# Hilbert curve

Hilbert curve
You are encouraged to solve this task according to the task description, using any language you may know.

Produce a graphical or ASCII-art representation of a Hilbert curve of at least order 3.

## 11l

Translation of: D
```T Point
x = 0
y = 0

F rot(n, rx, ry)
I !ry
I rx
.x = (n - 1) - .x
.y = (n - 1) - .y

swap(&.x, &.y)

F calcD(n)
V d = 0
V s = n >> 1
L s > 0
V rx = ((.x [&] s) != 0)
V ry = ((.y [&] s) != 0)
d += s * s * ((I rx {3} E 0) (+) (I ry {1} E 0))
.rot(s, rx, ry)
s >>= 1
R d

F fromD(n, d)
V p = Point()
V t = d
V s = 1
L s < n
V rx = ((t [&] 2) != 0)
V ry = (((t (+) (I rx {1} E 0)) [&] 1) != 0)
p.rot(s, rx, ry)
p.x += (I rx {s} E 0)
p.y += (I ry {s} E 0)
t >>= 2
s <<= 1
R p

F getPointsForCurve(n)
[Point] points
L(d) 0 .< n * n
points [+]= fromD(n, d)
R points

F drawCurve(points, n)
V canvas = [[‘ ’] * (n * 3 - 2)] * n

L(i) 1 .< points.len
V lastPoint = points[i - 1]
V curPoint = points[i]
V deltaX = curPoint.x - lastPoint.x
V deltaY = curPoint.y - lastPoint.y
I deltaX == 0
assert(deltaY != 0, ‘Duplicate point’)
V row = max(curPoint.y, lastPoint.y)
V col = curPoint.x * 3
canvas[row][col] = ‘|’
E
assert(deltaY == 0, ‘Diagonal line’)
V row = curPoint.y
V col = min(curPoint.x, lastPoint.x) * 3 + 1
canvas[row][col] = ‘_’
canvas[row][col + 1] = ‘_’

[String] lines
L(row) canvas
lines [+]= row.join(‘’)
R lines

L(order) 1..5
V n = 1 << order
V points = getPointsForCurve(n)
print(‘Hilbert curve, order=’order)
V lines = drawCurve(points, n)
L(line) lines
print(line)
print()```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
...
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

```

## Action!

Action! language does not support recursion. Therefore an iterative approach with a stack has been proposed.

```DEFINE MAXSIZE="12"

INT ARRAY
dxStack(MAXSIZE),dyStack(MAXSIZE)
BYTE ARRAY
depthStack(MAXSIZE),stageStack(MAXSIZE)
BYTE stacksize=[0]

BYTE FUNC IsEmpty()
IF stacksize=0 THEN RETURN (1) FI
RETURN (0)

BYTE FUNC IsFull()
IF stacksize=MAXSIZE THEN RETURN (1) FI
RETURN (0)

PROC Push(INT dx,dy BYTE depth,stage)
IF IsFull() THEN Break() FI
dxStack(stacksize)=dx dyStack(stacksize)=dy
depthStack(stacksize)=depth
stageStack(stackSize)=stage
stacksize==+1
RETURN

PROC Pop(INT POINTER dx,dy BYTE POINTER depth,stage)
IF IsEmpty() THEN Break() FI
stacksize==-1
dx^=dxStack(stacksize) dy^=dyStack(stacksize)
depth^=depthStack(stacksize)
stage^=stageStack(stacksize)
RETURN

PROC DrawHilbert(INT x BYTE y INT dx,dy BYTE depth)
BYTE stage

Plot(x,y)
Push(dx,dy,depth,0)

WHILE IsEmpty()=0
DO
Pop(@dx,@dy,@depth,@stage)
IF stage<3 THEN
Push(dx,dy,depth,stage+1)
FI
IF stage=0 THEN
IF depth>1 THEN
Push(dy,dx,depth-1,0)
FI
ELSEIF stage=1 THEN
x==+dx y==+dy
DrawTo(x,y)
IF depth>1 THEN
Push(dx,dy,depth-1,0)
FI
ELSEIF stage=2 THEN
x==+dy y==+dx
DrawTo(x,y)
IF depth>1 THEN
Push(dx,dy,depth-1,0)
FI
ELSEIF stage=3 THEN
x==-dx y==-dy
DrawTo(x,y)
IF depth>1 THEN
Push(-dy,-dx,depth-1,0)
FI
FI
OD
RETURN

PROC Main()
BYTE CH=\$02FC,COLOR1=\$02C5,COLOR2=\$02C6

Graphics(8+16)
Color=1
COLOR1=\$0C
COLOR2=\$02

DrawHilbert(64,1,0,3,6)

DO UNTIL CH#\$FF OD
CH=\$FF
RETURN```
Output:

Library: APDF
```with PDF_Out;  use PDF_Out;

procedure Hilbert_Curve_PDF is

Length  : constant := 500.0;
Corner  : constant Point := (50.0, 300.0);

type Rule_Type is (A, B, C, D);

PDF   : PDF_Out.Pdf_Out_File;
First : Boolean;

procedure Hilbert (Order  : in Natural;
Rule   : in Rule_Type;
Length : in Real;
X, Y   : in Real)
is
L : constant Real := Length / 4.0;
begin
if Order = 0 then
if First then
First := False;
PDF.Move (Corner + (X, Y));
else
PDF.Line (Corner + (X, Y));
end if;
else
case Rule is
when A =>
Hilbert (Order - 1, D, 2.0 * L, X - L, Y + L);
Hilbert (Order - 1, A, 2.0 * L, X - L, Y - L);
Hilbert (Order - 1, A, 2.0 * L, X + L, Y - L);
Hilbert (Order - 1, B, 2.0 * L, X + L, Y + L);
when B =>
Hilbert (Order - 1, C, 2.0 * L, X + L, Y - L);
Hilbert (Order - 1, B, 2.0 * L, X - L, Y - L);
Hilbert (Order - 1, B, 2.0 * L, X - L, Y + L);
Hilbert (Order - 1, A, 2.0 * L, X + L, Y + L);
when C =>
Hilbert (Order - 1, B, 2.0 * L, X + L, Y - L);
Hilbert (Order - 1, C, 2.0 * L, X + L, Y + L);
Hilbert (Order - 1, C, 2.0 * L, X - L, Y + L);
Hilbert (Order - 1, D, 2.0 * L, X - L, Y - L);
when D =>
Hilbert (Order - 1, A, 2.0 * L, X - L, Y + L);
Hilbert (Order - 1, D, 2.0 * L, X + L, Y + L);
Hilbert (Order - 1, D, 2.0 * L, X + L, Y - L);
Hilbert (Order - 1, C, 2.0 * L, X - L, Y - L);
end case;
end if;
end Hilbert;

procedure Hilbert (Order : Natural; Color : Color_Type) is
begin
First := True;
PDF.Stroking_Color (Color);
Hilbert (Order, A, Length, Length / 2.0, Length / 2.0);
PDF.Finish_Path (Close_Path => False,
Rendering  => Stroke,
Rule       => Nonzero_Winding_Number);
end Hilbert;

begin
PDF.Create ("hilbert.pdf");
PDF.Page_Setup (A4_Portrait);
PDF.Line_Width (2.0);

PDF.Color (Black);
PDF.Draw (Corner + (0.0, 0.0, Length, Length), Fill);

Hilbert (6, Color => (0.9, 0.1, 0.8));
Hilbert (5, Color => (0.0, 0.9, 0.0));

PDF.Close;
end Hilbert_Curve_PDF;
```

## ALGOL 68

This generates the curve following the L-System rules described in the Wikipedia article.

 L-System rule A B F + - Procedure a b forward right left
```BEGIN
INT level = 4;    # <-- change this #

INT side = 2**level * 2 - 2;
[-side:1, 0:side]STRING grid;
INT x := 0, y := 0, dir := 0;
INT old dir := -1;
INT e=0, n=1, w=2, s=3;

FOR i FROM 1 LWB grid TO 1 UPB grid DO
FOR j FROM 2 LWB grid TO 2 UPB grid DO grid[i,j] := "  "
OD OD;

PROC left  = VOID: dir := (dir + 1) MOD 4;
PROC right = VOID: dir := (dir - 1) MOD 4;
PROC move  = VOID: (
CASE dir + 1 IN
# e: # x +:= 1, # n: # y -:= 1, # w: # x -:= 1, # s: # y +:= 1
ESAC
);
PROC forward = VOID: (
# draw corner #
grid[y, x] := CASE old dir + 1 IN
# e # CASE dir + 1 IN "──", "─╯", " ?", "─╮" ESAC,
# n # CASE dir + 1 IN " ╭", " │", "─╮", " ?" ESAC,
# w # CASE dir + 1 IN " ?", " ╰", "──", " ╭" ESAC,
# s # CASE dir + 1 IN " ╰", " ?", "─╯", " │" ESAC
OUT "  "
ESAC;
move;
# draw segment #
grid[y, x] := IF dir = n OR dir = s THEN " │" ELSE "──" FI;
# advance to next corner #
move;
old dir := dir
);

PROC a = (INT level)VOID:
IF level > 0 THEN
left; b(level-1); forward; right; a(level-1); forward;
a(level-1); right; forward; b(level-1); left
FI,
b = (INT level)VOID:
IF level > 0 THEN
right; a(level-1); forward; left; b(level-1); forward;
b(level-1); left; forward; a(level-1); right
FI;

# draw #
a(level);

# print #
FOR row FROM 1 LWB grid TO 1 UPB grid DO
print((grid[row,], new line))
OD
END```
Output:
``` ╭───╮   ╭───╮   ╭───╮   ╭───╮   ╭───╮   ╭───╮   ╭───╮   ╭───╮
│   │   │   │   │   │   │   │   │   │   │   │   │   │   │   │
│   ╰───╯   │   │   ╰───╯   │   │   ╰───╯   │   │   ╰───╯   │
│           │   │           │   │           │   │           │
╰───╮   ╭───╯   ╰───╮   ╭───╯   ╰───╮   ╭───╯   ╰───╮   ╭───╯
│   │           │   │           │   │           │   │
╭───╯   ╰───────────╯   ╰───╮   ╭───╯   ╰───────────╯   ╰───╮
│                           │   │                           │
│   ╭───────╮   ╭───────╮   │   │   ╭───────╮   ╭───────╮   │
│   │       │   │       │   │   │   │       │   │       │   │
╰───╯   ╭───╯   ╰───╮   ╰───╯   ╰───╯   ╭───╯   ╰───╮   ╰───╯
│           │                   │           │
╭───╮   ╰───╮   ╭───╯   ╭───╮   ╭───╮   ╰───╮   ╭───╯   ╭───╮
│   │       │   │       │   │   │   │       │   │       │   │
│   ╰───────╯   ╰───────╯   ╰───╯   ╰───────╯   ╰───────╯   │
│                                                           │
╰───╮   ╭───────╮   ╭───────╮   ╭───────╮   ╭───────╮   ╭───╯
│   │       │   │       │   │       │   │       │   │
╭───╯   ╰───╮   ╰───╯   ╭───╯   ╰───╮   ╰───╯   ╭───╯   ╰───╮
│           │           │           │           │           │
│   ╭───╮   │   ╭───╮   ╰───╮   ╭───╯   ╭───╮   │   ╭───╮   │
│   │   │   │   │   │       │   │       │   │   │   │   │   │
╰───╯   ╰───╯   │   ╰───────╯   ╰───────╯   │   ╰───╯   ╰───╯
│                           │
╭───╮   ╭───╮   │   ╭───────╮   ╭───────╮   │   ╭───╮   ╭───╮
│   │   │   │   │   │       │   │       │   │   │   │   │   │
│   ╰───╯   │   ╰───╯   ╭───╯   ╰───╮   ╰───╯   │   ╰───╯   │
│           │           │           │           │           │
╰───╮   ╭───╯   ╭───╮   ╰───╮   ╭───╯   ╭───╮   ╰───╮   ╭───╯
│   │       │   │       │   │       │   │       │   │
───╯   ╰───────╯   ╰───────╯   ╰───────╯   ╰───────╯   ╰──
```

## AutoHotkey

Translation of: Go

Requires Gdip Library

```gdip1()
HilbertX := A_ScreenWidth/2 - 100, HilbertY := A_ScreenHeight/2 - 100
Hilbert(HilbertX, HilbertY, 2**5, 5, 5, Arr:=[])
xmin := xmax := ymin := ymax := 0
for i, point in Arr
{
xmin := A_Index = 1 ? point.x : xmin < point.x ? xmin : point.x
xmax := point.x > xmax ? point.x : xmax
ymin := A_Index = 1 ? point.y : ymin < point.y ? ymin : point.y
ymax := point.y > ymax ? point.y : ymax
}
for i, point in Arr
points .= point.x - xmin + HilbertX "," point.y - ymin + HilbertY "|"
points := Trim(points, "|")
Gdip_DrawLines(G, pPen, Points)
UpdateLayeredWindow(hwnd1, hdc, 0, 0, Width, Height)
return
; ---------------------------------------------------------------
Hilbert(x, y, lg, i1, i2, Arr) {
if (lg = 1) {
Arr[Arr.count()+1, "x"] := x
Arr[Arr.count(), "y"] := y
return
}
lg /= 2
Hilbert(x+i1*lg		, y+i1*lg	, lg	, i1	, 1-i2	, Arr)
Hilbert(x+i2*lg		, y+(1-i2)*lg	, lg	, i1	, i2	, Arr)
Hilbert(x+(1-i1)*lg	, y+(1-i1)*lg	, lg	, i1	, i2	, Arr)
Hilbert(x+(1-i2)*lg	, y+i2*lg	, lg	, 1-i1	, i2	, Arr)
}
; ---------------------------------------------------------------
gdip1(){
global
If !pToken := Gdip_Startup()
{
MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit, Exit
Width := A_ScreenWidth, Height := A_ScreenHeight
Gui, 1: -Caption +E0x80000 +LastFound +OwnDialogs +Owner +AlwaysOnTop
Gui, 1: Show, NA
hwnd1 := WinExist()
hbm := CreateDIBSection(Width, Height)
hdc := CreateCompatibleDC()
obm := SelectObject(hdc, hbm)
G := Gdip_GraphicsFromHDC(hdc)
Gdip_SetSmoothingMode(G, 4)
pPen := Gdip_CreatePen(0xFFFF0000, 2)
}
; ---------------------------------------------------------------
gdip2(){
global
Gdip_DeleteBrush(pBrush)
Gdip_DeletePen(pPen)
SelectObject(hdc, obm)
DeleteObject(hbm)
DeleteDC(hdc)
Gdip_DeleteGraphics(G)
}
; ---------------------------------------------------------------
Exit:
gdip2()
Gdip_Shutdown(pToken)
ExitApp
Return
```

## Binary Lambda Calculus

As shown in https://www.ioccc.org/2012/tromp/hint.html, the 142+3 byte BLC program

```0000000    18  18  18  18  11  11  54  68  06  04  15  5f  f0  41  9d  f9
0000020    de  16  ff  fe  5f  3f  ef  f6  15  ff  94  68  40  58  11  7e
0000040    05  cb  fe  bc  bf  ee  86  cb  94  68  16  00  5c  0b  fa  cb
0000060    fb  f7  1a  85  e0  5c  f4  14  d5  fe  08  18  0b  04  8d  08
0000100    00  e0  78  01  64  45  ff  e5  ff  7f  ff  fe  5f  ff  2f  c0
0000120    ee  d9  7f  5b  ff  ff  fb  ff  fc  aa  ff  f7  81  7f  fa  df
0000140    76  69  54  68  06  01  57  f7  e1  60  5c  13  fe  80  b2  2c
0000160    18  58  1b  fe  5c  10  42  ff  80  5d  ee  c0  6c  2c  0c  06
0000200    08  19  1a  00  16  7f  bc  bc  fd  f6  5f  7c  0a  20  31  32
0000220    33```

(consisting of the 142 byte binary prefix https://github.com/tromp/AIT/blob/master/hilbert followed by "123") outputs the 3rd order Hilbert curve

``` _   _   _   _
| |_| | | |_| |
|_   _| |_   _|
_| |_____| |_
|  ___   ___  |
|_|  _| |_  |_|
_  |_   _|  _
| |___| |___| |```

## BQN

Translation of: J

BQN does not have complex numbers as of the creation of this submission, so `Conj` and `CMul` implement complex number operations on two element arrays, for clarity's sake.

```Conj←1‿¯1⊸×
Cmul←-´∘×⋈+´∘×⟜⌽
Iter←(⊢∾⟨1‿0⟩∾Conj¨∘⌽)∘(0‿¯1⊸CMul¨∘⌽∾⟨0‿¯1⟩∾⊢)
Plot←{•Plot´<˘⍉>+`⟨0‿0⟩∾Iter⍟𝕩 ⟨⟩}
```

This program is made for `•Plot` in the online implementation, and you can view the result in the Online REPL.

## C

Translation of: Kotlin
```#include <stdio.h>

#define N 32
#define K 3
#define MAX N * K

typedef struct { int x; int y; } point;

void rot(int n, point *p, int rx, int ry) {
int t;
if (!ry) {
if (rx == 1) {
p->x = n - 1 - p->x;
p->y = n - 1 - p->y;
}
t = p->x;
p->x = p->y;
p->y = t;
}
}

void d2pt(int n, int d, point *p) {
int s = 1, t = d, rx, ry;
p->x = 0;
p->y = 0;
while (s < n) {
rx = 1 & (t / 2);
ry = 1 & (t ^ rx);
rot(s, p, rx, ry);
p->x += s * rx;
p->y += s * ry;
t /= 4;
s *= 2;
}
}

int main() {
int d, x, y, cx, cy, px, py;
char pts[MAX][MAX];
point curr, prev;
for (x = 0; x < MAX; ++x)
for (y = 0; y < MAX; ++y) pts[x][y] = ' ';
prev.x = prev.y = 0;
pts[0][0] = '.';
for (d = 1; d < N * N; ++d) {
d2pt(N, d, &curr);
cx = curr.x * K;
cy = curr.y * K;
px = prev.x * K;
py = prev.y * K;
pts[cx][cy] = '.';
if (cx == px ) {
if (py < cy)
for (y = py + 1; y < cy; ++y) pts[cx][y] = '|';
else
for (y = cy + 1; y < py; ++y) pts[cx][y] = '|';
}
else {
if (px < cx)
for (x = px + 1; x < cx; ++x) pts[x][cy] = '_';
else
for (x = cx + 1; x < px; ++x) pts[x][cy] = '_';
}
prev = curr;
}
for (x = 0; x < MAX; ++x) {
for (y = 0; y < MAX; ++y) printf("%c", pts[y][x]);
printf("\n");
}
return 0;
}
```
Output:
`Same as Kotlin entry.`

## C#

Translation of: Visual Basic .NET
```using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Text;

namespace HilbertCurve {
class Program {
static void Swap<T>(ref T a, ref T b) {
var c = a;
a = b;
b = c;
}

struct Point {
public int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}

//rotate/flip a quadrant appropriately
public void Rot(int n, bool rx, bool ry) {
if (!ry) {
if (rx) {
x = (n - 1) - x;
y = (n - 1) - y;
}
Swap(ref x, ref y);
}
}

public override string ToString() {
return string.Format("({0}, {1})", x, y);
}
}

static Point FromD(int n, int d) {
var p = new Point(0, 0);
int t = d;

for (int s = 1; s < n; s <<= 1) {
var rx = (t & 2) != 0;
var ry = ((t ^ (rx ? 1 : 0)) & 1) != 0;
p.Rot(s, rx, ry);
p.x += rx ? s : 0;
p.y += ry ? s : 0;
t >>= 2;
}

return p;
}

static List<Point> GetPointsForCurve(int n) {
var points = new List<Point>();
int d = 0;
while (d < n * n) {
d += 1;
}
return points;
}

static List<string> DrawCurve(List<Point> points, int n) {
var canvas = new char[n, n * 3 - 2];
for (int i = 0; i < canvas.GetLength(0); i++) {
for (int j = 0; j < canvas.GetLength(1); j++) {
canvas[i, j] = ' ';
}
}

for (int i = 1; i < points.Count; i++) {
var lastPoint = points[i - 1];
var curPoint = points[i];
var deltaX = curPoint.x - lastPoint.x;
var deltaY = curPoint.y - lastPoint.y;
if (deltaX == 0) {
Debug.Assert(deltaY != 0, "Duplicate point");
//vertical line
int row = Math.Max(curPoint.y, lastPoint.y);
int col = curPoint.x * 3;
canvas[row, col] = '|';
} else {
Debug.Assert(deltaY == 0, "Duplicate point");
//horizontal line
var row = curPoint.y;
var col = Math.Min(curPoint.x, lastPoint.x) * 3 + 1;
canvas[row, col] = '_';
canvas[row, col + 1] = '_';
}
}

var lines = new List<string>();
for (int i = 0; i < canvas.GetLength(0); i++) {
var sb = new StringBuilder();
for (int j = 0; j < canvas.GetLength(1); j++) {
sb.Append(canvas[i, j]);
}
}
return lines;
}

static void Main() {
for (int order = 1; order <= 5; order++) {
var n = 1 << order;
var points = GetPointsForCurve(n);
Console.WriteLine("Hilbert curve, order={0}", order);
var lines = DrawCurve(points, n);
foreach (var line in lines) {
Console.WriteLine(line);
}
Console.WriteLine();
}
}
}
}
```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
|__    __ __ __    __|   __    __   |   __ __    __ __   |   __    __   |__    __ __ __    __|
__|  |__    __|  |__   |  |__|  |  |__|   __|  |__   |__|  |  |__|  |   __|  |__    __|  |__
|   __   |  |   __   |  |__    __|   __   |__    __|   __   |__    __|  |   __   |  |   __   |
|__|  |__|  |__|  |__|   __|  |__ __|  |__ __|  |__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__    __    __    __   |__    __ __    __ __    __ __    __ __    __|   __    __    __    __
|  |__|  |  |  |__|  |   __|  |__   |__|   __|  |__   |__|   __|  |__   |  |__|  |  |  |__|  |
|__    __|  |__    __|  |   __   |   __   |__    __|   __   |   __   |  |__    __|  |__    __|
__|  |__ __ __|  |__   |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|   __|  |__ __ __|  |__
|   __ __    __ __   |   __    __   |   __ __    __ __   |   __    __   |   __ __    __ __   |
|__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|
__   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __
|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
|__    __ __    __ __    __ __    __ __    __ __ __    __ __    __ __    __ __    __ __    __|
__|  |__   |__|   __|  |__   |__|   __|  |__    __|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |  |   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __    __    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|  |__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__    __|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |  |   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __    __   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|```

## C++

Translation of: D
```#include <algorithm>
#include <iostream>
#include <vector>

struct Point {
int x, y;

//rotate/flip a quadrant appropriately
void rot(int n, bool rx, bool ry) {
if (!ry) {
if (rx) {
x = (n - 1) - x;
y = (n - 1) - y;
}
std::swap(x, y);
}
}
};

Point fromD(int n, int d) {
Point p = { 0, 0 };
bool rx, ry;
int t = d;
for (int s = 1; s < n; s <<= 1) {
rx = ((t & 2) != 0);
ry = (((t ^ (rx ? 1 : 0)) & 1) != 0);
p.rot(s, rx, ry);
p.x += (rx ? s : 0);
p.y += (ry ? s : 0);
t >>= 2;
}
return p;
}

std::vector<Point> getPointsForCurve(int n) {
std::vector<Point> points;
for (int d = 0; d < n * n; ++d) {
points.push_back(fromD(n, d));
}
return points;
}

std::vector<std::string> drawCurve(const std::vector<Point> &points, int n) {
auto canvas = new char *[n];
for (size_t i = 0; i < n; i++) {
canvas[i] = new char[n * 3 - 2];
std::memset(canvas[i], ' ', n * 3 - 2);
}

for (int i = 1; i < points.size(); i++) {
auto lastPoint = points[i - 1];
auto curPoint = points[i];
int deltaX = curPoint.x - lastPoint.x;
int deltaY = curPoint.y - lastPoint.y;
if (deltaX == 0) {
// vertical line
int row = std::max(curPoint.y, lastPoint.y);
int col = curPoint.x * 3;
canvas[row][col] = '|';
} else {
// horizontal line
int row = curPoint.y;
int col = std::min(curPoint.x, lastPoint.x) * 3 + 1;
canvas[row][col] = '_';
canvas[row][col + 1] = '_';
}
}

std::vector<std::string> lines;
for (size_t i = 0; i < n; i++) {
std::string temp;
temp.assign(canvas[i], n * 3 - 2);
lines.push_back(temp);
}
return lines;
}

int main() {
for (int order = 1; order < 6; order++) {
int n = 1 << order;
auto points = getPointsForCurve(n);
std::cout << "Hilbert curve, order=" << order << '\n';
auto lines = drawCurve(points, n);
for (auto &line : lines) {
std::cout << line << '\n';
}
std::cout << '\n';
}
return 0;
}
```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
|__    __ __ __    __|   __    __   |   __ __    __ __   |   __    __   |__    __ __ __    __|
__|  |__    __|  |__   |  |__|  |  |__|   __|  |__   |__|  |  |__|  |   __|  |__    __|  |__
|   __   |  |   __   |  |__    __|   __   |__    __|   __   |__    __|  |   __   |  |   __   |
|__|  |__|  |__|  |__|   __|  |__ __|  |__ __|  |__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__    __    __    __   |__    __ __    __ __    __ __    __ __    __|   __    __    __    __
|  |__|  |  |  |__|  |   __|  |__   |__|   __|  |__   |__|   __|  |__   |  |__|  |  |  |__|  |
|__    __|  |__    __|  |   __   |   __   |__    __|   __   |   __   |  |__    __|  |__    __|
__|  |__ __ __|  |__   |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|   __|  |__ __ __|  |__
|   __ __    __ __   |   __    __   |   __ __    __ __   |   __    __   |   __ __    __ __   |
|__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|
__   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __
|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
|__    __ __    __ __    __ __    __ __    __ __ __    __ __    __ __    __ __    __ __    __|
__|  |__   |__|   __|  |__   |__|   __|  |__    __|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |  |   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __    __    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|  |__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__    __|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |  |   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __    __   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|```

## D

Translation of: Java
```import std.stdio;

void main() {
foreach (order; 1..6) {
int n = 1 << order;
auto points = getPointsForCurve(n);
writeln("Hilbert curve, order=", order);
auto lines = drawCurve(points, n);
foreach (line; lines) {
writeln(line);
}
writeln;
}
}

struct Point {
int x, y;

//rotate/flip a quadrant appropriately
void rot(int n, bool rx, bool ry) {
if (!ry) {
if (rx) {
x = (n - 1) - x;
y = (n - 1) - y;
}

import std.algorithm.mutation;
swap(x, y);
}
}

int calcD(int n) {
bool rx, ry;
int d;
for (int s = n >>> 1; s > 0; s >>>= 1) {
rx = ((x & s) != 0);
ry = ((y & s) != 0);
d += s * s * ((rx ? 3 : 0) ^ (ry ? 1 : 0));
rot(s, rx, ry);
}
return d;
}

void toString(scope void delegate(const(char)[]) sink) const {
import std.format : formattedWrite;

sink("(");
sink.formattedWrite!"%d"(x);
sink(", ");
sink.formattedWrite!"%d"(y);
sink(")");
}
}

auto fromD(int n, int d) {
Point p;
bool rx, ry;
int t = d;
for (int s = 1; s < n; s <<= 1) {
rx = ((t & 2) != 0);
ry = (((t ^ (rx ? 1 : 0)) & 1) != 0);
p.rot(s, rx, ry);
p.x += (rx ? s : 0);
p.y += (ry ? s : 0);
t >>>= 2;
}
return p;
}

auto getPointsForCurve(int n) {
Point[] points;
for (int d; d < n * n; ++d) {
points ~= fromD(n, d);
}
return points;
}

auto drawCurve(Point[] points, int n) {
import std.algorithm.comparison : min, max;
import std.array : uninitializedArray;
import std.exception : enforce;

auto canvas = uninitializedArray!(char[][])(n, n * 3 - 2);
foreach (line; canvas) {
line[] =  ' ';
}

for (int i = 1; i < points.length; ++i) {
auto lastPoint = points[i - 1];
auto curPoint = points[i];
int deltaX = curPoint.x - lastPoint.x;
int deltaY = curPoint.y - lastPoint.y;
if (deltaX == 0) {
enforce(deltaY != 0, "Duplicate point");
// vertical line
int row = max(curPoint.y, lastPoint.y);
int col = curPoint.x * 3;
canvas[row][col] = '|';
} else {
enforce(deltaY == 0, "Diagonal line");
// horizontal line
int row = curPoint.y;
int col = min(curPoint.x, lastPoint.x) * 3 + 1;
canvas[row][col] = '_';
canvas[row][col + 1] = '_';
}
}

string[] lines;
foreach (row; canvas) {
lines ~= row.idup;
}

return lines;
}
```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
|__    __ __ __    __|   __    __   |   __ __    __ __   |   __    __   |__    __ __ __    __|
__|  |__    __|  |__   |  |__|  |  |__|   __|  |__   |__|  |  |__|  |   __|  |__    __|  |__
|   __   |  |   __   |  |__    __|   __   |__    __|   __   |__    __|  |   __   |  |   __   |
|__|  |__|  |__|  |__|   __|  |__ __|  |__ __|  |__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__    __    __    __   |__    __ __    __ __    __ __    __ __    __|   __    __    __    __
|  |__|  |  |  |__|  |   __|  |__   |__|   __|  |__   |__|   __|  |__   |  |__|  |  |  |__|  |
|__    __|  |__    __|  |   __   |   __   |__    __|   __   |   __   |  |__    __|  |__    __|
__|  |__ __ __|  |__   |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|   __|  |__ __ __|  |__
|   __ __    __ __   |   __    __   |   __ __    __ __   |   __    __   |   __ __    __ __   |
|__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|
__   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __
|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
|__    __ __    __ __    __ __    __ __    __ __ __    __ __    __ __    __ __    __ __    __|
__|  |__   |__|   __|  |__   |__|   __|  |__    __|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |  |   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __    __    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|  |__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__    __|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |  |   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __    __   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|```

## Delphi

Works with: Delphi version 6.0

This is a very fancy version of the Hilbert curve. It allows you to draw multiple levels and you have the option of superimposing each level on top of the others. You can choose four different pen colors that alternate according to the level. The pen thickness can vary according to the level and can be increments or decremented according to the settings.

```procedure ClearBackground(Image: TImage; Color: TColor);
{Clear image with specified color}
begin
Image.Canvas.Brush.Color:=Color;
Image.Canvas.Pen.Color:=Color;
Image.Canvas.Rectangle(Image.ClientRect);
end;

{Array of colors used in display}

type TColorArray = array of TColor;

{Option controls the size of lines for each level}

type TPenMode = (pmNormal,pmIncrement,pmDecrement);

{Combined structure controls the Hilbert display}

type TCurveOptions = record
Order: integer;
SuperImposed: boolean;
PenMode: TPenMode;
ColorArray: TColorArray;
end;

procedure DrawHillbertCurve(Canvas: TCanvas; Width,Height: integer; Options: TCurveOptions);
{ Hilbert Curve}
var X,Y,X0,Y0,H,H0,StartX,StartY: double;
var I,Inx: integer;

procedure LeftUpRight(I: integer); forward;
procedure DownRightUp(I: integer); forward;
procedure RightDownLeft(I: integer); forward;
procedure UpLeftDown(I: integer); forward;

procedure DrawRealLine(var X,Y: double);
begin
Canvas.LineTo(Trunc(X),Trunc(Y));
end;

procedure  LeftUpRight(I: integer);
begin
if I>0 then
begin
UpLeftDown(I-1);
X:=X-H;
DrawRealLine(X,Y);
LeftUpRight(I-1);
Y:=Y-H;
DrawRealLine(X,Y);
LeftUpRight(I-1);
X:=X+H;
DrawRealLine(X,Y);
DownRightUp(I-1);
end;
end;

procedure  DownRightUp(I: integer);
begin
if I>0 then
begin
RightDownLeft(I-1);
Y:=Y+H;
DrawRealLine(X,Y);
DownRightUp(I-1);
X:=X+H;
DrawRealLine(X,Y);
DownRightUp(I-1);
Y:=Y-H;
DrawRealLine(X,Y);
LeftUpRight(I-1);
end;
end;

procedure  RightDownLeft(I: integer);
begin
if I>0 then
begin
DownRightUp(I-1);
X:=X+H;
DrawRealLine(X,Y);
RightDownLeft(I-1);
Y:=Y+H;
DrawRealLine(X,Y);
RightDownLeft(I-1);
X:=X-H;
DrawRealLine(X,Y);
UpLeftDown(I-1);
end;
end;

procedure  UpLeftDown(I: integer);
begin
if I>0 then
begin
LeftUpRight(I-1);
Y:=Y-H;
DrawRealLine(X,Y);
UpLeftDown(I-1);
X:=X-H;
DrawRealLine(X,Y);
UpLeftDown(I-1);
Y:=Y+H;
DrawRealLine(X,Y);
RightDownLeft(I-1);
end;
end;

begin
if Height<Width then H0:=Height else H0:=Width;
STARTX:=Width div 2;
STARTY:=Height div 2;
H:=H0;
X0:=STARTX;
Y0:=STARTY;

for I:=1 to Options.Order do
begin
case Options.PenMode of
pmDecrement: Canvas.Pen.Width:=(Options.Order - I) + 1;
pmIncrement: Canvas.Pen.Width:=I;
end;
Inx:=(I-1) mod Length(Options.ColorArray);
Canvas.Pen.Color:=Options.ColorArray[Inx];
H:=H / 2;
X0:=X0+(H / 2);
Y0:=Y0+(H / 2);
X:=X0;
Y:=Y0;
if not Options.SuperImposed and (Options.Order<>I) then continue;
Canvas.MoveTo(Trunc(X),Trunc(Y));

{ Draw Curve Of Order I }
LeftUpRight(I);
end;
end;

procedure ShowHilbertCurve(Image: TImage);
{Setup parameter and draw Hilbert curve on canvas}
var CA: TColorArray;
var Options: TCurveOptions;
begin
ClearBackground(Image,clWhite);
Image.Canvas.Pen.Width:=1;
SetLength(CA,4);
CA[0]:=clBlack;
CA[1]:=clGray;
CA[2]:=clSilver;
CA[3]:=clGray;
Options.Order:=5;
Options.SuperImposed:=True;
Options.PenMode:=pmNormal;
Options.ColorArray:=CA;

DrawHillbertCurve(Image.Canvas,Image.Width,Image.Height,Options);
end;
```
Output:
```
```

## EasyLang

Translation of: FutureBasic
```order = 64
linewidth 32 / order
scale = 100 / order - 100 / (order * order)
proc hilbert x y lg i1 i2 . .
if lg = 1
line (order - x) * scale (order - y) * scale
return
.
lg = lg div 2
hilbert x + i1 * lg y + i1 * lg lg i1 1 - i2
hilbert x + i2 * lg y + (1 - i2) * lg lg i1 i2
hilbert x + (1 - i1) * lg y + (1 - i1) * lg lg i1 i2
hilbert x + (1 - i2) * lg y + i2 * lg lg 1 - i1 i2
.
hilbert 0 0 order 0 0```

## F#

```// Hilbert curve. Nigel Galloway: September 18th., 2023
type C= |At|Cl|Ab|Cr
type D= |Z|U|D|L|R
let fD=function Z->0,0 |U->0,1 |D->0,-1 |L-> -1,0 |R->1,0
let fC=function At->[fD D;fD R;fD U] |Cl->[fD R;fD D;fD L] |Ab->[fD U;fD L;fD D] |Cr->[fD L;fD U;fD R]
let order(n,g)=match g with At->[n,Cl;D,At;R,At;U,Cr]
|Cl->[n,At;R,Cl;D,Cl;L,Ab]
|Ab->[n,Cr;U,Ab;L,Ab;D,Cl]
|Cr->[n,Ab;L,Cr;U,Cr;R,At]
let hilbert=Seq.unfold(fun n->Some(n,n|>List.collect order))[Z,At]
hilbert|>Seq.take 7|>Seq.iteri(fun n g->Chart.Line(g|>Seq.collect(fun(n,g)->(fD n)::(fC g))|>Seq.scan(fun(x,y)(n,g)->(x+n,y+g))(0,0))|>Chart.withTitle(sprintf "Hilbert order %d" n)|>Chart.show)
```
Output:

## Factor

Works with: Factor version 0.99 2020-08-14
```USING: accessors L-system ui ;

: hilbert ( L-system -- L-system )
L-parser-dialect >>commands
[ 90 >>angle ] >>turtle-values
"A" >>axiom
{
{ "A" "-BF+AFA+FB-" }
{ "B" "+AF-BFB-FA+" }
} >>rules ;

[ <L-system> hilbert "Hilbert curve" open-window ] with-ui
```

When using the L-system visualizer, the following controls apply:

Camera controls
Button Command
a zoom in
z zoom out
left arrow turn left
right arrow turn right
up arrow pitch down
down arrow pitch up
q roll left
w roll right
Other controls
Button Command
x iterate L-system

## Forth

Translation of: Yabasic
Works with: 4tH version v3.62
```include lib/graphics.4th

64 constant /width                     \ Hilbert curve order^2
9 constant /length                    \ length of a line

variable origin                        \ point of origin

aka r@  lg                             \ get parameters from return stack
aka r'@ i1                             \ so define some aliases
aka r"@ i2                             \ to make it a bit more readable

: origin! 65536 * + origin ! ;         ( n1 n2 --)
: origin@ origin @ 65536 /mod ;        ( -- n1 n2)

: hilbert                              ( x y lg i1 i2 --)
>r >r >r lg 1 = if                   \ if lg equals 1
rdrop rdrop rdrop origin@ 2swap    \ get point of origin
/width swap - /length * >r /width swap - /length * r>
2dup origin! line                  \ save origin and draw line
;then

r> 2/ >r                             \ divide lg by 2
over over i1 lg * tuck + >r + r> lg i1 1 i2 - hilbert
over over 1 i2 - lg * + swap i2 lg * + swap lg i1 i2 hilbert
over over 1 i1 - lg * tuck + >r + r> lg i1 i2 hilbert
i2 lg * + swap 1 i2 - lg * + swap r> 1 r> - r> hilbert
;

585 pic_width ! 585 pic_height !       \ set canvas size
color_image 255 whiteout blue          \ paint blue on white
0 dup origin!                          \ set point of origin
0 dup /width over dup hilbert          \ Hilbert curve, order=8
s" ghilbert.ppm" save_image            \ save the image
```

Output: Since Rosetta Code doesn't seem to support uploads anymore, the resulting file cannot be shown.

## FreeBASIC

Translation of: Yabasic
```Dim Shared As Integer ancho = 64

Sub Hilbert(x As Integer, y As Integer, lg As Integer, i1 As Integer, i2 As Integer)
If lg = 1 Then
Line - ((ancho-x) * 10, (ancho-y) * 10)
Return
End If
lg = lg / 2
Hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2)
Hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2)
Hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2)
Hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2)
End Sub

Screenres 655, 655

Hilbert(0, 0, ancho, 0, 0)
End
```

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

### Recursive

The following defines a function that creates a graphics of the Hilbert curve of a given order and size:

Test cases

The following creates a table with Hilbert curves for orders 1 to 5:

### L-system

There are generic functions written in Fōrmulæ to compute an L-system in the page L-system.

The program that creates a Hilbert curve is:

## Frink

This program generates arbitrary L-systems with slight modifications (see the commmented-out list of various angles and rules.)

```// General description:
// This code creates Lindenmayer rules via string manipulation
// It can generate many of the examples from the Wikipedia page
// discussing L-system fractals: http://en.wikipedia.org/wiki/L-system
//
// It does not support stochastic, context sensitive or parametric grammars
//
// It supports four special rules, and any number of variables in rules
// f = move forward one unit
// - = turn left one turn
// + = turn right one turn
// [ = save angle and position on a stack
// ] = restore angle and position from the stack

// The turn is how far each + or - in the final rule turns to either side
turn = 90 degrees
// This is how many times the rules get applied before we draw the result
times = 5
// This is our starting string
start = "++a"
// These are the rules we apply
rules = [["f","f"],["a","-bf+afa+fb-"], ["b","+af-bfb-fa+"]]

// L-System rules pulled from Wikipedia
// Dragon
// 90 degrees, "fx", [["f","f"],["x","x+yf"],["y","fx-y"]]

// TerDragon
// 120 degrees, "f", [["f","f+f-f"]]

// Koch curve
// 90 degrees, "f", [["f","f+f-f-f+f"]]
// use "++f" as the start to flip it over

// Sierpinski Triangle
// 60 degrees, "bf", [["f","f"],["a","bf-af-b"],["b","af+bf+a"]]

// Plant
// 25 degrees, "--x", [["f","ff"],["x","f-[[x]+x]+f[+fx]-x"]]

// Hilbert space filling curve
// 90 degrees, "++a", [["f","f"],["a","-bf+afa+fb-"], ["b","+af-bfb-fa+"]]

// Peano-Gosper curve
// 60 degrees, "x", [["f","f"],["x","x+yf++yf-fx--fxfx-yf+"], ["y","-fx+yfyf++yf+fx--fx-y"]]

// Lévy C curve
// 45 degrees, "f", [["f","+f--f+"]]

// This function will apply our rule once, using string substitutions based
// on the rules we pass it
// It does this in two passes to avoid problems with pairs of mutually referencing
// rules such as in the Sierpinski Triangle
// rules@k@1 could replace toString[k] and the entire second loop could
// vanish without adversely affecting the Dragon or Koch curves.

apply_rules[rules, current] :=
{
n = current
for k = 0 to length[rules]-1
{
rep = subst[rules@k@0,toString[k],"g"]
n =~ rep
}
for k = 0 to length[rules]-1
{
rep = subst[toString[k],rules@k@1,"g"]
n =~ rep
}
return n
}

// Here we will actually apply our rules the number of times specified
current = start
for i = 0 to times - 1
{
current = apply_rules[rules, current]
// Uncomment this line to see the string that is being produced at each stage
// println[current]
}

// Go ahead and plot the image now that we've worked it out
g = new graphics
g.antialiased[false]   // Comment this out for non-square rules. It looks better
theta = 0 degrees
x = 0
y = 0
stack = new array
for i = 0 to length[current]-1
{
// This produces a nice sort of rainbow effect where most colors appear
// comment it out for a plain black fractal
// g.color[abs[sin[i degrees]],abs[cos[i*2 degrees]],abs[sin[i*4 degrees]]]

cur = substrLen[current,i,1]
if cur == "-"
theta = theta - (turn)
if cur == "+"
theta = theta + (turn)
if cur == "f" or cur == "F"
{
g.line[x,y,x + cos[theta],y + sin[theta]]
x = x + cos[theta]
y = y + sin[theta]
}
if cur == "["
stack.push[[theta,x,y]]
if cur == "]"
[theta,x,y] = stack.pop[]
}

g.show[]
g.write["hilbert.png",512,undef]```

## FutureBasic

Hilbert Curve Order 64

```#define ORDER 64

_window = 1

void local fn BuildWindow
CGRect r = fn CGRectMake( 0, 0, 651, 661 )
window _window, @"Order 64 Hilbert Curve In FutureBasic", r, NSWindowStyleMaskTitled
WindowSetBackgroundColor( _window, fn ColorBlack )
end fn

void local fn HilbertCurve( x as long, y as long, lg as long, i1 as long, i2 as long )
if ( lg == 1 )
line to ( ORDER-x ) * 10, ( ORDER-y ) * 10
exit fn
end if
lg = lg / 2
fn HilbertCurve( x+i1*lg,     y+i1*lg,     lg, i1, 1-i2 )
pen 2.0
fn HilbertCurve( x+i2*lg,     y+(1-i2)*lg, lg, i1,   i2 )
fn HilbertCurve( x+(1-i1)*lg, y+(1-i1)*lg, lg, i1,   i2 )
fn HilbertCurve( x+(1-i2)*lg, y+i2*lg,     lg, 1-i1, i2 )
end fn

fn BuildWindow
pen -2.0, fn ColorGreen
fn HilbertCurve( 0, 0, ORDER, 0, 0 )

HandleEvents```
Output:

## Go

Library: Go Graphics

The following is based on the recursive algorithm and C code in this paper. The image produced is similar to the one linked to in the zkl example.

```package main

import "github.com/fogleman/gg"

var points []gg.Point

const width = 64

func hilbert(x, y, lg, i1, i2 int) {
if lg == 1 {
px := float64(width-x) * 10
py := float64(width-y) * 10
points = append(points, gg.Point{px, py})
return
}
lg >>= 1
hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2)
hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2)
hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2)
hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2)
}

func main() {
hilbert(0, 0, width, 0, 0)
dc := gg.NewContext(650, 650)
dc.SetRGB(0, 0, 0) // Black background
dc.Clear()
for _, p := range points {
dc.LineTo(p.X, p.Y)
}
dc.SetHexColor("#90EE90") // Light green curve
dc.SetLineWidth(1)
dc.Stroke()
dc.SavePNG("hilbert.png")
}
```

Translation of: Python
Translation of: JavaScript

Defines an SVG string which can be rendered in a browser. A Hilbert tree is defined in terms of a production rule, and folded to a list of points in a square of given size.

```import Data.Tree (Tree (..))

---------------------- HILBERT CURVE ---------------------

hilbertTree :: Int -> Tree Char
hilbertTree n
| 0 < n = iterate go seed !! pred n
| otherwise = seed
where
seed = Node 'a' []
go tree
| null xs = Node c (flip Node [] <\$> rule c)
| otherwise = Node c (go <\$> xs)
where
c = rootLabel tree
xs = subForest tree

hilbertPoints :: Int -> Tree Char -> [(Int, Int)]
hilbertPoints w = go r (r, r)
where
r = quot w 2
go r xy tree
| null xs = centres
| otherwise = concat \$ zipWith (go d) centres xs
where
d = quot r 2
f g x = g xy + (d * g x)
centres =
((,) . f fst)
<*> f snd <\$> vectors (rootLabel tree)
xs = subForest tree

--------------------- PRODUCTION RULE --------------------

rule :: Char -> String
rule c =
case c of
'a' -> "daab"
'b' -> "cbba"
'c' -> "bccd"
_ -> []

vectors :: Char -> [(Int, Int)]
vectors c =
case c of
'a' -> [(-1, 1), (-1, -1), (1, -1), (1, 1)]
'b' -> [(1, -1), (-1, -1), (-1, 1), (1, 1)]
'c' -> [(1, -1), (1, 1), (-1, 1), (-1, -1)]
'd' -> [(-1, 1), (1, 1), (1, -1), (-1, -1)]
_ -> []

--------------------------- TEST -------------------------

main :: IO ()
main = do
let w = 1024
putStrLn \$ svgFromPoints w \$ hilbertPoints w (hilbertTree 6)

svgFromPoints :: Int -> [(Int, Int)] -> String
svgFromPoints w xys =
let sw = show w
points =
(unwords . fmap (((<>) . show . fst) <*> ((' ' :) . show . snd))) xys
in unlines
[ "<svg xmlns=\"http://www.w3.org/2000/svg\"",
unwords
["width=\"512\" height=\"512\" viewBox=\"5 5", sw, sw, "\"> "],
"<path d=\"M" ++ points ++ "\" ",
"stroke-width=\"2\" stroke=\"red\" fill=\"transparent\"/>",
"</svg>"
]
```

## IS-BASIC

```100 PROGRAM "Hilbert.bas"
110 OPTION ANGLE DEGREES
120 GRAPHICS HIRES 2
130 LET N=5:LET P=1:LET S=11*2^(6-N)
140 PLOT 940,700,ANGLE 180;
150 CALL HILBERT(S,N,P)
160 DEF HILBERT(S,N,P)
170   IF N=0 THEN EXIT DEF
180   PLOT LEFT 90*P;
190   CALL HILBERT(S,N-1,-P)
200   PLOT FORWARD S;RIGHT 90*P;
210   CALL HILBERT(S,N-1,P)
220   PLOT FORWARD S;
230   CALL HILBERT(S,N-1,P)
240   PLOT RIGHT 90*P;FORWARD S;
250   CALL HILBERT(S,N-1,-P)
260   PLOT LEFT 90*P;
270 END DEF```

## J

Note: J's {{ }} syntax requires a recent version of J (9.02 or more recent).

```iter=: (, 1 , +@|.) @: (,~ 0j_1 ,~ 0j_1*|.)
hilbert=: {{0j1+(%{:) +/\0,iter ^: y ''}}
```

For a graphical presentation, you could use (for example):

```require'plot'
plot hilbert 5
```

For asciiart, you could instead use:

```asciiart=:{{
coords=. 1 3*"1 +. y % <./(,+.y)-.0
canvas=. (2+>./coords)\$' '
pairs=. 2 ]\<.coords
horizontal=. =/"1 {."1 pairs
canvas=. '_' (0 1+"1<./"2 horizontal#pairs)} canvas
canvas=. '_' (0 2+"1<./"2 horizontal#pairs)} canvas
vertical=. -.horizontal
canvas=. '|' (>./"2 vertical#pairs)} canvas
}}

asciiart hilbert 4
__ __    __ __    __ __    __ __    __ __
|__   |__|   __|  |__   |__|   __|  |__   |__|
__|   __   |   __   |   __   |__    __|   __
|__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
__ __   |   __    __   |__    __ __ __    __|
|__   |__|  |  |__|  |   __|  |__    __|  |__
__|   __   |__    __|  |   __   |  |   __   |
|__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__ __    __ __    __|   __    __    __    __
|__   |__|   __|  |__   |  |__|  |  |  |__|  |
__|   __   |   __   |  |__    __|  |__    __|
|__ __|  |  |__|  |__|   __|  |__ __ __|  |__
__ __   |   __    __   |   __ __    __ __   |
|__   |__|  |  |__|  |  |__|   __|  |__   |__|
__|   __   |__    __|   __   |__    __|   __
|__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
```

The idea is to represent the nth order hilbert curve as list of complex numbers that can be summed to trace the curve. The 0th order hilbert curve is an empty list. The first half of the n+1 the curve is formed by rotating the nth right by 90 degrees and reversing, appending -i and appending the nth curve. The whole n+1th curve is the first half appended to 1 appended to the conjugate of the reverse of the first half.

## Java

```// Translation from https://en.wikipedia.org/wiki/Hilbert_curve

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class HilbertCurve {
public static class Point {
public int x;
public int y;

public Point(int x, int y) {
this.x = x;
this.y = y;
}

public String toString() {
return "(" + x + ", " + y + ")";
}

//rotate/flip a quadrant appropriately
public void rot(int n, boolean rx, boolean ry) {
if (!ry) {
if (rx) {
x = (n - 1) - x;
y = (n - 1) - y;
}

//Swap x and y
int t  = x;
x = y;
y = t;
}

return;
}

public int calcD(int n) {
boolean rx, ry;
int d = 0;
for (int s = n >>> 1; s > 0; s >>>= 1) {
rx = ((x & s) != 0);
ry = ((y & s) != 0);
d += s * s * ((rx ? 3 : 0) ^ (ry ? 1 : 0));
rot(s, rx, ry);
}

return d;
}

}

public static Point fromD(int n, int d) {
Point p = new Point(0, 0);
boolean rx, ry;
int t = d;
for (int s = 1; s < n; s <<= 1) {
rx = ((t & 2) != 0);
ry = (((t ^ (rx ? 1 : 0)) & 1) != 0);
p.rot(s, rx, ry);
p.x += (rx ? s : 0);
p.y += (ry ? s : 0);
t >>>= 2;
}
return p;
}

public static List<Point> getPointsForCurve(int n) {
List<Point> points = new ArrayList<Point>();
for (int d = 0; d < (n * n); d++) {
Point p = fromD(n, d);
}

return points;
}

public static List<String> drawCurve(List<Point> points, int n) {
char[][] canvas = new char[n][n * 3 - 2];
for (char[] line : canvas) {
Arrays.fill(line, ' ');
}
for (int i = 1; i < points.size(); i++) {
Point lastPoint = points.get(i - 1);
Point curPoint = points.get(i);
int deltaX = curPoint.x - lastPoint.x;
int deltaY = curPoint.y - lastPoint.y;
if (deltaX == 0) {
if (deltaY == 0) {
// A mistake has been made
throw new IllegalStateException("Duplicate point, deltaX=" + deltaX + ", deltaY=" + deltaY);
}
// Vertical line
int row = Math.max(curPoint.y, lastPoint.y);
int col = curPoint.x * 3;
canvas[row][col] = '|';
}
else {
if (deltaY != 0) {
// A mistake has been made
throw new IllegalStateException("Diagonal line, deltaX=" + deltaX + ", deltaY=" + deltaY);
}
// Horizontal line
int row = curPoint.y;
int col = Math.min(curPoint.x, lastPoint.x) * 3 + 1;
canvas[row][col] = '_';
canvas[row][col + 1] = '_';
}

}
List<String> lines = new ArrayList<String>();
for (char[] row : canvas) {
String line = new String(row);
}

return lines;
}

public static void main(String... args) {
for (int order = 1; order <= 5; order++) {
int n = (1 << order);
List<Point> points = getPointsForCurve(n);
System.out.println("Hilbert curve, order=" + order);
List<String> lines = drawCurve(points, n);
for (String line : lines) {
System.out.println(line);
}
System.out.println();
}
return;
}
}
```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
|__    __ __ __    __|   __    __   |   __ __    __ __   |   __    __   |__    __ __ __    __|
__|  |__    __|  |__   |  |__|  |  |__|   __|  |__   |__|  |  |__|  |   __|  |__    __|  |__
|   __   |  |   __   |  |__    __|   __   |__    __|   __   |__    __|  |   __   |  |   __   |
|__|  |__|  |__|  |__|   __|  |__ __|  |__ __|  |__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__    __    __    __   |__    __ __    __ __    __ __    __ __    __|   __    __    __    __
|  |__|  |  |  |__|  |   __|  |__   |__|   __|  |__   |__|   __|  |__   |  |__|  |  |  |__|  |
|__    __|  |__    __|  |   __   |   __   |__    __|   __   |   __   |  |__    __|  |__    __|
__|  |__ __ __|  |__   |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|   __|  |__ __ __|  |__
|   __ __    __ __   |   __    __   |   __ __    __ __   |   __    __   |   __ __    __ __   |
|__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|
__   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __
|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
|__    __ __    __ __    __ __    __ __    __ __ __    __ __    __ __    __ __    __ __    __|
__|  |__   |__|   __|  |__   |__|   __|  |__    __|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |  |   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __    __    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|  |__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__    __|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |  |   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __    __   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|
```

## JavaScript

### Imperative

An implementation of GO. Prints an SVG string that can be read in a browser.

```const hilbert = (width, spacing, points) => (x, y, lg, i1, i2, f) => {
if (lg === 1) {
const px = (width - x) * spacing;
const py = (width - y) * spacing;
points.push(px, py);
return;
}
lg >>= 1;
f(x + i1 * lg, y + i1 * lg, lg, i1, 1 - i2, f);
f(x + i2 * lg, y + (1 - i2) * lg, lg, i1, i2, f);
f(x + (1 - i1) * lg, y + (1 - i1) * lg, lg, i1, i2, f);
f(x + (1 - i2) * lg, y + i2 * lg, lg, 1 - i1, i2, f);
return points;
};

/**
* Draw a hilbert curve of the given order.
* Outputs a svg string. Save the string as a .svg file and open in a browser.
* @param {!Number} order
*/
const drawHilbert = order => {
if (!order || order < 1) {
throw 'You need to give a valid positive integer';
} else {
order = Math.floor(order);
}

// Curve Constants
const width = 2 ** order;
const space = 10;

// SVG Setup
const size = 500;
const stroke = 2;
const col = "red";
const fill = "transparent";

// Prep and run function
const f = hilbert(width, space, []);
const points = f(0, 0, width, 0, 0, f);
const path = points.join(' ');

console.log(
`<svg xmlns="http://www.w3.org/2000/svg"
width="\${size}"
height="\${size}"
viewBox="\${space / 2} \${space / 2} \${width * space} \${width * space}">
<path d="M\${path}" stroke-width="\${stroke}" stroke="\${col}" fill="\${fill}"/>
</svg>`);

};

drawHilbert(6);
```

### Functional

Translation of: Python

A composition of pure functions which defines a Hilbert tree as the Nth application of a production rule to a seedling tree.

A list of points is derived by serialization of that tree.

Like the version above, generates an SVG string for display in a browser.

```(() => {
"use strict";

// ------------------ HILBERT CURVE ------------------

// hilbertCurve :: Dict Char [(Int, Int)] ->
// Dict Char [Char] -> Int -> Int -> SVG string
const hilbertCurve = dictVector =>
dictRule => width => compose(
svgFromPoints(width),
hilbertPoints(dictVector)(width),
hilbertTree(dictRule)
);

// hilbertTree :: Dict Char [Char] -> Int -> Tree Char
const hilbertTree = rule =>
n => {
const go = tree => {
const xs = tree.nest;

return Node(tree.root)(
0 < xs.length
? xs.map(go)
: rule[tree.root].map(
flip(Node)([])
)
);
};
const seed = Node("a")([]);

return 0 < n
? take(n)(
iterate(go)(seed)
)
.slice(-1)[0]
: seed;
};

// hilbertPoints :: Size -> Tree Char -> [(x, y)]
// hilbertPoints :: Int -> Tree Char -> [(Int, Int)]
const hilbertPoints = dict =>
w => tree => {
const go = d => (xy, t) => {
const
r = Math.floor(d / 2),
centres = dict[t.root]
.map(v => [
xy[0] + (r * v[0]),
xy[1] + (r * v[1])
]);

return 0 < t.nest.length
? zipWith(
go(r)
)(centres)(t.nest).flat()
: centres;
};
const d = Math.floor(w / 2);

return go(d)([d, d], tree);
};

// svgFromPoints :: Int -> [(Int, Int)] -> String
const svgFromPoints = w => xys => [
"<svg xmlns=\"http://www.w3.org/2000/svg\"",
`width="500" height="500" viewBox="5 5 \${w} \${w}">`,
`<path d="M\${(xys).flat().join(" ")}" `,
// eslint-disable-next-line quotes
'stroke-width="2" stroke="red" fill="transparent"/>',
"</svg>"
].join("\n");

// -------------------- TEST ---------------------
const main = () =>
hilbertCurve({
"a": [
[-1, 1],
[-1, -1],
[1, -1],
[1, 1]
],
"b": [
[1, -1],
[-1, -1],
[-1, 1],
[1, 1]
],
"c": [
[1, -1],
[1, 1],
[-1, 1],
[-1, -1]
],
"d": [
[-1, 1],
[1, 1],
[1, -1],
[-1, -1]
]
})({
a: ["d", "a", "a", "b"],
b: ["c", "b", "b", "a"],
c: ["b", "c", "c", "d"],
d: ["a", "d", "d", "c"]
})(1024)(6);

// ---------------- GENERIC FUNCTIONS ----------------

// Node :: a -> [Tree a] -> Tree a
const Node = v =>
// Constructor for a Tree node which connects a
// value of some kind to a list of zero or
// more child trees.
xs => ({
type: "Node",
root: v,
nest: xs || []
});

// compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
const compose = (...fs) =>
// A function defined by the right-to-left
// composition of all the functions in fs.
fs.reduce(
(f, g) => x => f(g(x)),
x => x
);

// flip :: (a -> b -> c) -> b -> a -> c
const flip = op =>
// The binary function op with
// its arguments reversed.
1 !== op.length
? (a, b) => op(b, a)
: (a => b => op(b)(a));

// iterate :: (a -> a) -> a -> Gen [a]
const iterate = f =>
// An infinite list of repeated applications
// of f, starting with the seed value x.
function* (x) {
let v = x;

while (true) {
yield v;
v = f(v);
}
};

// length :: [a] -> Int
const length = xs =>
// Returns Infinity over objects without finite
// length. This enables zip and zipWith to choose
// the shorter argument when one is non-finite,
// like cycle, repeat etc
"GeneratorFunction" !== xs.constructor
.constructor.name ? (
xs.length
) : Infinity;

// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = n =>
// The first n elements of a list,
// string of characters, or stream.
xs => "GeneratorFunction" !== xs
.constructor.constructor.name ? (
xs.slice(0, n)
) : Array.from({
length: n
}, () => {
const x = xs.next();

return x.done ? [] : [x.value];
}).flat();

// zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
const zipWith = f =>
xs => ys => {
const
n = Math.min(length(xs), length(ys)),
as = take(n)(xs),
bs = take(n)(ys);

return Array.from({
length: n
}, (_, i) => f(as[i], bs[i]));
};

// MAIN ---
return main();
})();
```

## jq

Works with: jq

Works with gojq, the Go implementation of jq

The program given here generates SVG code that can be viewed directly in a browser, at least if the file suffix is .svg.

See Simple Turtle Graphics for the simple-turtle.jq module used in this entry. The `include` statement assumes the file is in the pwd.

```include "simple-turtle" {search: "."};

def rules:
{ A: "-BF+AFA+FB-",
B: "+AF-BFB-FA+" };

def hilbert(\$count):
rules as \$rules
| def p(\$count):
if \$count <= 0 then .
else gsub("A"; "a") | gsub("B"; \$rules["B"]) | gsub("a"; \$rules["A"])
| p(\$count-1)
end;
"A" | p(\$count) ;

def interpret(\$x):
if   \$x == "+" then turtleRotate(90)
elif \$x == "-" then turtleRotate(-90)
elif \$x == "F" then turtleForward(5)
else .
end;

def hilbert_curve(\$n):
hilbert(\$n)
| split("")
| reduce .[] as \$action (turtle([0,5]) | turtleDown;
interpret(\$action) ) ;

hilbert_curve(5)
| path("none"; "red"; 1) | svg(170)```
Output:

## Julia

Color graphics version using the Gtk package.

```using Gtk, Graphics, Colors

Base.isless(p1::Vec2, p2::Vec2) = (p1.x == p2.x ? p1.y < p2.y : p1.x < p2.x)

struct Line
p1::Point
p2::Point
end

dist(p1, p2) = sqrt((p2.y - p1.y)^2 + (p2.x - p1.x)^2)
length(ln::Line) = dist(ln.p1, ln.p2)
isvertical(line) = (line.p1.x == line.p2.x)
ishorizontal(line) = (line.p1.y == line.p2.y)

const colorseq = [colorant"blue", colorant"red", colorant"green"]
const linewidth = 1
const toporder = 3

function drawline(ctx, p1, p2, color, width)
move_to(ctx, p1.x, p1.y)
set_source(ctx, color)
line_to(ctx, p2.x, p2.y)
set_line_width(ctx, width)
stroke(ctx)
end
drawline(ctx, line, color, width=linewidth) = drawline(ctx, line.p1, line.p2, color, width)

function hilbertmutateboxes(ctx, line, order, maxorder=toporder)
if line.p1 < line.p2
p1, p2 = line.p1, line.p2
else
p2, p1 = line.p1, line.p2
end
color = colorseq[order % 3 + 1]
d = dist(p1, p2) / 3
if ishorizontal(line)
pl = Point(p1.x + d, p1.y)
plu = Point(p1.x + d, p1.y - d)
pld = Point(p1.x + d, p1.y + d)
pr = Point(p2.x - d, p2.y)
pru = Point(p2.x - d, p2.y - d)
prd = Point(p2.x - d, p2.y + d)
lines = [Line(plu, pl), Line(plu, pru), Line(pru, pr),
Line(pr, prd), Line(pld, prd), Line(pld, pl)]
else # vertical
pu = Point(p1.x, p1.y + d)
pul = Point(p1.x - d, p1.y + d)
pur = Point(p1.x + d, p1.y + d)
pd = Point(p2.x, p2.y - d)
pdl = Point(p2.x - d, p2.y - d)
pdr = Point(p2.x + d, p2.y - d)
lines = [Line(pul, pu), Line(pul, pdl), Line(pdl, pd),
Line(pu, pur), Line(pur, pdr), Line(pd, pdr)]
end
for li in lines
drawline(ctx, li, color)
end
if order <= maxorder
for li in lines
hilbertmutateboxes(ctx, li, order + 1, maxorder)
end
end
end

const can = @GtkCanvas()
const win = GtkWindow(can, "Hilbert 2D", 400, 400)

@guarded draw(can) do widget
ctx = getgc(can)
h = height(can)
w = width(can)
line = Line(Point(0, h/2), Point(w, h/2))
drawline(ctx, line, colorant"black", 2)
hilbertmutateboxes(ctx, line, 0)
end

show(can)
const cond = Condition()
endit(w) = notify(cond)
signal_connect(endit, win, :destroy)
wait(cond)
```

## Kotlin

Terminal drawing using ASCII characters within a 96 x 96 grid - starts at top left, ends at top right.

The coordinates of the points are generated using a translation of the C code in the Wikipedia article and then scaled by a factor of 3 (n = 32).

```// Version 1.2.40

data class Point(var x: Int, var y: Int)

fun d2pt(n: Int, d: Int): Point {
var x = 0
var y = 0
var t = d
var s = 1
while (s < n) {
val rx = 1 and (t / 2)
val ry = 1 and (t xor rx)
val p = Point(x, y)
rot(s, p, rx, ry)
x = p.x + s * rx
y = p.y + s * ry
t /= 4
s *= 2
}
return Point(x, y)
}

fun rot(n: Int, p: Point, rx: Int, ry: Int) {
if (ry == 0) {
if (rx == 1) {
p.x = n - 1 - p.x
p.y = n - 1 - p.y
}
val t  = p.x
p.x = p.y
p.y = t
}
}

fun main(args:Array<String>) {
val n = 32
val k = 3
val pts = List(n * k) { CharArray(n * k) { ' ' } }
var prev = Point(0, 0)
pts[0][0] = '.'
for (d in 1 until n * n) {
val curr = d2pt(n, d)
val cx = curr.x * k
val cy = curr.y * k
val px = prev.x * k
val py = prev.y * k
pts[cx][cy] = '.'
if (cx == px ) {
if (py < cy)
for (y in py + 1 until cy) pts[cx][y] = '|'
else
for (y in cy + 1 until py) pts[cx][y] = '|'
}
else {
if (px < cx)
for (x in px + 1 until cx) pts[x][cy] = '_'
else
for (x in cx + 1 until px) pts[x][cy] = '_'
}
prev = curr
}
for (i in 0 until n * k) {
for (j in 0 until n * k) print(pts[j][i])
println()
}
}
```
Output:
```.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .
|  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |
|  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|        |        |        |        |        |        |        |        |        |
|        |        |        |        |        |        |        |        |        |
.__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.
|  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |
|  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |
.  .__.__.  .__.__.  .  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .  .__.__.  .__.__.  .
|                    |              |                    |              |                    |
|                    |              |                    |              |                    |
.__.  .__.__.__.  .__.  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .__.  .__.__.__.  .__.
|  |        |  |     |  |  |  |  |  |     |  |     |  |  |  |  |  |     |  |        |  |
|  |        |  |     |  |  |  |  |  |     |  |     |  |  |  |  |  |     |  |        |  |
.__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.
|        |  |        |  |        |        |        |        |        |  |        |  |        |
|        |  |        |  |        |        |        |        |        |  |        |  |        |
.  .__.  .  .  .__.  .  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .  .__.  .  .  .__.  .
|  |  |  |  |  |  |  |     |  |     |  |     |  |     |  |     |  |     |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |     |  |     |  |     |  |     |  |     |  |     |  |  |  |  |  |  |  |
.__.  .__.  .__.  .__.  .__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.  .__.  .__.  .__.  .__.
|                                            |
|                                            |
.__.  .__.  .__.  .__.  .__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.  .__.  .__.  .__.  .__.
|  |  |  |  |  |  |  |     |  |     |  |     |  |     |  |     |  |     |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |     |  |     |  |     |  |     |  |     |  |     |  |  |  |  |  |  |  |
.  .__.  .  .  .__.  .  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .  .__.  .  .  .__.  .
|        |  |        |  |        |        |        |        |        |  |        |  |        |
|        |  |        |  |        |        |        |        |        |  |        |  |        |
.__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.
|  |        |  |     |  |  |  |  |  |     |  |     |  |  |  |  |  |     |  |        |  |
|  |        |  |     |  |  |  |  |  |     |  |     |  |  |  |  |  |     |  |        |  |
.__.  .__.__.__.  .__.  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .__.  .__.__.__.  .__.
|                    |              |                    |              |                    |
|                    |              |                    |              |                    |
.  .__.__.  .__.__.  .  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .  .__.__.  .__.__.  .
|  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |
|  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |     |  |     |  |
.__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .__.  .__.  .__.  .__.
|        |        |        |        |        |        |        |        |        |
|        |        |        |        |        |        |        |        |        |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |
|  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |     |  |
.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .
|                                                                                            |
|                                                                                            |
.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.__.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.
|  |     |  |     |  |     |  |     |  |        |  |     |  |     |  |     |  |     |  |
|  |     |  |     |  |     |  |     |  |        |  |     |  |     |  |     |  |     |  |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|        |        |        |        |        |  |        |        |        |        |        |
|        |        |        |        |        |  |        |        |        |        |        |
.  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .
|  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |
|  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |
.__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.
|                    |                          |                    |
|                    |                          |                    |
.__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.  .__.  .__.  .  .__.__.  .__.__.  .  .__.  .__.
|  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |
|  |  |  |  |  |     |  |     |  |  |  |  |  |  |  |  |  |  |  |     |  |     |  |  |  |  |  |
.  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .  .  .__.  .  .__.  .__.  .__.  .__.  .  .__.  .
|        |        |        |        |        |  |        |        |        |        |        |
|        |        |        |        |        |  |        |        |        |        |        |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|  |     |  |     |  |     |  |     |  |        |  |     |  |     |  |     |  |     |  |
|  |     |  |     |  |     |  |     |  |        |  |     |  |     |  |     |  |     |  |
.__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.  .__.  .__.__.  .__.__.  .__.__.  .__.__.  .__.
|                                            |  |                                            |
|                                            |  |                                            |
.  .__.__.  .__.__.  .__.  .__.__.  .__.__.  .  .  .__.__.  .__.__.  .__.  .__.__.  .__.__.  .
|  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |
|  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|        |              |        |              |        |              |        |
|        |              |        |              |        |              |        |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |
|  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |  |  |     |  |     |  |
.  .__.__.  .__.__.  .  .  .__.__.  .__.__.  .  .  .__.__.  .__.__.  .  .  .__.__.  .__.__.  .
|                    |  |                    |  |                    |  |                    |
|                    |  |                    |  |                    |  |                    |
.__.  .__.__.__.  .__.  .__.  .__.__.__.  .__.  .__.  .__.__.__.  .__.  .__.  .__.__.__.  .__.
|  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |
|  |        |  |        |  |        |  |        |  |        |  |        |  |        |  |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.
|        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |
|        |  |        |  |        |  |        |  |        |  |        |  |        |  |        |
.  .__.  .  .  .__.  .  .  .__.  .  .  .__.  .  .  .__.  .  .  .__.  .  .  .__.  .  .  .__.  .
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
.__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  .__.  ```

## Lambdatalk

The output is visible in Hibert curve

```1) two twinned recursive functions

{def left {lambda {:d :n}
{if {< :n 1}
then
else T90      {right :d {- :n 1}}
M:d T-90 {left  :d {- :n 1}}
M:d      {left  :d {- :n 1}}
T-90 M:d {right :d {- :n 1}}
T90}}}

{def right {lambda {:d :n}
{if {< :n 1}
then
else T-90    {left  :d {- :n 1}}
M:d T90 {right :d {- :n 1}}
M:d     {right :d {- :n 1}}
T90 M:d {left  :d {- :n 1}}
T-90}}}

The word Tθ rotates the drawing direction of a pen from θ degrees and the word Md moves it on d pixels.

{def H5 {left 18 5}}

The call {def H5 {left 18 5}} produces 2387 words begining with [T90 T-90 T90 T-90 T90 M10 T-90 M10 T-90 M10 T90 M10 T90 T-90 M10 T90 M10 T90 M10 T-90 M10 T-90 M10 T90 M10 T90 M10 T-90 T90 M10 T90 M10 T-90 M10 T-90 ...]

2) the SVG context

Lambdatalk comes with a primitive, turtle, translating the previous sequence of words into a sequence of SVG points [x0 y0 x1 y2 ... xn yn] feeding the "d" attribute of a SVG path.

{def stroke
{lambda {:w :c}
fill="transparent" stroke=":c" stroke-width=":w"}}

{svg
{@ width="580px" height="580px"}
{path {@ d="M {turtle 10 10 0 {H5}}" {stroke 8 #000}}}
{path {@ d="M {turtle 10 10 0 {H5}}" {stroke 4 #000}}}
{path {@ d="M {turtle 10 10 0 {H5}}" {stroke 1 #fff}}}
}
```

## Lua

Solved by using the Lindenmayer path, printed with Unicode, which does not show perfectly on web, but is quite nice on console. Should work with all Lua versions, used nothing special. Should work up to Hilbert(12) if your console is big enough for that.

Implemented a full line-drawing Unicode/ASCII drawing and added for the example my signature to the default axiom "A" for fun and a second Hilbert "A" at the end, because it's looking better in the display like that. The implementation of repeated commands was just an additional line of code, so why not?

Lindenmayer:

• A,B are Lindenmayer AXIOMS

Line drawing:

• +,- turn right, left
• F draw line forward
• <num> repeat the following draw command <num> times
• <any> move on canvas without drawing
```-- any version from LuaJIT 2.0/5.1, Lua 5.2, Lua 5.3 to LuaJIT 2.1.0-beta3-readline
local bit=bit32 or bit -- Lua 5.2/5.3 compatibilty
-- Hilbert curve implemented by Lindenmayer system
function string.hilbert(s, n)
for i=1,n do
s=s:gsub("[AB]",function(c)
if c=="A" then
c="-BF+AFA+FB-"
else
c="+AF-BFB-FA+"
end
return c
end)
end
s=s:gsub("[AB]",""):gsub("%+%-",""):gsub("%-%+","")
return s
end
-- Or the characters for ASCII line drawing
function charor(c1, c2)
local bits={
[" "]=0x0, ["╷"]=0x1, ["╶"]=0x2, ["┌"]=0x3, ["╵"]=0x4, ["│"]=0x5, ["└"]=0x6, ["├"]=0x7,
["╴"]=0x8, ["┐"]=0x9, ["─"]=0xa, ["┬"]=0xb, ["┘"]=0xc, ["┤"]=0xd, ["┴"]=0xe, ["┼"]=0xf,}
local char={" ", "╷", "╶", "┌", "╵", "│", "└", "├", "╴", "┐", "─", "┬", "┘", "┤", "┴", "┼",}
local b1,b2=bits[c1] or 0,bits[c2] or 0
return char[bit.bor(b1,b2)+1]
end
-- ASCII line drawing routine
function draw(s)
local char={
{"─","┘","╴","┐",}, -- r
{"│","┐","╷","┌",}, -- up
{"─","┌","╶","└",}, -- l
{"│","└","╵","┘",},	-- down
}
local scr={}
local move={{x=1,y=0},{x=0,y=1},{x=-1,y=0},{x=0,y=-1}}
local x,y=1,1
local minx,maxx,miny,maxy=1,1,1,1
local dir,turn=0,0
s=s.."F"
local rep=0
for c in s:gmatch(".") do
if c=="F" then
repeat
if scr[y]==nil then scr[y]={} end
scr[y][x]=charor(char[dir+1][turn%#char[1]+1],scr[y][x] or " ")
dir = (dir+turn) % #move
x, y = x+move[dir+1].x,y+move[dir+1].y
maxx,maxy=math.max(maxx,x),math.max(maxy,y)
minx,miny=math.min(minx,x),math.min(miny,y)
turn=0
rep=rep>1 and rep-1 or 0
until rep==0
elseif c=="-" then
repeat
turn=turn+1
rep=rep>1 and rep-1 or 0
until rep==0
elseif c=="+" then
repeat
turn=turn-1
rep=rep>1 and rep-1 or 0
until rep==0
elseif c:match("%d") then -- allow repeated commands
rep=rep*10+tonumber(c)
else
repeat
x, y = x+move[dir+1].x,y+move[dir+1].y
maxx,maxy=math.max(maxx,x),math.max(maxy,y)
minx,miny=math.min(minx,x),math.min(miny,y)
rep=rep>1 and rep-1 or 0
until rep==0
end
end
for i=maxy,miny,-1 do
local oneline={}
for x=minx,maxx do
oneline[1+x-minx]=scr[i] and scr[i][x] or " "
end
local line=table.concat(oneline)
io.write(line, "\n")
end
end
-- MAIN --
local n=arg[1] and tonumber(arg[1]) or 3
local str=arg[2] or "A"
draw(str:hilbert(n))
```
Output:

luajit hilbert.lua 4 1M9FAF-4F2+2F-2F-2F++4F-F-4F+2F+2F+2F++3F+2F+3F--4FA10F-16F-58F-16F-

```┌─────────────────────────────────────────────────────────┐
│         ┌┐┌┐┌┐┌┐┌┐┌┐┌┐┌┐       ┌┐┌┐┌┐┌┐┌┐┌┐┌┐┌┐         │
│         │└┘││└┘││└┘││└┘│       │└┘││└┘││└┘││└┘│         │
│         └┐┌┘└┐┌┘└┐┌┘└┐┌┘       └┐┌┘└┐┌┘└┐┌┘└┐┌┘         │
│         ┌┘└──┘└┐┌┘└──┘└┐       ┌┘└──┘└┐┌┘└──┘└┐         │
│         │┌─┐┌─┐││┌─┐┌─┐│       │┌─┐┌─┐││┌─┐┌─┐│         │
│         └┘┌┘└┐└┘└┘┌┘└┐└┘       └┘┌┘└┐└┘└┘┌┘└┐└┘         │
│         ┌┐└┐┌┘┌┐┌┐└┐┌┘┌┐       ┌┐└┐┌┘┌┐┌┐└┐┌┘┌┐         │
│         │└─┘└─┘└┘└─┘└─┘│       │└─┘└─┘└┘└─┘└─┘│         │
│         └┐┌─┐┌─┐┌─┐┌─┐┌┘       └┐┌─┐┌─┐┌─┐┌─┐┌┘         │
│         ┌┘└┐└┘┌┘└┐└┘┌┘└┐       ┌┘└┐└┘┌┘└┐└┘┌┘└┐         │
│         │┌┐│┌┐└┐┌┘┌┐│┌┐│       │┌┐│┌┐└┐┌┘┌┐│┌┐│         │
│         └┘└┘│└─┘└─┘│└┘└┘╷ ╷┌─┐ └┘└┘│└─┘└─┘│└┘└┘         │
│         ┌┐┌┐│┌─┐┌─┐│┌┐┌┐│ ││ │ ┌┐┌┐│┌─┐┌─┐│┌┐┌┐         │
│         │└┘│└┘┌┘└┐└┘│└┘│├─┤├─┴┐│└┘│└┘┌┘└┐└┘│└┘│         │
│         └┐┌┘┌┐└┐┌┘┌┐└┐┌┘│ ││  │└┐┌┘┌┐└┐┌┘┌┐└┐┌┘         │
└──────────┘└─┘└─┘└─┘└─┘└─┘ └┴──┴─┘└─┘└─┘└─┘└─┘└──────────┘

```

## Mathematica /Wolfram Language

Works with: Mathematica 11

```Graphics@HilbertCurve[4]
```

## Nim

Translation of: Algol68
```const
Level = 4
Side = (1 shl Level) * 2 - 2

type Direction = enum E, N, W, S

const

# Strings to use according to direction.
Drawings1: array[Direction, string] = ["──", " │", "──", " │"]

# Strings to use according to old and current direction.
Drawings2: array[Direction, array[Direction, string]] = [["──", "─╯", " ?", "─╮"],
[" ╭", " │", "─╮", " ?"],
[" ?", " ╰", "──", " ╭"],
[" ╰", " ?", "─╯", " │"]]

type Curve = object
grid: array[-Side..1, array[0..Side, string]]
x, y: int
dir, oldDir: Direction

proc newCurve(): Curve =
## Create a new curve.
result.x = 0
result.y = 0
result.dir = E
result.oldDir = E
for row in result.grid.mitems:
for item in row.mitems:
item = "  "

proc left(dir: var Direction) =
## Turn on the left.
dir = if dir == S: E else: succ(dir)

proc right(dir: var Direction) =
## Turn on the right.
dir = if dir == E: S else: pred(dir)

proc move(curve: var Curve) =
## Move to next position according to current direction.
case curve.dir
of E: inc curve.x
of N: dec curve.y
of W: dec curve.x
of S: inc curve.y

proc forward(curve: var Curve) =
# Do one step: draw a corner, draw a segment and advance to next corner.

# Draw corner.
curve.grid[curve.y][curve.x] = Drawings2[curve.oldDir][curve.dir]
curve.move()

# Draw segment.
curve.grid[curve.y][curve.x] = Drawings1[curve.dir]

# Advance to next corner.
curve.move()
curve.oldDir = curve.dir

# Forward reference.
proc b(curve: var Curve; level: int)

proc a(curve: var Curve; level: int) =
## "A" function.
if level > 0:
curve.dir.left()
curve.b(level - 1)
curve.forward()
curve.dir.right()
curve.a(level - 1)
curve.forward()
curve.a(level - 1)
curve.dir.right()
curve.forward()
curve.b(level - 1)
curve.dir.left()

proc b(curve: var Curve; level: int) =
## "B" function.
if level > 0:
curve.dir.right()
curve.a(level - 1)
curve.forward()
curve.dir.left()
curve.b(level - 1)
curve.forward()
curve.b(level - 1)
curve.dir.left()
curve.forward()
curve.a(level - 1)
curve.dir.right()

### Main code

var curve = newCurve()

# Draw.
curve.a(Level)

# Print.
for row in curve.grid:
for s in row:
stdout.write(s)
stdout.writeLine("")
```
Output:

See Algol68 version.

## Perl

```use SVG;
use List::Util qw(max min);

use constant pi => 2 * atan2(1, 0);

# Compute the curve with a Lindemayer-system
%rules = (
A => '-BF+AFA+FB-',
B => '+AF-BFB-FA+'
);
\$hilbert = 'A';
\$hilbert =~ s/([AB])/\$rules{\$1}/eg for 1..6;

# Draw the curve in SVG
(\$x, \$y) = (0, 0);
\$theta   = pi/2;
\$r       = 5;

for (split //, \$hilbert) {
if (/F/) {
push @X, sprintf "%.0f", \$x;
push @Y, sprintf "%.0f", \$y;
\$x += \$r * cos(\$theta);
\$y += \$r * sin(\$theta);
}
elsif (/\+/) { \$theta += pi/2; }
elsif (/\-/) { \$theta -= pi/2; }
}

\$max =  max(@X,@Y);
\$xt  = -min(@X)+10;
\$yt  = -min(@Y)+10;
\$svg = SVG->new(width=>\$max+20, height=>\$max+20);
\$points = \$svg->get_path(x=>\@X, y=>\@Y, -type=>'polyline');
\$svg->rect(width=>"100%", height=>"100%", style=>{'fill'=>'black'});
\$svg->polyline(%\$points, style=>{'stroke'=>'orange', 'stroke-width'=>1}, transform=>"translate(\$xt,\$yt)");

open  \$fh, '>', 'hilbert_curve.svg';
print \$fh  \$svg->xmlify(-namespace=>'svg');
close \$fh;
```

Hilbert curve (offsite image)

## Phix

Translation of: Go
Library: Phix/pGUI
Library: Phix/online

You can run this online here.

```--
-- demo\rosetta\hilbert_curve.exw
-- ==============================
--
--  Draws a hilbert curve.
--
with javascript_semantics
include pGUI.e

constant title = "Hilbert Curve"
Ihandle dlg, canvas
cdCanvas cddbuffer, cdcanvas

constant width = 64

sequence points = {}

procedure hilbert(integer x, y, lg, i1, i2)
if lg=1 then
integer px := (width-x) * 10,
py := (width-y) * 10
points = append(points, {px, py})
return
end if
lg /= 2
hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2)
hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2)
hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2)
hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2)
end procedure

function redraw_cb(Ihandle /*ih*/, integer /*posx*/, /*posy*/)
cdCanvasActivate(cddbuffer)
cdCanvasBegin(cddbuffer, CD_OPEN_LINES)
for i=1 to length(points) do
integer {x,y} = points[i]
cdCanvasVertex(cddbuffer, x, y)
end for
cdCanvasEnd(cddbuffer)
cdCanvasFlush(cddbuffer)
return IUP_DEFAULT
end function

function map_cb(Ihandle ih)
cdcanvas = cdCreateCanvas(CD_IUP, ih)
cddbuffer = cdCreateCanvas(CD_DBUFFER, cdcanvas)
cdCanvasSetBackground(cddbuffer, CD_WHITE)
cdCanvasSetForeground(cddbuffer, CD_MAGENTA)
return IUP_DEFAULT
end function

procedure main()
hilbert(0, 0, width, 0, 0)
IupOpen()
canvas = IupCanvas("RASTERSIZE=655x655")
IupSetCallbacks(canvas, {"MAP_CB", Icallback("map_cb"),
"ACTION", Icallback("redraw_cb")})
dlg = IupDialog(canvas,`TITLE="%s"`, {title})
-- no resize here (since width is the constant 64...)
IupSetAttribute(dlg, "DIALOGFRAME", "YES")
IupShow(dlg)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure

main()
```

## Processing

```int  iterations = 7;
float strokeLen = 600;
int angleDeg = 90;
String axiom = "L";
StringDict rules = new StringDict();
String sentence = axiom;
int xo, yo;

void setup() {
size(700, 700);
xo= 50;
yo = height - 50;
strokeWeight(1);
noFill();

rules.set("L", "+RF-LFL-FR+");
rules.set("R", "-LF+RFR+FL-");

generate(iterations);
}

void draw() {
background(0);
translate(xo, yo);
}

void generate(int n) {
for (int i=0; i < n; i++) {
strokeLen *= 0.5;
String nextSentence = "";
for (int j=0; j < sentence.length(); j++) {
char c = sentence.charAt(j);
String ruleResult = rules.get(str(c), str(c));
nextSentence += ruleResult;
}
sentence = nextSentence;
}
}

void plot(float angle) {
for (int i=0; i < sentence.length(); i++) {
char c = sentence.charAt(i);
if (c == 'F') {
stroke(255);
line(0, 0, 0, -strokeLen);
translate(0, -strokeLen);
} else if (c == '+') {
rotate(angle);
} else if (c == '-') {
rotate(-angle);
}
}
}

void keyPressed() {
if (key == '-') {
angleDeg -= 1;
println("Angle: " + angleDeg);
}
if (key == '=' || key == '+') {
angleDeg += 1;
println("Angle: " + angleDeg);
}
if (key == 'a') {
strokeLen *= 2;
}
if (key == 'z') {
strokeLen /= 2;
}
if (keyCode == LEFT) {
xo -= 25;
}
if (keyCode == RIGHT) {
xo += 25;
}
if (keyCode == UP) {
yo -= 25;
}
if (keyCode == DOWN) {
yo += 25;
}
}
```

### Processing Python mode

```iterations = 7
stroke_len = 600
angle_deg = 90
axiom = 'L'
sentence = axiom
rules = {
'L': '+RF-LFL-FR+',
'R': '-LF+RFR+FL-',
}

def setup():
size(700, 700)
global xo, yo
xo, yo = 50, height - 50
strokeWeight(1)
noFill()
generate(iterations)

def draw():
background(0)
translate(xo, yo)

def generate(n):
global stroke_len, sentence
for _ in range(n):
stroke_len *= 0.5
next_sentence = ''
for c in sentence:
next_sentence += rules.get(c, c)
sentence = next_sentence

def plot(angle):
for c in sentence:
if c == 'F':
stroke(255)
line(0, 0, 0, -stroke_len)
translate(0, -stroke_len)
elif c == '+':
rotate(angle)
elif c == '-':
rotate(-angle)

def keyPressed():
global angle_deg, xo, yo, stroke_len
if key == '-':
angle_deg -= 5
print(angle_deg)
if str(key) in "=+":
angle_deg += 5
print(angle_deg)
if key == 'a':
stroke_len *= 2
if key == 'z':
stroke_len /= 2
if keyCode == LEFT:
xo -= 50
if keyCode == RIGHT:
xo += 50
if keyCode == UP:
yo -= 50
if keyCode == DOWN:
yo += 50
```

## Python

### Functional

Composition of pure functions, with type comments for the reader rather than the compiler.

An SVG path is serialised from the Nth application of re-write rules to a Hilbert tree structure.

(To view the Hilbert curve, save the output SVG text in a file with an appropriate extension (e.g. .svg), and open it with a browser).

Works with: Python version 3.7
```'''Hilbert curve'''

from itertools import (chain, islice)

# hilbertCurve :: Int -> SVG String
def hilbertCurve(n):
'''An SVG string representing a
Hilbert curve of degree n.
'''
w = 1024
return svgFromPoints(w)(
hilbertPoints(w)(
hilbertTree(n)
)
)

# hilbertTree :: Int -> Tree Char
def hilbertTree(n):
'''Nth application of a rule to a seedling tree.'''

# rule :: Dict Char [Char]
rule = {
'a': ['d', 'a', 'a', 'b'],
'b': ['c', 'b', 'b', 'a'],
'c': ['b', 'c', 'c', 'd'],
'd': ['a', 'd', 'd', 'c']
}

# go :: Tree Char -> Tree Char
def go(tree):
c = tree['root']
xs = tree['nest']
return Node(c)(
map(go, xs) if xs else map(
flip(Node)([]),
rule[c]
)
)
seed = Node('a')([])
return list(islice(
iterate(go)(seed), n
))[-1] if 0 < n else seed

# hilbertPoints :: Int -> Tree Char -> [(Int, Int)]
def hilbertPoints(w):
'''Serialization of a tree to a list of points
bounded by a square of side w.
'''

# vectors :: Dict Char [(Int, Int)]
vectors = {
'a': [(-1, 1), (-1, -1), (1, -1), (1, 1)],
'b': [(1, -1), (-1, -1), (-1, 1), (1, 1)],
'c': [(1, -1), (1, 1), (-1, 1), (-1, -1)],
'd': [(-1, 1), (1, 1), (1, -1), (-1, -1)]
}

# points :: Int -> ((Int, Int), Tree Char) -> [(Int, Int)]
def points(d):
'''Size -> Centre of a Hilbert subtree -> All subtree points
'''
def go(xy, tree):
r = d // 2

def deltas(v):
return (
xy[0] + (r * v[0]),
xy[1] + (r * v[1])
)
centres = map(deltas, vectors[tree['root']])
return chain.from_iterable(
map(points(r), centres, tree['nest'])
) if tree['nest'] else centres
return go

d = w // 2
return lambda tree: list(points(d)((d, d), tree))

# svgFromPoints :: Int -> [(Int, Int)] -> SVG String
def svgFromPoints(w):
'''Width of square canvas -> Point list -> SVG string'''

def go(xys):
def points(xy):
return str(xy[0]) + ' ' + str(xy[1])
xs = ' '.join(map(points, xys))
return '\n'.join(
['<svg xmlns="http://www.w3.org/2000/svg"',
f'width="512" height="512" viewBox="5 5 {w} {w}">',
f'<path d="M{xs}" ',
'stroke-width="2" stroke="red" fill="transparent"/>',
'</svg>'
]
)
return go

# ------------------------- TEST --------------------------
def main():
'''Testing generation of the SVG for a Hilbert curve'''
print(
hilbertCurve(6)
)

# ------------------- GENERIC FUNCTIONS -------------------

# Node :: a -> [Tree a] -> Tree a
def Node(v):
'''Contructor for a Tree node which connects a
value of some kind to a list of zero or
more child trees.'''
return lambda xs: {'type': 'Node', 'root': v, 'nest': xs}

# flip :: (a -> b -> c) -> b -> a -> c
def flip(f):
'''The (curried or uncurried) function f with its
arguments reversed.
'''
return lambda a: lambda b: f(b)(a)

# iterate :: (a -> a) -> a -> Gen [a]
def iterate(f):
'''An infinite list of repeated
applications of f to x.
'''
def go(x):
v = x
while True:
yield v
v = f(v)
return go

#  TEST ---------------------------------------------------
if __name__ == '__main__':
main()
```

### Recursive

```import matplotlib.pyplot as plt
import numpy as np
import turtle as tt

# dictionary containing the first order hilbert curves
base_shape = {'u': [np.array([0, 1]), np.array([1, 0]), np.array([0, -1])],
'd': [np.array([0, -1]), np.array([-1, 0]), np.array([0, 1])],
'r': [np.array([1, 0]), np.array([0, 1]), np.array([-1, 0])],
'l': [np.array([-1, 0]), np.array([0, -1]), np.array([1, 0])]}

def hilbert_curve(order, orientation):
"""
Recursively creates the structure for a hilbert curve of given order
"""
if order > 1:
if orientation == 'u':
return hilbert_curve(order - 1, 'r') + [np.array([0, 1])] + \
hilbert_curve(order - 1, 'u') + [np.array([1, 0])] + \
hilbert_curve(order - 1, 'u') + [np.array([0, -1])] + \
hilbert_curve(order - 1, 'l')
elif orientation == 'd':
return hilbert_curve(order - 1, 'l') + [np.array([0, -1])] + \
hilbert_curve(order - 1, 'd') + [np.array([-1, 0])] + \
hilbert_curve(order - 1, 'd') + [np.array([0, 1])] + \
hilbert_curve(order - 1, 'r')
elif orientation == 'r':
return hilbert_curve(order - 1, 'u') + [np.array([1, 0])] + \
hilbert_curve(order - 1, 'r') + [np.array([0, 1])] + \
hilbert_curve(order - 1, 'r') + [np.array([-1, 0])] + \
hilbert_curve(order - 1, 'd')
else:
return hilbert_curve(order - 1, 'd') + [np.array([-1, 0])] + \
hilbert_curve(order - 1, 'l') + [np.array([0, -1])] + \
hilbert_curve(order - 1, 'l') + [np.array([1, 0])] + \
hilbert_curve(order - 1, 'u')
else:
return base_shape[orientation]

# test the functions
if __name__ == '__main__':
order = 8
curve = hilbert_curve(order, 'u')
curve = np.array(curve) * 4
cumulative_curve = np.array([np.sum(curve[:i], 0) for i in range(len(curve)+1)])
# plot curve using plt
plt.plot(cumulative_curve[:, 0], cumulative_curve[:, 1])
# draw curve using turtle graphics
tt.setup(1920, 1000)
tt.pu()
tt.goto(-950, -490)
tt.pd()
tt.speed(0)
for item in curve:
tt.goto(tt.pos()[0] + item[0], tt.pos()[1] + item[1])
tt.done()
```

## QB64

Translation of: YaBASIC
```_Title "Hilbert Curve"
Dim Shared As Integer sw, sh, wide, cell

wide = 128: cell = 4
sw = wide * cell + cell
sh = sw

Screen _NewImage(sw, sh, 8)
Cls , 15: Color 0
PSet (wide * cell, wide * cell)

Call Hilbert(0, 0, wide, 0, 0)

Sleep
System

Sub Hilbert (x As Integer, y As Integer, lg As Integer, p As Integer, q As Integer)
Dim As Integer iL, iX, iY
iL = lg: iX = x: iY = y
If iL = 1 Then
Line -((wide - iX) * cell, (wide - iY) * cell)
Exit Sub
End If
iL = iL \ 2
Call Hilbert(iX + p * iL, iY + p * iL, iL, p, 1 - q)
Call Hilbert(iX + q * iL, iY + (1 - q) * iL, iL, p, q)
Call Hilbert(iX + (1 - p) * iL, iY + (1 - p) * iL, iL, p, q)
Call Hilbert(iX + (1 - q) * iL, iY + q * iL, iL, 1 - p, q)
End Sub```

## Quackery

Using an L-system. (Described at L-system#Quackery.)

```  [ \$ "turtleduck.qky" loadfile ] now!

[ stack ]                      is switch.arg (   --> [ )

[ switch.arg put ]             is switch     ( x -->   )

[ switch.arg release ]         is otherwise  (   -->   )

[ switch.arg share
!= iff ]else[ done
otherwise ]'[ do ]done[ ]    is case       ( x -->   )

[ \$ "" swap witheach
[ nested quackery join ] ] is expand     ( \$ --> \$ )

[ \$ "F" ]                      is F          ( \$ --> \$ )

[ \$ "L" ]                      is L          ( \$ --> \$ )

[ \$ "R" ]                      is R          ( \$ --> \$ )

[ \$ "LBFRAFARFBL" ]            is A          ( \$ --> \$ )

[ \$ "RAFLBFBLFAR" ]            is B          ( \$ --> \$ )

\$ "A"

5 times expand

turtle
10 frames
witheach
[ switch
[ char F case [ 10 1 walk ]
char L case [ -1 4 turn ]
char R case [  1 4 turn ]
otherwise ( ignore ) ] ]
1 frames```
Output:

## Racket

Translation of: Perl
```#lang racket

(require racket/draw)

(define rules '([A . (- B F + A F A + F B -)]
[B . (+ A F - B F B - F A +)]))

(define (get-cmds n cmd)
(cond
[(= 0 n) (list cmd)]
[else (append-map (curry get-cmds (sub1 n))
(dict-ref rules cmd (list cmd)))]))

(define (make-curve DIM N R OFFSET COLOR BACKGROUND-COLOR)
(define target (make-bitmap DIM DIM))
(define dc (new bitmap-dc% [bitmap target]))
(send dc set-background BACKGROUND-COLOR)
(send dc set-pen COLOR 1 'solid)
(send dc clear)
(for/fold ([x 0] [y 0] [θ (/ pi 2)])
([cmd (in-list (get-cmds N 'A))])
(define (draw/values x* y* θ*)
(send/apply dc draw-line (map (curry + OFFSET) (list x y x* y*)))
(values x* y* θ*))
(match cmd
['F (draw/values (+ x (* R (cos θ))) (+ y (* R (sin θ))) θ)]
['+ (values x y (+ θ (/ pi 2)))]
['- (values x y (- θ (/ pi 2)))]
[_  (values x y θ)]))
target)

(make-curve 500 6 7 30 (make-color 255 255 0) (make-color 0 0 0))
```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2018.03
```use SVG;

role Lindenmayer {
has %.rules;
method succ {
self.comb.map( { %!rules{\$^c} // \$c } ).join but Lindenmayer(%!rules)
}
}

my \$hilbert = 'A' but Lindenmayer( { A => '-BF+AFA+FB-', B => '+AF-BFB-FA+' } );

\$hilbert++ xx 7;
my @points = (647, 13);

for \$hilbert.comb {
state (\$x, \$y) = @points[0,1];
state \$d = -5 - 0i;
when 'F' { @points.append: (\$x += \$d.re).round(1), (\$y += \$d.im).round(1) }
when /< + - >/ { \$d *= "{\$_}1i" }
default { }
}

say SVG.serialize(
svg => [
:660width, :660height, :style<stroke:blue>,
:rect[:width<100%>, :height<100%>, :fill<white>],
:polyline[ :points(@points.join: ','), :fill<white> ],
],
);
```

See: Hilbert curve

There is a variation of a Hilbert curve known as a Moore curve which is essentially 4 Hilbert curves joined together in a loop.

```use SVG;

role Lindenmayer {
has %.rules;
method succ {
self.comb.map( { %!rules{\$^c} // \$c } ).join but Lindenmayer(%!rules)
}
}

my \$moore = 'AFA+F+AFA' but Lindenmayer( { A => '-BF+AFA+FB-', B => '+AF-BFB-FA+' } );

\$moore++ xx 6;
my @points = (327, 647);

for \$moore.comb {
state (\$x, \$y) = @points[0,1];
state \$d = 0 - 5i;
when 'F' { @points.append: (\$x += \$d.re).round(1), (\$y += \$d.im).round(1) }
when /< + - >/ { \$d *= "{\$_}1i" }
default { }
}

say SVG.serialize(
svg => [
:660width, :660height, :style<stroke:darkviolet>,
:rect[:width<100%>, :height<100%>, :fill<white>],
:polyline[ :points(@points.join: ','), :fill<white> ],
],
);
```

See: Moore curve

## Ring

```# Project : Hilbert curve

paint = null
x1 = 0
y1 = 0

new qapp
{
win1 = new qwidget() {
setwindowtitle("Hilbert curve")
setgeometry(100,100,400,500)
label1 = new qlabel(win1) {
setgeometry(10,10,400,400)
settext("")
}
new qpushbutton(win1) {
setgeometry(150,400,100,30)
settext("draw")
setclickevent("draw()")
}
show()
}
exec()
}

func draw
p1 = new qpicture()
color = new qcolor() {
setrgb(0,0,255,255)
}
pen = new qpen() {
setcolor(color)
setwidth(1)
}
paint = new qpainter() {
begin(p1)
setpen(pen)

x1 = 0.5
y1 = 0.5
hilbert(0, 0, 200,  0,  0,  200,  4)

endpaint()
}
label1 { setpicture(p1) show() }

func hilbert (x, y, xi, xj, yi, yj, n)
cur = new QCursor() {
setpos(100, 100)
}

if (n <= 0)
drawtoline(x + (xi + yi)/2, y + (xj + yj)/2)
else
hilbert(x, y, yi/2, yj/2, xi/2, xj/2, n-1)
hilbert(x+xi/2, y+xj/2 , xi/2, xj/2, yi/2, yj/2, n-1)
hilbert(x+xi/2+yi/2, y+xj/2+yj/2, xi/2, xj/2, yi/2, yj/2, n-1);
hilbert(x+xi/2+yi, y+xj/2+yj, -yi/2,-yj/2, -xi/2, -xj/2, n-1)
ok

func drawtoline x2, y2
paint.drawline(x1, y1, x2, y2)
x1 = x2
y1 = y2```

Output image: Hilbert curve

## Ruby

Library: RubyGems
Library: JRubyArt

Implemented as a Lindenmayer System, depends on JRuby or JRubyComplete

```# frozen_string_literal: true

def settings
size 600, 600
end

def setup
sketch_title '2D Hilbert'
@hilbert = Hilbert.new
hilbert.create_grammar 5
no_loop
end

def draw
background 0
hilbert.render
end

Turtle = Struct.new(:x, :y, :theta)

# Hilbert Class has access to Sketch methods eg :line, :width, :height
class Hilbert
include Processing::Proxy

attr_reader :grammar, :axiom, :draw_length, :production, :turtle
def initialize
@axiom = 'FL'
@grammar = Grammar.new(
axiom,
'L' => '+RF-LFL-FR+',
'R' => '-LF+RFR+FL-'
)
@draw_length = 200
stroke 0, 255, 0
stroke_weight 2
@turtle = Turtle.new(width / 9, height / 9, 0)
end

def render
production.scan(/./) do |element|
case element
when 'F' # NB NOT using affine transforms
draw_line(turtle)
when '+'
turtle.theta += DELTA
when '-'
turtle.theta -= DELTA
when 'L'
when 'R'
else puts 'Grammar not recognized'
end
end
end

def draw_line(turtle)
x_temp = turtle.x
y_temp = turtle.y
turtle.x += draw_length * Math.cos(turtle.theta)
turtle.y += draw_length * Math.sin(turtle.theta)
line(x_temp, y_temp, turtle.x, turtle.y)
end

##############################
# create grammar from axiom and
# rules (adjust scale)
##############################

def create_grammar(gen)
@draw_length *= 0.6**gen
@production = @grammar.generate gen
end
end
```

The grammar library:-

```# common library class for lsystems in JRubyArt
class Grammar
def initialize(axiom, rules)
@axiom = axiom
@rules = rules
end

def apply_rules(prod)
prod.gsub(/./) { |token| rules.fetch(token, token) }
end

def generate(gen)
return axiom if gen.zero?

prod = axiom
gen.times do
prod = apply_rules(prod)
end
prod
end
end
```

## Rust

Output is a file in SVG format. Implemented using a Lindenmayer system as per the Wikipedia page.

```// [dependencies]
// svg = "0.8.0"

use svg::node::element::path::Data;
use svg::node::element::Path;

struct HilbertCurve {
current_x: f64,
current_y: f64,
current_angle: i32,
line_length: f64,
}

impl HilbertCurve {
fn new(x: f64, y: f64, length: f64, angle: i32) -> HilbertCurve {
HilbertCurve {
current_x: x,
current_y: y,
current_angle: angle,
line_length: length,
}
}
fn rewrite(order: usize) -> String {
let mut str = String::from("A");
for _ in 0..order {
let mut tmp = String::new();
for ch in str.chars() {
match ch {
'A' => tmp.push_str("-BF+AFA+FB-"),
'B' => tmp.push_str("+AF-BFB-FA+"),
_ => tmp.push(ch),
}
}
str = tmp;
}
str
}
fn execute(&mut self, order: usize) -> Path {
let mut data = Data::new().move_to((self.current_x, self.current_y));
for ch in HilbertCurve::rewrite(order).chars() {
match ch {
'F' => data = self.draw_line(data),
'+' => self.turn(90),
'-' => self.turn(-90),
_ => {}
}
}
Path::new()
.set("fill", "none")
.set("stroke", "black")
.set("stroke-width", "1")
.set("d", data)
}
fn draw_line(&mut self, data: Data) -> Data {
let theta = (self.current_angle as f64).to_radians();
self.current_x += self.line_length * theta.cos();
self.current_y -= self.line_length * theta.sin();
data.line_to((self.current_x, self.current_y))
}
fn turn(&mut self, angle: i32) {
self.current_angle = (self.current_angle + angle) % 360;
}
fn save(file: &str, size: usize, order: usize) -> std::io::Result<()> {
use svg::node::element::Rectangle;
let x = 10.0;
let y = 10.0;
let rect = Rectangle::new()
.set("width", "100%")
.set("height", "100%")
.set("fill", "white");
let mut hilbert = HilbertCurve::new(x, y, 10.0, 0);
let document = svg::Document::new()
.set("width", size)
.set("height", size)
svg::save(file, &document)
}
}

fn main() {
HilbertCurve::save("hilbert_curve.svg", 650, 6).unwrap();
}
```
Output:

## Scala

### Scala.js

```@js.annotation.JSExportTopLevel("ScalaFiddle")
object ScalaFiddle {
// \$FiddleStart
import scala.util.Random

case class Point(x: Int, y: Int)

def xy2d(order: Int, d: Int): Point = {
def rot(order: Int, p: Point, rx: Int, ry: Int): Point = {
val np = if (rx == 1) Point(order - 1 - p.x, order - 1 - p.y) else p
if (ry == 0) Point(np.y, np.x) else p
}

@scala.annotation.tailrec
def iter(rx: Int, ry: Int, s: Int, t: Int, p: Point): Point = {
if (s < order) {
val _rx = 1 & (t / 2)
val _ry = 1 & (t ^ _rx)
val temp = rot(s, p, _rx, _ry)
iter(_rx, _ry, s * 2, t / 4, Point(temp.x + s * _rx, temp.y + s * _ry))
} else p
}

iter(0, 0, 1, d, Point(0, 0))
}

def randomColor =
s"rgb(\${Random.nextInt(240)}, \${Random.nextInt(240)}, \${Random.nextInt(240)})"

val order = 64
val factor = math.min(Fiddle.canvas.height, Fiddle.canvas.width) / order.toDouble
val maxD = order * order
var d = 0
Fiddle.draw.strokeStyle = randomColor
Fiddle.draw.lineWidth = 2
Fiddle.draw.lineCap = "square"

Fiddle.schedule(10) {
val h = xy2d(order, d)
Fiddle.draw.lineTo(h.x * factor, h.y * factor)
Fiddle.draw.stroke
if ({d += 1; d >= maxD})
{d = 1; Fiddle.draw.strokeStyle = randomColor}
Fiddle.draw.beginPath
Fiddle.draw.moveTo(h.x * factor, h.y * factor)
}
// \$FiddleEnd
}
```
Output:

Best seen running in your browser by ScalaFiddle (ES aka JavaScript, non JVM).

## Seed7

```\$ include "seed7_05.s7i";
include "draw.s7i";
include "keybd.s7i";

const integer: delta is 8;

const proc: drawDown (inout integer: x, inout integer: y, in integer: n) is forward;
const proc: drawUp (inout integer: x, inout integer: y, in integer: n) is forward;

const proc: drawRight (inout integer: x, inout integer: y, in integer: n) is func
begin
if n > 0 then
drawDown(x, y, pred(n));
line(x, y, 0, delta, white);
y +:= delta;
drawRight(x, y, pred(n));
line(x, y, delta, 0, white);
x +:= delta;
drawRight(x, y, pred(n));
line(x, y, 0, -delta, white);
y -:= delta;
drawUp(x, y, pred(n));
end if;
end func;

const proc: drawLeft (inout integer: x, inout integer: y, in integer: n) is func
begin
if n > 0 then
drawUp(x, y, pred(n));
line(x, y, 0, -delta, white);
y -:= delta;
drawLeft(x, y, pred(n));
line(x, y, -delta, 0, white);
x -:= delta;
drawLeft(x, y, pred(n));
line(x, y, 0, delta, white);
y +:= delta;
drawDown(x, y, pred(n));
end if;
end func;

const proc: drawDown (inout integer: x, inout integer: y, in integer: n) is func
begin
if n > 0 then
drawRight(x, y, pred(n));
line(x, y, delta, 0, white);
x +:= delta;
drawDown(x, y, pred(n));
line(x, y, 0, delta, white);
y +:= delta;
drawDown(x, y, pred(n));
line(x, y, -delta, 0, white);
x -:= delta;
drawLeft(x, y, pred(n));
end if;
end func;

const proc: drawUp (inout integer: x, inout integer: y, in integer: n) is func
begin
if n > 0 then
drawLeft(x, y, pred(n));
line(x, y, -delta, 0, white);
x -:= delta;
drawUp(x, y, pred(n));
line(x, y, 0, -delta, white);
y -:= delta;
drawUp(x, y, pred(n));
line(x, y, delta, 0, white);
x +:= delta;
drawRight(x, y, pred(n));
end if;
end func;

const proc: main is func
local
var integer: x is 11;
var integer: y is 11;
begin
screen(526, 526);
KEYBOARD := GRAPH_KEYBOARD;
drawRight(x, y, 6);
end func;```

## Sidef

Generic implementation of the Lindenmayer system:

```require('Image::Magick')

class Turtle(
x      = 500,
y      = 500,
angle  = 0,
scale  = 1,
mirror = 1,
xoff   = 0,
yoff   = 0,
color  = 'black',
) {

has im = %O<Image::Magick>.new(size => "#{x}x#{y}")

method init {
}

method forward(r) {
var (newx, newy) = (x + r*sin(angle), y + r*-cos(angle))

im.Draw(
primitive => 'line',
points    => join(' ',
round(x    * scale + xoff),
round(y    * scale + yoff),
round(newx * scale + xoff),
round(newy * scale + yoff),
),
stroke      => color,
strokewidth => 1,
)

(x, y) = (newx, newy)
}

method save_as(filename) {
im.Write(filename)
}

method turn(theta) {
angle += theta*mirror
}

method state {
[x, y, angle, mirror]
}

method setstate(state) {
(x, y, angle, mirror) = state...
}

method mirror {
mirror.neg!
}
}

class LSystem(
angle  = 90,
scale  = 1,
xoff   = 0,
yoff   = 0,
len    = 5,
color  = 'black',
width  = 500,
height = 500,
turn   = 0,
) {
method execute(string, repetitions, filename, rules) {

var theta  = angle.deg2rad
var turtle = Turtle(
x:     width,
y:     height,
angle: turn,
scale: scale,
color: color,
xoff:  xoff,
yoff:  yoff,
)

var stack = []
var table = Hash(
'+' => { turtle.turn(theta) },
'-' => { turtle.turn(-theta) },
':' => { turtle.mirror },
'[' => { stack.push(turtle.state) },
']' => { turtle.setstate(stack.pop) },
)

repetitions.times {
string.gsub!(/(.)/, {|c| rules{c} \\ c })
}

string.each_char { |c|
if (table.contains(c)) {
table{c}.run
}
elsif (c.is_uppercase) {
turtle.forward(len)
}
}

turtle.save_as(filename)
}
}
```

Generating the Hilbert curve:

```var rules = Hash(
a => '-bF+aFa+Fb-',
b => '+aF-bFb-Fa+',
)

var lsys = LSystem(
width:  600,
height: 600,

xoff: -50,
yoff: -50,

len:   8,
angle: 90,
color: 'dark green',
)

lsys.execute('a', 6, "hilbert_curve.png", rules)
```

Output image: Hilbert curve

## Vala

Library: Gtk+-3.0
```struct Point{
int x;
int y;
Point(int px,int py){
x=px;
y=py;
}
}

public class Hilbert : Gtk.DrawingArea {

private int it = 1;
private Point[] points;
private const int WINSIZE = 300;

public Hilbert() {
set_size_request(WINSIZE, WINSIZE);
}

public void button_toggled_cb(Gtk.ToggleButton button){
if(button.get_active()){
it = int.parse(button.get_label());
redraw_canvas();
}
}

public override bool draw(Cairo.Context cr){
int border_size = 20;
int unit = (WINSIZE - 2 * border_size)/((1<<it)-1);

//adjust border_size to center the drawing
border_size = border_size + (WINSIZE - 2 * border_size - unit * ((1<<it)-1)) / 2;

//white background
cr.rectangle(0, 0, WINSIZE, WINSIZE);
cr.set_source_rgb(1, 1, 1);
cr.fill_preserve();
cr.stroke();

points = {};
hilbert(0, 0, 1<<it, 0, 0);

//magenta lines
cr.set_source_rgb(1, 0, 1);

// move to first point
Point point = translate(border_size, WINSIZE, unit*points[0].x, unit*points[0].y);
cr.move_to(point.x, point.y);

foreach(Point i in points[1:points.length]){
point = translate(border_size, WINSIZE, unit*i.x, unit*i.y);
cr.line_to(point.x, point.y);
}
cr.stroke();
return false;
}

private Point translate(int border_size, int size, int x, int y){
return Point(border_size + x,size - border_size - y);
}

private void hilbert(int x, int y, int lg, int i1, int i2) {
if (lg == 1) {
points += Point(x,y);
return;
}
lg >>= 1;
hilbert(x+i1*lg,     y+i1*lg,     lg, i1,   1-i2);
hilbert(x+i2*lg,     y+(1-i2)*lg, lg, i1,   i2);
hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1,   i2);
hilbert(x+(1-i2)*lg, y+i2*lg,     lg, 1-i1, i2);
}

private void redraw_canvas(){
var window = get_window();
if (window == null)return;
window.invalidate_region(window.get_clip_region(), true);
}
}

int main(string[] args){
Gtk.init (ref args);

var window = new Gtk.Window();
window.title = "Rosetta Code / Hilbert";
window.window_position = Gtk.WindowPosition.CENTER;
window.destroy.connect(Gtk.main_quit);
window.set_resizable(false);

var label = new Gtk.Label("Iterations:");

// create radio buttons to select the number of iterations
var rb1 = new Gtk.RadioButton(null);
rb1.set_label("1");
var rb2 = new Gtk.RadioButton.with_label_from_widget(rb1, "2");
var rb3 = new Gtk.RadioButton.with_label_from_widget(rb1, "3");
var rb4 = new Gtk.RadioButton.with_label_from_widget(rb1, "4");
var rb5 = new Gtk.RadioButton.with_label_from_widget(rb1, "5");

var hilbert = new Hilbert();

rb1.toggled.connect(hilbert.button_toggled_cb);
rb2.toggled.connect(hilbert.button_toggled_cb);
rb3.toggled.connect(hilbert.button_toggled_cb);
rb4.toggled.connect(hilbert.button_toggled_cb);
rb5.toggled.connect(hilbert.button_toggled_cb);

var box = new Gtk.Box(Gtk.Orientation.HORIZONTAL, 0);
box.pack_start(label, false, false, 5);
box.pack_start(rb1, false, false, 0);
box.pack_start(rb2, false, false, 0);
box.pack_start(rb3, false, false, 0);
box.pack_start(rb4, false, false, 0);
box.pack_start(rb5, false, false, 0);

var grid = new Gtk.Grid();
grid.attach(box, 0, 0, 1, 1);
grid.attach(hilbert, 0, 1, 1, 1);
grid.set_border_width(5);
grid.set_row_spacing(5);

window.show_all();

//initialise the drawing with iteration = 4
rb4.set_active(true);

Gtk.main();
return 0;
}
```

## VBScript

Again no graphics in VBScript, so I write SVG in a HTML file and I open it in the default browser. A turtle graphics library makes the sub that draws the curve very simple

```option explicit
'outputs turtle graphics to svg file and opens it

const pi180= 0.01745329251994329576923690768489 ' pi/180
const pi=3.1415926535897932384626433832795 'pi
class turtle

dim fso
dim fn
dim svg

dim incr
dim pdown
dim clr
dim x
dim y

public property let orient(n):ori = n*pi180 :end property
public property let iangle(n):iang= n*pi180 :end property
public sub pd() : pdown=true: end sub
public sub pu()  :pdown=FALSE :end sub

public sub rt(i)
ori=ori - i*iang:
if ori<0 then ori = ori+pi*2
end sub
public sub lt(i):
ori=(ori + i*iang)
if ori>(pi*2) then ori=ori-pi*2
end sub

public sub bw(l)
x= x+ cos(ori+pi)*l*incr
y= y+ sin(ori+pi)*l*incr
end sub

public sub fw(l)
dim x1,y1
x1=x + cos(ori)*l*incr
y1=y + sin(ori)*l*incr
if pdown then line x,y,x1,y1
x=x1:y=y1
end sub

Private Sub Class_Initialize()
setlocale "us"
initsvg
pdown=true
end sub

Private Sub Class_Terminate()
disply
end sub

private sub line (x,y,x1,y1)
svg.WriteLine "<line x1=""" & x & """ y1= """& y & """ x2=""" & x1& """ y2=""" & y1 & """/>"
end sub

private sub disply()
dim shell
svg.WriteLine "</svg></body></html>"
svg.close
Set shell = CreateObject("Shell.Application")
shell.ShellExecute fn,1,False
end sub

private sub initsvg()
dim scriptpath
Set fso = CreateObject ("Scripting.Filesystemobject")
ScriptPath= Left(WScript.ScriptFullName, InStrRev(WScript.ScriptFullName, "\"))
fn=Scriptpath & "SIERP.HTML"
Set svg = fso.CreateTextFile(fn,True)
if SVG IS nothing then wscript.echo "Can't create svg file" :vscript.quit
svg.WriteLine "<!DOCTYPE html>" &vbcrlf & "<html>" &vbcrlf & "<head>"
svg.writeline "<style>" & vbcrlf & "line {stroke:rgb(255,0,0);stroke-width:.5}" &vbcrlf &"</style>"
svg.writeline "</head>"&vbcrlf & "<body>"
svg.WriteLine "<svg xmlns=""http://www.w3.org/2000/svg"" width=""800"" height=""800"" viewBox=""0 0 800 800"">"
end sub
end class

sub hilb (n,a)
if n=0 then exit sub
x.rt a
hilb n-1,-a: x.fw 1:x.lt a: Hilb n - 1,a
x.fw 1
hilb n-1,a : x.lt a: x.fw 1: Hilb n - 1,-a
x.rt a
end sub

dim x
set x=new turtle
x.iangle=90
x.orient=0
x.incr=5
x.x=100:x.y=700
'star5
hilb 7,1
set x=nothing
```

## Visual Basic .NET

Translation of: D
```Imports System.Text

Module Module1

Sub Swap(Of T)(ByRef a As T, ByRef b As T)
Dim c = a
a = b
b = c
End Sub

Structure Point
Dim x As Integer
Dim y As Integer

'rotate/flip a quadrant appropriately
Sub Rot(n As Integer, rx As Boolean, ry As Boolean)
If Not ry Then
If rx Then
x = (n - 1) - x
y = (n - 1) - y
End If
Swap(x, y)
End If
End Sub

Public Overrides Function ToString() As String
Return String.Format("({0}, {1})", x, y)
End Function
End Structure

Function FromD(n As Integer, d As Integer) As Point
Dim p As Point
Dim rx As Boolean
Dim ry As Boolean
Dim t = d
Dim s = 1
While s < n
rx = ((t And 2) <> 0)
ry = (((t Xor If(rx, 1, 0)) And 1) <> 0)
p.Rot(s, rx, ry)
p.x += If(rx, s, 0)
p.y += If(ry, s, 0)
t >>= 2

s <<= 1
End While
Return p
End Function

Function GetPointsForCurve(n As Integer) As List(Of Point)
Dim points As New List(Of Point)
Dim d = 0
While d < n * n
d += 1
End While
Return points
End Function

Function DrawCurve(points As List(Of Point), n As Integer) As List(Of String)
Dim canvas(n, n * 3 - 2) As Char
For i = 1 To canvas.GetLength(0)
For j = 1 To canvas.GetLength(1)
canvas(i - 1, j - 1) = " "
Next
Next

For i = 1 To points.Count - 1
Dim lastPoint = points(i - 1)
Dim curPoint = points(i)
Dim deltaX = curPoint.x - lastPoint.x
Dim deltaY = curPoint.y - lastPoint.y
If deltaX = 0 Then
'vertical line
Dim row = Math.Max(curPoint.y, lastPoint.y)
Dim col = curPoint.x * 3
canvas(row, col) = "|"
Else
'horizontal line
Dim row = curPoint.y
Dim col = Math.Min(curPoint.x, lastPoint.x) * 3 + 1
canvas(row, col) = "_"
canvas(row, col + 1) = "_"
End If
Next

Dim lines As New List(Of String)
For i = 1 To canvas.GetLength(0)
Dim sb As New StringBuilder
For j = 1 To canvas.GetLength(1)
sb.Append(canvas(i - 1, j - 1))
Next
Next
Return lines
End Function

Sub Main()
For order = 1 To 5
Dim n = 1 << order
Dim points = GetPointsForCurve(n)
Console.WriteLine("Hilbert curve, order={0}", order)
Dim lines = DrawCurve(points, n)
For Each line In lines
Console.WriteLine(line)
Next
Console.WriteLine()
Next
End Sub

End Module
```
Output:
```Hilbert curve, order=1

|__|

Hilbert curve, order=2
__    __
__|  |__
|   __   |
|__|  |__|

Hilbert curve, order=3
__ __    __ __
|__|   __|  |__   |__|
__   |__    __|   __
|  |__ __|  |__ __|  |
|__    __ __ __    __|
__|  |__    __|  |__
|   __   |  |   __   |
|__|  |__|  |__|  |__|

Hilbert curve, order=4
__    __ __    __ __    __ __    __ __    __
__|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|

Hilbert curve, order=5
__ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __    __ __
|__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|   __|  |__   |__|
__   |__    __|   __   |   __   |   __   |__    __|   __   |   __   |   __   |__    __|   __
|  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |  |__ __|  |__ __|  |
|__    __ __ __    __|   __    __   |   __ __    __ __   |   __    __   |__    __ __ __    __|
__|  |__    __|  |__   |  |__|  |  |__|   __|  |__   |__|  |  |__|  |   __|  |__    __|  |__
|   __   |  |   __   |  |__    __|   __   |__    __|   __   |__    __|  |   __   |  |   __   |
|__|  |__|  |__|  |__|   __|  |__ __|  |__ __|  |__ __|  |__ __|  |__   |__|  |__|  |__|  |__|
__    __    __    __   |__    __ __    __ __    __ __    __ __    __|   __    __    __    __
|  |__|  |  |  |__|  |   __|  |__   |__|   __|  |__   |__|   __|  |__   |  |__|  |  |  |__|  |
|__    __|  |__    __|  |   __   |   __   |__    __|   __   |   __   |  |__    __|  |__    __|
__|  |__ __ __|  |__   |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|   __|  |__ __ __|  |__
|   __ __    __ __   |   __    __   |   __ __    __ __   |   __    __   |   __ __    __ __   |
|__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |__|   __|  |__   |__|
__   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __   |__    __|   __
|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |__ __|  |
|__    __ __    __ __    __ __    __ __    __ __ __    __ __    __ __    __ __    __ __    __|
__|  |__   |__|   __|  |__   |__|   __|  |__    __|  |__   |__|   __|  |__   |__|   __|  |__
|   __   |   __   |__    __|   __   |   __   |  |   __   |   __   |__    __|   __   |   __   |
|__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|  |__|  |__|  |  |__ __|  |__ __|  |  |__|  |__|
__    __   |   __ __    __ __   |   __    __    __    __   |   __ __    __ __   |   __    __
|  |__|  |  |__|   __|  |__   |__|  |  |__|  |  |  |__|  |  |__|   __|  |__   |__|  |  |__|  |
|__    __|   __   |__    __|   __   |__    __|  |__    __|   __   |__    __|   __   |__    __|
__|  |__ __|  |__ __|  |__ __|  |__ __|  |__    __|  |__ __|  |__ __|  |__ __|  |__ __|  |__
|   __ __    __ __    __    __ __    __ __   |  |   __ __    __ __    __    __ __    __ __   |
|__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|  |__|   __|  |__   |__|
__   |__    __|   __    __   |__    __|   __    __   |__    __|   __    __   |__    __|   __
|  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |  |  |__ __|  |__ __|  |
|__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|  |__    __ __ __    __|
__|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__    __|  |__
|   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |  |   __   |
|__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|  |__|```

## Wren

Translation of: Go
Library: DOME
```import "graphics" for Canvas, Color, Point
import "dome" for Window

class Game {
static init() {
Window.title = "Hilbert curve"
Canvas.resize(650, 650)
Window.resize(650, 650)
__points = []
__width = 64
hilbert(0, 0, __width, 0, 0)
var col = Color.hex("#90EE90") // light green
var prev = __points[0]
for (p in __points.skip(1)) {
var curr = p
Canvas.line(prev.x, prev.y, curr.x, curr.y, col)
prev = curr
}
}

static hilbert(x, y, lg, i1, i2) {
if (lg == 1) {
var px = (__width - x) * 10
var py = (__width - y) * 10
return
}
lg = lg >> 1
hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2)
hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2)
hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2)
hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2)
}

static update() {}

static draw(dt) {}
}
```
Output:

## XPL0

Hilbert curve from turtle graphic program on Wikipedia.

```def Order=5, Size=15;   \length of line segment
int Dir, X, Y;

proc GoFwd;
[case Dir&3 of
0: X:= X+Size;
1: Y:= Y+Size;
2: X:= X-Size;
3: Y:= Y-Size
other   [];
Line(X, Y, \white\7);
];

proc Hilbert(Lev, Ang);
int  Lev, Ang;
[if Lev then
[Dir:= Dir+Ang;
Hilbert(Lev-1, -Ang);
GoFwd;
Dir:= Dir-Ang;
Hilbert(Lev-1, Ang);
GoFwd;
Hilbert(Lev-1, Ang);
Dir:= Dir-Ang;
GoFwd;
Hilbert(Lev-1, -Ang);
Dir:= Dir+Ang;
];
];

[SetVid(\$12);   \640x480 graphics
Dir:= 0;  X:= 0;  Y:= 0;
Move(X, Y);
Hilbert(Order, 1);
]```

## Yabasic

Translation of: Go
```width = 64

sub hilbert(x, y, lg, i1, i2)
if lg = 1 then
line to (width-x) * 10, (width-y) * 10
return
end if
lg = lg / 2
hilbert(x+i1*lg, y+i1*lg, lg, i1, 1-i2)
hilbert(x+i2*lg, y+(1-i2)*lg, lg, i1, i2)
hilbert(x+(1-i1)*lg, y+(1-i1)*lg, lg, i1, i2)
hilbert(x+(1-i2)*lg, y+i2*lg, lg, 1-i1, i2)
end sub

open window 655, 655

hilbert(0, 0, width, 0, 0)```

## zkl

Uses Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

```hilbert(6) : turtle(_);

fcn hilbert(n){	// Lindenmayer system --> Data of As & Bs
var [const] A="-BF+AFA+FB-", B="+AF-BFB-FA+";
buf1,buf2 := Data(Void,"A").howza(3), Data().howza(3);  // characters
do(n){
buf1.pump(buf2.clear(),fcn(c){ if(c=="A") A else if(c=="B") B else c });
t:=buf1; buf1=buf2; buf2=t;	// swap buffers
}
buf1		// n=6 --> 13,651 letters
}

fcn turtle(hilbert){
const D=10;
ds,dir := T( T(D,0), T(0,-D), T(-D,0), T(0,D) ), 0;  // turtle offsets
dx,dy := ds[dir];
img:=PPM(650,650); x,y:=10,10; color:=0x00ff00;
hilbert.replace("A","").replace("B","");  // A & B are no-op during drawing
foreach c in (hilbert){
switch(c){
case("F"){ img.line(x,y, (x+=dx),(y+=dy), color) }  // draw forward
case("+"){ dir=(dir+1)%4; dx,dy = ds[dir] } // turn right 90*
case("-"){ dir=(dir-1)%4; dx,dy = ds[dir] } // turn left 90*
}
}
img.writeJPGFile("hilbert.zkl.jpg");
}```

Image at hilbert curve