Harshad or Niven series

From Rosetta Code
Task
Harshad or Niven series
You are encouraged to solve this task according to the task description, using any language you may know.

The Harshad or Niven numbers are positive integers ≥ 1 that are divisible by the sum of their digits.

For example,   42   is a Harshad number as   42   is divisible by   (4 + 2)   without remainder.

Assume that the series is defined as the numbers in increasing order.


Task

The task is to create a function/method/procedure to generate successive members of the Harshad sequence.

Use it to:

  •   list the first 20 members of the sequence,   and
  •   list the first Harshad number greater than 1000.


Show your output here.


Related task


See also



11l

F is_harshad(n)
   R n % sum(String(n).map(ch -> Int(ch))) == 0

F harshad(num)
   [Int] r
   L(n) 1..
      I is_harshad(n)
         r [+]= n
         I r.len == num
            R r

print(harshad(20))

L(n) 1001..
   I is_harshad(n)
      print(n)
      L.break
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

360 Assembly

*        Harshad or Niven series - 01/05/2019
NIVEN    CSECT
         USING  NIVEN,R13          base register
         B      72(R15)            skip savearea
         DC     17F'0'             savearea
         SAVE   (14,12)            save previous context
         ST     R13,4(R15)         link backward
         ST     R15,8(R13)         link forward
         LR     R13,R15            set addressability
         LA     R7,2               j=2 
LOOP     MVC    PG,=CL80' '        clear buffer
         LA     R10,PG             @pg
         LA     R8,0               n=0 
       IF C,R7,EQ,=A(2) THEN       if j=2
         LA     R9,20                nn=20
         LA     R6,1                 i=1 
       ELSE     ,                  else         
         LA     R9,1                 nn=1
         LA     R6,1001              i=1001 
       ENDIF    ,                  end if
       DO WHILE=(CR,R8,LT,R9)      do i=1 by 1 while(n<nn)
         BAL    R14,HARSHAD          call harshad(i)
       IF   LTR,R1,Z,R1 THEN         if rc=0 then
         LA     R8,1(R8)               n++
         XDECO  R6,XDEC                edit i
         MVC    0(4,R10),XDEC+8        output i
         LA     R10,4(R10)             @pg+=4
       ENDIF    ,                    end if
         LA     R6,1(R6)             i++ 
       ENDDO    ,                  enddo i
         XPRNT  PG,L'PG            print buffer
         BCT    R7,LOOP            j=j-1; loop if j<>0
         L      R13,4(0,R13)       restore previous savearea pointer
         RETURN (14,12),RC=0       restore registers from calling sav
HARSHAD  EQU    *                  harshad(i)
         CVD    R6,PACKED          convert to packed   PL8
         UNPK   ZONED,PACKED       packed PL8 to zoned ZL16
         LA     R1,ZONED           @c
         XR     R4,R4              sum=0; m=1
       DO WHILE=(C,R1,LE,=A(ZONED+15)) do m=1 to 16
         NI     0(R1),X'0F'          c(m) : character to integer
         XR     R2,R2                ~
         IC     R2,0(R1)             c(m)
         AR     R4,R2                sum=sum+c(m)
         LA     R1,1(R1)             @c++
       ENDDO    ,                  enddo m
         XR     R2,R2              ~
         LR     R3,R6              i
         DR     R2,R4              i/sum     
         LR     R1,R2              rc=mod(i,sum)
         BR     R14                return to caller
PACKED   DS     PL8                packed decimal (15num)
ZONED    DS     ZL16               zoned  decimal (16num)
PG       DS     CL80               buffer
XDEC     DS     CL12               temp xdeco
         REGEQU                    symbolic registers
         END    NIVEN
Output:
   1   2   3   4   5   6   7   8   9  10  12  18  20  21  24  27  30  36  40  42
1002

8080 Assembly

	cpu	8086
	org	100h
section	.text
	mov	di,10 		; DI is the divisor to find digits 
	xor 	bp,bp		; Find first 20 Harshad numbers
	mov	cx,20
first:	call	next
	mov	ax,bp
	call	print
	loop	first
	mov	bp,1000		; Find first Harshad number > 1000
	call	next		; .. fall through (print and stop)
	mov	ax,bp
	;;;	Print the number in AX
print:	mov 	bx,buffer	; String buffer
.digit:	xor	dx,dx		; Divide by 10
	div	di
	add	dl,'0'		; Add ASCII 0 to remainder
	dec	bx
	mov	[bx],dl		; Store ASCII number
	test	ax,ax		; More digits?
	jnz	.digit
	mov	ah,9		; Print string using DOS
	mov	dx,bx
	int	21h
	ret 
	;;;	Let BP be the first Harshad number above BP
next:	inc	bp
	mov	ax,bp		; Keep a copy
	xor	bx,bx		; Sum
.digit:	xor	dx,dx		; Divide by 10
	div	di
	add	bx,dx		; Add remainder to sum
	test	ax,ax		; More digits?
	jnz	.digit
	mov	ax,bp		; Is it a Harshad number?
	xor	dx,dx
	div	bx
	test	dx,dx		; If not, try next number 
	jnz	next		
	ret 
section	.data
	db	'*****'
buffer:	db	13,10,'$'
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

ABC

HOW TO RETURN digit.sum n:
    PUT 0 IN sum
    WHILE n>0:
        PUT sum + (n mod 10) IN sum
        PUT floor (n/10) IN n
    RETURN sum

HOW TO REPORT harshad n:
    REPORT n mod digit.sum n = 0

HOW TO RETURN next.harshad n:
    PUT n+1 IN n
    WHILE NOT harshad n: PUT n+1 IN n
    RETURN n

PUT 0 IN n
WRITE "First 20 Harshad numbers:"
FOR i IN {1..20}:
    PUT next.harshad n IN n
    WRITE n
WRITE /
WRITE "First Harshad number > 1000:", next.harshad 1000/
Output:
First 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First Harshad number > 1000: 1002

Action!

INT FUNC SumOfDigits(INT a)
  INT sum

  sum=0
  WHILE a#0
  DO
    sum==+a MOD 10
    a==/10
  OD
RETURN (sum)

INT FUNC Next(INT a)
  INT sum

  DO
    a==+1
    sum=SumOfDigits(a)
  UNTIL a MOD sum=0
  OD
RETURN (a)

PROC Main()
  INT i,a

  a=0
  FOR i=1 TO 20
  DO
    a=Next(a)
    PrintI(a)
    Put(32)
  OD
  Print("... ")
  a=Next(1000)
  PrintIE(a)
RETURN
Output:

Screenshot from Atari 8-bit computer

1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002

Ada

with Ada.Text_IO;

procedure Harshad is
   
   function Next(N: in out Positive) return Positive is
      
      function Sum_Of_Digits(N: Natural) return Natural is
	 ( if N = 0 then 0 else ((N mod 10) + Sum_Of_Digits(N / 10)) );
	 
   begin
      while not (N mod Sum_Of_Digits(N) = 0) loop
	 N := N + 1;
      end loop;
      return N;
   end Next;
   
   Current: Positive := 1;
   
begin
   for I in 1 .. 20 loop
      Ada.Text_IO.Put(Integer'Image(Next(Current)));
      Current := Current + 1;
   end loop;
   Current := 1000 + 1; 
   Ada.Text_IO.Put_Line(" ..." & Integer'Image(Next(Current)));
end Harshad;
Output:
 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002

ALGOL 68

BEGIN
   PROC digit sum = (INT i) INT :
   BEGIN
      INT res := i %* 10, h := i;
      WHILE (h %:= 10) > 0 DO res +:= h %* 10 OD;
      res
   END;
   INT  found := 0;
   FOR i WHILE found < 20 DO
      (i %* digit sum (i) = 0 | found +:= 1; printf (($g(0)", "$, i)) ) OD;
   FOR i FROM 1001 DO
      (i %* digit sum (i) = 0 | printf (($g(0)l$, i)); stop) OD
END
Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 1002

ALGOL-M

begin
integer function mod(a,b);
integer a,b;
mod := a-(a/b)*b;

integer function digitsum(n);
integer n;
digitsum :=
    if n = 0 then 0
    else mod(n,10) + digitsum(n/10);
    
integer function nextharshad(n);
integer n;
begin
    integer ds;
loop:
    n := n + 1;
    ds := digitsum(n);
    if mod(n, ds) <> 0 then go to loop;
    nextharshad := n;
end;

integer i, n;
write("First 20 Harshad numbers:");
n := 0;
for i := 1 step 1 until 20 do
begin
    n := nextharshad(n);
    if mod(i,10)=1 then
        write(n)
    else
        writeon(n);
end;

write("First Harshad number above 1000:", nextharshad(1000));
end
Output:
First 20 Harshad numbers:
     1     2     3     4     5     6     7     8     9    10
    12    18    20    21    24    27    30    36    40    42
First Harshad number above 1000:  1002

ALGOL W

begin % find members of the Harshad/Niven series - numbers divisible by the sum of their digits %
    % returns the next member of the series above n                                             %
    integer procedure nextHarshad ( integer value n ) ;
    begin
        integer h, s;
        h := n;
        while begin
                  integer v;
                  v := h := h + 1;
                  s := 0;
                  while v > 0 do begin
                      s := s + v rem 10;
                      v :=     v div 10
                  end while_v_gt_0 ;
                  h rem s not = 0
        end do begin end;
        h
    end nextHarshad ;
    integer h;
    % show the first 20 members of the seuence %
    write( "First 20 Harshad/Niven numbers:" );
    h := 0;
    for i := 1 until 20 do begin
        h := nextHarshad( h );
        writeon( i_w := 1, s_w := 0, " ", h )
    end for_i ;
    write( i_w := 1, s_w := 0, "First Harshad/Niven number > 1000: ", nextHarshad( 1000 ) );
end.
Output:
First 20 Harshad/Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First Harshad/Niven number > 1000: 1002

APL

Works with: Dyalog APL
(20↑,¯1)((⊢,((+1)((0=+/∘(¨)|⊢))))(11000<⊣)),1
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002

AppleScript

Idiomatic

on nextHarshad(n)
    if (n < 0) then set n to 0
    repeat
        set n to n + 1
        set temp to n
        set sum to 0
        repeat until (temp is 0)
            set sum to sum + temp mod 10
            set temp to temp div 10
        end repeat
        if (n mod sum is 0) then return n
    end repeat
end nextHarshad

-- Test code:
set harshads to {}
set h to 0
repeat 20 times
    set h to nextHarshad(h)
    set end of harshads to h
end repeat

set h to nextHarshad(1000)

return {harshads, h}
Output:
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42}, 1002}

Functional

Clicking together some generic functions, for a little more productivity and for easier refactoring, we can define the Harshad series as a filter over an infinite stream of integers.

------------------ HARSHAD OR NIVEN SERIES -----------------

-- harshads :: () -> [Int]
on harshads()
    -- Non finite stream of Harshad numbers
    script p
        on |λ|(x)
            0 = x mod (digitSum(x))
        end |λ|
    end script
    
    filterGen(p, enumFrom(1))
end harshads


-- digitSum :: Int -> Int
on digitSum(n)
    sum(baseDigits(10, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], n))
end digitSum


---------------------------- TEST --------------------------
on run
    script gtk
        on |λ|(x)
            1000 < x
        end |λ|
    end script
    
    set hs to harshads()
    
    unlines({"First 20: -> " & ¬
        showList(take(20, hs)), ¬
        "", ¬
        "First over 1000: -> " & ¬
        str(item 1 of take(1, filterGen(gtk, hs)))})
end run


-------------------------- GENERIC -------------------------

-- Just :: a -> Maybe a
on Just(x)
    -- Constructor for an inhabited Maybe (option type) value.
    -- Wrapper containing the result of a computation.
    {type:"Maybe", Nothing:false, Just:x}
end Just


-- Nothing :: Maybe a
on Nothing()
    -- Constructor for an empty Maybe (option type) value.
    -- Empty wrapper returned where a computation is not possible.
    {type:"Maybe", Nothing:true}
end Nothing


-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
    -- Constructor for a pair of values, possibly of two different types.
    {type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple


-- baseDigits :: Int -> [a] -> [a]
on baseDigits(intBase, digits, n)
    script
        on |λ|(v)
            if 0 = v then
                Nothing()
            else
                Just(Tuple(item (1 + (v mod intBase)) of digits, ¬
                    v div intBase))
            end if
        end |λ|
    end script
    unfoldr(result, n)
end baseDigits


-- enumFrom :: Enum a => a -> [a]
on enumFrom(x)
    script
        property v : missing value
        property blnNum : class of x is not text
        on |λ|()
            if missing value is not v then
                if blnNum then
                    set v to 1 + v
                else
                    set v to succ(v)
                end if
            else
                set v to x
            end if
            return v
        end |λ|
    end script
end enumFrom


-- intercalate :: String -> [String] -> String
on intercalate(delim, xs)
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, delim}
    set s to xs as text
    set my text item delimiters to dlm
    s
end intercalate


-- filterGen :: (a -> Bool) -> Gen [a] -> Gen [a]
on filterGen(p, gen)
    -- Non-finite stream of values which are 
    -- drawn from gen, and satisfy p
    script
        property mp : mReturn(p)'s |λ|
        on |λ|()
            set v to gen's |λ|()
            repeat until mp(v)
                set v to gen's |λ|()
            end repeat
            return v
        end |λ|
    end script
end filterGen


-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl


-- fst :: (a, b) -> a
on fst(tpl)
    if class of tpl is record then
        |1| of tpl
    else
        item 1 of tpl
    end if
end fst


-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    -- The list obtained by applying f
    -- to each element of xs.
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map


-- min :: Ord a => a -> a -> a
on min(x, y)
    if y < x then
        y
    else
        x
    end if
end min


-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    -- 2nd class handler function lifted into 1st class script wrapper. 
    if script is class of f then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn


-- showList :: [a] -> String
on showList(xs)
    "[" & intercalate(",", map(my str, xs)) & "]"
end showList


-- snd :: (a, b) -> b
on snd(tpl)
    if class of tpl is record then
        |2| of tpl
    else
        item 2 of tpl
    end if
end snd


-- str :: a -> String
on str(x)
    x as string
end str


-- sum :: [Num] -> Num
on sum(xs)
    script add
        on |λ|(a, b)
            a + b
        end |λ|
    end script
    
    foldl(add, 0, xs)
end sum


-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
    set c to class of xs
    if list is c then
        if 0 < n then
            items 1 thru min(n, length of xs) of xs
        else
            {}
        end if
    else if string is c then
        if 0 < n then
            text 1 thru min(n, length of xs) of xs
        else
            ""
        end if
    else if script is c then
        set ys to {}
        repeat with i from 1 to n
            set v to |λ|() of xs
            if missing value is v then
                return ys
            else
                set end of ys to v
            end if
        end repeat
        return ys
    else
        missing value
    end if
end take


-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
on unfoldr(f, v)
    -- A list obtained from a simple value.
    -- Dual to foldr.
    -- unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
    -- -> [10,9,8,7,6,5,4,3,2,1] 
    set xr to {v, v} -- (value, remainder)
    set xs to {}
    tell mReturn(f)
        repeat -- Function applied to remainder.
            set mb to |λ|(snd(xr))
            if Nothing of mb then
                exit repeat
            else -- New (value, remainder) tuple,
                set xr to Just of mb
                -- and value appended to output list.
                set end of xs to fst(xr)
            end if
        end repeat
    end tell
    return xs
end unfoldr

-- unlines :: [String] -> String
on unlines(xs)
    -- A single string formed by the intercalation
    -- of a list of strings with the newline character.
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, linefeed}
    set s to xs as text
    set my text item delimiters to dlm
    s
end unlines
Output:
First 20: -> [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]

First over 1000: -> 1002

Arturo

harshad?: function [n] -> zero? n % sum digits n
harshads: select 1..1100 => harshad?

print ["First 20 harshad numbers:" first.n:20 harshads]

loop harshads 'h [
    if h > 1000 [
        print ["First harshad > 1000:" h]
        break
    ]
]
Output:
First 20 harshad numbers: [1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42] 
First harshad > 1000: 1002

AutoHotkey

H := []
n := 1

Loop
	n := (H[A_Index] := NextHarshad(n)) + 1
until  H[H.MaxIndex()] > 1000

Loop, 20
	Out .= H[A_Index] ", "

MsgBox, % Out ". . . " H[H.MaxIndex()]

NextHarshad(n) {
	Loop, {
		Loop, Parse, n
			sum += A_LoopField
		if (!Mod(n, sum))
			return n
		n++, sum := ""
	}
}
Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, . . . 1002

AWK

#!/usr/bin/awk -f
BEGIN {
	k=0; n=0;
	printf("First twenty Harshad numbers are:\n   ");
	while (k<20) {
		if (isharshad(++n)) {
			printf("%i ",n);
			++k;
		}
	}
	n = 1000; 
	while (!isharshad(++n));
	printf("\nFirst Harshad number larger than 1000 is \n   %i\n",n);
}

function isharshad(n) {
	s = 0;
	for (i=0; i<length(n); ) {
		s+=substr(n,++i,1);
	}
	return !(n%s);
}
Output:
First twenty Harshad numbers are:
   1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
First Harshad number larger than 1000 is 
   1002

Batch File

@echo off
setlocal enabledelayedexpansion

for /l %%i in (1,1,20) do (
  call:harshad
  echo Harshad number %%i - !errorlevel!
)

:loop
call:harshad
if %errorlevel% leq 1000 goto loop
echo First Harshad number greater than 1000: %errorlevel%
pause>nul
exit /b

:harshad
if "%harshadnum%"=="" set harshadnum=0
set /a harshadnum+=1
call:strlength %harshadnum%

set harshadsum=0
for /l %%i in (0,1,%errorlevel%) do set /a harshadsum+=!harshadnum:~%%i,1!

set /a isharshad=%harshadnum% %% %harshadsum%
if %isharshad%==0 exit /b %harshadnum%
goto harshad

:strlength
setlocal enabledelayedexpansion
set tempcount=1
set str=%1
:strlengthloop
set /a length=%tempcount%-1
if "!str:~%tempcount%,1!"=="" endlocal && exit /b %length%
set /a tempcount+=1
goto strlengthloop
Output:
Harshad number 1 - 1
Harshad number 2 - 2
Harshad number 3 - 3
Harshad number 4 - 4
Harshad number 5 - 5
Harshad number 6 - 6
Harshad number 7 - 7
Harshad number 8 - 8
Harshad number 9 - 9
Harshad number 10 - 10
Harshad number 11 - 12
Harshad number 12 - 18
Harshad number 13 - 20
Harshad number 14 - 21
Harshad number 15 - 24
Harshad number 16 - 27
Harshad number 17 - 30
Harshad number 18 - 36
Harshad number 19 - 40
Harshad number 20 - 42
First Harshad number greater than 1000: 1002

BASIC

Works with: BASICA
Works with: Chipmunk Basic version 3.6.4
Works with: FreeBASIC
Works with: GW-BASIC
Works with: MSX BASIC version any
Works with: PC-BASIC version any
Works with: QBasic
Works with: QB64
10 DEFINT P,N,I,S
20 PRINT "First 20 Harshad numbers:"
30 P=0
40 N=0
50 N=N+1
60 S=0
70 I=N
80 S=S+I MOD 10
90 I=I\10
100 IF I THEN 80
110 IF N MOD S THEN 50
120 IF P<20 THEN P=P+1: PRINT N,
130 IF N<=1000 THEN 50
140 PRINT
150 PRINT "First Harshad number > 1000:";N
Output:
First 20 Harshad numbers:
 1             2             3             4             5
 6             7             8             9             10
 12            18            20            21            24
 27            30            36            40            42

First Harshad number > 1000: 1002

Chipmunk Basic

Same code as BASIC

GW-BASIC

Works with: PC-BASIC
Works with: BASICA

Same code as BASIC

MSX Basic

Same code as BASIC

QBasic

Same code as BASIC

QB64

Same code as BASIC

BASIC256

Translation of: FreeBASIC
function sumDigitos(n)
	if n < 0 then return 0
	suma = 0
	while n > 0
		suma = suma + (n mod 10)
		n = n \ 10
	end while
	return suma
end function

function isHarshad(n)
	return n mod sumDigitos(n) = 0
end function

print "Los primeros 20 números de Harshad o Niven son:"
cuenta = 0
i = 1

do
	if isHarshad(i) then
		print i; " ";
		cuenta += 1
	end if
	i += 1
until cuenta = 20

print : print
print "El primero de esos números por encima de 1000 es:"
i = 1001

do
	if isHarshad(i) then
		print i; " "
		exit do
	end if
	i += 1
until false
end
Output:
Los primeros 20 números de Harshad o Niven son:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 

El primero de esos números por encima de 1000 es:
1002


BBC BASIC

      I%=1:CNT%=0
      WHILE TRUE
        IF FNHarshad(I%) THEN
          IF CNT%<20 PRINT ;I%;" ";:CNT%+=1
          IF I%>1000 PRINT ;I%:EXIT WHILE
        ENDIF
        I%+=1
      ENDWHILE
      END
      
      DEF FNHarshad(num%)
      LOCAL sum%,tmp%
      tmp%=num%
      sum%=0
      WHILE (tmp%>0)
        sum%+=tmp% MOD 10
        tmp%/=10
      ENDWHILE
      =(num% MOD sum%)=0
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002

BCPL

get "libhdr"

let dsum(n) = n=0 -> 0, n rem 10 + dsum(n/10)
let next(n) = harshad(n+1) and harshad(n) = n rem dsum(n)=0 -> n, next(n)

let start() be
$(  let n = 0
    writes("First 20:")
    for i = 1 to 20 do
    $(  n := next(n)
        writef(" %N", n)
    $)
    writef("*NFirst above 1000: %N*N", next(1000))
$)
Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First above 1000: 1002

Befunge

45*1>::01-\>:55+%\vv\0<
>\1+^  +  <|:/<+55<`  :
^_>1-\:.v@1>\:0\`#v_+\^
>^1\,+55<.^_:#%$:#<"}"v
^!:\_    ^###<    !`*8<
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

BQN

SumDgt  +´•Fmt-'0'˙
Niven  0=SumDgt|⊢
nivens  Niven¨/↕1100
20nivens, (⊢>1000˙)/nivens
Output:
⟨ ⟨ 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ⟩ 1002 ⟩

C

#include <stdio.h>

static int digsum(int n)
{
    int sum = 0;
    do { sum += n % 10; } while (n /= 10);
    return sum;
}

int main(void)
{
    int n, done, found;

    for (n = 1, done = found = 0; !done; ++n) {
        if (n % digsum(n) == 0) {
            if (found++ < 20) printf("%d ", n);
            if (n > 1000) done = printf("\n%d\n", n);
        }
    }

    return 0;
}
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
1002

C#

using System;
using System.Collections.Generic;

namespace Harshad
{
    class Program
    {
        public static bool IsHarshad(int n)
        {
            char[] inputChars = n.ToString().ToCharArray();
            IList<byte> digits = new List<byte>();

            foreach (char digit in inputChars)
            {
                digits.Add((byte)Char.GetNumericValue(digit));
            }

            if (n < 1)
            {
                return false;
            }

            int sum = 0;

            foreach (byte digit in digits)
            {
                sum += digit;
            }

            return n % sum == 0;
        }

        static void Main(string[] args)
        {
            int i = 1;
            int count = 0;

            while (true)
            {
                if (IsHarshad(i))
                {
                    count++;

                    if (count <= 20)
                    {
                        Console.Write(string.Format("{0} ", i));
                    }
                    else if (i > 1000)
                    {
                        Console.Write(string.Format("{0} ", i));
                        break;
                    }
                }

                i++;
            }

            Console.ReadKey();
        }
    }
}
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002

Shorter solution

using System.Collections.Generic;
using static System.Linq.Enumerable;
using static System.Console;

public static class Program
{
    public static void Main()
    {
        WriteLine(string.Join(" ", From(1).Where(IsHarshad).Take(20)));
        WriteLine(From(1001).First(IsHarshad));
    }
    
    static bool IsHarshad(this int i) => i % i.Digits().Sum() == 0;
    
    static IEnumerable<int> From(int start) {
        for (int i = start; ; i++) yield return i;
    }
    
    static IEnumerable<int> Digits(this int n) {
        for (; n > 0; n /= 10) yield return n % 10;
    }
}

C++

#include <vector>
#include <iostream>

int sumDigits ( int number ) {
   int sum = 0 ;
   while ( number != 0 ) {
      sum += number % 10 ;
      number /= 10 ;
   }
   return sum ;
}

bool isHarshad ( int number ) {
   return number % ( sumDigits ( number ) ) == 0 ;
}

int main( ) {
   std::vector<int> harshads ;
   int i = 0 ;
   while ( harshads.size( ) != 20 ) {
      i++ ;
      if ( isHarshad ( i ) ) 
	 harshads.push_back( i ) ;
   }
   std::cout << "The first 20 Harshad numbers:\n" ;
   for ( int number : harshads )
      std::cout << number << " " ;
   std::cout << std::endl ;
   int start = 1001 ;
   while ( ! ( isHarshad ( start ) ) ) 
      start++ ;
   std::cout << "The smallest Harshad number greater than 1000 : " << start << '\n' ;
   return 0 ;
}
Output:
The first 20 Harshad numbers:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
The smallest Harshad number greater than 1000 : 1002

Clojure

(defn digsum [n acc]
  (if (zero? n) acc
      (digsum (quot n 10) (+ acc (mod n 10)))))

(let [harshads (filter
                 #(zero? (mod % (digsum % 0)))
                 (iterate inc 1))]
  (prn (take 20 harshads))
  (prn (first (filter #(> % 1000) harshads))))
Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
1002

CLU

digit_sum = proc (n: int) returns (int)
    sum: int := 0
    while n > 0 do
        sum := sum + n // 10
        n := n / 10
    end
    return (sum)
end digit_sum 

harshads = iter (n: int) yields (int)
    while true do
        n := n + 1
        if n // digit_sum(n) = 0 then yield(n) end
    end
end harshads

start_up = proc ()
    po: stream := stream$primary_output()
    count: int := 0
    
    stream$putl(po, "First 20 Harshad numbers: ")
    for h: int in harshads(0) do
        stream$putright(po, int$unparse(h), 3)
        count := count + 1
        if count = 20 then break end
    end
    
    stream$puts(po, "\nFirst Harshad number above 1000: ")
    for h: int in harshads(1000) do
        stream$putl(po, int$unparse(h))
        break
    end
end start_up
Output:
First 20 Harshad numbers:
  1  2  3  4  5  6  7  8  9 10 12 18 20 21 24 27 30 36 40 42
First Harshad number above 1000: 1002

COBOL

Works with: OpenCOBOL version 1.1
identification division.
program-id. harshad.
environment division.
data division.
working-storage section.
*> for storing first 20 harshad-niven numbers
01  harshads.
    03  harshad pic 9(5)    occurs 20 times indexed by niven.

*> numbers tested for harshad-niven-ness.   
01  first-num   pic 9(5).
01  second-num  pic 9(5).

*> loop counter
01  i   pic 9(5).

*> for calculating sum of digits
01  div pic 9(5).
01  mod pic 9(5).
01  tot pic 9(5).

*> for harshad-niven calculation and display
01  harshad-div pic 9(5).
01  harshad-mod pic 9(5).
    88  evenly-divisible    value 0.
01  harshad-disp    pic zzzz9.
01  harshad-result  pic 9(5).

*> for selecting what to do with results of harshad calculation
01  pass        pic 9.
    88  first-pass  value 1.
    88  second-pass value 2.
    
procedure division.
10-main section.
    move 1 to pass.
    set niven to 1.
    perform 20-calculate-harshad with test before varying first-num from 1 by 1 until niven = 21.
    
    move 2 to pass.
    move first-num to second-num.
    perform 20-calculate-harshad with test after varying first-num from second-num by 1 until harshad-result > 1000.
    
    perform with test after varying i from 1 by 1 until i = 20
        move harshad(i) to harshad-disp
        display function trim(harshad-disp) space with no advancing
    end-perform.
    
    move harshad-result to harshad-disp.
    display "... " function trim(harshad-disp).
    stop run.
    
20-calculate-harshad.
    move first-num to div.
    move zero to harshad-result.
    perform 100-calculate-sum-of-digits.
    divide first-num by tot giving harshad-div remainder harshad-mod.
    if evenly-divisible
        if first-pass
            move first-num to harshad(niven)
            set niven up by 1
        else
            move first-num to harshad-result
        end-if
    end-if.
    exit paragraph.
        
100-calculate-sum-of-digits.
    move zero to tot.
    perform with test after until div = 0
        divide div by 10 giving div remainder mod
        add mod to tot
    end-perform.
    *> if tot >= 10
    *>  move tot to div
    *>  go to 100-calculate-sum-of-digits
    *> end-if.
    exit paragraph.

ColdFusion

<Cfset harshadNum = 0>
<Cfset counter = 0>

<Cfloop condition="harshadNum lte 1000">

  <Cfset startnum = harshadNum + 1>
  <Cfset digits = 0>
  <Cfset harshad = 0>
  
  <Cfloop condition="Harshad eq 0">
  
    <Cfset current_i = startnum>
    <Cfset digits = 0>
    
    <cfloop condition="len(current_i) gt 1">
      <Cfset digit = left(current_i, 1)>
      <Cfset current_i = right(current_i, len(current_i)-1)>
      <Cfset digits = digits + digit>
    </cfloop>
    <Cfset digits = digits + current_i>
    
    <Cfif Startnum MOD digits eq 0>
      <Cfset harshad = 1>
    <Cfelse>
      <cfset startnum = startnum + 1>
    </Cfif>
    
  </Cfloop>
  
  <cfset harshadNum = startnum>
  <Cfset counter = counter + 1>
  
  <Cfif counter lte 20>
    <Cfoutput>#harshadNum# </Cfoutput>
  </Cfif>

</Cfloop>

<Cfoutput>... #harshadNum# </Cfoutput>

Comal

0010 FUNC digit'sum(n)
0020   sum:=0
0030   WHILE n>0 DO sum:+n MOD 10;n:=n DIV 10
0040   RETURN sum
0050 ENDFUNC digit'sum
0060 //
0070 FUNC next'harshad(n)
0080   REPEAT
0090     n:+1
0100   UNTIL n MOD digit'sum(n)=0
0110   RETURN n
0120 ENDFUNC next'harshad
0130 //
0140 PRINT "First 20 Harshad numbers: "
0150 n:=0
0160 FOR i:=1 TO 20 DO
0170   n:=next'harshad(n)
0180   PRINT n;
0190 ENDFOR i
0200 PRINT
0210 PRINT "First Harshad number above 1000:";next'harshad(1000)
0220 END
Output:
First 20 Harshad numbers:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First Harshad number above 1000: 1002

Common Lisp

(defun harshadp (n)
  (zerop (rem n (digit-sum n))))

(defun digit-sum (n &optional (a 0))
  (cond ((zerop n) a)
	(t (digit-sum (floor n 10) (+ a (rem n 10))))))

(defun list-harshad (n &optional (i 1) (lst nil))
  "list the first n Harshad numbers starting from i (default 1)"
  (cond ((= (length lst) n) (reverse lst))
	((harshadp i) (list-harshad n (+ i 1) (cons i lst)))
	(t (list-harshad n (+ i 1) lst))))
Output:
CL-USER> (list-harshad 20)
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
CL-USER> (list-harshad 1 1001)
(1002)

Cowgol

include "cowgol.coh";

sub digitsum(n: uint16): (sum: uint8) is    
    sum := 0;
    while n != 0 loop
        sum := sum + (n % 10) as uint8;
        n := n / 10;
    end loop;
end sub;

sub nextHarshad(m: uint16): (n: uint16) is
    n := m;
    loop
        n := n + 1;
        if n % digitsum(n) as uint16 == 0 then
            return;
        end if;
    end loop;
end sub;

var n: uint16 := 0;
var i: uint16 := 0;

while n <= 1000 loop
    n := nextHarshad(n);
    i := i + 1;
    if i <= 20 then
        print_i16(n);
        print(" ");
    end if;
end loop;

print_nl();
print_i16(n);
print_nl();
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Craft Basic

for i = 1 to 1002

	let t = i
	let s = 0

	do

		let s = s + t % 10
		let t = int(t / 10)

		wait

	loop t > 0

	if i % s = 0 and (c < 20 or i > 1000) then

		let c = c + 1
		print c, " : ", i

	endif

next i
Output:
1 : 1

2 : 2 3 : 3 4 : 4 5 : 5 6 : 6 7 : 7 8 : 8 9 : 9 10 : 10 11 : 12 12 : 18 13 : 20 14 : 21 15 : 24 16 : 27 17 : 30 18 : 36 19 : 40 20 : 42

21 : 1002

Crystal

Translation of: Ruby
harshad = 1.step.select { |n| n % n.to_s.chars.sum(&.to_i) == 0 }
 
puts "The first 20 harshard numbers are: \n#{ harshad.first(20).to_a }"
puts "The first harshard number > 1000 is #{ harshad.find { |n| n > 1000 } }"
Output:
The first 20 harshard numbers are:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
The first harshard number > 1000 is 1002

D

void main() {
    import std.stdio, std.algorithm, std.range, std.conv;

    enum digSum = (int n) => n.text.map!(d => d - '0').sum;
    enum harshads = iota(1, int.max).filter!(n => n % digSum(n) == 0);

    harshads.take(20).writeln;
    harshads.filter!(h => h > 1000).front.writeln;
}
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

Delphi

See Pascal.

Draco

proc nonrec dsum(word n) word:
    word r;
    r := 0;
    while n ~= 0 do
        r := r + n % 10;
        n := n / 10
    od;
    r
corp

proc nonrec next_harshad(word n) word:
    while
        n := n + 1;
        n % dsum(n) ~= 0
    do od;
    n
corp 

proc nonrec main() void:
    word n;
    byte i;
    write("First 20:");
    n := 0;
    for i from 1 upto 20 do
        n := next_harshad(n);
        write(" ", n)
    od;
    writeln();
    write("First above 1000: ", next_harshad(1000))
corp
Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First above 1000: 1002

EasyLang

Translation of: FreeBASIC
func digsum n .
   while n > 0
      sum += n mod 10
      n = n div 10
   .
   return sum
.
func isHarshad n .
   return if n mod digsum n = 0
.
i = 1
repeat
   if isHarshad i = 1
      write i & " "
      cnt += 1
   .
   until cnt = 20
   i += 1
.
print ""
i = 1001
while isHarshad i = 0
   i += 1
.
print i
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
1002

EchoLisp

(define (harsh? n)
    (zero? (modulo n 
        (apply + (map string->number (string->list (number->string n)))))))

(harsh? 42)
     #t

(define H (stream-filter harsh? (in-naturals 1)))

(take H 20)
     (1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)

(for ((n H)) #:break (> n 1000) => n)
     1002

Eiffel

note
	description : "project application root class"
	date        : "$October 10, 2014$"
	revision    : "$Revision$"

class
	NIVEN_SERIES

create
	make

feature
	make
		local
			number : INTEGER
			count : INTEGER
			last : BOOLEAN
		do
			number := 1

			from
				number := 1
				last := false

			until
				last = true

			loop

				if
					(number \\ sum_of_digits(number) = 0)
				then
					count := count + 1

					if
						(count <= 20 )
					then
						print("%N")
						print(number)
					end

					if
						(number > 1000)
					then
						print("%N")
						print(number)
						last := true
					end
				end

				 number := number + 1
			end
		end

	sum_of_digits(no:INTEGER):INTEGER

		local
			sum : INTEGER
			num : INTEGER
		do
			sum := 0

			from
				num := no

			until
				num = 0

			loop
				sum := sum + num \\ 10
				num := num // 10
			end

			Result := sum
		end
end
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

Elixir

defmodule Harshad do
  def series, do: Stream.iterate(1, &(&1+1)) |> Stream.filter(&(number?(&1)))
  
  def number?(n), do: rem(n, digit_sum(n, 0)) == 0
  
  defp digit_sum(0, sum), do: sum
  defp digit_sum(n, sum), do: digit_sum(div(n, 10), sum + rem(n, 10))
end

IO.inspect Harshad.series |> Enum.take(20)

IO.inspect Harshad.series |> Stream.drop_while(&(&1 <= 1000)) |> Enum.take(1) |> hd
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

Erlang

-module( harshad ).

-export( [greater_than/1, sequence/1, task/0] ).

greater_than( N ) when N >= 1  ->
        greater_than( 2, N, acc(1, {0, []}) ).

sequence( Find_this_many ) when Find_this_many >= 1 ->
        sequence( 2, Find_this_many, acc(1, {0, []}) ).

task() ->
        io:fwrite( "~p~n", [sequence(20)] ),
        io:fwrite( "~p~n", [greater_than(1000)] ).



acc( N, Acc ) -> acc( N rem lists:sum([X - $0|| X <- erlang:integer_to_list(N)]), N, Acc ).

acc( 0, N, {Found, Acc} ) -> {Found + 1, [N | Acc]};
acc( _Reminder, _N, Acc ) -> Acc.

greater_than( _N, Find, {_, [Found | _T]} ) when Found > Find -> Found;
greater_than( N, Find, Acc ) ->	greater_than( N + 1, Find, acc(N, Acc) ).

sequence( _N, Found, {Found, Acc} ) -> lists:reverse( Acc );
sequence( N, Find, Acc ) -> sequence( N + 1, Find, acc(N, Acc) ).
Output:
39> harshad:task().
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
1002

Erlang 2

A somewhat more simple approach. Somewhat more efficient since it produces the partial list 23 times for the 20 element case whereas the above does so 36 or 37 times.

-module(harshad).
-export([main/0,harshad/1,seq/1]).

% We return the number R if harshad, else 0
harshad(R) ->
        case R
        rem lists:sum([X - $0|| X <- erlang:integer_to_list(R)]) of 0
        -> R; _ -> 0 end. 

% build a list of harshads retrieving input from harshad(R)
% filter out the nulls and return
hlist(A,B) ->
      RL =  [ harshad(X) || X <- lists:seq(A,B) ],
      lists:filter( fun(X) -> X > 0 end,  RL).

seq(Total) -> seq(Total, [], 0).

seq(Total,L,_) when length(L) == Total-> L;
seq(Total,L,Acc) when length(L) < Total ->
      NL = hlist(1,Total + Acc),
      seq(Total,NL,Acc+1).                         
                                        
gt(_,L) when length(L) == 1 ->  hd(L);
gt(X,_) ->
      NL = hlist(X+1,X+2),
      gt(X+2,NL).                  

main() ->
      io:format("seq(20): ~w~n", [ seq(20) ]),
      io:format("gt(1000): ~w~n", [ gt(1000,[]) ]).
2> harshad:main().
seq(20): [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
gt(1000): 1002
ok

Excel

LAMBDA

Binding the names nextHarshad, and harshads to the following lambda expressions in the Name Manager of the Excel WorkBook:

(See LAMBDA: The ultimate Excel worksheet function)

nextHarshad
=LAMBDA(n,
    UNTIL(
        LAMBDA(x,
            0 = MOD(x, decDigitSum(x))
        )
    )(
        LAMBDA(x, 1 + x)
    )(1 + n)
)

harshads
=LAMBDA(n,
    UNTIL(
        LAMBDA(xs, n = ROWS(xs))
    )(
        LAMBDA(xs,
            APPENDROWS(xs)(
                nextHarshad(
                    INDEX(LASTROW(xs), 1)
                )
            )
        )
    )(
        {1}
    )
)

and also assuming the following generic bindings in the Name Manager for the WorkBook:

APPENDROWS
=LAMBDA(xs,
    LAMBDA(ys,
        LET(
            nx, ROWS(xs),
            rowIndexes, SEQUENCE(nx + ROWS(ys)),
            colIndexes, SEQUENCE(
                1,
                MAX(COLUMNS(xs), COLUMNS(ys))
            ),

            IFERROR(
                IF(rowIndexes <= nx,
                    INDEX(xs, rowIndexes, colIndexes),
                    INDEX(ys, rowIndexes - nx, colIndexes)
                ),
                NA()
            )
        )
    )
)


CHARSROW
=LAMBDA(s,
    MID(s,
        SEQUENCE(1, LEN(s), 1, 1),
        1
    )
)


decDigitSum
=LAMBDA(n,
    SUM(VALUE(CHARSROW(n)))
)


LASTROW
=LAMBDA(xs,
    INDEX(
        xs,
        ROWS(xs),
        SEQUENCE(1, COLUMNS(xs), 1, 1)
    )
)


UNTIL
=LAMBDA(p,
    LAMBDA(f,
        LAMBDA(x,
            IF(p(x),
                x,
                UNTIL(p)(f)(f(x))
            )
        )
    )
)
Output:

Next Harshad after lower limit:

fx =nextHarshad(A2)
A B
1 First above Harshad term
2 1000 1002

Sequence of Harshads:

(The single formula in cell B2 defines an array which populates the whole range B2:B21)

fx =harshads(20)
A B
1 Number of terms Harshads
2 20 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8
10 9
11 10
12 12
13 18
14 20
15 21
16 24
17 27
18 30
19 36
20 40
21 42

F#

let divides d n = 
    match bigint.DivRem(n, d) with
    | (_, rest) -> rest = 0I

let splitToInt (str:string) = List.init str.Length (fun i -> ((int str.[i]) - (int "0".[0])))

let harshads =
    let rec loop n = seq {
        let sum = List.fold (+) 0 (splitToInt (n.ToString()))
        if divides (bigint sum) n then yield n
        yield! loop (n + 1I)
    }
    loop 1I

[<EntryPoint>]
let main argv = 
    for h in (Seq.take 20 harshads) do printf "%A " h
    printfn ""
    printfn "%A" (Seq.find (fun n -> n > 1000I) harshads)
    0
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Factor

USING: math.text.utils lists lists.lazy ;

: niven? ( n -- ? ) dup 1 digit-groups sum mod 0 = ;

: first-n-niven ( n -- seq )
    1 lfrom [ niven? ] lfilter ltake list>array ;

: next-niven ( n -- m ) 1 + [ dup niven? ] [ 1 + ] until ;

20 first-n-niven .
1000 next-niven .
Output:
{ 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 }
1002

FBSL

The INITIALIZE routine fills a dynamic array with all we need, even the ellipsis.

#APPTYPE CONSOLE

CLASS harshad
    PRIVATE:
    memo[]
    
    SUB INITIALIZE()
        DIM i = 1, c
        DO
            IF isNiven(i) THEN
                c = c + 1
                memo[c] = i
            END IF
            i = i + 1
            IF c = 20 THEN EXIT DO
        LOOP
        memo[] = "..."
        i = 1000
        WHILE NOT isNiven(INCR(i)): WEND
        memo[] = i
    END SUB
    
    FUNCTION isNiven(n)
        RETURN NOT (n MOD sumdigits(n))
    END FUNCTION
    
    FUNCTION sumdigits(n)
        DIM num = n, m, sum
        WHILE num
            sum = sum + num MOD 10
            num = num \ 10
        WEND
        RETURN sum
    END FUNCTION
    
    PUBLIC:
    METHOD Yield()
        FOREACH DIM e IN memo
            PRINT e, " ";
        NEXT
    END METHOD
END CLASS

DIM niven AS NEW harshad
niven.Yield()

PAUSE
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
Press any key to continue...

FOCAL

01.10 S N=0
01.20 S P=0
01.30 D 3
01.40 I (19-P)1.7
01.50 T %4,N,!
01.60 S P=P+1
01.70 I (N-1001)1.3
01.80 T N,!
01.90 Q

02.10 S A=0
02.20 S B=N
02.30 S C=FITR(B/10)
02.40 S A=A+B-C*10
02.50 S B=C
02.60 I (-B)2.3

03.10 S N=N+1
03.20 D 2
03.30 I (FITR(N/A)*A-N)3.1
Output:
=    1
=    2
=    3
=    4
=    5
=    6
=    7
=    8
=    9
=   10
=   12
=   18
=   20
=   21
=   24
=   27
=   30
=   36
=   40
=   42
= 1002

Fortran

Please observe compilation on GNU/linux system and output from run are in the comments at the START of the FORTRAN 2003 source. The 1--20 loop idea was stolen from the ada solution. Thank you.

!-*- mode: compilation; default-directory: "/tmp/" -*-
!Compilation started at Tue May 21 13:15:59
!
!a=./f && make $a && $a < unixdict.txt
!gfortran -std=f2003 -Wall -ffree-form f.f03 -o f
!    1    2    3    4    5    6    7    8    9   10   12   18   20   21   24   27   30   36   40   42 1002
!
!Compilation finished at Tue May 21 13:15:59

program Harshad
  integer :: i, h = 0
  do i=1, 20
    call nextHarshad(h)
    write(6, '(i5)', advance='no') h
  enddo
  h = 1000
  call nextHarshad(h)
  write(6, '(i5)') h

contains

  subroutine nextHarshad(h) ! alter input integer h to be the next greater Harshad number.
    integer, intent(inout) :: h
    h = h+1 ! bigger
    do while (.not. isHarshad(h))
      h = h+1
    end do
  end subroutine nextHarshad

  logical function isHarshad(a)
    integer, intent(in) :: a
    integer :: mutable, digit_sum
    isHarshad = .false.
    if (a .lt. 1) return ! false if a < 1
    mutable = a
    digit_sum = 0
    do while (mutable /= 0)
      digit_sum = digit_sum + mod(mutable, 10)
      mutable = mutable / 10
    end do
    isHarshad = 0 .eq. mod(a, digit_sum)
  end function isHarshad

end program Harshad

FreeBASIC

' FB 1.05.0 Win64

Function sumDigits(n As Integer) As Integer
  If n < 0 Then Return 0
  Dim sum As Integer
  While n > 0
    sum += n Mod 10
    n \= 10
  Wend
  Return sum
End Function

Function isHarshad(n As Integer) As Boolean
  Return n Mod sumDigits(n) = 0
End Function

Print "The first 20 Harshad or Niven numbers are :"
Dim count As Integer = 0
Dim i As Integer = 1

Do
  If isHarshad(i) Then
    Print i; " ";
    Count += 1
    If count = 20 Then Exit Do
  End If
  i += 1
Loop

Print : Print
Print "The first such number above 1000 is :"
i = 1001

Do  
  If isHarshad(i) Then 
    Print i; " "
    Exit Do
  End If
  i += 1
Loop

Print
Print "Press any key to quit"
Sleep
Output:
The first 20 Harshad or Niven numbers are :
 1  2  3  4  5  6  7  8  9  10  12  18  20  21  24  27  30  36  40  42

The first such number above 1000 is :
 1002

Frink

isHarshad[n] := n mod sum[integerDigits[n]] == 0

c = 0
i = 1
while c<20
{
   if isHarshad[i]
   {
      c = c + 1
      println[i]
   }
   i = i + 1
}

println[]
i = 1000

do
   i = i + 1
while ! isHarshad[i]

println[i]
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42

1002


FutureBasic

local fn Harshad( num as long ) as long
  long sum = 0, tmp = num
  
  while ( tmp > 0 )
    sum += tmp mod 10
    tmp  = tmp / 10
  wend
end fn = (num mod sum) = 0

local fn DoIt
  long i = 1, cnt = 0
  
  print "First 20 in series: ";
  while (1)
    if fn Harshad( i )
      if ( cnt < 20 ) then print ; i; " "; : cnt++
      if ( i > 1000 ) then print : print "First above 1000:   "; i : exit while
    end if
    i++
  wend
end fn

fn Doit

HandleEvents
Output:
First 20 in series: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
First above 1000:   1002


Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website.

In this page you can see and run the program(s) related to this task and their results. You can also change either the programs or the parameters they are called with, for experimentation, but remember that these programs were created with the main purpose of showing a clear solution of the task, and they generally lack any kind of validation.

Solution

Test case 1. List the first 20 members of the sequence

Test case 2. List the first Harshad number greater than 1,000

Gambas

Click this link to run this code

Public Sub Main()
Dim siCount, siLoop, siTotal, siCounter As Short
Dim sNo, sTemp As String
Dim sHold, sNiven As New String[]

For siCount = 1 To 1500
  sNo = Str(siCount)
  For siLoop = 1 To Len(sNo)
    sHold.Add(Mid(sNo, siLoop, 1))
  Next
  For Each sTemp In sHold
    siTotal += Val(sTemp)
  Next
  If siCount Mod siTotal = 0 Then 
    Inc siCounter
    If siCounter < 21 Or siCount > 1000 Then
      sNiven.Add(Str(siCount))
      If siCount > 1000 Then Break
    Endif
  Endif
  siTotal = 0
  sHold.Clear
Next

Print "First twenty Harshad numbers and the first Harshad number greater than 1000"
Print sNiven.Join(", ")

End

Output:

First twenty Harshad numbers and the first Harshad number greater than 1000
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 1002

Go

package main

import "fmt"

type is func() int

func newSum() is {
    var ms is
    ms = func() int {
        ms = newSum()
        return ms()
    }
    var msd, d int
    return func() int {
        if d < 9 {
            d++
        } else {
            d = 0
            msd = ms()
        }
        return msd + d
    }
}

func newHarshard() is {
    i := 0
    sum := newSum()
    return func() int {
        for i++; i%sum() != 0; i++ {
        }
        return i
    }
}

func main() {
    h := newHarshard()
    fmt.Print(h())
    for i := 1; i < 20; i++ {
        fmt.Print(" ", h())
    }
    fmt.Println()
    h = newHarshard()
    n := h()
    for ; n <= 1000; n = h() {
    }
    fmt.Println(n)
}
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Groovy

class HarshadNiven{ public static boolean find(int x)
   {
     int sum = 0,temp,var;
      var = x;
     while(x>0)
       {
         temp = x%10;
         sum = sum + temp;
         x = x/10;
       }
     if(var%sum==0) temp = 1;
     else temp = 0;
    return temp;
   }
 public static void main(String[] args)
  {
    int t,i;
     t = 0;
     for(i=1;t<20;i++)
      {
        if(find(i)) 
           {
             print(i + " ");
             t++;
           }
      }
     int x = 0;
     int y = 1000;
     while(x!=1)
      {
        if(find(y)) x = 1;
         y++;
      }
    println(); 
    println(y+1);
  }
}
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
1002

Haskell

import Data.Char (digitToInt)

harshads :: [Int]
harshads =
  let digsum = sum . map digitToInt . show
  in filter ((0 ==) . (mod <*> digsum)) [1 ..]

main :: IO ()
main = mapM_ print [take 20 harshads, [(head . filter (> 1000)) harshads]]
Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
1002

Or, as an alternative to string operations:

import Data.List (unfoldr)
import Data.Tuple (swap)
import Data.Bool (bool)

harshads :: [Int]
harshads = filter ((0 ==) . (rem <*> digitSum)) [1 ..]

digitSum :: Int -> Int
digitSum =
  sum . unfoldr ((bool Nothing . Just . swap . flip quotRem 10) <*> (0 <))

main :: IO ()
main = mapM_ print $ [take 20, take 1 . dropWhile (<= 1000)] <*> [harshads]
Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
[1002]

Icon and Unicon

procedure main(A)
    limit := integer(A[1]) | 20
    every writes(niven(seq())\limit," ")
    writes("... ")
    write(niven(seq(1001))\1)
end

procedure niven(n)
    n ? {s := 0; while s +:= move(1)}
    if (n%s) = 0 then return n
end
Output:
->ns
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002
->

IS-BASIC

100 PROGRAM "Harshad.bas"
110 LET I=1:LET CNT=0
120 PRINT "First 20 Harshad numbers are:"
130 DO
140   IF HARSHAD(I) THEN PRINT I;:LET CNT=CNT+1
150   LET I=I+1
160 LOOP UNTIL CNT=20
170 PRINT :PRINT :PRINT "First Harshad number larger than 1000 is";:LET I=1001
180 DO
190   IF HARSHAD(I) THEN PRINT I:EXIT DO
200   LET I=I+1
210 LOOP
220 DEF HARSHAD(NUM)
230   LET TMP=NUM:LET SUM=0
240   DO WHILE TMP>0
250     LET SUM=SUM+MOD(TMP,10)
260     LET TMP=INT(TMP/10)
270   LOOP
280   LET HARSHAD=MOD(NUM,SUM)=0
290 END DEF

J

Until =: 2 : 'u^:(-.@:v)^:_'
isHarshad =: 0 = ] |~ [: +/ #.inv  NB. BASE isHarshad N
assert 1 0 -: 10 isHarshad&> 42 38
nextHarshad =: (>: Until (10&isHarshad))@:>:
assert 45 -: nextHarshad 42
assert 3 4 5 -: nextHarshad&> 2 3 4
assert 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 -: (, nextHarshad@:{:)Until (20 = #) 1
assert 1002 -: nextHarshad 1000


   NB. next Harshad number in base 6.  Input and output are in base 6.
   NB. Verification left to you, gentle programmer.
   nextHarshad_base_6 =: (>: Until (6&isHarshad))@:>:
   ' '-.~":6#.inv nextHarshad_base_6 6b23235
23253

Java

Works with: Java version 1.5+
public class Harshad{
    private static long sumDigits(long n){
        long sum = 0;
        for(char digit:Long.toString(n).toCharArray()){
            sum += Character.digit(digit, 10);
        }
        return sum;
    }
    public static void main(String[] args){
        for(int count = 0, i = 1; count < 20;i++){
            if(i % sumDigits(i) == 0){
                System.out.println(i);
                count++;
            }
        }
        System.out.println();
        for(int i = 1001; ; i++){
            if(i % sumDigits(i) == 0){
                System.out.println(i);
                break;
            }
        }
    }
}
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42

1002

JavaScript

ES5

function isHarshad(n) {
    var s = 0;
    var n_str = new String(n);
    for (var i = 0; i < n_str.length; ++i) {
        s += parseInt(n_str.charAt(i));
    }
    return n % s === 0;
}

var count = 0;
var harshads = [];

for (var n = 1; count < 20; ++n) {
    if (isHarshad(n)) {
        count++;
        harshads.push(n);
    }
}

console.log(harshads.join(" "));

var h = 1000;
while (!isHarshad(++h));
console.log(h);
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

ES6 with generator

function* harshads (start) {
  for (let n = start; true; n++) {
    const sum = [...n.toString()].map(Number).reduce((a, b) => a + b)
    if (n % sum === 0) {
      yield n
    }
  }
}

const first20 = (() => {
  const hs = harshads(1)
  return [...Array(20)].map(() => hs.next().value)
})()
console.log("First 20:", ...first20)

const firstAfter1000 = harshads(1001).next().value
console.log("First after 1000:", firstAfter1000)
Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First after 1000: 1002

ES6

One possible approach to functional composition:

(() => {
    'use strict';

    // HARSHADS ---------------------------------------------------------------

    // nHarshads :: Int -> [Int]
    const nHarshads = n => {

        // isHarshad :: Int -> Bool
        const isHarshad = n => 0 === n % sum(digitList(n));

        return until(
                dct => dct.nth === n,
                dct => {
                    const
                        next = succ(dct.i),
                        blnHarshad = isHarshad(next);
                    return {
                        i: next,
                        hs: blnHarshad ? dct.hs.concat(next) : dct.hs,
                        nth: dct.nth + (blnHarshad ? 1 : 0)
                    };
                }, {
                    i: 0,
                    hs: [],
                    nth: 0
                }
            )
            .hs;
    };

    // GENERIC FUNCTIONS ------------------------------------------------------

    // digitList :: Int -> [Int]
    const digitList = n =>
        n > 0 ? [n % 10].concat(digitList(Math.floor(n / 10))) : [];

    // dropWhile :: (a -> Bool) -> [a] -> [a]
    const dropWhile = (p, xs) => {
        let i = 0;
        for (let lng = xs.length;
            (i < lng) && p(xs[i]); i++) {}
        return xs.slice(i);
    };

    // head :: [a] -> a
    const head = xs => xs.length ? xs[0] : undefined;

    // a -> String
    const show = x => JSON.stringify(x, null, 2);

    // succ :: Int -> Int
    const succ = x => x + 1

    // sum :: (Num a) => [a] -> a
    const sum = xs => xs.reduce((a, x) => a + x, 0);

    // until :: (a -> Bool) -> (a -> a) -> a -> a
    const until = (p, f, x) => {
        const go = x => p(x) ? x : go(f(x));
        return go(x);
    };

    // TEST -------------------------------------------------------------------
    return show({
        firstTwenty: nHarshads(20),
        firstOver1000: head(dropWhile(x => x <= 1000, nHarshads(1000)))
    });
})();
Output:
{
  "firstTwenty": [
    1,
    2,
    3,
    4,
    5,
    6,
    7,
    8,
    9,
    10,
    12,
    18,
    20,
    21,
    24,
    27,
    30,
    36,
    40,
    42
  ],
  "firstOver1000": 1002
}

jq

def is_harshad:
 def digits: tostring | [explode[] | ([.]| implode) | tonumber];
 if . >= 1 then (. % (digits|add)) == 0
 else false
 end ;

# produce a stream of n Harshad numbers
def harshads(n):
  # [candidate, count]
  def _harshads:
    if .[0]|is_harshad then .[0], ([.[0]+1, .[1]-1]| _harshads)
    elif .[1] > 0 then [.[0]+1, .[1]] | _harshads
    else empty
    end;
  [1, n] | _harshads ;

# First Harshad greater than n where n >= 0
def harshad_greater_than(n):
  # input: next candidate
  def _harshad:
    if is_harshad then .
    else .+1 | _harshad
    end;
  (n+1) | _harshad ;

# Task:
[ harshads(20), "...", harshad_greater_than(1000)]
Output:
$ jq -n -c -f harshad.jq
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,"...",1002]

Julia

Works with: Julia version 0.6
isharshad(x)   = x % sum(digits(x)) == 0
nextharshad(x) = begin while !isharshad(x+1) x += 1 end; return x + 1 end

function harshads(n::Integer)
	h = Vector{typeof(n)}(n)
	h[1] = 1
	for j in 2:n
		h[j] = nextharshad(h[j-1])
	end
	return h
end

println("First 20 harshad numbers: ", join(harshads(20), ", "))
println("First harshad number after 1001: ", nextharshad(1000))
Output:
First 20 harshad numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42
First harshad number after 1001: 1002

K

/ sum of digits of an integer
sumdig: {d::(); (0<){d::d,x!10; x%:10}/x; +/d}
/ Test if an integer is a Harshad number
isHarshad: {:[x!(sumdig x); 0; 1]} / Returns 1 if Harshad
/ Generate x Harshad numbers starting from y and display the list
hSeries: {harshad::();i:y;while[(x-#harshad)>0;:[isHarshad i; harshad::(harshad,i)]; i+:1];harshad}
Output:
    hSeries[20;1]
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
    hSeries[1; 1001]
,1002

Kotlin

// version 1.1

fun sumDigits(n: Int): Int = when {
        n <= 0 -> 0
        else   -> {
            var sum = 0
            var nn = n
            while (nn > 0) {
                sum += nn % 10
                nn /= 10
            }
            sum
        }
    }

fun isHarshad(n: Int): Boolean = (n % sumDigits(n) == 0)

fun main(args: Array<String>) {
    println("The first 20 Harshad numbers are:")
    var count = 0
    var i = 0

    while (true) {
        if (isHarshad(++i)) {
            print("$i ")
            if (++count == 20) break
        }
    }

    println("\n\nThe first Harshad number above 1000 is:")
    i = 1000

    while (true) {
        if (isHarshad(++i)) {
            println(i)
            return
        }
    }
}
Output:
The first 20 Harshad numbers are:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42

The first Harshad number above 1000 is:
1002

Lambdatalk

{def harshad?
 {def harshad?.sum
  {lambda {:n}
  {if {W.empty? {W.rest :n}}
   then {W.first :n}
   else {+ {W.first :n}
           {harshad?.sum {W.rest :n}}} }}}
 {lambda {:n}
  {= {% :n {harshad?.sum :n}} 0} }} 
-> harshad? 

{harshad? 12}
-> true
{harshad? 13}
-> false

{def harshads
 {def harshads.loop
  {lambda {:a :n :i}
   {if {> {A.length :a} :n}
    then :a
    else {harshads.loop {if {harshad? :i} 
                         then {A.addlast! :i :a} 
                         else :a}
                        :n 
                        {+ :i 1}} }}}
 {lambda {:n}
  {harshads.loop {A.new} :n 0} }} 
-> harshads

{harshads 20}
-> [0,1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42] 

{def firstharshadafter
 {def firstharshadafter.loop
  {lambda {:i}
   {if {harshad? :i}
    then :i
    else {firstharshadafter.loop {+ :i 1}} }}}
 {lambda {:n}
  {firstharshadafter.loop {+ :n 1}} }}
-> firstharshadafter

{firstharshadafter 1000}
-> 1002

LOLCODE

HAI 1.3

HOW IZ I digsummin YR num
    I HAS A digsum ITZ 0
    IM IN YR loop
        num, O RLY?
            YA RLY
                digsum R SUM OF digsum AN MOD OF num AN 10
                num R QUOSHUNT OF num AN 10
            NO WAI, FOUND YR digsum
        OIC
    IM OUTTA YR loop
IF U SAY SO

I HAS A found ITZ 0

IM IN YR finder UPPIN YR n
    I HAS A n ITZ SUM OF n AN 1
    I HAS A digsum ITZ I IZ digsummin YR n MKAY

    NOT MOD OF n AN digsum, O RLY?
        YA RLY
            DIFFRINT found AN BIGGR OF found AN 20, O RLY?
                YA RLY
                    VISIBLE n " "!
                    found R SUM OF found AN 1
            OIC

            DIFFRINT n AN SMALLR OF n AN 1000, O RLY?
                YA RLY, VISIBLE ":)" n, GTFO
            OIC
    OIC
IM OUTTA YR finder

KTHXBYE
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
1002

Lua

function isHarshad(n)
    local s=0
    local n_str=tostring(n)
    for i=1,#n_str do
        s=s+tonumber(n_str:sub(i,i))
    end
    return n%s==0
end

local count=0
local harshads={}
local n=1

while count<20 do
    if isHarshad(n) then
        count=count+1
        table.insert(harshads, n)
    end
    n=n+1
end

print(table.concat(harshads, " "))

local h=1001
while not isHarshad(h) do
    h=h+1
end
print(h)
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Mathematica / Wolfram Language

nextHarshad = 
  NestWhile[# + 1 &, # + 1, ! Divisible[#, Total@IntegerDigits@#] &] &;
Print@Rest@NestList[nextHarshad, 0, 20];
Print@nextHarshad@1000;
Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42}
1002

MAD

            NORMAL MODE IS INTEGER
            
            INTERNAL FUNCTION(A,B)
            ENTRY TO REM.
            FUNCTION RETURN A-A/B*B
            END OF FUNCTION 
            
            INTERNAL FUNCTION(I)
            ENTRY TO DSUM.
            SUM = 0
            REST = I
DIGIT       WHENEVER REST.NE.0
                SUM = SUM + REM.(REST,10)
                REST = REST/10
                TRANSFER TO DIGIT
            END OF CONDITIONAL
            FUNCTION RETURN SUM
            END OF FUNCTION
            
            INTERNAL FUNCTION(I)
            ENTRY TO NEXT.
LOOP        THROUGH LOOP, FOR NX=I+1, 1, REM.(NX,DSUM.(NX)).E.0
            FUNCTION RETURN NX
            END OF FUNCTION
            
            PRINT COMMENT $ FIRST 20 HARSHAD NUMBERS:$
            H = 0
            N = 0
HARSHD      WHENEVER N.LE.1000
                N = NEXT.(N)
                H = H + 1
                WHENEVER H.LE.20, PRINT FORMAT HSHD, H, N
                TRANSFER TO HARSHD
            END OF CONDITIONAL
            
            PRINT FORMAT THSND, N
            
            VECTOR VALUES HSHD = $8HHARSHAD(,I2,4H) = ,I2*$
            VECTOR VALUES THSND = 
          0     $34HFIRST HARSHAD NUMBER ABOVE 1000 = ,I4*$
          
            END OF PROGRAM
Output:
FIRST 20 HARSHAD NUMBERS:
HARSHAD( 1) =  1
HARSHAD( 2) =  2
HARSHAD( 3) =  3
HARSHAD( 4) =  4
HARSHAD( 5) =  5
HARSHAD( 6) =  6
HARSHAD( 7) =  7
HARSHAD( 8) =  8
HARSHAD( 9) =  9
HARSHAD(10) = 10
HARSHAD(11) = 12
HARSHAD(12) = 18
HARSHAD(13) = 20
HARSHAD(14) = 21
HARSHAD(15) = 24
HARSHAD(16) = 27
HARSHAD(17) = 30
HARSHAD(18) = 36
HARSHAD(19) = 40
HARSHAD(20) = 42
FIRST HARSHAD NUMBER ABOVE 1000 = 1002

MATLAB / Octave

Define a testing function whether n is harshad or not

function v = isharshad(n)
	v = isinteger(n) && ~mod(n,sum(num2str(n)-'0'));
end;

Check numbers

k=1; n=1;
while (k<=20)
	if isharshad(n)
		printf('%i ',n);
		k=k+1;
	end;
	n=n+1;
end
n = 1001; 
while ~isharshad(n)
	n=n+1;
end; 
printf('\nFirst harshad number larger than 1000 is %i\n',n);
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
First harshad number larger than 1000 is 1002

Maxima

/* Function that returns a list of digits given a nonnegative integer */
decompose(num) := block([digits, remainder],
  digits: [],
  while num > 0 do
   (remainder: mod(num, 10),
    digits: cons(remainder, digits), 
    num: floor(num/10)),
  digits
)$

/* Function that returns a list of the first len Harshad numbers */
harshad_count(len):=block(
    [i:1,count:0,result:[]],
    while count<len do (if map(lambda([x],if mod(x,apply("+",decompose(x)))=0 then true),[i])=[true] then (result:endcons(i,result),count:count+1),i:i+1),
    result)$

/* Function that returns a list of the Harshad numbers up to len */
first_count(len):=block(
    [i:1,count:0,result:[]],
    while i<=len do (if map(lambda([x],if mod(x,apply("+",decompose(x)))=0 then true),[i])=[true] then (result:endcons(i,result),count:count+1),i:i+1),
    length(result))$

/* Test cases */
harshad_count(20);
block(first_count(1000),last(harshad_count(%%+1)));
Output:
[1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
1002

MMBasic

number = 1
tally = 0

print "First 20 Harshad numbers:"
do while tally < 20
  if isHarshad(number) = 0 then
    print number;
    tally = tally + 1
  endif
  number = number + 1
loop


number = 1001
endloop = 0
print ""

do
  if isHarshad(number) = 0 then
    print "The first Harshad number greater than 1000 is"; number
    endloop = 1
  endif
  number = number + 1
loop until endloop = 1
  

function digitSum(x)
  let y$ = str$(x)
  for i = 1 to len(y$)
    digitSum = digitSum + val(mid$(y$,i,1))
  next i
end function

function isHarshad(num)
  isHarshad = num MOD digitSum(num)
end function
Output:
First 20 Harshad numbers:
  1  2  3  4  5  6  7  8  9 10 12 18 20 21 24 27 30 36 40 42
The first Harshad number greater than 1000 is 1002

Modula-2

MODULE Harshad;
FROM InOut IMPORT WriteString, WriteCard, WriteLn;

VAR n, i: CARDINAL;

PROCEDURE DigitSum(n: CARDINAL): CARDINAL;
VAR sum: CARDINAL;
BEGIN
    sum := 0;
    WHILE n > 0 DO;
        sum := sum + n MOD 10;
        n := n DIV 10;
    END;
    RETURN sum;
END DigitSum;

PROCEDURE NextHarshad(n: CARDINAL): CARDINAL;
BEGIN
    REPEAT INC(n);
    UNTIL n MOD DigitSum(n) = 0;
    RETURN n;
END NextHarshad;

BEGIN
    n := 0;
    WriteString("First 20 Harshad numbers:");
    WriteLn();
    FOR i := 1 TO 20 DO
        n := NextHarshad(n);
        WriteCard(n, 3);
    END;
    WriteLn();
    WriteString("First Harshad number above 1000: ");
    WriteCard(NextHarshad(1000), 4);
    WriteLn();
END Harshad.
Output:
First 20 Harshad numbers:
  1  2  3  4  5  6  7  8  9 10 12 18 20 21 24 27 30 36 40 42
First Harshad number above 1000: 1002

min

Works with: min version 0.19.3
(
  :n () =list
  (n 0 >) (
    n 10 mod list prepend #list
    n 10 div @n
  ) while
  list
) :digits

(dup digits sum mod 0 ==) :harshad?

(
  succ :n
  (n harshad? not) (
    n succ @n
  ) while
  n
) :next-harshad

0 (next-harshad print " " print!) 20 times newline
1000 next-harshad print!
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Miranda

main :: [sys_message]
main = [Stdout ("First 20: " ++ show first20 ++ "\n"),
        Stdout ("First above 1000: " ++ show above1000 ++ "\n")]

first20 :: [num]
first20 = take 20 (filter isharshad [1..])

above1000 :: num
above1000 = hd (filter isharshad [1001..])

isharshad :: num->bool
isharshad n = n mod digitsum n = 0

digitsum :: num->num
digitsum 0 = 0
digitsum n = n mod 10 + digitsum (n div 10)
Output:
First 20: [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
First above 1000: 1002

MLite

fun sumdigits
                 (0, n) = n
        |        (m, n) = sumdigits (m div 10, m rem 10) + n
        |        n      = sumdigits (n div 10, n rem 10)

fun is_harshad n = (n rem (sumdigits n) = 0)

fun next_harshad_after 
		(n, ~1) = if is_harshad n then 
			n 
		else 
			next_harshad_after (n + 1, ~1)
	| 	n = next_harshad_after (n + 1, ~1)

fun harshad
                (max, _, count > max, accum) = rev accum
        |       (max, here, count, accum) = 
			if is_harshad here then
                                harshad (max, here + 1, count + 1, here :: accum)
                        else
                                harshad (max, here + 1, count, accum)
        |       max = harshad (max, 1, 1, [])

;

print "first twenty harshad numbers = "; println ` harshad 20;
print "first harshad number after 1000 = "; println ` next_harshad_after 1000;

NetRexx

/* NetRexx ------------------------------------------------------------
* 21.01.2014 Walter Pachl  translated from ooRexx (from REXX version 1)
*--------------------------------------------------------------------*/

options replace format comments java crossref symbols nobinary

  Parse Arg x y .                   /* get optional arguments:  X  Y */
  If x='' Then x=20                 /* Not specified?  Use default   */
  If y='' Then y=1000               /* "      "        "     "       */
  n=0                               /* Niven count                   */
  nl=''                             /* Niven list.                   */

  Loop j=1 By 1 Until n=x           /* let's go Niven number hunting.*/
    If j//sumdigs(j)=0 Then Do      /* j is a Niven number           */
      n=n+1                         /* bump Niven count              */
      nl=nl j                       /* add to list.                  */
      End
    End

  Say 'first' n 'Niven numbers:'nl

  Loop j=y+1 By 1                   /* start with first candidate    */
    If j//sumdigs(j)=0 Then         /* j is a Niven number           */
      Leave
    End

  Say 'first Niven number >' y 'is:' j
  Exit

method sumdigs(n) public static returns Rexx
  sum=n.left(1)
  Loop k=2 To n.length()
    sum=sum+n.substr(k,1)
    End
  Return sum

output same as ooRexx's

Nim

proc slice[T](iter: iterator(): T {.closure.}; sl: Slice[T]): seq[T] =
  var i = 0
  for n in iter():
    if i > sl.b: break
    if i >= sl.a: result.add(n)
    inc i
 
iterator harshad(): int {.closure.} =
  for n in 1 ..<  int.high:
    var sum = 0
    for ch in $n:
      sum += ord(ch) - ord('0')
    if n mod sum == 0:
      yield n
 
echo harshad.slice 0 ..< 20
 
for n in harshad():
  if n > 1000:
    echo n
    break
Output:
@[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

Nu

Works with: Nushell version 0.97.1
def 'seq harshad' [] {
  1.. | where $it mod ($it | into string | split chars | into int | math sum) == 0
}

[{ take 20 | str join ' ' } { skip until { $in > 1000 } | first }]
| each {|f| seq harshad | do $f }
| str join ' ... '
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002

Objeck

class Harshad {
  function : Main(args : String[]) ~ Nil {
    count := 0;
    for(i := 1; count < 20; i += 1;) {
      if(i % SumDigits(i) = 0){
        "{$i} "->Print();
        count += 1;
      };
    };

    for(i := 1001; true; i += 1;) {
      if(i % SumDigits(i) = 0){
        "... {$i}"->PrintLine();
        break;
      };
    };
  }

  function : SumDigits(n : Int) ~ Int {
    sum := 0;
    do {
      sum += n % 10;
      n /= 10;
    } while(n <> 0);

    return sum;
  }
}
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002

OCaml

let is_harshad x =
  let rec dsum n = if n < 10 then n else dsum (n / 10) + n mod 10 in
  x mod dsum x = 0

let () =
  let print_seq (x, n) =
    Seq.(ints x |> filter is_harshad |> take n |> map string_of_int)
    |> List.of_seq |> String.concat ", " |> print_endline
  in
  List.iter print_seq [1, 20; 1001, 1]
Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42
1002

Oforth

: sumDigits(n)  0 while(n) [ n 10 /mod ->n + ] ;
: isHarshad     dup sumDigits mod 0 == ;  

1100 seq filter(#isHarshad) dup left(20) println dup filter(#[ 1000 > ]) first println
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

ooRexx

/* REXX ---------------------------------------------------------------
* 21.01.2014 Walter Pachl modi-(simpli-)fied from REXX version 1
*--------------------------------------------------------------------*/
  Parse Arg x y .                   /* get optional arguments:  X  Y */
  If x='' Then x=20                 /* Not specified?  Use default   */
  If y='' Then y=1000               /* "      "        "     "       */
  n=0                               /* Niven count                   */
  nl=''                             /* Niven list.                   */

  Do j=1 Until n=x                  /* let's go Niven number hunting.*/
    If j//sumdigs(j)=0 Then Do      /* j is a Niven number           */
      n=n+1                         /* bump Niven count              */
      nl=nl j                       /* add to list.                  */
      End
    End

  Say 'first' n 'Niven numbers:'nl

  Do j=y+1                          /* start with first candidate    */
    If j//sumdigs(j)=0 Then         /* j is a Niven number           */
      Leave
    End

  Say 'first Niven number >' y 'is:' j
  Exit

sumdigs: Procedure                  /* compute sum of n's digits     */
  Parse Arg n
  sum=left(n,1)
  Do k=2 To length(n)
    sum=sum+substr(n,k,1)
    End
  Return sum
Output:
first 20 Niven numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
first Niven number > 1000 is: 1002

PARI/GP

Works with: PARI/GP version 2.6.0 and above
isHarshad(n)=n%sumdigits(n)==0
n=0;k=20;while(k,if(isHarshad(n++),k--;print1(n", ")));
n=1000;while(!isHarshad(n++),);print("\n"n)
Output:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 
1002

Pascal

Works with: Free Pascal
Works with: Delphi

Optimized for speed, by using the state before in IncSumDigit.

program Niven;

{$IFDEF FPC}
  {$MODE DELPHI}
{$ENDIF}

const
  base = 10;

type
  tNum = longword; {Uint64}
{$IFDEF FPC}

const
  cntbasedigits = trunc(ln(High(tNum)) / ln(base)) + 1;
{$ELSE}

var
  cntbasedigits: Integer = 0;
{$ENDIF}

type
  tSumDigit = record
    sdNumber: tNum;
{$IFDEF FPC}
    sdDigits: array[0..cntbasedigits - 1] of byte;
{$ELSE}
    sdDigits: TArray<Byte>;
{$ENDIF}
    sdSumDig: byte;
    sdIsNiven: boolean;
  end;

function InitSumDigit(n: tNum): tSumDigit;
var
  sd: tSumDigit;
  qt: tNum;
  i: integer;
begin
  with sd do
  begin
    sdNumber := n;
{$IFDEF FPC}    
    fillchar(sdDigits, SizeOf(sdDigits), #0);
{$ELSE}
    SetLength(sdDigits,cntbasedigits);    
    fillchar(sdDigits[0], SizeOf(sdDigits), #0);
{$ENDIF}        
    sdSumDig := 0;
    sdIsNiven := false;
    i := 0;
    // calculate Digits und sum them up
    while n > 0 do
    begin
      qt := n div base;
      {n mod base}
      sdDigits[i] := n - qt * base;
      inc(sdSumDig, sdDigits[i]);
      n := qt;
      inc(i);
    end;
    if sdSumDig > 0 then
      sdIsNiven := (sdNumber mod sdSumDig = 0);
  end;
  InitSumDigit := sd;
end;

procedure IncSumDigit(var sd: tSumDigit);
var
  i, d: integer;
begin
  i := 0;
  with sd do
  begin
    inc(sdNumber);
    repeat
      d := sdDigits[i];
      inc(d);
      inc(sdSumDig);
      //base-1 times the repeat is left here
      if d < base then
      begin
        sdDigits[i] := d;
        BREAK;
      end
      else
      begin
        sdDigits[i] := 0;
        dec(sdSumDig, base);
        inc(i);
      end;
    until i > high(sdDigits);
    sdIsNiven := (sdNumber mod sdSumDig) = 0;
  end;
end;

var
  MySumDig: tSumDigit;
  lnn: tNum;
  cnt: integer;

begin
{$IFNDEF FPC}
  cntbasedigits := trunc(ln(High(tNum)) / ln(base)) + 1;
{$ENDIF}

  MySumDig := InitSumDigit(0);
  cnt := 0;
  repeat
    IncSumDigit(MySumDig);
    if MySumDig.sdIsNiven then
    begin
      write(MySumDig.sdNumber, '.');
      inc(cnt);
    end;
  until cnt >= 20;
  write('....');
  MySumDig := InitSumDigit(1000);
  repeat
    IncSumDigit(MySumDig);
  until MySumDig.sdIsNiven;
  writeln(MySumDig.sdNumber, '.');
// searching for big gaps between two niven-numbers
//  MySumDig:=InitSumDigit(18879989100-276);
  MySumDig := InitSumDigit(1);
  cnt := 0;
  lnn := MySumDig.sdNumber;
  repeat
    IncSumDigit(MySumDig);
    if MySumDig.sdIsNiven then
    begin
      if cnt < (MySumDig.sdNumber - lnn) then
      begin
        cnt := (MySumDig.sdNumber - lnn);
        writeln(lnn, ' --> ', MySumDig.sdNumber, '  d=', cnt);
      end;
      lnn := MySumDig.sdNumber;
    end;
  until MySumDig.sdNumber = High(tNum);
{
689988915 --> 689989050  d=135
879987906 --> 879988050  d=144
989888823 --> 989888973  d=150
2998895823 --> 2998895976  d=153
~ 24 Cpu-cycles per test i3- 4330 1..2^32-1}
{$IFNDEF LINUX}readln;{$ENDIF}
end.

output:

1.2.3.4.5.6.7.8.9.10.12.18.20.21.24.27.30.36.40.42.....1002.

PascalABC.NET

##
uses School;

function IsHarshad(n: integer) := n.Divs(n.Digits.Sum);

1.Step.Where(IsHarshad).Take(20).Println;
1.Step.Where(i -> (i > 1000) and IsHarshad(i)).First.Println;
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

Perl

use v5.36;
use List::Util 'sum';

sub createHarshads ($limit) {
    my(@harshads,$number);
    do {
        $number++;
        if ( $number % sum ( split ( // , $number ) ) == 0 ) {
	        push @harshads , $number;
        }
    } until $harshads[ -1 ] > $limit;
    return @harshads;
}

my @harshadnumbers = createHarshads my $limit = 1000;
say "@harshadnumbers[0..19]";
say "The first Harshad number greater than $limit is $harshadnumbers[ -1 ]!" ;
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
The first Harshad number greater than 1000 is 1002!

Phix

integer n = 0
sequence digits={0}
 
procedure nNiven()
    while 1 do
        n += 1
        for i=length(digits) to 0 by -1 do
            if i=0 then
                digits = prepend(digits,1)
                exit
            end if
            if digits[i]<9 then
                digits[i] += 1
                exit
            end if
            digits[i] = 0
        end for
        if remainder(n,sum(digits))=0 then exit end if
    end while
end procedure
 
sequence s = {}
for i=1 to 20 do
    nNiven()
    s &= n
end for
?s
while n<=1000 do
    nNiven()
end while
?n
Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42}
1002

Alternative version

function isHarshad(integer n)
    return remainder(n,sum(sq_sub(sprint(n),'0')))=0
end function

sequence s = {}
integer n = 0
while length(s)<20 do
    n += 1
    if isHarshad(n) then
        s &= n
    end if
end while
n = 1001
while not isHarshad(n) do n += 1 end while
?s&n
Output:
{1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,1002}

PicoLisp

#if niven number, return it.
(de niven (N)
   (if (=0 (% N (apply + (getN N)))) N) )

#function which creates a list of numbers from input
(de getN (N)
   (mapcar format (chop N)) )

#This function generates niven number list
(de nivGen (R N)
   (extract niven (range R N)) )

#print 1st 20 niven numbers and 1st niven number greater than 1000
(printsp ~(list ~(head 20
                    (nivGen 1 1000) ) (max ~(nivGen 1001 1010)) ) )
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002

PILOT

C :n=0
  :i=0
*first20
U :*harshad
C :i=i+1
T :#i: #n
J (i<20):*first20
C :n=1000
U :*harshad
T :First Harshad number greater than 1000: #n
E :
*harshad
C :n=n+1
  :r=n
  :s=0
*digit
C :a=r/10
  :s=s+(r-a*10)
  :r=a
J (r):*digit
J (n<>s*(n/s)):*harshad
E :
Output:
1: 1
2: 2
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10
11: 12
12: 18
13: 20
14: 21
15: 24
16: 27
17: 30
18: 36
19: 40
20: 42
First Harshad number greater than 1000: 1002

PL/I

*process source or(!) xref attributes;
 niven: Proc Options(main);
 /*********************************************************************
 * 08-06.2013 Walter Pachl translated from Rexx
 *                         with a slight improvement:  Do j=y+1 By 1;
 *********************************************************************/
 Dcl (ADDR,HBOUND,MOD,SUBSTR,VERIFY) Builtin;
 Dcl SYSPRINT Print;

 Dcl (x,y) dec fixed(8);
 x=20;
 y=1000;
 Begin;
   Dcl (n(x),j) Dec Fixed(8);
   Dcl ni Bin Fixed(31) Init(0);
   Dcl result Char(100) Var Init('');
 loop:
   Do j=1 By 1;
     If mod(j,sumdigs(j))=0 Then Do;
       ni+=1;
       n(ni)=j;
       result=result!!' '!!d2c(j);
       If ni=x Then Leave loop;
       End;
     End;
   Put Edit('first 20 Niven numbers: ',result)(Skip,a,a);
   Do j=y+1 By 1;
     If mod(j,sumdigs(j))=0 Then
       Leave;
     End;
   Put Edit('first Niven number > ',d2c(y),' is: ',d2c(j))(Skip,4(a));
   End;

 sumDigs: proc(z) Returns(Dec Fixed(3));
 Dcl z Pic'(8)9';
 Dcl d(8) Pic'9' Based(addr(z));
 Dcl i Bin Fixed(31);
 Dcl sd Dec Fixed(3) Init(0);
 Do i=1 To hbound(d);
   sd+=d(i);
   End;
 Return(sd);
 End;

 d2c: Proc(z) Returns(char(8) Var);
 Dcl z Pic'(8)z';
 Dcl p Bin Fixed(31);
 p=verify(z,' ');
 Return(substr(z,p));
 End;

 End;
Output:
first 20 Niven numbers:  1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
first Niven number > 1000 is: 1002

PL/M

100H:

/* FIND THE SUM OF THE DIGITS OF A 16-BIT NUMBER */
DIGIT$SUM: PROCEDURE(N) BYTE;
    DECLARE N ADDRESS, SUM BYTE;
    SUM = 0;
    DO WHILE N > 0;
        SUM = SUM + (N MOD 10);
        N = N / 10;
    END;
    RETURN SUM;
END DIGIT$SUM;

/* FIND THE NEXT HARSHAD NUMBER ABOVE N */
NEXT$HARSHAD: PROCEDURE(N) ADDRESS;
    DECLARE N ADDRESS;
NEXT:
    N = N + 1;
    IF N MOD DIGIT$SUM(N) = 0 THEN
        RETURN N;
    ELSE
        GO TO NEXT;
END NEXT$HARSHAD;

/* CP/M SYSCALL */
BDOS: PROCEDURE(FUNC, ARG);
    DECLARE FUNC BYTE, ARG ADDRESS;
    GO TO 5;
END BDOS;

/* PRINT A STRING */
PRINT$STRING: PROCEDURE(STRING);
    DECLARE STRING ADDRESS;
    CALL BDOS(9, STRING);
END PRINT$STRING;

/* PRINT A NUMBER */
PRINT$NUMBER: PROCEDURE(N);
    DECLARE S (7) BYTE INITIAL ('..... $');
    DECLARE (N, P) ADDRESS, (C BASED P) BYTE;
    P = .S(5);
DIGIT:
    P = P - 1;
    C = (N MOD 10) + '0';
    N = N / 10;
    IF N > 0 THEN GO TO DIGIT;
    CALL PRINT$STRING(P);
END PRINT$NUMBER;

DECLARE CRLF DATA (13,10,'$');
DECLARE N ADDRESS INITIAL (0), S BYTE;

/* PRINT FIRST 20 HARSHADS */
CALL PRINT$STRING(.'FIRST 20: $');
DO S = 1 TO 20;
    CALL PRINT$NUMBER(N := NEXT$HARSHAD(N));
END;
CALL PRINT$STRING(.CRLF);

/* PRINT HARSHAD NUMBER ABOVE 1000 */
CALL PRINT$STRING(.'FIRST ABOVE 1000: $');
CALL PRINT$NUMBER(NEXT$HARSHAD(1000));
CALL PRINT$STRING(.CRLF);

CALL BDOS(0,0);
EOF
Output:
FIRST 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
FIRST ABOVE 1000: 1002

PowerShell

Works with: PowerShell version 2

In PowerShell, we generally don't wrap every little thing in a function. If you have something simple to do, you just do it.

   1..1000 | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select -First 20
1001..2000 | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select -First 1
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

But if we do have a need for the code to be reusable, we can do that.

function Get-HarshadNumbers
    {
    <#
    .SYNOPSIS
    Returns numbers in the Harshad or Niven series.
 
    .DESCRIPTION
    Returns all integers in the given range that are evenly divisible by the sum of their digits
    in ascending order.
 
    .PARAMETER Minimum
    Lower bound of the range to search for Harshad numbers. Defaults to 1.
 
    .PARAMETER Maximum
    Upper bound of the range to search for Harshad numbers. Defaults to 2,147,483,647
 
    .PARAMETER Count
    Maximum number of Harshad numbers to return.
    #>
 
    [cmdletbinding()]
    Param (
        [int]$Minimum = 1,
        [int]$Maximum = [int]::MaxValue,
        [int]$Count )
 
    #  Skip any non-positive numbers in the specified range
    $Minimum = [math]::Max( 1, $Minimum )
 
    #  If the adjusted range has any numbers in it...
    If ( $Maximum -ge $Minimum )
        {
        #  If a count was specified, build a parameter for the Select statement to kill the pipeline when the count is achieved.
        If ( $Count ) { $SelectParam = @{ First = $Count } }
        Else          { $SelectParam = @{} }
 
        #  For each number in the range, test the remainder of it divided it by iteself (converted to a string,
        #  then a character array, then a string array, then an integer array, then summed).
        $Minimum..$Maximum | Where { $_ % ( [int[]][string[]][char[]][string]$_ | Measure -Sum ).Sum -eq 0 } | Select @SelectParam
        }
    }
Get-HarshadNumbers -Count 20
Get-HarshadNumbers -Minimum 1001 -Count 1
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

Prolog

Works with SWI-Prolog and module lambda.pl written by Ulrich Neumerkel, it can be found there : http://www.complang.tuwien.ac.at/ulrich/Prolog-inedit/lambda.pl.

:- use_module(library(lambda)).

niven :-
	nb_setval(go, 1),

	L = [1 | _],
	print_niven(L, 1),
	gen_niven(1, L).


print_niven([X|T], N) :-
	when(ground(X),
	     (	 (   nb_getval(go, 1)
		 ->  (   N < 20
		     ->  writeln(X),
			 N1 is N+1,
			 print_niven(T, N1)
		     ;	 (   X > 1000
			 ->  writeln(X),
			     nb_setval(go, 0)
			 ;   N1 is N+1,
			     print_niven(T, N1)))
		 ;   true))).



gen_niven(X, [N | T]) :-
	(   nb_getval(go, 1)
	->  X1 is X+1,
	    sum_of_digit(X, S),
	    (   X mod S =:= 0
	    ->  N = X,
		gen_niven(X1, T)
	    ;	gen_niven(X1, [N | T]))
	;   true).


sum_of_digit(N, S) :-
	number_chars(N, LC),
	maplist(\X^Y^number_chars(Y, [X]), LC, LN),
	sum_list(LN, S).
Output:
 ?- niven.
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
1002
true.

PureBasic

If OpenConsole()=0 : End 1 : EndIf

Procedure.i Niven(v.i)
  w=v
  While v : s+v%10 : v/10 : Wend
  If w%s=0 : ProcedureReturn w : EndIf
EndProcedure

Repeat
  i+1
  If Niven(i) : c+1 : Print(Str(i)+" ") : EndIf
  If c=20 And i<1000 : Print("... ") : i=1000 : EndIf
  If c=21 : Break : EndIf
ForEver

Input()
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 ... 1002 

Python

Python: Procedural

>>> import itertools
>>> def harshad():
	for n in itertools.count(1):
		if n % sum(int(ch) for ch in str(n)) == 0:
			yield n

		
>>> list(itertools.islice(harshad(), 0, 20))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
>>> for n in harshad():
	if n > 1000:
		print(n)
		break

	
1002
>>>

Python: Functional

The for loop above could be changed to the following to find the number > 1000; in fact the harshad generator function could become a generator expression creating this more functional version:

>>> from itertools import count, islice
>>> harshad = (n for n in count(1) if n % sum(int(ch) for ch in str(n)) == 0)
>>> list(islice(harshad, 0, 20))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
>>> next(x for x in harshad if x > 1000)
1002
>>>

And we could also sum digits more directly (without string coercion) while still preserving functional composition:

Works with: Python version 3.7
'''Harshad or Niven series'''

from itertools import count, dropwhile, islice


# harshads :: () -> [Int]
def harshads():
    '''Harshad series'''
    return (
        x for x in count(1)
        if 0 == x % digitSum(x)
    )


# digitSum :: Int -> Int
def digitSum(n):
    '''Sum of the decimal digits of n.'''
    def go(x):
        return None if 0 == x else divmod(x, 10)
    return sum(unfoldl(go)(n))


# ------------------------- TEST -------------------------
# main :: IO ()
def main():
    '''First 20, and first above 1000.'''

    def firstTwenty(xs):
        return take(20)(xs)

    def firstAbove1000(xs):
        return take(1)(
            dropwhile(lambda x: 1000 >= x, xs)
        )

    print(
        fTable(__doc__ + ':\n')(
            lambda x: x.__name__
        )(showList)(lambda f: f(harshads()))([
            firstTwenty,
            firstAbove1000
        ])
    )


# ----------------------- GENERIC ------------------------

# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    return lambda xs: (
        xs[0:n]
        if isinstance(xs, (list, tuple))
        else list(islice(xs, n))
    )


# unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
def unfoldl(f):
    '''A lazy (generator) list unfolded from a seed value
       by repeated application of f until no residue remains.
       Dual to fold/reduce.
       f returns either None or just (residue, value).
       For a strict output list, wrap the result with list()
    '''
    def go(v):
        residueValue = f(v)
        while residueValue:
            yield residueValue[1]
            residueValue = f(residueValue[0])
    return go


# ----------------------- DISPLAY ------------------------

# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function ->
       fx display function -> f -> xs -> tabular string.
    '''
    def gox(xShow):
        def gofx(fxShow):
            def gof(f):
                def goxs(xs):
                    ys = [xShow(x) for x in xs]
                    w = max(map(len, ys))

                    def arrowed(x, y):
                        return y.rjust(w, ' ') + ' -> ' + (
                            fxShow(f(x))
                        )
                    return s + '\n' + '\n'.join(
                        map(arrowed, xs, ys)
                    )
                return goxs
            return gof
        return gofx
    return gox


# showList :: [a] -> String
def showList(xs):
    '''Stringification of a list.'''
    return '[' + ','.join(repr(x) for x in xs) + ']'


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Harshad or Niven series:

   firstTwenty -> [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42]
firstAbove1000 -> [1002]

Quackery

[ number$ $ "0 " swap
  witheach
    [ join $ " + " join ]
  quackery ]               is digitsum  ( n --> n )

[ dup digitsum 
  mod 0 = ]                is isharshad ( n --> b )

say "The first 20 Harshad numbers are: "
 
0 1 
  [ dup isharshad if
     [ dup echo sp dip 1+ ]
    1+
    over 20 = until ]
2drop
cr
cr 
say "The first Harshad number greater than 1000 is: "
 
1000 [ 1+ dup isharshad
       iff echo done
       again ] 
cr

Output:

The first 20 Harshad numbers are: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 

The first Harshad number greater than 1000 is: 1002


Racket

#lang racket

(define (digsum n) 
  (for/sum ([c (number->string n)]) (string->number [string c])))
   
(define harshads 
  (stream-filter (λ (n) (= (modulo n (digsum n)) 0)) (in-naturals 1)))
 
; First 20 harshad numbers
(displayln (for/list ([i 20]) (stream-ref harshads i)))
 
; First harshad greater than 1000
(displayln (for/first ([h harshads] #:when(> h 1000)) h))
Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
1002

Different to the Scheme implementation in that it illustrates Racket's native iterators, and let-values with quotient/remainder:

#lang racket
(require math/number-theory)
(define (digital-sum n)
  (let inner
    ((n n) (s 0))
    (if (zero? n) s
        (let-values ([(q r) (quotient/remainder n 10)])
          (inner q (+ s r))))))

(define (harshad-number? n)
  (and (>= n 1)
       (divides? (digital-sum n) n)))

;; find 1st 20 Harshad numbers
(for ((i (in-range 1 (add1 20)))
      (h (sequence-filter harshad-number? (in-naturals 1))))
  (printf "#~a ~a~%" i h))

;; find 1st Harshad number > 1000
(displayln (for/first ((h (sequence-filter harshad-number? (in-naturals 1001)))) h))
Output:
#1 1
#2 2
#3 3
#4 4
#5 5
#6 6
#7 7
#8 8
#9 9
#10 10
#11 12
#12 18
#13 20
#14 21
#15 24
#16 27
#17 30
#18 36
#19 40
#20 42
1002

Raku

(formerly Perl 6)

Works with: Rakudo version 2016.08
constant @harshad = grep { $_ %% .comb.sum }, 1 .. *;
 
say @harshad[^20];
say @harshad.first: * > 1000;
Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
1002

Refal

$ENTRY Go {
    = <Prout 'First 20: ' <GetFirst 20 Harshad>>
      <Prout 'First > 1000: ' <Next Harshad 1000>>;
};

GetFirst {
    s.N s.F = <GetFirst s.N s.F 0>;
    0 s.F s.Cur = ;
    s.N s.F s.Cur, <Next s.F s.Cur>: s.Next
        = s.Next <GetFirst <- s.N 1> s.F s.Next>;
};

Next {
    s.F s.N, <+ 1 s.N>: s.Next, <Mu s.F s.Next>: {
        T = s.Next;
        F = <Next s.F s.Next>;
    };
};

Harshad {
    s.N, <DigSum s.N>: s.Dsum, <Mod s.N s.Dsum>: 0 = T;
    s.N = F;
};

DigSum {
    0 = 0;
    s.N, <Divmod s.N 10>: (s.Rest) s.Dgt = <+ s.Dgt <DigSum s.Rest>>;
};
Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
First > 1000: 1002

REXX

These REXX examples allow the user to specify how many Niven numbers to list,
as well as find the first Niven number greater than a specified positive integer.

Also, gihugeic integers are supported   (essentially no limit).

generic

/*REXX program finds the first  A  Niven numbers;  it also finds first Niven number > B.*/
parse arg A B .                                  /*obtain optional arguments from the CL*/
if A=='' | A==','  then A=   20                  /*Not specified?  Then use the default.*/
if B=='' | B==','  then B= 1000                  /* "      "         "   "    "     "   */
numeric digits 1+max(8, length(A), length(B) )   /*enable the use of any sized numbers. */
#= 0;      $=                                    /*set Niven numbers count;  Niven list.*/
                        do j=1  until  #==A      /*◄───── let's go Niven number hunting.*/
                        if j // sumDigs(j)==0  then do;   #= #+1;   $= $ j;    end
                        end   /*j*/              /* [↑]   bump count; append J ──► list.*/
say 'first'   A   'Niven numbers:'   $           /*display list of Niven numbers──►term.*/
                do t=B+1  until t//sumDigs(t)==0 /*hunt for a Niven (or Harshad) number.*/
                end   /*t*/
say 'first Niven number >'   B    " is: "     t  /*display 1st Niven number >   B.      */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: parse arg x 1 s 2 q;   do k=1  for length(q); s= s+substr(q,k,1); end;   return s
output   when using the default inputs:
first 20 Niven numbers:  1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
first Niven number > 1000  is:  1002

idiomatic

This REXX version idiomatically uses a   isNiven   function.

/*REXX program finds the first  A  Niven numbers;  it also finds first Niven number > B.*/
parse arg A B .                                  /*obtain optional arguments from the CL*/
if A=='' | A==','  then A=   20                  /*Not specified?  Then use the default.*/
if B=='' | B==','  then B= 1000                  /* "      "         "   "    "     "   */
numeric digits 1+max(8, length(A), length(B))    /*enable the use of any sized numbers. */
#= 0;      $=                                    /*set Niven numbers count;  Niven list.*/
                        do j=1  until  #==A      /*◄───── let's go Niven number hunting.*/
                        if isNiven(j)  then do;   #= #+1;   $= $ j;   end
                        end   /*j*/              /* [↑]   bump count; append J ──► list.*/
say 'first'   A   'Niven numbers:'   $           /*display list of Niven numbers──►term.*/

                   do t=B+1  until  isNiven(t)   /*hunt for a Niven (or Harshad) number.*/
                   end   /*t*/
say 'first Niven number >'   B    " is: "     t  /*display 1st Niven number >   B.      */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 s 2 q; do k=1 for length(q); s=s+substr(q,k,1); end; return x//s==0
output   is identical to the 1st REXX version.



esoteric

This REXX version optimizes the   isNiven   function by using   parse   statements instead of the   substr   BIF,
yielding a faster algorithm.

/*REXX program finds the first  A  Niven numbers;  it also finds first Niven number > B.*/
parse arg A B .                                  /*obtain optional arguments from the CL*/
if A=='' | A==','  then A=   20                  /*Not specified?  Then use the default.*/
if B=='' | B==','  then B= 1000                  /* "      "         "   "    "     "   */
numeric digits 1+max(8, length(A), length(B) )   /*enable the use of any sized numbers. */
#= 0;      $=                                    /*set Niven numbers count;  Niven list.*/
                        do j=1  until  #==A      /*◄───── let's go Niven number hunting.*/
                        if isNiven(j)  then do;   #= #+1;   $= $ j;   end
                        end   /*j*/              /* [↑]   bump count; append J ──► list.*/
say 'first'   A   'Niven numbers:'   $           /*display list of Niven numbers──►term.*/

                   do t=B+1  until  isNiven(t)   /*hunt for a Niven (or Harshad) number.*/
                   end
say 'first Niven number >'   B    " is: "     t  /*display 1st Niven number >   B.      */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 sum 2 q                   /*use the 1st decimal digit for  SUM.  */
                 do length(q);              parse var q _ 2 q;          sum= sum + _
                 end   /*length(q)*/             /*   ↑                                 */
         return x // sum == 0                    /*   └──────◄ is destructively parsed. */
output   is identical to the 1st REXX version.



array of numbers

This REXX version builds an   array   of numbers instead of a   list   (building an array is much faster than building a list, especially if the list is very long).

In addition, if the   A   number is negative, the numbers in the array aren't displayed, but the   last   number in the array is displayed.

/*REXX program finds the first  A  Niven numbers;  it also finds first Niven number > B.*/
parse arg A B .                                  /*obtain optional arguments from the CL*/
if A=='' | A==','  then A=   20                  /*Not specified?  Then use the default.*/
if B=='' | B==','  then B= 1000                  /* "      "         "   "    "     "   */
tell= A>0;              A= abs(A)                /*flag for showing a Niven numbers list*/
A= abs(a)
numeric digits 1+max(8, length(A), length(B) )   /*enable the use of any sized numbers. */
#= 0;    $=                                      /*set Niven numbers count;  Niven list.*/
                           do j=1  until  #==A   /*◄───── let's go Niven number hunting.*/
                           if isNiven(j)  then do;   #= #+1;    !.#= j;    end
                           end   /*j*/           /* [↑]   bump count; append J ──► list.*/
w= length(!.w)                                   /*W:   is the width of largest Niven #.*/
if tell  then do
              say 'first' A 'Niven numbers:';  do k=1  for #; say right(!.k, w); end /*k*/
              end
         else say 'last of the'      A      'Niven numbers: '           !.#
say
                     do t=B+1  until  isNiven(t) /*hunt for a Niven (or Harshad) number.*/
                     end
say  'first Niven number >'     B      " is: "      t
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
isNiven: parse arg x 1 sum 2 q                   /*use the first decimal digit for  SUM.*/
                 do  while  q\=='';    parse var q _ 2 q;          sum= sum + _
                 end   /*while*/                 /*    ↑                                */
         return x // sum == 0                    /*    └──────◄ is destructively parsed.*/
output   when the input used is:     -1000000   66777888
last of the 1000000 Niven numbers:  12150510

first Niven number > 66777888  is:  66777900

Ring

i = 1
count = 0
while true
      sum = 0
      if niven(i) = 1
         if count < 20 see "" + i + " is a Niven number" + nl count +=1 ok   
         if i > 1000 see "" + i + " is a Niven number" exit ok ok
      i + =1
end

func niven nr
     nrString = string(nr)
     for j = 1 to len(nrString)  
         sum = sum + number(nrString[j])
     next  
     niv = ((nr % sum) = 0)
     return niv

Output:

1 is a Niven number
2 is a Niven number
3 is a Niven number
4 is a Niven number
5 is a Niven number
6 is a Niven number
7 is a Niven number
8 is a Niven number
9 is a Niven number
10 is a Niven number
12 is a Niven number
18 is a Niven number
20 is a Niven number
21 is a Niven number
24 is a Niven number
27 is a Niven number
30 is a Niven number
36 is a Niven number
40 is a Niven number
42 is a Niven number
1002 is a Niven number

RPL

Works with: Halcyon Calc version 4.2.7
Code Comments
DO
     1 + DUP DUP →STR DUP SIZE → n len 
     ≪ 0 1 len FOR j
          n j DUP SUB NUM +
       NEXT
       len 48 * - 
     ≫
   UNTIL MOD NOT END
≫  
'NXTHR' STO

≪ {} 0 
  1 20 START NXTHR SWAP OVER + SWAP NEXT DROP
  1000 NXTHR 
≫ EVAL
( n -- next_Harshad_number)
Increment n and initialize local variables

Add ASCII codes

Remove offset 48 = NUM("0")






Create list of first 20 Harshad numbers
Get first Harshad number > 1000

Output:
2: { 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 }
1: 1002

Ruby

Works with: Ruby version 2.4

Ruby 2.4 gave Integers a digits method, and Arrays a sum method.

harshad = 1.step.lazy.select { |n| n % n.digits.sum == 0 }

puts "The first 20 harshard numbers are: \n#{ harshad.first(20) }"
puts "The first harshard number > 1000 is #{ harshad.find { |n| n > 1000 } }"
Output:
The first 20 harshard numbers are:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
The first harshard number > 1000 is 1002

>

Run BASIC

while count < 20
  h = h + 1
  if neven(h) = 0 then
    count = count + 1
    print count;": ";h
  end if
wend

h = 1000
while 1 = 1
  h = h + 1
  if neven(h) = 0 then
    print h
    exit while
  end if
wend

function neven(h)
h$ = str$(h)
for i = 1 to len(h$)
 d = d + val(mid$(h$,i,1))
next i
neven = h mod d
end function
Output:
1: 1
2: 2
3: 3
4: 4
5: 5
6: 6
7: 7
8: 8
9: 9
10: 10
11: 12
12: 18
13: 20
14: 21
15: 24
16: 27
17: 30
18: 36
19: 40
20: 42
1002

Rust

fn is_harshad (n : u32) -> bool {
    let sum_digits = n.to_string()
                      .chars()
                      .map(|c| c.to_digit(10).unwrap())
                      .fold(0, |a, b| a+b);
    n % sum_digits == 0
}

fn main() {
    for i in (1u32..).filter(|num| is_harshad(*num)).take(20) {
        println!("Harshad : {}", i);
    }
    for i in (1_001u32..).filter(|num| is_harshad(*num)).take(1) {
        println!("First Harshad bigger than 1_000 : {}", i);
    }
}
Output:
Harshad : 1
Harshad : 2
Harshad : 3
Harshad : 4
Harshad : 5
Harshad : 6
Harshad : 7
Harshad : 8
Harshad : 9
Harshad : 10
Harshad : 12
Harshad : 18
Harshad : 20
Harshad : 21
Harshad : 24
Harshad : 27
Harshad : 30
Harshad : 36
Harshad : 40
Harshad : 42
First Harshad bigger than 1_000 : 1002

Scala

object Harshad extends App {
  val harshads = Stream.from(1).filter(i => i % i.toString.map(_.asDigit).sum == 0)

  println(harshads.take(20).toList)
  println(harshads.filter(_ > 1000).head)
}
Output:
List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42)
1002

Scheme

#!/usr/local/bin/gosh

;; Show the first 20 niven numbers and the
;; first one greater than 1000.
(define (main args)
    (display (iota-filtered 20 1 niven?))(newline)
    (display (iota-filtered 1 1001 niven?))(newline))

;; Return a list of length n 
;; for numbers starting at start
;; that satisfy the predicate fn.
(define (iota-filtered n start fn)
    (let loop ((num start)(lst (list)))
        (if (= (length lst) n)
            lst
            (loop (+ 1 num) (if (fn num) (append lst (list num)) lst)))))

;; Is a number a niven number?
(define (niven? n)
    (and (> n 0) (= 0 (remainder n (sum-of-digits n)))))

;; Get the sum of the digits of a number.
(define (sum-of-digits n)
    (apply + (map string->number (map string (string->list (number->string n))))))
Output:
(1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42)
(1002)

Seed7

$ include "seed7_05.s7i";

const func integer: sumOfDigits (in var integer: num) is func
  result
    var integer: sum is 0;
  begin
    repeat
      sum +:= num rem 10;
      num := num div 10;
    until num = 0;
  end func;

const func integer: nextHarshadNum (inout integer: num) is func
  result
    var integer: harshadNumber is 0;
  begin
    while num mod sumOfDigits(num) <> 0 do
      incr(num);
    end while;
    harshadNumber := num;
  end func;

const proc: main is func
  local
    var integer: current is 1;
    var integer: count is 0;
  begin
    for count range 1 to 20 do
      write(nextHarshadNum(current) <& " ");
      incr(current);
    end for;
    current := 1001; 
    writeln(" ... " <& nextHarshadNum(current));
  end func;
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42  ... 1002

SETL

program harshad;
    print("First 20 Harshad numbers:", [n := next(n) : i in [1..20]]);
    print("First Harshad number >1000:", next(1000));

    proc next(n);
        (until harshad(n)) n +:= 1; end;
        return n;
    end proc;

    proc harshad(n);
        return n mod +/[val d : d in str n] = 0;
    end proc;
end program;
Output:
First 20 Harshad numbers: [1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42]
First Harshad number >1000: 1002

Sidef

func harshad() {
    var n = 0
    {
        ++n while !n.digits.sum.divides(n)
        n
    }
}

var iter = harshad()
say 20.of { iter.run }

var n
do {
    n = iter.run
} while (n <= 1000)

say n
Output:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
1002

Sinclair ZX81 BASIC

Works with 1k of RAM. FAST isn't all that fast.

 10 FAST
 20 LET N=0
 30 LET H=0
 40 LET N=N+1
 50 LET N$=STR$ N
 60 LET SD=0
 70 FOR I=1 TO LEN N$
 80 LET SD=SD+VAL N$(I)
 90 NEXT I
100 IF N/SD<>INT (N/SD) THEN GOTO 40
110 LET H=H+1
120 IF H<=20 OR N>1000 THEN PRINT N
130 IF N>1000 THEN GOTO 150
140 GOTO 40
150 SLOW
Output:
1
2
3
4
5
6
7
8
9
10
12
18
20
21
24
27
30
36
40
42
1002

Swift

struct Harshad: Sequence, IteratorProtocol {
  private var i = 0

  mutating func next() -> Int? {
    while true {
      i += 1

      if i % Array(String(i)).map(String.init).compactMap(Int.init).reduce(0, +) == 0 {
        return i
      }
    }
  }
}

print("First 20: \(Array(Harshad().prefix(20)))")
print("First over a 1000: \(Harshad().first(where: { $0 > 1000 })!)")
Output:
First 20: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42]
First over a 1000: 1002

Tcl

# Determine if the given number is a member of the class of Harshad numbers
proc isHarshad {n} {
    if {$n < 1} {return false}
    set sum [tcl::mathop::+ {*}[split $n ""]]
    return [expr {$n%$sum == 0}]
}

# Get the first 20 numbers that satisfy the condition
for {set n 1; set harshads {}} {[llength $harshads] < 20} {incr n} {
    if {[isHarshad $n]} {
	lappend harshads $n
    }
}
puts [format "First twenty Harshads: %s" [join $harshads ", "]]

# Get the first value greater than 1000 that satisfies the condition
for {set n 1000} {![isHarshad [incr n]]} {} {}
puts "First Harshad > 1000 = $n"
Output:
First twenty Harshads: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42
First Harshad > 1000 = 1002

uBasic/4tH

C=0

For I = 1 Step 1 Until C = 20          ' First 20 Harshad numbers
  If FUNC(_FNHarshad(I)) Then Print I;" "; : C = C + 1
Next

For I = 1001 Step 1                    ' First Harshad greater than 1000
  If FUNC(_FNHarshad(I)) Then Print I;" " : Break
Next

End

_FNHarshad Param(1)
  Local(2)

  c@ = a@
  b@ = 0
  Do While (c@ > 0)
     b@ = b@ + (c@ % 10)
     c@ = c@ / 10
  Loop

Return ((a@ % b@) = 0)
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002

0 OK, 0:185

UNIX Shell

Works with: Bourne Again SHell
Works with: Korn Shell
Works with: Z Shell
function main {
  local -i i=0 n
  gen_harshad | while read n; do
    if (( !i )); then
      printf '%d' "$n"
    elif (( i < 20 )); then
      printf ' %d' "$n"
    elif (( i == 20 )); then
      printf '\n'
    elif (( n > 1000 )); then
      printf '%d\n' "$n"
      return
    fi
    (( i++ ))
  done
}

function is_harshad {
  local -i sum=0 n=$1  i
  for (( i=0; i<${#n}; ++i )); do
    (( sum += ${n:$i:1} ))
  done
  (( n % sum == 0 ))
}

function gen_harshad {
  local -i i=1
  while true; do
    if is_harshad $i; then
      printf '%d\n' "$i"
    fi
    (( i++ ))
  done
}

main "$@"
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42
1002

VBA

Option Explicit

Sub Main()
Dim i As Long, out As String, Count As Integer
   Do
      i = i + 1
      If IsHarshad(i) Then out = out & i & ", ": Count = Count + 1
   Loop While Count < 20
   Debug.Print "First twenty Harshad numbers are : " & vbCrLf & out & "..."
   
   i = 1000
   Do
      i = i + 1
   Loop While Not IsHarshad(i)
   Debug.Print "The first harshad number after 1000 is : " & i
End Sub

Function IsHarshad(sNumber As Long) As Boolean
Dim Summ As Long, i As Long, temp
   temp = Split(StrConv(sNumber, vbUnicode), Chr(0))
   For i = LBound(temp) To UBound(temp) - 1
      Summ = Summ + temp(i)
   Next i
   IsHarshad = sNumber Mod Summ = 0
End Function
Output:
First twenty Harshad numbers are : 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, ...
The first harshad number after 1000 is : 1002

VBScript

n = 0
m = 1
first20 = ""
after1k = ""

Do
	If IsHarshad(m) And n <= 20 Then
		first20 = first20 & m & ", "
		n = n + 1
		m = m + 1
	ElseIf IsHarshad(m) And m > 1000 Then
		after1k = m
		Exit Do
	Else
		m = m + 1
	End If
Loop

WScript.StdOut.Write "First twenty Harshad numbers are: "
WScript.StdOut.WriteLine
WScript.StdOut.Write first20
WScript.StdOut.WriteLine
WScript.StdOut.Write "The first Harshad number after 1000 is: "
WScript.StdOut.WriteLine
WScript.StdOut.Write after1k

Function IsHarshad(s)
	IsHarshad = False
	sum = 0
	For i = 1 To Len(s)
		sum = sum + CInt(Mid(s,i,1))
	Next
	If s Mod sum = 0 Then
		IsHarshad = True
	End If
End Function
Output:
First twenty Harshad numbers are: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 
The first Harshad number after 1000 is: 
1002

Visual FoxPro

LOCAL lnCount As Integer, k As Integer
CLEAR
lnCount = 0
k = 0
*!* First 20 numbers
? "First 20 numbers:"
DO WHILE lnCount < 20
    k = k + 1 
    IF Harshad(k)
	lnCount = lnCount + 1 
	? lnCount, k
    ENDIF
ENDDO
*!* First such number > 1000
k = 1001
DO WHILE NOT Harshad(k)
    k = k + 1 
ENDDO
? "First such number > 1000", k

FUNCTION Harshad(n As Integer) As Boolean
LOCAL cn As String, d As Integer, i As Integer
cn = TRANSFORM(n)
d = 0
FOR i = 1 TO LEN(cn)
    d = d + VAL(SUBSTR(cn, i, 1))
ENDFOR
RETURN n % d = 0
ENDFUNC
Output:
First 20 numbers:  
         1          1
         2          2
         3          3
         4          4
         5          5
         6          6
         7          7
         8          8
         9          9
        10         10
        11         12
        12         18
        13         20
        14         21
        15         24
        16         27
        17         30
        18         36
        19         40
        20         42
First such number > 1000: 1002

V (Vlang)

fn main() {
    mut count, mut i := 0, 0
	print("The first 20 Harshad numbers: ")
    for {
		i++
        if is_harshad(i) == true {
            if count < 20 {print("${i} ") count++} 
			if i > 1000 {print("\nThe first Harshad number above 1000: ${i}") break}
        }
    }
}

fn sum_digits(number int) int {
    mut num, mut sum := number, 0
	if number <= 0 {return 0}
	for num > 0 {
		sum += num % 10
		num /= 10
	}
	return sum
}

fn is_harshad(n int) bool {
	if n % sum_digits(n) == 0 {return true}
	return false
}
Output:
The first 20 Harshad numbers: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
The first Harshad number above 1000: 1002

VTL-2

10 ?="First 20: ";
20 N=0
30 I=0
40 #=200
50 ?=N
60 $=32
70 I=I+1
80 #=I<20*40
90 ?=""
100 ?="First above 1000: ";
110 N=1000
120 #=200
130 ?=N
140 #=999
200 ;=!
210 N=N+1
220 K=N
230 S=0
240 K=K/10
250 S=S+%
260 #=0<K*240
270 #=N/S*0+0<%*210
280 #=;
Output:
First 20: 1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
First above 1000: 1002

Whitespace

This solution was generated from the pseudo-Assembly below. A live run is available for the inquiring skeptic.

push 0 ; Harshad numbers found
push 0 ; counter

0:  ; Increment the counter, call "digsum", branch on the modulus.
    push 1 add dup dup
    push 0 call 1 mod
        jz 2
        jump 0

1:  ; [n 0] => [digsum(n)]
    copy 1
    push 10 mod add swap
    push 10 div swap
    push 0 copy 2 sub
        jn 1
        slide 1 ret

2:  ; Should we print this Harshad number?
    push 1000 copy 1 sub jn 3 ; We're done if it's greater than 1000.
    swap push 1 add swap      ; Increment how many we've found so far.
    push 20 copy 2 sub jn 0   ; If we've already got 20, go back to the top.
    dup onum push 32 ochr     ; Otherwise, print it and a space.
    jump 0                    ; And /then/ go back to the top.

3:  ; Print the > 1000 Harshad number on its own line and exit clean.
    push 10 ochr onum pop push 10 ochr exit
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 
1002

Wren

var niven = Fiber.new {
    var n = 1
    while (true) {
        var i = n
        var sum = 0
        while (i > 0) {
            sum = sum + i%10
            i = (i/10).floor
        }
        if (n%sum == 0) Fiber.yield(n)
        n = n + 1
   }
}

System.print("The first 20 Niven numbers are:")
for (i in 1..20) {
    System.write("%(niven.call()) ")
}
System.write("\n\nThe first Niven number greater than 1000 is: ")
while (true) {
    var niv = niven.call()
    if (niv > 1000) {
        System.print(niv)
        break
    }
}
Output:
The first 20 Niven numbers are:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 

The first Niven number greater than 1000 is: 1002

XPL0

include c:\cxpl\codes;          \intrinsic 'code' declarations
int H, C, N, S;                 \Harshad number, Counter, Number, Sum
[H:= 1;  C:= 0;
loop    [N:= H;  S:= 0;         \sum digits
        repeat  N:= N/10;
                S:= S + rem(0);
        until   N = 0;
        if rem(H/S) = 0 then    \Harshad no.is evenly divisible by sum of digits
                [if C < 20 then [IntOut(0, H);  ChOut(0, ^ );  C:= C+1];
                if H > 1000 then [IntOut(0, H);  CrLf(0);  quit];
                ];
        H:= H+1;
        ];
]
Output:
1 2 3 4 5 6 7 8 9 10 12 18 20 21 24 27 30 36 40 42 1002


Yabasic

Translation of: BASIC256
sub sumDigits(n)
    if n < 0 then return 0 : endif
    local sum
    while n > 0
        sum = sum + mod(n, 10)
        n = int(n / 10)
    wend
    return sum
end sub

sub isHarshad(n)
    return mod(n, sumDigits(n)) = 0
end sub

print "Los primeros 20 numeros de Harshad o Niven son:"
contar = 0
i = 1

repeat
    if isHarshad(i) then
        print i, " ",
        contar = contar + 1
    end if
    i = i + 1
until contar = 20

print : print
print "El primero de esos numeros por encima de 1000 es:"
i = 1001

do  
    if isHarshad(i) then 
        print i, " "
        break
    end if
    i = i + 1
loop
print
end
Output:
Igual que la entrada de BASIC256.


zkl

fcn harshad(n){ 0==n%(n.split().sum(0)) }
[1..].tweak(fcn(n){ if(not harshad(n)) return(Void.Skip); n })
   .walk(20).println();
[1..].filter(20,harshad).println();
[1001..].filter1(harshad).println();

Walkers are zkl iterators. [a..b] is a Walker from a to b. Walkers can be tweaked to transform the sequence they are walking. In this case, ignore non Harshad numbers. Then tell the walker to get 20 items from that [modified] sequence.

In this case, filters are the better solution.

Output:
L(1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42)
L(1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42)
L(1002)

ZX Spectrum Basic

Translation of: AWK
10 LET k=0: LET n=0
20 IF k=20 THEN GO TO 60
30 LET n=n+1: GO SUB 1000
40 IF isHarshad THEN PRINT n;" ";: LET k=k+1
50 GO TO 20
60 LET n=1001
70 GO SUB 1000: IF NOT isHarshad THEN LET n=n+1: GO TO 70
80 PRINT '"First Harshad number larger than 1000 is ";n
90 STOP 
1000 REM is Harshad?
1010 LET s=0: LET n$=STR$ n
1020 FOR i=1 TO LEN n$
1030 LET s=s+VAL n$(i)
1040 NEXT i
1050 LET isHarshad=NOT FN m(n,s)
1060 RETURN 
1100 DEF FN m(a,b)=a-INT (a/b)*b