Fairshare between two and more

From Rosetta Code
Task
Fairshare between two and more
You are encouraged to solve this task according to the task description, using any language you may know.

The Thue-Morse sequence is a sequence of ones and zeros that if two people take turns in the given order, the first persons turn for every '0' in the sequence, the second for every '1'; then this is shown to give a fairer, more equitable sharing of resources. (Football penalty shoot-outs for example, might not favour the team that goes first as much if the penalty takers take turns according to the Thue-Morse sequence and took 2^n penalties)

The Thue-Morse sequence of ones-and-zeroes can be generated by:

"When counting in binary, the digit sum modulo 2 is the Thue-Morse sequence"


Sharing fairly between two or more

Use this method:

When counting base b, the digit sum modulo b is the Thue-Morse sequence of fairer sharing between b people.


Task

Counting from zero;   using a function/method/routine to express an integer count in base b,
sum the digits modulo b to produce the next member of the Thue-Morse fairshare series for b people.


Show the first 25 terms of the fairshare sequence:

  •   For two people:
  •   For three people
  •   For five people
  •   For eleven people


Related tasks


See also



11l

Translation of: Python
F _basechange_int(=num, b)
   ‘
    Return list of ints representing positive num in base b
   ’
   I num == 0
      R [0]
   [Int] result
   L num != 0
      (num, V d) = divmod(num, b)
      result.append(d)
   R reversed(result)

F fairshare(b, n)
   [Int] r
   L(i) 0..
      r [+]= sum(_basechange_int(i, b)) % b
      I r.len == n
         L.break
   R r

L(b) (2, 3, 5, 11)
   print(‘#2’.format(b)‘: ’String(fairshare(b, 25))[1 .< (len)-1])
Output:
 2: 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0
 3: 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1
 5: 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3
11: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4

ALGOL 68

BEGIN # Use the generalised Thue-Morse sequence to generate Fairshare        #
      # sequences for various numbers of people                              #
    # returns the digit sum of n in the specified base                       #
    PROC digit sum = ( INT n, base )INT:
         IF n = 0 THEN 0
         ELSE
             INT result := 0;
             INT v      := ABS n;
             WHILE v > 0 DO
                 result +:= v MOD base;
                 v   OVERAB base
             OD;
             result
         FI # digit sum # ;
    # show the first n terms of the fairshare sequence in the specified base #
    PROC show fairshare = ( INT n, base )VOID:
         BEGIN
             print( ( whole( base, -2 ), ":" ) );
             FOR i FROM 0 TO n - 1 DO
                 print( ( " ", whole( digit sum( i, base ) MOD base, -2 ) ) )
             OD;
             print( ( newline ) )
         END # show fairshare # ;
    
    show fairshare( 25,  2 );
    show fairshare( 25,  3 );
    show fairshare( 25,  5 );
    show fairshare( 25, 11 )
END
Output:
 2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
 3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
 5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

APL

Works with: Dyalog APL
fairshare  ⊣|(+/¯1)
2 3 5 11 ∘.fairshare 0,⍳24
Output:
0 1 1 0 1 0 0 1 1 0  0 1 0 1 1 0 1 0 0 1  0 1 1 0 0
0 1 2 1 2 0 2 0 1 1  2 0 2 0 1 0 1 2 2 0  1 0 1 2 1
0 1 2 3 4 1 2 3 4 0  2 3 4 0 1 3 4 0 1 2  4 0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4

AppleScript

-- thueMorse :: Int -> [Int]
on thueMorse(base)
    -- Non-finite sequence of Thue-Morse terms for a given base.
    fmapGen(baseDigitsSumModBase(base), enumFrom(0))
end thueMorse


-- baseDigitsSumModBase :: Int -> Int -> Int
on baseDigitsSumModBase(b)
    script
        on |λ|(n)
            script go
                on |λ|(x)
                    if 0 < x then
                        Just(Tuple(x mod b, x div b))
                    else
                        Nothing()
                    end if
                end |λ|
            end script
            sum(unfoldl(go, n)) mod b
        end |λ|
    end script
end baseDigitsSumModBase


-------------------------- TEST ---------------------------
on run
    script rjust
        on |λ|(x)
            justifyRight(2, space, str(x))
        end |λ|
    end script
    
    script test
        on |λ|(n)
            |λ|(n) of rjust & " -> " & ¬
                showList(map(rjust, take(25, thueMorse(n))))
        end |λ|
    end script
    
    unlines({"First 25 fairshare terms for N players:"} & ¬
        map(test, {2, 3, 5, 11}))
end run


-------------------- GENERIC FUNCTIONS --------------------

-- Just :: a -> Maybe a
on Just(x)
    -- Constructor for an inhabited Maybe (option type) value.
    -- Wrapper containing the result of a computation.
    {type:"Maybe", Nothing:false, Just:x}
end Just


-- Nothing :: Maybe a
on Nothing()
    -- Constructor for an empty Maybe (option type) value.
    -- Empty wrapper returned where a computation is not possible.
    {type:"Maybe", Nothing:true}
end Nothing


-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
    -- Constructor for a pair of values, possibly of two different types.
    {type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple


-- enumFrom :: Enum a => a -> [a]
on enumFrom(x)
    script
        property v : missing value
        property blnNum : class of x is not text
        on |λ|()
            if missing value is not v then
                if blnNum then
                    set v to 1 + v
                else
                    set v to succ(v)
                end if
            else
                set v to x
            end if
            return v
        end |λ|
    end script
end enumFrom


-- fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
on fmapGen(f, gen)
    script
        property g : mReturn(f)
        on |λ|()
            set v to gen's |λ|()
            if v is missing value then
                v
            else
                g's |λ|(v)
            end if
        end |λ|
    end script
end fmapGen


-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl


-- intercalateS :: String -> [String] -> String
on intercalate(delim, xs)
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, delim}
    set s to xs as text
    set my text item delimiters to dlm
    s
end intercalate


-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, s)
    if n > length of s then
        text -n thru -1 of ((replicate(n, cFiller) as text) & s)
    else
        s
    end if
end justifyRight


-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    -- The list obtained by applying f
    -- to each element of xs.
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map


-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    -- 2nd class handler function lifted into 1st class script wrapper. 
    if script is class of f then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn


-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary 
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
    set out to {}
    if 1 > n then return out
    set dbl to {a}
    
    repeat while (1 < n)
        if 0 < (n mod 2) then set out to out & dbl
        set n to (n div 2)
        set dbl to (dbl & dbl)
    end repeat
    return out & dbl
end replicate


-- showList :: [a] -> String
on showList(xs)
    "[" & intercalate(",", map(my str, xs)) & "]"
end showList


-- str :: a -> String
on str(x)
    x as string
end str


-- sum :: [Num] -> Num
on sum(xs)
    script add
        on |λ|(a, b)
            a + b
        end |λ|
    end script
    
    foldl(add, 0, xs)
end sum


-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
    set c to class of xs
    if list is c then
        if 0 < n then
            items 1 thru min(n, length of xs) of xs
        else
            {}
        end if
    else if string is c then
        if 0 < n then
            text 1 thru min(n, length of xs) of xs
        else
            ""
        end if
    else if script is c then
        set ys to {}
        repeat with i from 1 to n
            set v to |λ|() of xs
            if missing value is v then
                return ys
            else
                set end of ys to v
            end if
        end repeat
        return ys
    else
        missing value
    end if
end take


-- > unfoldl (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
-- > [1,2,3,4,5,6,7,8,9,10]
-- unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
on unfoldl(f, v)
    set xr to Tuple(v, v) -- (value, remainder)
    set xs to {}
    tell mReturn(f)
        repeat -- Function applied to remainder.
            set mb to |λ|(|2| of xr)
            if Nothing of mb then
                exit repeat
            else -- New (value, remainder) tuple,
                set xr to Just of mb
                -- and value appended to output list.
                set xs to ({|1| of xr} & xs)
            end if
        end repeat
    end tell
    return xs
end unfoldl


-- unlines :: [String] -> String
on unlines(xs)
    -- A single string formed by the intercalation
    -- of a list of strings with the newline character.
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, linefeed}
    set s to xs as text
    set my text item delimiters to dlm
    s
end unlines
Output:
First 25 fairshare terms for N players:
 2 -> [ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
 3 -> [ 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
 5 -> [ 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
11 -> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 0, 2, 3, 4]

Arturo

thueMorse: function [base, howmany][
    i: 0
    result: new []
    while [howmany > size result][
        'result ++ (sum digits.base:base i) % base
        i: i + 1
    ]

    return result
]

loop [2 3 5 11] 'b ->
    print [
        (pad.right "Base "++(to :string b) 7)++" =>" 
        join.with:" " map to [:string] thueMorse b 25 'x -> pad x 2
    ]
Output:
Base 2  =>  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0 
Base 3  =>  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1 
Base 5  =>  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3 
Base 11 =>  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

BASIC

10 DEFINT A-Z
20 DIM B(4): B(1)=2: B(2)=3: B(3)=5: B(4)=11
30 FOR I=1 TO 4
40 B=B(I)
50 PRINT USING "###:";I;
60 FOR N=0 TO 24: GOSUB 100: PRINT USING "###";S;: NEXT N
70 PRINT
80 NEXT I
90 END
100 REM
101 REM S = N'th item of fairshare sequence for B people
102 REM
110 S=0: Z=N
120 S=S+Z MOD B: Z=Z\B: IF Z>0 THEN 120
130 S=S MOD B
140 RETURN
Output:
  1:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
  2:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
  3:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
  4:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

BCPL

get "libhdr"

let digitsum(n,b) =
    n < b -> n,
    n rem b + digitsum(n/b, b)

let fairshare(n,b) =
    digitsum(n,b) rem b

let start() be
$(  let bs = table 2, 3, 5, 11
    for bi = 0 to 3
    $(  writef("%I2:", bs!bi)
        for n = 0 to 24 do writef("%I2 ", fairshare(n, bs!bi))
        wrch('*N')
    $)
$)
Output:
 2: 0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
 3: 0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
 5: 0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
11: 0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

C

#include <stdio.h>
#include <stdlib.h>

int turn(int base, int n) {
    int sum = 0;
    while (n != 0) {
        int rem = n % base;
        n = n / base;
        sum += rem;
    }
    return sum % base;
}

void fairshare(int base, int count) {
    int i;

    printf("Base %2d:", base);
    for (i = 0; i < count; i++) {
        int t = turn(base, i);
        printf(" %2d", t);
    }
    printf("\n");
}

void turnCount(int base, int count) {
    int *cnt = calloc(base, sizeof(int));
    int i, minTurn, maxTurn, portion;

    if (NULL == cnt) {
        printf("Failed to allocate space to determine the spread of turns.\n");
        return;
    }

    for (i = 0; i < count; i++) {
        int t = turn(base, i);
        cnt[t]++;
    }

    minTurn = INT_MAX;
    maxTurn = INT_MIN;
    portion = 0;
    for (i = 0; i < base; i++) {
        if (cnt[i] > 0) {
            portion++;
        }
        if (cnt[i] < minTurn) {
            minTurn = cnt[i];
        }
        if (cnt[i] > maxTurn) {
            maxTurn = cnt[i];
        }
    }

    printf("  With %d people: ", base);
    if (0 == minTurn) {
        printf("Only %d have a turn\n", portion);
    } else if (minTurn == maxTurn) {
        printf("%d\n", minTurn);
    } else {
        printf("%d or %d\n", minTurn, maxTurn);
    }

    free(cnt);
}

int main() {
    fairshare(2, 25);
    fairshare(3, 25);
    fairshare(5, 25);
    fairshare(11, 25);

    printf("How many times does each get a turn in 50000 iterations?\n");
    turnCount(191, 50000);
    turnCount(1377, 50000);
    turnCount(49999, 50000);
    turnCount(50000, 50000);
    turnCount(50001, 50000);

    return 0;
}
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

C#

Translation of: Java
using System;
using System.Collections.Generic;

class FairshareBetweenTwoAndMore
{
    static void Main(string[] args)
    {
        foreach (int baseValue in new List<int> { 2, 3, 5, 11 })
        {
            Console.WriteLine($"Base {baseValue} = {string.Join(", ", ThueMorseSequence(25, baseValue))}");
        }
    }

    private static List<int> ThueMorseSequence(int terms, int baseValue)
    {
        List<int> sequence = new List<int>();
        for (int i = 0; i < terms; i++)
        {
            int sum = 0;
            int n = i;
            while (n > 0)
            {
                // Compute the digit sum
                sum += n % baseValue;
                n /= baseValue;
            }
            // Compute the digit sum modulo baseValue.
            sequence.Add(sum % baseValue);
        }
        return sequence;
    }
}
Output:
Base 2 = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0
Base 3 = 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1
Base 5 = 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3
Base 11 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4

C++

Translation of: C
#include <iostream>
#include <vector>

int turn(int base, int n) {
    int sum = 0;
    while (n != 0) {
        int rem = n % base;
        n = n / base;
        sum += rem;
    }
    return sum % base;
}

void fairshare(int base, int count) {
    printf("Base %2d:", base);
    for (int i = 0; i < count; i++) {
        int t = turn(base, i);
        printf(" %2d", t);
    }
    printf("\n");
}

void turnCount(int base, int count) {
    std::vector<int> cnt(base, 0);

    for (int i = 0; i < count; i++) {
        int t = turn(base, i);
        cnt[t]++;
    }

    int minTurn = INT_MAX;
    int maxTurn = INT_MIN;
    int portion = 0;
    for (int i = 0; i < base; i++) {
        if (cnt[i] > 0) {
            portion++;
        }
        if (cnt[i] < minTurn) {
            minTurn = cnt[i];
        }
        if (cnt[i] > maxTurn) {
            maxTurn = cnt[i];
        }
    }

    printf("  With %d people: ", base);
    if (0 == minTurn) {
        printf("Only %d have a turn\n", portion);
    } else if (minTurn == maxTurn) {
        printf("%d\n", minTurn);
    } else {
        printf("%d or %d\n", minTurn, maxTurn);
    }
}

int main() {
    fairshare(2, 25);
    fairshare(3, 25);
    fairshare(5, 25);
    fairshare(11, 25);

    printf("How many times does each get a turn in 50000 iterations?\n");
    turnCount(191, 50000);
    turnCount(1377, 50000);
    turnCount(49999, 50000);
    turnCount(50000, 50000);
    turnCount(50001, 50000);

    return 0;
}
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

Cowgol

include "cowgol.coh";

sub fairshare(index: uint16, base: uint16): (result: uint16) is
    result := 0;
    while index > 0 loop
        result := result + index % base;
        index := index / base;
    end loop;
    result := result % base;
end sub;

sub printSequence(amount: uint16, base: uint16) is
    print_i16(base);
    print(": ");
    var index: uint16 := 0;
    while index < amount loop
        print_i16(fairshare(index, base));
        print(" ");
        index := index + 1;
    end loop;
    print_nl();
end sub;

printSequence(25, 2);
printSequence(25, 3);
printSequence(25, 5);
printSequence(25, 11);
Output:
2: 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0
3: 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1
5: 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
11: 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4

EasyLang

Translation of: Cowgol
func fairshare ind base .
   while ind > 0
      r += ind mod base
      ind = ind div base
   .
   r = r mod base
   return r
.
proc sequence n base . .
   write base & ": "
   for ind range0 n
      write (fairshare ind base) & " "
   .
   print ""
.
sequence 25 2
sequence 25 3
sequence 25 5
sequence 25 11

D

Translation of: Kotlin
import std.array;
import std.stdio;

int turn(int base, int n) {
    int sum = 0;
    while (n != 0) {
        int re = n % base;
        n /= base;
        sum += re;
    }
    return sum % base;
}

void fairShare(int base, int count) {
    writef("Base %2d:", base);
    foreach (i; 0..count) {
        auto t = turn(base, i);
        writef(" %2d", t);
    }
    writeln;
}

void turnCount(int base, int count) {
    auto cnt = uninitializedArray!(int[])(base);
    cnt[] = 0;

    foreach (i; 0..count) {
        auto t = turn(base, i);
        cnt[t]++;
    }

    auto minTurn = int.max;
    auto maxTurn = int.min;
    int portion = 0;
    foreach (num; cnt) {
        if (num > 0) {
            portion++;
        }
        if (num < minTurn) {
            minTurn = num;
        }
        if (maxTurn < num) {
            maxTurn = num;
        }
    }

    writef("  With %d people: ", base);
    if (minTurn == 0) {
        writefln("Only %d have a turn", portion);
    } else if (minTurn == maxTurn) {
        writeln(minTurn);
    } else {
        writeln(minTurn," or ", maxTurn);
    }
}

void main() {
    fairShare(2, 25);
    fairShare(3, 25);
    fairShare(5, 25);
    fairShare(11, 25);

    writeln("How many times does each get a turn in 50000 iterations?");
    turnCount(191, 50000);
    turnCount(1377, 50000);
    turnCount(49999, 50000);
    turnCount(50000, 50000);
    turnCount(50001, 50000);
}
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

Delphi

Works with: Delphi version 6.0


procedure DoFairshare(Memo: TMemo; Base: integer);
{Display 25 fairshare sequence items}
var I, N, Sum: integer;
var S: string;
begin
S:=Format('Base - %2d: ',[Base]);
for I:= 0 to 25-1 do
    begin
    N:= I; Sum:= 0;  
    while N>0 do
    	begin
    	Sum:= Sum + (N mod Base);
    	N:= N div Base;
    	end;
    S:=S+' '+IntToStr(Sum mod Base);
    end;
Memo.Lines.Add(S);
end;


procedure ShowFairshare(Memo: TMemo);
begin
DoFairshare(Memo,2);
DoFairshare(Memo,3);
DoFairshare(Memo,5);
DoFairshare(Memo,11);
end;
Output:
Base -  2:  0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0
Base -  3:  0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1
Base -  5:  0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
Base - 11:  0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4

Elapsed Time: 4.753 ms.


Draco

proc fairshare(word n, base) word:
    word result;
    result := 0;
    while n>0 do
        result := result + n % base;
        n := n / base
    od;
    result % base
corp

proc main() void:
    [4]word bases = (2,3,5,11);
    word b, n;
    for b from 0 upto 3 do
        write(bases[b]:2, ':');
        for n from 0 upto 24 do
            write(fairshare(n, bases[b]):3)
        od;
        writeln()
    od
corp
Output:
 2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
 3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
 5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

DuckDB

Works with: DuckDB version V1.0
# Generate the "reverse array" representations of the decimal integer n in base b,
# where b > 1, i.e. the least significant digit is first.
# b and all components of the array are decimal integers.
create or replace function integer_to_base(n, base) as (
  WITH RECURSIVE cte AS (
    select (n % base) as digit,
           (n // base) as k,
           0 as i
    union all
    select k % base as digit,
           (k // base) as k,
           i+1 as i
    from cte
    where k > 0
    )
    select array_agg(digit) from cte
);

# Using the "reverse array" represententation of the integers up to mx in base b
# as above, generate a table with each row representing an integer.
# E.g. for binary: [0], [1], [0,1], [1,1] ...
# mx should be given as a decimal integer.
# Due to a bug in DuckDB the CTE name must be distinctive.
create or replace function integers_in_base(base, mx) as table (
    WITH RECURSIVE cte1 AS (
    select 0 as i, [0] as lst
    union all
    select i+1 as i, (integer_to_base(i+1, base)) as lst
    from cte1
    where i < mx
    )
    from cte1
);    

create or replace function fairshare(base, numberOfTerms) as table (
  select (list_sum(lst) % base) as turn
  from integers_in_base(base, numberOfTerms - 1)
);

.print The first 25 terms of the fair share sequences:
select players, (select array_agg(turn) from fairshare(players, 25) ) as turns
from unnest( [2,3,5,11] ) as t(players);
Output:
The first 25 terms of the fair share sequences:
┌─────────┬───────────────────────────────────────────────────────────────────────────────┐
│ players │                                     turns                                     │
│  int32  │                                   int128[]                                    │
├─────────┼───────────────────────────────────────────────────────────────────────────────┤
│       2 │ [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]   │
│       3 │ [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]   │
│       5 │ [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]   │
│      11 │ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4] │
└─────────┴───────────────────────────────────────────────────────────────────────────────┘

Factor

Works with: Factor version 0.99 2020-01-23
USING: formatting kernel math math.parser sequences ;

: nth-fairshare ( n base -- m )
    [ >base string>digits sum ] [ mod ] bi ;

: <fairshare> ( n base -- seq )
    [ nth-fairshare ] curry { } map-integers ;

{ 2 3 5 11 }
[ 25 over <fairshare> "%2d -> %u\n" printf ] each
Output:
 2 -> { 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 }
 3 -> { 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 }
 5 -> { 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 }
11 -> { 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4 }

FreeBASIC

Translation of: Visual Basic .NET
Function Turn(mibase As Integer, n As Integer) As Integer
    Dim As Integer sum = 0
    While n <> 0
        Dim As Integer re = n Mod mibase
        n \= mibase
        sum += re
    Wend
    Return sum Mod mibase
End Function

Sub Fairshare(mibase As Integer, count As Integer)
    Print Using "mibase ##:"; mibase;
    For i As Integer = 1 To count
        Dim As Integer t = Turn(mibase, i - 1)
        Print Using " ##"; t;
    Next i
    Print
End Sub

Sub TurnCount(mibase As Integer, count As Integer)
    Dim As Integer cnt(mibase), i
    For i = 1 To mibase
        cnt(i - 1) = 0
    Next i
    
    For i = 1 To count
        Dim As Integer t = Turn(mibase, i - 1)
        cnt(t) += 1
    Next i
    
    Dim As Integer minTurn = 4294967295 'MaxValue of uLong
    Dim As Integer maxTurn = 0 'MinValue of uLong
    Dim As Integer portion = 0
    For i As Integer = 1 To mibase
        Dim As Integer num = cnt(i - 1)
        If num > 0 Then portion += 1
        If num < minTurn Then minTurn = num
        If num > maxTurn Then maxTurn = num
    Next i
    
    Print Using "  With ##### people: "; mibase;
    If 0 = minTurn Then
        Print Using "Only & have a turn"; portion
    Elseif minTurn = maxTurn Then
        Print minTurn
    Else
        Print Using "& or &"; minTurn; maxTurn
    End If
End Sub

Fairshare(2, 25)
Fairshare(3, 25)
Fairshare(5, 25)
Fairshare(11, 25)

Print "How many times does each get a turn in 50000 iterations?"
TurnCount(191, 50000)
TurnCount(1377, 50000)
TurnCount(49999, 50000)
TurnCount(50000, 50000)
TurnCount(50001, 50000)
Sleep
Output:
Igual que la entrada de Visual Basic .NET.


Go

package main

import (
    "fmt"
    "sort"
    "strconv"
    "strings"
)

func fairshare(n, base int) []int {
    res := make([]int, n)
    for i := 0; i < n; i++ {
        j := i
        sum := 0
        for j > 0 {
            sum += j % base
            j /= base
        }
        res[i] = sum % base
    }
    return res
}

func turns(n int, fss []int) string {
    m := make(map[int]int)
    for _, fs := range fss {
        m[fs]++
    }
    m2 := make(map[int]int)
    for _, v := range m {
        m2[v]++
    }
    res := []int{}
    sum := 0
    for k, v := range m2 {
        sum += v
        res = append(res, k)
    }
    if sum != n {
        return fmt.Sprintf("only %d have a turn", sum)
    }
    sort.Ints(res)
    res2 := make([]string, len(res))
    for i := range res {
        res2[i] = strconv.Itoa(res[i])
    }
    return strings.Join(res2, " or ")
}

func main() {
    for _, base := range []int{2, 3, 5, 11} {
        fmt.Printf("%2d : %2d\n", base, fairshare(25, base))
    }
    fmt.Println("\nHow many times does each get a turn in 50000 iterations?")
    for _, base := range []int{191, 1377, 49999, 50000, 50001} {
        t := turns(base, fairshare(50000, base))
        fmt.Printf("  With %d people: %s\n", base, t)
    }
}
Output:
 2 : [ 0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0]
 3 : [ 0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1]
 5 : [ 0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3]
11 : [ 0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4]

How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: only 50000 have a turn

Haskell

import Data.Bool (bool)
import Data.List (intercalate, unfoldr)
import Data.Tuple (swap)

------------- FAIR SHARE BETWEEN TWO AND MORE ------------

thueMorse :: Int -> [Int]
thueMorse base = baseDigitsSumModBase base <$> [0 ..]

baseDigitsSumModBase :: Int -> Int -> Int
baseDigitsSumModBase base n =
  mod
    ( sum $
        unfoldr
          ( bool Nothing
              . Just
              . swap
              . flip quotRem base
              <*> (0 <)
          )
          n
    )
    base

--------------------------- TEST -------------------------
main :: IO ()
main =
  putStrLn $
    fTable
      ( "First 25 fairshare terms "
          <> "for a given number of players:\n"
      )
      show
      ( ('[' :) . (<> "]") . intercalate ","
          . fmap show
      )
      (take 25 . thueMorse)
      [2, 3, 5, 11]

------------------------- DISPLAY ------------------------
fTable ::
  String ->
  (a -> String) ->
  (b -> String) ->
  (a -> b) ->
  [a] ->
  String
fTable s xShow fxShow f xs =
  unlines $
    s :
    fmap
      ( ((<>) . justifyRight w ' ' . xShow)
          <*> ((" -> " <>) . fxShow . f)
      )
      xs
  where
    w = maximum (length . xShow <$> xs)

justifyRight :: Int -> Char -> String -> String
justifyRight n c = (drop . length) <*> (replicate n c <>)
Output:
First 25 fairshare terms for a given number of players:

 2 -> [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
 3 -> [0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1]
 5 -> [0,1,2,3,4,1,2,3,4,0,2,3,4,0,1,3,4,0,1,2,4,0,1,2,3]
11 -> [0,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,2,3,4]

J

   fairshare=: [ | [: +/"1 #.inv

   2 3 5 11 fairshare"0 1/i.25
0 1 1 0 1 0 0 1 1 0  0 1 0 1 1 0 1 0 0 1  0 1 1 0 0
0 1 2 1 2 0 2 0 1 1  2 0 2 0 1 0 1 2 2 0  1 0 1 2 1
0 1 2 3 4 1 2 3 4 0  2 3 4 0 1 3 4 0 1 2  4 0 1 2 3
0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4


   NB. In the 1st 50000 how many turns does each get?  answered:
   <@({.,#)/.~"1 ] 2 3 5 11 fairshare"0 1/i.50000
+-------+-------+-------+-------+-------+------+------+------+------+------+-------+
|0 25000|1 25000|       |       |       |      |      |      |      |      |       |
+-------+-------+-------+-------+-------+------+------+------+------+------+-------+
|0 16667|1 16667|2 16666|       |       |      |      |      |      |      |       |
+-------+-------+-------+-------+-------+------+------+------+------+------+-------+
|0 10000|1 10000|2 10000|3 10000|4 10000|      |      |      |      |      |       |
+-------+-------+-------+-------+-------+------+------+------+------+------+-------+
|0 4545 |1 4545 |2 4545 |3 4545 |4 4546 |5 4546|6 4546|7 4546|8 4546|9 4545|10 4545|
+-------+-------+-------+-------+-------+------+------+------+------+------+-------+

Java

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

public class FairshareBetweenTwoAndMore {

    public static void main(String[] args) {
        for ( int base : Arrays.asList(2, 3, 5, 11) ) {
            System.out.printf("Base %d = %s%n", base, thueMorseSequence(25, base));
        }
    }
    
    private static List<Integer> thueMorseSequence(int terms, int base) {
        List<Integer> sequence = new ArrayList<Integer>();
        for ( int i = 0 ; i < terms ; i++ ) {
            int sum = 0;
            int n = i;
            while ( n > 0 ) {
                //  Compute the digit sum
                sum += n % base;
                n /= base;
            }
            //  Compute the digit sum module base.
            sequence.add(sum % base);
        }
        return sequence;
    }

}
Output:
Base 2 = [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
Base 3 = [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
Base 5 = [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
Base 11 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4]

JavaScript

(() => {
    'use strict';

    // thueMorse :: Int -> [Int]
    const thueMorse = base =>
        // Thue-Morse sequence for a given base
        fmapGen(baseDigitsSumModBase(base))(
            enumFrom(0)
        )

    // baseDigitsSumModBase :: Int -> Int -> Int
    const baseDigitsSumModBase = base =>
        // For any integer n, the sum of its digits
        // in a given base, modulo that base.
        n => sum(unfoldl(
            x => 0 < x ? (
                Just(quotRem(x)(base))
            ) : Nothing()
        )(n)) % base


    // ------------------------TEST------------------------
    const main = () =>
        console.log(
            fTable(
                'First 25 fairshare terms for a given number of players:'
            )(str)(
                xs => '[' + map(
                    compose(justifyRight(2)(' '), str)
                )(xs) + ' ]'
            )(
                compose(take(25), thueMorse)
            )([2, 3, 5, 11])
        );

    // -----------------GENERIC FUNCTIONS------------------

    // Just :: a -> Maybe a
    const Just = x => ({
        type: 'Maybe',
        Nothing: false,
        Just: x
    });

    // Nothing :: Maybe a
    const Nothing = () => ({
        type: 'Maybe',
        Nothing: true,
    });

    // Tuple (,) :: a -> b -> (a, b)
    const Tuple = a => b => ({
        type: 'Tuple',
        '0': a,
        '1': b,
        length: 2
    });

    // compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
    const compose = (...fs) =>
        x => fs.reduceRight((a, f) => f(a), x);

    // enumFrom :: Enum a => a -> [a]
    function* enumFrom(x) {
        // A non-finite succession of enumerable
        // values, starting with the value x.
        let v = x;
        while (true) {
            yield v;
            v = 1 + v;
        }
    }

    // fTable :: String -> (a -> String) -> (b -> String)
    //                      -> (a -> b) -> [a] -> String
    const fTable = s => xShow => fxShow => f => xs => {
        // Heading -> x display function ->
        //           fx display function ->
        //    f -> values -> tabular string
        const
            ys = xs.map(xShow),
            w = Math.max(...ys.map(length));
        return s + '\n' + zipWith(
            a => b => a.padStart(w, ' ') + ' -> ' + b
        )(ys)(
            xs.map(x => fxShow(f(x)))
        ).join('\n');
    };

    // fmapGen <$> :: (a -> b) -> Gen [a] -> Gen [b]
    const fmapGen = f =>
        function*(gen) {
            let v = take(1)(gen);
            while (0 < v.length) {
                yield(f(v[0]))
                v = take(1)(gen)
            }
        };

    // justifyRight :: Int -> Char -> String -> String
    const justifyRight = n =>
        // The string s, preceded by enough padding (with
        // the character c) to reach the string length n.
        c => s => n > s.length ? (
            s.padStart(n, c)
        ) : s;

    // length :: [a] -> Int
    const length = xs =>
        // Returns Infinity over objects without finite
        // length. This enables zip and zipWith to choose
        // the shorter argument when one is non-finite,
        // like cycle, repeat etc
        (Array.isArray(xs) || 'string' === typeof xs) ? (
            xs.length
        ) : Infinity;

    // map :: (a -> b) -> [a] -> [b]
    const map = f =>
        // The list obtained by applying f to each element of xs.
        // (The image of xs under f).
        xs => (Array.isArray(xs) ? (
            xs
        ) : xs.split('')).map(f);

    // quotRem :: Int -> Int -> (Int, Int)
    const quotRem = m => n =>
        Tuple(Math.floor(m / n))(
            m % n
        );

    // str :: a -> String
    const str = x => x.toString();

    // sum :: [Num] -> Num
    const sum = xs =>
        // The numeric sum of all values in xs.
        xs.reduce((a, x) => a + x, 0);

    // take :: Int -> [a] -> [a]
    // take :: Int -> String -> String
    const take = n =>
        // The first n elements of a list,
        // string of characters, or stream.
        xs => 'GeneratorFunction' !== xs
        .constructor.constructor.name ? (
            xs.slice(0, n)
        ) : [].concat.apply([], Array.from({
            length: n
        }, () => {
            const x = xs.next();
            return x.done ? [] : [x.value];
        }));


    // unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
    const unfoldl = f => v => {
        // Dual to reduce or foldl.
        // Where these reduce a list to a summary value, unfoldl
        // builds a list from a seed value.
        // Where f returns Just(a, b), a is appended to the list,
        // and the residual b is used as the argument for the next
        // application of f.
        // Where f returns Nothing, the completed list is returned.
        let
            xr = [v, v],
            xs = [];
        while (true) {
            const mb = f(xr[0]);
            if (mb.Nothing) {
                return xs
            } else {
                xr = mb.Just;
                xs = [xr[1]].concat(xs);
            }
        }
    };

    // zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
    const zipWith = f =>
        xs => ys => {
            const
                lng = Math.min(length(xs), length(ys)),
                vs = take(lng)(ys);
            return take(lng)(xs)
                .map((x, i) => f(x)(vs[i]));
        };

    // MAIN ---
    return main();
})();
Output:
First 25 fairshare terms for a given number of players:
 2 -> [ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0 ]
 3 -> [ 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1 ]
 5 -> [ 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3 ]
11 -> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 0, 2, 3, 4 ]

jq

Works with: jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

jq has a built-in for limiting a generator, but does not have a built-in for generating the integers in an arbitrary base, so we begin by defining `integers($base)` for generating integers as arrays beginning with the least-significant digit.

# Using a "reverse array" representations of the integers base b (b>=2),
# generate an unbounded stream of the integers from [0] onwards.
# E.g. for binary: [0], [1], [0,1], [1,1] ...

def integers($base):
  def add1:
    [foreach (.[], null) as $d ({carry: 1};
     if $d then ($d + .carry ) as $r
     | if $r >= $base
       then {carry: 1, emit: ($r - $base)}
       else {carry: 0, emit: $r }
       end
     elif (.carry == 0) then .emit = null
     else .emit = .carry
     end;
  select(.emit).emit)];
  
  [0] | recurse(add1);

def fairshare($base; $numberOfTerms):
  limit($numberOfTerms;
        integers($base) | add | . % $base);

# The task:
(2,3,5,11)
| "Fairshare \((select(.>2)|"among") // "between") \(.) people: \([fairshare(.; 25)])"
Output:

As for Julia.

Julia

fairshare(nplayers,len) = [sum(digits(n, base=nplayers)) % nplayers for n in 0:len-1]

for n in [2, 3, 5, 11]
    println("Fairshare ", n > 2 ? "among" : "between", " $n people: ", fairshare(n, 25))
end
Output:
Fairshare between 2 people: [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
Fairshare among 3 people: [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
Fairshare among 5 people: [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
Fairshare among 11 people: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4]

Kotlin

Translation of: Visual Basic .NET
fun turn(base: Int, n: Int): Int {
    var sum = 0
    var n2 = n
    while (n2 != 0) {
        val re = n2 % base
        n2 /= base
        sum += re
    }
    return sum % base
}

fun fairShare(base: Int, count: Int) {
    print(String.format("Base %2d:", base))
    for (i in 0 until count) {
        val t = turn(base, i)
        print(String.format(" %2d", t))
    }
    println()
}

fun turnCount(base: Int, count: Int) {
    val cnt = IntArray(base) { 0 }
    for (i in 0 until count) {
        val t = turn(base, i)
        cnt[t]++
    }

    var minTurn = Int.MAX_VALUE
    var maxTurn = Int.MIN_VALUE
    var portion = 0
    for (i in 0 until base) {
        val num = cnt[i]
        if (num > 0) {
            portion++
        }
        if (num < minTurn) {
            minTurn = num
        }
        if (num > maxTurn) {
            maxTurn = num
        }
    }

    print("  With $base people: ")
    when (minTurn) {
        0 -> {
            println("Only $portion have a turn")
        }
        maxTurn -> {
            println(minTurn)
        }
        else -> {
            println("$minTurn or $maxTurn")
        }
    }
}

fun main() {
    fairShare(2, 25)
    fairShare(3, 25)
    fairShare(5, 25)
    fairShare(11, 25)

    println("How many times does each get a turn in 50000 iterations?")
    turnCount(191, 50000)
    turnCount(1377, 50000)
    turnCount(49999, 50000)
    turnCount(50000, 50000)
    turnCount(50001, 50000)
}
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

Lua

Translation of: D
function turn(base, n)
    local sum = 0
    while n ~= 0 do
        local re = n % base
        n = math.floor(n / base)
        sum = sum + re
    end
    return sum % base
end

function fairShare(base, count)
    io.write(string.format("Base %2d:", base))
    for i=1,count do
        local t = turn(base, i - 1)
        io.write(string.format(" %2d", t))
    end
    print()
end

function turnCount(base, count)
    local cnt = {}

    for i=1,base do
        cnt[i - 1] = 0
    end

    for i=1,count do
        local t = turn(base, i - 1)
        if cnt[t] ~= nil then
            cnt[t] = cnt[t] + 1
        else
            cnt[t] = 1
        end
    end

    local minTurn = count
    local maxTurn = -count
    local portion = 0
    for _,num in pairs(cnt) do
        if num > 0 then
            portion = portion + 1
        end
        if num < minTurn then
            minTurn = num
        end
        if maxTurn < num then
            maxTurn = num
        end
    end

    io.write(string.format("  With %d people: ", base))
    if minTurn == 0 then
        print(string.format("Only %d have a turn", portion))
    elseif minTurn == maxTurn then
        print(minTurn)
    else
        print(minTurn .. " or " .. maxTurn)
    end
end

function main()
    fairShare(2, 25)
    fairShare(3, 25)
    fairShare(5, 25)
    fairShare(11, 25)

    print("How many times does each get a turn in 50000 iterations?")
    turnCount(191, 50000)
    turnCount(1377, 50000)
    turnCount(49999, 50000)
    turnCount(50000, 50000)
    turnCount(50001, 50000)
end

main()
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

Mathematica / Wolfram Language

ClearAll[Fairshare]
Fairshare[n_List, b_Integer : 2] := Fairshare[#, b] & /@ n
Fairshare[n_Integer, b_Integer : 2] := Mod[Total[IntegerDigits[n, b]], b]
Fairshare[Range[0, 24], 2]
Fairshare[Range[0, 24], 3]
Fairshare[Range[0, 24], 5]
Fairshare[Range[0, 24], 11]
Output:
{0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0}
{0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1}
{0,1,2,3,4,1,2,3,4,0,2,3,4,0,1,3,4,0,1,2,4,0,1,2,3}
{0,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,2,3,4}

Nim

import math, strutils

#---------------------------------------------------------------------------------------------------

iterator countInBase(b: Positive): seq[Natural] =
  ## Yield the successive integers in base "b" as a sequence of digits.
  
  var value = @[Natural 0]
  yield value

  while true:

    # Add one to current value.
    var c = 1
    for i in countdown(value.high, 0):
      let val = value[i] + c
      if val < b:
        value[i] = val
        c = 0
      else:
        value[i] = val - b
        c = 1

    if c == 1:
      # Add a new digit at the beginning.
      # In this case, for better performances, we could have add it at the end.
      value.insert(c, 0)

    yield value

#---------------------------------------------------------------------------------------------------

func thueMorse(b: Positive; count: Natural): seq[Natural] =
  ## Return the "count" first elements of Thue-Morse sequence for base "b".
  
  var count = count
  for n in countInBase(b):
    result.add(sum(n) mod b)
    dec count
    if count == 0: break

#———————————————————————————————————————————————————————————————————————————————————————————————————

for base in [2, 3, 5, 11]:
  echo "Base ", ($base & ": ").alignLeft(4), thueMorse(base, 25).join(" ")
Output:
Base 2:  0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0
Base 3:  0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1
Base 5:  0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
Base 11: 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4

Pascal

Free Pascal

program Fairshare;
{$IFDEF FPC}{$MODE Delphi}{$Optimization ON,ALL}{$ENDIF}
{$IFDEF WINDOWS}{$APPTYPE CONSOLE}{$ENDIF}
uses
  sysutils;
const
  maxDigitCnt = 32;
type
  tdigit  = Uint32;
  tDgtSum = record
              dgts   : array[0..maxDigitCnt-1] of tdigit;
              dgtNum : Uint64;
              dgtsum : Uint64;//maxValue maxDigitCnt*(dgtBase-1)
              dgtBase,
              dgtThue : tDigit;
            end;
procedure OutDgtSum(const ds:tDgtSum);
var
  i : NativeInt;
Begin
  with ds do
  Begin
    writeln(' base ',dgtBase,' sum of digits :  ',dgtSum,' dec number ',dgtNum);
    i := Low(dgts);
    repeat
      write(dgts[i],'|');
      inc(i);
    until i > High(dgts);
    writeln;
  end;
end;

function IncDgtSum(var ds:tDgtSum):boolean;
//add 1 to dgts and corrects sum of Digits
//return false if overflow happens
var
  i,base_1 : NativeInt;
Begin
  with ds do
  begin
    i := High(dgts);
    base_1 := dgtBase-1;
    inc(dgtNum);
    repeat
      IF dgts[i] < base_1 then
      //add one and done
      Begin
        inc(dgts[i]);
        inc(dgtSum);
        BREAK;
      end
      else
      Begin
        dgts[i] := 0;
        dec(dgtSum,base_1);
      end;
      dec(i);
    until i < Low(dgts);
    dgtThue := dgtSum MOD (base_1+1);
    result := i < Low(dgts)
  end;  
end;

procedure CheckBase_N_Turns( base:tDigit;turns:NativeUInt);
var
  actualNo :tDgtSum;
  slots : array of Uint32;
  pSlots : pUint32;
  i : NativeUInt;
Begin
  fillchar(actualNo,SizeOf(actualNo),#0);
  setlength(slots,base);
  pSlots := @slots[0];
  actualNo.dgtBase := Base;
  Write(base:3,' [');
  while turns>0 do
  Begin
    inc(pSlots[actualNo.dgtThue],turns);
    IncDgtSum(actualNo);
    dec(turns);
  end;
  For i := 0 to Base-1 do
    write(pSlots[i],' ');  
  writeln(']');
end;

procedure SumBase_N_Turns( base:tDigit;turns:NativeUInt);
var
  actualNo :tDgtSum;
Begin
  fillchar(actualNo,SizeOf(actualNo),#0);
  actualNo.dgtBase := Base;
  Write(base:3,' [');
  while turns>1 do
  Begin
    write(actualNo.dgtThue,',');
    IncDgtSum(actualNo);
    dec(turns);
  end;
  writeln(actualNo.dgtThue,']');
end;

var
  turns : NativeInt;
Begin
  turns := 25;
  SumBase_N_Turns(2,turns);  SumBase_N_Turns(3,turns);
  SumBase_N_Turns(5,turns);  SumBase_N_Turns(11,turns);
    
  Writeln;
  writeln('Summing up descending numbers from turns downto 0');;
  turns := 2*3*5*11;
  Writeln(turns,' turns = 2*3*5*11');
  CheckBase_N_Turns(2,turns); CheckBase_N_Turns(3,turns);
  CheckBase_N_Turns(5,turns); CheckBase_N_Turns(11,turns);

  turns := sqr(2)*sqr(3)*sqr(5)*sqr(11);
  Writeln(turns,' turns = sqr(2)*sqr(3)*sqr(5)*sqr(11)');
  CheckBase_N_Turns(2,turns); CheckBase_N_Turns(3,turns);
  CheckBase_N_Turns(5,turns); CheckBase_N_Turns(11,turns);
end.
Output:
  2 [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
  3 [0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1]
  5 [0,1,2,3,4,1,2,3,4,0,2,3,4,0,1,3,4,0,1,2,4,0,1,2,3]
 11 [0,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,2,3,4]

Summing up descending numbers from turns downto 0
330 turns = 2*3*5*11
  2 [27307 27308 ]
  3 [18206 18204 18205 ]
  5 [10925 10924 10923 10922 10921 ]
 11 [4961 4953 4956 4959 4962 4965 4968 4971 4974 4977 4969 ]
108900 turns = sqr(2)*sqr(3)*sqr(5)*sqr(11)
  2 [2964829725 2964829725]
  3 [1976553150 1976553150 1976553150]
  5 [1185931890 1185931890 1185931890 1185931890 1185931890]
 11 [539059950 539059950 539059950 539059950 539059950 539059950 539059950 539059950 539059950 539059950 539059950]

PascalABC.NET

Translation of: C#
function ThueMorseSequence(terms, baseValue: integer): list<integer>;
begin
  result := new List<integer>;
  for var i := 0 to terms - 1 do
  begin
    var sum := 0;
    var n := i;
    while (n > 0) do
    begin
      // Compute the digit sum
      sum += n mod baseValue;
      n := n div baseValue;
    end;
    // Compute the digit sum modulo baseValue.
    result.Add(sum mod baseValue);
  end;
end;

begin
  foreach var baseValue in |2, 3, 5, 11| do
    println('Base', baseValue, '=', ThueMorseSequence(25, baseValue));
end.
Output:
Base 2 = [0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
Base 3 = [0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1]
Base 5 = [0,1,2,3,4,1,2,3,4,0,2,3,4,0,1,3,4,0,1,2,4,0,1,2,3]
Base 11 = [0,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,2,3,4]

Perl

Translation of: Raku
use strict;
use warnings;
use Math::AnyNum qw(sum polymod);

sub fairshare {
    my($b, $n) = @_;
    sprintf '%3d'x$n, map { sum ( polymod($_, $b, $b )) % $b } 0 .. $n-1;
}

for (<2 3 5 11>) {
    printf "%3s:%s\n", $_, fairshare($_, 25);
}
Output:
  2:  0  1  1  0  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  1  0  0  1  0
  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

Phix

Translation of: Go
function fairshare(integer n, base)
    sequence res = repeat(0,n)
    for i=1 to n do
        integer j = i-1,
                t = 0
        while j>0 do
            t += remainder(j,base)
            j = floor(j/base)
        end while
        res[i] = remainder(t,base)
    end for
    return {base,res}
end function
 
constant tests = {2,3,5,11}
for i=1 to length(tests) do
    printf(1,"%2d : %v\n", fairshare(25, tests[i]))
end for
Output:
 2 : {0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0}
 3 : {0,1,2,1,2,0,2,0,1,1,2,0,2,0,1,0,1,2,2,0,1,0,1,2,1}
 5 : {0,1,2,3,4,1,2,3,4,0,2,3,4,0,1,3,4,0,1,2,4,0,1,2,3}
11 : {0,1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10,0,2,3,4}

PL/M

100H:

BDOS: PROCEDURE (F,A); DECLARE F BYTE, A ADDRESS; GO TO 5; END BDOS;
EXIT: PROCEDURE; GO TO 0; END EXIT;
PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT;

PRINT$NUMBER: PROCEDURE (N);
    DECLARE S (7) BYTE INITIAL ('..... $');
    DECLARE (N, P) ADDRESS, C BASED P BYTE;
    P = .S(5);
DIGIT:
    P = P - 1;
    C = N MOD 10 + '0';
    N = N / 10;
    IF N > 0 THEN GO TO DIGIT;
    CALL PRINT(P);
END PRINT$NUMBER;

FAIR$SHARE: PROCEDURE (N, BASE) ADDRESS;
    DECLARE (N, BASE, SUM) ADDRESS;
    SUM = 0;
    DO WHILE N>0;
        SUM = SUM + N MOD BASE;
        N = N / BASE;
    END;
    RETURN SUM MOD BASE;
END FAIR$SHARE;

DECLARE BASES (4) BYTE INITIAL (2, 3, 5, 11);
DECLARE (I, N) BYTE;

DO I=0 TO LAST(BASES);
    CALL PRINT$NUMBER(BASES(I));
    CALL PRINT(.': $');
    DO N=0 TO 24;
        CALL PRINT$NUMBER(FAIR$SHARE(N, BASES(I)));
    END;
    CALL PRINT(.(13,10,'$'));
END;
CALL EXIT;
EOF
Output:
2 : 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0
3 : 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1
5 : 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
11 : 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4

Python

Procedural

from itertools import count, islice

def _basechange_int(num, b):
    """
    Return list of ints representing positive num in base b

    >>> b = 3
    >>> print(b, [_basechange_int(num, b) for num in range(11)])
    3 [[0], [1], [2], [1, 0], [1, 1], [1, 2], [2, 0], [2, 1], [2, 2], [1, 0, 0], [1, 0, 1]]
    >>>
    """
    if num == 0:
        return [0]
    result = []
    while num != 0:
        num, d = divmod(num, b)
        result.append(d)
    return result[::-1]

def fairshare(b=2):
    for i in count():
        yield sum(_basechange_int(i, b)) % b

if __name__ == '__main__':
    for b in (2, 3, 5, 11):
        print(f"{b:>2}: {str(list(islice(fairshare(b), 25)))[1:-1]}")
Output:
 2: 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0
 3: 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1
 5: 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3
11: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4

Functional

'''Fairshare between two and more'''

from itertools import count, islice
from functools import reduce


# thueMorse :: Int -> [Int] -> [Int]
def thueMorse(base):
    '''Thue-Morse sequence for a given base.'''
    return fmapNext(baseDigitsSumModBase(base))(
        count(0)
    )


# baseDigitsSumModBase :: Int -> Int -> Int
def baseDigitsSumModBase(base):
    '''For any integer n, the sum of its digits
       in a given base, modulo that base.
    '''
    def go(n):
        return sum(unfoldl(
            lambda x: Just(divmod(x, base)) if 0 < x else Nothing()
        )(n)) % base

    return go


# -------------------------- TEST --------------------------
# main :: IO ()
def main():
    '''First 25 fairshare terms for a given number of players'''

    print(
        fTable(
            main.__doc__ + ':\n'
        )(repr)(
            lambda xs: '[' + ','.join(
                [str(x).rjust(2, ' ') for x in xs]
            ) + ' ]'
        )(
            compose(take(25), thueMorse)
        )([2, 3, 5, 11])
    )


# ------------------------ GENERIC -------------------------

# Just :: a -> Maybe a
def Just(x):
    '''Constructor for an inhabited Maybe (option type) value.
       Wrapper containing the result of a computation.
    '''
    return {'type': 'Maybe', 'Nothing': False, 'Just': x}


# Nothing :: Maybe a
def Nothing():
    '''Constructor for an empty Maybe (option type) value.
       Empty wrapper returned where a computation is not possible.
    '''
    return {'type': 'Maybe', 'Nothing': True}


# compose :: ((a -> a), ...) -> (a -> a)
def compose(*fs):
    '''Composition, from right to left,
       of a series of functions.
    '''
    def go(f, g):
        def fg(x):
            return f(g(x))
        return fg
    return reduce(go, fs, identity)


# fmapNext <$> :: (a -> b) -> Iter [a] -> Iter [b]
def fmapNext(f):
    '''A function f mapped over a
       possibly non-finite iterator.
    '''
    def go(g):
        v = next(g, None)
        while None is not v:
            yield f(v)
            v = next(g, None)
    return go


# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function -> fx display function ->
       f -> xs -> tabular string.
    '''
    def go(xShow, fxShow, f, xs):
        ys = [xShow(x) for x in xs]
        w = max(map(len, ys))
        return s + '\n' + '\n'.join(map(
            lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
            xs, ys
        ))
    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
        xShow, fxShow, f, xs
    )

# identity :: a -> a
def identity(x):
    '''The identity function.'''
    return x


# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
    '''The prefix of xs of length n,
       or xs itself if n > length xs.
    '''
    return lambda xs: (
        xs[0:n]
        if isinstance(xs, (list, tuple))
        else list(islice(xs, n))
    )


# unfoldl(lambda x: Just(((x - 1), x)) if 0 != x else Nothing())(10)
# -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# unfoldl :: (b -> Maybe (b, a)) -> b -> [a]
def unfoldl(f):
    '''Dual to reduce or foldl.
       Where these reduce a list to a summary value, unfoldl
       builds a list from a seed value.
       Where f returns Just(a, b), a is appended to the list,
       and the residual b is used as the argument for the next
       application of f.
       When f returns Nothing, the completed list is returned.
    '''
    def go(v):
        x, r = v, v
        xs = []
        while True:
            mb = f(x)
            if mb['Nothing']:
                return xs
            else:
                x, r = mb['Just']
                xs.insert(0, r)
        return xs
    return go


# MAIN ---
if __name__ == '__main__':
    main()
Output:
First 25 fairshare terms for a given number of players:

 2 -> [ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0 ]
 3 -> [ 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1 ]
 5 -> [ 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3 ]
11 -> [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 0, 2, 3, 4 ]

Quackery

digitsum is defined at Sum digits of an integer.

  [ dup dip digitsum mod ] is fairshare ( n n --> n )  

  ' [ 2 3 5 11 ]
  witheach
    [ dup echo say ": "
      25 times
        [ i^ over fairshare echo sp ] 
      drop cr ]
Output:
2: 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 
3: 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 
5: 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 
11: 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4 

Racket

#lang racket

(define (Thue-Morse base)
  (letrec ((q/r (curryr quotient/remainder base))
           (inner (λ (n (s 0))
                    (match n
                      [0 (modulo s base)]
                      [(app q/r q r) (inner q (+ s r))]))))
    inner))

(define (report-turns B n)
  (printf "Base:\t~a\t~a~%" B (map (Thue-Morse B) (range n))))

(define (report-stats B n)
  (define TM (Thue-Morse B))
  (define h0 (for/hash ((b B)) (values b 0)))
  (define d (for/fold ((h h0)) ((i n)) (hash-update h (TM i) add1 0)))
  (define d′ (for/fold ((h (hash))) (([k v] (in-hash d))) (hash-update h v add1 0)))
  (define d′′ (hash-map d′ (λ (k v) (format "~a people have ~a turn(s)" v k))))
  (printf "Over ~a turns for ~a people:~a~%" n B (string-join d′′ ", ")))

(define (Fairshare-between-two-and-more)
  (report-turns 2 25)
  (report-turns 3 25)
  (report-turns 5 25)
  (report-turns 11 25)
  (newline)
  (report-stats 191 50000)
  (report-stats 1377 50000)
  (report-stats 49999 50000)
  (report-stats 50000 50000)
  (report-stats 50001 50000))

(module+ main
  (Fairshare-between-two-and-more))
Output:
Base:	2	(0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0)
Base:	3	(0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1)
Base:	5	(0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3)
Base:	11	(0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4)

Over 50000 turns for 191 people:42 people have 261 turn(s), 149 people have 262 turn(s)
Over 50000 turns for 1377 people:428 people have 37 turn(s), 949 people have 36 turn(s)
Over 50000 turns for 49999 people:49998 people have 1 turn(s), 1 people have 2 turn(s)
Over 50000 turns for 50000 people:50000 people have 1 turn(s)
Over 50000 turns for 50001 people:50000 people have 1 turn(s), 1 people have 0 turn(s)

Raku

(formerly Perl 6)

Works with: Rakudo version 2020.01

Add an extension showing the relative fairness correlation of this selection algorithm. An absolutely fair algorithm would have a correlation of 1 for each person (no person has an advantage or disadvantage due to an algorithmic artefact.) This algorithm is fair, and gets better the more iterations are done.

A lower correlation factor corresponds to an advantage, higher to a disadvantage, the closer to 1 it is, the fairer the algorithm. Absolute best possible advantage correlation is 0. Absolute worst is 2.

sub fairshare (\b) { ^∞ .hyper.map: { .polymod( b xx * ).sum % b } }

.say for <2 3 5 11>.map: { .fmt('%2d:') ~ .&fairshare[^25]».fmt('%2d').join: ', ' }

say "\nRelative fairness of this method. Scaled fairness correlation. The closer to 1.0 each person
is, the more fair the selection algorithm is. Gets better with more iterations.";

for <2 3 5 11 39> -> $people {
    print "\n$people people: \n";
    for $people * 1, $people * 10, $people * 1000 -> $iterations {
        my @fairness;
        fairshare($people)[^$iterations].kv.map: { @fairness[$^v % $people] += $^k }
        my $scale = @fairness.sum / @fairness;
        my @range = @fairness.map( { $_ / $scale } );
        printf "After round %4d: Best advantage: %-10.8g - Worst disadvantage: %-10.8g - Spread between best and worst: %-10.8g\n",
            $iterations/$people, @range.min, @range.max, @range.max - @range.min;
    }
}
 2: 0,  1,  1,  0,  1,  0,  0,  1,  1,  0,  0,  1,  0,  1,  1,  0,  1,  0,  0,  1,  0,  1,  1,  0,  0
 3: 0,  1,  2,  1,  2,  0,  2,  0,  1,  1,  2,  0,  2,  0,  1,  0,  1,  2,  2,  0,  1,  0,  1,  2,  1
 5: 0,  1,  2,  3,  4,  1,  2,  3,  4,  0,  2,  3,  4,  0,  1,  3,  4,  0,  1,  2,  4,  0,  1,  2,  3
11: 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  0,  2,  3,  4

Relative fairness of this method. Scaled fairness correlation. The closer to 1.0 each person
is, the more fair the selection algorithm is. Gets better with more iterations.

2 people: 
After round    1: Best advantage: 0          - Worst disadvantage: 2          - Spread between best and worst: 2         
After round   10: Best advantage: 1          - Worst disadvantage: 1          - Spread between best and worst: 0         
After round 1000: Best advantage: 1          - Worst disadvantage: 1          - Spread between best and worst: 0         

3 people: 
After round    1: Best advantage: 0          - Worst disadvantage: 2          - Spread between best and worst: 2         
After round   10: Best advantage: 0.99310345 - Worst disadvantage: 1.0068966  - Spread between best and worst: 0.013793103
After round 1000: Best advantage: 0.99999933 - Worst disadvantage: 1.0000007  - Spread between best and worst: 1.3337779e-06

5 people: 
After round    1: Best advantage: 0          - Worst disadvantage: 2          - Spread between best and worst: 2         
After round   10: Best advantage: 1          - Worst disadvantage: 1          - Spread between best and worst: 0         
After round 1000: Best advantage: 1          - Worst disadvantage: 1          - Spread between best and worst: 0         

11 people: 
After round    1: Best advantage: 0          - Worst disadvantage: 2          - Spread between best and worst: 2         
After round   10: Best advantage: 0.99082569 - Worst disadvantage: 1.0091743  - Spread between best and worst: 0.018348624
After round 1000: Best advantage: 0.99999909 - Worst disadvantage: 1.0000009  - Spread between best and worst: 1.8183471e-06

39 people: 
After round    1: Best advantage: 0          - Worst disadvantage: 2          - Spread between best and worst: 2         
After round   10: Best advantage: 0.92544987 - Worst disadvantage: 1.0745501  - Spread between best and worst: 0.14910026
After round 1000: Best advantage: 0.99999103 - Worst disadvantage: 1.000009   - Spread between best and worst: 1.7949178e-05

REXX

Programming note:   the   base   function (as coded herein) handles bases from base ten up to   36.

/*REXX program calculates  N  terms of the fairshare sequence for some group of peoples.*/
parse arg n g                                    /*obtain optional arguments from the CL*/
if n=='' | n==","  then n= 25                    /*Not specified?  Then use the default.*/
if g=''  | g=","   then g=  2 3 5 11             /* "      "         "   "   "     "    */
                                                 /* [↑]  a list of a number of peoples. */
     do p=1  for words(g);        r= word(g, p)  /*traipse through the bases specfiied. */
     $= 'base' right(r, 2)': '                   /*construct start of the 1─line output.*/
        do j=0  for n;   $= $ right( sumDigs( base(j, r))  //  r, 2)','
        end   /*j*/                              /* [↑] append # (base R) mod R──►$ list*/
     say strip($, , ",")                         /*elide trailing comma from the $ list.*/
     end      /*p*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
base: parse arg #,b,,y;          @= 0123456789abcdefghijklmnopqrstuvwxyz;  @@= substr(@,2)
        do while #>=b; y= substr(@, #//b + 1, 1)y; #= #%b; end;  return substr(@, #+1, 1)y
/*──────────────────────────────────────────────────────────────────────────────────────*/
sumDigs: parse arg x; !=0; do i=1 for length(x); != !+pos(substr(x,i,1),@@); end; return !
output   when using the default inputs:
base  2:   0,  1,  1,  0,  1,  0,  0,  1,  1,  0,  0,  1,  0,  1,  1,  0,  1,  0,  0,  1,  0,  1,  1,  0,  0
base  3:   0,  1,  2,  1,  2,  0,  2,  0,  1,  1,  2,  0,  2,  0,  1,  0,  1,  2,  2,  0,  1,  0,  1,  2,  1
base  5:   0,  1,  2,  3,  4,  1,  2,  3,  4,  0,  2,  3,  4,  0,  1,  3,  4,  0,  1,  2,  4,  0,  1,  2,  3
base 11:   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10,  0,  2,  3,  4

Ring

str    = []
people = [2,3,5,11]

result = people
for i in people
    str = []
    see "" + i + ": "
    fair(25, i)
    for n in result
        add(str,n)
    next
    showarray(str)
next
 
func fair n,base

     result = list(n)
     for i=1 to n
         j = i-1
         t = 0
         while j>0
               t = t + j % base
               j = floor(j/base)
         end
         result[i] = t % base
     next
 
func showarray vect
     svect = ""
     for n in vect
         svect += " " + n + ","
     next
     svect = left(svect, len(svect) - 1)
     ? "[" + svect + "]"
Output:
2: [ 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
3: [ 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
5: [ 0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
11: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4]

RPL

DIGITS is defined at Sum digits of an integer.

D→B is a slightly modified version of the program defined at Non-decimal radices/Convert, using uppercase characters to be compatible with DIGITS

≪ → b
  ≪ "" SWAP 
     WHILE DUP REPEAT
       b MOD LAST / IP 
       SWAP DUP 9 > 55 48 IFTE + CHR
       ROT + SWAP
     END DROP
≫ ≫ 'D→B' STO

≪ → b
  ≪ { 0 } 1 24 FOR j 
       j b D→B DIGITS b MOD + NEXT 
≫ ≫ 'TASK' STO
2 TASK 3 TASK 5 TASK 11 TASK 
Output:
4: { 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 }
3: { 0 1 2 1 2 0 2 0 1 1 2 0 2 0 1 0 1 2 2 0 1 0 1 2 1 }
2: { 0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3 }
1: { 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 2 3 4 }

Ruby

Translation of: C
def turn(base, n)
    sum = 0
    while n != 0 do
        rem = n % base
        n = n / base
        sum = sum + rem
    end
    return sum % base
end

def fairshare(base, count)
    print "Base %2d: " % [base]
    for i in 0 .. count - 1 do
        t = turn(base, i)
        print " %2d" % [t]
    end
    print "\n"
end

def turnCount(base, count)
    cnt = Array.new(base, 0)

    for i in 0 .. count - 1 do
        t = turn(base, i)
        cnt[t] = cnt[t] + 1
    end

    minTurn = base * count
    maxTurn = -1
    portion = 0
    for i in 0 .. base - 1 do
        if cnt[i] > 0 then
            portion = portion + 1
        end
        if cnt[i] < minTurn then
            minTurn = cnt[i]
        end
        if cnt[i] > maxTurn then
            maxTurn = cnt[i]
        end
    end

    print "  With %d people: " % [base]
    if 0 == minTurn then
        print "Only %d have a turn\n" % portion
    elsif minTurn == maxTurn then
        print "%d\n" % [minTurn]
    else
        print "%d or %d\n" % [minTurn, maxTurn]
    end
end

def main
    fairshare(2, 25)
    fairshare(3, 25)
    fairshare(5, 25)
    fairshare(11, 25)

    puts "How many times does each get a turn in 50000 iterations?"
    turnCount(191, 50000)
    turnCount(1377, 50000)
    turnCount(49999, 50000)
    turnCount(50000, 50000)
    turnCount(50001, 50000)
end

main()
Output:
Base  2:   0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:   0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:   0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:   0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn
Translation of: Sidef
def fairshare(base, upto) = (0...upto).map{|n| n.digits(base).sum % base}

upto = 25
[2, 3, 5, 11].each{|b| puts"#{'%2d' % b}: " + " %2d"*upto % fairshare(b, upto)}
Output:
 2:   0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
 3:   0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
 5:   0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
11:   0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

Rust

Translation of: Python
struct Digits {
    rest: usize,
    base: usize,
}

impl Iterator for Digits {
    type Item = usize;
    
    fn next(&mut self) -> Option<usize> {
        if self.rest == 0 {
            return None;
        }
        let (digit, rest) = (self.rest % self.base, self.rest / self.base);
        self.rest = rest;
        Some(digit)
    }
}

fn digits(num: usize, base: usize) -> Digits {
    Digits { rest: num, base: base }
}

struct FairSharing {
    participants: usize,
    index: usize,
}

impl Iterator for FairSharing {
    type Item = usize;
    fn next(&mut self) -> Option<usize> {
        let digit_sum: usize = digits(self.index, self.participants).sum();
        let selected = digit_sum % self.participants;
        self.index += 1;
        Some(selected)
    }
}

fn fair_sharing(participants: usize) -> FairSharing {
    FairSharing { participants: participants, index: 0 }
}

fn main() {
    for i in vec![2, 3, 5, 7] {
        println!("{}: {:?}", i, fair_sharing(i).take(25).collect::<Vec<usize>>());
    }
}
Output:
2: [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
3: [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
5: [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
7: [0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 0, 2, 3, 4, 5, 6, 0, 1, 3, 4, 5, 6]

Sidef

for b in (2,3,5,11) {
    say ("#{'%2d' % b}: ", 25.of { .sumdigits(b) % b })
}
Output:
 2: [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
 3: [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
 5: [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
11: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4]

Visual Basic .NET

Translation of: C
Module Module1

    Function Turn(base As Integer, n As Integer) As Integer
        Dim sum = 0
        While n <> 0
            Dim re = n Mod base
            n \= base
            sum += re
        End While
        Return sum Mod base
    End Function

    Sub Fairshare(base As Integer, count As Integer)
        Console.Write("Base {0,2}:", base)
        For i = 1 To count
            Dim t = Turn(base, i - 1)
            Console.Write(" {0,2}", t)
        Next
        Console.WriteLine()
    End Sub

    Sub TurnCount(base As Integer, count As Integer)
        Dim cnt(base) As Integer
        For i = 1 To base
            cnt(i - 1) = 0
        Next

        For i = 1 To count
            Dim t = Turn(base, i - 1)
            cnt(t) += 1
        Next

        Dim minTurn = Integer.MaxValue
        Dim maxTurn = Integer.MinValue
        Dim portion = 0
        For i = 1 To base
            Dim num = cnt(i - 1)
            If num > 0 Then
                portion += 1
            End If
            If num < minTurn Then
                minTurn = num
            End If
            If num > maxTurn Then
                maxTurn = num
            End If
        Next

        Console.Write("  With {0} people: ", base)
        If 0 = minTurn Then
            Console.WriteLine("Only {0} have a turn", portion)
        ElseIf minTurn = maxTurn Then
            Console.WriteLine(minTurn)
        Else
            Console.WriteLine("{0} or {1}", minTurn, maxTurn)
        End If
    End Sub

    Sub Main()
        Fairshare(2, 25)
        Fairshare(3, 25)
        Fairshare(5, 25)
        Fairshare(11, 25)

        Console.WriteLine("How many times does each get a turn in 50000 iterations?")
        TurnCount(191, 50000)
        TurnCount(1377, 50000)
        TurnCount(49999, 50000)
        TurnCount(50000, 50000)
        TurnCount(50001, 50000)
    End Sub

End Module
Output:
Base  2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
Base  3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
Base  5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
Base 11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4
How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: Only 50000 have a turn

V (Vlang)

Translation of: Go
fn fairshare(n int, base int) []int {
    mut res := []int{len: n}
    for i in 0..n {
        mut j := i
        mut sum := 0
        for j > 0 {
            sum += j % base
            j /= base
        }
        res[i] = sum % base
    }
    return res
}
 
fn turns(n int, fss []int) string {
    mut m := map[int]int{}
    for fs in fss {
        m[fs]++
    }
    mut m2 := map[int]int{}
    for _,v in m {
        m2[v]++
    }
    mut res := []int{}
    mut sum := 0
    for k, v in m2 {
        sum += v
        res << k
    }
    if sum != n {
        return "only $sum have a turn"
    }
    res.sort()
    mut res2 := []string{len: res.len}
    for i,_ in res {
        res2[i] = '${res[i]}'
    }
    return res2.join(" or ")
}
 
fn main() {
    for base in [2, 3, 5, 11] {
        println("${base:2} : ${fairshare(25, base):2}")
    }
    println("\nHow many times does each get a turn in 50000 iterations?")
    for base in [191, 1377, 49999, 50000, 50001] {
        t := turns(base, fairshare(50000, base))
        println("  With $base people: $t")
    }
}
Output:
 2 : [0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0]
 3 : [0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 1, 2, 1]
 5 : [0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3]
11 : [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 2, 3, 4]

How many times does each get a turn in 50000 iterations?
  With 191 people: 261 or 262
  With 1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: only 50000 have a turn

Wren

Translation of: Go
Library: Wren-fmt
Library: Wren-sort
import "./fmt" for Fmt
import "./sort" for Sort

var fairshare = Fn.new { |n, base|
    var res = List.filled(n, 0)
    for (i in 0...n) {
        var j = i
        var sum = 0
        while (j > 0) {
            sum = sum + (j%base)
            j = (j/base).floor
        }
        res[i] = sum % base
    }
    return res
}

var turns = Fn.new { |n, fss|
    var m = {}
    for (fs in fss) {
        var k = m[fs]
        if (!k) {
            m[fs] = 1
        } else {
            m[fs] = k + 1
        }
    }
    var m2 = {}
    for (k in m.keys) {
        var v = m[k]
        var k2 = m2[v]
        if (!k2) {
            m2[v] = 1
        } else {
            m2[v] = k2 + 1
        }
    }
    var res = []
    var sum = 0
    for (k in m2.keys) {
        var v = m2[k]
        sum = sum + v
        res.add(k)
    }
    if (sum != n) return "only %(sum) have a turn"
    Sort.quick(res)
    var res2 = List.filled(res.count, "")
    for (i in 0...res.count) res2[i] = res[i].toString
    return res2.join(" or ")
}

for (base in [2, 3, 5, 11]) {
    Fmt.print("$2d : $2d", base, fairshare.call(25, base))
}
System.print("\nHow many times does each get a turn in 50,000 iterations?")
for (base in [191, 1377, 49999, 50000, 50001]) {
    var t = turns.call(base, fairshare.call(50000, base))
    Fmt.print("  With $5d people: $s", base, t)
}
Output:
 2 :  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
 3 :  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
 5 :  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
11 :  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

How many times does each get a turn in 50,000 iterations?
  With   191 people: 261 or 262
  With  1377 people: 36 or 37
  With 49999 people: 1 or 2
  With 50000 people: 1
  With 50001 people: only 50000 have a turn

XPL0

proc Fair(Base); \Show first 25 terms of fairshare sequence
int  Base, Count, Sum, N, Q;
[RlOut(0, float(Base));  Text(0, ": ");
for Count:= 0 to 25-1 do
    [Sum:= 0;  N:= Count;
    while N do
        [Q:= N/Base;
        Sum:= Sum + rem(0);
        N:= Q;
        ];
    RlOut(0, float(rem(Sum/Base)));
    ];
CrLf(0);
];

[Format(3,0);
Fair(2);  Fair(3);  Fair(5);  Fair(11);
]
Output:
  2:   0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0
  3:   0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1
  5:   0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3
 11:   0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4

zkl

fcn fairShare(n,b){    // b<=36
   n.pump(List,'wrap(n){ n.toString(b).split("").apply("toInt",b).sum(0)%b })
}
foreach b in (T(2,3,5,11)){
   println("%2d: %s".fmt(b,fairShare(25,b).pump(String,"%2d ".fmt)));
}
Output:
 2:  0  1  1  0  1  0  0  1  1  0  0  1  0  1  1  0  1  0  0  1  0  1  1  0  0 
 3:  0  1  2  1  2  0  2  0  1  1  2  0  2  0  1  0  1  2  2  0  1  0  1  2  1 
 5:  0  1  2  3  4  1  2  3  4  0  2  3  4  0  1  3  4  0  1  2  4  0  1  2  3 
11:  0  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  0  2  3  4 

For any base > 1

fcn fairShare(n,base){
   sum,r := 0,0; while(n){ n,r = n.divr(base); sum+=r }
   sum%base
}
foreach b in (T(2,3,5,11)){
   println("%2d: %s".fmt(b,[0..24].pump(String,fairShare.fp1(b),"%2d ".fmt)));
}