raise(ArgumentError) {Price.new(val).standard_value}
end
end
end
Output:
Loaded suite price_fraction
Started
.
Finished in 0.001000 seconds.

1 tests, 22 assertions, 0 failures, 0 errors, 0 skips

Run BASIC[edit]

data .06, .1,.11,.18,.16,.26,.21,.32,.26,.38,.31,.44,.36,.50,.41,.54,.46,.58,.51,.62
data .56,.66,.61,.70,.66,.74,.71,.78,.76,.82,.81,.86,.86,.90,.91,.94,.96,.98
 
dim od(100)
dim nd(100)
for i = 1 to 19
read oldDec
read newDec
j = j + 1
for j = j to oldDec * 100
nd(j) = newDec
next j
next i
 
[loop]
input "Gimme a number";numb
decm = val(using("##",(numb mod 1) * 100))
print numb;" -->";nd(decm)
 
goto [loop]
Gimme a number?12.676
12.676 -->0.78
Gimme a number?4.876
4.876 -->0.94
Gimme a number?34.12
34.12 -->0.26

Rust[edit]

fn fix_price(num: f64) -> f64 {
match num {
0.96...1.00 => 1.00,
0.91...0.96 => 0.98,
0.86...0.91 => 0.94,
0.81...0.86 => 0.90,
0.76...0.81 => 0.86,
0.71...0.76 => 0.82,
0.66...0.71 => 0.78,
0.61...0.66 => 0.74,
0.56...0.61 => 0.70,
0.51...0.56 => 0.66,
0.46...0.51 => 0.62,
0.41...0.46 => 0.58,
0.36...0.41 => 0.54,
0.31...0.36 => 0.50,
0.26...0.31 => 0.44,
0.21...0.26 => 0.38,
0.16...0.21 => 0.32,
0.11...0.16 => 0.26,
0.06...0.11 => 0.18,
0.00...0.06 => 0.10,
// panics on invalid value
_ => unreachable!(),
}
}
 
fn main() {
let mut n: f64 = 0.04;
while n <= 1.00 {
println!("{:.2} => {}", n, fix_price(n));
n += 0.04;
}
}
 
// and a unit test to check that we haven't forgotten a branch, use 'cargo test' to execute test.
//
// typically this could be included in the match as those check for exhaustiveness already
// by explicitly listing all remaining ranges / values instead of a catch-all underscore (_)
// but f64::NaN, f64::INFINITY and f64::NEG_INFINITY can't be matched like this
#[test]
fn exhaustiveness_check() {
let mut input_price = 0.;
while input_price <= 1. {
fix_price(input_price);
input_price += 0.01;
}
}
Output:
0.04 => 0.1
0.09 => 0.18
0.14 => 0.26
0.19 => 0.32
0.24 => 0.38
0.29 => 0.44
0.34 => 0.5
0.39 => 0.54
0.44 => 0.58
0.49 => 0.62
0.54 => 0.66
0.59 => 0.7
0.64 => 0.74
0.69 => 0.78
0.74 => 0.82
0.79 => 0.86
0.84 => 0.9
0.89 => 0.94
0.94 => 0.98
0.99 => 1

Output of unit test:

running 1 test
test exhaustiveness_check ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Scala[edit]

def priceFraction(x:Double)=x match {
case n if n>=0 && n<0.06 => 0.10
case n if n<0.11 => 0.18
case n if n<0.36 => ((((n*100).toInt-11)/5)*6+26)/100.toDouble
case n if n<0.96 => ((((n*100).toInt-31)/5)*4+50)/100.toDouble
case _ => 1.00
}
 
def testPriceFraction()=
for(n <- 0.00 to (1.00, 0.01)) println("%.2f  %.2f".format(n, priceFraction(n)))
Output:
0,00  0,10
0,01  0,10
0,02  0,10
0,03  0,10
0,04  0,10
0,05  0,10
0,06  0,18
...
0,25  0,38
0,26  0,44
0,27  0,44
0,28  0,44
0,29  0,44
0,30  0,44
0,31  0,50
0,32  0,50
0,33  0,50
0,34  0,50
0,35  0,50
0,36  0,54
0,37  0,54
...
0,88  0,94
0,89  0,94
0,90  0,94
0,91  0,98
0,92  0,98
0,93  0,98
0,94  0,98
0,95  0,98
0,96  1,00
0,97  1,00
0,98  1,00
0,99  1,00
1,00  1,00

Seed7[edit]

$ include "seed7_05.s7i";
include "float.s7i";
 
const func float: computePrice (in float: x) is func
result
var float: price is 0.0;
begin
if x >= 0.0 and x < 0.06 then
price := 0.10;
elsif x < 0.11 then
price := 0.18;
elsif x < 0.36 then
price := flt(((trunc(x * 100.0) - 11) div 5) * 6 + 26) / 100.0;
elsif x < 0.96 then
price := flt(((trunc(x * 100.0) - 31) div 5) * 4 + 50) / 100.0;
else
price := 1.0;
end if;
end func;
 
const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 100 do
writeln(flt(i) / 100.0 digits 2 <& " " <& computePrice(flt(i) / 100.0) digits 2);
end for;
end func;

The following variant of computePrice works with a table and raises RANGE_ERROR when x < 0.0 or x >= 1.01 holds:

const array array float: table is [] (
[] (0.06, 0.10), [] (0.11, 0.18), [] (0.16, 0.26), [] (0.21, 0.32), [] (0.26, 0.38),
[] (0.31, 0.44), [] (0.36, 0.50), [] (0.41, 0.54), [] (0.46, 0.58), [] (0.51, 0.62),
[] (0.56, 0.66), [] (0.61, 0.70), [] (0.66, 0.74), [] (0.71, 0.78), [] (0.76, 0.82),
[] (0.81, 0.86), [] (0.86, 0.90), [] (0.91, 0.94), [] (0.96, 0.98), [] (1.01, 1.00));
 
const func float: computePrice (in float: x) is func
result
var float: price is 0.0;
local
var integer: index is 1;
begin
if x >= 0.0 then
while x >= table[index][1] do
incr(index);
end while;
price := table[index][2];
else
raise RANGE_ERROR;
end if;
end func;

Sidef[edit]

var table = <<'EOT'.lines.map { .words.grep{.is_numeric}.map{.to_n} }
>= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00
EOT
 
func price(money) {
table.each { |row|
(row[0] <= money) ->
&& (row[1] > money) ->
&& return row[2];
}
die "Out of range";
}
 
for n in %n(0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292) {
say price(n);
}
Output:
0.54
0.58
0.18
0.78
0.44
0.66
0.86
0.98
0.38

Smalltalk[edit]

Works with: GNU Smalltalk
"Table driven rescale"
Object subclass: PriceRescale [
|table|
PriceRescale class >> new: theTable [
^ self basicNew initialize: theTable
]
initialize: theTable [
table := theTable asOrderedCollection.
^self
]
rescale: aPrice [ |v1 v2|
1 to: (table size - 1) do: [:i|
v1 := table at: i.
v2 := table at: (i+1).
((aPrice >= (v1 x)) & (aPrice < (v2 x)))
ifTrue: [ ^ v1 y ]
].
(aPrice < ((v1:=(table first)) x)) ifTrue: [ ^ v1 y ].
(aPrice >= ((v1:=(table last)) x)) ifTrue: [ ^ v1 y ]
]
].
 
|pr|
pr := PriceRescale
new: { 0.00@0.10 .
0.06@0.18 .
0.11@0.26 .
0.16@0.32 .
0.21@0.38 .
0.26@0.44 .
0.31@0.50 .
0.36@0.54 .
0.41@0.58 .
0.46@0.62 .
0.51@0.66 .
0.56@0.70 .
0.61@0.74 .
0.66@0.78 .
0.71@0.82 .
0.76@0.86 .
0.81@0.90 .
0.86@0.94 .
0.91@0.98 .
0.96@1.00 .
1.01@1.00
}.
 
"get a price"
(pr rescale: ( (Random between: 0 and: 100)/100 )) displayNl.

Tcl[edit]

Structured as two functions, one to parse the input data as described in the problem into a form which Tcl can work with easily, and the other to perform the mapping.

# Used once to turn the table into a "nice" form
proc parseTable table {
set map {}
set LINE_RE {^ *>= *([0-9.]+) *< *([0-9.]+) *:= *([0-9.]+) *$}
foreach line [split $table \n] {
if {[string trim $line] eq ""} continue
if {[regexp $LINE_RE $line -> min max target]} {
lappend map $min $max $target
} else {
error "invalid table format: $line"
}
}
return $map
}
 
# How to apply the "nice" table to a particular value
proc priceFraction {map value} {
foreach {minimum maximum target} $map {
if {$value >= $minimum && $value < $maximum} {return $target}
}
# Failed to map; return the input
return $value
}

How it is used:

# Make the mapping
set inputTable {
>= 0.00 < 0.06  := 0.10
>= 0.06 < 0.11  := 0.18
>= 0.11 < 0.16  := 0.26
>= 0.16 < 0.21  := 0.32
>= 0.21 < 0.26  := 0.38
>= 0.26 < 0.31  := 0.44
>= 0.31 < 0.36  := 0.50
>= 0.36 < 0.41  := 0.54
>= 0.41 < 0.46  := 0.58
>= 0.46 < 0.51  := 0.62
>= 0.51 < 0.56  := 0.66
>= 0.56 < 0.61  := 0.70
>= 0.61 < 0.66  := 0.74
>= 0.66 < 0.71  := 0.78
>= 0.71 < 0.76  := 0.82
>= 0.76 < 0.81  := 0.86
>= 0.81 < 0.86  := 0.90
>= 0.86 < 0.91  := 0.94
>= 0.91 < 0.96  := 0.98
>= 0.96 < 1.01  := 1.00
}
set map [parseTable $inputTable]
 
# Apply the mapping to some inputs (from the Oz example)
foreach example {.7388727 .8593103 .826687 .3444635 .0491907} {
puts "$example -> [priceFraction $map $example]"
}
Output:
.7388727 -> 0.82
.8593103 -> 0.90
.826687 -> 0.90
.3444635 -> 0.50
.0491907 -> 0.10

Ursala[edit]

#import flo                     
 
le = <0.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01>
out = <0.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.>
 
price_fraction = [email protected]*|rhr\~&p(le,out)

main points:

  • ~&p(le,out) zips the pair of lists le and out into a list of pairs
  • A function of the form f\y applied to an argument x evaluates to f(x,y)
  • A function of the form f*| applied to a pair (x,y) where y is a list, makes a list of pairs with x on the left of each item and an item of y on the right. Then it applies f to each pair, makes a list of the right sides of those for which f returned true, and makes a separate list of the right sides of those for which f returned false.
  • The suffix rhr after the *| operator extracts the right side of the head of the right list from the result.
  • The operand to the *| operator, [email protected] is the less-or-equal predicate on floating point numbers, composed with the function ~&rlPlX which transforms a triple (u,(v,w)) to (v,u)

test program:

#cast %eL
 
test = price_fraction* <0.34,0.070145,0.06,0.05,0.50214,0.56,1.,0.99,0.>
 
Output:
<
   5.000000e-01,
   1.800000e-01,
   1.800000e-01,
   1.000000e-01,
   6.200000e-01,
   7.000000e-01,
   1.000000e+00,
   1.000000e+00,
   1.000000e-01>

VBScript[edit]

 
Function pf(p)
If p < 0.06 Then
pf = 0.10
ElseIf p < 0.11 Then
pf = 0.18
ElseIf p < 0.16 Then
pf = 0.26
ElseIf p < 0.21 Then
pf = 0.32
ElseIf p < 0.26 Then
pf = 0.38
ElseIf p < 0.31 Then
pf = 0.44
ElseIf p < 0.36 Then
pf = 0.50
ElseIf p < 0.41 Then
pf = 0.54
ElseIf p < 0.46 Then
pf = 0.58
ElseIf p < 0.51 Then
pf = 0.62
ElseIf p < 0.56 Then
pf = 0.66
ElseIf p < 0.61 Then
pf = 0.70
ElseIf p < 0.66 Then
pf = 0.74
ElseIf p < 0.71 Then
pf = 0.78
ElseIf p < 0.76 Then
pf = 0.82
ElseIf p < 0.81 Then
pf = 0.86
ElseIf p < 0.86 Then
pf = 0.90
ElseIf p < 0.91 Then
pf = 0.94
ElseIf p < 0.96 Then
pf = 0.98
Else
pf = 1.00
End If
End Function
 
WScript.Echo pf(0.7388727)
WScript.Echo pf(0.8593103)
WScript.Echo pf(0.826687)
WScript.Echo pf(0.3444635)
 
Output:
0.82
0.9
0.9
0.5

XPL0[edit]

include c:\cxpl\codes;  \intrinsic 'code' declarations
 
func real Price(V); \Convert to standard value
real V;
[V:= V + 0.001; \avoids possible rounding error i.e. 0.059999999
case of
V < 0.06: ret 0.10;
V < 0.11: ret 0.18;
V < 0.16: ret 0.26;
V < 0.21: ret 0.32;
V < 0.26: ret 0.38;
V < 0.31: ret 0.44;
V < 0.36: ret 0.50;
V < 0.41: ret 0.54;
V < 0.46: ret 0.58;
V < 0.51: ret 0.62;
V < 0.56: ret 0.66;
V < 0.61: ret 0.70;
V < 0.66: ret 0.74;
V < 0.71: ret 0.78;
V < 0.76: ret 0.82;
V < 0.81: ret 0.86;
V < 0.86: ret 0.90;
V < 0.91: ret 0.94;
V < 0.96: ret 0.98
other ret 1.00;
];
 
[Format(1,2);
RlOut(0, Price(0.0599)); CrLf(0);
RlOut(0, Price(0.10)); CrLf(0);
RlOut(0, Price(1.0)); CrLf(0);
]
Output:
0.18
0.18
1.00

zkl[edit]

fcn convert(price){ // float --> float
// < -->, increments of 0.05 but tables are easier to update
var vert=T( T(0.06, 0.10), T(0.11, 0.18), T(0.16, 0.26),
T(0.21, 0.32), T(0.26, 0.38), T(0.31, 0.44),
T(0.36, 0.50), T(0.41, 0.54), T(0.46, 0.58),
T(0.51, 0.62), T(0.56, 0.66), T(0.61, 0.70),
T(0.66, 0.74), T(0.71, 0.78), T(0.76, 0.82),
T(0.81, 0.86), T(0.86, 0.90), T(0.91, 0.94),
T(0.96, 0.98), T(1.01, 1.00), );
vert.filter1('wrap([(a,_)]){ price<a })[1]
}
fcn convert2(price){  // shifting the fractional part to the integer portion
var vert=T(0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00);
vert[(price*100-1)/005];
}
T(0.7388727, 0.8593103, 0.826687, 0.3444635, 0.0491907).apply(convert) .println();
T(0.7388727, 0.8593103, 0.826687, 0.3444635, 0.0491907).apply(convert2).println();
Output:
L(0.82,0.9,0.9,0.5,0.1)
L(0.82,0.9,0.9,0.5,0.1)