Perfect totient numbers

From Rosetta Code
Task
Perfect totient numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Generate and show here, the first twenty Perfect totient numbers.


Related task


Also see


11l

Translation of: Python
F φ(n)
   R sum((1..n).filter(k -> gcd(@n, k) == 1).map(k -> 1))

F perfect_totient(cnt)
   [Int] r

   L(n0) 1..
      V parts = 0
      V n = n0
      L n != 1
         n = φ(n)
         parts += n
      I parts == n0
         r [+]= n0
         I r.len == cnt
            R r

print(perfect_totient(20))
Output:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program totientPerfect64.s   */

/************************************/
/* Constantes                       */
/************************************/
.include "../includeConstantesARM64.inc" 
.equ MAXI,      20

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessNumber:       .asciz " @ "
szCarriageReturn:   .asciz "\n"
/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
sZoneConv:           .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:
    mov x4,#2                   // start number
    mov x6,#0                   // line counter
    mov x7,#0                   // result counter
1: 
    mov x0,x4
    mov x5,#0                   // totient sum
2:
    bl totient                  // compute totient
    add x5,x5,x0                // add totient
    cmp x0,#1
    beq 3f
    b 2b
3:
    cmp x5,x4                   // compare number and totient sum
    bne 4f
    mov x0,x4                   // display result if equals
    ldr x1,qAdrsZoneConv
    bl conversion10             // call décimal conversion
    ldr x0,qAdrszMessNumber
    ldr x1,qAdrsZoneConv        // insert conversion in message
    bl strInsertAtCharInc
    bl affichageMess            // display message
    add x7,x7,#1
    add x6,x6,#1                // increment indice line display
    cmp x6,#5                   // if = 5  new line
    bne 4f
    mov x6,#0
    ldr x0,qAdrszCarriageReturn
    bl affichageMess 
4:
    add x4,x4,#1                 // increment number
    cmp x7,#MAXI                 // maxi ?
    blt 1b                       // and loop
    
    ldr x0,qAdrszCarriageReturn
    bl affichageMess 

100:                            // standard end of the program 
    mov x0, #0                  // return code
    mov x8,EXIT 
    svc #0                      // perform the system call
qAdrszCarriageReturn:    .quad szCarriageReturn
qAdrsZoneConv:           .quad sZoneConv  
qAdrszMessNumber:        .quad szMessNumber
/******************************************************************/
/*     compute totient of number                                  */ 
/******************************************************************/
/* x0 contains number  */
totient:
    stp x1,lr,[sp,-16]!       // save  registers 
    stp x2,x3,[sp,-16]!       // save  registers 
    stp x4,x5,[sp,-16]!       // save  registers 
    mov x4,x0                 // totient
    mov x5,x0                 // save number
    mov x1,#0                 // for first divisor
1:                            // begin loop
    mul x3,x1,x1              // compute square
    cmp x3,x5                 // compare number
    bgt 4f                    // end 
    add x1,x1,#2              // next divisor
    udiv x2,x5,x1
    msub x3,x1,x2,x5          // compute remainder
    cmp x3,#0                 // remainder null ?
    bne 3f
2:                            // begin loop 2
    udiv x2,x5,x1
    msub x3,x1,x2,x5          // compute remainder
    cmp x3,#0
    csel x5,x2,x5,eq          // new value = quotient
    beq 2b
 
    udiv x2,x4,x1             // divide totient
    sub x4,x4,x2              // compute new totient
3:
    cmp x1,#2                 // first divisor ?
    mov x0,1
    csel x1,x0,x1,eq          // divisor = 1
    b 1b                      // and loop
4:
    cmp x5,#1                 // final value > 1
    ble 5f
    mov x0,x4                 // totient
    mov x1,x5                 // divide by value
    udiv x2,x4,x5             // totient divide by value
    sub x4,x4,x2              // compute new totient
5:
 
    mov x0,x4
100:
    ldp x4,x5,[sp],16         // restaur  registers 
    ldp x2,x3,[sp],16         // restaur  registers 
    ldp x1,lr,[sp],16         // restaur  registers
    ret 


/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../includeARM64.inc"
 3  9  15  27  39
 81  111  183  243  255
 327  363  471  729  2187
 2199  3063  4359  4375  5571

ALGOL 68

BEGIN # find the first 20 perfect totient numbers #
    # returns the number of integers k where 1 <= k <= n that are mutually prime to n #
    PROC totient = ( INT n )INT: # algorithm from the second Go sample #
        IF   n < 3 THEN 1
        ELIF n = 3 THEN 2
        ELSE
            INT result := n;
            INT v      := n;
            INT i      := 2;
            WHILE i * i <= v DO
                IF v MOD i = 0 THEN
                    WHILE v MOD i = 0 DO v OVERAB i OD;
                    result -:= result OVER i
                FI;
                IF i = 2 THEN
                   i := 1
                FI;
                i +:= 2
            OD;
            IF v > 1 THEN result -:= result OVER v FI;
            result
         FI # totient # ;
    # find the first 20 perfect totient numbers #
    INT p count := 0;
    FOR i FROM 2 WHILE p count < 20 DO
        INT t   := totient( i );
        INT sum := t;
        WHILE t /= 1 DO
            t    := totient( t );
            sum +:= t
        OD;
        IF sum = i THEN
            # have a perfect totient #
            p count +:= 1;
            print( ( " ", whole( i, 0 ) ) )
        FI
    OD;
    print( ( newline ) )        
END
Output:
 3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

APL

((/⍨)((+/((1+.=⍳∨⊢)⊃,⊢)(1=(⊃⊣)))=2×)¨)1↓⍳6000
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

ARM Assembly

Works with: as version Raspberry Pi
or android 32 bits with application Termux
/* ARM assembly Raspberry PI or android with termux */
/*  program totientPerfect.s   */

 /* REMARK 1 : this program use routines in a include file 
   see task Include a file language arm assembly 
   for the routine affichageMess conversion10 
   see at end of this program the instruction include */
/* for constantes see task include a file in arm assembly */
/************************************/
/* Constantes                       */
/************************************/
.include "../constantes.inc"
.equ MAXI,      20

/*********************************/
/* Initialized data              */
/*********************************/
.data
szMessNumber:       .asciz " @ "
szCarriageReturn:   .asciz "\n"

/*********************************/
/* UnInitialized data            */
/*********************************/
.bss  
sZoneConv:           .skip 24
/*********************************/
/*  code section                 */
/*********************************/
.text
.global main 
main:
    mov r4,#2                   @ start number
    mov r6,#0                   @ line counter
    mov r7,#0                   @ result counter
1: 
    mov r0,r4
    mov r5,#0                   @ totient sum
2:
    bl totient                  @ compute totient
    add r5,r5,r0                @ add totient
    cmp r0,#1
    beq 3f
    b 2b
3:
    cmp r5,r4                   @ compare number and totient sum
    bne 4f
    mov r0,r4                   @ display result if equals
    ldr r1,iAdrsZoneConv
    bl conversion10             @ call décimal conversion
    ldr r0,iAdrszMessNumber
    ldr r1,iAdrsZoneConv        @ insert conversion in message
    bl strInsertAtCharInc
    bl affichageMess            @ display message
    add r7,r7,#1
    add r6,r6,#1                @ increment indice line display
    cmp r6,#5                   @ if = 5  new line
    bne 4f
    mov r6,#0
    ldr r0,iAdrszCarriageReturn
    bl affichageMess 
4:
    add r4,r4,#1                 @ increment number
    cmp r7,#MAXI                 @ maxi ?
    blt 1b                       @ and loop
    
    ldr r0,iAdrszCarriageReturn
    bl affichageMess 

100:                            @ standard end of the program 
    mov r0, #0                  @ return code
    mov r7, #EXIT               @ request to exit program
    svc #0                      @ perform the system call
iAdrszCarriageReturn:    .int szCarriageReturn
iAdrsZoneConv:           .int sZoneConv  
iAdrszMessNumber:        .int szMessNumber
/******************************************************************/
/*     compute totient of number                                  */ 
/******************************************************************/
/* r0 contains number  */
totient:
    push {r1-r5,lr}           @ save  registers 
    mov r4,r0                 @ totient
    mov r5,r0                 @ save number
    mov r1,#0                 @ for first divisor
1:                            @ begin loop
    mul r3,r1,r1              @ compute square
    cmp r3,r5                 @ compare number
    bgt 4f                    @ end 
    add r1,r1,#2              @ next divisor
    mov r0,r5
    bl division      
    cmp r3,#0                 @ remainder null ?
    bne 3f
2:                            @ begin loop 2
    mov r0,r5
    bl division
    cmp r3,#0
    moveq r5,r2               @ new value = quotient
    beq 2b
 
    mov r0,r4                 @ totient
    bl division
    sub r4,r4,r2              @ compute new totient
3:
    cmp r1,#2                 @ first divisor ?
    moveq r1,#1               @ divisor = 1
    b 1b                      @ and loop
4:
    cmp r5,#1                 @ final value > 1
    ble 5f
    mov r0,r4                 @ totient
    mov r1,r5                 @ divide by value
    bl division
    sub r4,r4,r2              @ compute new totient
5:
    mov r0,r4
100:
    pop {r1-r5,pc}             @ restaur registers

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
.include "../affichage.inc"
 3            9            15           27           39
 81           111          183          243          255
 327          363          471          729          2187
 2199         3063         4359         4375         5571

Arturo

Translation of: Nim
totient: function [n][
    tt: new n
    nn: new n
    i: new 2

    while [nn >= i ^ 2][
        if zero? nn % i [
            while [zero? nn % i]->
                'nn / i
            'tt - tt/i
        ]
        if i = 2 -> 
            i: new 1

        'i + 2
    ]
    if nn > 1 ->
        'tt - tt/nn

    return tt
]

x: new 1
num: new 0

while [num < 20][
    tot: new x
    s: new 0

    while [tot <> 1][
        tot: totient tot
        's + tot
    ]
    if s = x [
        prints ~"|x| "
        inc 'num
    ]
    'x + 2
]
print ""
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

AutoHotkey

MsgBox, 262144, , % result := perfect_totient(20)

perfect_totient(n){
    count := sum := tot := 0, str:= "", m := 1    
    while (count < n) {
        tot := m, sum := 0
        while (tot != 1) {
            tot := totient(tot)
            sum += tot
        }
        if (sum = m) {
            str .= m ", "
            count++
        }
        m++
    }
    return Trim(str, ", ")
}
    
totient(n) {
    tot := n,     i := 2
    while (i*i <= n) {
        if !Mod(n, i) {
            while !Mod(n, i)
                n /= i
            tot -= tot / i
        }
        if (i = 2)
            i := 1
        i+=2
    }
    if (n > 1)
        tot -= tot / n
    return tot
}
Output:
3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571

AWK

# syntax: GAWK -f PERFECT_TOTIENT_NUMBERS.AWK
BEGIN {
    i = 20
    printf("The first %d perfect totient numbers:\n%s\n",i,perfect_totient(i))
    exit(0)
}
function perfect_totient(n,  count,m,str,sum,tot) {
    for (m=1; count<n; m++) {
      tot = m
      sum = 0
      while (tot != 1) {
        tot = totient(tot)
        sum += tot
      }
      if (sum == m) {
        str = str m " "
        count++
      }
    }
    return(str)
}
function totient(n,  i,tot) {
    tot = n
    for (i=2; i*i<=n; i+=2) {
      if (n % i == 0) {
        while (n % i == 0) {
          n /= i
        }
        tot -= tot / i
      }
      if (i == 2) {
        i = 1
      }
    }
    if (n > 1) {
      tot -= tot / n
    }
    return(tot)
}
Output:
The first 20 perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

BASIC

10 DEFINT A-Z
20 N=3
30 S=N: T=0
40 X=S: S=0
50 FOR I=1 TO X-1
60 A=X: B=I
70 IF B>0 THEN C=A: A=B: B=C MOD B: GOTO 70
80 IF A=1 THEN S=S+1
90 NEXT
100 T=T+S
110 IF S>1 GOTO 40
120 IF T=N THEN PRINT N,: Z=Z+1
130 N=N+2
140 IF Z<20 GOTO 30
Output:
 3             9             15            27            39
 81            111           183           243           255
 327           363           471           729           2187
 2199          3063          4359          4375          5571

Applesoft BASIC

Translation of: BASIC
100 HOME
110 PRINT "The first 20 perfect totient numbers:"
120 n = 3
130 s = n : t = 0
140 x = s : s = 0
150 FOR i = 1 TO x-1
160  a = x : b = i
170  IF B > 0 THEN C = A : A = B : B = C - INT(C / B) * B : GOTO 170
180  IF a = 1 THEN s = s+1
190 NEXT i
200 t = t+s
210 IF s > 1 THEN GOTO 140
220 IF t = n THEN PRINT n;" "; : z = z+1
230 n = n+2
240 IF z < 20 THEN GOTO 130
250 END

BASIC256

Translation of: FreeBASIC
found = 0
curr = 3

while found < 20
    sum = Totient(curr)
    toti = sum
    while toti <> 1
        toti = Totient(toti)
        sum += toti
    end while
    if sum = curr then
        print sum
        found += 1
    end if
    curr += 1
end while
end

function GCD(n, d)
    if n = 0 then return d
    if d = 0 then return n
    if n > d then return GCD(d, (n mod d))
    return GCD(n, (d mod n))
end function

function Totient(n)
    phi = 0
    for m = 1 to n
        if GCD(m, n) = 1 then phi += 1
    next m
    return phi
end function

Chipmunk Basic

Works with: Chipmunk Basic version 3.6.4
Works with: GW-BASIC
Works with: MSX BASIC
Works with: QBasic
Translation of: BASIC
100 CLS
110 PRINT "The first 20 perfect totient numbers:"
120 n = 3
130 s = n : t = 0
140 x = s : s = 0
150 FOR i = 1 TO x-1
160  a = x : b = i
170  IF b > 0 THEN c = a : a = b : b = c MOD b : GOTO 170
180  IF a = 1 THEN s = s+1
190 NEXT i
200 t = t+s
210 IF s > 1 THEN GOTO 140
220 IF t = n THEN PRINT n;" "; : z = z+1
230 n = n+2
240 IF z < 20 THEN GOTO 130
250 END

FreeBASIC

Uses the code from the Totient Function example as an include.

#include"totient.bas"

dim as uinteger found = 0, curr = 3, sum, toti

while found < 20
    sum = totient(curr)
    toti = sum
    do
        toti = totient(toti)
        sum += toti
    loop while toti <> 1  
    if sum = curr then
        print sum
        found += 1
    end if
    curr += 1
wend

Gambas

Translation of: FreeBASIC
Public Sub Main()  
  
  Dim found As Integer = 0, curr As Integer = 3
  Dim sum As Integer, toti As Integer
  
  Print "The first 20 perfect totient numbers are:" 
  While found < 20 
    sum = totient(curr) 
    toti = sum 
    Do 
      toti = totient(toti) 
      sum += toti 
    Loop While toti <> 1   
    If sum = curr Then 
      Print sum; ", "; 
      found += 1 
    End If 
    curr += 1 
  Wend
  Print Chr(8); Chr(8); " "

End

Function GCD(n As Integer, d As Integer) As Integer 
  
  If d = 0 Then Return n Else Return GCD(d, n Mod d)
  
End Function 

Function Totient(n As Integer) As Integer 
  
  Dim m As Integer, phi As Integer = 0 

  For m = 1 To n 
    If GCD(m, n) = 1 Then phi += 1 
  Next  
  Return phi 
  
End Function
Output:
Same as FreeBASIC entry.

GW-BASIC

The Chipmunk Basic solution works without any changes.

MSX Basic

The Chipmunk Basic solution works without any changes.

QBasic

The BASIC solution works without any changes. Also The Chipmunk Basic solution works without any changes.

bc

define gcd (i, j) {
    while(j != 0) {
        k = j
        j = i % j
        i = k
    }
    return i
}

define is_perfect_totient (num) {
    tot = 0
    for (i = 1; i < num; i++) {
        if (gcd(num, i) == 1) {
            tot += 1
        }
    }
    sum = tot + cache[tot]
    cache[num] = sum
    return num == sum
}

j = 1
count = 0
# we only go to 15 (not 20) because bc is very slow
while (count <= 15) {
    if (is_perfect_totient(j)) {
        print j, " "
        count += 1
    }
    j += 1
}
print "\n"
quit
Output:
$ time bc -q perfect-totient.bc
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199

real    0m35,553s
user    0m35,437s
sys     0m0,030s


BCPL

get "libhdr"

let gcd(a,b) = b=0 -> a, gcd(b, a rem b)

let totient(n) = valof
$(  let r = 0
    for i=1 to n-1
        if gcd(n,i) = 1 then r := r + 1
    resultis r
$)

let perfect(n) = valof
$(  let sum = 0 and x = n
    $(  x := totient(x)
        sum := sum + x
    $) repeatuntil x = 1
    resultis sum = n
$)

let start() be 
$(  let seen = 0 and n = 3
    while seen < 20
    $(  if perfect(n)
        $(  writef("%N ", n)
            seen := seen + 1
        $)
        n := n + 2
    $)
    wrch('*N')
$)
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

C

Calculates as many perfect Totient numbers as entered on the command line.

#include<stdlib.h>
#include<stdio.h>

long totient(long n){
	long tot = n,i;
	
	for(i=2;i*i<=n;i+=2){
		if(n%i==0){
			while(n%i==0)
				n/=i;
			tot-=tot/i;
		}
		
		if(i==2)
			i=1;
	}
	
	if(n>1)
		tot-=tot/n;
	
	return tot;
}

long* perfectTotients(long n){
	long *ptList = (long*)malloc(n*sizeof(long)), m,count=0,sum,tot;
	
	for(m=1;count<n;m++){
		 tot = m;
		 sum = 0;
        while(tot != 1){
            tot = totient(tot);
            sum += tot;
        }
        if(sum == m)
			ptList[count++] = m;
        }
		
		return ptList;
}

long main(long argC, char* argV[])
{
	long *ptList,i,n;
	
	if(argC!=2)
		printf("Usage : %s <number of perfect Totient numbers required>",argV[0]);
	else{
		n = atoi(argV[1]);
		
		ptList = perfectTotients(n);
		
		printf("The first %d perfect Totient numbers are : \n[",n);
		
		for(i=0;i<n;i++)
			printf(" %d,",ptList[i]);
		printf("\b]");
	}
	
	return 0;
}

Output for multiple runs, a is the default executable file name produced by GCC

C:\rossetaCode>a 10
The first 10 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255]
C:\rossetaCode>a 20
The first 20 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
C:\rossetaCode>a 30
The first 30 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147]
C:\rossetaCode>a 40
The first 40 perfect Totient numbers are :
[ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147, 208191, 441027, 531441, 1594323, 4190263, 4782969, 9056583, 14348907, 43046721, 57395631]

C++

#include <cassert>
#include <iostream>
#include <vector>

class totient_calculator {
public:
    explicit totient_calculator(int max) : totient_(max + 1) {
        for (int i = 1; i <= max; ++i)
            totient_[i] = i;
        for (int i = 2; i <= max; ++i) {
            if (totient_[i] < i)
                continue;
            for (int j = i; j <= max; j += i)
                totient_[j] -= totient_[j] / i;
        }
    }
    int totient(int n) const {
        assert (n >= 1 && n < totient_.size());
        return totient_[n];
    }
    bool is_prime(int n) const {
        return totient(n) == n - 1;
    }
private:
    std::vector<int> totient_;
};

bool perfect_totient_number(const totient_calculator& tc, int n) {
    int sum = 0;
    for (int m = n; m > 1; ) {
        int t = tc.totient(m);
        sum += t;
        m = t;
    }
    return sum == n;
}

int main() {
    totient_calculator tc(10000);
    int count = 0, n = 1;
    std::cout << "First 20 perfect totient numbers:\n";
    for (; count < 20; ++n) {
        if (perfect_totient_number(tc, n))  {
            if (count > 0)
                std::cout << ' ';
            ++count;
            std::cout << n;
        }
    }
    std::cout << '\n';
    return 0;
}
Output:
First 20 perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

CLU

gcd = proc (a, b: int) returns (int)
    while b ~= 0 do
        a, b := b, a//b
    end
    return(a)
end gcd

totient = proc (n: int) returns (int)
    tot: int := 0
    for i: int in int$from_to(1,n-1) do
        if gcd(n,i)=1 then tot := tot + 1 end
    end
    return(tot)
end totient

perfect = proc (n: int) returns (bool)
    sum: int := 0
    x: int := n
    while true do 
        x := totient(x)
        sum := sum + x
        if x=1 then break end
    end
    return(sum = n)
end perfect

start_up = proc ()
    po: stream := stream$primary_output()
    seen: int := 0
    n: int := 3
    while seen < 20 do
        if perfect(n) then
            stream$puts(po, int$unparse(n) || " ")
            seen := seen + 1
        end
        n := n + 2
    end
end start_up
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Cowgol

include "cowgol.coh";

sub gcd(a: uint16, b: uint16): (r: uint16) is
    while b != 0 loop
        r := a;
        a := b;
        b := r % b;
    end loop;
    r := a;
end sub;

sub totient(n: uint16): (tot: uint16) is
    var i: uint16 := 1;
    tot := 0;
    while i < n loop
        if gcd(n,i) == 1 then
            tot := tot + 1;
        end if;
        i := i + 1;
    end loop;
end sub;

sub totientSum(n: uint16): (sum: uint16) is
    var x := n;
    sum := 0;
    while x > 1 loop
        x := totient(x);
        sum := sum + x;
    end loop;
end sub;

var seen: uint8 := 0;
var n: uint16 := 3;
while seen < 20 loop
    if totientSum(n) == n then
        print_i16(n);
        print_char(' ');
        seen := seen + 1;
    end if;
    n := n + 2;
end loop;
print_nl();
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

D

import std.stdio;
import std.numeric;

int[10000] cache;

bool is_perfect_totient(int num) {
    int tot = 0;
    for (int i = 1; i < num; i++) {
        if (gcd(num, i) == 1) {
            tot++;
        }
    }
    int sum = tot + cache[tot];
    cache[num] = sum;
    return num == sum;
}

void main() {
    int j = 1;
    int count = 0;
    while (count < 20) {
        if (is_perfect_totient(j)) {
            printf("%d ", j);
            count++;
        }
        j++;
    }
    writeln(" ");
}
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571


Dart

import "dart:io";

var cache = List<int>.filled(10000, 0, growable: true);

void main() {
    cache[0] = 0;
    var count = 0;
    var i = 1;
    while (count < 20) {
        if (is_perfect_totient(i)) {
            stdout.write("$i ");
            count++;
        }
        i++;
    }
    print(" ");
}

bool is_perfect_totient(n) {
    var tot = 0;
    for (int i = 1; i < n; i++ ) {
       if (i.gcd(n) == 1) {
            tot++;
        }
    }
    int sum = tot + cache[tot];
    cache[n] = sum;
    return n == sum;
}
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Delphi

Translation of: Go
program Perfect_totient_numbers;

{$APPTYPE CONSOLE}

uses
  System.SysUtils;

function totient(n: Integer): Integer;
begin
  var tot := n;
  var i := 2;
  while i * i <= n do
  begin
    if (n mod i) = 0 then
    begin
      while (n mod i) = 0 do
        n := n div i;
      dec(tot, tot div i);
    end;
    if i = 2 then
      i := 1;
    inc(i, 2);
  end;
  if n > 1 then
    dec(tot, tot div n);
  Result := tot;
end;

begin
  var perfect: TArray<Integer>;
  var n := 1;
  while length(perfect) < 20 do
  begin
    var tot := n;
    var sum := 0;
    while tot <> 1 do
    begin
      tot := totient(tot);
      inc(sum, tot);
    end;
    if sum = n then
    begin
      SetLength(perfect, Length(perfect) + 1);
      perfect[High(perfect)] := n;
    end;
    inc(n, 2);
  end;
  writeln('The first 20 perfect totient numbers are:');
  write('[');
  for var e in perfect do
    write(e, ' ');
  writeln(']');
  readln;
end.
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Draco

proc nonrec gcd(word a, b) word:
    word c;
    while b ~= 0 do 
        c := a;
        a := b;
        b := c % b
    od;
    a
corp

proc nonrec totient(word n) word:
    word r, i;
    r := 0;
    for i from 1 upto n-1 do
        if gcd(n,i) = 1 then r := r+1 fi
    od;
    r
corp

proc nonrec perfect(word n) bool:
    word sum, x;
    sum := 0;
    x := n;
    while
        x := totient(x);
        sum := sum + x;
        x ~= 1
    do od;
    sum = n
corp

proc nonrec main() void:
    word seen, n;
    seen := 0;
    n := 3;
    while seen < 20 do
        if perfect(n) then
            write(n, " ");
            seen := seen + 1
        fi;
        n := n + 2
    od
corp
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

EasyLang

func totient n .
   tot = n
   i = 2
   while i <= sqrt n
      if n mod i = 0
         while n mod i = 0
            n = n div i
         .
         tot -= tot div i
      .
      if i = 2
         i = 1
      .
      i += 2
   .
   if n > 1
      tot -= tot div n
   .
   return tot
.
n = 1
while cnt < 20
   tot = n
   sum = 0
   while tot <> 1
      tot = totient tot
      sum += tot
   .
   if sum = n
      write n & " "
      cnt += 1
   .
   n += 2
.
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 

Factor

USING: formatting kernel lists lists.lazy math
math.primes.factors ;

: perfect? ( n -- ? )
    [ 0 ] dip dup [ dup 2 < ] [ totient tuck [ + ] 2dip ] until
    drop = ;

20 1 lfrom [ perfect? ] lfilter ltake list>array
"%[%d, %]\n" printf
Output:
{ 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571 }

Go

package main

import "fmt"

func gcd(n, k int) int {
    if n < k || k < 1 {
        panic("Need n >= k and k >= 1")
    }

    s := 1
    for n&1 == 0 && k&1 == 0 {
        n >>= 1
        k >>= 1
        s <<= 1
    }

    t := n
    if n&1 != 0 {
        t = -k
    }
    for t != 0 {
        for t&1 == 0 {
            t >>= 1
        }
        if t > 0 {
            n = t
        } else {
            k = -t
        }
        t = n - k
    }
    return n * s
}

func totient(n int) int {
    tot := 0
    for k := 1; k <= n; k++ {
        if gcd(n, k) == 1 {
            tot++
        }
    }
    return tot
}

func main() {
    var perfect []int
    for n := 1; len(perfect) < 20; n += 2 {
        tot := n
        sum := 0
        for tot != 1 {
            tot = totient(tot)
            sum += tot
        }
        if sum == n {
            perfect = append(perfect, n)
        }
    }
    fmt.Println("The first 20 perfect totient numbers are:")
    fmt.Println(perfect)
}
Output:
The first 20 perfect totient numbers are:
[3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571]

The following much quicker version uses Euler's product formula rather than repeated invocation of the gcd function to calculate the totient:

package main

import "fmt"

func totient(n int) int {
    tot := n
    for i := 2; i*i <= n; i += 2 {
        if n%i == 0 {
            for n%i == 0 {
                n /= i
            }
            tot -= tot / i
        }
        if i == 2 {
            i = 1
        }
    }
    if n > 1 {
        tot -= tot / n
    }
    return tot
}

func main() {
    var perfect []int
    for n := 1; len(perfect) < 20; n += 2 {
        tot := n
        sum := 0
        for tot != 1 {
            tot = totient(tot)
            sum += tot
        }
        if sum == n {
            perfect = append(perfect, n)
        }
    }
    fmt.Println("The first 20 perfect totient numbers are:")
    fmt.Println(perfect)
}

The output is the same as before.

Haskell

perfectTotients :: [Int]
perfectTotients =
  filter ((==) <*> (succ . sum . tail . takeWhile (1 /=) . iterate φ)) [2 ..]

φ :: Int -> Int
φ = memoize (\n -> length (filter ((1 ==) . gcd n) [1 .. n]))

memoize :: (Int -> a) -> (Int -> a)
memoize f = (!!) (f <$> [0 ..])

main :: IO ()
main = print $ take 20 perfectTotients
Output:
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]

J

Until =: conjunction def 'u^:(0 -: v)^:_'
Filter =: (#~`)(`:6)
totient =: 5&p:
totient_chain =: [: }. (, totient@{:)Until(1={:)
ptnQ =: (= ([: +/ totient_chain))&>

With these definitions I've found the first 28 perfect totient numbers

   PTN =: ptnQ Filter >: i.99999
   #PTN
28
   PTN
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 6561 8751 15723 19683 36759 46791 59049 65535

Java

import java.util.ArrayList;
import java.util.List;

public class PerfectTotientNumbers {

    public static void main(String[] args) {
        computePhi();
        int n = 20;
        System.out.printf("The first %d perfect totient numbers:%n%s%n", n, perfectTotient(n));
    }
    
    private static final List<Integer> perfectTotient(int n) {
        int test = 2;
        List<Integer> results = new ArrayList<Integer>();
        for ( int i = 0 ; i < n ; test++ ) {
            int phiLoop = test;
            int sum = 0;
            do {
                phiLoop = phi[phiLoop];
                sum += phiLoop;
            } while ( phiLoop > 1);
            if ( sum == test ) {
                i++;
                results.add(test);
            }
        }
        return results;
    }

    private static final int max = 100000;
    private static final int[] phi = new int[max+1];

    private static final void computePhi() {
        for ( int i = 1 ; i <= max ; i++ ) {
            phi[i] = i;
        }
        for ( int i = 2 ; i <= max ; i++ ) {
            if (phi[i] < i) continue;
            for ( int j = i ; j <= max ; j += i ) {
                phi[j] -= phi[j] / i;
            }
        }
    }

}
Output:
The first 20 perfect totient numbers:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

JavaScript

(() => {
    'use strict';

    // main :: IO ()
    const main = () =>
        showLog(
            take(20, perfectTotients())
        );

    // perfectTotients :: Generator [Int]
    function* perfectTotients() {
        const
            phi = memoized(
                n => length(
                    filter(
                        k => 1 === gcd(n, k),
                        enumFromTo(1, n)
                    )
                )
            ),
            imperfect = n => n !== sum(
                tail(iterateUntil(
                    x => 1 === x,
                    phi,
                    n
                ))
            );
        let ys = dropWhileGen(imperfect, enumFrom(1))
        while (true) {
            yield ys.next().value - 1;
            ys = dropWhileGen(imperfect, ys)
        }
    }

    // GENERIC FUNCTIONS ----------------------------

    // abs :: Num -> Num
    const abs = Math.abs;

    // dropWhileGen :: (a -> Bool) -> Gen [a] -> [a]
    const dropWhileGen = (p, xs) => {
        let
            nxt = xs.next(),
            v = nxt.value;
        while (!nxt.done && p(v)) {
            nxt = xs.next();
            v = nxt.value;
        }
        return xs;
    };

    // enumFrom :: Int -> [Int]
    function* enumFrom(x) {
        let v = x;
        while (true) {
            yield v;
            v = 1 + v;
        }
    }

    // enumFromTo :: Int -> Int -> [Int]
    const enumFromTo = (m, n) =>
        m <= n ? iterateUntil(
            x => n <= x,
            x => 1 + x,
            m
        ) : [];

    // filter :: (a -> Bool) -> [a] -> [a]
    const filter = (f, xs) => xs.filter(f);

    // gcd :: Int -> Int -> Int
    const gcd = (x, y) => {
        const
            _gcd = (a, b) => (0 === b ? a : _gcd(b, a % b)),
            abs = Math.abs;
        return _gcd(abs(x), abs(y));
    };

    // iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
    const iterateUntil = (p, f, x) => {
        const vs = [x];
        let h = x;
        while (!p(h))(h = f(h), vs.push(h));
        return vs;
    };

    // Returns Infinity over objects without finite length.
    // This enables zip and zipWith to choose the shorter
    // argument when one is non-finite, like cycle, repeat etc

    // length :: [a] -> Int
    const length = xs =>
        (Array.isArray(xs) || 'string' === typeof xs) ? (
            xs.length
        ) : Infinity;

    // memoized :: (a -> b) -> (a -> b)
    const memoized = f => {
        const dctMemo = {};
        return x => {
            const v = dctMemo[x];
            return undefined !== v ? v : (dctMemo[x] = f(x));
        };
    };

    // showLog :: a -> IO ()
    const showLog = (...args) =>
        console.log(
            args
            .map(JSON.stringify)
            .join(' -> ')
        );

    // sum :: [Num] -> Num
    const sum = xs => xs.reduce((a, x) => a + x, 0);

    // tail :: [a] -> [a]
    const tail = xs => 0 < xs.length ? xs.slice(1) : [];

    // take :: Int -> [a] -> [a]
    // take :: Int -> String -> String
    const take = (n, xs) =>
        'GeneratorFunction' !== xs.constructor.constructor.name ? (
            xs.slice(0, n)
        ) : [].concat.apply([], Array.from({
            length: n
        }, () => {
            const x = xs.next();
            return x.done ? [] : [x.value];
        }));

    // MAIN ---
    main();
})();
Output:
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]

jq

Adapted from Julia

Works with: jq

Works with gojq, the Go implementation of jq

One small point of interest in the following implementation is the way the cacheing of totient values is accomplished using a helper function (`cachephi`).

# jq optimizes the recursive call of _gcd in the following:
def gcd(a;b):
  def _gcd:
    if .[1] != 0 then [.[1], .[0] % .[1]] | _gcd else .[0] end;
  [a,b] | _gcd ;

def count(s): reduce s as $x (0; .+1);

# A perfect totient number is an integer that is equal to the sum of its iterated totients. 
# aka Euler's phi function
def totient:
  . as $n
  | count( range(0; .) | select( gcd($n; .) == 1) );

# input: the cache
# output: the updated cache
def cachephi($n):
  ($n|tostring) as $s
  | if (has($s)|not) then .[$s] = ($n|totient) else . end ;

# Emit the stream of perfect totients
def perfect_totients:
  . as $n
  | foreach range(1; infinite) as $i ({cache: {}};
        .tot = $i
        | .tsum = 0
        | until( .tot == 1;
	     .tot as $tot
             | .cache |= cachephi($tot)
             | .tot = .cache[$tot|tostring]
             | .tsum += .tot);
        if .tsum == $i then $i else empty end );

"The first 20 perfect totient numbers:",
limit(20; perfect_totients)
Output:
The first 20 perfect totient numbers:
3
9
15
27
39
81
111
183
243
255
327
363
471
729
2187
2199
3063
4359
4375
5571

Julia

using Primes

eulerphi(n) = (r = one(n); for (p,k) in factor(abs(n)) r *= p^(k-1)*(p-1) end; r)

const phicache = Dict{Int, Int}()

cachedphi(n) = (if !haskey(phicache, n) phicache[n] = eulerphi(n) end; phicache[n])

function perfecttotientseries(n)
    perfect = Vector{Int}()
    i = 1
    while length(perfect) < n
        tot = i
        tsum = 0
        while tot != 1
            tot = cachedphi(tot)
            tsum += tot
        end
        if tsum == i
            push!(perfect, i)
        end
        i += 1
    end
    perfect
end

println("The first 20 perfect totient numbers are: $(perfecttotientseries(20))")
println("The first 40 perfect totient numbers are: $(perfecttotientseries(40))")
Output:

The first 20 perfect totient numbers are: [3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]
The first 40 perfect totient numbers are: [3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571, 6561, 8751, 15723, 19683, 36759, 46791, 59049, 65535, 140103, 177147, 208191, 441027, 531441, 1594323, 4190263, 4782969, 9056583, 14348907, 43046721, 57395631]

Kotlin

Translation of: Go
// Version 1.3.21

fun totient(n: Int): Int {
    var tot = n
    var nn = n
    var i = 2
    while (i * i <= nn) {
        if (nn % i == 0) {
            while (nn % i == 0) nn /= i
            tot -= tot / i
        }
        if (i == 2) i = 1
        i += 2
    }
    if (nn > 1) tot -= tot / nn
    return tot
}

fun main() {
    val perfect = mutableListOf<Int>()
    var n = 1
    while (perfect.size < 20) {
        var tot = n
        var sum = 0
        while (tot != 1) {
            tot = totient(tot)
            sum += tot
        }
        if (sum == n) perfect.add(n)
        n += 2
    }
    println("The first 20 perfect totient numbers are:")
    println(perfect)
}
Output:
The first 20 perfect totient numbers are:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

Lua

local function phi(n)
   assert(type(n) == 'number', 'n must be a number!')
   local result, i = n, 2
   while i <= n do
      if n % i == 0 then
	 while n % i == 0 do n = n // i end
	 result = result - (result // i)
      end
      if i == 2 then i = 1 end
      i = i + 2
   end
   if n > 1 then result = result - (result // n) end
   return result
end

local function phi_iter(n)
   assert(type(n) == 'number', 'n must be a number!')
   if n == 2 then
      return phi(n) + 0
   else
      return phi(n) + phi_iter(phi(n))
   end
end

local i, count = 2, 0
while count ~= 20 do
   if i == phi_iter(i) then
      io.write(i, ' ')
      count = count + 1
   end
   i = i + 1
end
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 

MAD

            NORMAL MODE IS INTEGER
            
            INTERNAL FUNCTION(Y,Z)
            ENTRY TO GCD.
            A = Y
            B = Z
LOOP        WHENEVER A.E.B, FUNCTION RETURN A
            WHENEVER A.G.B, A = A-B 
            WHENEVER A.L.B, B = B-A
            TRANSFER TO LOOP
            END OF FUNCTION
            
            INTERNAL FUNCTION(C)
            ENTRY TO TOTENT.
            E = 0
            THROUGH LOOP, FOR D=1, 1, D.GE.C
LOOP        WHENEVER GCD.(C,D).E.1, E = E+1
            FUNCTION RETURN E
            END OF FUNCTION
            
            INTERNAL FUNCTION(G)
            ENTRY TO PERFCT.
            H = G
            I = 0
LOOP        H = TOTENT.(H)
            I = I+H
            WHENEVER H.G.1, TRANSFER TO LOOP
            FUNCTION RETURN I.E.G
            END OF FUNCTION
            
            SEEN = 0
            THROUGH LOOP, FOR N=3, 2, SEEN.GE.20
            WHENEVER PERFCT.(N)
                SEEN = SEEN+1
                PRINT FORMAT FMT,N
            END OF CONDITIONAL
LOOP        CONTINUE

            VECTOR VALUES FMT = $I9*$
            END OF PROGRAM
Output:
        3
        9
       15
       27
       39
       81
      111
      183
      243
      255
      327
      363
      471
      729
     2187
     2199
     3063
     4359
     4375
     5571

Maple

iterated_totient := proc(n::posint, total)
 if NumberTheory:-Totient(n) = 1 then
   return total + 1;
 else
   return iterated_totient(NumberTheory:-Totient(n), total + NumberTheory:-Totient(n));
 end if;
end proc:

isPerfect := n -> evalb(iterated_totient(n, 0) = n):

count := 0:
num_list := []:
for i while count < 20 do
 if isPerfectTotient(i) then
  num_list := [op(num_list), i];
  count := count + 1;
 end if;
end do;
num_list;
Output:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

Mathematica / Wolfram Language

ClearAll[PerfectTotientNumberQ]
PerfectTotientNumberQ[n_Integer] := Total[Rest[Most[FixedPointList[EulerPhi, n]]]] == n
res = {};
i = 0;
While[Length[res] < 20,
 i++;
 If[PerfectTotientNumberQ[i], AppendTo[res, i]]
 ]
res
Output:
{3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571}

Maxima

totientseq(n):=block(
    [depth:1,L:n],
    while totient(L)#1 do (L:totient(L),depth:depth+1),
    j:n,
    makelist(j:totient(j),depth),
    append([n],%%))$

perfect_totient_p(n):=if n=1 then false else is(equal(n,apply("+",rest(totientseq(n)))))$

/* Function that returns a list of the first len perfect totient numbers */
perfect_totient_count(len):=block(
    [i:1,count:0,result:[]],
    while count<len do (if perfect_totient_p(i) then (result:endcons(i,result),count:count+1),i:i+1),
    result)$

/*Test cases */
perfect_totient_count(20);
Output:
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]


Miranda

main :: [sys_message]
main = [Stdout (show (take 20 perfect) ++ "\n")]

perfect :: [num]
perfect = [k | k<-[1..]; k = totientsum k]

totientsum :: num->num
totientsum = sum . takewhile (>0) . tl . iterate totient

totient :: num->num
totient n = #[k | k<-[1..n-1]; n $gcd k = 1]

gcd :: num->num->num
gcd a 0 = a
gcd a b = gcd b (a mod b)
Output:
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]

Modula-2

MODULE PerfectTotient;
FROM InOut IMPORT WriteCard, WriteLn;

CONST Amount = 20;
VAR n, seen: CARDINAL;

PROCEDURE GCD(a, b: CARDINAL): CARDINAL;
VAR c: CARDINAL;
BEGIN
    WHILE b # 0 DO
        c := a MOD b;
        a := b;
        b := c;
    END;
    RETURN a;
END GCD;

PROCEDURE Totient(n: CARDINAL): CARDINAL;
VAR i, tot: CARDINAL;
BEGIN
    tot := 0;
    FOR i := 1 TO n/2 DO
        IF GCD(n,i) = 1 THEN
            tot := tot + 1;
        END;
    END;
    RETURN tot;
END Totient;

PROCEDURE Perfect(n: CARDINAL): BOOLEAN;
VAR sum, x: CARDINAL;
BEGIN
    sum := 0;
    x := n;
    REPEAT
        x := Totient(x);
        sum := sum + x;
    UNTIL x = 1;
    RETURN sum = n;
END Perfect;

BEGIN
    seen := 0;
    n := 3;
    WHILE seen < Amount DO
        IF Perfect(n) THEN
            WriteCard(n,5);
            seen := seen + 1;
            IF seen MOD 14 = 0 THEN
                WriteLn();
            END;
        END;
        n := n + 2;
    END;
    WriteLn();
END PerfectTotient.
Output:
    3    9   15   27   39   81  111  183  243  255  327  363  471  729
 2187 2199 3063 4359 4375 5571

Nim

import strformat

func totient(n: int): int =
  var tot = n
  var nn = n
  var i = 2
  while i * i <= nn:
    if nn mod i == 0:
      while nn mod i == 0:
        nn = nn div i
      dec tot, tot div i
    if i == 2:
      i = 1
    inc i, 2
  if nn > 1:
    dec tot, tot div nn
  tot

var n = 1
var num = 0
echo "The first 20 perfect totient numbers are:"
while num < 20:
  var tot = n
  var sum = 0
  while tot != 1:
    tot = totient(tot)
    inc sum, tot
  if sum == n:
    write(stdout, fmt"{n} ")
    inc num
  inc n, 2
write(stdout, "\n")
Output:
The first 20 perfect totient numbers are:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Pascal

I am using a really big array to calculate the Totient of every number up to 1.162.261.467, the 46.te perfect totient number. ( I can only test up to 1.5e9 before I get - out of memory ( 6.5 GB ) ). I'm doing this, by using only prime numbers to calculate the Totientnumbers. After that I sum up the totient numbers Tot[i] := Tot[i]+Tot[Tot[i]]; Tot[Tot[i]] is always < Tot[i], so it is already calculated. So I needn't calculations going trough so whole array ending up in Tot[2].
With limit 57395631 it takes "real 0m2,025s "
The c-program takes "real 3m12,481s"
A test with using floating point/SSE is by 2 seconds faster for 46.th perfect totient number, with the coming new Version of Freepascal 3.2.0

program Perftotient;
{$IFdef FPC}
  {$MODE DELPHI} {$CodeAlign proc=32,loop=1}
{$IFEND}
uses
  sysutils;
const
  cLimit = 57395631;//177147;//4190263;//57395631;//1162261467;//
//global
var
  TotientList : array of LongWord;
  Sieve : Array of byte;
  SolList : array of LongWord;
  T1,T0 : INt64;

procedure SieveInit(svLimit:NativeUint);
var
  pSieve:pByte;
  i,j,pr :NativeUint;
Begin
  svlimit := (svLimit+1) DIV 2;
  setlength(sieve,svlimit+1);
  pSieve := @Sieve[0];
  For i := 1 to svlimit do
  Begin
    IF pSieve[i]= 0 then
    Begin
      pr := 2*i+1;
      j := (sqr(pr)-1) DIV 2;
      IF  j> svlimit then
        BREAK;
      repeat
        pSieve[j]:= 1;
        inc(j,pr);
      until j> svlimit;
    end;
  end;
  pr := 0;
  j := 0;
  For i := 1 to svlimit do
  Begin
    IF pSieve[i]= 0 then
    Begin
      pSieve[j] := i-pr;
      inc(j);
      pr := i;
    end;
  end;
  setlength(sieve,j);
end;

procedure TotientInit(len: NativeUint);
var
  pTotLst : pLongWord;
  pSieve  : pByte;
  test : double;
  i: NativeInt;
  p,j,k,svLimit : NativeUint;
Begin
  SieveInit(len);
  T0:= GetTickCount64;
  setlength(TotientList,len+12);
  pTotLst := @TotientList[0];

//Fill totient with simple start values for odd and even numbers
//and multiples of 3
  j := 1;
  k := 1;// k == j DIV 2
  p := 1;// p == j div 3;
  repeat
    pTotLst[j] := j;//1
    pTotLst[j+1] := k;//2 j DIV 2; //2
    inc(k);
    inc(j,2);
    pTotLst[j] := j-p;//3
    inc(p);
    pTotLst[j+1] := k;//4  j div 2
    inc(k);
    inc(j,2);
    pTotLst[j] := j;//5
    pTotLst[j+1] := p;//6   j DIV 3 <=  (div 2) * 2 DIV/3
    inc(j,2);
    inc(p);
    inc(k);
  until j>len+6;

//correct values of totient by prime factors
  svLimit := High(sieve);
  p := 3;// starting after 3
  pSieve := @Sieve[svLimit+1];
  i := -svlimit;
  repeat
    p := p+2*pSieve[i];
    j := p;
//  Test := (1-1/p);
    while j <= cLimit do
    Begin
//    pTotLst[j] := trunc(pTotLst[j]*Test);
      k:= pTotLst[j];
      pTotLst[j]:= k-(k DIV p);
      inc(j,p);
    end;
    inc(i);
  until i=0;

  T1:= GetTickCount64;
  writeln('totient calculated in ',T1-T0,' ms');
  setlength(sieve,0);
end;

function GetPerfectTotient(len: NativeUint):NativeUint;
var
  pTotLst : pLongWord;
  i,sum: NativeUint;
Begin
  T0:= GetTickCount64;
  pTotLst := @TotientList[0];
  setlength(SolList,100);
  result := 0;
  For i := 3 to Len do
  Begin
    sum := pTotLst[i];
    pTotLst[i] := sum+pTotLst[sum];
  end;
  //Check for solution ( IF ) in seperate loop ,reduces time consuption ~ 12% for this function
  For i := 3 to Len do
    IF pTotLst[i] =i then
    Begin
      SolList[result] := i;
      inc(result);
    end;

  T1:= GetTickCount64;
  setlength(SolList,result);
  writeln('calculated totientsum in ',T1-T0,' ms');
  writeln('found ',result,' perfect totient numbers');
end;

var
  j,k : NativeUint;

Begin
  TotientInit(climit);
  GetPerfectTotient(climit);
  k := 0;
  For j := 0 to High(Sollist) do
  Begin
    inc(k);
    if k > 4 then
    Begin
      writeln(Sollist[j]);
      k := 0;
    end
    else
      write(Sollist[j],',');
  end;
end.
OutPut
compiled with fpc 3.0.4 -O3 "Perftotient.pas"
totient calculated in 32484 ms
calculated totientsum in 8244 ms
found 46 perfect totient numbers
3,9,15,27,39
81,111,183,243,255
327,363,471,729,2187
2199,3063,4359,4375,5571
6561,8751,15723,19683,36759
46791,59049,65535,140103,177147
208191,441027,531441,1594323,4190263
4782969,9056583,14348907,43046721,57395631
129140163,172186887,236923383,387420489,918330183
1162261467,
real  0m47,690s
*
found 40 perfect totient numbers
...
real  0m2,025s

Perl

Library: ntheory
use ntheory qw(euler_phi);

sub phi_iter {
    my($p) = @_;
    euler_phi($p) + ($p == 2 ? 0 : phi_iter(euler_phi($p)));
}

my @perfect;
for (my $p = 2; @perfect < 20 ; ++$p) {
    push @perfect, $p if $p == phi_iter($p);
}

printf "The first twenty perfect totient numbers:\n%s\n", join ' ', @perfect;
Output:
The first twenty Perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Phix

Translation of: Go
with javascript_semantics
function totient(integer n)
    integer tot = n, i = 2
    while i*i<=n do
        if mod(n,i)=0 then
            while true do
                n /= i
                if mod(n,i)!=0 then exit end if
            end while
            tot -= tot/i
        end if
        i += iff(i=2?1:2)
    end while
    if n>1 then
        tot -= tot/n
    end if
    return tot
end function
 
sequence perfect = {}
integer n = 1
while length(perfect)<20 do
    integer tot = n,
            tsum = 0
    while tot!=1 do
        tot = totient(tot)
        tsum += tot
    end while
    if tsum=n then
        perfect &= n
    end if
    n += 2
end while
printf(1,"The first 20 perfect totient numbers are:\n")
?perfect
Output:
The first 20 perfect totient numbers are:
{3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571}

PicoLisp

(gc 16)
(de gcd (A B)
   (until (=0 B)
      (let M (% A B)
         (setq A B B M) ) )
   (abs A) )
(de totient (N)
   (let C 0
      (for I N
         (and (=1 (gcd N I)) (inc 'C)) )
      C ) )
(de totients (NIL)
   (let (C 0  N 1)
      (while (> 20 C)
         (let (Cur N  S 0)
            (while (> Cur 1)
               (inc 'S (setq Cur (totient Cur))) )
            (when (= S N)
               (inc 'C)
               (prin N " ")
               (flush) )
            (inc 'N 2) ) )
      (prinl) ) )
(totients)
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

PILOT

C :z=0
  :n=3
*num
C :s=0
  :x=n
*perfect
C :t=0
  :i=1
*totient
C :a=x
  :b=i
*gcd
C :c=a-b*(a/b)
  :a=b
  :b=c
J (b>0):*gcd
C (a=1):t=t+1
C :i=i+1
J (i<=x-1):*totient
C :x=t
  :s=s+x
J (x<>1):*perfect
T (s=n):#n
C (s=n):z=z+1
C :n=n+2
J (z<20):*num
E :
Output:
3
9
15
27
39
81
111
183
243
255
327
363
471
729
2187
2199
3063
4359
4375
5571

PL/I

perfectTotient: procedure options(main);
    gcd: procedure(aa, bb) returns(fixed);
        declare (aa, bb, a, b, c) fixed;
        a = aa; 
        b = bb;
        do while(b ^= 0);
            c = a;
            a = b;
            b = mod(c, b);
        end;
        return(a);
    end gcd;
    
    totient: procedure(n) returns(fixed);
        declare (i, n, s) fixed;
        s = 0;
        do i=1 to n-1;
            if gcd(n,i) = 1 then s = s+1;
        end;
        return(s);
    end totient;
    
    perfect: procedure(n) returns(bit);
        declare (n, x, sum) fixed;
        sum = 0;
        x = n;
        do while(x > 1);
            x = totient(x);
            sum = sum + x;
        end;
        return(sum = n);
    end perfect;
    
    declare (n, seen) fixed;
    seen = 0;
    do n=3 repeat(n+2) while(seen<20);
        if perfect(n) then do;
            put edit(n) (F(5));
            seen = seen+1;
            if mod(seen,10) = 0 then put skip;
        end;
    end;
end perfectTotient;
Output:
    3    9   15   27   39   81  111  183  243  255
  327  363  471  729 2187 2199 3063 4359 4375 5571

PL/M

100H:
BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

PRINT$NUMBER: PROCEDURE (N);
    DECLARE S (7) BYTE INITIAL ('..... $');
    DECLARE (N, P) ADDRESS, C BASED P BYTE;
    P = .S(5);
DIGIT:
    P = P - 1;
    C = N MOD 10 + '0';
    N = N / 10;
    IF N > 0 THEN GO TO DIGIT;
    CALL PRINT(P);
END PRINT$NUMBER;

GCD: PROCEDURE (A, B) ADDRESS;
    DECLARE (A, B, C) ADDRESS;
    DO WHILE B <> 0;
        C = A;
        A = B;
        B = C MOD B;
    END;
    RETURN A;
END GCD;

TOTIENT: PROCEDURE (N) ADDRESS;
    DECLARE (I, N, S) ADDRESS;
    S = 0;
    DO I=1 TO N-1;
        IF GCD(N,I) = 1 THEN S = S+1;
    END;
    RETURN S;
END TOTIENT;

PERFECT: PROCEDURE (N) BYTE;
    DECLARE (N, X, SUM) ADDRESS;
    X = N;
    SUM = 0;
    DO WHILE X > 1;
        X = TOTIENT(X);
        SUM = SUM + X;
    END;
    RETURN SUM = N;
END PERFECT;

DECLARE N ADDRESS, SEEN BYTE;
SEEN = 0;
N = 3;
DO WHILE SEEN < 20;
    IF PERFECT(N) THEN DO;
        CALL PRINT$NUMBER(N);
        SEEN = SEEN+1;
    END;
    N = N+2;
END;
CALL EXIT;
EOF
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Python

from math import gcd
from functools import lru_cache
from itertools import islice, count

@lru_cache(maxsize=None)
def  φ(n):
    return sum(1 for k in range(1, n + 1) if gcd(n, k) == 1)

def perfect_totient():
    for n0 in count(1):
        parts, n = 0, n0
        while n != 1:
            n = φ(n)
            parts += n
        if parts == n0:
            yield n0
        

if __name__ == '__main__':
    print(list(islice(perfect_totient(), 20)))
Output:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]


Alternatively, by composition of generic functions:

'''Perfect totient numbers'''

from functools import lru_cache
from itertools import count, islice
from math import gcd
import operator


# perfectTotients :: () -> [Int]
def perfectTotients():
    '''An unbounded sequence of perfect totients.
       OEIS A082897
    '''
    def p(x):
        return x == 1 + sum(
            iterateUntil(eq(1))(
                phi
            )(x)[1:]
        )
    return filter(p, count(2))


@lru_cache(maxsize=None)
def phi(n):
    '''Euler's totient function.
       The count of integers up to n which
       are relatively prime to n.
    '''
    return len([
        x for x in enumFromTo(1)(n)
        if 1 == gcd(n, x)
    ])


# TEST ----------------------------------------------------
# main :: IO ()
def main():
    '''First twenty perfect totient numbers'''
    print(
        take(20)(
            perfectTotients()
        )
    )


# GENERIC -------------------------------------------------

# curry :: ((a, b) -> c) -> a -> b -> c
def curry(f):
    '''A curried function derived
       from an uncurried function.
    '''
    return lambda x: lambda y: f(x, y)


# enumFromTo :: Int -> Int -> [Int]
def enumFromTo(m):
    '''Enumeration of integer values [m..n]'''
    return lambda n: range(m, 1 + n)


# eq (==) :: Eq a => a -> a -> Bool
eq = curry(operator.eq)
'''True if a and b are comparable and a equals b.'''


# iterateUntil :: (a -> Bool) -> (a -> a) -> a -> [a]
def iterateUntil(p):
    '''A list of the results of repeated
       applications of f, until p matches.
    '''
    def go(f, x):
        vs = []
        v = x
        while True:
            if p(v):
                break
            vs.append(v)
            v = f(v)
        return vs

    return lambda f: lambda x: go(f, x)


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    return lambda xs: (
        xs[0:n]
        if isinstance(xs, (list, tuple))
        else list(islice(xs, n))
    )


# MAIN ---
if __name__ == '__main__':
    main()
Output:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

Quackery

totient is defined at Totient function#Quackery.

  [ 0 over
    [ dup 1 != while 
      totient
      dup dip +
      again ]  
    drop = ]                is perfecttotient ( n --> b )    
 
  [ [] 1
    [ dup perfecttotient if
        [ dup dip join ]
      2 +
    over size 20 = 
    until ] drop ]          is task            (   -->  )
Output:
[ 3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 ]

Racket

#lang racket
(require math/number-theory)

(define (tot n)
  (match n
    [1 0]
    [n (define t (totient n))
       (+ t (tot t))]))

(define (perfect? n)
  (= n (tot n)))

(define-values (ns i)
  (for/fold ([ns '()] [i 0])
            ([n (in-naturals 1)]
             #:break (= i 20)
             #:when (perfect? n))
    (values (cons n ns) (+ i 1))))

(reverse ns)

Raku

(formerly Perl 6)

Works with: Rakudo version 2018.11
use Prime::Factor;

my \𝜑 = lazy 0, |(1..*).hyper.map: -> \t { t * [*] t.&prime-factors.squish.map: 1 - 1/* }
my \𝜑𝜑 = Nil, |(3, *+2 … *).grep: -> \p { p == sum 𝜑[p], { 𝜑[$_] } … 1 };

put "The first twenty Perfect totient numbers:\n",  𝜑𝜑[1..20];
Output:
The first twenty Perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

REXX

unoptimized

/*REXX program  calculates and displays  the first   N   perfect totient  numbers.      */
parse arg N .                                    /*obtain optional argument from the CL.*/
if N==''  |  N==","  then N= 20                  /*Not specified?  Then use the default.*/
@.= .                                            /*memoization array of totient numbers.*/
p= 0                                             /*the count of perfect    "       "    */
$=                                               /*list of the     "       "       "    */
    do j=3  by 2  until p==N;   s= phi(j)        /*obtain totient number for a number.  */
    a= s                                         /* [↓]  search for a perfect totient #.*/
                                do until a==1;           a= phi(a);            s= s + a
                                end   /*until*/
    if s\==j  then iterate                       /*Is  J  not a perfect totient number? */
    p= p + 1                                     /*bump count of perfect totient numbers*/
    $= $ j                                       /*add to perfect totient numbers list. */
    end   /*j*/

say 'The first '  N  " perfect totient numbers:" /*display the header to the terminal.  */
say strip($)                                     /*   "     "  list.   "  "     "       */
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
gcd: parse arg x,y;   do  until y==0;  parse value  x//y  y   with   y  x;  end;  return x
/*──────────────────────────────────────────────────────────────────────────────────────*/
phi: procedure expose @.; parse arg z;   if @.z\==.  then return @.z /*was found before?*/
     #= z==1;         do m=1  for z-1;   if gcd(m, z)==1  then #= # + 1;    end  /*m*/
     @.z= #;   return #                                              /*use memoization. */
output   when using the default input of :     20
The first  20  perfect totient numbers:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

optimized

This REXX version is over   twice   as fast as the unoptimized version.

It takes advantage of the fact that all known perfect totient numbers less than   322   have at least one of these factors:   3,   5,   or   7

(322   =   31,381,059,609).

/*REXX program  calculates and displays  the first   N   perfect totient  numbers.      */
parse arg N .                                    /*obtain optional argument from the CL.*/
if N==''  |  N==","  then N= 20                  /*Not specified?  Then use the default.*/
@.= .                                            /*memoization array of totient numbers.*/
p= 0                                             /*the count of perfect    "       "    */
$=                                               /*list of the     "       "       "    */
     do j=3  by 2  until p==N                    /*obtain the totient number for index J*/
     if j//3\==0   then  if j//5\==0   then  if j//7\==0   then iterate
     s= phi(j);  a= s                            /* [↑]  J  must have 1 of these factors*/
                               do until a==1;  if @.a==.  then a= phi(a);    else a= @.a
                                               s= s + a
                               end   /*until*/
     if s\==j  then iterate                      /*Is  J  not a perfect totient number? */
     p= p + 1                                    /*bump count of perfect totient numbers*/
     $= $ j                                      /*add to perfect totient numbers list. */
     end   /*j*/

say 'The first '  N  " perfect totient numbers:" /*display the header to the terminal.  */
say strip($)                                     /*   "     "  list.   "  "     "       */
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
gcd: parse arg x,y;   do  until y==0;  parse value  x//y  y   with   y  x;  end;  return x
/*──────────────────────────────────────────────────────────────────────────────────────*/
phi: procedure expose @.; parse arg z;   if @.z\==.  then return @.z /*was found before?*/
     #= z==1;         do m=1  for z-1;   if gcd(m, z)==1  then #= # + 1;    end  /*m*/
     @.z= #;   return #                                              /*use memoization. */
output   is identical to the 1st REXX version.



Ring

perfect = []
n = 1
while len(perfect)<20
      totnt = n
      tsum = 0
      while totnt!=1 
            totnt = totient(totnt)
            tsum = tsum + totnt
      end
      if tsum=n 
         add(perfect,n)
      ok
      n = n + 2 
end
see "The first 20 perfect totient numbers are:" + nl
showarray(perfect)

func totient n
     totnt = n
     i = 2
     while i*i <= n
           if n%i=0 
              while true
                    n = n/i
                    if n%i!=0 
                       exit
                    ok
              end 
              totnt = totnt - totnt/i
           ok
           if i=2
              i = i + 1
           else
              i = i + 2
           ok
     end
    if n>1 
       totnt = totnt - totnt/n
    ok
    return totnt
 
func showArray array
     txt = ""
     see "["
     for n = 1 to len(array)
         txt = txt + array[n] + ","
     next
     txt = left(txt,len(txt)-1)
     txt = txt + "]"
     see txt
The first 20 perfect totient numbers are:
[3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571]

RPL

Works with: HP version 49
« 0 OVER
  WHILE DUP 1 ≠ REPEAT
     EULER SWAP OVER + SWAP
  END DROP ==
» 'PTOT?' STO

« → n
  « { } 1
    WHILE n REPEAT
       IF DUP PTOT? THEN
          SWAP OVER + SWAP
          'n' 1 STO-
       END 
    2 + @ Perfect totient numbers are odd
    END DROP 
» » 'TASK' STO
20 TASK
Output:
1: { 3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 }

Ruby

require "prime"

class Integer 

  def φ
    prime_division.inject(1) {|res, (pr, exp)| res *= (pr-1) * pr**(exp-1) } 
  end

  def perfect_totient?
    f, sum = self, 0
    until f == 1 do
      f = f.φ
      sum += f
    end
    self == sum
  end

end

puts (1..).lazy.select(&:perfect_totient?).first(20).join(", ")
Output:
3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571

Rust

use num::integer::gcd;

static mut CACHE:[i32;10000] = [0; 10000];

fn is_perfect_totient(n: i32) -> bool {
    let mut  tot = 0;
    for i in 1..n {
        if gcd(n, i) == 1 {
            tot += 1
        }
    }
    unsafe {
        let sum = tot + CACHE[tot as usize];
        CACHE[n as usize] = sum;
        return n == sum;
    }
}

fn main() {
    let mut i = 1;
    let mut count = 0;
    while count < 20 {
        if is_perfect_totient(i) {
            print!("{} ", i);
            count += 1;
        }
        i += 1;
    }
    println!("{}", " ")
}
Output:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

Scala

In this example we define a function which determines whether or not a number is a perfect totient number, then use it to construct a lazily evaluated list which contains all perfect totient numbers. Calculating the first n perfect totient numbers only requires taking the first n elements from the list.

//List of perfect totients
def isPerfectTotient(num: Int): Boolean = LazyList.iterate(totient(num))(totient).takeWhile(_ != 1).foldLeft(0L)(_+_) + 1 == num
def perfectTotients: LazyList[Int] = LazyList.from(3).filter(isPerfectTotient)

//Totient Function
@tailrec def scrub(f: Long, num: Long): Long = if(num%f == 0) scrub(f, num/f) else num
def totient(num: Long): Long = LazyList.iterate((num, 2: Long, num)){case (ac, i, n) => if(n%i == 0) (ac*(i - 1)/i, i + 1, scrub(i, n)) else (ac, i + 1, n)}.dropWhile(_._3 != 1).head._1
Output:
scala> perfectTotients.take(20).mkString(", ")
res1: String = 3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571

Sidef

func perfect_totient({.<=1}, sum=0) { sum }
func perfect_totient(     n, sum=0) { __FUNC__(var(t = n.euler_phi), sum + t) }

say (1..Inf -> lazy.grep {|n| perfect_totient(n) == n }.first(20))
Output:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

Swift

public func totient(n: Int) -> Int {
  var n = n
  var i = 2
  var tot = n

  while i * i <= n {
    if n % i == 0 {
      while n % i == 0 {
        n /= i
      }

      tot -= tot / i
    }

    if i == 2 {
      i = 1
    }

    i += 2
  }

  if n > 1 {
    tot -= tot / n
  }

  return tot
}

public struct PerfectTotients: Sequence, IteratorProtocol {
  private var m = 1

  public init() { }

  public mutating func next() -> Int? {
    while true {
      defer {
        m += 1
      }

      var tot = m
      var sum = 0

      while tot != 1 {
        tot = totient(n: tot)
        sum += tot
      }

      if sum == m {
        return m
      }
    }
  }
}

print("The first 20 perfect totient numbers are:")
print(Array(PerfectTotients().prefix(20)))
Output:
The first 20 perfect totient numbers are:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]


Tcl

array set cache {}

set cache(0) 0

proc gcd {i j} {
   while {$j != 0} {
      set t [expr {$i % $j}]
      set i $j
      set j $t
   }
   return $i
}

proc is_perfect_totient {n} {
    global cache
    set tot 0
    for {set i 1} {$i < $n} {incr i} {
        if [ expr [gcd $i $n] == 1 ] {
            incr tot
        }
    }
    set sum [expr $tot + $cache($tot)]
    set cache($n) $sum
    return [ expr $n == $sum ? 1 : 0]
}

set i 1
set count 0
while { $count < 20 } {
    if [ is_perfect_totient $i ] {
        puts -nonewline  "${i} "
        incr count
    }
    incr i
}
puts ""
Output:
$ time tclsh perfect-totient.tcl
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571

real    1m18,058s
user    1m17,593s
sys     0m0,046s

Wren

Translation of: Go
Library: Wren-math

The version using Euler's product formula.

import "./math" for Int

var perfect = []
var n = 1
while (perfect.count < 20) {
    var tot = n
    var sum = 0
    while (tot != 1) {
        tot = Int.totient(tot)
        sum = sum + tot
    }
    if (sum == n) perfect.add(n)
    n = n + 2
}
System.print("The first 20 perfect totient numbers are:")
System.print(perfect)
Output:
The first 20 perfect totient numbers are:
[3, 9, 15, 27, 39, 81, 111, 183, 243, 255, 327, 363, 471, 729, 2187, 2199, 3063, 4359, 4375, 5571]

XPL0

Translation of: Wren
func Totient(N);
int  N, Tot, I;
[Tot:= N;  I:= 2;
while I*I <= N do
    [if rem(N/I) = 0 then
        [while rem(N/I) = 0 do  N:= N/I;
        Tot:= Tot - Tot/I;
        ];
    if I = 2 then I:= 1;
    I:= I+2;
    ];
if N > 1 then Tot:= Tot - Tot/N;
return Tot;
];

proc ShowPerfect;
int  N, Count, Tot, Sum;
[N:= 1;  Count:= 0;
while Count < 20 do
    [Tot:= N;  Sum:= 0;
    while Tot # 1 do
        [Tot:= Totient(Tot);
        Sum:= Sum + Tot;
        ];
    if Sum = N then
        [IntOut(0, N);  ChOut(0, ^ );
        Count:= Count+1;
        ];
    N:= N+2;
    ];
];

[Text(0, "The first 20 perfect totient numbers are:^m^j");
ShowPerfect;
]
Output:
The first 20 perfect totient numbers are:
3 9 15 27 39 81 111 183 243 255 327 363 471 729 2187 2199 3063 4359 4375 5571 

zkl

var totients=List.createLong(10_000,0);	// cache
fcn totient(n){ if(phi:=totients[n]) return(phi);
   totients[n]=[1..n].reduce('wrap(p,k){ p + (n.gcd(k)==1) }) 
}
fcn perfectTotientW{	// -->iterator
   (1).walker(*).tweak(fcn(z){
      parts,n := 0,z;
      while(n!=1){ parts+=( n=totient(n) ) }
      if(parts==z) z else Void.Skip;
   })
}
perfectTotientW().walk(20).println();
Output:
L(3,9,15,27,39,81,111,183,243,255,327,363,471,729,2187,2199,3063,4359,4375,5571)