Price fraction
You are encouraged to solve this task according to the task description, using any language you may know.
A friend of mine runs a pharmacy. He has a specialized function in his Dispensary application which receives a decimal value of currency and replaces it to a standard value. This value is regulated by a government department.
- Task
Given a floating point value between 0.00 and 1.00, rescale according to the following table:
>= 0.00 < 0.06 := 0.10 >= 0.06 < 0.11 := 0.18 >= 0.11 < 0.16 := 0.26 >= 0.16 < 0.21 := 0.32 >= 0.21 < 0.26 := 0.38 >= 0.26 < 0.31 := 0.44 >= 0.31 < 0.36 := 0.50 >= 0.36 < 0.41 := 0.54 >= 0.41 < 0.46 := 0.58 >= 0.46 < 0.51 := 0.62 >= 0.51 < 0.56 := 0.66 >= 0.56 < 0.61 := 0.70 >= 0.61 < 0.66 := 0.74 >= 0.66 < 0.71 := 0.78 >= 0.71 < 0.76 := 0.82 >= 0.76 < 0.81 := 0.86 >= 0.81 < 0.86 := 0.90 >= 0.86 < 0.91 := 0.94 >= 0.91 < 0.96 := 0.98 >= 0.96 < 1.01 := 1.00
11l
F bisect_right(a, x)
V lo = 0
V hi = a.len
L lo < hi
V mid = (lo + hi) I/ 2
I x < a[mid]
hi = mid
E
lo = mid + 1
R lo
V _cin = [0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01]
V _cout = [0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00]
F pricerounder(pricein)
R :_cout[bisect_right(:_cin, pricein)]
L(i) 0..10
print(‘#.2 #.2’.format(i / 10, pricerounder(i / 10)))
- Output:
0.00 0.10 0.10 0.18 0.20 0.32 0.30 0.44 0.40 0.54 0.50 0.62 0.60 0.70 0.70 0.78 0.80 0.86 0.90 0.94 1.00 1.00
Action!
DEFINE COUNT="20"
BYTE ARRAY levels=[6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101]
BYTE ARRAY values=[10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100]
PROC PrintValue(BYTE v)
PrintB(v/100) Put('.)
v=v MOD 100
PrintB(v/10)
v=v MOD 10
PrintB(v)
RETURN
BYTE FUNC Map(BYTE v)
BYTE i
FOR i=0 TO COUNT-1
DO
IF v<levels(i) THEN
RETURN (values(i))
FI
OD
RETURN (v)
PROC Main()
BYTE i,v
FOR i=0 TO 100
DO
v=Map(i)
PrintValue(v)
IF i MOD 5=4 THEN
PutE()
ELSE
Put(' )
FI
OD
RETURN
- Output:
Screenshot from Atari 8-bit computer
0.10 0.10 0.10 0.10 0.10 0.10 0.18 0.18 0.18 0.18 0.18 0.26 0.26 0.26 0.26 0.26 0.32 0.32 0.32 0.32 0.32 0.38 0.38 0.38 0.38 0.38 0.44 0.44 0.44 0.44 0.44 0.50 0.50 0.50 0.50 0.50 0.54 0.54 0.54 0.54 0.54 0.58 0.58 0.58 0.58 0.58 0.62 0.62 0.62 0.62 0.62 0.66 0.66 0.66 0.66 0.66 0.70 0.70 0.70 0.70 0.70 0.74 0.74 0.74 0.74 0.74 0.78 0.78 0.78 0.78 0.78 0.82 0.82 0.82 0.82 0.82 0.86 0.86 0.86 0.86 0.86 0.90 0.90 0.90 0.90 0.90 0.94 0.94 0.94 0.94 0.94 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00
Ada
type Price is delta 0.01 digits 3 range 0.0..1.0;
function Scale (Value : Price) return Price is
X : constant array (1..19) of Price :=
( 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51,
0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96
);
Y : constant array (1..20) of Price :=
( 0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.0
);
Low : Natural := X'First;
High : Natural := X'Last;
Middle : Natural;
begin
loop
Middle := (Low + High) / 2;
if Value = X (Middle) then
return Y (Middle + 1);
elsif Value < X (Middle) then
if Low = Middle then
return Y (Low);
end if;
High := Middle - 1;
else
if High = Middle then
return Y (High + 1);
end if;
Low := Middle + 1;
end if;
end loop;
end Scale;
The solution uses fixed point type to prevent rounding and representation issues. With the above declarations a full coverage test:
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Price_Fraction is
-- Put the declarations here
Value : Price := Price'First;
begin
loop
Put_Line (Price'Image (Value) & "->" & Price'Image (Scale (Value)));
exit when Value = Price'Last;
Value := Price'Succ (Value);
end loop;
end Test_Price_Fraction;
- Output:
0.00-> 0.10 0.01-> 0.10 0.02-> 0.10 0.03-> 0.10 0.04-> 0.10 0.05-> 0.10 0.06-> 0.18 0.07-> 0.18 0.08-> 0.18 0.09-> 0.18 0.10-> 0.18 0.11-> 0.26 0.12-> 0.26 0.13-> 0.26 0.14-> 0.26 0.15-> 0.26 0.16-> 0.32 0.17-> 0.32 0.18-> 0.32 0.19-> 0.32 0.20-> 0.32 0.21-> 0.38 0.22-> 0.38 0.23-> 0.38 0.24-> 0.38 0.25-> 0.38 0.26-> 0.44 0.27-> 0.44 0.28-> 0.44 0.29-> 0.44 0.30-> 0.44 0.31-> 0.50 0.32-> 0.50 0.33-> 0.50 0.34-> 0.50 0.35-> 0.50 0.36-> 0.54 0.37-> 0.54 0.38-> 0.54 0.39-> 0.54 0.40-> 0.54 0.41-> 0.58 0.42-> 0.58 0.43-> 0.58 0.44-> 0.58 0.45-> 0.58 0.46-> 0.62 0.47-> 0.62 0.48-> 0.62 0.49-> 0.62 0.50-> 0.62 0.51-> 0.66 0.52-> 0.66 0.53-> 0.66 0.54-> 0.66 0.55-> 0.66 0.56-> 0.70 0.57-> 0.70 0.58-> 0.70 0.59-> 0.70 0.60-> 0.70 0.61-> 0.74 0.62-> 0.74 0.63-> 0.74 0.64-> 0.74 0.65-> 0.74 0.66-> 0.78 0.67-> 0.78 0.68-> 0.78 0.69-> 0.78 0.70-> 0.78 0.71-> 0.82 0.72-> 0.82 0.73-> 0.82 0.74-> 0.82 0.75-> 0.82 0.76-> 0.86 0.77-> 0.86 0.78-> 0.86 0.79-> 0.86 0.80-> 0.86 0.81-> 0.90 0.82-> 0.90 0.83-> 0.90 0.84-> 0.90 0.85-> 0.90 0.86-> 0.94 0.87-> 0.94 0.88-> 0.94 0.89-> 0.94 0.90-> 0.94 0.91-> 0.98 0.92-> 0.98 0.93-> 0.98 0.94-> 0.98 0.95-> 0.98 0.96-> 1.00 0.97-> 1.00 0.98-> 1.00 0.99-> 1.00 1.00-> 1.00
ALGOL 68
- note: This specimen retains the original C coding style.
main:
(
# Just get a random price between 0 and 1 #
# srand(time(NIL)); #
REAL price := random;
REAL tops := 0.06;
REAL std val := 0.10;
# Conditionals are a little odd here "(price-0.001 < tops AND
price+0.001 > tops)" is to check if they are equal. Stupid
C floats, right? :) #
WHILE ( price>tops OR (price-0.001 < tops AND price+0.001 > tops) ) AND tops<=1.01
DO
tops+:=0.05;
IF std val < 0.26 THEN
std val +:= 0.08
ELIF std val < 0.50 THEN
std val +:= 0.06
ELSE
std val +:= 0.04
FI;
IF std val > 0.98 THEN
std val := 1.0
FI
OD;
printf(($"Value : "z.2dl,"Converted to standard : "z.2dl$, price, std val))
)
- Output:
Value : 0.38 Converted to standard : 0.54
AppleScript
Procedural
The task description doesn't make a lot of sense, implying that the pharmacist charges no more than 1.00 for his wares and that even whole-number prices are nudged by 0.10 and odd ones aren't. This offering takes any decimal currency value and standardises just the fractional part:
-- This handler just returns the standardised real value. It's up to external processes to format it for display.
on standardisePrice(input)
set integerPart to input div 1.0
set fractionalPart to input mod 1.0
if (fractionalPart is 0.0) then
return input as real
else if (fractionalPart < 0.06) then
return integerPart + 0.1
else if (fractionalPart < 0.16) then
return integerPart + 0.18 + (fractionalPart - 0.06) div 0.05 * 0.08
else if (fractionalPart < 0.36) then
return integerPart + 0.32 + (fractionalPart - 0.16) div 0.05 * 0.06
else if (fractionalPart < 0.96) then
return integerPart + 0.54 + (fractionalPart - 0.36) div 0.05 * 0.04
else
return integerPart + 1.0
end if
end standardisePrice
-- Test code:
set originals to {}
set standardised to {}
repeat 20 times
set price to (random number 100) / 100
set end of originals to text 2 thru -2 of ((price + 10.001) as text)
set end of standardised to text 2 thru -2 of ((standardisePrice(price) + 10.001) as text)
end repeat
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to ", "
set output to linefeed & "Originals: " & originals & linefeed & "Standardised: " & standardised
set AppleScript's text item delimiters to astid
return output
- Output:
"
Originals: 0.49, 0.79, 1.00, 0.83, 0.99, 0.23, 0.12, 0.28, 0.72, 0.37, 0.95, 0.51, 0.43, 0.52, 0.84, 0.89, 0.48, 0.48, 0.30, 0.01
Standardised: 0.62, 0.86, 1.00, 0.90, 1.00, 0.38, 0.26, 0.44, 0.82, 0.54, 0.98, 0.66, 0.58, 0.66, 0.90, 0.94, 0.62, 0.62, 0.44, 0.10"
An alternative that would save editing the handler in the event of the government department changing its directive would be to feed it a conversion table of up-to and standardised prices stored elsewhere.
-- This handler just returns the standardised real value. It's up to external processes to format it for display.
on standardisePrice(input, table)
set integerPart to input div 1.0
set fractionalPart to input mod 1.0
if (fractionalPart is 0.0) then return input as real
repeat with thisEntry in table
if (fractionalPart ≤ beginning of thisEntry) then return integerPart + (end of thisEntry)
end repeat
end standardisePrice
-- Test code:
-- The conceit here is that the conversion table has been obtained from a file or from a spreadsheet application.
set table to {{0.05, 0.1}, {0.1, 0.18}, {0.15, 0.26}, {0.2, 0.32}, {0.25, 0.38}, {0.3, 0.44}, {0.35, 0.5}, {0.4, 0.54}, {0.45, 58}, {0.5, 0.62}, {0.55, 0.66}, {0.6, 0.7}, {0.65, 0.74}, {0.7, 0.78}, {0.75, 0.82}, {0.8, 0.86}, {0.85, 0.9}, {0.9, 0.94}, {0.95, 0.98}, {0.99, 1.0}}
set originals to {}
set standardised to {}
repeat 20 times
set price to (random number 100) / 100
set end of originals to text 2 thru -2 of ((price + 10.001) as text)
set end of standardised to text 2 thru -2 of ((standardisePrice(price, table) + 10.001) as text)
end repeat
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to ", "
set output to linefeed & "Originals: " & originals & linefeed & "Standardised: " & standardised
set AppleScript's text item delimiters to astid
return output
- Output:
"
Originals: 0.92, 0.86, 0.10, 0.40, 0.00, 0.34, 0.44, 0.77, 0.67, 0.19, 1.00, 0.02, 0.49, 0.40, 0.61, 0.91, 0.85, 0.54, 0.01, 0.04
Standardised: 0.98, 0.94, 0.18, 0.54, 0.00, 0.50, 8.00, 0.86, 0.78, 0.32, 1.00, 0.10, 0.62, 0.54, 0.74, 0.98, 0.90, 0.66, 0.10, 0.10"
Functional
---------------------- PRICE FRACTION ----------------------
property table : [¬
{0.06, 0.1}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32}, {0.26, 0.38}, ¬
{0.31, 0.44}, {0.36, 0.5}, {0.41, 0.54}, {0.46, 0.58}, {0.51, 0.62}, ¬
{0.56, 0.66}, {0.61, 0.7}, {0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, ¬
{0.81, 0.86}, {0.86, 0.9}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.0}]
-- rescaled :: [(Float, Float)] -> Float -> Float
on rescaled(table)
script
on |λ|(x)
if 0 > x or 1.01 < x then
|Left|("Out of range.")
else
|Right|(snd(my head(dropWhile(compose(ge(x), my fst), table))))
end if
end |λ|
end script
end rescaled
--------------------------- TEST ---------------------------
on run
fTable("Price adjustments:\n", ¬
showReal(2), either(identity, showReal(2)), ¬
rescaled(table), enumFromThenTo(-0.05, 0, 1.1))
end run
----------- GENERAL AND REUSABLE PURE FUNCTIONS ------------
-- Left :: a -> Either a b
on |Left|(x)
{type:"Either", |Left|:x, |Right|:missing value}
end |Left|
-- Right :: b -> Either a b
on |Right|(x)
{type:"Either", |Left|:missing value, |Right|:x}
end |Right|
-- compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
on compose(f, g)
script
property mf : mReturn(f)
property mg : mReturn(g)
on |λ|(x)
mf's |λ|(mg's |λ|(x))
end |λ|
end script
end compose
-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
set c to class of xs
if script is not c then
if string is not c then
if n < length of xs then
items (1 + n) thru -1 of xs
else
{}
end if
else
if n < length of xs then
text (1 + n) thru -1 of xs
else
""
end if
end if
else
take(n, xs) -- consumed
return xs
end if
end drop
-- dropWhile :: (a -> Bool) -> [a] -> [a]
-- dropWhile :: (Char -> Bool) -> String -> String
on dropWhile(p, xs)
set lng to length of xs
set i to 1
tell mReturn(p)
repeat while i ≤ lng and |λ|(item i of xs)
set i to i + 1
end repeat
end tell
drop(i - 1, xs)
end dropWhile
-- either :: (a -> c) -> (b -> c) -> Either a b -> c
on either(lf, rf)
script
on |λ|(e)
if missing value is |Left| of e then
tell mReturn(rf) to |λ|(|Right| of e)
else
tell mReturn(lf) to |λ|(|Left| of e)
end if
end |λ|
end script
end either
-- enumFromThenTo :: Int -> Int -> Int -> [Int]
on enumFromThenTo(x1, x2, y)
set xs to {}
set d to x2 - x1
set v to x1
repeat until v ≥ y
set end of xs to v
set v to d + v
end repeat
return xs
end enumFromThenTo
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- fst :: (a, b) -> a
on fst(tpl)
if class of tpl is record then
|1| of tpl
else
item 1 of tpl
end if
end fst
-- fTable :: String -> (a -> String) -> (b -> String) -> (a -> b) -> [a] -> String
on fTable(s, xShow, fxShow, f, xs)
set ys to map(xShow, xs)
set w to maximum(map(my |length|, ys))
script arrowed
on |λ|(a, b)
justifyRight(w, space, a) & " -> " & b
end |λ|
end script
s & linefeed & unlines(zipWith(arrowed, ¬
ys, map(compose(fxShow, f), xs)))
end fTable
-- ge :: Ord a => a -> a -> Bool
on ge(a)
-- True if a is greater
-- than or equal to b.
script
on |λ|(b)
a ≥ b
end |λ|
end script
end ge
-- head :: [a] -> a
on head(xs)
if xs = {} then
missing value
else
item 1 of xs
end if
end head
-- identity :: a -> a
on identity(x)
-- The argument unchanged.
x
end identity
-- justifyLeft :: Int -> Char -> String -> String
on justifyLeft(n, cFiller, strText)
if n > length of strText then
text 1 thru n of (strText & replicate(n, cFiller))
else
strText
end if
end justifyLeft
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight
-- length :: [a] -> Int
on |length|(xs)
set c to class of xs
if list is c or string is c then
length of xs
else
(2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
end if
end |length|
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- max :: Ord a => a -> a -> a
on max(x, y)
if x > y then
x
else
y
end if
end max
-- maximum :: Ord a => [a] -> a
on maximum(xs)
script
on |λ|(a, b)
if a is missing value or b > a then
b
else
a
end if
end |λ|
end script
foldl(result, missing value, xs)
end maximum
-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if 1 > n then return out
set dbl to {a}
repeat while (1 < n)
if 0 < (n mod 2) then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate
-- showReal :: Num b => Int -> b -> String
on showReal(n)
script
on |λ|(x)
set {l, r} to splitOn(".", (x as real) as string)
l & "." & justifyLeft(n, "0", r)
end |λ|
end script
end showReal
-- snd :: (a, b) -> b
on snd(tpl)
if class of tpl is record then
|2| of tpl
else
item 2 of tpl
end if
end snd
-- splitOn :: String -> String -> [String]
on splitOn(pat, src)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, pat}
set xs to text items of src
set my text item delimiters to dlm
return xs
end splitOn
-- str :: a -> String
on str(x)
x as text
end str
-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
set c to class of xs
if list is c then
if 0 < n then
items 1 thru min(n, length of xs) of xs
else
{}
end if
else if string is c then
if 0 < n then
text 1 thru min(n, length of xs) of xs
else
""
end if
else if script is c then
set ys to {}
repeat with i from 1 to n
set v to |λ|() of xs
if missing value is v then
return ys
else
set end of ys to v
end if
end repeat
return ys
else
missing value
end if
end take
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set lng to min(length of xs, length of ys)
set lst to {}
if 1 > lng then
return {}
else
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, item i of ys)
end repeat
return lst
end tell
end if
end zipWith
- Output:
Price adjustments: -0.05 -> Out of range. 0.00 -> 0.10 0.05 -> 0.10 0.10 -> 0.18 0.15 -> 0.26 0.20 -> 0.32 0.25 -> 0.38 0.30 -> 0.44 0.35 -> 0.50 0.40 -> 0.54 0.45 -> 0.58 0.50 -> 0.62 0.55 -> 0.66 0.60 -> 0.70 0.65 -> 0.74 0.70 -> 0.78 0.75 -> 0.82 0.80 -> 0.86 0.85 -> 0.90 0.90 -> 0.94 0.95 -> 0.98 1.00 -> 1.00 1.05 -> Out of range.
Arturo
pricePoints: [
0.06 0.10 0.11 0.18 0.16 0.26 0.21 0.32
0.26 0.38 0.31 0.44 0.36 0.50 0.41 0.54
0.46 0.58 0.51 0.62 0.56 0.66 0.61 0.70
0.66 0.74 0.71 0.78 0.76 0.82 0.81 0.86
0.86 0.90 0.91 0.94 0.96 0.98 1.01 1.00
]
getPricePoint: function [price][
loop pricePoints [limit,correct][
if price < limit -> return correct
]
]
tests: [0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7849 0.9383 0.2292]
loop tests 'test [
print [test "=>" getPricePoint test]
]
- Output:
0.3793 => 0.54 0.4425 => 0.58 0.0746 => 0.18 0.6918 => 0.78 0.2993 => 0.44 0.5486 => 0.66 0.7849 => 0.86 0.9383 => 0.98 0.2292 => 0.38
AutoHotkey
; Submitted by MasterFocus --- http://tiny.cc/iTunis
Loop
{
InputBox, OutputVar, Price Fraction Example, Insert the value to be rounded.`n* [ 0 < value < 1 ]`n* Press ESC or Cancel to exit, , 200, 150
If ErrorLevel
Break
MsgBox % "Input: " OutputVar "`nResult: " PriceFraction( OutputVar )
}
;-----------------------------------------
PriceFraction( p_Input )
{
If p_Input is not float ; returns 0 if input is not a float
Return 0
If ( ( p_Input <= 0 ) OR ( p_Input >= 1 ) ) ; returns 0 is input is out of range
Return 0
; declaring the table (arbitrary delimiters in use are '§' and '|')
l_List := "0.06|0.10§0.11|0.18§0.16|0.26§0.21|0.32§0.26|0.38§0.31|0.44§0.36|0.50§0.41|0.54§0.46|0.58§0.51|0.62§0.56|0.66§0.61|0.70§0.66|0.74§0.71|0.78§0.76|0.82§0.81|0.86§0.86|0.90§0.91|0.94§0.96|0.98§1.01|1.00"
Loop, Parse, l_List, § ; retrieves each field (delimited by '§')
{
StringSplit, l_Array, A_LoopField, | ; splits current field (using delimiter '|')
If ( p_Input <= l_Array1 )
Return l_Array2 ; returns the second value if input <= first value
}
Return 0 ; returns 0, indicating failure (shouldn't be reached though)
}
AWK
BEGIN {
O = ".06 .11 .16 .21 .26 .31 .36 .41 .46 .51 .56 .61 .66 .71 .76 .81 .86 .91 .96 1.01"
N = ".10 .18 .26 .32 .38 .44 .50 .54 .58 .62 .66 .70 .74 .78 .82 .86 .90 .94 .98 1.00"
fields = split(O,Oarr," ") # original values
split(N,Narr," ") # replacement values
for (i=-.01; i<=1.02; i+=.01) { # test
printf("%5.2f = %4.2f\n",i,lookup(i))
}
}
function lookup(n, i) {
if (n < 0 || n > 1.01) {
return(0) # when input is out of range
}
for (i=1; i<=fields; i++) {
# +10 is used because .11 returned .18 instead of .26
# under AWK95, GAWK, and MAWK; Thompson Automation's TAWK worked correctly
if (n+10 < Oarr[i]+10) {
return(Narr[i])
}
}
}
BASIC
This could also be done by building an array, but I felt that this was simpler.
DECLARE FUNCTION PriceFraction! (price AS SINGLE)
RANDOMIZE TIMER
DIM x AS SINGLE
x = RND
PRINT x, PriceFraction(x)
FUNCTION PriceFraction! (price AS SINGLE)
'returns price unchanged if invalid value
SELECT CASE price
CASE IS < 0!
PriceFraction! = price
CASE IS < .06
PriceFraction! = .1
CASE IS < .11
PriceFraction! = .18
CASE IS < .16
PriceFraction! = .26
CASE IS < .21
PriceFraction! = .32
CASE IS < .26
PriceFraction! = .38
CASE IS < .31
PriceFraction! = .44
CASE IS < .36
PriceFraction! = .5
CASE IS < .41
PriceFraction! = .54
CASE IS < .46
PriceFraction! = .58
CASE IS < .51
PriceFraction! = .62
CASE IS < .56
PriceFraction! = .66
CASE IS < .61
PriceFraction! = .7
CASE IS < .66
PriceFraction! = .74
CASE IS < .71
PriceFraction! = .78
CASE IS < .76
PriceFraction! = .82
CASE IS < .81
PriceFraction! = .86
CASE IS < .86
PriceFraction! = .9
CASE IS < .91
PriceFraction! = .94
CASE IS < .96
PriceFraction! = .98
CASE IS < 1.01
PriceFraction! = 1!
CASE ELSE
PriceFraction! = price
END SELECT
END FUNCTION
- Output:
(run 5 times)
.7388727 .82 .8593103 .9 .826687 .9 .3444635 .5 .0491907 .1
BASIC256
arraybase 1
dim byValue = {10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100}
dim byLimit = {6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96}
for byCount = 1 to 100
for byCheck = 0 to byLimit[?]
if byCount < byLimit[byCheck] then exit for
next byCheck
print ljust((byCount/100),4," "); " -> "; ljust((byValue[byCheck]/100),4," "); chr(9);
if byCount mod 5 = 0 then print
next byCount
end
BBC BASIC
PRINT FNpricefraction(0.5)
END
DEF FNpricefraction(p)
IF p < 0.06 THEN = 0.10
IF p < 0.11 THEN = 0.18
IF p < 0.16 THEN = 0.26
IF p < 0.21 THEN = 0.32
IF p < 0.26 THEN = 0.38
IF p < 0.31 THEN = 0.44
IF p < 0.36 THEN = 0.50
IF p < 0.41 THEN = 0.54
IF p < 0.46 THEN = 0.58
IF p < 0.51 THEN = 0.62
IF p < 0.56 THEN = 0.66
IF p < 0.61 THEN = 0.70
IF p < 0.66 THEN = 0.74
IF p < 0.71 THEN = 0.78
IF p < 0.76 THEN = 0.82
IF p < 0.81 THEN = 0.86
IF p < 0.86 THEN = 0.90
IF p < 0.91 THEN = 0.94
IF p < 0.96 THEN = 0.98
= 1.00
Chipmunk Basic
100 cls
110 data 10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100
120 data 6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81,86,91,96
130 dim od(21)
140 for i = 1 to 20
150 read olddec
160 od(i) = olddec
170 next i
180 dim nd(20)
190 for j = 1 to 19
200 read nuedec
210 nd(j) = nuedec
220 next j
230 for i = 1 to 100
240 for j = 1 to ubound(nd)-1
250 if i < nd(j) then exit for
260 next j
270 print using "#.##";(i/100);" -> ";
280 print using "#.##";(od(j)/100);chr$(9);
290 if i mod 5 = 0 then print
300 next i
310 end
- Output:
Same as FreeBASIC entry.
Commodore BASIC
We'll use a couple of arrays for translation. Should work for several other 8-bit BASICs after converting the screen control codes.
1 rem price fraction
2 rem rosetta code
10 data 0.06,0.1,0.11,0.18,0.16,0.26,0.21,0.32,0.26,0.38,0.31,0.44,0.36,0.5
20 data 0.41,0.54,0.46,0.58,0.51,0.62,0.56,0.66,0.61,0.70,0.66,0.74,0.71,0.78
30 data 0.76,0.82,0.81,0.86,0.86,0.90,0.91,0.94,0.96,0.98,1.01,1.0
35 rem up=user price, th=threshold, pr=price, np=new price
40 dim th(20),pr(20):th(0)=0:pr(0)=0
45 for i=1 to 20:read th(i),pr(i):next
50 print chr$(147);chr$(14);"Price Fraction":print
60 print "What is the value to calculate (between 0.0 and 1.0)";:input up
65 if up<0 or up>1.0 then goto 60
70 gosub 500
80 print:print "You entered";up;chr$(157);", the new value is";np
90 print:print "Again (Y/N)? ";
95 get k$:if k$<>"y" and k$<>"n" then 95
100 print k$
110 if k$="y" then goto 50
115 end
500 for i=0 to 20
510 if up<th(i) then np=pr(i):return
520 next i
530 np=1:return
- Output:
Price Fraction What is the value to calculate (between 0.0 and 1.0)? 0.83344 You entered .83344, the new value is .9 Again (Y/N)? Y
Price Fraction What is the value to calculate (between 0.0 and 1.0)? 0.05889 You entered .05889, the new value is .1 Again (Y/N)? Y
Price Fraction What is the value to calculate (between 0.0 and 1.0)? 0.36 You entered .36, the new value is .54 Again (Y/N)? N ready.
FreeBASIC
' FB 1.050.0 Win64
Function rescale(price As Double) As Double
If price < 0.00 OrElse price > 1.00 Then Return price
Select Case price
Case Is < 0.06 : Return 0.10
Case Is < 0.11 : Return 0.18
Case Is < 0.16 : Return 0.26
Case Is < 0.21 : Return 0.32
Case Is < 0.26 : Return 0.38
Case Is < 0.31 : Return 0.44
Case Is < 0.36 : Return 0.50
Case Is < 0.41 : Return 0.54
Case Is < 0.46 : Return 0.58
Case Is < 0.51 : Return 0.62
Case Is < 0.56 : Return 0.66
Case Is < 0.61 : Return 0.70
Case Is < 0.66 : Return 0.74
Case Is < 0.71 : Return 0.78
Case Is < 0.76 : Return 0.82
Case Is < 0.81 : Return 0.86
Case Is < 0.86 : Return 0.90
Case Is < 0.91 : Return 0.94
Case Is < 0.96 : Return 0.98
End Select
Return 1.00
End Function
For i As Integer = 1 To 100
Dim d As Double = i/100.0
Print Using "#.##"; d;
Print " -> ";
Print Using "#.##"; rescale(d);
Print " ";
If i Mod 5 = 0 Then Print
Next
Print
Print "Press any key to quit"
Sleep
- Output:
0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 0.12 -> 0.26 0.13 -> 0.26 0.14 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.17 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.20 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.23 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.26 -> 0.44 0.27 -> 0.44 0.28 -> 0.44 0.29 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.32 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.35 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.38 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.41 -> 0.58 0.42 -> 0.58 0.43 -> 0.58 0.44 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.47 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.50 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.53 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.56 -> 0.70 0.57 -> 0.70 0.58 -> 0.70 0.59 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.62 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.65 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.68 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.71 -> 0.82 0.72 -> 0.82 0.73 -> 0.82 0.74 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.77 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.80 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.83 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.86 -> 0.94 0.87 -> 0.94 0.88 -> 0.94 0.89 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.92 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00 1.00 -> 1.00
Gambas
Click this link to run this code
Public Sub Main()
Dim byValue As Byte[] = [10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100]
Dim byLimit As Byte[] = [6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96]
Dim byCount, byCheck As Byte
For byCount = 0 To 100
For byCheck = 0 To byLimit.Max
If byCount < byLimit[byCheck] Then Break
Next
Print Format(byCount / 100, "0.00") & " = " & Format(byValue[byCheck] / 100, "0.00") & gb.Tab;
If byCount Mod 5 = 0 Then Print
Next
End
Output:
0.00 = 0.10 0.01 = 0.10 0.02 = 0.10 0.03 = 0.10 0.04 = 0.10 0.05 = 0.10 0.06 = 0.18 0.07 = 0.18 0.08 = 0.18 0.09 = 0.18 0.10 = 0.18 0.11 = 0.26 0.12 = 0.26 0.13 = 0.26 0.14 = 0.26 0.15 = 0.26 0.16 = 0.32 0.17 = 0.32 0.18 = 0.32 0.19 = 0.32 0.20 = 0.32 0.21 = 0.38 0.22 = 0.38 0.23 = 0.38 0.24 = 0.38 0.25 = 0.38 0.26 = 0.44 0.27 = 0.44 0.28 = 0.44 0.29 = 0.44 0.30 = 0.44 0.31 = 0.50 0.32 = 0.50 0.33 = 0.50 0.34 = 0.50 0.35 = 0.50 0.36 = 0.54 0.37 = 0.54 0.38 = 0.54 0.39 = 0.54 0.40 = 0.54 0.41 = 0.58 0.42 = 0.58 0.43 = 0.58 0.44 = 0.58 0.45 = 0.58 0.46 = 0.62 0.47 = 0.62 0.48 = 0.62 0.49 = 0.62 0.50 = 0.62 0.51 = 0.66 0.52 = 0.66 0.53 = 0.66 0.54 = 0.66 0.55 = 0.66 0.56 = 0.70 0.57 = 0.70 0.58 = 0.70 0.59 = 0.70 0.60 = 0.70 0.61 = 0.74 0.62 = 0.74 0.63 = 0.74 0.64 = 0.74 0.65 = 0.74 0.66 = 0.78 0.67 = 0.78 0.68 = 0.78 0.69 = 0.78 0.70 = 0.78 0.71 = 0.82 0.72 = 0.82 0.73 = 0.82 0.74 = 0.82 0.75 = 0.82 0.76 = 0.86 0.77 = 0.86 0.78 = 0.86 0.79 = 0.86 0.80 = 0.86 0.81 = 0.90 0.82 = 0.90 0.83 = 0.90 0.84 = 0.90 0.85 = 0.90 0.86 = 0.94 0.87 = 0.94 0.88 = 0.94 0.89 = 0.94 0.90 = 0.94 0.91 = 0.98 0.92 = 0.98 0.93 = 0.98 0.94 = 0.98 0.95 = 0.98 0.96 = 1.00 0.97 = 1.00 0.98 = 1.00 0.99 = 1.00 1.00 = 1.00
Liberty BASIC
dim DR(38) 'decimal range
dim PF(38) 'corresponding price fraction
range$="0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96 0.01"
frac$="0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00"
for i = 1 to 38
DR(i)=val(word$(range$,i))
PF(i)=val(word$(frac$,i))
next
for i = 0 to .99 step 0.03
print i;" -> ";PriceFraction(i)
next
end
Function PriceFraction(n)
PriceFraction=n 'return original if outside test bounds
for i = 1 to 38
if n<=DR(i) then
PriceFraction=PF(i)
exit for
end if
next
end function
PureBasic
Procedure.f PriceFraction(price.f)
;returns price unchanged if value is invalid
Protected fraction
Select price * 100
Case 0 To 5
fraction = 10
Case 06 To 10
fraction = 18
Case 11 To 15
fraction = 26
Case 16 To 20
fraction = 32
Case 21 To 25
fraction = 38
Case 26 To 30
fraction = 44
Case 31 To 35
fraction = 5
Case 36 To 40
fraction = 54
Case 41 To 45
fraction = 58
Case 46 To 50
fraction = 62
Case 51 To 55
fraction = 66
Case 56 To 60
fraction = 7
Case 61 To 65
fraction = 74
Case 66 To 70
fraction = 78
Case 71 To 75
fraction = 82
Case 76 To 80
fraction = 86
Case 81 To 85
fraction = 9
Case 86 To 90
fraction = 94
Case 91 To 95
fraction = 98
Case 96 To 100
fraction = 100
Default
ProcedureReturn price
EndSelect
ProcedureReturn fraction / 100
EndProcedure
If OpenConsole()
Define x.f, i
For i = 1 To 10
x = Random(10000)/10000
PrintN(StrF(x, 4) + " -> " + StrF(PriceFraction(x), 2))
Next
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf
- Output:
0.3793 -> 0.54 0.4425 -> 0.58 0.0746 -> 0.18 0.6918 -> 0.78 0.2993 -> 0.44 0.5486 -> 0.66 0.7848 -> 0.86 0.9383 -> 0.98 0.2292 -> 0.38 0.9560 -> 1.00
QB64
Data 10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100
Data 6,11,16,21,26,31,36,41,46,51,56,61,66,71,76,81,86,91,96
Dim od(21)
For i = 1 To 20
Read olddec
od(i) = olddec
Next i
Dim nd(20)
For j = 1 To 19
Read nuedec
nd(j) = nuedec
Next j
For i = 1 To 100
For j = 1 To UBound(nd) - 1
If i < nd(j) Then Exit For
Next j
Print Using "#.## -> #.##"; (i / 100); (od(j) / 100);
If i Mod 5 = 0 Then Print Else Print Chr$(9);
Next i
Run BASIC
data .06, .1,.11,.18,.16,.26,.21,.32,.26,.38,.31,.44,.36,.50,.41,.54,.46,.58,.51,.62
data .56,.66,.61,.70,.66,.74,.71,.78,.76,.82,.81,.86,.86,.90,.91,.94,.96,.98
dim od(100)
dim nd(100)
for i = 1 to 19
read oldDec
read newDec
j = j + 1
for j = j to oldDec * 100
nd(j) = newDec
next j
next i
[loop]
input "Gimme a number";numb
decm = val(using("##",(numb mod 1) * 100))
print numb;" -->";nd(decm)
goto [loop]
Gimme a number?12.676 12.676 -->0.78 Gimme a number?4.876 4.876 -->0.94 Gimme a number?34.12 34.12 -->0.26
True BASIC
FUNCTION pricefraction(price)
!returns price unchanged if invalid value
SELECT CASE price
CASE IS < 0
LET pricefraction = price
CASE IS < .06
LET pricefraction = .1
CASE IS < .11
LET pricefraction = .18
CASE IS < .16
LET pricefraction = .26
CASE IS < .21
LET pricefraction = .32
CASE IS < .26
LET pricefraction = .38
CASE IS < .31
LET pricefraction = .44
CASE IS < .36
LET pricefraction = .5
CASE IS < .41
LET pricefraction = .54
CASE IS < .46
LET pricefraction = .58
CASE IS < .51
LET pricefraction = .62
CASE IS < .56
LET pricefraction = .66
CASE IS < .61
LET pricefraction = .7
CASE IS < .66
LET pricefraction = .74
CASE IS < .71
LET pricefraction = .78
CASE IS < .76
LET pricefraction = .82
CASE IS < .81
LET pricefraction = .86
CASE IS < .86
LET pricefraction = .9
CASE IS < .91
LET pricefraction = .94
CASE IS < .96
LET pricefraction = .98
CASE IS < 1.01
LET pricefraction = 1
CASE ELSE
LET pricefraction = price
END SELECT
END FUNCTION
RANDOMIZE
FOR i = 1 TO 100
LET d = RND
PRINT USING "#.##": d;
PRINT " -> ";
PRINT USING "#.## ": pricefraction(d);
IF REMAINDER(i,5) = 0 THEN PRINT
NEXT i
END
uBasic/4tH
For i = 0 To 100 Step 5
Print Using "+?.##"; i, Using "+?.##"; FUNC(_Normalize (FUNC(_Classify (i))))
Next
End
_Normalize ' normalize the price
Param (1) ' class
Local (4) ' accumulator, increment, switch and iterator
b@ = 0 : c@ = 10 : d@ = 2 ' setup accumulator, increment and switch
For e@ = 0 to a@ ' from zero to class
If And(e@ + 1, d@) Then d@ = And(d@ + d@, 15) : c@ = c@ - 2
b@ = b@ + c@ ' switch increment if needed
Next ' accumulate price
Return (Min(b@, 100)) ' clip top of price in accumulator
' calculate class
_Classify Param (1) : Return ((a@ - (a@>0)) / 5)
Output:
0.00 0.10 0.05 0.10 0.10 0.18 0.15 0.26 0.20 0.32 0.25 0.38 0.30 0.44 0.35 0.50 0.40 0.54 0.45 0.58 0.50 0.62 0.55 0.66 0.60 0.70 0.65 0.74 0.70 0.78 0.75 0.82 0.80 0.86 0.85 0.90 0.90 0.94 0.95 0.98 1.00 1.00 0 OK, 0:115
VBA
Option Explicit
Sub Main()
Dim test, i As Long
test = Array(0.34, 0.070145, 0.06, 0.05, 0.50214, 0.56, 1#, 0.99, 0#, 0.7388727)
For i = 0 To UBound(test)
Debug.Print test(i) & " := " & Price_Fraction(CSng(test(i)))
Next i
End Sub
Private Function Price_Fraction(n As Single) As Single
Dim Vin, Vout, i As Long
Vin = Array(0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01)
Vout = Array(0.1, 0.18, 0.26, 0.32, 0.38, 0.44, 0.5, 0.54, 0.58, 0.62, 0.66, 0.7, 0.74, 0.78, 0.82, 0.86, 0.9, 0.94, 0.98, 1#)
For i = 0 To UBound(Vin)
If n < Vin(i) Then Price_Fraction = Vout(i): Exit For
Next i
End Function
- Output:
0.34 := 0.5 0.070145 := 0.18 0.06 := 0.18 0.05 := 0.1 0.50214 := 0.62 0.56 := 0.7 1 := 1 0.99 := 1 0 := 0.1 0.7388727 := 0.82
Yabasic
data 10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100
data 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96
dim od(21)
for i = 1 to 20
read oldDec
od(i) = oldDec
next i
dim nd(20)
for j = 1 to 19
read newDec
nd(j) = newDec
next j
for i = 1 to 100
for j = 1 to arraysize(nd(),1)-1
if i < nd(j) break
next j
print (i/100) using ("#.##"), " -> ", (od(j)/100) using ("#.##"), "\t";
if mod(i, 5) = 0 print
next i
end
Beads
beads 1 program 'Price fraction'
record a_table
value
rescaled
const table : array of a_table = [<
value, rescaled
0.06, 0.10
0.11, 0.18
0.16, 0.26
0.21, 0.32
0.26, 0.38
0.31, 0.44
0.36, 0.50
0.41, 0.54
0.46, 0.58
0.51, 0.62
0.56, 0.66
0.61, 0.70
0.66, 0.74
0.71, 0.78
0.76, 0.82
0.81, 0.86
0.86, 0.90
0.91, 0.94
0.96, 0.98
1.01, 1.00 >]
const a_test = [0.05 0.62 0.34 0.93 0.45]
calc main_init
loop across:a_test val:v
loop across:table index:ix
if v < table[ix].value
log "{v} => {table[ix].rescaled}"
exit
- Output:
0.05 => 0.1 0.62 => 0.74 0.34 => 0.5 0.93 => 0.98 0.45 => 0.58
Bracmat
This solution applies a string comparison.
( ( convert
=
. ("0.06"."0.10")
("0.11"."0.18")
("0.16"."0.26")
("0.21"."0.32")
("0.26"."0.38")
("0.31"."0.44")
("0.36"."0.50")
("0.41"."0.54")
("0.46"."0.58")
("0.51"."0.62")
("0.56"."0.66")
("0.61"."0.70")
("0.66"."0.74")
("0.71"."0.78")
("0.76"."0.82")
("0.81"."0.86")
("0.86"."0.90")
("0.91"."0.94")
("0.96"."0.98")
("1.01"."1.00")
: ? (>!arg.?arg) ?
& !arg
| "invalid input"
)
& -1:?n
& whl
' ( !n+1:?n:<103
& ( @(!n:? [<2)&str$("0.0" !n):?a
| @(!n:? [<3)&str$("0." !n):?a
| @(!n:?ones [-3 ?decimals)
& str$(!ones "." !decimals):?a
)
& out$(!a "-->" convert$!a)
)
)
- Output:
0.00 --> 0.10 0.01 --> 0.10 0.02 --> 0.10 0.03 --> 0.10 0.04 --> 0.10 0.05 --> 0.10 0.06 --> 0.18 0.07 --> 0.18 0.08 --> 0.18 0.09 --> 0.18 0.10 --> 0.18 0.11 --> 0.26 0.12 --> 0.26 0.13 --> 0.26 0.14 --> 0.26 0.15 --> 0.26 0.16 --> 0.32 0.17 --> 0.32 ... 0.85 --> 0.90 0.86 --> 0.94 0.87 --> 0.94 0.88 --> 0.94 0.89 --> 0.94 0.90 --> 0.94 0.91 --> 0.98 0.92 --> 0.98 0.93 --> 0.98 0.94 --> 0.98 0.95 --> 0.98 0.96 --> 1.00 0.97 --> 1.00 0.98 --> 1.00 0.99 --> 1.00 1.00 --> 1.00 1.01 --> invalid input 1.02 --> invalid input
C
#include<stdio.h>
double table[][2] = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00},
{-1, 0}, /* guarding element */
};
double price_fix(double x)
{
int i;
for (i = 0; table[i][0] > 0; i++)
if (x < table[i][0]) return table[i][1];
abort(); /* what else to do? */
}
int main()
{
int i;
for (i = 0; i <= 100; i++)
printf("%.2f %.2f\n", i / 100., price_fix(i / 100.));
return 0;
}
C#
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
for (int x = 0; x < 10; x++)
{
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10, SpecialRound(((double)x) / 10));
}
Console.WriteLine();
for (int x = 0; x < 10; x++)
{
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", ((double)x) / 10 + 0.05, SpecialRound(((double)x) / 10 + 0.05));
}
Console.WriteLine();
Console.WriteLine("In: {0:0.00}, Out: {1:0.00}", 1.01, SpecialRound(1.01));
Console.Read();
}
private static double SpecialRound(double inValue)
{
if (inValue > 1) return 1;
double[] Splitters = new double[] {
0.00 , 0.06 , 0.11 , 0.16 , 0.21 ,
0.26 , 0.31 , 0.36 , 0.41 , 0.46 ,
0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
0.76 , 0.81 , 0.86 , 0.91 , 0.96 };
double[] replacements = new double[] {
0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
0.44 , 0.50 , 0.54 , 0.58 , 0.62 ,
0.66 , 0.70 , 0.74 , 0.78 , 0.82 ,
0.86 , 0.90 , 0.94 , 0.98 , 1.00 };
for (int x = 0; x < Splitters.Length - 1; x++)
{
if (inValue >= Splitters[x] &&
inValue < Splitters[x + 1])
{
return replacements[x];
}
}
return inValue;
}
}
}
C++
#include <iostream>
#include <cmath>
int main( ) {
double froms[ ] = { 0.00 , 0.06 , 0.11 , 0.16 , 0.21 , 0.26 ,
0.31 , 0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 ,
0.71 , 0.76 , 0.81 , 0.86 , 0.91 , 0.96 } ;
double tos[ ] = { 0.06 , 0.11 , 0.16 , 0.21 , 0.26 , 0.31 ,
0.36 , 0.41 , 0.46 , 0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
0.76 , 0.81 , 0.86 , 0.91 , 0.96 , 1.01 } ;
double replacements [] = { 0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
0.44 , 0.50 , 0.54 , 0.58 , 0.62 , 0.66 , 0.70 , 0.74 ,
0.78 , 0.82 , 0.86 , 0.90 , 0.94 , 0.98 , 1.00 } ;
double number = 0.1 ;
std::cout << "Enter a fractional number between 0 and 1 ( 0 to end )!\n" ;
std::cin >> number ;
while ( number != 0 ) {
if ( number < 0 || number > 1 ) {
std::cerr << "Error! Only positive values between 0 and 1 are allowed!\n" ;
return 1 ;
}
int n = 0 ;
while ( ! ( number >= froms[ n ] && number < tos[ n ] ) )
n++ ;
std::cout << "-->" << replacements[ n ] << '\n' ;
std::cout << "Enter a fractional number ( 0 to end )!\n" ;
std::cin >> number ;
}
return 0 ;
}
- Output:
Enter a fractional number between 0 and 1 ( 0 to end )! 0.7 -->0.78 Enter a fractional number ( 0 to end )! 0.32 -->0.5 Enter a fractional number ( 0 to end )! 0.12 -->0.26 Enter a fractional number ( 0 to end )! 0
Clipper
FUNCTION PriceFraction( npQuantDispensed )
LOCAL aPriceFraction := { {0,.06,.1},;
{.06,.11,.18}, ;
{.11,.16,.26}, ;
{.16,.21,.32}, ;
{.21,.26,.38}, ;
{.26,.31,.44}, ;
{.31,.36,.5}, ;
{.36,.41,.54}, ;
{.41,.46,.58}, ;
{.46,.51,.62}, ;
{.51,.56,.66}, ;
{.56,.61,.7}, ;
{.61,.66,.74}, ;
{.66,.71,.78}, ;
{.71,.76,.82}, ;
{.76,.81,.86}, ;
{.81,.86,.9}, ;
{.86,.91,.94}, ;
{.91,.96,.98} }
LOCAL nResult
LOCAL nScan
IF npQuantDispensed = 0
nResult = 0
ELSEIF npQuantDispensed >= .96
nResult = 1
ELSE
nScan := ASCAN( aPriceFraction, ;
{ |aItem| npQuantDispensed >= aItem[ 1 ] .AND.;
npQuantDispensed < aItem[ 2 ] } )
nResult := aPriceFraction[ nScan ][ 3 ]
END IF
RETURN nResult
The function above crashes with an array access bound error if the value passed is negative. Also, the spec. indicates that 0.00 should be replaced with standard value 0.10, not 0. The following is a more concise solution:
Procedure Main()
Local i
For i := -0.02 to 1.02 STEP 0.03
? i, "->", PriceFraction(i), i+0.02, "->", PriceFraction(i+0.02)
Next
Return
Static Function PriceFraction( nValue )
Local nResult
Local n
// Function is only defined for values 0 to 1.00
// Return NIL for anything else
// Table of values {V1, V2} = {Threshhold, Standard value}
#define TV_THRESHHOLD 1
#define TV_STD_VALUE 2
Local aTable := { {0, NIL },;
{0.06, 0.10},;
{0.11, 0.18},;
{0.16, 0.26},;
{0.21, 0.32},;
{0.26, 0.38},;
{0.31, 0.44},;
{0.36, 0.50},;
{0.41, 0.54},;
{0.46, 0.58},;
{0.51, 0.62},;
{0.56, 0.66},;
{0.61, 0.70},;
{0.66, 0.74},;
{0.71, 0.78},;
{0.76, 0.82},;
{0.81, 0.86},;
{0.86, 0.90},;
{0.91, 0.94},;
{0.96, 0.98},;
{1.01, 1.00} }
n := AScan( aTable, {|x| nValue < x[TV_THRESHHOLD] })
If n > 0
nResult := aTable[n][TV_STD_VALUE]
Else
nResult := NIL
Endif
Return nResult
- Output:
-0.02 -> NIL 0.00 -> 0.10 0.01 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.12 -> 0.26 0.13 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.27 -> 0.44 0.28 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.42 -> 0.58 0.43 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.57 -> 0.70 0.58 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.72 -> 0.82 0.73 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.87 -> 0.94 0.88 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.99 -> 1.00 1.00 -> 1.00 1.02 -> NIL
Clojure
(def values [10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100])
(defn price [v]
(format "%.2f" (double (/ (values (int (/ (- (* v 100) 1) 5))) 100))))
- Output:
user=> (price 0.50) "0.62" user=> (let [k (map #(double (/ % 100)) (range 101))] (sort (zipmap k (map #(price %) k)))) ([0.0 "0.10"] [0.01 "0.10"] [0.02 "0.10"] [0.03 "0.10"] [0.04 "0.10"] [0.05 "0.10"] [0.06 "0.18"] [0.07 "0.18"] [0.08 "0.18"] [0.09 "0.18"] [0.1 "0.18"] [0.11 "0.26"] [0.12 "0.26"] [0.13 "0.26"] [0.14 "0.26"] [0.15 "0.26"] [0.16 "0.32"] [0.17 "0.32"] [0.18 "0.32"] [0.19 "0.32"] [0.2 "0.32"] [0.21 "0.38"] [0.22 "0.38"] [0.23 "0.38"] [0.24 "0.38"] [0.25 "0.38"] [0.26 "0.44"] [0.27 "0.44"] [0.28 "0.44"] [0.29 "0.44"] [0.3 "0.44"] [0.31 "0.50"] [0.32 "0.50"] [0.33 "0.50"] [0.34 "0.50"] [0.35 "0.50"] [0.36 "0.54"] [0.37 "0.54"] [0.38 "0.54"] [0.39 "0.54"] [0.4 "0.54"] [0.41 "0.58"] [0.42 "0.58"] [0.43 "0.58"] [0.44 "0.58"] [0.45 "0.58"] [0.46 "0.62"] [0.47 "0.62"] [0.48 "0.62"] [0.49 "0.62"] [0.5 "0.62"] [0.51 "0.66"] [0.52 "0.66"] [0.53 "0.66"] [0.54 "0.66"] [0.55 "0.66"] [0.56 "0.70"] [0.57 "0.70"] [0.58 "0.70"] [0.59 "0.70"] [0.6 "0.70"] [0.61 "0.74"] [0.62 "0.74"] [0.63 "0.74"] [0.64 "0.74"] [0.65 "0.74"] [0.66 "0.78"] [0.67 "0.78"] [0.68 "0.78"] [0.69 "0.78"] [0.7 "0.78"] [0.71 "0.82"] [0.72 "0.82"] [0.73 "0.82"] [0.74 "0.82"] [0.75 "0.82"] [0.76 "0.86"] [0.77 "0.86"] [0.78 "0.86"] [0.79 "0.86"] [0.8 "0.86"] [0.81 "0.90"] [0.82 "0.90"] [0.83 "0.90"] [0.84 "0.90"] [0.85 "0.90"] [0.86 "0.94"] [0.87 "0.94"] [0.88 "0.94"] [0.89 "0.94"] [0.9 "0.94"] [0.91 "0.98"] [0.92 "0.98"] [0.93 "0.98"] [0.94 "0.98"] [0.95 "0.98"] [0.96 "1.00"] [0.97 "1.00"] [0.98 "1.00"] [0.99 "1.00"] [1.0 "1.00"])
Common Lisp
(defun scale (value)
(cond ((minusp value) (error "invalid value: ~A" value))
((< value 0.06) 0.10)
((< value 0.11) 0.18)
((< value 0.16) 0.26)
((< value 0.21) 0.32)
((< value 0.26) 0.38)
((< value 0.31) 0.44)
((< value 0.36) 0.50)
((< value 0.41) 0.54)
((< value 0.46) 0.58)
((< value 0.51) 0.62)
((< value 0.56) 0.66)
((< value 0.61) 0.70)
((< value 0.66) 0.74)
((< value 0.71) 0.78)
((< value 0.76) 0.82)
((< value 0.81) 0.86)
((< value 0.86) 0.90)
((< value 0.91) 0.94)
((< value 0.96) 0.98)
((< value 1.01) 1.00)
(t (error "invalid value: ~A" value))))
D
import std.stdio, std.range;
double priceRounder(in double price) pure nothrow
in {
assert(price >= 0 && price <= 1.0);
} body {
static immutable cin = [.06, .11, .16, .21, .26, .31, .36, .41,
.46, .51, .56, .61, .66, .71, .76, .81,
.86, .91, .96, 1.01],
cout = [.10, .18, .26, .32, .38, .44, .50, .54,
.58, .62, .66, .70, .74, .78, .82, .86,
.90, .94, .98, 1.00];
return cout[cin.assumeSorted.lowerBound(price).length];
}
void main() {
foreach (const price; [0.7388727, 0.8593103, 0.826687, 0.3444635])
price.priceRounder.writeln;
}
- Output:
0.82 0.9 0.9 0.5
Dart
class Range {
final double start;
final double end;
Range(this.start, this.end);
bool contains(double value) {
return value >= start && value < end;
}
}
List<MapEntry<Range, double>> ranges = [
MapEntry(Range(0.00, 0.06), 0.10),
MapEntry(Range(0.06, 0.11), 0.18),
MapEntry(Range(0.11, 0.16), 0.26),
MapEntry(Range(0.16, 0.21), 0.32),
MapEntry(Range(0.21, 0.26), 0.38),
MapEntry(Range(0.26, 0.31), 0.44),
MapEntry(Range(0.31, 0.36), 0.50),
MapEntry(Range(0.36, 0.41), 0.54),
MapEntry(Range(0.41, 0.46), 0.58),
MapEntry(Range(0.46, 0.51), 0.62),
MapEntry(Range(0.51, 0.56), 0.66),
MapEntry(Range(0.56, 0.61), 0.70),
MapEntry(Range(0.61, 0.66), 0.74),
MapEntry(Range(0.66, 0.71), 0.78),
MapEntry(Range(0.71, 0.76), 0.82),
MapEntry(Range(0.76, 0.81), 0.86),
MapEntry(Range(0.81, 0.86), 0.90),
MapEntry(Range(0.86, 0.91), 0.94),
MapEntry(Range(0.91, 0.96), 0.98),
MapEntry(Range(0.96, 1.01), 1.00),
];
double adjustDouble(double val, List<MapEntry<Range, double>> ranges) {
for (var range in ranges) {
if (range.key.contains(val)) {
return range.value;
}
}
return val; // Return the original value if no range is found
}
void main() {
for (double val = 0.0; val <= 1.0; val += 0.01) {
String strFmt(double n) => n.toStringAsFixed(2);
double adjusted = adjustDouble(val, ranges);
print("${strFmt(val)} -> ${strFmt(adjusted)}");
}
}
- Output:
0.00 -> 0.10 0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.18 0.12 -> 0.26 0.13 -> 0.26 0.14 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.17 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.20 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.23 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.26 -> 0.44 0.27 -> 0.44 0.28 -> 0.44 0.29 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.32 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.35 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.38 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.41 -> 0.58 0.42 -> 0.58 0.43 -> 0.58 0.44 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.47 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.50 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.53 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.56 -> 0.70 0.57 -> 0.70 0.58 -> 0.70 0.59 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.62 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.65 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.68 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.71 -> 0.82 0.72 -> 0.82 0.73 -> 0.82 0.74 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.77 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.80 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.83 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.86 -> 0.94 0.87 -> 0.94 0.88 -> 0.94 0.89 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.92 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00
Delphi
See Pascal.
EasyLang
n[] = [ 10 18 26 32 38 44 50 54 58 62 66 70 74 78 82 86 90 94 98 100 ]
func conv p .
cat = (p - 1) div 5 + 1
return n[cat]
.
for in = 5 step 5 to 100
if in = 100
in$ = "1.00"
elif in < 10
in$ = "0.0" & in
else
in$ = "0." & in
.
out = conv in
if out = 100
out$ = "1.00"
else
out$ = "0." & out
.
print in$ & " -> " & out$
.
- Output:
0.05 -> 0.10 0.10 -> 0.18 0.15 -> 0.26 0.20 -> 0.32 0.25 -> 0.38 0.30 -> 0.44 0.35 -> 0.50 0.40 -> 0.54 0.45 -> 0.58 0.50 -> 0.62 0.55 -> 0.66 0.60 -> 0.70 0.65 -> 0.74 0.70 -> 0.78 0.75 -> 0.82 0.80 -> 0.86 0.85 -> 0.90 0.90 -> 0.94 0.95 -> 0.98 1.00 -> 1.00
Eiffel
class
APPLICATION
create
make
feature
make
--Tests the price_adjusted feature.
local
i: REAL
do
create price_fraction.initialize
from
i := 5
until
i = 100
loop
io.put_string ("Given: ")
io.put_real (i / 100)
io.put_string ("%TAdjusted:")
io.put_real (price_fraction.adjusted_price (i / 100))
io.new_line
i := i + 5
end
end
price_fraction: PRICE_FRACTION
end
class
PRICE_FRACTION
create
initialize
feature
initialize
-- Initializes limit and price to the given values.
do
limit := <<0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01>>
price := <<0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.81, 0.86, 0.90, 0.94, 0.98, 1.00>>
end
adjusted_price (n: REAL): REAL
-- Adjusted price according to the given price values.
local
i: INTEGER
found: BOOLEAN
do
from
i := 1
until
i > limit.count or found
loop
if n <= limit [i] then
Result := (price [i])
found := True
end
i := i + 1
end
end
feature {NONE}
limit: ARRAY [REAL]
price: ARRAY [REAL]
end
- Output:
Given: 0.05 Adjusted:0.1 Given: 0.1 Adjusted:0.18 Given: 0.15 Adjusted:0.26 Given: 0.2 Adjusted:0.32 Given: 0.25 Adjusted:0.38 Given: 0.3 Adjusted:0.44 Given: 0.35 Adjusted:0.5 Given: 0.4 Adjusted:0.54 Given: 0.45 Adjusted:0.58 Given: 0.5 Adjusted:0.62 Given: 0.55 Adjusted:0.66 Given: 0.6 Adjusted:0.7 Given: 0.65 Adjusted:0.74 Given: 0.7 Adjusted:0.78 Given: 0.75 Adjusted:0.81 Given: 0.8 Adjusted:0.86 Given: 0.85 Adjusted:0.9 Given: 0.9 Adjusted:0.94 Given: 0.95 Adjusted:0.98
Elixir
defmodule Price do
@table [ {0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32}, {0.26, 0.38},
{0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54}, {0.46, 0.58}, {0.51, 0.62},
{0.56, 0.66}, {0.61, 0.70}, {0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82},
{0.81, 0.86}, {0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00} ]
def fraction(value) when value in 0..1 do
{_, standard_value} = Enum.find(@table, fn {upper_limit, _} -> value < upper_limit end)
standard_value
end
end
val = for i <- 0..100, do: i/100
Enum.each(val, fn x ->
:io.format "~5.2f ->~5.2f~n", [x, Price.fraction(x)]
end)
- Output:
0.00 -> 0.10 0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 ... 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00 1.00 -> 1.00
Erlang
priceFraction(N) when N < 0 orelse N > 1 ->
erlang:error('Values must be between 0 and 1.');
priceFraction(N) when N < 0.06 -> 0.10;
priceFraction(N) when N < 0.11 -> 0.18;
priceFraction(N) when N < 0.16 -> 0.26;
priceFraction(N) when N < 0.21 -> 0.32;
priceFraction(N) when N < 0.26 -> 0.38;
priceFraction(N) when N < 0.31 -> 0.44;
priceFraction(N) when N < 0.36 -> 0.50;
priceFraction(N) when N < 0.41 -> 0.54;
priceFraction(N) when N < 0.46 -> 0.58;
priceFraction(N) when N < 0.51 -> 0.62;
priceFraction(N) when N < 0.56 -> 0.66;
priceFraction(N) when N < 0.61 -> 0.70;
priceFraction(N) when N < 0.66 -> 0.74;
priceFraction(N) when N < 0.71 -> 0.78;
priceFraction(N) when N < 0.76 -> 0.82;
priceFraction(N) when N < 0.81 -> 0.86;
priceFraction(N) when N < 0.86 -> 0.90;
priceFraction(N) when N < 0.91 -> 0.94;
priceFraction(N) when N < 0.96 -> 0.98;
priceFraction(N) -> 1.00.
Euphoria
constant table = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}
}
function price_fix(atom x)
for i = 1 to length(table) do
if x < table[i][1] then
return table[i][2]
end if
end for
return -1
end function
for i = 0 to 99 do
printf(1, "%.2f %.2f\n", { i/100, price_fix(i/100) })
end for
F#
Inspired by Python's bisect solution. Using decimal (System.Decimal) to avoid number representation problems with floats.
let cin = [ 0.06m .. 0.05m ..1.01m ]
let cout = [0.1m; 0.18m] @ [0.26m .. 0.06m .. 0.44m] @ [0.50m .. 0.04m .. 0.98m] @ [1.m]
let priceadjuster p =
let rec bisect lo hi =
if lo < hi then
let mid = (lo+hi)/2.
let left = p < cin.[int mid]
bisect (if left then lo else mid+1.) (if left then mid else hi)
else lo
if p < 0.m || 1.m < p then p
else cout.[int (bisect 0. (float cin.Length))]
[ 0.m .. 0.01m .. 1.m ]
|> Seq.ofList
|> Seq.iter (fun p -> printfn "%.2f -> %.2f" p (priceadjuster p))
- Output:
The same as shown by Ada as of 2013-11-03T17:42Z (apart from whitespace formatting)
Factor
CONSTANT: dispensary-data {
{ 0.06 0.10 }
{ 0.11 0.18 }
{ 0.16 0.26 }
{ 0.21 0.32 }
{ 0.26 0.38 }
{ 0.31 0.44 }
{ 0.36 0.50 }
{ 0.41 0.54 }
{ 0.46 0.58 }
{ 0.51 0.62 }
{ 0.56 0.66 }
{ 0.61 0.70 }
{ 0.66 0.74 }
{ 0.71 0.78 }
{ 0.76 0.82 }
{ 0.81 0.86 }
{ 0.86 0.90 }
{ 0.91 0.94 }
{ 0.96 0.98 }
{ 1.01 1.00 } }
: price-fraction ( n -- n ) dispensary-data [ first over >= ] find 2nip second ;
{ 0 0.5 0.65 0.66 1 } [ price-fraction ] map
- Output:
{ 0.1 0.62 0.74 0.74 1.0 }
Fantom
class Defn // to hold the three numbers from a 'row' in the table
{
Float low
Float high
Float value
new make (Float low, Float high, Float value)
{
this.low = low
this.high = high
this.value = value
}
}
class PriceConverter
{
Defn[] defns := [,]
new make (Str table) // process given table and store numbers from each row in a defn
{
table.split('\n').each |Str line|
{
data := line.split
defns.add (Defn(Float.fromStr(data[1]), Float.fromStr(data[3]), Float.fromStr(data[5])))
}
}
public Float convert (Float price) // convert by looking through list of defns
{
Float result := price
defns.each |Defn defn|
{
if (price >= defn.low && price < defn.high)
result = defn.value
}
return result
}
}
class Main
{
public static Void main ()
{
table := ">= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00"
converter := PriceConverter (table)
10.times // simple test with random values
{
price := (0..100).random.toFloat / 100
echo ("$price -> ${converter.convert (price)}")
}
}
}
Forth
A floating-point version wouldn't be hard -- four words would change ( , @ @ cell+ -to- f, f@ f@ float+ ), EVALUATE would be replaced with a small word that forced a floating-point interpretation, and the return stack would not be used in ROUND -- but it would be strikingly unusual. See this page's discussion.
: as begin parse-word dup while evaluate , repeat 2drop ;
create bounds as 96 91 86 81 76 71 66 61 56 51 46 41 36 31 26 21 16 11 6 0
create official as 100 98 94 90 86 82 78 74 70 66 62 58 54 50 44 38 32 26 18 10
: official@ ( a-bounds -- +n )
\ (a+n) - a + b = (a+n) + (b - a) = (b+n)
[ official bounds - ] literal + @ ;
: round ( n-cents -- n-cents' )
>r bounds begin dup @ r@ > while cell+ repeat
r> drop official@ ;
This one is done in the spirit of "Thinking Forth" and doesn't use any tables at all.
: ?adjust 1+ over and if 2* 15 and >r 2 - r> then ;
: accumulate >r dup >r + r> r> ;
: classify dup 0> if 1- then 5 / ;
: calculate do i ?adjust accumulate loop drop drop 100 min ;
: normalize classify >r 0 10 2 r> 1+ 0 calculate ;
: print s>d <# # # [char] . hold #s #> type ;
: test cr 101 0 ?do i print i 2 spaces normalize print cr 5 +loop ;
test
Output:
0.00 0.10 0.05 0.10 0.10 0.18 0.15 0.26 0.20 0.32 0.25 0.38 0.30 0.44 0.35 0.50 0.40 0.54 0.45 0.58 0.50 0.62 0.55 0.66 0.60 0.70 0.65 0.74 0.70 0.78 0.75 0.82 0.80 0.86 0.85 0.90 0.90 0.94 0.95 0.98 1.00 1.00
Fortran
program price_fraction
implicit none
integer, parameter :: i_max = 10
integer :: i
real, dimension (20), parameter :: in = &
& (/0.00, 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, &
& 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96/)
real, dimension (20), parameter :: out = &
& (/0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, &
& 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00/)
real :: r
do i = 1, i_max
call random_number (r)
write (*, '(f8.6, 1x, f4.2)') r, out (maxloc (in, r >= in))
end do
end program price_fraction
- Output:
0.997560 1.00
0.566825 0.70
0.965915 1.00
0.747928 0.82
0.367391 0.54
0.480637 0.62
0.073754 0.18
0.005355 0.10
0.347081 0.50
0.342244 0.50
FutureBasic
local fn PriceFraction( price as double ) as double
double result
if price < 0.00 or price > 1.00 then exit fn = price
if price < 0.06 then exit fn = 0.10
if price < 0.11 then exit fn = 0.18
if price < 0.16 then exit fn = 0.26
if price < 0.21 then exit fn = 0.32
if price < 0.26 then exit fn = 0.38
if price < 0.31 then exit fn = 0.44
if price < 0.36 then exit fn = 0.50
if price < 0.41 then exit fn = 0.54
if price < 0.46 then exit fn = 0.58
if price < 0.51 then exit fn = 0.62
if price < 0.56 then exit fn = 0.66
if price < 0.61 then exit fn = 0.70
if price < 0.66 then exit fn = 0.74
if price < 0.71 then exit fn = 0.78
if price < 0.76 then exit fn = 0.82
if price < 0.81 then exit fn = 0.86
if price < 0.86 then exit fn = 0.90
if price < 0.91 then exit fn = 0.94
if price < 0.96 then exit fn = 0.98
result = 1.00
end fn = result
void local fn GetPriceFractions
NSUInteger i
for i = 1 to 100
double d = i/100.0
printf @"%.2f -> %.2f\t\b", d, fn PriceFraction( d )
if i mod 5 == 0 then print
next
end fn
fn GetPriceFractions
NSLog( @"%@", fn WindowPrintViewString( 1 ) )
HandleEvents
- Output:
0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 0.12 -> 0.26 0.13 -> 0.26 0.14 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.17 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.20 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.23 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.26 -> 0.44 0.27 -> 0.44 0.28 -> 0.44 0.29 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.32 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.35 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.38 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.41 -> 0.58 0.42 -> 0.58 0.43 -> 0.58 0.44 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.47 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.50 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.53 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.56 -> 0.70 0.57 -> 0.70 0.58 -> 0.70 0.59 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.62 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.65 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.68 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.71 -> 0.82 0.72 -> 0.82 0.73 -> 0.82 0.74 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.77 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.80 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.83 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.86 -> 0.94 0.87 -> 0.94 0.88 -> 0.94 0.89 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.92 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00 1.00 -> 1.00
Go
package main
import "fmt"
func pf(v float64) float64 {
switch {
case v < .06:
return .10
case v < .11:
return .18
case v < .16:
return .26
case v < .21:
return .32
case v < .26:
return .38
case v < .31:
return .44
case v < .36:
return .50
case v < .41:
return .54
case v < .46:
return .58
case v < .51:
return .62
case v < .56:
return .66
case v < .61:
return .70
case v < .66:
return .74
case v < .71:
return .78
case v < .76:
return .82
case v < .81:
return .86
case v < .86:
return .90
case v < .91:
return .94
case v < .96:
return .98
}
return 1
}
func main() {
tests := []float64{0.3793, 0.4425, 0.0746, 0.6918, 0.2993,
0.5486, 0.7848, 0.9383, 0.2292, 0.9760}
for _, v := range tests {
fmt.Printf("%0.4f -> %0.2f\n", v, pf(v))
}
}
0.3793 -> 0.54 0.4425 -> 0.58 0.0746 -> 0.18 0.6918 -> 0.78 0.2993 -> 0.44 0.5486 -> 0.66 0.7848 -> 0.86 0.9383 -> 0.98 0.2292 -> 0.38 0.9760 -> 1.00
Groovy
def priceFraction(value) {
assert value >= 0.0 && value <= 1.0
def priceMappings = [(0.06): 0.10, (0.11): 0.18, (0.16): 0.26, (0.21): 0.32, (0.26): 0.38,
(0.31): 0.44, (0.36): 0.50, (0.41): 0.54, (0.46): 0.58, (0.51): 0.62,
(0.56): 0.66, (0.61): 0.70, (0.66): 0.74, (0.71): 0.78, (0.76): 0.82,
(0.81): 0.86, (0.86): 0.90, (0.91): 0.94, (0.96): 0.98]
for (price in priceMappings.keySet()) {
if (value < price) return priceMappings[price]
}
1.00
}
for (def v = 0.00; v <= 1.00; v += 0.01) {
println "$v --> ${priceFraction(v)}"
}
- Output:
0.00 --> 0.10 0.01 --> 0.10 0.02 --> 0.10 0.03 --> 0.10 0.04 --> 0.10 0.05 --> 0.10 0.06 --> 0.18 0.07 --> 0.18 0.08 --> 0.18 0.09 --> 0.18 0.10 --> 0.18 0.11 --> 0.26 0.12 --> 0.26 0.13 --> 0.26 0.14 --> 0.26 0.15 --> 0.26 0.16 --> 0.32 0.17 --> 0.32 0.18 --> 0.32 0.19 --> 0.32 0.20 --> 0.32 0.21 --> 0.38 0.22 --> 0.38 0.23 --> 0.38 0.24 --> 0.38 0.25 --> 0.38 0.26 --> 0.44 0.27 --> 0.44 0.28 --> 0.44 0.29 --> 0.44 0.30 --> 0.44 0.31 --> 0.50 0.32 --> 0.50 0.33 --> 0.50 0.34 --> 0.50 0.35 --> 0.50 0.36 --> 0.54 0.37 --> 0.54 0.38 --> 0.54 0.39 --> 0.54 0.40 --> 0.54 0.41 --> 0.58 0.42 --> 0.58 0.43 --> 0.58 0.44 --> 0.58 0.45 --> 0.58 0.46 --> 0.62 0.47 --> 0.62 0.48 --> 0.62 0.49 --> 0.62 0.50 --> 0.62 0.51 --> 0.66 0.52 --> 0.66 0.53 --> 0.66 0.54 --> 0.66 0.55 --> 0.66 0.56 --> 0.70 0.57 --> 0.70 0.58 --> 0.70 0.59 --> 0.70 0.60 --> 0.70 0.61 --> 0.74 0.62 --> 0.74 0.63 --> 0.74 0.64 --> 0.74 0.65 --> 0.74 0.66 --> 0.78 0.67 --> 0.78 0.68 --> 0.78 0.69 --> 0.78 0.70 --> 0.78 0.71 --> 0.82 0.72 --> 0.82 0.73 --> 0.82 0.74 --> 0.82 0.75 --> 0.82 0.76 --> 0.86 0.77 --> 0.86 0.78 --> 0.86 0.79 --> 0.86 0.80 --> 0.86 0.81 --> 0.90 0.82 --> 0.90 0.83 --> 0.90 0.84 --> 0.90 0.85 --> 0.90 0.86 --> 0.94 0.87 --> 0.94 0.88 --> 0.94 0.89 --> 0.94 0.90 --> 0.94 0.91 --> 0.98 0.92 --> 0.98 0.93 --> 0.98 0.94 --> 0.98 0.95 --> 0.98 0.96 --> 1.00 0.97 --> 1.00 0.98 --> 1.00 0.99 --> 1.00 1.00 --> 1.00
Haskell
price_fraction n
| n < 0 || n > 1 = error "Values must be between 0 and 1."
| n < 0.06 = 0.10
| n < 0.11 = 0.18
| n < 0.16 = 0.26
| n < 0.21 = 0.32
| n < 0.26 = 0.38
| n < 0.31 = 0.44
| n < 0.36 = 0.50
| n < 0.41 = 0.54
| n < 0.46 = 0.58
| n < 0.51 = 0.62
| n < 0.56 = 0.66
| n < 0.61 = 0.70
| n < 0.66 = 0.74
| n < 0.71 = 0.78
| n < 0.76 = 0.82
| n < 0.81 = 0.86
| n < 0.86 = 0.90
| n < 0.91 = 0.94
| n < 0.96 = 0.98
| otherwise = 1.00
Alternative
:
table = [
(0.06, 0.10), (0.11, 0.18), (0.16, 0.26), (0.21, 0.32), (0.26, 0.38),
(0.31, 0.44), (0.36, 0.50), (0.41, 0.54), (0.46, 0.58), (0.51, 0.62),
(0.56, 0.66), (0.61, 0.70), (0.66, 0.74), (0.71, 0.78), (0.76, 0.82),
(0.81, 0.86), (0.86, 0.90), (0.91, 0.94), (0.96, 0.98), (1.01, 1.00),
]
price_fraction n
| n < 0 || n > 1 = error "Values must be between 0 and 1."
| otherwise = snd $ head $ dropWhile ((<= n) . fst) table
HicEst
DIMENSION upperbound(20), rescaleTo(20), temp(20)
upperbound = (.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01)
rescaleTo = (.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.00)
DO test = 1, 10
value = RAN(0.5, 0.5)
temp = value > upperbound
PriceFraction = rescaleTo( INDEX(temp, 0) )
WRITE(Format="F8.6, F6.2") value, PriceFraction
ENDDO
0.589230 0.70 0.017623 0.10 0.314343 0.50 0.553303 0.66 0.676283 0.78 0.016883 0.10 0.265656 0.44 0.460880 0.62 0.837450 0.90 0.228953 0.38
Icon and Unicon
- Output:
0.0 rescaled is 0.1 0.1 rescaled is 0.18 0.2 rescaled is 0.32 0.3 rescaled is 0.44 0.4 rescaled is 0.54 0.5 rescaled is 0.62 0.6 rescaled is 0.7 0.7 rescaled is 0.78 0.8 rescaled is 0.86 0.9 rescaled is 0.94 1.0 rescaled is 1.0
Inform 7
Inform doesn't have native floating-point support; this version uses fixed point numbers with two decimal places.
Home is a room.
Price is a kind of value. 0.99 specifies a price.
Table of Price Standardization
upper bound replacement
0.06 0.10
0.11 0.18
0.16 0.26
0.21 0.32
0.26 0.38
0.31 0.44
0.36 0.50
0.41 0.54
0.46 0.58
0.51 0.62
0.56 0.66
0.61 0.70
0.66 0.74
0.71 0.78
0.76 0.82
0.81 0.86
0.86 0.90
0.91 0.94
0.96 0.98
1.01 1.00
To decide which price is the standardized value of (P - price):
repeat with N running from 1 to the number of rows in the Table of Price Standardization:
choose row N in the Table of Price Standardization;
if P is less than the upper bound entry, decide on the replacement entry.
When play begins:
repeat with N running from 1 to 5:
let P be a random price between 0.00 and 1.00;
say "[P] -> [standardized value of P].";
end the story.
J
Solution:
le =: -0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0
out =: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1
priceFraction =: out {~ le I. -
Example:
priceFraction 0.34 0.070145 0.06 0.05 0.50214 0.56 1 0.99 0
0.5 0.18 0.18 0.1 0.62 0.7 1 1 0.1
This implementation performs a binary search on the boundary values, and then uses the resulting index to select from the result values.
To prevent J's binary search from doing the wrong thing for values equal to a boundary, both the boundary values and the search value are negated.
Java
import java.util.Random;
public class Main {
private static float priceFraction(float f) {
if (0.00f <= f && f < 0.06f) return 0.10f;
else if (f < 0.11f) return 0.18f;
else if (f < 0.16f) return 0.26f;
else if (f < 0.21f) return 0.32f;
else if (f < 0.26f) return 0.38f;
else if (f < 0.31f) return 0.44f;
else if (f < 0.36f) return 0.50f;
else if (f < 0.41f) return 0.54f;
else if (f < 0.46f) return 0.58f;
else if (f < 0.51f) return 0.62f;
else if (f < 0.56f) return 0.66f;
else if (f < 0.61f) return 0.70f;
else if (f < 0.66f) return 0.74f;
else if (f < 0.71f) return 0.78f;
else if (f < 0.76f) return 0.82f;
else if (f < 0.81f) return 0.86f;
else if (f < 0.86f) return 0.90f;
else if (f < 0.91f) return 0.94f;
else if (f < 0.96f) return 0.98f;
else if (f < 1.01f) return 1.00f;
else throw new IllegalArgumentException();
}
public static void main(String[] args) {
Random rnd = new Random();
for (int i = 0; i < 5; i++) {
float f = rnd.nextFloat();
System.out.format("%8.6f -> %4.2f%n", f, priceFraction(f));
}
}
}
- Output:
0.149969 -> 0.26 0.310605 -> 0.50 0.616683 -> 0.74 0.194047 -> 0.32 0.724852 -> 0.82
JavaScript
In the task definition, the first step is 0.06, the rest are 0.05 so a re-factoring can subtract 0.01 from the value and divide by 0.05 to get the step.
Working with decimal numbers in JavaScript has issues, e.g. 0.06 - 0.01 = 0.049999999999999996 due to using IEEE 754 double precision numbers that can't accurately represent all decimals. So values are multiplied by 100 and integer arithmetic is used.
Note that multiplying a string by a number produces a number, the bitwise OR (|) truncates floating point numbers to integer, making it a concise replacement for Math.floor.
Passing a value outside the range 0 <= x < 1.01 will return undefined.
function getScaleFactor(v) {
var values = ['0.10','0.18','0.26','0.32','0.38','0.44','0.50','0.54',
'0.58','0.62','0.66','0.70','0.74','0.78','0.82','0.86',
'0.90','0.94','0.98','1.00'];
return values[(v * 100 - 1) / 5 | 0];
}
jq
The solution given here is based on the JavaScript solution.
def getScaleFactor:
["0.10","0.18","0.26","0.32","0.38","0.44","0.50","0.54",
"0.58","0.62","0.66","0.70","0.74","0.78","0.82","0.86",
"0.90","0.94","0.98","1.00"] as $values
| $values[ (. * 100 - 1) / 5 | floor ] ;
The full coverage test as given in the Ada example:
def test:
(range(0;10) | "0.0\(.) -> \( 0.01 * . | getScaleFactor)"),
(range(10;100) | "0.\(.) -> \( 0.01 * . | getScaleFactor)");
test
Run the test, showing the first few lines of output:
$ jq -n -r -f Price_fraction.jq 0.00 -> 1.00 0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 ...
Julia
This solution is somewhat straightforward but does highlight a couple of Julia features. The interval cut-offs and values are exactly represented by rational numbers. The interval to which an input value belongs is identified by applying the findfirst
(true value) function to an element-wise comparison (.<
) of this value to the cut-off array.
const PFCUT = [6:5:101]//100
const PFVAL = [10:8:26, 32:6:50, 54:4:98, 100]//100
function pricefraction{T<:FloatingPoint}(a::T)
zero(T) <= a || error("a = ", a, ", but it must be >= 0.")
a <= one(T) || error("a = ", a, ", but it must be <= 1.")
convert(T, PFVAL[findfirst(a .< PFCUT)])
end
test = [0.:0.05:1., 0.51, 0.56, 0.61, rand(), rand(), rand(), rand()]
println("Testing the price fraction function")
for t in test
println(@sprintf " %.4f -> %.4f" t pricefraction(t))
end
- Output:
Testing the price fraction function 0.0000 -> 0.1000 0.0500 -> 0.1000 0.1000 -> 0.1800 0.1500 -> 0.2600 0.2000 -> 0.3200 0.2500 -> 0.3800 0.3000 -> 0.4400 0.3500 -> 0.5000 0.4000 -> 0.5400 0.4500 -> 0.5800 0.5000 -> 0.6200 0.5500 -> 0.6600 0.6000 -> 0.7000 0.6500 -> 0.7400 0.7000 -> 0.7800 0.7500 -> 0.8200 0.8000 -> 0.8600 0.8500 -> 0.9000 0.9000 -> 0.9400 0.9500 -> 0.9800 1.0000 -> 1.0000 0.5100 -> 0.6600 0.5600 -> 0.7000 0.6100 -> 0.7400 0.5603 -> 0.7000 0.9812 -> 1.0000 0.5127 -> 0.6600 0.4821 -> 0.6200
K
Translation of the J solution:
le:- 0.96 0.91 0.86 0.81 0.76 0.71 0.66 0.61 0.56 0.51 0.46 0.41 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.0
out: 1.00 0.98 0.94 0.90 0.86 0.82 0.78 0.74 0.70 0.66 0.62 0.58 0.54 0.50 0.44 0.38 0.32 0.26 0.18 0.1
pf:{out@_bin[le;-x]}'
- Output:
pf 0.6094701 0.5003597 0.8512954 0.08951883 0.6868076 0.7 0.62 0.9 0.18 0.78
Kotlin
// version 1.0.6
fun rescale(price: Double): Double =
when {
price < 0.06 -> 0.10
price < 0.11 -> 0.18
price < 0.16 -> 0.26
price < 0.21 -> 0.32
price < 0.26 -> 0.38
price < 0.31 -> 0.44
price < 0.36 -> 0.50
price < 0.41 -> 0.54
price < 0.46 -> 0.58
price < 0.51 -> 0.62
price < 0.56 -> 0.66
price < 0.61 -> 0.70
price < 0.66 -> 0.74
price < 0.71 -> 0.78
price < 0.76 -> 0.82
price < 0.81 -> 0.86
price < 0.86 -> 0.90
price < 0.91 -> 0.94
price < 0.96 -> 0.98
else -> 1.00
}
fun main(args: Array<String>) {
var d: Double
for (i in 1..100) {
d = i / 100.0
print(String.format("%4.2f -> %4.2f ", d, rescale(d)))
if (i % 5 == 0) println()
}
}
- Output:
0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 0.12 -> 0.26 0.13 -> 0.26 0.14 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.17 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.20 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.23 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.26 -> 0.44 0.27 -> 0.44 0.28 -> 0.44 0.29 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.32 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.35 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.38 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.41 -> 0.58 0.42 -> 0.58 0.43 -> 0.58 0.44 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.47 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.50 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.53 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.56 -> 0.70 0.57 -> 0.70 0.58 -> 0.70 0.59 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.62 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.65 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.68 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.71 -> 0.82 0.72 -> 0.82 0.73 -> 0.82 0.74 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.77 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.80 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.83 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.86 -> 0.94 0.87 -> 0.94 0.88 -> 0.94 0.89 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.92 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00 1.00 -> 1.00
langur
Langur uses decimal floating point.
val table = [
{"low": 0.00, "high": 0.06, "use": 0.10},
{"low": 0.06, "high": 0.11, "use": 0.18},
{"low": 0.11, "high": 0.16, "use": 0.26},
{"low": 0.16, "high": 0.21, "use": 0.32},
{"low": 0.21, "high": 0.26, "use": 0.38},
{"low": 0.26, "high": 0.31, "use": 0.44},
{"low": 0.31, "high": 0.36, "use": 0.50},
{"low": 0.36, "high": 0.41, "use": 0.54},
{"low": 0.41, "high": 0.46, "use": 0.58},
{"low": 0.46, "high": 0.51, "use": 0.62},
{"low": 0.51, "high": 0.56, "use": 0.66},
{"low": 0.56, "high": 0.61, "use": 0.70},
{"low": 0.61, "high": 0.66, "use": 0.74},
{"low": 0.66, "high": 0.71, "use": 0.78},
{"low": 0.71, "high": 0.76, "use": 0.82},
{"low": 0.76, "high": 0.81, "use": 0.86},
{"low": 0.81, "high": 0.86, "use": 0.90},
{"low": 0.86, "high": 0.91, "use": 0.94},
{"low": 0.91, "high": 0.96, "use": 0.98},
{"low": 0.96, "high": 1.00, "use": 1.00},
]
val pricefrac = fn f: {
if f == 1.00: return 1.00
for h in table {
if f >= h'low and f < h'high: return h'use
}
throw "no match"
}
writeln pricefrac(0.17)
writeln pricefrac(0.71)
The following example avoids data redundancy.
val table = [
# [low, use]
[0.00, 0.10],
[0.06, 0.18],
[0.11, 0.26],
[0.16, 0.32],
[0.21, 0.38],
[0.26, 0.44],
[0.31, 0.50],
[0.36, 0.54],
[0.41, 0.58],
[0.46, 0.62],
[0.51, 0.66],
[0.56, 0.70],
[0.61, 0.74],
[0.66, 0.78],
[0.71, 0.82],
[0.76, 0.86],
[0.81, 0.90],
[0.86, 0.94],
[0.91, 0.98],
[0.96, 1.00],
]
val pricefrac = fn f: {
if f >= table[-1][1] and f <= table[-1][2]: return table[-1][2]
for t of len(table)-1 {
if f >= table[t][1] and f < table[t+1][1]: return table[t][2]
}
throw "no match"
}
writeln pricefrac(0.17)
writeln pricefrac(0.71)
- Output:
0.32 0.82
Lua
scaleTable = {
{0.06, 0.10}, {0.11, 0.18}, {0.16, 0.26}, {0.21, 0.32},
{0.26, 0.38}, {0.31, 0.44}, {0.36, 0.50}, {0.41, 0.54},
{0.46, 0.58}, {0.51, 0.62}, {0.56, 0.66}, {0.61, 0.70},
{0.66, 0.74}, {0.71, 0.78}, {0.76, 0.82}, {0.81, 0.86},
{0.86, 0.90}, {0.91, 0.94}, {0.96, 0.98}, {1.01, 1.00}
}
function rescale (price)
if price < 0 or price > 1 then return "Out of range!" end
for k, v in pairs(scaleTable) do
if price < v[1] then return v[2] end
end
end
math.randomseed(os.time())
for i = 1, 5 do
rnd = math.random()
print("Random value:", rnd)
print("Adjusted price:", rescale(rnd))
print()
end
- Output:
Random value: 0.61946413522022 Adjusted price: 0.74 Random value: 0.81141947958698 Adjusted price: 0.9 Random value: 0.55691473099814 Adjusted price: 0.66 Random value: 0.19704311677601 Adjusted price: 0.32 Random value: 0.36528313938816 Adjusted price: 0.54
M2000 Interpreter
Derived from BASIC
Module PriceFraction {
Currency i
Print $("0.00"),
for i=0@ to 1@ step .10@
Print i, @PriceFraction(i)
next
Print $(""),
function PriceFraction(price as currency)
select case price
case < 0
= price
case < .06
= .1
case < .11
= .18
case < .16
= .26
case < .21
= .32
case < .26
= .38
case < .31
= .44
case < .36
= .5
case < .41
= .54
case < .46
= .58
case < .51
= .62
case < .56
= .66
case < .61
= .7
case < .66
= .74
case < .71
= .78
case < .76
= .82
case < .81
= .86
case < .86
= .9
case < .91
= .94
case < .96
= .98
case < 1.01
= 1!
case else
= price
end select
end function
}
PriceFraction
- Output:
0.00 0.10 0.10 0.18 0.20 0.32 0.30 0.44 0.40 0.54 0.50 0.62 0.60 0.70 0.70 0.78 0.80 0.86 0.90 0.94 1.00 1.00
Maple
priceFraction := proc(price)
local values, standard, newPrice, i;
values := [0, 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61,
0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01];
standard := [0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70,
0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00];
for i to numelems(standard) do
if price >= values[i] and price < values[i+1] then
newPrice := standard[i];
end if;
end do;
printf("%f --> %.2f\n", price, newPrice);
end proc:
randomize():
for i to 5 do
priceFraction (rand(0.0..1.0)());
end do;
- Output:
0.524386 --> 0.66 0.887957 --> 0.94 0.670196 --> 0.78 0.875601 --> 0.94 0.540447 --> 0.66
Mathematica /Wolfram Language
PriceFraction[x_]:=Piecewise[{{.1, 0 <= x < 0.06}, {.18, x < .11}, {.26,x < 0.16},
{.32, x < .21}, {.38, x < .26}, {.44, x < 0.31}, {.5, x < .36},
{.54, x < .41}, {.58, x < .46}, {.62, x < .51}, {.66, x < .56},
{.70, x < .61}, {.74, x < .66}, {.78, x < .71}, {.82, x < .76},
{.86, x < .81}, {.90, x < .86}, {.94, x < .91}, {.98, x < .96}}, 1]
MATLAB / Octave
function y = rescale(x)
L = [0,.06:.05:1.02];
V = [.1,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.9,.94,.98,1];
y = x;
for k=1:numel(x);
y(k) = V(sum(L<=x(k)));
end;
end;
t=0:0.001:1;
plot(t,rescale(t));
Mercury
:- module price.
:- interface.
:- import_module int.
:- type price == int.
:- func standard(price) = price.
:- implementation.
:- import_module require, list.
standard(P) = SP :-
require(P >= 0, "P must be positive"),
Cents = P `mod` 100,
P + adjust(Cents) = SP.
:- func adjust(int) = int.
adjust(Cents) = adjust(Cents, rules).
:- func adjust(int, list(price_rule)) = int.
adjust(_, []) = unexpected("price", "adjust/2", "exhausted rules").
adjust(N, [rule(Low, High, To)|T]) = R :-
( N >= Low, N < High -> To - N = R ; adjust(N, T) = R ).
:- type price_rule ---> rule(int, int, int).
:- func rules = list(price_rule).
rules = [rule(00, 06, 10),
rule(06, 11, 18),
rule(11, 16, 26),
rule(16, 21, 32),
rule(21, 26, 38),
rule(26, 31, 44),
rule(31, 36, 50),
rule(36, 41, 54),
rule(41, 46, 58),
rule(46, 51, 62),
rule(51, 56, 66),
rule(56, 61, 70),
rule(61, 66, 74),
rule(66, 71, 78),
rule(71, 76, 82),
rule(76, 81, 86),
rule(81, 86, 90),
rule(86, 91, 94),
rule(91, 96, 98),
rule(96, 101, 100)].
A build system might turn the text of the table into the definition of a hundred-element array of adjustments. In that case,
adjust(Cents) = array.lookup(price_table, Cents).
MUMPS
PRICFRAC(X)
;Outputs a specified value dependent upon the input value
;The non-inclusive upper limits are encoded in the PFMAX string, and the values
;to convert to are encoded in the PFRES string.
NEW PFMAX,PFRES,I,RESULT
SET PFMAX=".06^.11^.16^.21^.26^.31^.36^.41^.46^.51^.56^.61^.66^.71^.76^.81^.86^.91^.96^1.01"
SET PFRES=".10^.18^.26^.32^.38^.44^.50^.54^.58^.62^.66^.70^.74^.78^.82^.86^.90^.94^.98^1.00"
Q:(X<0)!(X>1.01) ""
FOR I=1:1:$LENGTH(PFMAX,"^") Q:($DATA(RESULT)'=0) SET:X<$P(PFMAX,"^",I) RESULT=$P(PFRES,"^",I)
KILL PFMAX,PFRES,I
QUIT RESULT
- Output:
USER>W $$PRICFRAC^ROSETTA(.04) .10 USER>W $$PRICFRAC^ROSETTA(.06) .18 USER>W $$PRICFRAC^ROSETTA(.40) .54 USER>W $$PRICFRAC^ROSETTA(1.40) USER>W $$PRICFRAC^ROSETTA(.81) .90
NetRexx
/* NetRexx */
options replace format comments java crossref symbols nobinary
runSample(arg)
return
-- -----------------------------------------------------------------------------
method runSample(arg) public static
parse arg in_val .
if in_val \= '' then test_vals = [in_val]
else test_vals = getTestData()
say 'Input Adjustment'
loop tv = 0 to test_vals.length - 1
in_val = test_vals[tv]
adjust = priceFraction(in_val)
say in_val.format(null, 2).right(5) adjust.format(null, 2).right(10)
end tv
return
-- -----------------------------------------------------------------------------
method priceFraction(in_val) public static
out_val = -1
limit_table = getLimitTable()
limit_table_K = limit_table.length
loop p1 = 0 to limit_table_K - 1
pair = limit_table[p1]
hi_limit = pair[0]
adjustmt = pair[1]
if in_val < hi_limit then do
out_val = adjustmt
leave p1
end
end p1
if out_val = -1 then signal IllegalArgumentException('Input' in_val 'is outside of acceptable range.')
return out_val
-- -----------------------------------------------------------------------------
method getLimitTable() public static returns Rexx[,]
limit_table = [ -
[0.06, 0.10], [0.11, 0.18], [0.16, 0.26], [0.21, 0.32], [0.26, 0.38], -
[0.31, 0.44], [0.36, 0.50], [0.41, 0.54], [0.46, 0.58], [0.51, 0.62], -
[0.56, 0.66], [0.61, 0.70], [0.66, 0.74], [0.71, 0.78], [0.76, 0.82], -
[0.81, 0.86], [0.86, 0.90], [0.91, 0.94], [0.96, 0.98], [1.01, 1.00] -
]
return limit_table
-- -----------------------------------------------------------------------------
method getTestData() private static returns Rexx[]
test_vals = Rexx[5]
rng = Random(1024)
loop tv = 0 to test_vals.length - 1
test_vals[tv] = rng.nextFloat()
end tv
return test_vals
- Output:
Input Adjustment 0.64 0.74 0.32 0.50 0.85 0.90 0.93 0.98 0.62 0.74
Nim
import random, strformat
# Representation of a standard value as an int (actual value * 100).
type StandardValue = distinct int
proc `<`(a, b: StandardValue): bool {.borrow.}
const Pricemap = [10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100]
proc toStandardValue(f: float): StandardValue =
## Convert a float to a standard value (decimal value multiplied by 100).
## Index: 0.01..0.05 -> 0, 0.06..0.10 -> 1, 0.11..0.15 -> 2...
var value = int(f * 100)
if value == 0: return StandardValue(10)
dec value
# Increment index every 5 of value, so value in 1..100 translates to index in 0..19.
let index = 2 * (value div 10) + (value mod 10) div 5
result = StandardValue(Pricemap[index])
proc `$`(price: StandardValue): string =
## Return the string representation of a standard value.
if price < StandardValue(10): "0.0" & $int(price)
elif price < StandardValue(100): "0." & $int(price)
else: "1.00"
when isMainModule:
randomize()
for _ in 0 .. 10:
let price = rand(1.01)
echo &"Price for {price:.2f} is {price.toStandardValue()}"
- Output:
A random output looking something like this:
Price for 0.88 is 0.94 Price for 0.58 is 0.70 Price for 0.67 is 0.78 Price for 0.53 is 0.66 Price for 0.56 is 0.66 Price for 0.02 is 0.10 Price for 0.61 is 0.70 Price for 0.41 is 0.58 Price for 0.22 is 0.38 Price for 0.91 is 0.98 Price for 0.42 is 0.58
Objeck
class PriceFraction {
function : Main(args : String[]) ~ Nil {
for(i := 0; i < 5; i++;) {
f := Float->Random();
r := SpecialRound(f);
"{$f} -> {$r}"->PrintLine();
};
}
function : SpecialRound(inValue : Float) ~ Float {
if (inValue > 1) {
return 1;
};
splitters := [
0.00 , 0.06 , 0.11 , 0.16 , 0.21 ,
0.26 , 0.31 , 0.36 , 0.41 , 0.46 ,
0.51 , 0.56 , 0.61 , 0.66 , 0.71 ,
0.76 , 0.81 , 0.86 , 0.91 , 0.96 ];
replacements := [
0.10 , 0.18 , 0.26 , 0.32 , 0.38 ,
0.44 , 0.50 , 0.54 , 0.58 , 0.62 ,
0.66 , 0.70 , 0.74 , 0.78 , 0.82 ,
0.86 , 0.90 , 0.94 , 0.98 , 1.00 ];
for(x := 0; x < splitters->Size() - 1; x+=1;) {
if (inValue >= splitters[x] & inValue < splitters[x + 1]) {
return replacements[x];
};
};
return inValue;
}
}
- Output:
0.317901 -> 0.5 0.691109 -> 0.78 0.790891 -> 0.86 0.269922 -> 0.44 0.690891 -> 0.78
OCaml
let price_fraction v =
if v < 0.0 || v >= 1.01 then
invalid_arg "price_fraction";
let rec aux = function
| (x,r)::tl ->
if v < x then r
else aux tl
| [] -> assert false
in
aux [
0.06, 0.10; 0.11, 0.18; 0.16, 0.26; 0.21, 0.32; 0.26, 0.38;
0.31, 0.44; 0.36, 0.50; 0.41, 0.54; 0.46, 0.58; 0.51, 0.62;
0.56, 0.66; 0.61, 0.70; 0.66, 0.74; 0.71, 0.78; 0.76, 0.82;
0.81, 0.86; 0.86, 0.90; 0.91, 0.94; 0.96, 0.98; 1.01, 1.00;
]
let () =
let ok_tests = [
(0.3793, 0.54);
(0.4425, 0.58);
(0.0746, 0.18);
(0.6918, 0.78);
(0.2993, 0.44);
(0.5486, 0.66);
(0.7848, 0.86);
(0.9383, 0.98);
(0.2292, 0.38);
] in
Printf.printf " input res ok\n";
List.iter (fun (v,ok) ->
let r = price_fraction v in
Printf.printf " %6g %g %b\n" v r (r = ok);
) ok_tests;
;;
Oforth
[.06, .11, .16, .21, .26, .31, .36, .41, .46, .51, .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01] const: IN
[.10, .18, .26, .32, .38, .44, .50, .54, .58, .62, .66, .70, .74, .78, .82, .86, .90, .94, .98, 1.00] const: OUT
: priceFraction(f)
| i |
IN size loop: i [ f IN at(i) < ifTrue: [ OUT at(i) return ] ]
null ;
- Output:
>[0.7388727, 0.8593103, 0.826687, 0.3444635] map(#priceFraction) . [0.82, 0.9, 0.9, 0.5] ok
Oz
Using a for-loop with return and a default value for values >= 1.01. For out-of-range input, a "failed value" is returned, i.e. a value that throws an exception when it is accessed.
fun {PriceFraction X}
OutOfRange = {Value.failed outOfRange(X)}
in
for Limit#Result in
[0.00#OutOfRange
0.06#0.10 0.11#0.18 0.16#0.26 0.21#0.32 0.26#0.38 0.31#0.44 0.36#0.5
0.41#0.54 0.46#0.58 0.51#0.62 0.56#0.66 0.61#0.70 0.66#0.74 0.71#0.78
0.76#0.82 0.81#0.86 0.86#0.90 0.91#0.94 0.96#0.98 1.01#1.00
]
return:Return
default:OutOfRange
do
if X < Limit then {Return Result} end
end
end
PARI/GP
priceLookup=[6,11,16,21,26,31,41,46,51,56,61,66,71,76,81,86,91,96,101];
priceReplace=[10,18,26,32,38,44,50,54,58,62,66,70,74,78,82,86,90,94,98,100];
pf(x)={
x*=100;
for(i=1,19,
if(x<priceLookup[i], return(priceReplace[i]))
);
"nasal demons"
};
Pascal
Program PriceFraction(output);
const
limit: array [1..20] of real =
(0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51,
0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01);
price: array [1..20] of real =
(0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.81, 0.86, 0.90, 0.94, 0.98, 1.00);
var
cost: real;
i, j: integer;
begin
randomize;
for i := 1 to 10 do
begin
cost := random;
j := high(limit);
while cost < limit[j] do
dec(j);
writeln (cost:6:4, ' -> ', price[j+1]:4:2);
end;
end.
- Output:
% ./PriceFraction 0.8145 -> 0.90 0.6347 -> 0.74 0.0464 -> 0.10 0.9603 -> 1.00 0.3629 -> 0.54 0.5074 -> 0.62 0.4516 -> 0.58 0.2340 -> 0.38 0.4142 -> 0.58 0.8327 -> 0.90
Perl
my @table = map [ /([\d\.]+)/g ], split "\n", <<'TBL';
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
TBL
sub convert {
my $money = shift;
for (@table) {
return $_->[2] if $_->[0] <= $money and $_->[1] > $money
}
die "Can't find currency conversion for $money. Counterfeit?"
}
# try it out
for (1 .. 10) {
my $m = rand(1);
printf "%.3f -> %g\n", $m, convert($m);
}
Phix
with javascript_semantics constant TBL=split(""" >= 0.00 < 0.06 := 0.10 >= 0.06 < 0.11 := 0.18 >= 0.11 < 0.16 := 0.26 >= 0.16 < 0.21 := 0.32 >= 0.21 < 0.26 := 0.38 >= 0.26 < 0.31 := 0.44 >= 0.31 < 0.36 := 0.50 >= 0.36 < 0.41 := 0.54 >= 0.41 < 0.46 := 0.58 >= 0.46 < 0.51 := 0.62 >= 0.51 < 0.56 := 0.66 >= 0.56 < 0.61 := 0.70 >= 0.61 < 0.66 := 0.74 >= 0.66 < 0.71 := 0.78 >= 0.71 < 0.76 := 0.82 >= 0.76 < 0.81 := 0.86 >= 0.81 < 0.86 := 0.90 >= 0.86 < 0.91 := 0.94 >= 0.91 < 0.96 := 0.98 >= 0.96 < 1.01 := 1.00""",'\n') sequence limits = {0}, prices = {-1} atom pl,lt,plt=0,price for i=1 to length(TBL) do {pl,lt,price} = scanf(TBL[i],">= %.2f < %.2f := %.2f")[1] assert(pl==plt) plt = lt limits = append(limits,lt) prices = append(prices,price) end for function price_fix(atom p) for i=1 to length(limits) do if p<limits[i] then return prices[i] end if end for return -1 end function for i=-1 to 101 do printf(1, "%5.2f %5.2f\n", {i/100,price_fix(i/100)}) end for
Phixmonti
include ..\Utilitys.pmt
(
( 0.00 0.06 0.10 )
( 0.06 0.11 0.18 )
( 0.11 0.16 0.26 )
( 0.16 0.21 0.32 )
( 0.21 0.26 0.38 )
( 0.26 0.31 0.44 )
( 0.31 0.36 0.50 )
( 0.36 0.41 0.54 )
( 0.41 0.46 0.58 )
( 0.46 0.51 0.62 )
( 0.51 0.56 0.66 )
( 0.56 0.61 0.70 )
( 0.61 0.66 0.74 )
( 0.66 0.71 0.78 )
( 0.71 0.76 0.82 )
( 0.76 0.81 0.86 )
( 0.81 0.86 0.90 )
( 0.86 0.91 0.94 )
( 0.91 0.96 0.98 )
( 0.96 1.01 1.00 ) )
def price_fix
var p
len for
get
3 get swap 1 get swap 2 get nip
p swap < swap p swap >=
and if
exitfor
else
drop
endif
endfor
enddef
( 0.00 1.01 0.01 ) for
dup print 9 tochar print price_fix print nl
endfor
Picat
Approach 1
go =>
_ = random2(),
D = [
[0.00,0.06,0.10],
[0.06,0.11,0.18],
[0.11,0.16,0.26],
[0.16,0.21,0.32],
[0.21,0.26,0.38],
[0.26,0.31,0.44],
[0.31,0.36,0.50],
[0.36,0.41,0.54],
[0.41,0.46,0.58],
[0.46,0.51,0.62],
[0.51,0.56,0.66],
[0.56,0.61,0.70],
[0.61,0.66,0.74],
[0.66,0.71,0.78],
[0.71,0.76,0.82],
[0.76,0.81,0.86],
[0.81,0.86,0.90],
[0.86,0.91,0.94],
[0.91,0.96,0.98],
[0.96,1.01,1.00]],
Len = D.length,
foreach(_ in 1..10)
R = frand2(100),
between(1,Len,Ix),
R >= D[Ix,1],
R < D[Ix,2],
New = D[Ix,3],
println(R=New)
end,
nl.
% Getting numbers of precision 2
frand2(N) = (random() mod N)/N.
- Output:
0.2 = 0.32 0.91 = 0.98 0.44 = 0.58 0.81 = 0.9 0.74 = 0.82 0.1 = 0.18 0.42 = 0.58 0.93 = 0.98 0.14 = 0.26 0.62 = 0.74
Using a fact table
go2 =>
_ = random2(),
foreach(_ in 1..10)
R = frand2(100),
r(From,To,Val),
R >= From,
R <= To,
println(R=Val)
end,
nl.
r(0.00,0.06,0.10).
r(0.06,0.11,0.18).
r(0.11,0.16,0.26).
r(0.16,0.21,0.32).
r(0.21,0.26,0.38).
r(0.26,0.31,0.44).
r(0.31,0.36,0.50).
r(0.36,0.41,0.54).
r(0.41,0.46,0.58).
r(0.46,0.51,0.62).
r(0.51,0.56,0.66).
r(0.56,0.61,0.70).
r(0.61,0.66,0.74).
r(0.66,0.71,0.78).
r(0.71,0.76,0.82).
r(0.76,0.81,0.86).
r(0.81,0.86,0.90).
r(0.86,0.91,0.94).
r(0.91,0.96,0.98).
r(0.96,1.01,1.00).
- Output:
0.83 = 0.9 0.77 = 0.86 0.65 = 0.74 0.08 = 0.18 0.08 = 0.18 0.02 = 0.1 0.73 = 0.82 0.99 = 1.0 0.58 = 0.7 0.0 = 0.1
PicoLisp
(scl 2)
(de price (Pr)
(format
(cdr
(rank Pr
(quote
(0.00 . 0.10)
(0.06 . 0.18)
(0.11 . 0.26)
(0.16 . 0.32)
(0.21 . 0.38)
(0.26 . 0.44)
(0.31 . 0.50)
(0.36 . 0.54)
(0.41 . 0.58)
(0.46 . 0.62)
(0.51 . 0.66)
(0.56 . 0.70)
(0.61 . 0.74)
(0.66 . 0.78)
(0.71 . 0.82)
(0.76 . 0.86)
(0.81 . 0.90)
(0.86 . 0.94)
(0.91 . 0.98)
(0.96 . 1.00) ) ) )
*Scl ) )
(for N (0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292)
(prinl (price N)) )
- Output:
0.54 0.58 0.18 0.78 0.44 0.66 0.86 0.98 0.38
PL/I
version 1
declare t(20) fixed decimal (3,2) static initial (
.06, .11, .16, .21, .26, .31, .36, .41, .46, .51,
.56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01);
declare r(20) fixed decimal (3,2) static initial (
.10, .18, .26, .32, .38, .44, .50, .54, .58, .62,
.66, .70, .74, .78, .82, .86, .90, .94, .98, 1);
declare x float, d fixed decimal (3,2);
declare i fixed binary;
loop:
do i = 1 to 20;
if x < t(i) then
do; d = r(i); leave loop; end;
end;
version 2
cpt: Proc Options(main);
Dcl x Dec Fixed(4,2);
Do x=0 To 1 By 0.01;
Put Edit(x,' -> ',cp(x))(Skip,f(4,2),a,f(4,2));
End;
cp: Proc(p) Returns(Dec Fixed(4,2));
Dcl r(20) Dec Fixed(4,2) static init(
.10, .18, .26, .32, .38, .44, .50, .54, .58, .62,
.66, .70, .74, .78, .82, .86, .90, .94, .98, 1);
Dcl p Dec Fixed(4,2);
Dcl i Bin Fixed;
i=trunc((100*p-1)/5)+1;
Return(r(i));
End;
End;
PowerShell
function Convert-PriceFraction
{
[CmdletBinding()]
[OutputType([double])]
Param
(
[Parameter(Mandatory=$true,
ValueFromPipeline=$true,
ValueFromPipelineByPropertyName=$true,
Position=0)]
[ValidateScript({$_ -ge 0.0 -and $_ -le 1.0})]
[double]
$InputObject
)
Process
{
foreach ($fraction in $InputObject)
{
switch ($fraction)
{
{$_ -lt 0.06} {0.10; break}
{$_ -lt 0.11} {0.18; break}
{$_ -lt 0.16} {0.26; break}
{$_ -lt 0.21} {0.32; break}
{$_ -lt 0.26} {0.38; break}
{$_ -lt 0.31} {0.44; break}
{$_ -lt 0.36} {0.50; break}
{$_ -lt 0.41} {0.54; break}
{$_ -lt 0.46} {0.58; break}
{$_ -lt 0.51} {0.62; break}
{$_ -lt 0.56} {0.66; break}
{$_ -lt 0.61} {0.70; break}
{$_ -lt 0.66} {0.74; break}
{$_ -lt 0.71} {0.78; break}
{$_ -lt 0.76} {0.82; break}
{$_ -lt 0.81} {0.86; break}
{$_ -lt 0.86} {0.90; break}
{$_ -lt 0.91} {0.94; break}
{$_ -lt 0.96} {0.98; break}
Default {1.00}
}
}
}
}
.7388727, .8593103, .826687, .3444635, .0491907 | Convert-PriceFraction | ForEach-Object {"{0:C}" -f $_}
- Output:
$0.82 $0.90 $0.90 $0.50 $0.10
Python
Using the bisect standard module to reduce the comparisons with members of the cin array.
>>> import bisect
>>> _cin = [.06, .11, .16, .21, .26, .31, .36, .41, .46, .51, .56, .61, .66, .71, .76, .81, .86, .91, .96, 1.01]
>>> _cout = [.10, .18, .26, .32, .38, .44, .50, .54, .58, .62, .66, .70, .74, .78, .82, .86, .90, .94, .98, 1.00]
>>> def pricerounder(pricein):
return _cout[ bisect.bisect_right(_cin, pricein) ]
When dealing with money it is good to think about possible loss of precision. If we change the units to be integer cents we could use the following exact routine:
>>> import bisect
>>> _cin = [ 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101]
>>> _cout = [10, 18, 26, 32, 38, 44, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100]
>>> def centsrounder(centsin):
return _cout[ bisect.bisect_right(_cin, centsin) ]
Other options are to use the fractions or decimals modules for calculating money to a known precision.
Bisection library code
- The
bisect
Python standard library function uses the following code that improves on a simple linear scan through a sorted list: def bisect_right(a, x, lo=0, hi=None): """Return the index where to insert item x in list a, assuming a is sorted. The return value i is such that all e in a[:i] have e <= x, and all e in a[i:] have e > x. So if x already appears in the list, a.insert(x) will insert just after the rightmost x already there. Optional args lo (default 0) and hi (default len(a)) bound the slice of a to be searched. """ if lo < 0: raise ValueError('lo must be non-negative') if hi is None: hi = len(a) while lo < hi: mid = (lo+hi)//2 if x < a[mid]: hi = mid else: lo = mid+1 return lo
Quackery
This program uses the bignum rationals provided by bigrat.qky
, so it avoids the pitfalls of storing money as floating point numbers.
[ $ 'bigrat.qky' loadfile ] now!
[ 2over 2over v< if 2swap 2drop ] is vmax ( n/d n/d --> n/d )
[ 100 1 v* 1 1 v-
0 1 vmax 5 1 v/ /
[ table
10 18 26 32 38
44 50 54 58 62
66 70 74 78 82
86 90 94 98 100 ] 100 ] is scale ( n/d --> n/d )
[ swap echo sp echo ] is br ( n/d --> )
[ 2dup br say ' --> '
scale br cr ] is test ( n/d --> )
0 100 test
50 100 test
65 100 test
66 100 test
100 100 test
7368 10000 test
( Show how to enter and display results as a decimal too. )
$ '0.7368' dup echo$
say ' --> '
$->v drop scale
2 point$ echo$
- Output:
0 100 --> 10 100 50 100 --> 62 100 65 100 --> 74 100 66 100 --> 78 100 100 100 --> 100 100 7368 10000 --> 82 100 0.7368 --> 0.82
R
price_fraction <- function(x)
{
stopifnot(all(x >= 0 & x <= 1))
breaks <- seq(0.06, 1.01, 0.05)
values <- c(.1, .18, .26, .32, .38, .44, .5, .54, .58, .62, .66, .7, .74, .78, .82, .86, .9, .94, .98, 1)
indices <- sapply(x, function(x) which(x < breaks)[1])
values[indices]
}
#Example usage:
price_fraction(c(0, .01, 0.06, 0.25, 1)) # 0.10 0.10 0.18 0.38 1.00
You can extract the contents of the table as follows:
dfr <- read.table(tc <- textConnection(
">= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00")); close(tc)
breaks <- dfr$V4
values <- dfr$V6
Racket
#lang racket
(define table
'([0 #f]
[0.06 0.10] [0.11 0.18] [0.16 0.26] [0.21 0.32] [0.26 0.38] [0.31 0.44]
[0.36 0.50] [0.41 0.54] [0.46 0.58] [0.51 0.62] [0.56 0.66] [0.61 0.70]
[0.66 0.74] [0.71 0.78] [0.76 0.82] [0.81 0.86] [0.86 0.90] [0.91 0.94]
[0.96 0.98] [1.01 1.00])
;; returns #f for negatives or values >= 1.01
(define (convert x) (for/or ([c table]) (and (< x (car c)) (cadr c))))
Raku
(formerly Perl 6)
Simple solution, doing a linear search.
Note that in Raku we don't have to worry about floating-point misrepresentations of decimals, because decimal fractions are stored as rationals.
sub price-fraction ($n where 0..1) {
when $n < 0.06 { 0.10 }
when $n < 0.11 { 0.18 }
when $n < 0.16 { 0.26 }
when $n < 0.21 { 0.32 }
when $n < 0.26 { 0.38 }
when $n < 0.31 { 0.44 }
when $n < 0.36 { 0.50 }
when $n < 0.41 { 0.54 }
when $n < 0.46 { 0.58 }
when $n < 0.51 { 0.62 }
when $n < 0.56 { 0.66 }
when $n < 0.61 { 0.70 }
when $n < 0.66 { 0.74 }
when $n < 0.71 { 0.78 }
when $n < 0.76 { 0.82 }
when $n < 0.81 { 0.86 }
when $n < 0.86 { 0.90 }
when $n < 0.91 { 0.94 }
when $n < 0.96 { 0.98 }
default { 1.00 }
}
while prompt("value: ") -> $value {
say price-fraction(+$value);
}
If we expect to rescale many prices, a better approach would be to build a look-up array of 101 entries. Memory is cheap, and array indexing is blazing fast.
my @price = map *.value, flat
( 0 ..^ 6 X=> 0.10),
( 6 ..^ 11 X=> 0.18),
(11 ..^ 16 X=> 0.26),
(16 ..^ 21 X=> 0.32),
(21 ..^ 26 X=> 0.38),
(26 ..^ 31 X=> 0.44),
(31 ..^ 36 X=> 0.50),
(36 ..^ 41 X=> 0.54),
(41 ..^ 46 X=> 0.58),
(46 ..^ 51 X=> 0.62),
(51 ..^ 56 X=> 0.66),
(56 ..^ 61 X=> 0.70),
(61 ..^ 66 X=> 0.74),
(66 ..^ 71 X=> 0.78),
(71 ..^ 76 X=> 0.82),
(76 ..^ 81 X=> 0.86),
(81 ..^ 86 X=> 0.90),
(86 ..^ 91 X=> 0.94),
(91 ..^ 96 X=> 0.98),
(96 ..^101 X=> 1.00),
;
while prompt("value: ") -> $value {
say @price[$value * 100] // "Out of range";
}
We can also build this same look-up array by parsing the table as formatted in the task description:
my $table = q:to/END/;
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
END
my @price;
for $table.lines {
/:s '>=' (\S+) '<' (\S+) ':=' (\S+)/;
@price[$0*100 ..^ $1*100] »=» +$2;
}
while prompt("value: ") -> $value {
say @price[$value * 100] // "Out of range";
}
Raven
define getScaleFactor use $v
[ 0.1 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.0 ] as $vals
$v 100 * 1 - 5 / 20 min 0 max 1 prefer dup $v "val: %g indx: %d\n" print $vals swap get
0 100 9 range each
100.0 / dup getScaleFactor swap "%.2g -> %.2g\n" print
- Output:
0 -> 0.1 0.09 -> 0.18 0.18 -> 0.32 0.27 -> 0.44 0.36 -> 0.54 0.45 -> 0.58 0.54 -> 0.66 0.63 -> 0.74 0.72 -> 0.82 0.81 -> 0.9 0.9 -> 0.94 0.99 -> 1
REXX
version 1
/*REXX program re─scales a (decimal fraction) price (in the range of: 0¢ ──► $1). */
pad= ' ' /*for inserting spaces into a message. */
do j=0 to 1 by .01 /*process the prices from 0¢ to ≤ $1 */
if j==0 then j= 0.00 /*handle the special case of zero cents*/
say pad 'original price ──►' j pad adjPrice(j) " ◄── adjusted price"
end /*j*/
exit 0 /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
adjPrice: procedure; parse arg ? /*a table is used to facilitate changes*/
select
when ?<0.06 then ?= 0.10
when ?<0.11 then ?= 0.18
when ?<0.16 then ?= 0.26
when ?<0.21 then ?= 0.32
when ?<0.26 then ?= 0.38
when ?<0.31 then ?= 0.44
when ?<0.36 then ?= 0.50
when ?<0.41 then ?= 0.54
when ?<0.46 then ?= 0.58
when ?<0.51 then ?= 0.62
when ?<0.56 then ?= 0.66
when ?<0.61 then ?= 0.70
when ?<0.66 then ?= 0.74
when ?<0.71 then ?= 0.78
when ?<0.76 then ?= 0.82
when ?<0.81 then ?= 0.86
when ?<0.86 then ?= 0.90
when ?<0.91 then ?= 0.94
when ?<0.96 then ?= 0.98
when ?<1.01 then ?= 1.00
otherwise nop
end /*select*/
return ?
- output :
original price ──► 0.00 0.10 ◄── adjusted price original price ──► 0.01 0.10 ◄── adjusted price original price ──► 0.02 0.10 ◄── adjusted price original price ──► 0.03 0.10 ◄── adjusted price original price ──► 0.04 0.10 ◄── adjusted price original price ──► 0.05 0.10 ◄── adjusted price original price ──► 0.06 0.18 ◄── adjusted price original price ──► 0.07 0.18 ◄── adjusted price original price ──► 0.08 0.18 ◄── adjusted price original price ──► 0.09 0.18 ◄── adjusted price original price ──► 0.10 0.18 ◄── adjusted price original price ──► 0.11 0.26 ◄── adjusted price original price ──► 0.12 0.26 ◄── adjusted price original price ──► 0.13 0.26 ◄── adjusted price original price ──► 0.14 0.26 ◄── adjusted price original price ──► 0.15 0.26 ◄── adjusted price original price ──► 0.16 0.32 ◄── adjusted price original price ──► 0.17 0.32 ◄── adjusted price original price ──► 0.18 0.32 ◄── adjusted price original price ──► 0.19 0.32 ◄── adjusted price original price ──► 0.20 0.32 ◄── adjusted price original price ──► 0.21 0.38 ◄── adjusted price original price ──► 0.22 0.38 ◄── adjusted price original price ──► 0.23 0.38 ◄── adjusted price original price ──► 0.24 0.38 ◄── adjusted price original price ──► 0.25 0.38 ◄── adjusted price original price ──► 0.26 0.44 ◄── adjusted price original price ──► 0.27 0.44 ◄── adjusted price original price ──► 0.28 0.44 ◄── adjusted price original price ──► 0.29 0.44 ◄── adjusted price original price ──► 0.30 0.44 ◄── adjusted price original price ──► 0.31 0.50 ◄── adjusted price original price ──► 0.32 0.50 ◄── adjusted price original price ──► 0.33 0.50 ◄── adjusted price original price ──► 0.34 0.50 ◄── adjusted price original price ──► 0.35 0.50 ◄── adjusted price original price ──► 0.36 0.54 ◄── adjusted price original price ──► 0.37 0.54 ◄── adjusted price original price ──► 0.38 0.54 ◄── adjusted price original price ──► 0.39 0.54 ◄── adjusted price original price ──► 0.40 0.54 ◄── adjusted price original price ──► 0.41 0.58 ◄── adjusted price original price ──► 0.42 0.58 ◄── adjusted price original price ──► 0.43 0.58 ◄── adjusted price original price ──► 0.44 0.58 ◄── adjusted price original price ──► 0.45 0.58 ◄── adjusted price original price ──► 0.46 0.62 ◄── adjusted price original price ──► 0.47 0.62 ◄── adjusted price original price ──► 0.48 0.62 ◄── adjusted price original price ──► 0.49 0.62 ◄── adjusted price original price ──► 0.50 0.62 ◄── adjusted price original price ──► 0.51 0.66 ◄── adjusted price original price ──► 0.52 0.66 ◄── adjusted price original price ──► 0.53 0.66 ◄── adjusted price original price ──► 0.54 0.66 ◄── adjusted price original price ──► 0.55 0.66 ◄── adjusted price original price ──► 0.56 0.70 ◄── adjusted price original price ──► 0.57 0.70 ◄── adjusted price original price ──► 0.58 0.70 ◄── adjusted price original price ──► 0.59 0.70 ◄── adjusted price original price ──► 0.60 0.70 ◄── adjusted price original price ──► 0.61 0.74 ◄── adjusted price original price ──► 0.62 0.74 ◄── adjusted price original price ──► 0.63 0.74 ◄── adjusted price original price ──► 0.64 0.74 ◄── adjusted price original price ──► 0.65 0.74 ◄── adjusted price original price ──► 0.66 0.78 ◄── adjusted price original price ──► 0.67 0.78 ◄── adjusted price original price ──► 0.68 0.78 ◄── adjusted price original price ──► 0.69 0.78 ◄── adjusted price original price ──► 0.70 0.78 ◄── adjusted price original price ──► 0.71 0.82 ◄── adjusted price original price ──► 0.72 0.82 ◄── adjusted price original price ──► 0.73 0.82 ◄── adjusted price original price ──► 0.74 0.82 ◄── adjusted price original price ──► 0.75 0.82 ◄── adjusted price original price ──► 0.76 0.86 ◄── adjusted price original price ──► 0.77 0.86 ◄── adjusted price original price ──► 0.78 0.86 ◄── adjusted price original price ──► 0.79 0.86 ◄── adjusted price original price ──► 0.80 0.86 ◄── adjusted price original price ──► 0.81 0.90 ◄── adjusted price original price ──► 0.82 0.90 ◄── adjusted price original price ──► 0.83 0.90 ◄── adjusted price original price ──► 0.84 0.90 ◄── adjusted price original price ──► 0.85 0.90 ◄── adjusted price original price ──► 0.86 0.94 ◄── adjusted price original price ──► 0.87 0.94 ◄── adjusted price original price ──► 0.88 0.94 ◄── adjusted price original price ──► 0.89 0.94 ◄── adjusted price original price ──► 0.90 0.94 ◄── adjusted price original price ──► 0.91 0.98 ◄── adjusted price original price ──► 0.92 0.98 ◄── adjusted price original price ──► 0.93 0.98 ◄── adjusted price original price ──► 0.94 0.98 ◄── adjusted price original price ──► 0.95 0.98 ◄── adjusted price original price ──► 0.96 1.00 ◄── adjusted price original price ──► 0.97 1.00 ◄── adjusted price original price ──► 0.98 1.00 ◄── adjusted price original price ──► 0.99 1.00 ◄── adjusted price original price ──► 1.00 1.00 ◄── adjusted price
version 2
/* REXX ***************************************************************
* Inspired by some other solutions tested with version 1 (above)
* 20.04.2013 Walter Pachl
* 03.11.2013 -"- move r. computation (once is enough)
**********************************************************************/
rl='0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62',
'0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1.00'
Do i=1 To 20
Parse Var rl r.i rl
End
Do x=0 To 1 By 0.01
old=adjprice(x)
new=adjprice2(x)
If old<>new Then tag='??'
else tag=''
Say x old new tag
End
Exit
adjprice2: Procedure Expose r.
i=((100*arg(1)-1)%5+1)
Return r.i
Ring
see pricefraction(0.5)
func pricefraction n
if n < 0.06 return 0.10 ok
if n < 0.11 return 0.18 ok
if n < 0.16 return 0.26 ok
if n < 0.21 return 0.32 ok
if n < 0.26 return 0.38 ok
if n < 0.31 return 0.44 ok
if n < 0.36 return 0.50 ok
if n < 0.41 return 0.54 ok
if n < 0.46 return 0.58 ok
if n < 0.51 return 0.62 ok
if n < 0.56 return 0.66 ok
if n < 0.61 return 0.70 ok
if n < 0.66 return 0.74 ok
if n < 0.71 return 0.78 ok
if n < 0.76 return 0.82 ok
if n < 0.81 return 0.86 ok
if n < 0.86 return 0.90 ok
if n < 0.91 return 0.94 ok
if n < 0.96 return 0.98 ok
return 1
RPL
RPL code | Comment |
---|---|
≪ → input ≪ { 0.10 0.18 0.26 0.32 0.38 0.44 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94 0.98 1 } { 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46 0.51 0.56 0.61 0.66 0.71 0.76 0.81 0.86 0.91 0.96 1.01 } 1 WHILE GETI input < REPEAT END IF DUP 1 == THEN DROP DUP SIZE ELSE 1 - END SWAP DROP GET 2 FIX ≫ ≫ 'PRICE' STO |
PRICE ( gross -- net ) list of net values . . list of thresholds . . scan thresholds until passed 1 step down forget thresholds and get net value with 2 decimals . |
- Input:
0 PRICE 0.25 PRICE 0.5 PRICE 0.75 PRICE 1 PRICE
- Output:
5: 0.10 4: 0.38 3: 0.62 2: 0.82 1: 1.00
Ruby
A simple function with hardcoded values.
def rescale_price_fraction(value)
raise ArgumentError, "value=#{value}, must have: 0 <= value < 1.01" if value < 0 || value >= 1.01
if value < 0.06 then 0.10
elsif value < 0.11 then 0.18
elsif value < 0.16 then 0.26
elsif value < 0.21 then 0.32
elsif value < 0.26 then 0.38
elsif value < 0.31 then 0.44
elsif value < 0.36 then 0.50
elsif value < 0.41 then 0.54
elsif value < 0.46 then 0.58
elsif value < 0.51 then 0.62
elsif value < 0.56 then 0.66
elsif value < 0.61 then 0.70
elsif value < 0.66 then 0.74
elsif value < 0.71 then 0.78
elsif value < 0.76 then 0.82
elsif value < 0.81 then 0.86
elsif value < 0.86 then 0.90
elsif value < 0.91 then 0.94
elsif value < 0.96 then 0.98
elsif value < 1.01 then 1.00
end
end
Or, where we can cut and paste the textual table in one place
for the String#lines
method.
For Ruby 1.8.6, use String#each_line
class Price
ConversionTable = <<-END_OF_TABLE
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
END_OF_TABLE
RE = %r{ ([<>=]+) \s* (\d\.\d\d) \s* ([<>=]+) \s* (\d\.\d\d) \D+ (\d\.\d\d) }x
# extract the comparison operators and numbers from the table
CONVERSION_TABLE = ConversionTable.lines.inject([]) do |table, line|
m = line.match(RE)
if not m.nil? and m.length == 6
table << [m[1], m[2].to_f, m[3], m[4].to_f, m[5].to_f]
end
table
end
MIN_COMP, MIN = CONVERSION_TABLE[0][0..1]
MAX_COMP, MAX = CONVERSION_TABLE[-1][2..3]
def initialize(value)
if (not value.send(MIN_COMP, MIN)) or (not value.send(MAX_COMP, MAX))
raise ArgumentError, "value=#{value}, must have: #{MIN} #{MIN_COMP} value #{MAX_COMP} #{MAX}"
end
@standard_value = CONVERSION_TABLE.find do |comp1, lower, comp2, upper, standard|
value.send(comp1, lower) and value.send(comp2, upper)
end.last
end
attr_reader :standard_value
end
And a test suite
require 'test/unit'
class PriceFractionTests < Test::Unit::TestCase
@@ok_tests = [
[0.3793, 0.54],
[0.4425, 0.58],
[0.0746, 0.18],
[0.6918, 0.78],
[0.2993, 0.44],
[0.5486, 0.66],
[0.7848, 0.86],
[0.9383, 0.98],
[0.2292, 0.38],
]
@@bad_tests = [1.02, -3]
def test_ok
@@ok_tests.each do |val, exp|
assert_equal(exp, rescale_price_fraction(val))
assert_equal(exp, Price.new(val).standard_value)
end
@@bad_tests.each do |val|
assert_raise(ArgumentError) {rescale_price_fraction(val)}
assert_raise(ArgumentError) {Price.new(val).standard_value}
end
end
end
- Output:
Loaded suite price_fraction Started . Finished in 0.001000 seconds. 1 tests, 22 assertions, 0 failures, 0 errors, 0 skips
Another option is using a built-in binary search:
keys = [ 0.06, 0.11, 0.16, 0.21, 0.26, 0.31, 0.36, 0.41, 0.46, 0.51, 0.56, 0.61, 0.66, 0.71, 0.76, 0.81, 0.86, 0.91, 0.96, 1.01]
prices = [0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62, 0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00]
tests = [0.3793, 0.4425, 0.0746, 0.6918, 0.2993, 0.5486, 0.7849, 0.9383, 0.2292]
tests.each do |test|
price = prices[ keys.bsearch_index{|key| key >= test } ]
puts [test, price].join(": ")
end
Rust
fn fix_price(num: f64) -> f64 {
match num {
0.96...1.00 => 1.00,
0.91...0.96 => 0.98,
0.86...0.91 => 0.94,
0.81...0.86 => 0.90,
0.76...0.81 => 0.86,
0.71...0.76 => 0.82,
0.66...0.71 => 0.78,
0.61...0.66 => 0.74,
0.56...0.61 => 0.70,
0.51...0.56 => 0.66,
0.46...0.51 => 0.62,
0.41...0.46 => 0.58,
0.36...0.41 => 0.54,
0.31...0.36 => 0.50,
0.26...0.31 => 0.44,
0.21...0.26 => 0.38,
0.16...0.21 => 0.32,
0.11...0.16 => 0.26,
0.06...0.11 => 0.18,
0.00...0.06 => 0.10,
// panics on invalid value
_ => unreachable!(),
}
}
fn main() {
let mut n: f64 = 0.04;
while n <= 1.00 {
println!("{:.2} => {}", n, fix_price(n));
n += 0.04;
}
}
// and a unit test to check that we haven't forgotten a branch, use 'cargo test' to execute test.
//
// typically this could be included in the match as those check for exhaustiveness already
// by explicitly listing all remaining ranges / values instead of a catch-all underscore (_)
// but f64::NaN, f64::INFINITY and f64::NEG_INFINITY can't be matched like this
#[test]
fn exhaustiveness_check() {
let mut input_price = 0.;
while input_price <= 1. {
fix_price(input_price);
input_price += 0.01;
}
}
- Output:
0.04 => 0.1 0.09 => 0.18 0.14 => 0.26 0.19 => 0.32 0.24 => 0.38 0.29 => 0.44 0.34 => 0.5 0.39 => 0.54 0.44 => 0.58 0.49 => 0.62 0.54 => 0.66 0.59 => 0.7 0.64 => 0.74 0.69 => 0.78 0.74 => 0.82 0.79 => 0.86 0.84 => 0.9 0.89 => 0.94 0.94 => 0.98 0.99 => 1
Output of unit test:
running 1 test test exhaustiveness_check ... ok test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured
Scala
def priceFraction(x:Double)=x match {
case n if n>=0 && n<0.06 => 0.10
case n if n<0.11 => 0.18
case n if n<0.36 => ((((n*100).toInt-11)/5)*6+26)/100.toDouble
case n if n<0.96 => ((((n*100).toInt-31)/5)*4+50)/100.toDouble
case _ => 1.00
}
def testPriceFraction()=
for(n <- 0.00 to (1.00, 0.01)) println("%.2f %.2f".format(n, priceFraction(n)))
- Output:
0,00 0,10 0,01 0,10 0,02 0,10 0,03 0,10 0,04 0,10 0,05 0,10 0,06 0,18 ... 0,25 0,38 0,26 0,44 0,27 0,44 0,28 0,44 0,29 0,44 0,30 0,44 0,31 0,50 0,32 0,50 0,33 0,50 0,34 0,50 0,35 0,50 0,36 0,54 0,37 0,54 ... 0,88 0,94 0,89 0,94 0,90 0,94 0,91 0,98 0,92 0,98 0,93 0,98 0,94 0,98 0,95 0,98 0,96 1,00 0,97 1,00 0,98 1,00 0,99 1,00 1,00 1,00
Seed7
$ include "seed7_05.s7i";
include "float.s7i";
const func float: computePrice (in float: x) is func
result
var float: price is 0.0;
begin
if x >= 0.0 and x < 0.06 then
price := 0.10;
elsif x < 0.11 then
price := 0.18;
elsif x < 0.36 then
price := flt(((trunc(x * 100.0) - 11) div 5) * 6 + 26) / 100.0;
elsif x < 0.96 then
price := flt(((trunc(x * 100.0) - 31) div 5) * 4 + 50) / 100.0;
else
price := 1.0;
end if;
end func;
const proc: main is func
local
var integer: i is 0;
begin
for i range 0 to 100 do
writeln(flt(i) / 100.0 digits 2 <& " " <& computePrice(flt(i) / 100.0) digits 2);
end for;
end func;
The following variant of computePrice works with a table and raises RANGE_ERROR when x < 0.0 or x >= 1.01 holds:
const array array float: table is [] (
[] (0.06, 0.10), [] (0.11, 0.18), [] (0.16, 0.26), [] (0.21, 0.32), [] (0.26, 0.38),
[] (0.31, 0.44), [] (0.36, 0.50), [] (0.41, 0.54), [] (0.46, 0.58), [] (0.51, 0.62),
[] (0.56, 0.66), [] (0.61, 0.70), [] (0.66, 0.74), [] (0.71, 0.78), [] (0.76, 0.82),
[] (0.81, 0.86), [] (0.86, 0.90), [] (0.91, 0.94), [] (0.96, 0.98), [] (1.01, 1.00));
const func float: computePrice (in float: x) is func
result
var float: price is 0.0;
local
var integer: index is 1;
begin
if x >= 0.0 then
while x >= table[index][1] do
incr(index);
end while;
price := table[index][2];
else
raise RANGE_ERROR;
end if;
end func;
Sidef
var table = <<'EOT'.lines.map { .words.grep{.is_numeric}.map{.to_n} }
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
EOT
func price(money) {
table.each { |row|
(row[0] <= money) ->
&& (row[1] > money) ->
&& return row[2];
}
die "Out of range";
}
for n in %n(0.3793 0.4425 0.0746 0.6918 0.2993 0.5486 0.7848 0.9383 0.2292) {
say price(n);
}
- Output:
0.54 0.58 0.18 0.78 0.44 0.66 0.86 0.98 0.38
Smalltalk
"Table driven rescale"
Object subclass: PriceRescale [
|table|
PriceRescale class >> new: theTable [
^ self basicNew initialize: theTable
]
initialize: theTable [
table := theTable asOrderedCollection.
^self
]
rescale: aPrice [ |v1 v2|
1 to: (table size - 1) do: [:i|
v1 := table at: i.
v2 := table at: (i+1).
((aPrice >= (v1 x)) & (aPrice < (v2 x)))
ifTrue: [ ^ v1 y ]
].
(aPrice < ((v1:=(table first)) x)) ifTrue: [ ^ v1 y ].
(aPrice >= ((v1:=(table last)) x)) ifTrue: [ ^ v1 y ]
]
].
|pr|
pr := PriceRescale
new: { 0.00@0.10 .
0.06@0.18 .
0.11@0.26 .
0.16@0.32 .
0.21@0.38 .
0.26@0.44 .
0.31@0.50 .
0.36@0.54 .
0.41@0.58 .
0.46@0.62 .
0.51@0.66 .
0.56@0.70 .
0.61@0.74 .
0.66@0.78 .
0.71@0.82 .
0.76@0.86 .
0.81@0.90 .
0.86@0.94 .
0.91@0.98 .
0.96@1.00 .
1.01@1.00
}.
"get a price"
(pr rescale: ( (Random between: 0 and: 100)/100 )) displayNl.
Swift
let ranges = [
(0.00..<0.06, 0.10),
(0.06..<0.11, 0.18),
(0.11..<0.16, 0.26),
(0.16..<0.21, 0.32),
(0.21..<0.26, 0.38),
(0.26..<0.31, 0.44),
(0.31..<0.36, 0.50),
(0.36..<0.41, 0.54),
(0.41..<0.46, 0.58),
(0.46..<0.51, 0.62),
(0.51..<0.56, 0.66),
(0.56..<0.61, 0.70),
(0.61..<0.66, 0.74),
(0.66..<0.71, 0.78),
(0.71..<0.76, 0.82),
(0.76..<0.81, 0.86),
(0.81..<0.86, 0.90),
(0.86..<0.91, 0.94),
(0.91..<0.96, 0.98),
(0.96..<1.01, 1.00)
]
func adjustDouble(_ val: Double, accordingTo ranges: [(Range<Double>, Double)]) -> Double? {
return ranges.first(where: { $0.0.contains(val) })?.1
}
for val in stride(from: 0.0, through: 1, by: 0.01) {
let strFmt = { String(format: "%.2f", $0) }
print("\(strFmt(val)) -> \(strFmt(adjustDouble(val, accordingTo: ranges) ?? val))")
}
- Output:
0.00 -> 0.10 0.01 -> 0.10 0.02 -> 0.10 0.03 -> 0.10 0.04 -> 0.10 0.05 -> 0.10 0.06 -> 0.18 0.07 -> 0.18 0.08 -> 0.18 0.09 -> 0.18 0.10 -> 0.18 0.11 -> 0.26 0.12 -> 0.26 0.13 -> 0.26 0.14 -> 0.26 0.15 -> 0.26 0.16 -> 0.32 0.17 -> 0.32 0.18 -> 0.32 0.19 -> 0.32 0.20 -> 0.32 0.21 -> 0.38 0.22 -> 0.38 0.23 -> 0.38 0.24 -> 0.38 0.25 -> 0.38 0.26 -> 0.44 0.27 -> 0.44 0.28 -> 0.44 0.29 -> 0.44 0.30 -> 0.44 0.31 -> 0.50 0.32 -> 0.50 0.33 -> 0.50 0.34 -> 0.50 0.35 -> 0.50 0.36 -> 0.54 0.37 -> 0.54 0.38 -> 0.54 0.39 -> 0.54 0.40 -> 0.54 0.41 -> 0.58 0.42 -> 0.58 0.43 -> 0.58 0.44 -> 0.58 0.45 -> 0.58 0.46 -> 0.62 0.47 -> 0.62 0.48 -> 0.62 0.49 -> 0.62 0.50 -> 0.62 0.51 -> 0.66 0.52 -> 0.66 0.53 -> 0.66 0.54 -> 0.66 0.55 -> 0.66 0.56 -> 0.70 0.57 -> 0.70 0.58 -> 0.70 0.59 -> 0.70 0.60 -> 0.70 0.61 -> 0.74 0.62 -> 0.74 0.63 -> 0.74 0.64 -> 0.74 0.65 -> 0.74 0.66 -> 0.78 0.67 -> 0.78 0.68 -> 0.78 0.69 -> 0.78 0.70 -> 0.78 0.71 -> 0.82 0.72 -> 0.82 0.73 -> 0.82 0.74 -> 0.82 0.75 -> 0.82 0.76 -> 0.86 0.77 -> 0.86 0.78 -> 0.86 0.79 -> 0.86 0.80 -> 0.86 0.81 -> 0.90 0.82 -> 0.90 0.83 -> 0.90 0.84 -> 0.90 0.85 -> 0.90 0.86 -> 0.94 0.87 -> 0.94 0.88 -> 0.94 0.89 -> 0.94 0.90 -> 0.94 0.91 -> 0.98 0.92 -> 0.98 0.93 -> 0.98 0.94 -> 0.98 0.95 -> 0.98 0.96 -> 1.00 0.97 -> 1.00 0.98 -> 1.00 0.99 -> 1.00 1.00 -> 1.00
Tcl
Structured as two functions, one to parse the input data as described in the problem into a form which Tcl can work with easily, and the other to perform the mapping.
# Used once to turn the table into a "nice" form
proc parseTable table {
set map {}
set LINE_RE {^ *>= *([0-9.]+) *< *([0-9.]+) *:= *([0-9.]+) *$}
foreach line [split $table \n] {
if {[string trim $line] eq ""} continue
if {[regexp $LINE_RE $line -> min max target]} {
lappend map $min $max $target
} else {
error "invalid table format: $line"
}
}
return $map
}
# How to apply the "nice" table to a particular value
proc priceFraction {map value} {
foreach {minimum maximum target} $map {
if {$value >= $minimum && $value < $maximum} {return $target}
}
# Failed to map; return the input
return $value
}
How it is used:
# Make the mapping
set inputTable {
>= 0.00 < 0.06 := 0.10
>= 0.06 < 0.11 := 0.18
>= 0.11 < 0.16 := 0.26
>= 0.16 < 0.21 := 0.32
>= 0.21 < 0.26 := 0.38
>= 0.26 < 0.31 := 0.44
>= 0.31 < 0.36 := 0.50
>= 0.36 < 0.41 := 0.54
>= 0.41 < 0.46 := 0.58
>= 0.46 < 0.51 := 0.62
>= 0.51 < 0.56 := 0.66
>= 0.56 < 0.61 := 0.70
>= 0.61 < 0.66 := 0.74
>= 0.66 < 0.71 := 0.78
>= 0.71 < 0.76 := 0.82
>= 0.76 < 0.81 := 0.86
>= 0.81 < 0.86 := 0.90
>= 0.86 < 0.91 := 0.94
>= 0.91 < 0.96 := 0.98
>= 0.96 < 1.01 := 1.00
}
set map [parseTable $inputTable]
# Apply the mapping to some inputs (from the Oz example)
foreach example {.7388727 .8593103 .826687 .3444635 .0491907} {
puts "$example -> [priceFraction $map $example]"
}
- Output:
.7388727 -> 0.82 .8593103 -> 0.90 .826687 -> 0.90 .3444635 -> 0.50 .0491907 -> 0.10
Ursala
#import flo
le = <0.06,.11,.16,.21,.26,.31,.36,.41,.46,.51,.56,.61,.66,.71,.76,.81,.86,.91,.96,1.01>
out = <0.10,.18,.26,.32,.38,.44,.50,.54,.58,.62,.66,.70,.74,.78,.82,.86,.90,.94,.98,1.>
price_fraction = fleq@rlPlX*|rhr\~&p(le,out)
main points:
~&p(le,out)
zips the pair of listsle
andout
into a list of pairs- A function of the form
f\y
applied to an argumentx
evaluates tof(x,y)
- A function of the form
f*|
applied to a pair(x,y)
wherey
is a list, makes a list of pairs withx
on the left of each item and an item ofy
on the right. Then it appliesf
to each pair, makes a list of the right sides of those for whichf
returned true, and makes a separate list of the right sides of those for whichf
returned false. - The suffix
rhr
after the*|
operator extracts the right side of the head of the right list from the result. - The operand to the
*|
operator,fleq@rlPlX
is the less-or-equal predicate on floating point numbers, composed with the function~&rlPlX
which transforms a triple(u,(v,w))
to(v,u)
test program:
#cast %eL
test = price_fraction* <0.34,0.070145,0.06,0.05,0.50214,0.56,1.,0.99,0.>
- Output:
< 5.000000e-01, 1.800000e-01, 1.800000e-01, 1.000000e-01, 6.200000e-01, 7.000000e-01, 1.000000e+00, 1.000000e+00, 1.000000e-01>
VBScript
Function pf(p)
If p < 0.06 Then
pf = 0.10
ElseIf p < 0.11 Then
pf = 0.18
ElseIf p < 0.16 Then
pf = 0.26
ElseIf p < 0.21 Then
pf = 0.32
ElseIf p < 0.26 Then
pf = 0.38
ElseIf p < 0.31 Then
pf = 0.44
ElseIf p < 0.36 Then
pf = 0.50
ElseIf p < 0.41 Then
pf = 0.54
ElseIf p < 0.46 Then
pf = 0.58
ElseIf p < 0.51 Then
pf = 0.62
ElseIf p < 0.56 Then
pf = 0.66
ElseIf p < 0.61 Then
pf = 0.70
ElseIf p < 0.66 Then
pf = 0.74
ElseIf p < 0.71 Then
pf = 0.78
ElseIf p < 0.76 Then
pf = 0.82
ElseIf p < 0.81 Then
pf = 0.86
ElseIf p < 0.86 Then
pf = 0.90
ElseIf p < 0.91 Then
pf = 0.94
ElseIf p < 0.96 Then
pf = 0.98
Else
pf = 1.00
End If
End Function
WScript.Echo pf(0.7388727)
WScript.Echo pf(0.8593103)
WScript.Echo pf(0.826687)
WScript.Echo pf(0.3444635)
- Output:
0.82 0.9 0.9 0.5
Wren
import "./fmt" for Fmt
var rescale = Fn.new { |v|
return (v < 0.06) ? 0.10 :
(v < 0.11) ? 0.18 :
(v < 0.16) ? 0.26 :
(v < 0.21) ? 0.32 :
(v < 0.26) ? 0.38 :
(v < 0.31) ? 0.44 :
(v < 0.36) ? 0.50 :
(v < 0.41) ? 0.54 :
(v < 0.46) ? 0.58 :
(v < 0.51) ? 0.62 :
(v < 0.56) ? 0.66 :
(v < 0.61) ? 0.70 :
(v < 0.66) ? 0.74 :
(v < 0.71) ? 0.78 :
(v < 0.76) ? 0.82 :
(v < 0.81) ? 0.86 :
(v < 0.86) ? 0.90 :
(v < 0.91) ? 0.94 :
(v < 0.96) ? 0.98 : 1.00
}
var tests = [0.49, 0.79, 1.00, 0.83, 0.99, 0.23, 0.12, 0.28, 0.72, 0.37, 0.95, 0.51, 0.43, 0.52, 0.84, 0.89, 0.48, 0.48, 0.30, 0.01]
for (test in tests) {
Fmt.print("$4.2f -> $4.2f", test, rescale.call(test))
}
- Output:
0.49 -> 0.62 0.79 -> 0.86 1.00 -> 1.00 0.83 -> 0.90 0.99 -> 1.00 0.23 -> 0.38 0.12 -> 0.26 0.28 -> 0.44 0.72 -> 0.82 0.37 -> 0.54 0.95 -> 0.98 0.51 -> 0.66 0.43 -> 0.58 0.52 -> 0.66 0.84 -> 0.90 0.89 -> 0.94 0.48 -> 0.62 0.48 -> 0.62 0.30 -> 0.44 0.01 -> 0.10
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
func real Price(V); \Convert to standard value
real V;
[V:= V + 0.001; \avoids possible rounding error i.e. 0.059999999
case of
V < 0.06: ret 0.10;
V < 0.11: ret 0.18;
V < 0.16: ret 0.26;
V < 0.21: ret 0.32;
V < 0.26: ret 0.38;
V < 0.31: ret 0.44;
V < 0.36: ret 0.50;
V < 0.41: ret 0.54;
V < 0.46: ret 0.58;
V < 0.51: ret 0.62;
V < 0.56: ret 0.66;
V < 0.61: ret 0.70;
V < 0.66: ret 0.74;
V < 0.71: ret 0.78;
V < 0.76: ret 0.82;
V < 0.81: ret 0.86;
V < 0.86: ret 0.90;
V < 0.91: ret 0.94;
V < 0.96: ret 0.98
other ret 1.00;
];
[Format(1,2);
RlOut(0, Price(0.0599)); CrLf(0);
RlOut(0, Price(0.10)); CrLf(0);
RlOut(0, Price(1.0)); CrLf(0);
]
- Output:
0.18 0.18 1.00
zkl
fcn convert(price){ // float --> float
// < -->, increments of 0.05 but tables are easier to update
var vert=T( T(0.06, 0.10), T(0.11, 0.18), T(0.16, 0.26),
T(0.21, 0.32), T(0.26, 0.38), T(0.31, 0.44),
T(0.36, 0.50), T(0.41, 0.54), T(0.46, 0.58),
T(0.51, 0.62), T(0.56, 0.66), T(0.61, 0.70),
T(0.66, 0.74), T(0.71, 0.78), T(0.76, 0.82),
T(0.81, 0.86), T(0.86, 0.90), T(0.91, 0.94),
T(0.96, 0.98), T(1.01, 1.00), );
vert.filter1('wrap([(a,_)]){ price<a })[1]
}
fcn convert2(price){ // shifting the fractional part to the integer portion
var vert=T(0.10, 0.18, 0.26, 0.32, 0.38, 0.44, 0.50, 0.54, 0.58, 0.62,
0.66, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94, 0.98, 1.00);
vert[(price*100-1)/005];
}
T(0.7388727, 0.8593103, 0.826687, 0.3444635, 0.0491907).apply(convert) .println();
T(0.7388727, 0.8593103, 0.826687, 0.3444635, 0.0491907).apply(convert2).println();
- Output:
L(0.82,0.9,0.9,0.5,0.1) L(0.82,0.9,0.9,0.5,0.1)
- Programming Tasks
- Financial operations
- 11l
- Action!
- Ada
- ALGOL 68
- AppleScript
- Arturo
- AutoHotkey
- AWK
- BASIC
- BASIC256
- BBC BASIC
- Chipmunk Basic
- Commodore BASIC
- FreeBASIC
- Gambas
- Liberty BASIC
- PureBasic
- QB64
- Run BASIC
- True BASIC
- UBasic/4tH
- VBA
- Yabasic
- Beads
- Bracmat
- C
- C sharp
- C++
- Clipper
- Clojure
- Common Lisp
- D
- Dart
- Delphi
- EasyLang
- Eiffel
- Elixir
- Erlang
- Euphoria
- F Sharp
- Factor
- Fantom
- Forth
- Fortran
- FutureBasic
- Go
- Groovy
- Haskell
- HicEst
- Icon
- Unicon
- Inform 7
- J
- Java
- JavaScript
- Jq
- Julia
- K
- Kotlin
- Langur
- Lua
- M2000 Interpreter
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Octave
- Mercury
- MUMPS
- NetRexx
- Nim
- Objeck
- OCaml
- Oforth
- Oz
- PARI/GP
- Pascal
- Perl
- Phix
- Phixmonti
- Picat
- PicoLisp
- PL/I
- PowerShell
- Python
- Quackery
- R
- Racket
- Raku
- Raven
- REXX
- Ring
- RPL
- Ruby
- Rust
- Scala
- Seed7
- Sidef
- Smalltalk
- Swift
- Tcl
- Ursala
- VBScript
- Wren
- Wren-fmt
- XPL0
- Zkl