Harshad or Niven series
You are encouraged to solve this task according to the task description, using any language you may know.
The Harshad or Niven numbers are positive integers ≥ 1 that are divisible by the sum of their digits.
For example, 42 is a Harshad number as 42 is divisible by (4 + 2) without remainder.
Assume that the series is defined as the numbers in increasing order.
- Task
The task is to create a function/method/procedure to generate successive members of the Harshad sequence.
Use it to:
- list the first 20 members of the sequence, and
- list the first Harshad number greater than 1000.
Show your output here.
- Related task
- See also
11l
F is_harshad(n)
R n % sum(String(n).map(ch -> Int(ch))) == 0
F harshad(num)
[Int] r
L(n) 1..
I is_harshad(n)
r [+]= n
I r.len == num
R r
print(harshad(20))
L(n) 1001..
I is_harshad(n)
print(n)
L.break
- Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
360 Assembly
* Harshad or Niven series - 01/05/2019
NIVEN CSECT
USING NIVEN,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
SAVE (14,12) save previous context
ST R13,4(R15) link backward
ST R15,8(R13) link forward
LR R13,R15 set addressability
LA R7,2 j=2
LOOP MVC PG,=CL80' ' clear buffer
LA R10,PG @pg
LA R8,0 n=0
IF C,R7,EQ,=A(2) THEN if j=2
LA R9,20 nn=20
LA R6,1 i=1
ELSE , else
LA R9,1 nn=1
LA R6,1001 i=1001
ENDIF , end if
DO WHILE=(CR,R8,LT,R9) do i=1 by 1 while(n<nn)
BAL R14,HARSHAD call harshad(i)
IF LTR,R1,Z,R1 THEN if rc=0 then
LA R8,1(R8) n++
XDECO R6,XDEC edit i
MVC 0(4,R10),XDEC+8 output i
LA R10,4(R10) @pg+=4
ENDIF , end if
LA R6,1(R6) i++
ENDDO , enddo i
XPRNT PG,L'PG print buffer
BCT R7,LOOP j=j-1; loop if j<>0
L R13,4(0,R13) restore previous savearea pointer
RETURN (14,12),RC=0 restore registers from calling sav
HARSHAD EQU * harshad(i)
CVD R6,PACKED convert to packed PL8
UNPK ZONED,PACKED packed PL8 to zoned ZL16
LA R1,ZONED @c
XR R4,R4 sum=0; m=1
DO WHILE=(C,R1,LE,=A(ZONED+15)) do m=1 to 16
NI 0(R1),X'0F' c(m) : character to integer
XR R2,R2 ~
IC R2,0(R1) c(m)
AR R4,R2 sum=sum+c(m)
LA R1,1(R1) @c++
ENDDO , enddo m
XR R2,R2 ~
LR R3,R6 i
DR R2,R4 i/sum
LR R1,R2 rc=mod(i,sum)
BR R14 return to caller
PACKED DS PL8 packed decimal (15num)
ZONED DS ZL16 zoned decimal (16num)
PG DS CL80 buffer
XDEC DS CL12 temp xdeco
REGEQU symbolic registers
END NIVEN
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
8080 Assembly
cpu 8086
org 100h
section .text
mov di,10 ; DI is the divisor to find digits
xor bp,bp ; Find first 20 Harshad numbers
mov cx,20
first: call next
mov ax,bp
call print
loop first
mov bp,1000 ; Find first Harshad number > 1000
call next ; .. fall through (print and stop)
mov ax,bp
;;; Print the number in AX
print: mov bx,buffer ; String buffer
.digit: xor dx,dx ; Divide by 10
div di
add dl,'0' ; Add ASCII 0 to remainder
dec bx
mov [bx],dl ; Store ASCII number
test ax,ax ; More digits?
jnz .digit
mov ah,9 ; Print string using DOS
mov dx,bx
int 21h
ret
;;; Let BP be the first Harshad number above BP
next: inc bp
mov ax,bp ; Keep a copy
xor bx,bx ; Sum
.digit: xor dx,dx ; Divide by 10
div di
add bx,dx ; Add remainder to sum
test ax,ax ; More digits?
jnz .digit
mov ax,bp ; Is it a Harshad number?
xor dx,dx
div bx
test dx,dx ; If not, try next number
jnz next
ret
section .data
db '*****'
buffer: db 13,10,'$'
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
ABC
HOW TO RETURN digit.sum n:
PUT 0 IN sum
WHILE n>0:
PUT sum + (n mod 10) IN sum
PUT floor (n/10) IN n
RETURN sum
HOW TO REPORT harshad n:
REPORT n mod digit.sum n = 0
HOW TO RETURN next.harshad n:
PUT n+1 IN n
WHILE NOT harshad n: PUT n+1 IN n
RETURN n
PUT 0 IN n
WRITE "First 20 Harshad numbers:"
FOR i IN {1..20}:
PUT next.harshad n IN n
WRITE n
WRITE /
WRITE "First Harshad number > 1000:", next.harshad 1000/
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number > 1000: 1002
Action!
INT FUNC SumOfDigits(INT a)
INT sum
sum=0
WHILE a#0
DO
sum==+a MOD 10
a==/10
OD
RETURN (sum)
INT FUNC Next(INT a)
INT sum
DO
a==+1
sum=SumOfDigits(a)
UNTIL a MOD sum=0
OD
RETURN (a)
PROC Main()
INT i,a
a=0
FOR i=1 TO 20
DO
a=Next(a)
PrintI(a)
Put(32)
OD
Print("... ")
a=Next(1000)
PrintIE(a)
RETURN
- Output:
Screenshot from Atari 8-bit computer
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
Ada
with Ada.Text_IO;
procedure Harshad is
function Next(N: in out Positive) return Positive is
function Sum_Of_Digits(N: Natural) return Natural is
( if N = 0 then 0 else ((N mod 10) + Sum_Of_Digits(N / 10)) );
begin
while not (N mod Sum_Of_Digits(N) = 0) loop
N := N + 1;
end loop;
return N;
end Next;
Current: Positive := 1;
begin
for I in 1 .. 20 loop
Ada.Text_IO.Put(Integer'Image(Next(Current)));
Current := Current + 1;
end loop;
Current := 1000 + 1;
Ada.Text_IO.Put_Line(" ..." & Integer'Image(Next(Current)));
end Harshad;
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
ALGOL 68
BEGIN
PROC digit sum = (INT i) INT :
BEGIN
INT res := i %* 10, h := i;
WHILE (h %:= 10) > 0 DO res +:= h %* 10 OD;
res
END;
INT found := 0;
FOR i WHILE found < 20 DO
(i %* digit sum (i) = 0 | found +:= 1; printf (($g(0)", "$, i)) ) OD;
FOR i FROM 1001 DO
(i %* digit sum (i) = 0 | printf (($g(0)l$, i)); stop) OD
END
- Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 1002
ALGOL-M
begin
integer function mod(a,b);
integer a,b;
mod := a-(a/b)*b;
integer function digitsum(n);
integer n;
digitsum :=
if n = 0 then 0
else mod(n,10) + digitsum(n/10);
integer function nextharshad(n);
integer n;
begin
integer ds;
loop:
n := n + 1;
ds := digitsum(n);
if mod(n, ds) <> 0 then go to loop;
nextharshad := n;
end;
integer i, n;
write("First 20 Harshad numbers:");
n := 0;
for i := 1 step 1 until 20 do
begin
n := nextharshad(n);
if mod(i,10)=1 then
write(n)
else
writeon(n);
end;
write("First Harshad number above 1000:", nextharshad(1000));
end
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number above 1000: 1002
ALGOL W
begin % find members of the Harshad/Niven series - numbers divisible by the sum of their digits %
% returns the next member of the series above n %
integer procedure nextHarshad ( integer value n ) ;
begin
integer h, s;
h := n;
while begin
integer v;
v := h := h + 1;
s := 0;
while v > 0 do begin
s := s + v rem 10;
v := v div 10
end while_v_gt_0 ;
h rem s not = 0
end do begin end;
h
end nextHarshad ;
integer h;
% show the first 20 members of the seuence %
write( "First 20 Harshad/Niven numbers:" );
h := 0;
for i := 1 until 20 do begin
h := nextHarshad( h );
writeon( i_w := 1, s_w := 0, " ", h )
end for_i ;
write( i_w := 1, s_w := 0, "First Harshad/Niven number > 1000: ", nextHarshad( 1000 ) );
end.
- Output:
First 20 Harshad/Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad/Niven number > 1000: 1002
APL
(20∘↑,¯1∘↑)∘((⊢,((+∘1)⍣((0=+/∘(⍎¨⍕)|⊢)⊣)⊃∘⌽))⍣(1∊1000<⊣)),1
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
AppleScript
Idiomatic
on nextHarshad(n)
if (n < 0) then set n to 0
repeat
set n to n + 1
set temp to n
set sum to 0
repeat until (temp is 0)
set sum to sum + temp mod 10
set temp to temp div 10
end repeat
if (n mod sum is 0) then return n
end repeat
end nextHarshad
-- Test code:
set harshads to {}
set h to 0
repeat 20 times
set h to nextHarshad(h)
set end of harshads to h
end repeat
set h to nextHarshad(1000)
return {harshads, h}
- Output:
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42}, 1002}
Functional
Clicking together some generic functions, for a little more productivity and for easier refactoring, we can define the Harshad series as a filter over an infinite stream of integers.
------------------ HARSHAD OR NIVEN SERIES -----------------
-- harshads :: () -> [Int]
on harshads()
-- Non finite stream of Harshad numbers
script p
on |λ|(x)
0 = x mod (digitSum(x))
end |λ|
end script
filterGen(p, enumFrom(1))
end harshads
-- digitSum :: Int -> Int
on digitSum(n)
sum(baseDigits(10, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], n))
end digitSum
---------------------------- TEST --------------------------
on run
script gtk
on |λ|(x)
1000 < x
end |λ|
end script
set hs to harshads()
unlines({"First 20: -> " & ¬
showList(take(20, hs)), ¬
"", ¬
"First over 1000: -> " & ¬
str(item 1 of take(1, filterGen(gtk, hs)))})
end run
-------------------------- GENERIC -------------------------
-- Just :: a -> Maybe a
on Just(x)
-- Constructor for an inhabited Maybe (option type) value.
-- Wrapper containing the result of a computation.
{type:"Maybe", Nothing:false, Just:x}
end Just
-- Nothing :: Maybe a
on Nothing()
-- Constructor for an empty Maybe (option type) value.
-- Empty wrapper returned where a computation is not possible.
{type:"Maybe", Nothing:true}
end Nothing
-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
-- Constructor for a pair of values, possibly of two different types.
{type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple
-- baseDigits :: Int -> [a] -> [a]
on baseDigits(intBase, digits, n)
script
on |λ|(v)
if 0 = v then
Nothing()
else
Just(Tuple(item (1 + (v mod intBase)) of digits, ¬
v div intBase))
end if
end |λ|
end script
unfoldr(result, n)
end baseDigits
-- enumFrom :: Enum a => a -> [a]
on enumFrom(x)
script
property v : missing value
property blnNum : class of x is not text
on |λ|()
if missing value is not v then
if blnNum then
set v to 1 + v
else
set v to succ(v)
end if
else
set v to x
end if
return v
end |λ|
end script
end enumFrom
-- intercalate :: String -> [String] -> String
on intercalate(delim, xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, delim}
set s to xs as text
set my text item delimiters to dlm
s
end intercalate
-- filterGen :: (a -> Bool) -> Gen [a] -> Gen [a]
on filterGen(p, gen)
-- Non-finite stream of values which are
-- drawn from gen, and satisfy p
script
property mp : mReturn(p)'s |λ|
on |λ|()
set v to gen's |λ|()
repeat until mp(v)
set v to gen's |λ|()
end repeat
return v
end |λ|
end script
end filterGen
-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl
-- fst :: (a, b) -> a
on fst(tpl)
if class of tpl is record then
|1| of tpl
else
item 1 of tpl
end if
end fst
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- showList :: [a] -> String
on showList(xs)
"[" & intercalate(",", map(my str, xs)) & "]"
end showList
-- snd :: (a, b) -> b
on snd(tpl)
if class of tpl is record then
|2| of tpl
else
item 2 of tpl
end if
end snd
-- str :: a -> String
on str(x)
x as string
end str
-- sum :: [Num] -> Num
on sum(xs)
script add
on |λ|(a, b)
a + b
end |λ|
end script
foldl(add, 0, xs)
end sum
-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
set c to class of xs
if list is c then
if 0 < n then
items 1 thru min(n, length of xs) of xs
else
{}
end if
else if string is c then
if 0 < n then
text 1 thru min(n, length of xs) of xs
else
""
end if
else if script is c then
set ys to {}
repeat with i from 1 to n
set v to |λ|() of xs
if missing value is v then
return ys
else
set end of ys to v
end if
end repeat
return ys
else
missing value
end if
end take
-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
on unfoldr(f, v)
-- A list obtained from a simple value.
-- Dual to foldr.
-- unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- -> [10,9,8,7,6,5,4,3,2,1]
set xr to {v, v} -- (value, remainder)
set xs to {}
tell mReturn(f)
repeat -- Function applied to remainder.
set mb to |λ|(snd(xr))
if Nothing of mb then
exit repeat
else -- New (value, remainder) tuple,
set xr to Just of mb
-- and value appended to output list.
set end of xs to fst(xr)
end if
end repeat
end tell
return xs
end unfoldr
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
- Output:
First 20: -> [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] First over 1000: -> 1002
Arturo
harshad?: function [n] -> zero? n % sum digits n
harshads: select 1..1100 => harshad?
print ["First 20 harshad numbers:" first.n:20 harshads]
loop harshads 'h [
if h > 1000 [
print ["First harshad > 1000:" h]
break
]
]
- Output:
First 20 harshad numbers: [1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42] First harshad > 1000: 1002
AutoHotkey
H := []
n := 1
Loop
n := (H[A_Index] := NextHarshad(n)) + 1
until H[H.MaxIndex()] > 1000
Loop, 20
Out .= H[A_Index] ", "
MsgBox, % Out ". . . " H[H.MaxIndex()]
NextHarshad(n) {
Loop, {
Loop, Parse, n
sum += A_LoopField
if (!Mod(n, sum))
return n
n++, sum := ""
}
}
- Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, . . . 1002
AWK
#!/usr/bin/awk -f
BEGIN {
k=0; n=0;
printf("First twenty Harshad numbers are:\n ");
while (k<20) {
if (isharshad(++n)) {
printf("%i ",n);
++k;
}
}
n = 1000;
while (!isharshad(++n));
printf("\nFirst Harshad number larger than 1000 is \n %i\n",n);
}
function isharshad(n) {
s = 0;
for (i=0; i<length(n); ) {
s+=substr(n,++i,1);
}
return !(n%s);
}
- Output:
First twenty Harshad numbers are: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number larger than 1000 is 1002
Batch File
@echo off
setlocal enabledelayedexpansion
for /l %%i in (1,1,20) do (
call:harshad
echo Harshad number %%i - !errorlevel!
)
:loop
call:harshad
if %errorlevel% leq 1000 goto loop
echo First Harshad number greater than 1000: %errorlevel%
pause>nul
exit /b
:harshad
if "%harshadnum%"=="" set harshadnum=0
set /a harshadnum+=1
call:strlength %harshadnum%
set harshadsum=0
for /l %%i in (0,1,%errorlevel%) do set /a harshadsum+=!harshadnum:~%%i,1!
set /a isharshad=%harshadnum% %% %harshadsum%
if %isharshad%==0 exit /b %harshadnum%
goto harshad
:strlength
setlocal enabledelayedexpansion
set tempcount=1
set str=%1
:strlengthloop
set /a length=%tempcount%-1
if "!str:~%tempcount%,1!"=="" endlocal && exit /b %length%
set /a tempcount+=1
goto strlengthloop
- Output:
Harshad number 1 - 1 Harshad number 2 - 2 Harshad number 3 - 3 Harshad number 4 - 4 Harshad number 5 - 5 Harshad number 6 - 6 Harshad number 7 - 7 Harshad number 8 - 8 Harshad number 9 - 9 Harshad number 10 - 10 Harshad number 11 - 12 Harshad number 12 - 18 Harshad number 13 - 20 Harshad number 14 - 21 Harshad number 15 - 24 Harshad number 16 - 27 Harshad number 17 - 30 Harshad number 18 - 36 Harshad number 19 - 40 Harshad number 20 - 42 First Harshad number greater than 1000: 1002
BASIC
10 DEFINT P,N,I,S
20 PRINT "First 20 Harshad numbers:"
30 P=0
40 N=0
50 N=N+1
60 S=0
70 I=N
80 S=S+I MOD 10
90 I=I\10
100 IF I THEN 80
110 IF N MOD S THEN 50
120 IF P<20 THEN P=P+1: PRINT N,
130 IF N<=1000 THEN 50
140 PRINT
150 PRINT "First Harshad number > 1000:";N
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number > 1000: 1002
Chipmunk Basic
Same code as BASIC
GW-BASIC
Same code as BASIC
MSX Basic
Same code as BASIC
QBasic
Same code as BASIC
QB64
Same code as BASIC
BASIC256
function sumDigitos(n)
if n < 0 then return 0
suma = 0
while n > 0
suma = suma + (n mod 10)
n = n \ 10
end while
return suma
end function
function isHarshad(n)
return n mod sumDigitos(n) = 0
end function
print "Los primeros 20 números de Harshad o Niven son:"
cuenta = 0
i = 1
do
if isHarshad(i) then
print i; " ";
cuenta += 1
end if
i += 1
until cuenta = 20
print : print
print "El primero de esos números por encima de 1000 es:"
i = 1001
do
if isHarshad(i) then
print i; " "
exit do
end if
i += 1
until false
end
- Output:
Los primeros 20 números de Harshad o Niven son: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 El primero de esos números por encima de 1000 es: 1002
BBC BASIC
I%=1:CNT%=0
WHILE TRUE
IF FNHarshad(I%) THEN
IF CNT%<20 PRINT ;I%;" ";:CNT%+=1
IF I%>1000 PRINT ;I%:EXIT WHILE
ENDIF
I%+=1
ENDWHILE
END
DEF FNHarshad(num%)
LOCAL sum%,tmp%
tmp%=num%
sum%=0
WHILE (tmp%>0)
sum%+=tmp% MOD 10
tmp%/=10
ENDWHILE
=(num% MOD sum%)=0
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
BCPL
get "libhdr"
let dsum(n) = n=0 -> 0, n rem 10 + dsum(n/10)
let next(n) = harshad(n+1) and harshad(n) = n rem dsum(n)=0 -> n, next(n)
let start() be
$( let n = 0
writes("First 20:")
for i = 1 to 20 do
$( n := next(n)
writef(" %N", n)
$)
writef("*NFirst above 1000: %N*N", next(1000))
$)
- Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First above 1000: 1002
Befunge
45*1>::01-\>:55+%\vv\0<
>\1+^ + <|:/<+55<` :
^_>1-\:.v@1>\:0\`#v_+\^
>^1\,+55<.^_:#%$:#<"}"v
^!:\_ ^###< !`*8<
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
BQN
SumDgt ← +´•Fmt-'0'˙
Niven ← 0=SumDgt|⊢
nivens ← Niven¨⊸/↕1100
⟨20↑nivens, ⊑(⊢>1000˙)⊸/nivens⟩
- Output:
⟨ ⟨ 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ⟩ 1002 ⟩
C
#include <stdio.h>
static int digsum(int n)
{
int sum = 0;
do { sum += n % 10; } while (n /= 10);
return sum;
}
int main(void)
{
int n, done, found;
for (n = 1, done = found = 0; !done; ++n) {
if (n % digsum(n) == 0) {
if (found++ < 20) printf("%d ", n);
if (n > 1000) done = printf("\n%d\n", n);
}
}
return 0;
}
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
C#
using System;
using System.Collections.Generic;
namespace Harshad
{
class Program
{
public static bool IsHarshad(int n)
{
char[] inputChars = n.ToString().ToCharArray();
IList<byte> digits = new List<byte>();
foreach (char digit in inputChars)
{
digits.Add((byte)Char.GetNumericValue(digit));
}
if (n < 1)
{
return false;
}
int sum = 0;
foreach (byte digit in digits)
{
sum += digit;
}
return n % sum == 0;
}
static void Main(string[] args)
{
int i = 1;
int count = 0;
while (true)
{
if (IsHarshad(i))
{
count++;
if (count <= 20)
{
Console.Write(string.Format("{0} ", i));
}
else if (i > 1000)
{
Console.Write(string.Format("{0} ", i));
break;
}
}
i++;
}
Console.ReadKey();
}
}
}
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Shorter solution
using System.Collections.Generic;
using static System.Linq.Enumerable;
using static System.Console;
public static class Program
{
public static void Main()
{
WriteLine(string.Join(" ", From(1).Where(IsHarshad).Take(20)));
WriteLine(From(1001).First(IsHarshad));
}
static bool IsHarshad(this int i) => i % i.Digits().Sum() == 0;
static IEnumerable<int> From(int start) {
for (int i = start; ; i++) yield return i;
}
static IEnumerable<int> Digits(this int n) {
for (; n > 0; n /= 10) yield return n % 10;
}
}
C++
#include <vector>
#include <iostream>
int sumDigits ( int number ) {
int sum = 0 ;
while ( number != 0 ) {
sum += number % 10 ;
number /= 10 ;
}
return sum ;
}
bool isHarshad ( int number ) {
return number % ( sumDigits ( number ) ) == 0 ;
}
int main( ) {
std::vector<int> harshads ;
int i = 0 ;
while ( harshads.size( ) != 20 ) {
i++ ;
if ( isHarshad ( i ) )
harshads.push_back( i ) ;
}
std::cout << "The first 20 Harshad numbers:\n" ;
for ( int number : harshads )
std::cout << number << " " ;
std::cout << std::endl ;
int start = 1001 ;
while ( ! ( isHarshad ( start ) ) )
start++ ;
std::cout << "The smallest Harshad number greater than 1000 : " << start << '\n' ;
return 0 ;
}
- Output:
The first 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The smallest Harshad number greater than 1000 : 1002
Clojure
(defn digsum [n acc]
(if (zero? n) acc
(digsum (quot n 10) (+ acc (mod n 10)))))
(let [harshads (filter
#(zero? (mod % (digsum % 0)))
(iterate inc 1))]
(prn (take 20 harshads))
(prn (first (filter #(> % 1000) harshads))))
- Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42) 1002
CLU
digit_sum = proc (n: int) returns (int)
sum: int := 0
while n > 0 do
sum := sum + n // 10
n := n / 10
end
return (sum)
end digit_sum
harshads = iter (n: int) yields (int)
while true do
n := n + 1
if n // digit_sum(n) = 0 then yield(n) end
end
end harshads
start_up = proc ()
po: stream := stream$primary_output()
count: int := 0
stream$putl(po, "First 20 Harshad numbers: ")
for h: int in harshads(0) do
stream$putright(po, int$unparse(h), 3)
count := count + 1
if count = 20 then break end
end
stream$puts(po, "\nFirst Harshad number above 1000: ")
for h: int in harshads(1000) do
stream$putl(po, int$unparse(h))
break
end
end start_up
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number above 1000: 1002
COBOL
identification division.
program-id. harshad.
environment division.
data division.
working-storage section.
*> for storing first 20 harshad-niven numbers
01 harshads.
03 harshad pic 9(5) occurs 20 times indexed by niven.
*> numbers tested for harshad-niven-ness.
01 first-num pic 9(5).
01 second-num pic 9(5).
*> loop counter
01 i pic 9(5).
*> for calculating sum of digits
01 div pic 9(5).
01 mod pic 9(5).
01 tot pic 9(5).
*> for harshad-niven calculation and display
01 harshad-div pic 9(5).
01 harshad-mod pic 9(5).
88 evenly-divisible value 0.
01 harshad-disp pic zzzz9.
01 harshad-result pic 9(5).
*> for selecting what to do with results of harshad calculation
01 pass pic 9.
88 first-pass value 1.
88 second-pass value 2.
procedure division.
10-main section.
move 1 to pass.
set niven to 1.
perform 20-calculate-harshad with test before varying first-num from 1 by 1 until niven = 21.
move 2 to pass.
move first-num to second-num.
perform 20-calculate-harshad with test after varying first-num from second-num by 1 until harshad-result > 1000.
perform with test after varying i from 1 by 1 until i = 20
move harshad(i) to harshad-disp
display function trim(harshad-disp) space with no advancing
end-perform.
move harshad-result to harshad-disp.
display "... " function trim(harshad-disp).
stop run.
20-calculate-harshad.
move first-num to div.
move zero to harshad-result.
perform 100-calculate-sum-of-digits.
divide first-num by tot giving harshad-div remainder harshad-mod.
if evenly-divisible
if first-pass
move first-num to harshad(niven)
set niven up by 1
else
move first-num to harshad-result
end-if
end-if.
exit paragraph.
100-calculate-sum-of-digits.
move zero to tot.
perform with test after until div = 0
divide div by 10 giving div remainder mod
add mod to tot
end-perform.
*> if tot >= 10
*> move tot to div
*> go to 100-calculate-sum-of-digits
*> end-if.
exit paragraph.
ColdFusion
<Cfset harshadNum = 0>
<Cfset counter = 0>
<Cfloop condition="harshadNum lte 1000">
<Cfset startnum = harshadNum + 1>
<Cfset digits = 0>
<Cfset harshad = 0>
<Cfloop condition="Harshad eq 0">
<Cfset current_i = startnum>
<Cfset digits = 0>
<cfloop condition="len(current_i) gt 1">
<Cfset digit = left(current_i, 1)>
<Cfset current_i = right(current_i, len(current_i)-1)>
<Cfset digits = digits + digit>
</cfloop>
<Cfset digits = digits + current_i>
<Cfif Startnum MOD digits eq 0>
<Cfset harshad = 1>
<Cfelse>
<cfset startnum = startnum + 1>
</Cfif>
</Cfloop>
<cfset harshadNum = startnum>
<Cfset counter = counter + 1>
<Cfif counter lte 20>
<Cfoutput>#harshadNum# </Cfoutput>
</Cfif>
</Cfloop>
<Cfoutput>... #harshadNum# </Cfoutput>
Comal
0010 FUNC digit'sum(n)
0020 sum:=0
0030 WHILE n>0 DO sum:+n MOD 10;n:=n DIV 10
0040 RETURN sum
0050 ENDFUNC digit'sum
0060 //
0070 FUNC next'harshad(n)
0080 REPEAT
0090 n:+1
0100 UNTIL n MOD digit'sum(n)=0
0110 RETURN n
0120 ENDFUNC next'harshad
0130 //
0140 PRINT "First 20 Harshad numbers: "
0150 n:=0
0160 FOR i:=1 TO 20 DO
0170 n:=next'harshad(n)
0180 PRINT n;
0190 ENDFOR i
0200 PRINT
0210 PRINT "First Harshad number above 1000:";next'harshad(1000)
0220 END
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number above 1000: 1002
Common Lisp
(defun harshadp (n)
(zerop (rem n (digit-sum n))))
(defun digit-sum (n &optional (a 0))
(cond ((zerop n) a)
(t (digit-sum (floor n 10) (+ a (rem n 10))))))
(defun list-harshad (n &optional (i 1) (lst nil))
"list the first n Harshad numbers starting from i (default 1)"
(cond ((= (length lst) n) (reverse lst))
((harshadp i) (list-harshad n (+ i 1) (cons i lst)))
(t (list-harshad n (+ i 1) lst))))
- Output:
CL-USER> (list-harshad 20) (1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42) CL-USER> (list-harshad 1 1001) (1002)
Cowgol
include "cowgol.coh";
sub digitsum(n: uint16): (sum: uint8) is
sum := 0;
while n != 0 loop
sum := sum + (n % 10) as uint8;
n := n / 10;
end loop;
end sub;
sub nextHarshad(m: uint16): (n: uint16) is
n := m;
loop
n := n + 1;
if n % digitsum(n) as uint16 == 0 then
return;
end if;
end loop;
end sub;
var n: uint16 := 0;
var i: uint16 := 0;
while n <= 1000 loop
n := nextHarshad(n);
i := i + 1;
if i <= 20 then
print_i16(n);
print(" ");
end if;
end loop;
print_nl();
print_i16(n);
print_nl();
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Craft Basic
for i = 1 to 1002
let t = i
let s = 0
do
let s = s + t % 10
let t = int(t / 10)
wait
loop t > 0
if i % s = 0 and (c < 20 or i > 1000) then
let c = c + 1
print c, " : ", i
endif
next i
- Output:
1 : 12 : 2 3 : 3 4 : 4 5 : 5 6 : 6 7 : 7 8 : 8 9 : 9 10 : 10 11 : 12 12 : 18 13 : 20 14 : 21 15 : 24 16 : 27 17 : 30 18 : 36 19 : 40 20 : 42
21 : 1002
Crystal
harshad = 1.step.select { |n| n % n.to_s.chars.sum(&.to_i) == 0 }
puts "The first 20 harshard numbers are: \n#{ harshad.first(20).to_a }"
puts "The first harshard number > 1000 is #{ harshad.find { |n| n > 1000 } }"
- Output:
The first 20 harshard numbers are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] The first harshard number > 1000 is 1002
D
void main() {
import std.stdio, std.algorithm, std.range, std.conv;
enum digSum = (int n) => n.text.map!(d => d - '0').sum;
enum harshads = iota(1, int.max).filter!(n => n % digSum(n) == 0);
harshads.take(20).writeln;
harshads.filter!(h => h > 1000).front.writeln;
}
- Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
Delphi
See Pascal.
Draco
proc nonrec dsum(word n) word:
word r;
r := 0;
while n ~= 0 do
r := r + n % 10;
n := n / 10
od;
r
corp
proc nonrec next_harshad(word n) word:
while
n := n + 1;
n % dsum(n) ~= 0
do od;
n
corp
proc nonrec main() void:
word n;
byte i;
write("First 20:");
n := 0;
for i from 1 upto 20 do
n := next_harshad(n);
write(" ", n)
od;
writeln();
write("First above 1000: ", next_harshad(1000))
corp
- Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First above 1000: 1002
EasyLang
func digsum n .
while n > 0
sum += n mod 10
n = n div 10
.
return sum
.
func isHarshad n .
return if n mod digsum n = 0
.
i = 1
repeat
if isHarshad i = 1
write i & " "
cnt += 1
.
until cnt = 20
i += 1
.
print ""
i = 1001
while isHarshad i = 0
i += 1
.
print i
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
EchoLisp
(define (harsh? n)
(zero? (modulo n
(apply + (map string->number (string->list (number->string n)))))))
(harsh? 42)
→ #t
(define H (stream-filter harsh? (in-naturals 1)))
(take H 20)
→ (1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
(for ((n H)) #:break (> n 1000) => n)
→ 1002
Eiffel
note
description : "project application root class"
date : "$October 10, 2014$"
revision : "$Revision$"
class
NIVEN_SERIES
create
make
feature
make
local
number : INTEGER
count : INTEGER
last : BOOLEAN
do
number := 1
from
number := 1
last := false
until
last = true
loop
if
(number \\ sum_of_digits(number) = 0)
then
count := count + 1
if
(count <= 20 )
then
print("%N")
print(number)
end
if
(number > 1000)
then
print("%N")
print(number)
last := true
end
end
number := number + 1
end
end
sum_of_digits(no:INTEGER):INTEGER
local
sum : INTEGER
num : INTEGER
do
sum := 0
from
num := no
until
num = 0
loop
sum := sum + num \\ 10
num := num // 10
end
Result := sum
end
end
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Elixir
defmodule Harshad do
def series, do: Stream.iterate(1, &(&1+1)) |> Stream.filter(&(number?(&1)))
def number?(n), do: rem(n, digit_sum(n, 0)) == 0
defp digit_sum(0, sum), do: sum
defp digit_sum(n, sum), do: digit_sum(div(n, 10), sum + rem(n, 10))
end
IO.inspect Harshad.series |> Enum.take(20)
IO.inspect Harshad.series |> Stream.drop_while(&(&1 <= 1000)) |> Enum.take(1) |> hd
- Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
Erlang
-module( harshad ).
-export( [greater_than/1, sequence/1, task/0] ).
greater_than( N ) when N >= 1 ->
greater_than( 2, N, acc(1, {0, []}) ).
sequence( Find_this_many ) when Find_this_many >= 1 ->
sequence( 2, Find_this_many, acc(1, {0, []}) ).
task() ->
io:fwrite( "~p~n", [sequence(20)] ),
io:fwrite( "~p~n", [greater_than(1000)] ).
acc( N, Acc ) -> acc( N rem lists:sum([X - $0|| X <- erlang:integer_to_list(N)]), N, Acc ).
acc( 0, N, {Found, Acc} ) -> {Found + 1, [N | Acc]};
acc( _Reminder, _N, Acc ) -> Acc.
greater_than( _N, Find, {_, [Found | _T]} ) when Found > Find -> Found;
greater_than( N, Find, Acc ) -> greater_than( N + 1, Find, acc(N, Acc) ).
sequence( _N, Found, {Found, Acc} ) -> lists:reverse( Acc );
sequence( N, Find, Acc ) -> sequence( N + 1, Find, acc(N, Acc) ).
- Output:
39> harshad:task(). [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] 1002
Erlang 2
A somewhat more simple approach. Somewhat more efficient since it produces the partial list 23 times for the 20 element case whereas the above does so 36 or 37 times.
-module(harshad).
-export([main/0,harshad/1,seq/1]).
% We return the number R if harshad, else 0
harshad(R) ->
case R
rem lists:sum([X - $0|| X <- erlang:integer_to_list(R)]) of 0
-> R; _ -> 0 end.
% build a list of harshads retrieving input from harshad(R)
% filter out the nulls and return
hlist(A,B) ->
RL = [ harshad(X) || X <- lists:seq(A,B) ],
lists:filter( fun(X) -> X > 0 end, RL).
seq(Total) -> seq(Total, [], 0).
seq(Total,L,_) when length(L) == Total-> L;
seq(Total,L,Acc) when length(L) < Total ->
NL = hlist(1,Total + Acc),
seq(Total,NL,Acc+1).
gt(_,L) when length(L) == 1 -> hd(L);
gt(X,_) ->
NL = hlist(X+1,X+2),
gt(X+2,NL).
main() ->
io:format("seq(20): ~w~n", [ seq(20) ]),
io:format("gt(1000): ~w~n", [ gt(1000,[]) ]).
2> harshad:main(). seq(20): [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] gt(1000): 1002 ok
Excel
LAMBDA
Binding the names nextHarshad, and harshads to the following lambda expressions in the Name Manager of the Excel WorkBook:
(See LAMBDA: The ultimate Excel worksheet function)
nextHarshad
=LAMBDA(n,
UNTIL(
LAMBDA(x,
0 = MOD(x, decDigitSum(x))
)
)(
LAMBDA(x, 1 + x)
)(1 + n)
)
harshads
=LAMBDA(n,
UNTIL(
LAMBDA(xs, n = ROWS(xs))
)(
LAMBDA(xs,
APPENDROWS(xs)(
nextHarshad(
INDEX(LASTROW(xs), 1)
)
)
)
)(
{1}
)
)
and also assuming the following generic bindings in the Name Manager for the WorkBook:
APPENDROWS
=LAMBDA(xs,
LAMBDA(ys,
LET(
nx, ROWS(xs),
rowIndexes, SEQUENCE(nx + ROWS(ys)),
colIndexes, SEQUENCE(
1,
MAX(COLUMNS(xs), COLUMNS(ys))
),
IFERROR(
IF(rowIndexes <= nx,
INDEX(xs, rowIndexes, colIndexes),
INDEX(ys, rowIndexes - nx, colIndexes)
),
NA()
)
)
)
)
CHARSROW
=LAMBDA(s,
MID(s,
SEQUENCE(1, LEN(s), 1, 1),
1
)
)
decDigitSum
=LAMBDA(n,
SUM(VALUE(CHARSROW(n)))
)
LASTROW
=LAMBDA(xs,
INDEX(
xs,
ROWS(xs),
SEQUENCE(1, COLUMNS(xs), 1, 1)
)
)
UNTIL
=LAMBDA(p,
LAMBDA(f,
LAMBDA(x,
IF(p(x),
x,
UNTIL(p)(f)(f(x))
)
)
)
)
- Output:
Next Harshad after lower limit:
fx | =nextHarshad(A2) | ||
---|---|---|---|
A | B | ||
1 | First above | Harshad term | |
2 | 1000 | 1002 |
Sequence of Harshads:
(The single formula in cell B2 defines an array which populates the whole range B2:B21)
fx | =harshads(20) | ||
---|---|---|---|
A | B | ||
1 | Number of terms | Harshads | |
2 | 20 | 1 | |
3 | 2 | ||
4 | 3 | ||
5 | 4 | ||
6 | 5 | ||
7 | 6 | ||
8 | 7 | ||
9 | 8 | ||
10 | 9 | ||
11 | 10 | ||
12 | 12 | ||
13 | 18 | ||
14 | 20 | ||
15 | 21 | ||
16 | 24 | ||
17 | 27 | ||
18 | 30 | ||
19 | 36 | ||
20 | 40 | ||
21 | 42 |
F#
let divides d n =
match bigint.DivRem(n, d) with
| (_, rest) -> rest = 0I
let splitToInt (str:string) = List.init str.Length (fun i -> ((int str.[i]) - (int "0".[0])))
let harshads =
let rec loop n = seq {
let sum = List.fold (+) 0 (splitToInt (n.ToString()))
if divides (bigint sum) n then yield n
yield! loop (n + 1I)
}
loop 1I
[<EntryPoint>]
let main argv =
for h in (Seq.take 20 harshads) do printf "%A " h
printfn ""
printfn "%A" (Seq.find (fun n -> n > 1000I) harshads)
0
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Factor
USING: math.text.utils lists lists.lazy ;
: niven? ( n -- ? ) dup 1 digit-groups sum mod 0 = ;
: first-n-niven ( n -- seq )
1 lfrom [ niven? ] lfilter ltake list>array ;
: next-niven ( n -- m ) 1 + [ dup niven? ] [ 1 + ] until ;
20 first-n-niven .
1000 next-niven .
- Output:
{ 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 } 1002
FBSL
The INITIALIZE routine fills a dynamic array with all we need, even the ellipsis.
#APPTYPE CONSOLE
CLASS harshad
PRIVATE:
memo[]
SUB INITIALIZE()
DIM i = 1, c
DO
IF isNiven(i) THEN
c = c + 1
memo[c] = i
END IF
i = i + 1
IF c = 20 THEN EXIT DO
LOOP
memo[] = "..."
i = 1000
WHILE NOT isNiven(INCR(i)): WEND
memo[] = i
END SUB
FUNCTION isNiven(n)
RETURN NOT (n MOD sumdigits(n))
END FUNCTION
FUNCTION sumdigits(n)
DIM num = n, m, sum
WHILE num
sum = sum + num MOD 10
num = num \ 10
WEND
RETURN sum
END FUNCTION
PUBLIC:
METHOD Yield()
FOREACH DIM e IN memo
PRINT e, " ";
NEXT
END METHOD
END CLASS
DIM niven AS NEW harshad
niven.Yield()
PAUSE
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002 Press any key to continue...
FOCAL
01.10 S N=0
01.20 S P=0
01.30 D 3
01.40 I (19-P)1.7
01.50 T %4,N,!
01.60 S P=P+1
01.70 I (N-1001)1.3
01.80 T N,!
01.90 Q
02.10 S A=0
02.20 S B=N
02.30 S C=FITR(B/10)
02.40 S A=A+B-C*10
02.50 S B=C
02.60 I (-B)2.3
03.10 S N=N+1
03.20 D 2
03.30 I (FITR(N/A)*A-N)3.1
- Output:
= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 12 = 18 = 20 = 21 = 24 = 27 = 30 = 36 = 40 = 42 = 1002
Fortran
Please observe compilation on GNU/linux system and output from run are in the comments at the START of the FORTRAN 2003 source. The 1--20 loop idea was stolen from the ada solution. Thank you.
!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Tue May 21 13:15:59
!
!a=./f && make $a && $a < unixdict.txt
!gfortran -std=f2003 -Wall -ffree-form f.f03 -o f
! 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
!
!Compilation finished at Tue May 21 13:15:59
program Harshad
integer :: i, h = 0
do i=1, 20
call nextHarshad(h)
write(6, '(i5)', advance='no') h
enddo
h = 1000
call nextHarshad(h)
write(6, '(i5)') h
contains
subroutine nextHarshad(h) ! alter input integer h to be the next greater Harshad number.
integer, intent(inout) :: h
h = h+1 ! bigger
do while (.not. isHarshad(h))
h = h+1
end do
end subroutine nextHarshad
logical function isHarshad(a)
integer, intent(in) :: a
integer :: mutable, digit_sum
isHarshad = .false.
if (a .lt. 1) return ! false if a < 1
mutable = a
digit_sum = 0
do while (mutable /= 0)
digit_sum = digit_sum + mod(mutable, 10)
mutable = mutable / 10
end do
isHarshad = 0 .eq. mod(a, digit_sum)
end function isHarshad
end program Harshad
FreeBASIC
' FB 1.05.0 Win64
Function sumDigits(n As Integer) As Integer
If n < 0 Then Return 0
Dim sum As Integer
While n > 0
sum += n Mod 10
n \= 10
Wend
Return sum
End Function
Function isHarshad(n As Integer) As Boolean
Return n Mod sumDigits(n) = 0
End Function
Print "The first 20 Harshad or Niven numbers are :"
Dim count As Integer = 0
Dim i As Integer = 1
Do
If isHarshad(i) Then
Print i; " ";
Count += 1
If count = 20 Then Exit Do
End If
i += 1
Loop
Print : Print
Print "The first such number above 1000 is :"
i = 1001
Do
If isHarshad(i) Then
Print i; " "
Exit Do
End If
i += 1
Loop
Print
Print "Press any key to quit"
Sleep
- Output:
The first 20 Harshad or Niven numbers are : 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first such number above 1000 is : 1002
Frink
isHarshad[n] := n mod sum[integerDigits[n]] == 0
c = 0
i = 1
while c<20
{
if isHarshad[i]
{
c = c + 1
println[i]
}
i = i + 1
}
println[]
i = 1000
do
i = i + 1
while ! isHarshad[i]
println[i]
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
FutureBasic
local fn Harshad( num as long ) as long
long sum = 0, tmp = num
while ( tmp > 0 )
sum += tmp mod 10
tmp = tmp / 10
wend
end fn = (num mod sum) = 0
local fn DoIt
long i = 1, cnt = 0
print "First 20 in series: ";
while (1)
if fn Harshad( i )
if ( cnt < 20 ) then print ; i; " "; : cnt++
if ( i > 1000 ) then print : print "First above 1000: "; i : exit while
end if
i++
wend
end fn
fn Doit
HandleEvents
- Output:
First 20 in series: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First above 1000: 1002
Fōrmulæ
Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.
Programs in Fōrmulæ are created/edited online in its website.
In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.
Solution
Test case 1. List the first 20 members of the sequence
Test case 2. List the first Harshad number greater than 1,000
Gambas
Click this link to run this code
Public Sub Main()
Dim siCount, siLoop, siTotal, siCounter As Short
Dim sNo, sTemp As String
Dim sHold, sNiven As New String[]
For siCount = 1 To 1500
sNo = Str(siCount)
For siLoop = 1 To Len(sNo)
sHold.Add(Mid(sNo, siLoop, 1))
Next
For Each sTemp In sHold
siTotal += Val(sTemp)
Next
If siCount Mod siTotal = 0 Then
Inc siCounter
If siCounter < 21 Or siCount > 1000 Then
sNiven.Add(Str(siCount))
If siCount > 1000 Then Break
Endif
Endif
siTotal = 0
sHold.Clear
Next
Print "First twenty Harshad numbers and the first Harshad number greater than 1000"
Print sNiven.Join(", ")
End
Output:
First twenty Harshad numbers and the first Harshad number greater than 1000 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 1002
Go
package main
import "fmt"
type is func() int
func newSum() is {
var ms is
ms = func() int {
ms = newSum()
return ms()
}
var msd, d int
return func() int {
if d < 9 {
d++
} else {
d = 0
msd = ms()
}
return msd + d
}
}
func newHarshard() is {
i := 0
sum := newSum()
return func() int {
for i++; i%sum() != 0; i++ {
}
return i
}
}
func main() {
h := newHarshard()
fmt.Print(h())
for i := 1; i < 20; i++ {
fmt.Print(" ", h())
}
fmt.Println()
h = newHarshard()
n := h()
for ; n <= 1000; n = h() {
}
fmt.Println(n)
}
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Groovy
class HarshadNiven{ public static boolean find(int x)
{
int sum = 0,temp,var;
var = x;
while(x>0)
{
temp = x%10;
sum = sum + temp;
x = x/10;
}
if(var%sum==0) temp = 1;
else temp = 0;
return temp;
}
public static void main(String[] args)
{
int t,i;
t = 0;
for(i=1;t<20;i++)
{
if(find(i))
{
print(i + " ");
t++;
}
}
int x = 0;
int y = 1000;
while(x!=1)
{
if(find(y)) x = 1;
y++;
}
println();
println(y+1);
}
}
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Haskell
import Data.Char (digitToInt)
harshads :: [Int]
harshads =
let digsum = sum . map digitToInt . show
in filter ((0 ==) . (mod <*> digsum)) [1 ..]
main :: IO ()
main = mapM_ print [take 20 harshads, [(head . filter (> 1000)) harshads]]
- Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] 1002
Or, as an alternative to string operations:
import Data.List (unfoldr)
import Data.Tuple (swap)
import Data.Bool (bool)
harshads :: [Int]
harshads = filter ((0 ==) . (rem <*> digitSum)) [1 ..]
digitSum :: Int -> Int
digitSum =
sum . unfoldr ((bool Nothing . Just . swap . flip quotRem 10) <*> (0 <))
main :: IO ()
main = mapM_ print $ [take 20, take 1 . dropWhile (<= 1000)] <*> [harshads]
- Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] [1002]
Icon and Unicon
procedure main(A)
limit := integer(A[1]) | 20
every writes(niven(seq())\limit," ")
writes("... ")
write(niven(seq(1001))\1)
end
procedure niven(n)
n ? {s := 0; while s +:= move(1)}
if (n%s) = 0 then return n
end
- Output:
->ns 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002 ->
IS-BASIC
100 PROGRAM "Harshad.bas"
110 LET I=1:LET CNT=0
120 PRINT "First 20 Harshad numbers are:"
130 DO
140 IF HARSHAD(I) THEN PRINT I;:LET CNT=CNT+1
150 LET I=I+1
160 LOOP UNTIL CNT=20
170 PRINT :PRINT :PRINT "First Harshad number larger than 1000 is";:LET I=1001
180 DO
190 IF HARSHAD(I) THEN PRINT I:EXIT DO
200 LET I=I+1
210 LOOP
220 DEF HARSHAD(NUM)
230 LET TMP=NUM:LET SUM=0
240 DO WHILE TMP>0
250 LET SUM=SUM+MOD(TMP,10)
260 LET TMP=INT(TMP/10)
270 LOOP
280 LET HARSHAD=MOD(NUM,SUM)=0
290 END DEF
J
Until =: 2 : 'u^:(-.@:v)^:_'
isHarshad =: 0 = ] |~ [: +/ #.inv NB. BASE isHarshad N
assert 1 0 -: 10 isHarshad&> 42 38
nextHarshad =: (>: Until (10&isHarshad))@:>:
assert 45 -: nextHarshad 42
assert 3 4 5 -: nextHarshad&> 2 3 4
assert 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 -: (, nextHarshad@:{:)Until (20 = #) 1
assert 1002 -: nextHarshad 1000
NB. next Harshad number in base 6. Input and output are in base 6.
NB. Verification left to you, gentle programmer.
nextHarshad_base_6 =: (>: Until (6&isHarshad))@:>:
' '-.~":6#.inv nextHarshad_base_6 6b23235
23253
Java
public class Harshad{
private static long sumDigits(long n){
long sum = 0;
for(char digit:Long.toString(n).toCharArray()){
sum += Character.digit(digit, 10);
}
return sum;
}
public static void main(String[] args){
for(int count = 0, i = 1; count < 20;i++){
if(i % sumDigits(i) == 0){
System.out.println(i);
count++;
}
}
System.out.println();
for(int i = 1001; ; i++){
if(i % sumDigits(i) == 0){
System.out.println(i);
break;
}
}
}
}
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
JavaScript
ES5
function isHarshad(n) {
var s = 0;
var n_str = new String(n);
for (var i = 0; i < n_str.length; ++i) {
s += parseInt(n_str.charAt(i));
}
return n % s === 0;
}
var count = 0;
var harshads = [];
for (var n = 1; count < 20; ++n) {
if (isHarshad(n)) {
count++;
harshads.push(n);
}
}
console.log(harshads.join(" "));
var h = 1000;
while (!isHarshad(++h));
console.log(h);
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
ES6 with generator
function* harshads (start) {
for (let n = start; true; n++) {
const sum = [...n.toString()].map(Number).reduce((a, b) => a + b)
if (n % sum === 0) {
yield n
}
}
}
const first20 = (() => {
const hs = harshads(1)
return [...Array(20)].map(() => hs.next().value)
})()
console.log("First 20:", ...first20)
const firstAfter1000 = harshads(1001).next().value
console.log("First after 1000:", firstAfter1000)
- Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First after 1000: 1002
ES6
One possible approach to functional composition:
(() => {
'use strict';
// HARSHADS ---------------------------------------------------------------
// nHarshads :: Int -> [Int]
const nHarshads = n => {
// isHarshad :: Int -> Bool
const isHarshad = n => 0 === n % sum(digitList(n));
return until(
dct => dct.nth === n,
dct => {
const
next = succ(dct.i),
blnHarshad = isHarshad(next);
return {
i: next,
hs: blnHarshad ? dct.hs.concat(next) : dct.hs,
nth: dct.nth + (blnHarshad ? 1 : 0)
};
}, {
i: 0,
hs: [],
nth: 0
}
)
.hs;
};
// GENERIC FUNCTIONS ------------------------------------------------------
// digitList :: Int -> [Int]
const digitList = n =>
n > 0 ? [n % 10].concat(digitList(Math.floor(n / 10))) : [];
// dropWhile :: (a -> Bool) -> [a] -> [a]
const dropWhile = (p, xs) => {
let i = 0;
for (let lng = xs.length;
(i < lng) && p(xs[i]); i++) {}
return xs.slice(i);
};
// head :: [a] -> a
const head = xs => xs.length ? xs[0] : undefined;
// a -> String
const show = x => JSON.stringify(x, null, 2);
// succ :: Int -> Int
const succ = x => x + 1
// sum :: (Num a) => [a] -> a
const sum = xs => xs.reduce((a, x) => a + x, 0);
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = (p, f, x) => {
const go = x => p(x) ? x : go(f(x));
return go(x);
};
// TEST -------------------------------------------------------------------
return show({
firstTwenty: nHarshads(20),
firstOver1000: head(dropWhile(x => x <= 1000, nHarshads(1000)))
});
})();
- Output:
{ "firstTwenty": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42 ], "firstOver1000": 1002 }
jq
def is_harshad:
def digits: tostring | [explode[] | ([.]| implode) | tonumber];
if . >= 1 then (. % (digits|add)) == 0
else false
end ;
# produce a stream of n Harshad numbers
def harshads(n):
# [candidate, count]
def _harshads:
if .[0]|is_harshad then .[0], ([.[0]+1, .[1]-1]| _harshads)
elif .[1] > 0 then [.[0]+1, .[1]] | _harshads
else empty
end;
[1, n] | _harshads ;
# First Harshad greater than n where n >= 0
def harshad_greater_than(n):
# input: next candidate
def _harshad:
if is_harshad then .
else .+1 | _harshad
end;
(n+1) | _harshad ;
# Task:
[ harshads(20), "...", harshad_greater_than(1000)]
- Output:
$ jq -n -c -f harshad.jq [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,"...",1002]
Julia
isharshad(x) = x % sum(digits(x)) == 0
nextharshad(x) = begin while !isharshad(x+1) x += 1 end; return x + 1 end
function harshads(n::Integer)
h = Vector{typeof(n)}(n)
h[1] = 1
for j in 2:n
h[j] = nextharshad(h[j-1])
end
return h
end
println("First 20 harshad numbers: ", join(harshads(20), ", "))
println("First harshad number after 1001: ", nextharshad(1000))
- Output:
First 20 harshad numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42 First harshad number after 1001: 1002
K
/ sum of digits of an integer
sumdig: {d::(); (0<){d::d,x!10; x%:10}/x; +/d}
/ Test if an integer is a Harshad number
isHarshad: {:[x!(sumdig x); 0; 1]} / Returns 1 if Harshad
/ Generate x Harshad numbers starting from y and display the list
hSeries: {harshad::();i:y;while[(x-#harshad)>0;:[isHarshad i; harshad::(harshad,i)]; i+:1];harshad}
- Output:
hSeries[20;1] 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 hSeries[1; 1001] ,1002
Kotlin
// version 1.1
fun sumDigits(n: Int): Int = when {
n <= 0 -> 0
else -> {
var sum = 0
var nn = n
while (nn > 0) {
sum += nn % 10
nn /= 10
}
sum
}
}
fun isHarshad(n: Int): Boolean = (n % sumDigits(n) == 0)
fun main(args: Array<String>) {
println("The first 20 Harshad numbers are:")
var count = 0
var i = 0
while (true) {
if (isHarshad(++i)) {
print("$i ")
if (++count == 20) break
}
}
println("\n\nThe first Harshad number above 1000 is:")
i = 1000
while (true) {
if (isHarshad(++i)) {
println(i)
return
}
}
}
- Output:
The first 20 Harshad numbers are: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Harshad number above 1000 is: 1002
Lambdatalk
{def harshad?
{def harshad?.sum
{lambda {:n}
{if {W.empty? {W.rest :n}}
then {W.first :n}
else {+ {W.first :n}
{harshad?.sum {W.rest :n}}} }}}
{lambda {:n}
{= {% :n {harshad?.sum :n}} 0} }}
-> harshad?
{harshad? 12}
-> true
{harshad? 13}
-> false
{def harshads
{def harshads.loop
{lambda {:a :n :i}
{if {> {A.length :a} :n}
then :a
else {harshads.loop {if {harshad? :i}
then {A.addlast! :i :a}
else :a}
:n
{+ :i 1}} }}}
{lambda {:n}
{harshads.loop {A.new} :n 0} }}
-> harshads
{harshads 20}
-> [0,1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
{def firstharshadafter
{def firstharshadafter.loop
{lambda {:i}
{if {harshad? :i}
then :i
else {firstharshadafter.loop {+ :i 1}} }}}
{lambda {:n}
{firstharshadafter.loop {+ :n 1}} }}
-> firstharshadafter
{firstharshadafter 1000}
-> 1002
LOLCODE
HAI 1.3
HOW IZ I digsummin YR num
I HAS A digsum ITZ 0
IM IN YR loop
num, O RLY?
YA RLY
digsum R SUM OF digsum AN MOD OF num AN 10
num R QUOSHUNT OF num AN 10
NO WAI, FOUND YR digsum
OIC
IM OUTTA YR loop
IF U SAY SO
I HAS A found ITZ 0
IM IN YR finder UPPIN YR n
I HAS A n ITZ SUM OF n AN 1
I HAS A digsum ITZ I IZ digsummin YR n MKAY
NOT MOD OF n AN digsum, O RLY?
YA RLY
DIFFRINT found AN BIGGR OF found AN 20, O RLY?
YA RLY
VISIBLE n " "!
found R SUM OF found AN 1
OIC
DIFFRINT n AN SMALLR OF n AN 1000, O RLY?
YA RLY, VISIBLE ":)" n, GTFO
OIC
OIC
IM OUTTA YR finder
KTHXBYE
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Lua
function isHarshad(n)
local s=0
local n_str=tostring(n)
for i=1,#n_str do
s=s+tonumber(n_str:sub(i,i))
end
return n%s==0
end
local count=0
local harshads={}
local n=1
while count<20 do
if isHarshad(n) then
count=count+1
table.insert(harshads, n)
end
n=n+1
end
print(table.concat(harshads, " "))
local h=1001
while not isHarshad(h) do
h=h+1
end
print(h)
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Mathematica / Wolfram Language
nextHarshad =
NestWhile[# + 1 &, # + 1, ! Divisible[#, Total@IntegerDigits@#] &] &;
Print@Rest@NestList[nextHarshad, 0, 20];
Print@nextHarshad@1000;
- Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42} 1002
MAD
NORMAL MODE IS INTEGER
INTERNAL FUNCTION(A,B)
ENTRY TO REM.
FUNCTION RETURN A-A/B*B
END OF FUNCTION
INTERNAL FUNCTION(I)
ENTRY TO DSUM.
SUM = 0
REST = I
DIGIT WHENEVER REST.NE.0
SUM = SUM + REM.(REST,10)
REST = REST/10
TRANSFER TO DIGIT
END OF CONDITIONAL
FUNCTION RETURN SUM
END OF FUNCTION
INTERNAL FUNCTION(I)
ENTRY TO NEXT.
LOOP THROUGH LOOP, FOR NX=I+1, 1, REM.(NX,DSUM.(NX)).E.0
FUNCTION RETURN NX
END OF FUNCTION
PRINT COMMENT $ FIRST 20 HARSHAD NUMBERS:$
H = 0
N = 0
HARSHD WHENEVER N.LE.1000
N = NEXT.(N)
H = H + 1
WHENEVER H.LE.20, PRINT FORMAT HSHD, H, N
TRANSFER TO HARSHD
END OF CONDITIONAL
PRINT FORMAT THSND, N
VECTOR VALUES HSHD = $8HHARSHAD(,I2,4H) = ,I2*$
VECTOR VALUES THSND =
0 $34HFIRST HARSHAD NUMBER ABOVE 1000 = ,I4*$
END OF PROGRAM
- Output:
FIRST 20 HARSHAD NUMBERS: HARSHAD( 1) = 1 HARSHAD( 2) = 2 HARSHAD( 3) = 3 HARSHAD( 4) = 4 HARSHAD( 5) = 5 HARSHAD( 6) = 6 HARSHAD( 7) = 7 HARSHAD( 8) = 8 HARSHAD( 9) = 9 HARSHAD(10) = 10 HARSHAD(11) = 12 HARSHAD(12) = 18 HARSHAD(13) = 20 HARSHAD(14) = 21 HARSHAD(15) = 24 HARSHAD(16) = 27 HARSHAD(17) = 30 HARSHAD(18) = 36 HARSHAD(19) = 40 HARSHAD(20) = 42 FIRST HARSHAD NUMBER ABOVE 1000 = 1002
MATLAB / Octave
Define a testing function whether n is harshad or not
function v = isharshad(n)
v = isinteger(n) && ~mod(n,sum(num2str(n)-'0'));
end;
Check numbers
k=1; n=1;
while (k<=20)
if isharshad(n)
printf('%i ',n);
k=k+1;
end;
n=n+1;
end
n = 1001;
while ~isharshad(n)
n=n+1;
end;
printf('\nFirst harshad number larger than 1000 is %i\n',n);
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First harshad number larger than 1000 is 1002
Maxima
/* Function that returns a list of digits given a nonnegative integer */
decompose(num) := block([digits, remainder],
digits: [],
while num > 0 do
(remainder: mod(num, 10),
digits: cons(remainder, digits),
num: floor(num/10)),
digits
)$
/* Function that returns a list of the first len Harshad numbers */
harshad_count(len):=block(
[i:1,count:0,result:[]],
while count<len do (if map(lambda([x],if mod(x,apply("+",decompose(x)))=0 then true),[i])=[true] then (result:endcons(i,result),count:count+1),i:i+1),
result)$
/* Function that returns a list of the Harshad numbers up to len */
first_count(len):=block(
[i:1,count:0,result:[]],
while i<=len do (if map(lambda([x],if mod(x,apply("+",decompose(x)))=0 then true),[i])=[true] then (result:endcons(i,result),count:count+1),i:i+1),
length(result))$
/* Test cases */
harshad_count(20);
block(first_count(1000),last(harshad_count(%%+1)));
- Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] 1002
MMBasic
number = 1
tally = 0
print "First 20 Harshad numbers:"
do while tally < 20
if isHarshad(number) = 0 then
print number;
tally = tally + 1
endif
number = number + 1
loop
number = 1001
endloop = 0
print ""
do
if isHarshad(number) = 0 then
print "The first Harshad number greater than 1000 is"; number
endloop = 1
endif
number = number + 1
loop until endloop = 1
function digitSum(x)
let y$ = str$(x)
for i = 1 to len(y$)
digitSum = digitSum + val(mid$(y$,i,1))
next i
end function
function isHarshad(num)
isHarshad = num MOD digitSum(num)
end function
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Harshad number greater than 1000 is 1002
Modula-2
MODULE Harshad;
FROM InOut IMPORT WriteString, WriteCard, WriteLn;
VAR n, i: CARDINAL;
PROCEDURE DigitSum(n: CARDINAL): CARDINAL;
VAR sum: CARDINAL;
BEGIN
sum := 0;
WHILE n > 0 DO;
sum := sum + n MOD 10;
n := n DIV 10;
END;
RETURN sum;
END DigitSum;
PROCEDURE NextHarshad(n: CARDINAL): CARDINAL;
BEGIN
REPEAT INC(n);
UNTIL n MOD DigitSum(n) = 0;
RETURN n;
END NextHarshad;
BEGIN
n := 0;
WriteString("First 20 Harshad numbers:");
WriteLn();
FOR i := 1 TO 20 DO
n := NextHarshad(n);
WriteCard(n, 3);
END;
WriteLn();
WriteString("First Harshad number above 1000: ");
WriteCard(NextHarshad(1000), 4);
WriteLn();
END Harshad.
- Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First Harshad number above 1000: 1002
min
(
:n () =list
(n 0 >) (
n 10 mod list prepend #list
n 10 div @n
) while
list
) :digits
(dup digits sum mod 0 ==) :harshad?
(
succ :n
(n harshad? not) (
n succ @n
) while
n
) :next-harshad
0 (next-harshad print " " print!) 20 times newline
1000 next-harshad print!
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Miranda
main :: [sys_message]
main = [Stdout ("First 20: " ++ show first20 ++ "\n"),
Stdout ("First above 1000: " ++ show above1000 ++ "\n")]
first20 :: [num]
first20 = take 20 (filter isharshad [1..])
above1000 :: num
above1000 = hd (filter isharshad [1001..])
isharshad :: num->bool
isharshad n = n mod digitsum n = 0
digitsum :: num->num
digitsum 0 = 0
digitsum n = n mod 10 + digitsum (n div 10)
- Output:
First 20: [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] First above 1000: 1002
MLite
fun sumdigits
(0, n) = n
| (m, n) = sumdigits (m div 10, m rem 10) + n
| n = sumdigits (n div 10, n rem 10)
fun is_harshad n = (n rem (sumdigits n) = 0)
fun next_harshad_after
(n, ~1) = if is_harshad n then
n
else
next_harshad_after (n + 1, ~1)
| n = next_harshad_after (n + 1, ~1)
fun harshad
(max, _, count > max, accum) = rev accum
| (max, here, count, accum) =
if is_harshad here then
harshad (max, here + 1, count + 1, here :: accum)
else
harshad (max, here + 1, count, accum)
| max = harshad (max, 1, 1, [])
;
print "first twenty harshad numbers = "; println ` harshad 20;
print "first harshad number after 1000 = "; println ` next_harshad_after 1000;
NetRexx
/* NetRexx ------------------------------------------------------------
* 21.01.2014 Walter Pachl translated from ooRexx (from REXX version 1)
*--------------------------------------------------------------------*/
options replace format comments java crossref symbols nobinary
Parse Arg x y . /* get optional arguments: X Y */
If x='' Then x=20 /* Not specified? Use default */
If y='' Then y=1000 /* " " " " */
n=0 /* Niven count */
nl='' /* Niven list. */
Loop j=1 By 1 Until n=x /* let's go Niven number hunting.*/
If j//sumdigs(j)=0 Then Do /* j is a Niven number */
n=n+1 /* bump Niven count */
nl=nl j /* add to list. */
End
End
Say 'first' n 'Niven numbers:'nl
Loop j=y+1 By 1 /* start with first candidate */
If j//sumdigs(j)=0 Then /* j is a Niven number */
Leave
End
Say 'first Niven number >' y 'is:' j
Exit
method sumdigs(n) public static returns Rexx
sum=n.left(1)
Loop k=2 To n.length()
sum=sum+n.substr(k,1)
End
Return sum
output same as ooRexx's
Nim
proc slice[T](iter: iterator(): T {.closure.}; sl: Slice[T]): seq[T] =
var i = 0
for n in iter():
if i > sl.b: break
if i >= sl.a: result.add(n)
inc i
iterator harshad(): int {.closure.} =
for n in 1 ..< int.high:
var sum = 0
for ch in $n:
sum += ord(ch) - ord('0')
if n mod sum == 0:
yield n
echo harshad.slice 0 ..< 20
for n in harshad():
if n > 1000:
echo n
break
- Output:
@[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
Nu
def 'seq harshad' [] {
1.. | where $it mod ($it | into string | split chars | into int | math sum) == 0
}
[{ take 20 | str join ' ' } { skip until { $in > 1000 } | first }]
| each {|f| seq harshad | do $f }
| str join ' ... '
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
Objeck
class Harshad {
function : Main(args : String[]) ~ Nil {
count := 0;
for(i := 1; count < 20; i += 1;) {
if(i % SumDigits(i) = 0){
"{$i} "->Print();
count += 1;
};
};
for(i := 1001; true; i += 1;) {
if(i % SumDigits(i) = 0){
"... {$i}"->PrintLine();
break;
};
};
}
function : SumDigits(n : Int) ~ Int {
sum := 0;
do {
sum += n % 10;
n /= 10;
} while(n <> 0);
return sum;
}
}
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
OCaml
let is_harshad x =
let rec dsum n = if n < 10 then n else dsum (n / 10) + n mod 10 in
x mod dsum x = 0
let () =
let print_seq (x, n) =
Seq.(ints x |> filter is_harshad |> take n |> map string_of_int)
|> List.of_seq |> String.concat ", " |> print_endline
in
List.iter print_seq [1, 20; 1001, 1]
- Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42 1002
Oforth
: sumDigits(n) 0 while(n) [ n 10 /mod ->n + ] ;
: isHarshad dup sumDigits mod 0 == ;
1100 seq filter(#isHarshad) dup left(20) println dup filter(#[ 1000 > ]) first println
- Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
ooRexx
/* REXX ---------------------------------------------------------------
* 21.01.2014 Walter Pachl modi-(simpli-)fied from REXX version 1
*--------------------------------------------------------------------*/
Parse Arg x y . /* get optional arguments: X Y */
If x='' Then x=20 /* Not specified? Use default */
If y='' Then y=1000 /* " " " " */
n=0 /* Niven count */
nl='' /* Niven list. */
Do j=1 Until n=x /* let's go Niven number hunting.*/
If j//sumdigs(j)=0 Then Do /* j is a Niven number */
n=n+1 /* bump Niven count */
nl=nl j /* add to list. */
End
End
Say 'first' n 'Niven numbers:'nl
Do j=y+1 /* start with first candidate */
If j//sumdigs(j)=0 Then /* j is a Niven number */
Leave
End
Say 'first Niven number >' y 'is:' j
Exit
sumdigs: Procedure /* compute sum of n's digits */
Parse Arg n
sum=left(n,1)
Do k=2 To length(n)
sum=sum+substr(n,k,1)
End
Return sum
- Output:
first 20 Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 first Niven number > 1000 is: 1002
PARI/GP
isHarshad(n)=n%sumdigits(n)==0
n=0;k=20;while(k,if(isHarshad(n++),k--;print1(n", ")));
n=1000;while(!isHarshad(n++),);print("\n"n)
- Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 1002
Pascal
Optimized for speed, by using the state before in IncSumDigit.
program Niven;
{$IFDEF FPC}
{$MODE DELPHI}
{$ENDIF}
const
base = 10;
type
tNum = longword; {Uint64}
{$IFDEF FPC}
const
cntbasedigits = trunc(ln(High(tNum)) / ln(base)) + 1;
{$ELSE}
var
cntbasedigits: Integer = 0;
{$ENDIF}
type
tSumDigit = record
sdNumber: tNum;
{$IFDEF FPC}
sdDigits: array[0..cntbasedigits - 1] of byte;
{$ELSE}
sdDigits: TArray<Byte>;
{$ENDIF}
sdSumDig: byte;
sdIsNiven: boolean;
end;
function InitSumDigit(n: tNum): tSumDigit;
var
sd: tSumDigit;
qt: tNum;
i: integer;
begin
with sd do
begin
sdNumber := n;
{$IFDEF FPC}
fillchar(sdDigits, SizeOf(sdDigits), #0);
{$ELSE}
SetLength(sdDigits,cntbasedigits);
fillchar(sdDigits[0], SizeOf(sdDigits), #0);
{$ENDIF}
sdSumDig := 0;
sdIsNiven := false;
i := 0;
// calculate Digits und sum them up
while n > 0 do
begin
qt := n div base;
{n mod base}
sdDigits[i] := n - qt * base;
inc(sdSumDig, sdDigits[i]);
n := qt;
inc(i);
end;
if sdSumDig > 0 then
sdIsNiven := (sdNumber mod sdSumDig = 0);
end;
InitSumDigit := sd;
end;
procedure IncSumDigit(var sd: tSumDigit);
var
i, d: integer;
begin
i := 0;
with sd do
begin
inc(sdNumber);
repeat
d := sdDigits[i];
inc(d);
inc(sdSumDig);
//base-1 times the repeat is left here
if d < base then
begin
sdDigits[i] := d;
BREAK;
end
else
begin
sdDigits[i] := 0;
dec(sdSumDig, base);
inc(i);
end;
until i > high(sdDigits);
sdIsNiven := (sdNumber mod sdSumDig) = 0;
end;
end;
var
MySumDig: tSumDigit;
lnn: tNum;
cnt: integer;
begin
{$IFNDEF FPC}
cntbasedigits := trunc(ln(High(tNum)) / ln(base)) + 1;
{$ENDIF}
MySumDig := InitSumDigit(0);
cnt := 0;
repeat
IncSumDigit(MySumDig);
if MySumDig.sdIsNiven then
begin
write(MySumDig.sdNumber, '.');
inc(cnt);
end;
until cnt >= 20;
write('....');
MySumDig := InitSumDigit(1000);
repeat
IncSumDigit(MySumDig);
until MySumDig.sdIsNiven;
writeln(MySumDig.sdNumber, '.');
// searching for big gaps between two niven-numbers
// MySumDig:=InitSumDigit(18879989100-276);
MySumDig := InitSumDigit(1);
cnt := 0;
lnn := MySumDig.sdNumber;
repeat
IncSumDigit(MySumDig);
if MySumDig.sdIsNiven then
begin
if cnt < (MySumDig.sdNumber - lnn) then
begin
cnt := (MySumDig.sdNumber - lnn);
writeln(lnn, ' --> ', MySumDig.sdNumber, ' d=', cnt);
end;
lnn := MySumDig.sdNumber;
end;
until MySumDig.sdNumber = High(tNum);
{
689988915 --> 689989050 d=135
879987906 --> 879988050 d=144
989888823 --> 989888973 d=150
2998895823 --> 2998895976 d=153
~ 24 Cpu-cycles per test i3- 4330 1..2^32-1}
{$IFNDEF LINUX}readln;{$ENDIF}
end.
output:
1.2.3.4.5.6.7.8.9.10.12.18.20.21.24.27.30.36.40.42.....1002.
PascalABC.NET
##
uses School;
function IsHarshad(n: integer) := n.Divs(n.Digits.Sum);
1.Step.Where(IsHarshad).Take(20).Println;
1.Step.Where(i -> (i > 1000) and IsHarshad(i)).First.Println;
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Perl
use v5.36;
use List::Util 'sum';
sub createHarshads ($limit) {
my(@harshads,$number);
do {
$number++;
if ( $number % sum ( split ( // , $number ) ) == 0 ) {
push @harshads , $number;
}
} until $harshads[ -1 ] > $limit;
return @harshads;
}
my @harshadnumbers = createHarshads my $limit = 1000;
say "@harshadnumbers[0..19]";
say "The first Harshad number greater than $limit is $harshadnumbers[ -1 ]!" ;
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Harshad number greater than 1000 is 1002!
Phix
integer n = 0 sequence digits={0} procedure nNiven() while 1 do n += 1 for i=length(digits) to 0 by -1 do if i=0 then digits = prepend(digits,1) exit end if if digits[i]<9 then digits[i] += 1 exit end if digits[i] = 0 end for if remainder(n,sum(digits))=0 then exit end if end while end procedure sequence s = {} for i=1 to 20 do nNiven() s &= n end for ?s while n<=1000 do nNiven() end while ?n
- Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42} 1002
Alternative version
function isHarshad(integer n) return remainder(n,sum(sq_sub(sprint(n),'0')))=0 end function sequence s = {} integer n = 0 while length(s)<20 do n += 1 if isHarshad(n) then s &= n end if end while n = 1001 while not isHarshad(n) do n += 1 end while ?s&n
- Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,1002}
PicoLisp
#if niven number, return it.
(de niven (N)
(if (=0 (% N (apply + (getN N)))) N) )
#function which creates a list of numbers from input
(de getN (N)
(mapcar format (chop N)) )
#This function generates niven number list
(de nivGen (R N)
(extract niven (range R N)) )
#print 1st 20 niven numbers and 1st niven number greater than 1000
(printsp ~(list ~(head 20
(nivGen 1 1000) ) (max ~(nivGen 1001 1010)) ) )
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
PILOT
C :n=0
:i=0
*first20
U :*harshad
C :i=i+1
T :#i: #n
J (i<20):*first20
C :n=1000
U :*harshad
T :First Harshad number greater than 1000: #n
E :
*harshad
C :n=n+1
:r=n
:s=0
*digit
C :a=r/10
:s=s+(r-a*10)
:r=a
J (r):*digit
J (n<>s*(n/s)):*harshad
E :
- Output:
1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 8: 8 9: 9 10: 10 11: 12 12: 18 13: 20 14: 21 15: 24 16: 27 17: 30 18: 36 19: 40 20: 42 First Harshad number greater than 1000: 1002
PL/I
*process source or(!) xref attributes;
niven: Proc Options(main);
/*********************************************************************
* 08-06.2013 Walter Pachl translated from Rexx
* with a slight improvement: Do j=y+1 By 1;
*********************************************************************/
Dcl (ADDR,HBOUND,MOD,SUBSTR,VERIFY) Builtin;
Dcl SYSPRINT Print;
Dcl (x,y) dec fixed(8);
x=20;
y=1000;
Begin;
Dcl (n(x),j) Dec Fixed(8);
Dcl ni Bin Fixed(31) Init(0);
Dcl result Char(100) Var Init('');
loop:
Do j=1 By 1;
If mod(j,sumdigs(j))=0 Then Do;
ni+=1;
n(ni)=j;
result=result!!' '!!d2c(j);
If ni=x Then Leave loop;
End;
End;
Put Edit('first 20 Niven numbers: ',result)(Skip,a,a);
Do j=y+1 By 1;
If mod(j,sumdigs(j))=0 Then
Leave;
End;
Put Edit('first Niven number > ',d2c(y),' is: ',d2c(j))(Skip,4(a));
End;
sumDigs: proc(z) Returns(Dec Fixed(3));
Dcl z Pic'(8)9';
Dcl d(8) Pic'9' Based(addr(z));
Dcl i Bin Fixed(31);
Dcl sd Dec Fixed(3) Init(0);
Do i=1 To hbound(d);
sd+=d(i);
End;
Return(sd);
End;
d2c: Proc(z) Returns(char(8) Var);
Dcl z Pic'(8)z';
Dcl p Bin Fixed(31);
p=verify(z,' ');
Return(substr(z,p));
End;
End;
- Output:
first 20 Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 first Niven number > 1000 is: 1002
PL/M
100H:
/* FIND THE SUM OF THE DIGITS OF A 16-BIT NUMBER */
DIGIT$SUM: PROCEDURE(N) BYTE;
DECLARE N ADDRESS, SUM BYTE;
SUM = 0;
DO WHILE N > 0;
SUM = SUM + (N MOD 10);
N = N / 10;
END;
RETURN SUM;
END DIGIT$SUM;
/* FIND THE NEXT HARSHAD NUMBER ABOVE N */
NEXT$HARSHAD: PROCEDURE(N) ADDRESS;
DECLARE N ADDRESS;
NEXT:
N = N + 1;
IF N MOD DIGIT$SUM(N) = 0 THEN
RETURN N;
ELSE
GO TO NEXT;
END NEXT$HARSHAD;
/* CP/M SYSCALL */
BDOS: PROCEDURE(FUNC, ARG);
DECLARE FUNC BYTE, ARG ADDRESS;
GO TO 5;
END BDOS;
/* PRINT A STRING */
PRINT$STRING: PROCEDURE(STRING);
DECLARE STRING ADDRESS;
CALL BDOS(9, STRING);
END PRINT$STRING;
/* PRINT A NUMBER */
PRINT$NUMBER: PROCEDURE(N);
DECLARE S (7) BYTE INITIAL ('..... $');
DECLARE (N, P) ADDRESS, (C BASED P) BYTE;
P = .S(5);
DIGIT:
P = P - 1;
C = (N MOD 10) + '0';
N = N / 10;
IF N > 0 THEN GO TO DIGIT;
CALL PRINT$STRING(P);
END PRINT$NUMBER;
DECLARE CRLF DATA (13,10,'$');
DECLARE N ADDRESS INITIAL (0), S BYTE;
/* PRINT FIRST 20 HARSHADS */
CALL PRINT$STRING(.'FIRST 20: $');
DO S = 1 TO 20;
CALL PRINT$NUMBER(N := NEXT$HARSHAD(N));
END;
CALL PRINT$STRING(.CRLF);
/* PRINT HARSHAD NUMBER ABOVE 1000 */
CALL PRINT$STRING(.'FIRST ABOVE 1000: $');
CALL PRINT$NUMBER(NEXT$HARSHAD(1000));
CALL PRINT$STRING(.CRLF);
CALL BDOS(0,0);
EOF
- Output:
FIRST 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 FIRST ABOVE 1000: 1002
PowerShell
In PowerShell, we generally don't wrap every little thing in a function. If you have something simple to do, you just do it.
1..1000 | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select -First 20
1001..2000 | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select -First 1
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
But if we do have a need for the code to be reusable, we can do that.
function Get-HarshadNumbers
{
<#
.SYNOPSIS
Returns numbers in the Harshad or Niven series.
.DESCRIPTION
Returns all integers in the given range that are evenly divisible by the sum of their digits
in ascending order.
.PARAMETER Minimum
Lower bound of the range to search for Harshad numbers. Defaults to 1.
.PARAMETER Maximum
Upper bound of the range to search for Harshad numbers. Defaults to 2,147,483,647
.PARAMETER Count
Maximum number of Harshad numbers to return.
#>
[cmdletbinding()]
Param (
[int]$Minimum = 1,
[int]$Maximum = [int]::MaxValue,
[int]$Count )
# Skip any non-positive numbers in the specified range
$Minimum = [math]::Max( 1, $Minimum )
# If the adjusted range has any numbers in it...
If ( $Maximum -ge $Minimum )
{
# If a count was specified, build a parameter for the Select statement to kill the pipeline when the count is achieved.
If ( $Count ) { $SelectParam = @{ First = $Count } }
Else { $SelectParam = @{} }
# For each number in the range, test the remainder of it divided it by iteself (converted to a string,
# then a character array, then a string array, then an integer array, then summed).
$Minimum..$Maximum | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select @SelectParam
}
}
Get-HarshadNumbers -Count 20
Get-HarshadNumbers -Minimum 1001 -Count 1
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Prolog
Works with SWI-Prolog and module lambda.pl written by Ulrich Neumerkel, it can be found there : http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl.
:- use_module(library(lambda)).
niven :-
nb_setval(go, 1),
L = [1 | _],
print_niven(L, 1),
gen_niven(1, L).
print_niven([X|T], N) :-
when(ground(X),
( ( nb_getval(go, 1)
-> ( N < 20
-> writeln(X),
N1 is N+1,
print_niven(T, N1)
; ( X > 1000
-> writeln(X),
nb_setval(go, 0)
; N1 is N+1,
print_niven(T, N1)))
; true))).
gen_niven(X, [N | T]) :-
( nb_getval(go, 1)
-> X1 is X+1,
sum_of_digit(X, S),
( X mod S =:= 0
-> N = X,
gen_niven(X1, T)
; gen_niven(X1, [N | T]))
; true).
sum_of_digit(N, S) :-
number_chars(N, LC),
maplist(\X^Y^number_chars(Y, [X]), LC, LN),
sum_list(LN, S).
- Output:
?- niven. 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 1002 true.
PureBasic
If OpenConsole()=0 : End 1 : EndIf
Procedure.i Niven(v.i)
w=v
While v : s+v%10 : v/10 : Wend
If w%s=0 : ProcedureReturn w : EndIf
EndProcedure
Repeat
i+1
If Niven(i) : c+1 : Print(Str(i)+" ") : EndIf
If c=20 And i<1000 : Print("... ") : i=1000 : EndIf
If c=21 : Break : EndIf
ForEver
Input()
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
Python
Python: Procedural
>>> import itertools
>>> def harshad():
for n in itertools.count(1):
if n % sum(int(ch) for ch in str(n)) == 0:
yield n
>>> list(itertools.islice(harshad(), 0, 20))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
>>> for n in harshad():
if n > 1000:
print(n)
break
1002
>>>
Python: Functional
The for loop above could be changed to the following to find the number > 1000; in fact the harshad generator function could become a generator expression creating this more functional version:
>>> from itertools import count, islice
>>> harshad = (n for n in count(1) if n % sum(int(ch) for ch in str(n)) == 0)
>>> list(islice(harshad, 0, 20))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
>>> next(x for x in harshad if x > 1000)
1002
>>>
And we could also sum digits more directly (without string coercion) while still preserving functional composition:
'''Harshad or Niven series'''
from itertools import count, dropwhile, islice
# harshads :: () -> [Int]
def harshads():
'''Harshad series'''
return (
x for x in count(1)
if 0 == x % digitSum(x)
)
# digitSum :: Int -> Int
def digitSum(n):
'''Sum of the decimal digits of n.'''
def go(x):
return None if 0 == x else divmod(x, 10)
return sum(unfoldl(go)(n))
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First 20, and first above 1000.'''
def firstTwenty(xs):
return take(20)(xs)
def firstAbove1000(xs):
return take(1)(
dropwhile(lambda x: 1000 >= x, xs)
)
print(
fTable(__doc__ + ':\n')(
lambda x: x.__name__
)(showList)(lambda f: f(harshads()))([
firstTwenty,
firstAbove1000
])
)
# ----------------------- GENERIC ------------------------
# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.
'''
return lambda xs: (
xs[0:n]
if isinstance(xs, (list, tuple))
else list(islice(xs, n))
)
# unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
def unfoldl(f):
'''A lazy (generator) list unfolded from a seed value
by repeated application of f until no residue remains.
Dual to fold/reduce.
f returns either None or just (residue, value).
For a strict output list, wrap the result with list()
'''
def go(v):
residueValue = f(v)
while residueValue:
yield residueValue[1]
residueValue = f(residueValue[0])
return go
# ----------------------- DISPLAY ------------------------
# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function ->
fx display function -> f -> xs -> tabular string.
'''
def gox(xShow):
def gofx(fxShow):
def gof(f):
def goxs(xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
def arrowed(x, y):
return y.rjust(w, ' ') + ' -> ' + (
fxShow(f(x))
)
return s + '\n' + '\n'.join(
map(arrowed, xs, ys)
)
return goxs
return gof
return gofx
return gox
# showList :: [a] -> String
def showList(xs):
'''Stringification of a list.'''
return '[' + ','.join(repr(x) for x in xs) + ']'
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Harshad or Niven series: firstTwenty -> [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] firstAbove1000 -> [1002]
Quackery
[ number$ $ "0 " swap
witheach
[ join $ " + " join ]
quackery ] is digitsum ( n --> n )
[ dup digitsum
mod 0 = ] is isharshad ( n --> b )
say "The first 20 Harshad numbers are: "
0 1
[ dup isharshad if
[ dup echo sp dip 1+ ]
1+
over 20 = until ]
2drop
cr
cr
say "The first Harshad number greater than 1000 is: "
1000 [ 1+ dup isharshad
iff echo done
again ]
cr
Output:
The first 20 Harshad numbers are: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Harshad number greater than 1000 is: 1002
Racket
#lang racket
(define (digsum n)
(for/sum ([c (number->string n)]) (string->number [string c])))
(define harshads
(stream-filter (λ (n) (= (modulo n (digsum n)) 0)) (in-naturals 1)))
; First 20 harshad numbers
(displayln (for/list ([i 20]) (stream-ref harshads i)))
; First harshad greater than 1000
(displayln (for/first ([h harshads] #:when(> h 1000)) h))
- Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42) 1002
Different to the Scheme implementation in that it illustrates Racket's native iterators, and let-values with quotient/remainder:
#lang racket
(require math/number-theory)
(define (digital-sum n)
(let inner
((n n) (s 0))
(if (zero? n) s
(let-values ([(q r) (quotient/remainder n 10)])
(inner q (+ s r))))))
(define (harshad-number? n)
(and (>= n 1)
(divides? (digital-sum n) n)))
;; find 1st 20 Harshad numbers
(for ((i (in-range 1 (add1 20)))
(h (sequence-filter harshad-number? (in-naturals 1))))
(printf "#~a ~a~%" i h))
;; find 1st Harshad number > 1000
(displayln (for/first ((h (sequence-filter harshad-number? (in-naturals 1001)))) h))
- Output:
#1 1 #2 2 #3 3 #4 4 #5 5 #6 6 #7 7 #8 8 #9 9 #10 10 #11 12 #12 18 #13 20 #14 21 #15 24 #16 27 #17 30 #18 36 #19 40 #20 42 1002
Raku
(formerly Perl 6)
constant @harshad = grep { $_ %% .comb.sum }, 1 .. *;
say @harshad[^20];
say @harshad.first: * > 1000;
- Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42) 1002
Refal
$ENTRY Go {
= <Prout 'First 20: ' <GetFirst 20 Harshad>>
<Prout 'First > 1000: ' <Next Harshad 1000>>;
};
GetFirst {
s.N s.F = <GetFirst s.N s.F 0>;
0 s.F s.Cur = ;
s.N s.F s.Cur, <Next s.F s.Cur>: s.Next
= s.Next <GetFirst <- s.N 1> s.F s.Next>;
};
Next {
s.F s.N, <+ 1 s.N>: s.Next, <Mu s.F s.Next>: {
T = s.Next;
F = <Next s.F s.Next>;
};
};
Harshad {
s.N, <DigSum s.N>: s.Dsum, <Mod s.N s.Dsum>: 0 = T;
s.N = F;
};
DigSum {
0 = 0;
s.N, <Divmod s.N 10>: (s.Rest) s.Dgt = <+ s.Dgt <DigSum s.Rest>>;
};
- Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First > 1000: 1002
REXX
These REXX examples allow the user to specify how many Niven numbers to list,
as well as find the first Niven number greater than a specified positive integer.
Also, gihugeic integers are supported (essentially no limit).
generic
/*REXX program finds the first A Niven numbers; it also finds first Niven number > B.*/
parse arg A B . /*obtain optional arguments from the CL*/
if A=='' | A==',' then A= 20 /*Not specified? Then use the default.*/
if B=='' | B==',' then B= 1000 /* " " " " " " */
numeric digits 1+max(8, length(A), length(B) ) /*enable the use of any sized numbers. */
#= 0; $= /*set Niven numbers count; Niven list.*/
do j=1 until #==A /*◄───── let's go Niven number hunting.*/
if j // sumDigs(j)==0 then do; #= #+1; $= $ j; end
end /*j*/ /* [↑] bump count; append J ──► list.*/
say 'first' A 'Niven numbers:' $ /*display list of Niven numbers──►term.*/
do t=B+1 until t//sumDigs(t)==0 /*hunt for a Niven (or Harshad) number.*/
end /*t*/
say 'first Niven number >' B " is: " t /*display 1st Niven number > B. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: parse arg x 1 s 2 q; do k=1 for length(q); s= s+substr(q,k,1); end; return s
- output when using the default inputs:
first 20 Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 first Niven number > 1000 is: 1002
idiomatic
This REXX version idiomatically uses a isNiven function.
/*REXX program finds the first A Niven numbers; it also finds first Niven number > B.*/
parse arg A B . /*obtain optional arguments from the CL*/
if A=='' | A==',' then A= 20 /*Not specified? Then use the default.*/
if B=='' | B==',' then B= 1000 /* " " " " " " */
numeric digits 1+max(8, length(A), length(B)) /*enable the use of any sized numbers. */
#= 0; $= /*set Niven numbers count; Niven list.*/
do j=1 until #==A /*◄───── let's go Niven number hunting.*/
if isNiven(j) then do; #= #+1; $= $ j; end
end /*j*/ /* [↑] bump count; append J ──► list.*/
say 'first' A 'Niven numbers:' $ /*display list of Niven numbers──►term.*/
do t=B+1 until isNiven(t) /*hunt for a Niven (or Harshad) number.*/
end /*t*/
say 'first Niven number >' B " is: " t /*display 1st Niven number > B. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 s 2 q; do k=1 for length(q); s=s+substr(q,k,1); end; return x//s==0
- output is identical to the 1st REXX version.
esoteric
This REXX version optimizes the isNiven function by using parse statements instead of the substr BIF,
yielding a faster algorithm.
/*REXX program finds the first A Niven numbers; it also finds first Niven number > B.*/
parse arg A B . /*obtain optional arguments from the CL*/
if A=='' | A==',' then A= 20 /*Not specified? Then use the default.*/
if B=='' | B==',' then B= 1000 /* " " " " " " */
numeric digits 1+max(8, length(A), length(B) ) /*enable the use of any sized numbers. */
#= 0; $= /*set Niven numbers count; Niven list.*/
do j=1 until #==A /*◄───── let's go Niven number hunting.*/
if isNiven(j) then do; #= #+1; $= $ j; end
end /*j*/ /* [↑] bump count; append J ──► list.*/
say 'first' A 'Niven numbers:' $ /*display list of Niven numbers──►term.*/
do t=B+1 until isNiven(t) /*hunt for a Niven (or Harshad) number.*/
end
say 'first Niven number >' B " is: " t /*display 1st Niven number > B. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 sum 2 q /*use the 1st decimal digit for SUM. */
do length(q); parse var q _ 2 q; sum= sum + _
end /*length(q)*/ /* ↑ */
return x // sum == 0 /* └──────◄ is destructively parsed. */
- output is identical to the 1st REXX version.
array of numbers
This REXX version builds an array of numbers instead of a list (building an array is much faster than building a list, especially if the list is very long).
In addition, if the A number is negative, the numbers in the array aren't displayed, but the last number in the array is displayed.
/*REXX program finds the first A Niven numbers; it also finds first Niven number > B.*/
parse arg A B . /*obtain optional arguments from the CL*/
if A=='' | A==',' then A= 20 /*Not specified? Then use the default.*/
if B=='' | B==',' then B= 1000 /* " " " " " " */
tell= A>0; A= abs(A) /*flag for showing a Niven numbers list*/
A= abs(a)
numeric digits 1+max(8, length(A), length(B) ) /*enable the use of any sized numbers. */
#= 0; $= /*set Niven numbers count; Niven list.*/
do j=1 until #==A /*◄───── let's go Niven number hunting.*/
if isNiven(j) then do; #= #+1; !.#= j; end
end /*j*/ /* [↑] bump count; append J ──► list.*/
w= length(!.w) /*W: is the width of largest Niven #.*/
if tell then do
say 'first' A 'Niven numbers:'; do k=1 for #; say right(!.k, w); end /*k*/
end
else say 'last of the' A 'Niven numbers: ' !.#
say
do t=B+1 until isNiven(t) /*hunt for a Niven (or Harshad) number.*/
end
say 'first Niven number >' B " is: " t
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 sum 2 q /*use the first decimal digit for SUM.*/
do while q\==''; parse var q _ 2 q; sum= sum + _
end /*while*/ /* ↑ */
return x // sum == 0 /* └──────◄ is destructively parsed.*/
- output when the input used is: -1000000 66777888
last of the 1000000 Niven numbers: 12150510 first Niven number > 66777888 is: 66777900
Ring
i = 1
count = 0
while true
sum = 0
if niven(i) = 1
if count < 20 see "" + i + " is a Niven number" + nl count +=1 ok
if i > 1000 see "" + i + " is a Niven number" exit ok ok
i + =1
end
func niven nr
nrString = string(nr)
for j = 1 to len(nrString)
sum = sum + number(nrString[j])
next
niv = ((nr % sum) = 0)
return niv
Output:
1 is a Niven number 2 is a Niven number 3 is a Niven number 4 is a Niven number 5 is a Niven number 6 is a Niven number 7 is a Niven number 8 is a Niven number 9 is a Niven number 10 is a Niven number 12 is a Niven number 18 is a Niven number 20 is a Niven number 21 is a Niven number 24 is a Niven number 27 is a Niven number 30 is a Niven number 36 is a Niven number 40 is a Niven number 42 is a Niven number 1002 is a Niven number
RPL
Code | Comments |
---|---|
≪ DO 1 + DUP DUP →STR DUP SIZE → n len ≪ 0 1 len FOR j n j DUP SUB NUM + NEXT len 48 * - ≫ UNTIL MOD NOT END ≫ 'NXTHR' STO ≪ {} 0 1 20 START NXTHR SWAP OVER + SWAP NEXT DROP 1000 NXTHR ≫ EVAL |
( n -- next_Harshad_number) Increment n and initialize local variables Add ASCII codes Remove offset 48 = NUM("0") Create list of first 20 Harshad numbers Get first Harshad number > 1000 |
- Output:
2: { 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 } 1: 1002
Ruby
Ruby 2.4 gave Integers a digits method, and Arrays a sum method.
harshad = 1.step.lazy.select { |n| n % n.digits.sum == 0 }
puts "The first 20 harshard numbers are: \n#{ harshad.first(20) }"
puts "The first harshard number > 1000 is #{ harshad.find { |n| n > 1000 } }"
- Output:
The first 20 harshard numbers are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] The first harshard number > 1000 is 1002
>
Run BASIC
while count < 20
h = h + 1
if neven(h) = 0 then
count = count + 1
print count;": ";h
end if
wend
h = 1000
while 1 = 1
h = h + 1
if neven(h) = 0 then
print h
exit while
end if
wend
function neven(h)
h$ = str$(h)
for i = 1 to len(h$)
d = d + val(mid$(h$,i,1))
next i
neven = h mod d
end function
- Output:
1: 1 2: 2 3: 3 4: 4 5: 5 6: 6 7: 7 8: 8 9: 9 10: 10 11: 12 12: 18 13: 20 14: 21 15: 24 16: 27 17: 30 18: 36 19: 40 20: 42 1002
Rust
fn is_harshad (n : u32) -> bool {
let sum_digits = n.to_string()
.chars()
.map(|c| c.to_digit(10).unwrap())
.fold(0, |a, b| a+b);
n % sum_digits == 0
}
fn main() {
for i in (1u32..).filter(|num| is_harshad(*num)).take(20) {
println!("Harshad : {}", i);
}
for i in (1_001u32..).filter(|num| is_harshad(*num)).take(1) {
println!("First Harshad bigger than 1_000 : {}", i);
}
}
- Output:
Harshad : 1 Harshad : 2 Harshad : 3 Harshad : 4 Harshad : 5 Harshad : 6 Harshad : 7 Harshad : 8 Harshad : 9 Harshad : 10 Harshad : 12 Harshad : 18 Harshad : 20 Harshad : 21 Harshad : 24 Harshad : 27 Harshad : 30 Harshad : 36 Harshad : 40 Harshad : 42 First Harshad bigger than 1_000 : 1002
Scala
object Harshad extends App {
val harshads = Stream.from(1).filter(i => i % i.toString.map(_.asDigit).sum == 0)
println(harshads.take(20).toList)
println(harshads.filter(_ > 1000).head)
}
- Output:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42) 1002
Scheme
#!/usr/local/bin/gosh
;; Show the first 20 niven numbers and the
;; first one greater than 1000.
(define (main args)
(display (iota-filtered 20 1 niven?))(newline)
(display (iota-filtered 1 1001 niven?))(newline))
;; Return a list of length n
;; for numbers starting at start
;; that satisfy the predicate fn.
(define (iota-filtered n start fn)
(let loop ((num start)(lst (list)))
(if (= (length lst) n)
lst
(loop (+ 1 num) (if (fn num) (append lst (list num)) lst)))))
;; Is a number a niven number?
(define (niven? n)
(and (> n 0) (= 0 (remainder n (sum-of-digits n)))))
;; Get the sum of the digits of a number.
(define (sum-of-digits n)
(apply + (map string->number (map string (string->list (number->string n))))))
- Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42) (1002)
Seed7
$ include "seed7_05.s7i";
const func integer: sumOfDigits (in var integer: num) is func
result
var integer: sum is 0;
begin
repeat
sum +:= num rem 10;
num := num div 10;
until num = 0;
end func;
const func integer: nextHarshadNum (inout integer: num) is func
result
var integer: harshadNumber is 0;
begin
while num mod sumOfDigits(num) <> 0 do
incr(num);
end while;
harshadNumber := num;
end func;
const proc: main is func
local
var integer: current is 1;
var integer: count is 0;
begin
for count range 1 to 20 do
write(nextHarshadNum(current) <& " ");
incr(current);
end for;
current := 1001;
writeln(" ... " <& nextHarshadNum(current));
end func;
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
SETL
program harshad;
print("First 20 Harshad numbers:", [n := next(n) : i in [1..20]]);
print("First Harshad number >1000:", next(1000));
proc next(n);
(until harshad(n)) n +:= 1; end;
return n;
end proc;
proc harshad(n);
return n mod +/[val d : d in str n] = 0;
end proc;
end program;
- Output:
First 20 Harshad numbers: [1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42] First Harshad number >1000: 1002
Sidef
func harshad() {
var n = 0
{
++n while !n.digits.sum.divides(n)
n
}
}
var iter = harshad()
say 20.of { iter.run }
var n
do {
n = iter.run
} while (n <= 1000)
say n
- Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] 1002
Sinclair ZX81 BASIC
Works with 1k of RAM. FAST
isn't all that fast.
10 FAST
20 LET N=0
30 LET H=0
40 LET N=N+1
50 LET N$=STR$ N
60 LET SD=0
70 FOR I=1 TO LEN N$
80 LET SD=SD+VAL N$(I)
90 NEXT I
100 IF N/SD<>INT (N/SD) THEN GOTO 40
110 LET H=H+1
120 IF H<=20 OR N>1000 THEN PRINT N
130 IF N>1000 THEN GOTO 150
140 GOTO 40
150 SLOW
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Swift
struct Harshad: Sequence, IteratorProtocol {
private var i = 0
mutating func next() -> Int? {
while true {
i += 1
if i % Array(String(i)).map(String.init).compactMap(Int.init).reduce(0, +) == 0 {
return i
}
}
}
}
print("First 20: \(Array(Harshad().prefix(20)))")
print("First over a 1000: \(Harshad().first(where: { $0 > 1000 })!)")
- Output:
First 20: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42] First over a 1000: 1002
Tcl
# Determine if the given number is a member of the class of Harshad numbers
proc isHarshad {n} {
if {$n < 1} {return false}
set sum [tcl::mathop::+ {*}[split $n ""]]
return [expr {$n%$sum == 0}]
}
# Get the first 20 numbers that satisfy the condition
for {set n 1; set harshads {}} {[llength $harshads] < 20} {incr n} {
if {[isHarshad $n]} {
lappend harshads $n
}
}
puts [format "First twenty Harshads: %s" [join $harshads ", "]]
# Get the first value greater than 1000 that satisfies the condition
for {set n 1000} {![isHarshad [incr n]]} {} {}
puts "First Harshad > 1000 = $n"
- Output:
First twenty Harshads: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42 First Harshad > 1000 = 1002
uBasic/4tH
C=0
For I = 1 Step 1 Until C = 20 ' First 20 Harshad numbers
If FUNC(_FNHarshad(I)) Then Print I;" "; : C = C + 1
Next
For I = 1001 Step 1 ' First Harshad greater than 1000
If FUNC(_FNHarshad(I)) Then Print I;" " : Break
Next
End
_FNHarshad Param(1)
Local(2)
c@ = a@
b@ = 0
Do While (c@ > 0)
b@ = b@ + (c@ % 10)
c@ = c@ / 10
Loop
Return ((a@ % b@) = 0)
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002 0 OK, 0:185
UNIX Shell
function main {
local -i i=0 n
gen_harshad | while read n; do
if (( !i )); then
printf '%d' "$n"
elif (( i < 20 )); then
printf ' %d' "$n"
elif (( i == 20 )); then
printf '\n'
elif (( n > 1000 )); then
printf '%d\n' "$n"
return
fi
(( i++ ))
done
}
function is_harshad {
local -i sum=0 n=$1 i
for (( i=0; i<${#n}; ++i )); do
(( sum += ${n:$i:1} ))
done
(( n % sum == 0 ))
}
function gen_harshad {
local -i i=1
while true; do
if is_harshad $i; then
printf '%d\n' "$i"
fi
(( i++ ))
done
}
main "$@"
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
VBA
Option Explicit
Sub Main()
Dim i As Long, out As String, Count As Integer
Do
i = i + 1
If IsHarshad(i) Then out = out & i & ", ": Count = Count + 1
Loop While Count < 20
Debug.Print "First twenty Harshad numbers are : " & vbCrLf & out & "..."
i = 1000
Do
i = i + 1
Loop While Not IsHarshad(i)
Debug.Print "The first harshad number after 1000 is : " & i
End Sub
Function IsHarshad(sNumber As Long) As Boolean
Dim Summ As Long, i As Long, temp
temp = Split(StrConv(sNumber, vbUnicode), Chr(0))
For i = LBound(temp) To UBound(temp) - 1
Summ = Summ + temp(i)
Next i
IsHarshad = sNumber Mod Summ = 0
End Function
- Output:
First twenty Harshad numbers are : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, ... The first harshad number after 1000 is : 1002
VBScript
n = 0
m = 1
first20 = ""
after1k = ""
Do
If IsHarshad(m) And n <= 20 Then
first20 = first20 & m & ", "
n = n + 1
m = m + 1
ElseIf IsHarshad(m) And m > 1000 Then
after1k = m
Exit Do
Else
m = m + 1
End If
Loop
WScript.StdOut.Write "First twenty Harshad numbers are: "
WScript.StdOut.WriteLine
WScript.StdOut.Write first20
WScript.StdOut.WriteLine
WScript.StdOut.Write "The first Harshad number after 1000 is: "
WScript.StdOut.WriteLine
WScript.StdOut.Write after1k
Function IsHarshad(s)
IsHarshad = False
sum = 0
For i = 1 To Len(s)
sum = sum + CInt(Mid(s,i,1))
Next
If s Mod sum = 0 Then
IsHarshad = True
End If
End Function
- Output:
First twenty Harshad numbers are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, The first Harshad number after 1000 is: 1002
Visual FoxPro
LOCAL lnCount As Integer, k As Integer
CLEAR
lnCount = 0
k = 0
*!* First 20 numbers
? "First 20 numbers:"
DO WHILE lnCount < 20
k = k + 1
IF Harshad(k)
lnCount = lnCount + 1
? lnCount, k
ENDIF
ENDDO
*!* First such number > 1000
k = 1001
DO WHILE NOT Harshad(k)
k = k + 1
ENDDO
? "First such number > 1000", k
FUNCTION Harshad(n As Integer) As Boolean
LOCAL cn As String, d As Integer, i As Integer
cn = TRANSFORM(n)
d = 0
FOR i = 1 TO LEN(cn)
d = d + VAL(SUBSTR(cn, i, 1))
ENDFOR
RETURN n % d = 0
ENDFUNC
- Output:
First 20 numbers: 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12 12 18 13 20 14 21 15 24 16 27 17 30 18 36 19 40 20 42 First such number > 1000: 1002
V (Vlang)
fn main() {
mut count, mut i := 0, 0
print("The first 20 Harshad numbers: ")
for {
i++
if is_harshad(i) == true {
if count < 20 {print("${i} ") count++}
if i > 1000 {print("\nThe first Harshad number above 1000: ${i}") break}
}
}
}
fn sum_digits(number int) int {
mut num, mut sum := number, 0
if number <= 0 {return 0}
for num > 0 {
sum += num % 10
num /= 10
}
return sum
}
fn is_harshad(n int) bool {
if n % sum_digits(n) == 0 {return true}
return false
}
- Output:
The first 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Harshad number above 1000: 1002
VTL-2
10 ?="First 20: ";
20 N=0
30 I=0
40 #=200
50 ?=N
60 $=32
70 I=I+1
80 #=I<20*40
90 ?=""
100 ?="First above 1000: ";
110 N=1000
120 #=200
130 ?=N
140 #=999
200 ;=!
210 N=N+1
220 K=N
230 S=0
240 K=K/10
250 S=S+%
260 #=0<K*240
270 #=N/S*0+0<%*210
280 #=;
- Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 First above 1000: 1002
Whitespace
This solution was generated from the pseudo-Assembly below. A live run is available for the inquiring skeptic.
push 0 ; Harshad numbers found
push 0 ; counter
0: ; Increment the counter, call "digsum", branch on the modulus.
push 1 add dup dup
push 0 call 1 mod
jz 2
jump 0
1: ; [n 0] => [digsum(n)]
copy 1
push 10 mod add swap
push 10 div swap
push 0 copy 2 sub
jn 1
slide 1 ret
2: ; Should we print this Harshad number?
push 1000 copy 1 sub jn 3 ; We're done if it's greater than 1000.
swap push 1 add swap ; Increment how many we've found so far.
push 20 copy 2 sub jn 0 ; If we've already got 20, go back to the top.
dup onum push 32 ochr ; Otherwise, print it and a space.
jump 0 ; And /then/ go back to the top.
3: ; Print the > 1000 Harshad number on its own line and exit clean.
push 10 ochr onum pop push 10 ochr exit
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Wren
var niven = Fiber.new {
var n = 1
while (true) {
var i = n
var sum = 0
while (i > 0) {
sum = sum + i%10
i = (i/10).floor
}
if (n%sum == 0) Fiber.yield(n)
n = n + 1
}
}
System.print("The first 20 Niven numbers are:")
for (i in 1..20) {
System.write("%(niven.call()) ")
}
System.write("\n\nThe first Niven number greater than 1000 is: ")
while (true) {
var niv = niven.call()
if (niv > 1000) {
System.print(niv)
break
}
}
- Output:
The first 20 Niven numbers are: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 The first Niven number greater than 1000 is: 1002
XPL0
include c:\cxpl\codes; \intrinsic 'code' declarations
int H, C, N, S; \Harshad number, Counter, Number, Sum
[H:= 1; C:= 0;
loop [N:= H; S:= 0; \sum digits
repeat N:= N/10;
S:= S + rem(0);
until N = 0;
if rem(H/S) = 0 then \Harshad no.is evenly divisible by sum of digits
[if C < 20 then [IntOut(0, H); ChOut(0, ^ ); C:= C+1];
if H > 1000 then [IntOut(0, H); CrLf(0); quit];
];
H:= H+1;
];
]
- Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002
Yabasic
sub sumDigits(n)
if n < 0 then return 0 : endif
local sum
while n > 0
sum = sum + mod(n, 10)
n = int(n / 10)
wend
return sum
end sub
sub isHarshad(n)
return mod(n, sumDigits(n)) = 0
end sub
print "Los primeros 20 numeros de Harshad o Niven son:"
contar = 0
i = 1
repeat
if isHarshad(i) then
print i, " ",
contar = contar + 1
end if
i = i + 1
until contar = 20
print : print
print "El primero de esos numeros por encima de 1000 es:"
i = 1001
do
if isHarshad(i) then
print i, " "
break
end if
i = i + 1
loop
print
end
- Output:
Igual que la entrada de BASIC256.
zkl
fcn harshad(n){ 0==n%(n.split().sum(0)) }
[1..].tweak(fcn(n){ if(not harshad(n)) return(Void.Skip); n })
.walk(20).println();
[1..].filter(20,harshad).println();
[1001..].filter1(harshad).println();
Walkers are zkl iterators. [a..b] is a Walker from a to b. Walkers can be tweaked to transform the sequence they are walking. In this case, ignore non Harshad numbers. Then tell the walker to get 20 items from that [modified] sequence.
In this case, filters are the better solution.
- Output:
L(1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42) L(1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42) L(1002)
ZX Spectrum Basic
10 LET k=0: LET n=0
20 IF k=20 THEN GO TO 60
30 LET n=n+1: GO SUB 1000
40 IF isHarshad THEN PRINT n;" ";: LET k=k+1
50 GO TO 20
60 LET n=1001
70 GO SUB 1000: IF NOT isHarshad THEN LET n=n+1: GO TO 70
80 PRINT '"First Harshad number larger than 1000 is ";n
90 STOP
1000 REM is Harshad?
1010 LET s=0: LET n$=STR$ n
1020 FOR i=1 TO LEN n$
1030 LET s=s+VAL n$(i)
1040 NEXT i
1050 LET isHarshad=NOT FN m(n,s)
1060 RETURN
1100 DEF FN m(a,b)=a-INT (a/b)*b
- Programming Tasks
- Solutions by Programming Task
- Brlcad/Omit
- Lilypond/Omit
- Openscad/Omit
- TPP/Omit
- 11l
- 360 Assembly
- 8080 Assembly
- ABC
- Action!
- Ada
- ALGOL 68
- ALGOL-M
- ALGOL W
- APL
- AppleScript
- Arturo
- AutoHotkey
- AWK
- Batch File
- BASIC
- Chipmunk Basic
- GW-BASIC
- MSX Basic
- QBasic
- QB64
- BASIC256
- BBC BASIC
- BCPL
- Befunge
- BQN
- C
- C sharp
- C++
- Clojure
- CLU
- COBOL
- ColdFusion
- Comal
- Common Lisp
- Cowgol
- Craft Basic
- Crystal
- D
- Delphi
- Draco
- EasyLang
- EchoLisp
- Eiffel
- Elixir
- Erlang
- Excel
- F Sharp
- Factor
- FBSL
- FOCAL
- Fortran
- FreeBASIC
- Frink
- FutureBasic
- Fōrmulæ
- Gambas
- Go
- Groovy
- Haskell
- Icon
- Unicon
- IS-BASIC
- J
- Java
- JavaScript
- Jq
- Julia
- K
- Kotlin
- Lambdatalk
- LOLCODE
- Lua
- Mathematica
- Wolfram Language
- MAD
- MATLAB
- Octave
- Maxima
- MMBasic
- Modula-2
- Min
- Miranda
- MLite
- NetRexx
- Nim
- Nu
- Objeck
- OCaml
- Oforth
- OoRexx
- PARI/GP
- Pascal
- PascalABC.NET
- Perl
- Phix
- PicoLisp
- PILOT
- PL/I
- PL/M
- PowerShell
- Prolog
- PureBasic
- Python
- Quackery
- Racket
- Raku
- Refal
- REXX
- Ring
- RPL
- Ruby
- Run BASIC
- Rust
- Scala
- Scheme
- Seed7
- SETL
- Sidef
- Sinclair ZX81 BASIC
- Swift
- Tcl
- UBasic/4tH
- UNIX Shell
- VBA
- VBScript
- Visual FoxPro
- V (Vlang)
- VTL-2
- Whitespace
- Wren
- XPL0
- Yabasic
- Zkl
- ZX Spectrum Basic
- Pages with too many expensive parser function calls