Euler's sum of powers conjecture
You are encouraged to solve this task according to the task description, using any language you may know.
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin.
This conjecture is called Euler's sum of powers conjecture and can be stated as such:
- At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk.
In 1966, Leon J. Lander and Thomas R. Parkin used a brute-force search on a CDC 6600 computer restricting numbers to those less than 250.
The task consists in writing a program to search for an integer solution of where all and are distinct integers between 0 and 250 (exclusive). Show an answer here.
Related tasks are:
11l
F eulers_sum_of_powers()
V max_n = 250
V pow_5 = (0 .< max_n).map(n -> Int64(n) ^ 5)
V pow5_to_n = Dict(0 .< max_n, n -> (Int64(n) ^ 5, n))
L(x0) 1 .< max_n
L(x1) 1 .< x0
L(x2) 1 .< x1
L(x3) 1 .< x2
V pow_5_sum = pow_5[x0] + pow_5[x1] + pow_5[x2] + pow_5[x3]
I pow_5_sum C pow5_to_n
V y = pow5_to_n[pow_5_sum]
R (x0, x1, x2, x3, y)
V r = eulers_sum_of_powers()
print(‘#.^5 + #.^5 + #.^5 + #.^5 = #.^5’.format(r[0], r[1], r[2], r[3], r[4]))
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
360 Assembly
In the program we do not user System/360 integers (31 bits) unable to handle the problem, but System/360 packed decimal (15 digits). 250^5 needs 12 digits.
This program could have been run in 1964. Here, for maximum compatibility, we use only the basic 360 instruction set. Macro instruction XPRNT can be replaced by a WTO.
EULERCO CSECT
USING EULERCO,R13
B 80(R15)
DC 17F'0'
DC CL8'EULERCO'
STM R14,R12,12(R13)
ST R13,4(R15)
ST R15,8(R13)
LR R13,R15
ZAP X1,=P'1'
LOOPX1 ZAP PT,MAXN do x1=1 to maxn-4
SP PT,=P'4'
CP X1,PT
BH ELOOPX1
ZAP PT,X1
AP PT,=P'1'
ZAP X2,PT
LOOPX2 ZAP PT,MAXN do x2=x1+1 to maxn-3
SP PT,=P'3'
CP X2,PT
BH ELOOPX2
ZAP PT,X2
AP PT,=P'1'
ZAP X3,PT
LOOPX3 ZAP PT,MAXN do x3=x2+1 to maxn-2
SP PT,=P'2'
CP X3,PT
BH ELOOPX3
ZAP PT,X3
AP PT,=P'1'
ZAP X4,PT
LOOPX4 ZAP PT,MAXN do x4=x3+1 to maxn-1
SP PT,=P'1'
CP X4,PT
BH ELOOPX4
ZAP PT,X4
AP PT,=P'1'
ZAP X5,PT x5=x4+1
ZAP SUMX,=P'0' sumx=0
ZAP PT,X1 x1
BAL R14,POWER5
AP SUMX,PT
ZAP PT,X2 x2
BAL R14,POWER5
AP SUMX,PT
ZAP PT,X3 x3
BAL R14,POWER5
AP SUMX,PT
ZAP PT,X4 x4
BAL R14,POWER5
AP SUMX,PT sumx=x1**5+x2**5+x3**5+x4**5
ZAP PT,X5 x5
BAL R14,POWER5
ZAP VALX,PT valx=x5**5
LOOPX5 CP X5,MAXN while x5<=maxn & valx<=sumx
BH ELOOPX5
CP VALX,SUMX
BH ELOOPX5
CP VALX,SUMX if valx=sumx
BNE NOTEQUAL
MVI BUF,C' '
MVC BUF+1(79),BUF clear buffer
MVC WC,MASK
ED WC,X1 x1
MVC BUF+0(8),WC+8
MVC WC,MASK
ED WC,X2 x2
MVC BUF+8(8),WC+8
MVC WC,MASK
ED WC,X3 x3
MVC BUF+16(8),WC+8
MVC WC,MASK
ED WC,X4 x4
MVC BUF+24(8),WC+8
MVC WC,MASK
ED WC,X5 x5
MVC BUF+32(8),WC+8
XPRNT BUF,80 output x1,x2,x3,x4,x5
B ELOOPX1
NOTEQUAL ZAP PT,X5
AP PT,=P'1'
ZAP X5,PT x5=x5+1
ZAP PT,X5
BAL R14,POWER5
ZAP VALX,PT valx=x5**5
B LOOPX5
ELOOPX5 AP X4,=P'1'
B LOOPX4
ELOOPX4 AP X3,=P'1'
B LOOPX3
ELOOPX3 AP X2,=P'1'
B LOOPX2
ELOOPX2 AP X1,=P'1'
B LOOPX1
ELOOPX1 L R13,4(0,R13)
LM R14,R12,12(R13)
XR R15,R15
BR R14
POWER5 ZAP PQ,PT ^1
MP PQ,PT ^2
MP PQ,PT ^3
MP PQ,PT ^4
MP PQ,PT ^5
ZAP PT,PQ
BR R14
MAXN DC PL8'249'
X1 DS PL8
X2 DS PL8
X3 DS PL8
X4 DS PL8
X5 DS PL8
SUMX DS PL8
VALX DS PL8
PT DS PL8
PQ DS PL8
WC DS CL17
MASK DC X'40',13X'20',X'212060' CL17
BUF DS CL80
YREGS
END
- Output:
27 84 110 133 144
6502 Assembly
This is long enough as it is, so the code here is just the main task body. Details like the BASIC loader (for a C-64, which is what I ran this on) and the output routines (including the very tedious conversion of a 40-bit integer to decimal) were moved into external include files. Also in an external file is the prebuilt table of the first 250 fifth powers ... actually, just for ease of referencing, it's the first 256, 0...255, in five tables each holding one byte of the value.
; Prove Euler's sum of powers conjecture false by finding
; positive a,b,c,d,e such that a⁵+b⁵+c⁵+d⁵=e⁵.
; we're only looking for the first counterexample, which occurs with all
; integers less than this value
max_value = $fa ; decimal 250
; this header turns our code into a LOADable and RUNnable BASIC program
.include "basic_header.s"
; this contains the first 256 integers to the power of 5 broken up into
; 5 tables of one-byte values (power5byte0 with the LSBs through
; power5byte4 with the MSBs)
.include "power5table.s"
; this defines subroutines and macros for printing messages to
; the console, including `puts` for printing out a NUL-terminated string,
; puthex to display a one-byte value in hexadecimal, and putdec through
; putdec5 to display an N-byte value in decimal
.include "output.s"
; label strings for the result output
.feature string_escapes
success: .asciiz "\r\rFOUND EXAMPLE:\r\r"
between: .asciiz "^5 + "
penult: .asciiz "^5 = "
eqend: .asciiz "^5\r\r(SUM IS "
; the BASIC loader program prints the elapsed time at the end, so we include a
; label for that, too
tilabel: .asciiz ")\r\rTIME:"
; ZP locations to store the integers to try
x0 = $f7
x1 = x0 + 1
x2 = x0 + 2
x3 = x0 + 3
; we use binary search to find integer roots; current bounds go here
low = x0 + 4
hi = x0 + 5
; sum of powers of current candidate integers
sum: .res 5
; when we find a sum with an integer 5th root, we put it here
x4: .res 1
main: ; loop for x0 from 1 to max_value
ldx #01
stx x0
loop0: ; loop for x1 from x0+1 to max_value
ldx x0
inx
stx x1
loop1: ; loop for x2 from x1+1 to max_value
ldx x1
inx
stx x2
loop2: ; loop for x3 from x2+1 to max_value
ldx x2
inx
stx x3
loop3: ; add up the fifth powers of the four numbers
; initialize to 0
lda #00
sta sum
sta sum+1
sta sum+2
sta sum+3
sta sum+4
; we use indexed addressing, taking advantage of the fact that the xn's
; are consecutive, so x0,1 = x1, etc.
ldy #0
addloop:
ldx x0,y
lda sum
clc
adc power5byte0,x
sta sum
lda sum+1
adc power5byte1,x
sta sum+1
lda sum+2
adc power5byte2,x
sta sum+2
lda sum+3
adc power5byte3,x
sta sum+3
lda sum+4
adc power5byte4,x
sta sum+4
iny
cpy #4
bcc addloop
; now sum := x₀⁵+x₁⁵+x₂⁵+x₃⁵
; set initial bounds for binary search
ldx x3
inx
stx low
ldx #max_value
dex
stx hi
binsearch:
; compute midpoint
lda low
cmp hi
beq notdone
bcs done_search
notdone:
ldx #0
clc
adc hi
; now a + carry bit = low+hi; rotating right will get the midpoint
ror
; compare square of midpoint to sum
tax
lda sum+4
cmp power5byte4,x
bne notyet
lda sum+3
cmp power5byte3,x
bne notyet
lda sum+2
cmp power5byte2,x
bne notyet
lda sum+1
cmp power5byte1,x
bne notyet
lda sum
cmp power5byte0,x
beq found
notyet:
bcc sum_lt_guess
inx
stx low
bne endbin
beq endbin
sum_lt_guess:
dex
stx hi
endbin:
bne binsearch
beq binsearch
done_search:
inc x3
lda x3
cmp #max_value
bcs end_loop3
jmp loop3
end_loop3:
inc x2
lda x2
cmp #max_value
bcs end_loop2
jmp loop2
end_loop2:
inc x1
lda x1
cmp #max_value
bcs end_loop1
jmp loop1
end_loop1:
inc x0
lda x0
cmp #max_value
bcs end_loop0
jmp loop0
end_loop0:
; should never get here, means we didn't find an example.
brk
found: stx x4
puts success
putdec x0
ldy #1
ploop: puts between
putdec {x0,y}
iny
cpy #4
bcc ploop
puts penult
putdec {x0,y}
puts eqend
putdec5 sum
puts tilabel
rts
- Output:
**** COMMODORE 64 BASIC V2 **** 64K RAM SYSTEM 38911 BASIC BYTES FREE READY. LOAD"ESOP",8,1 SEARCHING FOR ESOP LOADING READY. RUN: FOUND EXAMPLE: 27^5 + 84^5 + 110^5 + 133^5 = 144^5 (SUM IS 61917364224) TIME:095617 READY.
... almost ten hours, but it did find it!
Ada
with Ada.Text_IO;
procedure Sum_Of_Powers is
type Base is range 0 .. 250; -- A, B, C, D and Y are in that range
type Num is range 0 .. 4*(250**5); -- (A**5 + ... + D**5) is in that range
subtype Fit is Num range 0 .. 250**5; -- Y**5 is in that range
Modulus: constant Num := 254;
type Modular is mod Modulus;
type Result_Type is array(1..5) of Base; -- this will hold A,B,C,D and Y
type Y_Type is array(Modular) of Base;
type Y_Sum_Type is array(Modular) of Fit;
Y_Sum: Y_Sum_Type := (others => 0);
Y: Y_Type := (others => 0);
-- for I in 0 .. 250, we set Y_Sum(I**5 mod Modulus) := I**5
-- and Y(I**5 mod Modulus) := I
-- Modulus has been chosen to avoid collisions on (I**5 mod Modulus)
-- later we will compute Sum_ABCD := A**5 + B**5 + C**5 + D**5
-- and check if Y_Sum(Sum_ABCD mod modulus) = Sum_ABCD
function Compute_Coefficients return Result_Type is
Sum_A: Fit;
Sum_AB, Sum_ABC, Sum_ABCD: Num;
Short: Modular;
begin
for A in Base(0) .. 246 loop
Sum_A := Num(A) ** 5;
for B in A .. 247 loop
Sum_AB := Sum_A + (Num(B) ** 5);
for C in Base'Max(B,1) .. 248 loop -- if A=B=0 then skip C=0
Sum_ABC := Sum_AB + (Num(C) ** 5);
for D in C .. 249 loop
Sum_ABCD := Sum_ABC + (Num(D) ** 5);
Short := Modular(Sum_ABCD mod Modulus);
if Y_Sum(Short) = Sum_ABCD then
return A & B & C & D & Y(Short);
end if;
end loop;
end loop;
end loop;
end loop;
return 0 & 0 & 0 & 0 & 0;
end Compute_Coefficients;
Tmp: Fit;
ABCD_Y: Result_Type;
begin -- main program
-- initialize Y_Sum and Y
for I in Base(0) .. 250 loop
Tmp := Num(I)**5;
if Y_Sum(Modular(Tmp mod Modulus)) /= 0 then
raise Program_Error with "Collision: Change Modulus and recompile!";
else
Y_Sum(Modular(Tmp mod Modulus)) := Tmp;
Y(Modular(Tmp mod Modulus)) := I;
end if;
end loop;
-- search for a solution (A, B, C, D, Y)
ABCD_Y := Compute_Coefficients;
-- output result
for Number of ABCD_Y loop
Ada.Text_IO.Put(Base'Image(Number));
end loop;
Ada.Text_IO.New_Line;
end Sum_Of_Powers;
- Output:
27 84 110 133 144
ALGOL 68
# max number will be the highest integer we will consider #
INT max number = 250;
# Construct a table of the fifth powers of 1 : max number #
[ max number ]LONG INT fifth;
FOR i TO max number DO
LONG INT i2 = i * i;
fifth[ i ] := i2 * i2 * i
OD;
# find the first a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5 #
# as the fifth powers are in order, we can use a binary search to determine #
# whether the value is in the table #
BOOL found := FALSE;
FOR a TO max number WHILE NOT found DO
FOR b FROM a TO max number WHILE NOT found DO
FOR c FROM b TO max number WHILE NOT found DO
FOR d FROM c TO max number WHILE NOT found DO
LONG INT sum = fifth[a] + fifth[b] + fifth[c] + fifth[d];
INT low := d;
INT high := max number;
WHILE low < high
AND NOT found
DO
INT e := ( low + high ) OVER 2;
IF fifth[ e ] = sum
THEN
# the value at e is a fifth power #
found := TRUE;
print( ( ( whole( a, 0 ) + "^5 + " + whole( b, 0 ) + "^5 + "
+ whole( c, 0 ) + "^5 + " + whole( d, 0 ) + "^5 = "
+ whole( e, 0 ) + "^5"
)
, newline
)
)
ELIF sum < fifth[ e ]
THEN high := e - 1
ELSE low := e + 1
FI
OD
OD
OD
OD
OD
Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
ALGOL W
As suggested by the REXX solution, we find a solution to a^5 + b^5 + c^5 = e^5 - d^5 which results in a significant reduction in run time.
Algol W integers are 32-bit only, so we simulate the necessary 12 digit arithmetic with pairs of integers.
begin
% find a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5 %
% where 1 <= a <= b <= c <= d <= e <= 250 %
% we solve this using the equivalent equation a^5 + b^5 + c^5 = e^5 - d^5 %
% 250^5 is 976 562 500 000 - too large for a 32 bit number so we will use pairs of %
% integers and constrain their values to be in 0..1 000 000 %
% Note only positive numbers are needed %
integer MAX_NUMBER, MAX_V;
MAX_NUMBER := 250;
MAX_V := 1000000;
begin
% quick sorts the fifth power differences table %
procedure quickSort5 ( integer value lb, ub ) ;
if ub > lb then begin
% more than one element, so must sort %
integer left, right, pivot, pivotLo, pivotHi;
left := lb;
right := ub;
% choosing the middle element of the array as the pivot %
pivot := left + ( ( ( right + 1 ) - left ) div 2 );
pivotLo := loD( pivot );
pivotHi := hiD( pivot );
while begin
while left <= ub
and begin integer cmp;
cmp := hiD( left ) - pivotHi;
if cmp = 0 then cmp := loD( left ) - pivotLo;
cmp < 0
end
do left := left + 1;
while right >= lb
and begin integer cmp;
cmp := hiD( right ) - pivotHi;
if cmp = 0 then cmp := loD( right ) - pivotLo;
cmp > 0
end
do right := right - 1;
left <= right
end do begin
integer swapLo, swapHi, swapD, swapE;
swapLo := loD( left );
swapHi := hiD( left );
swapD := Dd( left );
swapE := De( left );
loD( left ) := loD( right );
hiD( left ) := hiD( right );
Dd( left ) := Dd( right );
De( left ) := De( right );
loD( right ) := swapLo;
hiD( right ) := swapHi;
Dd( right ) := swapD;
De( right ) := swapE;
left := left + 1;
right := right - 1
end while_left_le_right ;
quickSort5( lb, right );
quickSort5( left, ub )
end quickSort5 ;
% table of fifth powers %
integer array lo5, hi5 ( 1 :: MAX_NUMBER );
% table if differences between fifth powers %
integer array loD, hiD, De, Dd ( 1 :: MAX_NUMBER * MAX_NUMBER );
integer dUsed, dPos;
% compute fifth powers %
for i := 1 until MAX_NUMBER do begin
lo5( i ) := i * i; hi5( i ) := 0;
for p := 3 until 5 do begin
integer carry;
lo5( i ) := lo5( i ) * i;
carry := lo5( i ) div MAX_V;
lo5( i ) := lo5( i ) rem MAX_V;
hi5( i ) := hi5( i ) * i;
hi5( i ) := hi5( i ) + carry
end for_p
end for_i ;
% compute the differences between fifth powers e^5 - d^5, 1 <= d < e <= MAX_NUMBER %
dUsed := 0;
for e := 2 until MAX_NUMBER do begin
for d := 1 until e - 1 do begin
dUsed := dUsed + 1;
De( dUsed ) := e;
Dd( dUsed ) := d;
loD( dUsed ) := lo5( e ) - lo5( d );
hiD( dUsed ) := hi5( e ) - hi5( d );
if loD( dUsed ) < 0 then begin
loD( dUsed ) := loD( dUsed ) + MAX_V;
hiD( dUsed ) := hiD( dUsed ) - 1
end if_need_to_borrow
end for_d
end for_e;
% sort the fifth power differences %
quickSort5( 1, dUsed );
% attempt to find a^5 + b^5 + c^5 = e^5 - d^5 %
for a := 1 until MAX_NUMBER do begin
integer loA, hiA;
loA := lo5( a ); hiA := hi5( a );
for b := a until MAX_NUMBER do begin
integer loB, hiB;
loB := lo5( b ); hiB := hi5( b );
for c := b until MAX_NUMBER do begin
integer low, high, loSum, hiSum;
loSum := loA + loB + lo5( c );
hiSum := ( loSum div MAX_V ) + hiA + hiB + hi5( c );
loSum := loSum rem MAX_V;
% look for hiSum,loSum in hiD,loD %
low := 1;
high := dUsed;
while low < high do begin
integer mid, cmp;
mid := ( low + high ) div 2;
cmp := hiD( mid ) - hiSum;
if cmp = 0 then cmp := loD( mid ) - loSum;
if cmp = 0 then begin
% the value at mid is the difference of two fifth powers %
write( i_w := 1, s_w := 0
, a, "^5 + ", b, "^5 + ", c, "^5 + "
, Dd( mid ), "^5 = ", De( mid ), "^5"
);
go to found
end
else if cmp > 0 then high := mid - 1
else low := mid + 1
end while_low_lt_high
end for_c
end for_b
end for_a ;
found :
end
end.
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
Arturo
eulerSumOfPowers: function [top][
p5: map 0..top => [& ^ 5]
loop 4..top 'a [
loop 3..a-1 'b [
loop 2..b-1 'c [
loop 1..c-1 'd [
s: (get p5 a) + (get p5 b) + (get p5 c) + (get p5 d)
if integer? index p5 s ->
return ~"|a|^5 + |b|^5 + |c|^5 + |d|^5 = |index p5 s|^5"
]
]
]
]
return "not found" ; shouldn't reach here
]
print eulerSumOfPowers 249
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
AWK
# syntax: GAWK -f EULERS_SUM_OF_POWERS_CONJECTURE.AWK
BEGIN {
start_int = systime()
main()
printf("%d seconds\n",systime()-start_int)
exit(0)
}
function main( sum,s1,x0,x1,x2,x3) {
for (x0=1; x0<=250; x0++) {
for (x1=1; x1<=x0; x1++) {
for (x2=1; x2<=x1; x2++) {
for (x3=1; x3<=x2; x3++) {
sum = (x0^5) + (x1^5) + (x2^5) + (x3^5)
s1 = int(sum ^ 0.2)
if (sum == s1^5) {
printf("%d^5 + %d^5 + %d^5 + %d^5 = %d^5\n",x0,x1,x2,x3,s1)
return
}
}
}
}
}
}
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5 15 seconds
BASIC
BASIC256
arraybase 1
max = 250
pow5_max = max * max * max * max * max
limit_x1 = (pow5_max / 4) ^ 0.2
limit_x2 = (pow5_max / 3) ^ 0.2
limit_x3 = (pow5_max / 2) ^ 0.2
dim pow5(max)
for x1 = 1 to max
pow5[x1] = x1 * x1 * x1 * x1 * x1
next x1
for x1 = 1 to limit_x1
for x2 = x1 +1 to limit_x2
m1 = x1 + x2
ans1 = pow5[x1] + pow5[x2]
if ans1 > pow5_max then exit for
for x3 = x2 +1 to limit_x3
ans2 = ans1 + pow5[x3]
if ans2 > pow5_max then exit for
m2 = (m1 + x3) % 30
if m2 = 0 then m2 = 30
for x4 = x3 +1 to max -1
ans3 = ans2 + pow5[x4]
if ans3 > pow5_max then exit for
for x5 = x4 + m2 to max step 30
if ans3 < pow5[x5] then exit for
if ans3 = pow5[x5] then
print x1; "^5 + "; x2; "^5 + "; x3; "^5 + "; x4; "^5 = "; x5; "^5"
end
end if
next x5
next x4
next x3
next x2
next x1
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
Chipmunk Basic
100 max = 250
110 for w = 1 to max
120 for x = 1 to w
130 for y = 1 to x
140 for z = 1 to y
150 sum = w^5+x^5+y^5+z^5
160 sol = int(sum^0.2)
170 if sum = sol^5 then
180 print w;"^5 + ";x;"^5 + ";y;"^5 + ";z;"^5 = ";sol;"^5"
190 end
200 endif
210 next z
220 next y
230 next x
240 next w
- Output:
133 ^5 + 110 ^5 + 84 ^5 + 27 ^5 = 144 ^5
FreeBASIC
' version 14-09-2015
' compile with: fbc -s console
' some constants calculated when the program is compiled
Const As UInteger max = 250
Const As ULongInt pow5_max = CULngInt(max) * max * max * max * max
' limit x1, x2, x3
Const As UInteger limit_x1 = (pow5_max / 4) ^ 0.2
Const As UInteger limit_x2 = (pow5_max / 3) ^ 0.2
Const As UInteger limit_x3 = (pow5_max / 2) ^ 0.2
' ------=< MAIN >=------
Dim As ULongInt pow5(max), ans1, ans2, ans3
Dim As UInteger x1, x2, x3, x4, x5 , m1, m2
Cls : Print
For x1 = 1 To max
pow5(x1) = CULngInt(x1) * x1 * x1 * x1 * x1
Next x1
For x1 = 1 To limit_x1
For x2 = x1 +1 To limit_x2
m1 = x1 + x2
ans1 = pow5(x1) + pow5(x2)
If ans1 > pow5_max Then Exit For
For x3 = x2 +1 To limit_x3
ans2 = ans1 + pow5(x3)
If ans2 > pow5_max Then Exit For
m2 = (m1 + x3) Mod 30
If m2 = 0 Then m2 = 30
For x4 = x3 +1 To max -1
ans3 = ans2 + pow5(x4)
If ans3 > pow5_max Then Exit For
For x5 = x4 + m2 To max Step 30
If ans3 < pow5(x5) Then Exit For
If ans3 = pow5(x5) Then
Print x1; "^5 + "; x2; "^5 + "; x3; "^5 + "; _
x4; "^5 = "; x5; "^5"
Exit For, For
EndIf
Next x5
Next x4
Next x3
Next x2
Next x1
Print
Print "done"
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
Microsoft Small Basic
' Euler sum of powers conjecture - 03/07/2015
'find: x1^5+x2^5+x3^5+x4^5=x5^5
'-> x1=27 x2=84 x3=110 x4=133 x5=144
maxn=250
For i=1 to maxn
p5[i]=Math.Power(i,5)
EndFor
For x1=1 to maxn-4
For x2=x1+1 to maxn-3
'TextWindow.WriteLine("x1="+x1+", x2="+x2)
For x3=x2+1 to maxn-2
'TextWindow.WriteLine("x1="+x1+", x2="+x2+", x3="+x3)
For x4=x3+1 to maxn-1
'TextWindow.WriteLine("x1="+x1+", x2="+x2+", x3="+x3+", x4="+x4)
x5=x4+1
valx=p5[x5]
sumx=p5[x1]+p5[x2]+p5[x3]+p5[x4]
While x5<=maxn and valx<=sumx
If valx=sumx Then
TextWindow.WriteLine("Found!")
TextWindow.WriteLine("-> "+x1+"^5+"+x2+"^5+"+x3+"^5+"+x4+"^5="+x5+"^5")
TextWindow.WriteLine("x5^5="+sumx)
Goto EndPgrm
EndIf
x5=x5+1
valx=p5[x5]
EndWhile 'x5
EndFor 'x4
EndFor 'x3
EndFor 'x2
EndFor 'x1
EndPgrm:
- Output:
Found! -> 27^5+84^5+110^5+133^5=144^5 x5^5=61917364224
Minimal BASIC
100 LET m = 250
110 FOR w = 1 TO m
120 FOR x = 1 TO w
130 FOR y = 1 TO x
140 FOR z = 1 TO y
150 LET s = w^5+x^5+y^5+z^5
160 LET r = INT(s^0.2)
170 IF s = r^5 THEN 220
180 NEXT z
190 NEXT y
200 NEXT x
210 NEXT w
220 PRINT w;"^5 +";x;"^5 +";y;"^5+ ";z;"^5 =";r;"^5"
230 END
- Output:
133 ^5 + 110 ^5 + 84 ^5 + 27 ^5 = 144 ^5
PureBasic
EnableExplicit
; assumes an array of non-decreasing positive integers
Procedure.q BinarySearch(Array a.q(1), Target.q)
Protected l = 0, r = ArraySize(a()), m
Repeat
If l > r : ProcedureReturn 0 : EndIf; no match found
m = (l + r) / 2
If a(m) < target
l = m + 1
ElseIf a(m) > target
r = m - 1
Else
ProcedureReturn m ; match found
EndIf
ForEver
EndProcedure
Define i, x0, x1, x2, x3, y
Define.q sum
Define Dim p5.q(249)
For i = 1 To 249
p5(i) = i * i * i * i * i
Next
If OpenConsole()
For x0 = 1 To 249
For x1 = 1 To x0 - 1
For x2 = 1 To x1 - 1
For x3 = 1 To x2 - 1
sum = p5(x0) + p5(x1) + p5(x2) + p5(x3)
y = BinarySearch(p5(), sum)
If y > 0
PrintN(Str(x0) + "^5 + " + Str(x1) + "^5 + " + Str(x2) + "^5 + " + Str(x3) + "^5 = " + Str(y) + "^5")
Goto finish
EndIf
Next x3
Next x2
Next x1
Next x0
PrintN("No solution was found")
finish:
PrintN("")
PrintN("Press any key to close the console")
Repeat: Delay(10) : Until Inkey() <> ""
CloseConsole()
EndIf
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
QL SuperBASIC
This program enhances a modular brute-force search, posted on fidonet in the 1980s, via number theoretic enhancements as used by the program for ZX Spectrum Basic, but without the early decrement of the RHS in the control framework due to being backward compatible with the lack of floating point in Sinclair ZX80 BASIC (whereby the latter is truly 'zeroeth' generation). To emulate running on a ZX80 (needing a 16K RAM pack & MODifications, some given below) that completes the task sooner than the program for the OEM Spectrum, it relies entirely on integer functions, their upper limit being 2^15- 1 in ZX80 BASIC as well. Thus, the "slide rule" calculation of each percentage on the Spectrum is replaced by that of ones' digits across "abaci" of relatively prime bases Pi. Given that each Pi is to be <= 2^7 for said limit's sake, it takes six prime numbers or powers thereof to serve as bases of such a mixed-base number system, since it is necessary that ΠPi > 249^5 for unambiguous representation (as character strings). On ZX80s there are at most 64 consecutive printable characters (in the inverse video block: t%=48 thus becomes T=128). Just seven bases Pi <= 2^6 will be needed when the difference between 64 & a base is expressible as a four-bit offset, by which one must 'multiply' (since Z80s lack MUL) in the reduction step of the optimal assembly algorithm for MOD Pi. Such bases are: 49, 53, 55, 57, 59, 61, 64. In disproving Euler's conjecture, the program demonstrates that using 60 bits of integer precision in 1966 was 2-fold overkill, or even more so in terms of overhead cost vis-a-vis contemporaneous computers less sophisticated than a CDC 6600.
1 CLS
2 DIM i%(255,6) : DIM a%(6) : DIM c%(6)
3 DIM v%(255,6) : DIM b%(6) : DIM d%(29)
4 RESTORE 137
6 FOR m=0 TO 6
7 READ t%
8 FOR j=1 TO 255
11 LET i%(j,m)=j MOD t%
12 LET v%(j,m)=(i%(j,m) * i%(j,m))MOD t%
14 LET v%(j,m)=(v%(j,m) * v%(j,m))MOD t%
15 LET v%(j,m)=(v%(j,m) * i%(j,m))MOD t%
17 END FOR j : END FOR m
19 PRINT "Abaci ready"
21 FOR j=10 TO 29: d%(j)=210+ j
24 FOR j=0 TO 9: d%(j)=240+ j
25 LET t%=48
30 FOR w=6 TO 246 STEP 3
33 LET o=w
42 FOR x=4 TO 248 STEP 2
44 IF o<x THEN o=x
46 FOR m=1 TO 6: a%(m)=i%((v%(w,m)+v%(x,m)),m)
50 FOR y=10 TO 245 STEP 5
54 IF o<y THEN o=y
56 FOR m=1 TO 6: b%(m)=i%((a%(m)+v%(y,m)),m)
57 FOR z=14 TO 245 STEP 7
59 IF o<z THEN o=z
60 FOR m=1 TO 6: c%(m)=i%((b%(m)+v%(z,m)),m)
65 LET s$="" : FOR m=1 TO 6: s$=s$&CHR$(c%(m)+t%)
70 LET o=o+1 : j=d%(i%((i%(w,0)+i%(x,0)+i%(y,0)+i%(z,0)),0))
75 IF j<o THEN NEXT z
80 FOR k=j TO o STEP -30
85 LET e$="" : FOR m=1 TO 6: e$=e$&CHR$(v%(k,m)+t%)
90 IF s$=e$ THEN PRINT w,x,y,z,k,s$,e$: STOP
95 END FOR k : END FOR z : END FOR y : END FOR x : END FOR w
137 DATA 30,97,113,121,125,127,128
- Output:
Abaci ready 27 84 110 133 144 bT`íα0 bT`íα0
Run BASIC
max = 250
FOR w = 1 TO max
FOR x = 1 TO w
FOR y = 1 TO x
FOR z = 1 TO y
sum = w^5 + x^5 + y^5 + z^5
s1 = INT(sum^0.2)
IF sum = s1^5 THEN
PRINT w;"^5 + ";x;"^5 + ";y;"^5 + ";z;"^5 = ";s1;"^5"
end
end if
NEXT z
NEXT y
NEXT x
NEXT w
133^5 + 110^5 + 84^5 + 27^5 = 144^5
True BASIC
LET max = 250
FOR w = 1 TO max
FOR x = 1 TO w
FOR y = 1 TO x
FOR z = 1 TO y
LET sum = w^5 + x^5 + y^5 + z^5
LET s1 = INT(sum^0.2)
IF sum = s1^5 THEN
PRINT w;"^5 + ";x;"^5 + ";y;"^5 + ";z;"^5 = ";s1;"^5"
EXIT FOR
END IF
NEXT z
NEXT y
NEXT x
NEXT w
END
- Output:
Same as Run BASIC entry.
VBA
Public Declare Function GetTickCount Lib "kernel32.dll" () As Long
Public Sub begin()
start_int = GetTickCount()
main
Debug.Print (GetTickCount() - start_int) / 1000 & " seconds"
End Sub
Private Function pow(x, y) As Variant
pow = CDec(Application.WorksheetFunction.Power(x, y))
End Function
Private Sub main()
For x0 = 1 To 250
For x1 = 1 To x0
For x2 = 1 To x1
For x3 = 1 To x2
sum = CDec(pow(x0, 5) + pow(x1, 5) + pow(x2, 5) + pow(x3, 5))
s1 = Int(pow(sum, 0.2))
If sum = pow(s1, 5) Then
Debug.Print x0 & "^5 + " & x1 & "^5 + " & x2 & "^5 + " & x3 & "^5 = " & s1
Exit Sub
End If
Next x3
Next x2
Next x1
Next x0
End Sub
- Output:
33^5 + 110^5 + 84^5 + 27^5 = 144 160,187 seconds
Visual Basic .NET
Paired Powers Algorithm
Module Module1
Structure Pair
Dim a, b As Integer
Sub New(x as integer, y as integer)
a = x : b = y
End Sub
End Structure
Dim max As Integer = 250
Dim p5() As Long,
sum2 As SortedDictionary(Of Long, Pair) = New SortedDictionary(Of Long, Pair)
Function Fmt(p As Pair) As String
Return String.Format("{0}^5 + {1}^5", p.a, p.b)
End Function
Sub Init()
p5(0) = 0 : p5(1) = 1 : For i As Integer = 1 To max - 1
For j As Integer = i + 1 To max
p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
sum2.Add(p5(i) + p5(j), New Pair(i, j))
Next
Next
End Sub
Sub Calc(Optional findLowest As Boolean = True)
For i As Integer = 1 To max : Dim p As Long = p5(i)
For Each s In sum2.Keys
Dim t As Long = p - s : If t <= 0 Then Exit For
If sum2.Keys.Contains(t) AndAlso sum2.Item(t).a > sum2.Item(s).b Then
Console.WriteLine(" {1} + {2} = {0}^5", i, Fmt(sum2.Item(s)), Fmt(sum2.Item(t)))
If findLowest Then Exit Sub
End If
Next : Next
End Sub
Sub Main(args As String())
If args.Count > 0 Then
Dim t As Integer = 0 : Integer.TryParse(args(0), t)
If t > 0 AndAlso t < 5405 Then max = t
End If
Console.WriteLine("Checking from 1 to {0}...", max)
For i As Integer = 0 To 1
ReDim p5(max) : sum2.Clear()
Dim st As DateTime = DateTime.Now
Init() : Calc(i = 0)
Console.WriteLine("{0} Computation time to {2} was {1} seconds{0}", vbLf,
(DateTime.Now - st).TotalSeconds, If(i = 0, "find lowest one", "check entire space"))
Next
If Diagnostics.Debugger.IsAttached Then Console.ReadKey()
End Sub
End Module
- Output:
(No command line arguments)
Checking from 1 to 250... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 Computation time to find lowest one was 0.0807819 seconds 27^5 + 84^5 + 110^5 + 133^5 = 144^5 Computation time to check entire space was 0.3830103 seconds
Command line argument = "1000"
Checking from 1 to 1000... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 Computation time to find lowest one was 0.3112007 seconds 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time to check entire space was 28.8847393 seconds
Paired Powers w/ Mod 30 Shortcut and Threading
If one divides the searched array of powers (sum2m()) into 30 pieces, the search time can be reduced by only searching the appropriate one (determined by the Mod 30 value of the value being sought). Once broken down by this, it is now easier to use threading to further reduce the computation time.
The following compares the plain paired powers algorithm to the plain powers plus the mod 30 shortcut algorithm, without and with threading.
Module Module1
Structure Pair
Dim a, b As Integer
Sub New(x As Integer, y As Integer)
a = x : b = y
End Sub
End Structure
Dim min As Integer = 1, max As Integer = 250
Dim p5() As Long,
sum2 As SortedDictionary(Of Long, Pair) = New SortedDictionary(Of Long, Pair),
sum2m(29) As SortedDictionary(Of Long, Pair)
Function Fmt(p As Pair) As String
Return String.Format("{0}^5 + {1}^5", p.a, p.b)
End Function
Sub Init()
p5(0) = 0 : p5(min) = CLng(min) * min : p5(min) *= p5(min) * min
For i As Integer = min To max - 1
For j As Integer = i + 1 To max
p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
If j = max Then Continue For
sum2.Add(p5(i) + p5(j), New Pair(i, j))
Next
Next
End Sub
Sub InitM()
For i As Integer = 0 To 29 : sum2m(i) = New SortedDictionary(Of Long, Pair) : Next
p5(0) = 0 : p5(min) = CLng(min) * min : p5(min) *= p5(min) * min
For i As Integer = min To max - 1
For j As Integer = i + 1 To max
p5(j) = CLng(j) * j : p5(j) *= p5(j) * j
If j = max Then Continue For
Dim x As Long = p5(i) + p5(j)
sum2m(x Mod 30).Add(x, New Pair(i, j))
Next
Next
End Sub
Sub Calc(Optional findLowest As Boolean = True)
For i As Integer = min To max : Dim p As Long = p5(i)
For Each s In sum2.Keys
Dim t As Long = p - s : If t <= 0 Then Exit For
If sum2.Keys.Contains(t) AndAlso sum2.Item(t).a > sum2.Item(s).b Then
Console.WriteLine(" {1} + {2} = {0}^5", i,
Fmt(sum2.Item(s)), Fmt(sum2.Item(t)))
If findLowest Then Exit Sub
End If
Next : Next
End Sub
Function CalcM(m As Integer) As List(Of String)
Dim res As New List(Of String)
For i As Integer = min To max
Dim pm As Integer = i Mod 30,
mp As Integer = (pm - m + 30) Mod 30
For Each s In sum2m(m).Keys
Dim t As Long = p5(i) - s : If t <= 0 Then Exit For
If sum2m(mp).Keys.Contains(t) AndAlso
sum2m(mp).Item(t).a > sum2m(m).Item(s).b Then
res.Add(String.Format(" {1} + {2} = {0}^5",
i, Fmt(sum2m(m).Item(s)), Fmt(sum2m(mp).Item(t))))
End If
Next : Next
Return res
End Function
Function Snip(s As String) As Integer
Dim p As Integer = s.IndexOf("=") + 1
Return s.Substring(p, s.IndexOf("^", p) - p)
End Function
Function CompareRes(ByVal x As String, ByVal y As String) As Integer
CompareRes = Snip(x).CompareTo(Snip(y))
If CompareRes = 0 Then CompareRes = x.CompareTo(y)
End Function
Function Validify(def As Integer, s As String) As Integer
Validify = def : Dim t As Integer = 0 : Integer.TryParse(s, t)
If t >= 1 AndAlso Math.Pow(t, 5) < (Long.MaxValue >> 1) Then Validify = t
End Function
Sub Switch(ByRef a As Integer, ByRef b As Integer)
Dim t As Integer = a : a = b : b = t
End Sub
Sub Main(args As String())
Select Case args.Count
Case 1 : max = Validify(max, args(0))
Case > 1
min = Validify(min, args(0))
max = Validify(max, args(1))
If max < min Then Switch(max, min)
End Select
Console.WriteLine("Paired powers, checking from {0} to {1}...", min, max)
For i As Integer = 0 To 1
ReDim p5(max) : sum2.Clear()
Dim st As DateTime = DateTime.Now
Init() : Calc(i = 0)
Console.WriteLine("{0} Computation time to {2} was {1} seconds{0}", vbLf,
(DateTime.Now - st).TotalSeconds, If(i = 0, "find lowest one", "check entire space"))
Next
For i As Integer = 0 To 1
Console.WriteLine("Paired powers with Mod 30 shortcut (entire space) {2}, checking from {0} to {1}...",
min, max, If(i = 0, "sequential", "parallel"))
ReDim p5(max)
Dim res As List(Of String) = New List(Of String)
Dim st As DateTime = DateTime.Now
Dim taskList As New List(Of Task(Of List(Of String)))
InitM()
Select Case i
Case 0
For j As Integer = 0 To 29
res.AddRange(CalcM(j))
Next
Case 1
For j As Integer = 0 To 29 : Dim jj = j
taskList.Add(Task.Run(Function() CalcM(jj)))
Next
Task.WhenAll(taskList)
For Each item In taskList.Select(Function(t) t.Result)
res.AddRange(item) : Next
End Select
res.Sort(AddressOf CompareRes)
For Each item In res
Console.WriteLine(item) : Next
Console.WriteLine("{0} Computation time was {1} seconds{0}", vbLf, (DateTime.Now - st).TotalSeconds)
Next
If Diagnostics.Debugger.IsAttached Then Console.ReadKey()
End Sub
End Module
- Output:
(No command line arguments)
Paired powers, checking from 1 to 250...27^5 + 84^5 + 110^5 + 133^5 = 144^5
Computation time to find lowest one was 0.0781252 seconds
27^5 + 84^5 + 110^5 + 133^5 = 144^5
Computation time to check entire space was 0.3280574 seconds
Paired powers with Mod 30 shortcut (entire space) sequential, checking from 1 to 250... 27^5 + 84^5 + 110^5 + 133^5 = 144^5
Computation time was 0.2655529 seconds
Paired powers with Mod 30 shortcut (entire space) parallel, checking from 1 to 250... 27^5 + 84^5 + 110^5 + 133^5 = 144^5
Computation time was 0.0624651 seconds
(command line argument = "1000")
Paired powers, checking from 1 to 1000... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 Computation time to find lowest one was 0.2499343 seconds 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time to check entire space was 27.805961 seconds Paired powers with Mod 30 shortcut (entire space) sequential, checking from 1 to 1000... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time was 23.8068928 seconds Paired powers with Mod 30 shortcut (entire space) parallel, checking from 1 to 1000... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time was 5.4205943 seconds
(command line arguments = "27 864")
Paired powers, checking from 27 to 864... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 Computation time to find lowest one was 0.1562309 seconds 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time to check entire space was 15.8243802 seconds Paired powers with Mod 30 shortcut (entire space) sequential, checking from 27 to 864... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time was 13.0438215 seconds Paired powers with Mod 30 shortcut (entire space) parallel, checking from 27 to 864... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time was 3.0305365 seconds
(command line arguments = "189 1008")
Paired powers, checking from 189 to 1008... 189^5 + 588^5 + 770^5 + 931^5 = 1008^5 Computation time to find lowest one was 14.6840411 seconds 189^5 + 588^5 + 770^5 + 931^5 = 1008^5 Computation time to check entire space was 14.7777685 seconds Paired powers with Mod 30 shortcut (entire space) sequential, checking from 189 to 1008... 189^5 + 588^5 + 770^5 + 931^5 = 1008^5 Computation time was 12.4814705 seconds Paired powers with Mod 30 shortcut (entire space) parallel, checking from 189 to 1008... 189^5 + 588^5 + 770^5 + 931^5 = 1008^5 Computation time was 2.7180777 seconds
Yabasic
limit = 250
pow5_limit = limit * limit * limit * limit * limit
limit_x1 = (pow5_limit / 4) ^ 0.2
limit_x2 = (pow5_limit / 3) ^ 0.2
limit_x3 = (pow5_limit / 2) ^ 0.2
dim pow5(limit)
for x1 = 1 to limit
pow5(x1) = x1 * x1 * x1 * x1 * x1
next x1
for x1 = 1 to limit_x1
for x2 = x1 +1 to limit_x2
m1 = x1 + x2
ans1 = pow5(x1) + pow5(x2)
if ans1 > pow5_limit break
for x3 = x2 +1 to limit_x3
ans2 = ans1 + pow5(x3)
if ans2 > pow5_limit break
m2 = mod((m1 + x3), 30)
if m2 = 0 m2 = 30
for x4 = x3 +1 to limit -1
ans3 = ans2 + pow5(x4)
if ans3 > pow5_limit break
for x5 = x4 + m2 to limit step 30
if ans3 < pow5(x5) break
if ans3 = pow5(x5) then
print x1, "^5 + ", x2, "^5 + ", x3, "^5 + ", x4, "^5 = ", x5, "^5"
break
fi
next x5
next x4
next x3
next x2
next x1
end
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
ZX Spectrum Basic
This "abacus revision" reverts back to an earlier one, i.e. the "slide rule" one calculating the logarithmic 'percentage' for each of 4 summands. It also calculates their ones' digits as if on a base m abacus, that complements the other base m digits embedded in their percentages via a check sum of the ones' digits when the percentages add up to 1. Because any other argument is less than m, there is sufficient additional precision so as to not find false solutions while seeking the first primitive solution. 1 is excluded a priori for (e.g.) w, since it is well-known that the only integral points on 1=m^5-x^5-y^5-z^5 are the obvious ones (that aren't distinct\all >0). Nonetheless, 1 (as the zeroeth 'prime' Po) can be the first of 3 factors (one of the others being a power of the first 4 primes) for specifying a LHS argument. Given 4 LHS arguments each raised to a 5th power as is the RHS for which m<=ΣΠPi<2^(3+5), i=0 to 4, the LHS solution (if one exists) will consist of 4 elements of a factorial domain that are each a triplet (a prime\Po * a prime^1st\2nd power * a prime^1st\4th power) multiple having a distinct pair of the first 4 primes present & absent. Such potential solutions are generated by aiming for simplicity rather than efficiency (e.g. not generating potential solutions where each multiple is even). Two theorems' consequences intended for an even earlier revision are also applied: Fermat's Little Theorem (as proven later by Euler) whereby Xi^5 mod P = Xi mod P for the first 3 primes; and the Chinese Remainder Theorem in reverse whereby m= k- i*2*3*5, such that k is chosen to be the highest allowed m congruent mod 30 to the sum of the LHS arguments of a potential solution. Although still slow, this revision performs the given task on any ZX Spectrum, despite being limited to 32-bit precision.
1 CLS
2 DIM k(29): DIM q(249)
5 FOR i=4 TO 249: LET q(i)=LN i : NEXT i
6 REM enhancements for the much expanded Spectrum Next: DIM p(248,249)
7 REM FOR j=4TO 248:FOR i=j TO 249:LET p(j,i)=EXP (q(j)-q(i))*5:NEXT i:NEXT j
9 PRINT "slide rule ready"
15 FOR i=0 TO 9: LET k(i)=240+ i : NEXT i
17 FOR i=10 TO 29: LET k(i)=210+ i : NEXT i
20 FOR w=6 TO 246 STEP 3
21 LET o=w
22 FOR x=4 TO 248 STEP 2
23 IF o<x THEN LET o=x
24 FOR y=10 TO 245 STEP 5
25 IF o<y THEN LET o=y
26 FOR z=14 TO 245 STEP 7
27 IF o<z THEN LET o=z
30 LET o=o+1 : LET m=k(FN f((w+x+y+z),30))
34 IF m<o THEN GO TO 90
40 REM LET s=p(w,m)+p(x,m)+p(y,m)+p(z,m) instead of:
42 LET s=EXP((q(w)-q(m))*5)
43 LET s=EXP((q(x)-q(m))*5)+ s
45 LET s=EXP((q(y)-q(m))*5)+ s
47 LET s=EXP((q(z)-q(m))*5)+ s
50 IF s<>1 THEN GO TO 80
52 LET a=FN f(w*w,m) : LET a=FN f(a*a*w,m)
53 LET b=FN f(x*x,m) : LET b=FN f(b*b*x,m)
55 LET c=FN f(y*y,m) : LET c=FN f(c*c*y,m)
57 LET d=FN f(z*z,m) : LET d=FN f(d*d*z,m)
60 LET u=FN f((a+b+c+d),m)
65 IF u THEN GO TO 80
73 PRINT w;"^5+";x;"^5+";y;"^5+";z;"^5=";m;"^5": STOP
80 IF s<1 THEN m=m-30 : GO TO 34
90 NEXT z: NEXT y: NEXT x: NEXT w
100 DEF FN f(e,n)=e- INT(e/n)*n
- Output:
slide rule ready 27^5+84^5+110^5+133^5=144^5
BCPL
GET "libhdr"
LET solve() BE {
LET pow5 = VEC 249
LET sum = ?
FOR i = 1 TO 249
pow5!i := i * i * i * i * i
FOR w = 4 TO 249
FOR x = 3 TO w - 1
FOR y = 2 TO x - 1
FOR z = 1 TO y - 1 {
sum := pow5!w + pow5!x + pow5!y + pow5!z
FOR a = w + 1 TO 249
IF pow5!a = sum {
writef("solution found: %d %d %d %d %d *n", w, x, y, z, a)
RETURN
}
}
writef("Sorry, no solution found.*n")
}
LET start() = VALOF {
solve()
RESULTIS 0
}
- Output:
solution found: 133 110 84 27 144
Bracmat
0:?x0
& whl
' ( 1+!x0:<250:?x0
& out$(x0 !x0)
& 0:?x1
& whl
' ( 1+!x1:~>!x0:?x1
& out$(x0 !x0 x1 !x1)
& 0:?x2
& whl
' ( 1+!x2:~>!x1:?x2
& 0:?x3
& whl
' ( 1+!x3:~>!x2:?x3
& (!x0^5+!x1^5+!x2^5+!x3^5)^1/5
: ( #?y
& out$(x0 !x0 x1 !x1 x2 !x2 x3 !x3 y !y)
& 250:?x0:?x1:?x2:?x3
| ?
)
)
)
)
)
Output
x0 133 x1 110 x2 84 x3 27 y 144
C
The trick to speed up was the observation that for any x we have x^5=x modulo 2, 3, and 5, according to the Fermat's little theorem. Thus, based on the Chinese Remainder Theorem we have x^5==x modulo 30 for any x. Therefore, when we have computed the left sum s=a^5+b^5+c^5+d^5, then we know that the right side e^5 must be such that s==e modulo 30. Thus, we do not have to consider all values of e, but only values in the form e=e0+30k, for some starting value e0, and any k. Also, we follow the constraints 1<=a<b<c<d<e<N in the main loop.
// Alexander Maximov, July 2nd, 2015
#include <stdio.h>
#include <time.h>
typedef long long mylong;
void compute(int N, char find_only_one_solution)
{ const int M = 30; /* x^5 == x modulo M=2*3*5 */
int a, b, c, d, e;
mylong s, t, max, *p5 = (mylong*)malloc(sizeof(mylong)*(N+M));
for(s=0; s < N; ++s)
p5[s] = s * s, p5[s] *= p5[s] * s;
for(max = p5[N - 1]; s < (N + M); p5[s++] = max + 1);
for(a = 1; a < N; ++a)
for(b = a + 1; b < N; ++b)
for(c = b + 1; c < N; ++c)
for(d = c + 1, e = d + ((t = p5[a] + p5[b] + p5[c]) % M); ((s = t + p5[d]) <= max); ++d, ++e)
{ for(e -= M; p5[e + M] <= s; e += M); /* jump over M=30 values for e>d */
if(p5[e] == s)
{ printf("%d %d %d %d %d\r\n", a, b, c, d, e);
if(find_only_one_solution) goto onexit;
}
}
onexit:
free(p5);
}
int main(void)
{
int tm = clock();
compute(250, 0);
printf("time=%d milliseconds\r\n", (int)((clock() - tm) * 1000 / CLOCKS_PER_SEC));
return 0;
}
- Output:
The fair way to measure the speed of the code above is to measure it's run time to find all possible solutions to the problem, given N (and not just a single solution, since then the time may depend on the way and the order we organize for-loops).
27 84 110 133 144 time=235 milliseconds
Another test with N=1000 produces the following results:
27 84 110 133 144 54 168 220 266 288 81 252 330 399 432 108 336 440 532 576 135 420 550 665 720 162 504 660 798 864 time=65743 milliseconds
PS: The solution for C++ provided below is actually quite good in its design idea behind. However, with all proposed tricks to speed up, the measurements for C++ solution for N=1000 showed the execution time 81447ms (+23%) on the same environment as above for C solution (same machine, same compiler, 64-bit platform). The reason that C++ solution is a bit slower is, perhaps, the fact that the inner loops over rs have complexity ~N/2 steps in average, while with the modulo 30 trick that complexity can be reduced down to ~N/60 steps, although one "expensive" extra %-operation is still needed.
C#
Loops
using System;
namespace EulerSumOfPowers {
class Program {
const int MAX_NUMBER = 250;
static void Main(string[] args) {
bool found = false;
long[] fifth = new long[MAX_NUMBER];
for (int i = 1; i <= MAX_NUMBER; i++) {
long i2 = i * i;
fifth[i - 1] = i2 * i2 * i;
}
for (int a = 0; a < MAX_NUMBER && !found; a++) {
for (int b = a; b < MAX_NUMBER && !found; b++) {
for (int c = b; c < MAX_NUMBER && !found; c++) {
for (int d = c; d < MAX_NUMBER && !found; d++) {
long sum = fifth[a] + fifth[b] + fifth[c] + fifth[d];
int e = Array.BinarySearch(fifth, sum);
found = e >= 0;
if (found) {
Console.WriteLine("{0}^5 + {1}^5 + {2}^5 + {3}^5 = {4}^5", a + 1, b + 1, c + 1, d + 1, e + 1);
}
}
}
}
}
}
}
}
Paired Powers, Mod 30, etc...
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
namespace Euler_cs
{
class Program
{
struct Pair
{
public int a, b;
public Pair(int x, int y)
{
a = x; b = y;
}
}
static int min = 1, max = 250;
static ulong[] p5;
static SortedDictionary<ulong, Pair>[] sum2 =
new SortedDictionary<ulong, Pair>[30];
static string Fmt(Pair p)
{
return string.Format("{0}^5 + {1}^5", p.a, p.b);
}
public static void InitM()
{
for (int i = 0; i <= 29; i++)
sum2[i] = new SortedDictionary<ulong, Pair>();
p5 = new ulong[max + 1];
p5[min] = Convert.ToUInt64(min) * Convert.ToUInt64(min);
p5[min] *= p5[min] * Convert.ToUInt64(min);
for (int i = min; i <= max - 1; i++)
{
for (int j = i + 1; j <= max; j++)
{
p5[j] = Convert.ToUInt64(j) * Convert.ToUInt64(j);
p5[j] *= p5[j] * Convert.ToUInt64(j);
if (j == max) continue;
ulong x = p5[i] + p5[j];
sum2[x % 30].Add(x, new Pair(i, j));
}
}
}
static List<string> CalcM(int m)
{
List<string> res = new List<string>();
for (int i = max; i >= min; i--)
{
ulong p = p5[i]; int pm = i % 30, mp = (pm - m + 30) % 30;
foreach (var s in sum2[m].Keys)
{
if (p <= s) break;
ulong t = p - s;
if (sum2[mp].Keys.Contains(t) && sum2[mp][t].a > sum2[m][s].b)
res.Add(string.Format(" {1} + {2} = {0}^5",
i, Fmt(sum2[m][s]), Fmt(sum2[mp][t])));
}
}
return res;
}
static int Snip(string s)
{
int p = s.IndexOf("=") + 1;
return Convert.ToInt32(s.Substring(p, s.IndexOf("^", p) - p));
}
static int CompareRes(string x, string y)
{
int res = Snip(x).CompareTo(Snip(y));
if (res == 0) res = x.CompareTo(y);
return res;
}
static int Validify(int def, string s)
{
int res = def, t = 0; int.TryParse(s, out t);
if (t >= 1 && t < Math.Pow((double)(ulong.MaxValue >> 1), 0.2))
res = t;
return res;
}
static void Switch(ref int a, ref int b)
{
int t = a; a = b; b = t;
}
static void Main(string[] args)
{
if (args.Count() > 1)
{
min = Validify(min, args[0]);
max = Validify(max, args[1]);
if (max < min) Switch(ref max, ref min);
}
else if (args.Count() == 1)
max = Validify(max, args[0]);
Console.WriteLine("Mod 30 shortcut with threading, checking from {0} to {1}...", min, max);
List<string> res = new List<string>();
DateTime st = DateTime.Now;
List<Task<List<string>>> taskList = new List<Task<List<string>>>();
InitM();
for (int j = 0; j <= 29; j++)
{
var jj = j;
taskList.Add(Task.Run(() => CalcM(jj)));
}
Task.WhenAll(taskList);
foreach (var item in taskList.Select(t => t.Result))
res.AddRange(item);
res.Sort(CompareRes);
foreach (var item in res)
Console.WriteLine(item);
Console.WriteLine(" Computation time to check entire space was {0} seconds",
(DateTime.Now - st).TotalSeconds);
if (System.Diagnostics.Debugger.IsAttached)
Console.ReadKey();
}
}
}
- Output:
(no command line arguments)
Mod 30 shortcut with threading, checking from 1 to 250...27^5 + 84^5 + 110^5 + 133^5 = 144^5
Computation time to check entire space was 0.0838058 seconds
(command line argument = "1000")
Mod 30 shortcut with threading, checking from 1 to 1000... 27^5 + 84^5 + 110^5 + 133^5 = 144^5 54^5 + 168^5 + 220^5 + 266^5 = 288^5 81^5 + 252^5 + 330^5 + 399^5 = 432^5 108^5 + 336^5 + 440^5 + 532^5 = 576^5 135^5 + 420^5 + 550^5 + 665^5 = 720^5 162^5 + 504^5 + 660^5 + 798^5 = 864^5 Computation time to check entire space was 5.4109744 seconds
C++
First version
The simplest brute-force find is already reasonably quick:
#include <algorithm>
#include <iostream>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
bool find()
{
const auto MAX = 250;
vector<double> pow5(MAX);
for (auto i = 1; i < MAX; i++)
pow5[i] = (double)i * i * i * i * i;
for (auto x0 = 1; x0 < MAX; x0++) {
for (auto x1 = 1; x1 < x0; x1++) {
for (auto x2 = 1; x2 < x1; x2++) {
for (auto x3 = 1; x3 < x2; x3++) {
auto sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
if (binary_search(pow5.begin(), pow5.end(), sum))
{
cout << x0 << " " << x1 << " " << x2 << " " << x3 << " " << pow(sum, 1.0 / 5.0) << endl;
return true;
}
}
}
}
}
// not found
return false;
}
int main(void)
{
int tm = clock();
if (!find())
cout << "Nothing found!\n";
cout << "time=" << (int)((clock() - tm) * 1000 / CLOCKS_PER_SEC) << " milliseconds\r\n";
return 0;
}
- Output:
133 110 84 27 144 time=234 milliseconds
We can accelerate this further by creating a parallel std::set<double> p5s containing the elements of the std::vector pow5, and using it to replace the call to std::binary_search:
set<double> pow5s;
for (auto i = 1; i < MAX; i++)
{
pow5[i] = (double)i * i * i * i * i;
pow5s.insert(pow5[i]);
}
//...
if (pow5s.find(sum) != pow5s.end())
This reduces the timing to 125 ms on the same hardware.
A different, more effective optimization is to note that each successive sum is close to the previous one, and use a bidirectional linear search with memory. We also note that inside the innermost loop, we only need to search upward, so we hoist the downward linear search to the loop over x2.
bool find()
{
const auto MAX = 250;
vector<double> pow5(MAX);
for (auto i = 1; i < MAX; i++)
pow5[i] = (double)i * i * i * i * i;
auto rs = 5;
for (auto x0 = 1; x0 < MAX; x0++) {
for (auto x1 = 1; x1 < x0; x1++) {
for (auto x2 = 1; x2 < x1; x2++) {
auto s2 = pow5[x0] + pow5[x1] + pow5[x2];
while (rs > 0 && pow5[rs] > s2) --rs;
for (auto x3 = 1; x3 < x2; x3++) {
auto sum = s2 + pow5[x3];
while (rs < MAX - 1 && pow5[rs] < sum) ++rs;
if (pow5[rs] == sum)
{
cout << x0 << " " << x1 << " " << x2 << " " << x3 << " " << pow(sum, 1.0 / 5.0) << endl;
return true;
}
}
}
}
}
// not found
return false;
}
This reduces the timing to around 25 ms. We could equally well replace rs with an iterator inside pow5; the timing is unaffected.
For comparison with the C code, we also check the timing of an exhaustive search up to MAX=1000. (Don't try this in Python.) This takes 87.2 seconds on the same hardware, comparable to the results found by the C code authors, and supports their conclusion that the mod-30 trick used in the C solution leads to better scalability than the iterator optimizations.
Fortunately, we can incorporate the same trick into the above code, by inserting a forward jump to a feasible solution mod 30 into the loop over x3:
for (auto x3 = 1; x3 < x2; x3++)
{
// go straight to the first appropriate x3, mod 30
if (int err30 = (x0 + x1 + x2 + x3 - rs) % 30)
x3 += 30 - err30;
if (x3 >= x2)
break;
auto sum = s2 + pow5[x3];
With this refinement, the exhaustive search up to MAX=1000 takes 16.9 seconds.
Thanks, C guys!
Second version
We can create a more efficient method by using the idea (taken from the EchoLisp listing below) of precomputing difference between pairs of fifth powers. If we combine this with the above idea of using linear search with memory, this still requires asymptotically O(N^4) time (because of the linear search within diffs), but is at least twice as fast as the solution above using the mod-30 trick. Exhaustive search up to MAX=1000 took 6.2 seconds for me (64-bit on 3.4GHz i7). It is not clear how it can be combined with the mod-30 trick.
The asymptotic behavior can be improved to O(N^3 ln N) by replacing the linear search with an increasing-increment "hunt" (and the outer linear search, which is also O(N^4), with a call to std::upper_bound). With this replacement, the first solution was found in 0.05 seconds; exhaustive search up to MAX=1000 took 2.80 seconds; and the second nontrivial solution (discarding multiples of the first solution), at y==2615, was found in 94.6 seconds. Note: there is no solution 2615, because 645^5 + 1523^5 + 1722^5 +2506^5 = 122 280 854 808 884 376, but 2615^5=122 280 854 808 884 375. This is an error due to limitation in mantissa of double type (52 bits). 128 bit type is required for the next solution 85359.
template<class C_, class LT_> C_ Unique(const C_& src, const LT_& less)
{
C_ retval(src);
std::sort(retval.begin(), retval.end(), less);
retval.erase(unique(retval.begin(), retval.end()), retval.end());
return retval;
}
template<class I_, class P_> I_ HuntFwd(const I_& hint, const I_& end, const P_& less) // if less(x) is false, then less(x+1) must also be false
{
I_ retval(hint);
int step = 1;
// expanding phase
while (end - retval > step)
{
I_ test = retval + step;
if (!less(test))
break;
retval = test;
step <<= 1;
}
// contracting phase
while (step > 1)
{
step >>= 1;
if (end - retval <= step)
continue;
I_ test = retval + step;
if (less(test))
retval = test;
}
if (retval != end && less(retval))
++retval;
return retval;
}
bool DPFind(int how_many)
{
const int MAX = 1000;
vector<double> pow5(MAX);
for (int i = 1; i < MAX; i++)
pow5[i] = (double)i * i * i * i * i;
vector<pair<double, int>> diffs;
for (int i = 2; i < MAX; ++i)
{
for (int j = 1; j < i; ++j)
diffs.emplace_back(pow5[i] - pow5[j], j);
}
auto firstLess = [](const pair<double, int>& lhs, const pair<double, int>& rhs) { return lhs.first < rhs.first; };
diffs = Unique(diffs, firstLess);
for (int x4 = 4; x4 < MAX - 1; ++x4)
{
for (int x3 = 3; x3 < x4; ++x3)
{
// if (133 * x3 == 110 * x4) continue; // skip duplicates of first solution
const auto s2 = pow5[x4] + pow5[x3];
auto pd = upper_bound(diffs.begin() + 1, diffs.end(), make_pair(s2, 0), firstLess) - 1;
for (int x2 = 2; x2 < x3; ++x2)
{
const auto sum = s2 + pow5[x2];
pd = HuntFwd(pd, diffs.end(), [&](decltype(pd) it){ return it->first < sum; });
if (pd != diffs.end() && pd->first == sum && pd->second < x3) // find each solution only once
{
const double y = pow(pd->first + pow5[pd->second], 0.2);
cout << x4 << " " << x3 << " " << x2 << " " << pd->second << " -> " << static_cast<int>(y + 0.5) << "\n";
if (--how_many <= 0)
return true;
}
}
}
}
return false;
}
Thanks, EchoLisp guys!
Third version
We expand on the second version with two main improvements. First, we use a hash table instead of binary search to improve the runtime from O(n^3 log n) to O(n^3). Second, we adapt the fast inverse square root algorithm to quickly compute the fifth root. Combined this gives a 7.3x speedup over the Second Version.
#include <array>
#include <cstdint>
#include <iostream>
#include <memory>
#include <numeric>
template <size_t n, typename T> static constexpr T power(T base) {
if constexpr (n == 0)
return 1;
else if constexpr (n == 1)
return base;
else if constexpr (n & 1)
return power<n / 2, T>(base * base) * base;
else
return power<n / 2, T>(base * base);
}
static constexpr int count = 1024;
static constexpr uint64_t count_diff = []() {
// finds something that looks kinda sorta prime.
const uint64_t coprime_to_this = 2llu * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 59;
// we make this oversized to reduce collisions and just hope it fits in cache.
uint64_t guess = 7 * count * count;
for (; std::gcd(guess, coprime_to_this) > 1; ++guess)
;
return guess;
}();
static constexpr int fast_integer_root5(const double x) {
constexpr uint64_t magic = 3685583637919522816llu;
uint64_t x_i = std::bit_cast<uint64_t>(x);
x_i /= 5;
x_i += magic;
const double x_f = std::bit_cast<double>(x_i);
const double x5 = power<5>(x_f);
return x_f * ((x - x5) / (3 * x5 + 2 * x)) + (x_f + .5);
}
static constexpr uint64_t hash(uint64_t h) { return h % count_diff; }
void euler() {
std::array<int64_t, count> pow5;
for (int64_t i = 0; i < count; i++)
pow5[i] = power<5>(i);
// build hash table
constexpr int oversize_fudge = 8;
std::unique_ptr<int16_t[]> differences = std::make_unique<int16_t[]>(count_diff + oversize_fudge);
std::fill(differences.get(), differences.get() + count_diff + oversize_fudge, 0);
for (int64_t n = 4; n < count; n++)
for (int64_t d = 3; d < n; d++) {
uint64_t h = hash(pow5[n] - pow5[d]);
for (; differences[h]; ++h)
if (h >= count_diff + oversize_fudge - 2) {
std::cerr << "too many collisions; increase fudge factor or hash table size\n";
return;
}
differences[h] = d;
if (h >= count_diff)
differences[h - count_diff] = d;
}
// brute force a,b,c
const int a_max = fast_integer_root5(.25 * pow5.back());
for (int a = 0; a <= a_max; a++) {
const int b_max = fast_integer_root5((1.0 / 3.0) * (pow5.back() - pow5[a]));
for (int b = a; b <= b_max; b++) {
const int64_t a5_p_b5 = pow5[a] + pow5[b];
const int c_max = fast_integer_root5(.5 * (pow5.back() - a5_p_b5));
for (int c = b; c <= c_max; c++) {
// lookup d in hash table
const int64_t n5_minus_d5 = a5_p_b5 + pow5[c];
//this loop is O(1)
for (uint64_t h = hash(n5_minus_d5); differences[h]; ++h) {
if (const int d = differences[h]; d >= c)
// calculate n from d
if (const int n = fast_integer_root5(n5_minus_d5 + pow5[d]);
// check whether this is a solution
n < count && n5_minus_d5 == pow5[n] - pow5[d] && d != n)
std::cout << a << "^5 + " << b << "^5 + " << c << "^5 + " << d << "^5 = " << n << "^5\t"
<< pow5[a] + pow5[b] + pow5[c] + pow5[d] << " = " << pow5[n] << '\n';
}
}
}
}
}
int main() {
std::ios::sync_with_stdio(false);
euler();
return 0;
}
Clojure
(ns test-p.core
(:require [clojure.math.numeric-tower :as math])
(:require [clojure.data.int-map :as i]))
(defn solve-power-sum [max-value max-sols]
" Finds solutions by using method approach of EchoLisp
Large difference is we store a dictionary of all combinations
of y^5 - x^5 with the x, y value so we can simply lookup rather than have to search "
(let [pow5 (mapv #(math/expt % 5) (range 0 (* 4 max-value))) ; Pow5 = Generate Lookup table for x^5
y5-x3 (into (i/int-map) (for [x (range 1 max-value) ; For x0^5 + x1^5 + x2^5 + x3^5 = y^5
y (range (+ 1 x) (* 4 max-value))] ; compute y5-x3 = set of all possible differnences
[(- (get pow5 y) (get pow5 x)) [x y]])) ; note: (get pow5 y) is closure for: pow5[y]
solutions-found (atom 0)]
(for [x0 (range 1 max-value) ; Search over x0, x1, x2 for sums equal y5-x3
x1 (range 1 x0)
x2 (range 1 x1)
:when (< @solutions-found max-sols)
:let [sum (apply + (map pow5 [x0 x1 x2]))] ; compute sum of items to the 5th power
:when (contains? y5-x3 sum)] ; check if sum is in set of differences
(do
(swap! solutions-found inc) ; increment counter for solutions found
(concat [x0 x1 x2] (get y5-x3 sum)))))) ; create result (since in set of differences)
; Output results with numbers in ascending order placing results into a set (i.e. #{}) so duplicates are discarded
; CPU i7 920 Quad Core @2.67 GHz clock Windows 10
(println (into #{} (map sort (solve-power-sum 250 1)))) ; MAX = 250, find only 1 value: Duration was 0.26 seconds
(println (into #{} (map sort (solve-power-sum 1000 1000))));MAX = 1000, high max-value so all solutions found: Time = 4.8 seconds
Output
1st Solution with MAX = 250 (Solution Time: 260 ms CPU i7 920 Quad Core) #{(27 84 110 133 144)) All Solutions with MAX = 1000 (Solution Time: 4.8 seconds CPU i7 920 Quad Core) #{(27 84 110 133 144) (162 504 660 798 864) (135 420 550 665 720) (108 336 440 532 576) (189 588 770 931 1008) (54 168 220 266 288) (81 252 330 399 432)}
COBOL
IDENTIFICATION DIVISION.
PROGRAM-ID. EULER.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
1 TABLE-LENGTH CONSTANT 250.
1 SEARCHING-FLAG PIC 9.
88 FINISHED-SEARCHING VALUE IS 1
WHEN SET TO FALSE IS 0.
1 CALC.
3 A PIC 999 USAGE COMPUTATIONAL-5.
3 B PIC 999 USAGE COMPUTATIONAL-5.
3 C PIC 999 USAGE COMPUTATIONAL-5.
3 D PIC 999 USAGE COMPUTATIONAL-5.
3 ABCD PIC 9(18) USAGE COMPUTATIONAL-5.
3 FIFTH-ROOT-OFFS PIC 999 USAGE COMPUTATIONAL-5.
3 POWER-COUNTER PIC 999 USAGE COMPUTATIONAL-5.
88 POWER-MAX VALUE TABLE-LENGTH.
1 PRETTY.
3 A PIC ZZ9.
3 FILLER VALUE "^5 + ".
3 B PIC ZZ9.
3 FILLER VALUE "^5 + ".
3 C PIC ZZ9.
3 FILLER VALUE "^5 + ".
3 D PIC ZZ9.
3 FILLER VALUE "^5 = ".
3 FIFTH-ROOT-OFFS PIC ZZ9.
3 FILLER VALUE "^5.".
1 FIFTH-POWER-TABLE OCCURS TABLE-LENGTH TIMES
ASCENDING KEY IS FIFTH-POWER
INDEXED BY POWER-INDEX.
3 FIFTH-POWER PIC 9(18) USAGE COMPUTATIONAL-5.
PROCEDURE DIVISION.
MAIN-PARAGRAPH.
SET FINISHED-SEARCHING TO FALSE.
PERFORM POWERS-OF-FIVE-TABLE-INIT.
PERFORM VARYING
A IN CALC
FROM 1 BY 1 UNTIL A IN CALC = TABLE-LENGTH
AFTER B IN CALC
FROM 1 BY 1 UNTIL B IN CALC = A IN CALC
AFTER C IN CALC
FROM 1 BY 1 UNTIL C IN CALC = B IN CALC
AFTER D IN CALC
FROM 1 BY 1 UNTIL D IN CALC = C IN CALC
IF FINISHED-SEARCHING
STOP RUN
END-IF
PERFORM POWER-COMPUTATIONS
END-PERFORM.
POWER-COMPUTATIONS.
MOVE ZERO TO ABCD IN CALC.
ADD FIFTH-POWER(A IN CALC)
FIFTH-POWER(B IN CALC)
FIFTH-POWER(C IN CALC)
FIFTH-POWER(D IN CALC)
TO ABCD IN CALC.
SET POWER-INDEX TO 1.
SEARCH ALL FIFTH-POWER-TABLE
WHEN FIFTH-POWER(POWER-INDEX) = ABCD IN CALC
MOVE POWER-INDEX TO FIFTH-ROOT-OFFS IN CALC
MOVE CORRESPONDING CALC TO PRETTY
DISPLAY PRETTY END-DISPLAY
SET FINISHED-SEARCHING TO TRUE
END-SEARCH
EXIT PARAGRAPH.
POWERS-OF-FIVE-TABLE-INIT.
PERFORM VARYING POWER-COUNTER FROM 1 BY 1 UNTIL POWER-MAX
COMPUTE FIFTH-POWER(POWER-COUNTER) =
POWER-COUNTER *
POWER-COUNTER *
POWER-COUNTER *
POWER-COUNTER *
POWER-COUNTER
END-COMPUTE
END-PERFORM.
EXIT PARAGRAPH.
END PROGRAM EULER.
Output
133^5 + 110^5 + 84^5 + 27^5 = 144^5.
Common Lisp
(ql:quickload :alexandria)
(let ((fifth-powers (mapcar #'(lambda (x) (expt x 5))
(alexandria:iota 250))))
(loop named outer for x0 from 1 to (length fifth-powers) do
(loop for x1 from 1 below x0 do
(loop for x2 from 1 below x1 do
(loop for x3 from 1 below x2 do
(let ((x-sum (+ (nth x0 fifth-powers)
(nth x1 fifth-powers)
(nth x2 fifth-powers)
(nth x3 fifth-powers))))
(if (member x-sum fifth-powers)
(return-from outer (list x0 x1 x2 x3 (round (expt x-sum 0.2)))))))))))
- Output:
(133 110 84 27 144)
D
First version
import std.stdio, std.range, std.algorithm, std.typecons;
auto eulersSumOfPowers() {
enum maxN = 250;
auto pow5 = iota(size_t(maxN)).map!(i => ulong(i) ^^ 5).array.assumeSorted;
foreach (immutable x0; 1 .. maxN)
foreach (immutable x1; 1 .. x0)
foreach (immutable x2; 1 .. x1)
foreach (immutable x3; 1 .. x2) {
immutable powSum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
if (pow5.contains(powSum))
return tuple(x0, x1, x2, x3, pow5.countUntil(powSum));
}
assert(false);
}
void main() {
writefln("%d^5 + %d^5 + %d^5 + %d^5 == %d^5", eulersSumOfPowers[]);
}
- Output:
133^5 + 110^5 + 84^5 + 27^5 == 144^5
Run-time about 0.64 seconds. A Range-based Haskell-like solution is missing because of Issue 14833.
Second version
void main() {
import std.stdio, std.range, std.algorithm, std.typecons;
enum uint MAX = 250;
uint[ulong] p5;
Tuple!(uint, uint)[ulong] sum2;
foreach (immutable i; 1 .. MAX) {
p5[ulong(i) ^^ 5] = i;
foreach (immutable j; i .. MAX)
sum2[ulong(i) ^^ 5 + ulong(j) ^^ 5] = tuple(i, j);
}
const sk = sum2.keys.sort().release;
foreach (p; p5.keys.sort())
foreach (immutable s; sk) {
if (p <= s)
break;
if (p - s in sum2) {
writeln(p5[p], " ", tuple(sum2[s][], sum2[p - s][]));
return; // Finds first only.
}
}
}
- Output:
144 Tuple!(uint, uint, uint, uint)(27, 84, 110, 133)
Run-time about 0.10 seconds.
Third version
This solution is a brutal translation of the iterator-based C++ version, and it should be improved to use more idiomatic D Ranges.
import core.stdc.stdio, std.typecons, std.math, std.algorithm, std.range;
alias Pair = Tuple!(double, int);
alias PairPtr = Pair*;
// If less(x) is false, then less(x + 1) must also be false.
PairPtr huntForward(Pred)(PairPtr hint, const PairPtr end, const Pred less) pure nothrow @nogc {
PairPtr result = hint;
int step = 1;
// Expanding phase.
while (end - result > step) {
PairPtr test = result + step;
if (!less(test))
break;
result = test;
step <<= 1;
}
// Contracting phase.
while (step > 1) {
step >>= 1;
if (end - result <= step)
continue;
PairPtr test = result + step;
if (less(test))
result = test;
}
if (result != end && less(result))
++result;
return result;
}
bool dPFind(int how_many) nothrow {
enum MAX = 1_000;
double[MAX] pow5;
foreach (immutable i; 1 .. MAX)
pow5[i] = double(i) ^^ 5;
Pair[] diffs0; // Will contain (MAX-1) * (MAX-2) / 2 pairs.
foreach (immutable i; 2 .. MAX)
foreach (immutable j; 1 .. i)
diffs0 ~= Pair(pow5[i] - pow5[j], j);
// Remove pairs with duplicate first items.
diffs0.length -= diffs0.sort!q{ a[0] < b[0] }.uniq.copy(diffs0).length;
auto diffs = diffs0.assumeSorted!q{ a[0] < b[0] };
foreach (immutable x4; 4 .. MAX - 1) {
foreach (immutable x3; 3 .. x4) {
immutable s2 = pow5[x4] + pow5[x3];
auto pd0 = diffs[1 .. $].upperBound(Pair(s2, 0));
PairPtr pd = &pd0[0] - 1;
foreach (immutable x2; 2 .. x3) {
immutable sum = s2 + pow5[x2];
const PairPtr endPtr = &diffs[$ - 1] + 1;
// This lambda heap-allocates.
pd = huntForward(pd, endPtr, (in PairPtr p) pure => (*p)[0] < sum);
if (pd != endPtr && (*pd)[0] == sum && (*pd)[1] < x3) { // Find each solution only once.
immutable y = ((*pd)[0] + pow5[(*pd)[1]]) ^^ 0.2;
printf("%d %d %d %d : %d\n", x4, x3, x2, (*pd)[1], cast(int)(y + 0.5));
if (--how_many <= 0)
return true;
}
}
}
}
return false;
}
void main() nothrow {
if (!dPFind(100))
printf("Search finished.\n");
}
- Output:
133 110 27 84 : 144 133 110 84 27 : 144 266 220 54 168 : 288 266 220 168 54 : 288 399 330 81 252 : 432 399 330 252 81 : 432 532 440 108 336 : 576 532 440 336 108 : 576 665 550 135 420 : 720 665 550 420 135 : 720 798 660 162 504 : 864 798 660 504 162 : 864 Search finished.
Run-time about 7.1 seconds.
Delphi
See Pascal.
EasyLang
n = 250
len p5[] n
len h5[] 65537
for i = 0 to n - 1
p5[i + 1] = i * i * i * i * i
h5[p5[i + 1] mod 65537 + 1] = 1
.
func search a s .
y = -1
b = n
while a + 1 < b
i = (a + b) div 2
if p5[i + 1] > s
b = i
elif p5[i + 1] < s
a = i
else
a = b
y = i
.
.
return y
.
for x0 = 0 to n - 1
for x1 = 0 to x0
sum1 = p5[x0 + 1] + p5[x1 + 1]
for x2 = 0 to x1
sum2 = p5[x2 + 1] + sum1
for x3 = 0 to x2
sum = p5[x3 + 1] + sum2
if h5[sum mod 65537 + 1] = 1
y = search x0 sum
if y >= 0
print x0 & " " & x1 & " " & x2 & " " & x3 & " " & y
break 4
.
.
.
.
.
.
EchoLisp
To speed up things, we search for x0, x1, x2 such as x0^5 + x1^5 + x2^5 = a difference of 5-th powers.
(define dim 250)
;; speed up n^5
(define (p5 n) (* n n n n n))
(remember 'p5) ;; memoize
;; build vector of all y^5 - x^5 diffs - length 30877
(define all-y^5-x^5
(for*/vector
[(x (in-range 1 dim)) (y (in-range (1+ x) dim))]
(- (p5 y) (p5 x))))
;; sort to use vector-search
(begin (vector-sort! < all-y^5-x^5) 'sorted)
;; find couple (x y) from y^5 - x^5
(define (x-y y^5-x^5)
(for*/fold (x-y null)
[(x (in-range 1 dim)) (y (in-range (1+ x ) dim))]
(when
(= (- (p5 y) (p5 x)) y^5-x^5)
(set! x-y (list x y))
(break #t)))) ; stop on first
;; search
(for*/fold (sol null)
[(x0 (in-range 1 dim)) (x1 (in-range (1+ x0) dim)) (x2 (in-range (1+ x1) dim))]
(set! sol (+ (p5 x0) (p5 x1) (p5 x2)))
(when
(vector-search sol all-y^5-x^5) ;; x0^5 + x1^5 + x2^5 = y^5 - x3^5 ???
(set! sol (append (list x0 x1 x2) (x-y sol))) ;; found
(break #t))) ;; stop on first
→ (27 84 110 133 144) ;; time 2.8 sec
Elixir
defmodule Euler do
def sum_of_power(max \\ 250) do
{p5, sum2} = setup(max)
sk = Enum.sort(Map.keys(sum2))
Enum.reduce(Enum.sort(Map.keys(p5)), Map.new, fn p,map ->
sum(sk, p5, sum2, p, map)
end)
end
defp setup(max) do
Enum.reduce(1..max, {%{}, %{}}, fn i,{p5,sum2} ->
i5 = i*i*i*i*i
add = for j <- i..max, into: sum2, do: {i5 + j*j*j*j*j, [i,j]}
{Map.put(p5, i5, i), add}
end)
end
defp sum([], _, _, _, map), do: map
defp sum([s|_], _, _, p, map) when p<=s, do: map
defp sum([s|t], p5, sum2, p, map) do
if sum2[p - s],
do: sum(t, p5, sum2, p, Map.put(map, Enum.sort(sum2[s] ++ sum2[p-s]), p5[p])),
else: sum(t, p5, sum2, p, map)
end
end
Enum.each(Euler.sum_of_power, fn {k,v} ->
IO.puts Enum.map_join(k, " + ", fn i -> "#{i}**5" end) <> " = #{v}**5"
end)
- Output:
27**5 + 84**5 + 110**5 + 133**5 = 144**5
ERRE
PROGRAM EULERO
CONST MAX=250
!$DOUBLE
FUNCTION POW5(X)
POW5=X*X*X*X*X
END FUNCTION
!$INCLUDE="PC.LIB"
BEGIN
CLS
FOR X0=1 TO MAX DO
FOR X1=1 TO X0 DO
FOR X2=1 TO X1 DO
FOR X3=1 TO X2 DO
LOCATE(3,1) PRINT(X0;X1;X2;X3)
SUM=POW5(X0)+POW5(X1)+POW5(X2)+POW5(X3)
S1=INT(SUM^0.2#+0.5#)
IF SUM=POW5(S1) THEN PRINT(X0,X1,X2,X3,S1) END IF
END FOR
END FOR
END FOR
END FOR
END PROGRAM
- Output:
133 110 84 27 144
F#
//Find 4 integers whose 5th powers sum to the fifth power of an integer (Quickly!) - Nigel Galloway: April 23rd., 2015
let G =
let GN = Array.init<float> 250 (fun n -> (float n)**5.0)
let rec gng (n, i, g, e) =
match (n, i, g, e) with
| (250,_,_,_) -> "No Solution Found"
| (_,250,_,_) -> gng (n+1, n+1, n+1, n+1)
| (_,_,250,_) -> gng (n, i+1, i+1, i+1)
| (_,_,_,250) -> gng (n, i, g+1, g+1)
| _ -> let l = GN.[n] + GN.[i] + GN.[g] + GN.[e]
match l with
| _ when l > GN.[249] -> gng(n,i,g+1,g+1)
| _ when l = round(l**0.2)**5.0 -> sprintf "%d**5 + %d**5 + %d**5 + %d**5 = %d**5" n i g e (int (l**0.2))
| _ -> gng(n,i,g,e+1)
gng (1, 1, 1, 1)
- Output:
"27**5 + 84**5 + 110**5 + 133**5 = 144**5"
Factor
This solution uses Factor's backtrack
vocabulary (based on continuations) to simplify the reduction of the search space. Each time xn
is called, a new summand is introduced which can only take on a value as high as the previous summand - 1. This also creates a checkpoint for the backtracker. fail
causes the backtracking to occur.
USING: arrays backtrack kernel literals math.functions
math.ranges prettyprint sequences ;
CONSTANT: pow5 $[ 0 250 [a,b) [ 5 ^ ] map ]
: xn ( n1 -- n2 n2 ) [1,b) amb-lazy dup ;
250 xn xn xn xn drop 4array dup pow5 nths sum dup pow5
member? [ pow5 index suffix . ] [ 2drop fail ] if
- Output:
{ 133 110 84 27 144 }
Forth
: sq dup * ;
: 5^ dup sq sq * ;
create pow5 250 cells allot
:noname
250 0 DO i 5^ pow5 i cells + ! LOOP ; execute
: @5^ cells pow5 + @ ;
: solution? ( n -- n )
pow5 250 cells bounds DO
dup i @ = IF drop i pow5 - cell / unloop EXIT THEN
cell +LOOP drop 0 ;
\ GFORTH only provides 2 index variables: i, j
\ so the code creates locals for two outer loop vars, k & l
: euler ( -- )
250 4 DO i { l }
l 3 DO i { k }
k 2 DO
i 1 DO
i @5^ j @5^ + k @5^ + l @5^ + solution?
dup IF
l . k . j . i . . cr
unloop unloop unloop unloop EXIT
ELSE
drop
THEN
LOOP
LOOP
LOOP
LOOP ;
euler
bye
- Output:
$ gforth-fast ./euler.fs 133 110 84 27 144
Fortran
FORTRAN IV
To solve this problem, we must handle integers up 250**5 ~= 9.8*10**11 . So we need integers with at less 41 bits. In 1966 all Fortrans were not equal. On IBM360, INTEGER was a 32-bit integer; on CDC6600, INTEGER was a 60-bit integer. And Leon J. Lander and Thomas R. Parkin used the CDC6600.
C EULER SUM OF POWERS CONJECTURE - FORTRAN IV
C FIND I1,I2,I3,I4,I5 : I1**5+I2**5+I3**5+I4**5=I5**5
INTEGER I,P5(250),SUMX
MAXN=250
DO 1 I=1,MAXN
1 P5(I)=I**5
DO 6 I1=1,MAXN
DO 6 I2=1,MAXN
DO 6 I3=1,MAXN
DO 6 I4=1,MAXN
SUMX=P5(I1)+P5(I2)+P5(I3)+P5(I4)
I5=1
2 IF(I5-MAXN) 3,3,6
3 IF(P5(I5)-SUMX) 5,4,6
4 WRITE(*,300) I1,I2,I3,I4,I5
STOP
5 I5=I5+1
GOTO 2
6 CONTINUE
300 FORMAT(5(1X,I3))
END
- Output:
27 84 110 133 144
Fortran 95
program sum_of_powers
implicit none
integer, parameter :: maxn = 249
integer, parameter :: dprec = selected_real_kind(15)
integer :: i, x0, x1, x2, x3, y
real(dprec) :: n(maxn), sumx
n = (/ (real(i, dprec)**5, i = 1, maxn) /)
outer: do x0 = 1, maxn
do x1 = 1, maxn
do x2 = 1, maxn
do x3 = 1, maxn
sumx = n(x0)+ n(x1)+ n(x2)+ n(x3)
y = 1
do while(y <= maxn .and. n(y) <= sumx)
if(n(y) == sumx) then
write(*,*) x0, x1, x2, x3, y
exit outer
end if
y = y + 1
end do
end do
end do
end do
end do outer
end program
- Output:
27 84 110 133 144
FutureBasic
void local fn EulersSumOfPower( max as int )
long w, x, y, z, sum, s1
for w = 1 to max
for x = 1 to w
for y = 1 to x
for z = 1 to y
sum = w^5 + x^5 + y^5 + z^5
s1 = int(sum^0.2)
if ( sum == s1 ^ 5 )
print w;"^5 + ";x;"^5 + ";y;"^5 + ";z;"^5 = ";s1;"^5"
exit fn
end if
next
next
next
next
end fn
fn EulersSumOfPower( 250 )
HandleEvents
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Go
package main
import (
"fmt"
"log"
)
func main() {
fmt.Println(eulerSum())
}
func eulerSum() (x0, x1, x2, x3, y int) {
var pow5 [250]int
for i := range pow5 {
pow5[i] = i * i * i * i * i
}
for x0 = 4; x0 < len(pow5); x0++ {
for x1 = 3; x1 < x0; x1++ {
for x2 = 2; x2 < x1; x2++ {
for x3 = 1; x3 < x2; x3++ {
sum := pow5[x0] +
pow5[x1] +
pow5[x2] +
pow5[x3]
for y = x0 + 1; y < len(pow5); y++ {
if sum == pow5[y] {
return
}
}
}
}
}
}
log.Fatal("no solution")
return
}
- Output:
133 110 84 27 144
Groovy
class EulerSumOfPowers {
static final int MAX_NUMBER = 250
static void main(String[] args) {
boolean found = false
long[] fifth = new long[MAX_NUMBER]
for (int i = 1; i <= MAX_NUMBER; i++) {
long i2 = i * i
fifth[i - 1] = i2 * i2 * i
}
for (int a = 0; a < MAX_NUMBER && !found; a++) {
for (int b = a; b < MAX_NUMBER && !found; b++) {
for (int c = b; c < MAX_NUMBER && !found; c++) {
for (int d = c; d < MAX_NUMBER && !found; d++) {
long sum = fifth[a] + fifth[b] + fifth[c] + fifth[d]
int e = Arrays.binarySearch(fifth, sum)
found = (e >= 0)
if (found) {
println("${a + 1}^5 + ${b + 1}^5 + ${c + 1}^5 + ${d + 1}^5 + ${e + 1}^5")
}
}
}
}
}
}
}
- Output:
27^5 + 84^5 + 110^5 + 133^5 + 144^5
Haskell
import Data.List
import Data.List.Ordered
main :: IO ()
main = print $ head [(x0,x1,x2,x3,x4) |
-- choose x0, x1, x2, x3
-- so that 250 < x3 < x2 < x1 < x0
x3 <- [1..250-1],
x2 <- [1..x3-1],
x1 <- [1..x2-1],
x0 <- [1..x1-1],
let p5Sum = x0^5 + x1^5 + x2^5 + x3^5,
-- lazy evaluation of powers of 5
let p5List = [i^5|i <- [1..]],
-- is sum a power of 5 ?
member p5Sum p5List,
-- which power of 5 is sum ?
let Just x4 = elemIndex p5Sum p5List ]
- Output:
(27,84,110,133,144)
Or, using dictionaries of powers and sums, and thus rather faster:
import qualified Data.Map.Strict as M
import Data.List (find, intercalate)
import Data.Maybe (maybe)
------------- EULER'S SUM OF POWERS CONJECTURE -----------
counterExample :: (M.Map Int (Int, Int), M.Map Int Int) -> Maybe (Int, Int)
counterExample (sumMap, powerMap) =
find
(\(p, s) -> M.member (p - s) sumMap)
(M.keys powerMap >>=
(((>>=) . flip takeWhile (M.keys sumMap) . (>)) <*> \ p s -> [(p, s)]))
sumMapForRange :: [Int] -> M.Map Int (Int, Int)
sumMapForRange xs =
M.fromList
[ ((x ^ 5) + (y ^ 5), (x, y))
| x <- xs
, y <- tail xs
, x > y ]
powerMapForRange :: [Int] -> M.Map Int Int
powerMapForRange = M.fromList . (zip =<< fmap (^ 5))
--------------------------- TEST -------------------------
main :: IO ()
main =
putStrLn $
"Euler's sum of powers conjecture – " <>
maybe
("no counter-example found in the range " <> rangeString xs)
(showExample sumsAndPowers xs)
(counterExample sumsAndPowers)
where
xs = [1 .. 249]
sumsAndPowers = ((,) . sumMapForRange <*> powerMapForRange) xs
showExample :: (M.Map Int (Int, Int), M.Map Int Int) -> [Int] -> (Int, Int) -> String
showExample (sumMap, powerMap) xs (p, s) =
"a counter-example in range " <> rangeString xs <> ":\n\n" <>
intercalate "^5 + " (show <$> [a, b, c, d]) <>
"^5 = " <>
show (powerMap M.! p) <>
"^5"
where
(a, b) = sumMap M.! (p - s)
(c, d) = sumMap M.! s
rangeString :: [Int] -> String
rangeString [] = "[]"
rangeString (x:xs) = '[' : show x <> " .. " <> show (last xs) <> "]"
- Output:
Euler's sum of powers conjecture – a counter-example in range [1 .. 249]: 133^5 + 110^5 + 84^5 + 27^5 = 144^5
J
require 'stats'
(#~ (= <.)@((+/"1)&.:(^&5)))1+4 comb 248
27 84 110 133
Explanation:
1+4 comb 248
finds all the possibilities for our four arguments. Then,
(#~ (= <.)@((+/"1)&.:(^&5)))
discards the cases we are not interested in. (It only keeps the case(s) where the fifth root of the sum of the fifth powers is an integer.)
Only one possibility remains.
Here's a significantly faster approach (about 100 times faster), based on the echolisp implementation:
find5=:3 :0
y=. 250
n=. i.y
p=. n^5
a=. (#~ 0&<),-/~p
s=. /:~a
l=. (i.*:y)(#~ 0&<),-/~p
c=. 3 comb <.5%:(y^5)%4
t=. +/"1 c{p
x=. (t e. s)#t
|.,&<&~./|:(y,y)#:l#~a e. x
)
Use:
find5''
┌─────────────┬───┐
│27 84 110 133│144│
└─────────────┴───┘
Note that this particular implementation is a bit hackish, since it relies on the solution being unique for the range of numbers being considered. If there were more solutions it would take a little extra code (though not much time) to untangle them.
Java
Tested with Java 6.
public class eulerSopConjecture
{
static final int MAX_NUMBER = 250;
public static void main( String[] args )
{
boolean found = false;
long[] fifth = new long[ MAX_NUMBER ];
for( int i = 1; i <= MAX_NUMBER; i ++ )
{
long i2 = i * i;
fifth[ i - 1 ] = i2 * i2 * i;
} // for i
for( int a = 0; a < MAX_NUMBER && ! found ; a ++ )
{
for( int b = a; b < MAX_NUMBER && ! found ; b ++ )
{
for( int c = b; c < MAX_NUMBER && ! found ; c ++ )
{
for( int d = c; d < MAX_NUMBER && ! found ; d ++ )
{
long sum = fifth[a] + fifth[b] + fifth[c] + fifth[d];
int e = java.util.Arrays.binarySearch( fifth, sum );
found = ( e >= 0 );
if( found )
{
// the value at e is a fifth power
System.out.print( (a+1) + "^5 + "
+ (b+1) + "^5 + "
+ (c+1) + "^5 + "
+ (d+1) + "^5 = "
+ (e+1) + "^5"
);
} // if found;;
} // for d
} // for c
} // for b
} // for a
} // main
} // eulerSopConjecture
Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
JavaScript
ES5
var eulers_sum_of_powers = function (iMaxN) {
var aPow5 = [];
var oPow5ToN = {};
for (var iP = 0; iP <= iMaxN; iP++) {
var iPow5 = Math.pow(iP, 5);
aPow5.push(iPow5);
oPow5ToN[iPow5] = iP;
}
for (var i0 = 1; i0 <= iMaxN; i0++) {
for (var i1 = 1; i1 <= i0; i1++) {
for (var i2 = 1; i2 <= i1; i2++) {
for (var i3 = 1; i3 <= i2; i3++) {
var iPow5Sum = aPow5[i0] + aPow5[i1] + aPow5[i2] + aPow5[i3];
if (typeof oPow5ToN[iPow5Sum] != 'undefined') {
return {
i0: i0,
i1: i1,l
i2: i2,
i3: i3,
iSum: oPow5ToN[iPow5Sum]
};
}
}
}
}
}
};
var oResult = eulers_sum_of_powers(250);
console.log(oResult.i0 + '^5 + ' + oResult.i1 + '^5 + ' + oResult.i2 +
'^5 + ' + oResult.i3 + '^5 = ' + oResult.iSum + '^5');
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
This
that verify: a^5 + b^5 + c^5 + d^5 = x^5
var N=1000, first=false
var ns={}, npv=[]
for (var n=0; n<=N; n++) {
var np=Math.pow(n,5); ns[np]=n; npv.push(np)
}
loop:
for (var a=1; a<=N; a+=1)
for (var b=a+1; b<=N; b+=1)
for (var c=b+1; c<=N; c+=1)
for (var d=c+1; d<=N; d+=1) {
var x = ns[ npv[a]+npv[b]+npv[c]+npv[d] ]
if (!x) continue
print( [a, b, c, d, x] )
if (first) break loop
}
function print(c) {
var e='<sup>5</sup>', ep=e+' + '
document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '<br>')
}
Or this
that verify: a^5 + b^5 + c^5 + d^5 = x^5
var N=1000, first=false
var npv=[], M=30 // x^5 == x modulo M (=2*3*5)
for (var n=0; n<=N; n+=1) npv[n]=Math.pow(n, 5)
var mx=1+npv[N]; while(n<=N+M) npv[n++]=mx
loop:
for (var a=1; a<=N; a+=1)
for (var b=a+1; b<=N; b+=1)
for (var c=b+1; c<=N; c+=1)
for (var t=npv[a]+npv[b]+npv[c], d=c+1, x=t%M+d; (n=t+npv[d])<mx; d+=1, x+=1) {
while (npv[x]<=n) x+=M; x-=M // jump over M=30 values for x>d
if (npv[x] != n) continue
print( [a, b, c, d, x] )
if (first) break loop;
}
function print(c) {
var e='<sup>5</sup>', ep=e+' + '
document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '<br>')
}
Or this
that verify: a^5 + b^5 + c^5 = x^5 - d^5
var N=1000, first=false
var dxs={}, pow=Math.pow
for (var d=1; d<=N; d+=1)
for (var dp=pow(d,5), x=d+1; x<=N; x+=1)
dxs[pow(x,5)-dp]=[d,x]
loop:
for (var a=1; a<N; a+=1)
for (var ap=pow(a,5), b=a+1; b<N; b+=1)
for (var abp=ap+pow(b,5), c=b+1; c<N; c+=1) {
var dx = dxs[ abp+pow(c,5) ]
if (!dx || c >= dx[0]) continue
print( [a, b, c].concat( dx ) )
if (first) break loop
}
function print(c) {
var e='<sup>5</sup>', ep=e+' + '
document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '<br>')
}
Or this
that verify: a^5 + b^5 = x^5 - (c^5 + d^5)
var N=1000, first=false
var is={}, ipv=[], ijs={}, ijpv=[], pow=Math.pow
for (var i=1; i<=N; i+=1) {
var ip=pow(i,5); is[ip]=i; ipv.push(ip)
for (var j=i+1; j<=N; j+=1) {
var ijp=ip+pow(j,5); ijs[ijp]=[i,j]; ijpv.push(ijp)
}
}
ijpv.sort( function (a,b) {return a - b } )
loop:
for (var i=0, ei=ipv.length; i<ei; i+=1)
for (var xp=ipv[i], j=0, je=ijpv.length; j<je; j+=1) {
var cdp = ijpv[j]
if (cdp >= xp) break
var cd = ijs[xp-cdp]
if (!cd) continue
var ab = ijs[cdp]
if (ab[1] >= cd[0]) continue
print( [].concat(ab, cd, is[xp]) )
if (first) break loop
}
function print(c) {
var e='<sup>5</sup>', ep=e+' + '
document.write(c[0], ep, c[1], ep, c[2], ep, c[3], e, ' = ', c[4], e, '<br>')
}
- Output:
275 + 845 + 1105 + 1335 = 1445 545 + 1685 + 2205 + 2665 = 2885 815 + 2525 + 3305 + 3995 = 4325 1085 + 3365 + 4405 + 5325 = 5765 1355 + 4205 + 5505 + 6655 = 7205 1625 + 5045 + 6605 + 7985 = 8645
ES6
Procedural
(() => {
'use strict';
const eulersSumOfPowers = intMax => {
const
pow = Math.pow,
xs = range(0, intMax)
.map(x => pow(x, 5)),
dct = xs.reduce((a, x, i) =>
(a[x] = i,
a
), {});
for (let a = 1; a <= intMax; a++) {
for (let b = 2; b <= a; b++) {
for (let c = 3; c <= b; c++) {
for (let d = 4; d <= c; d++) {
const sumOfPower = dct[xs[a] + xs[b] + xs[c] + xs[d]];
if (sumOfPower !== undefined) {
return [a, b, c, d, sumOfPower];
}
}
}
}
}
return undefined;
};
// range :: Int -> Int -> [Int]
const range = (m, n) =>
Array.from({
length: Math.floor(n - m) + 1
}, (_, i) => m + i);
// TEST
const soln = eulersSumOfPowers(250);
return soln ? soln.slice(0, 4)
.map(x => `${x}^5`)
.join(' + ') + ` = ${soln[4]}^5` : 'No solution found.'
})();
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Functional
Using dictionaries of powers and sums, and a little faster than the procedural version above:
(() => {
'use strict';
const main = () => {
const
iFrom = 1,
iTo = 249,
xs = enumFromTo(1, 249),
p5 = x => Math.pow(x, 5);
const
// powerMap :: Dict Int Int
powerMap = mapFromList(
zip(map(p5, xs), xs)
),
// sumMap :: Dict Int (Int, Int)
sumMap = mapFromList(
bind(
xs,
x => bind(
tail(xs),
y => Tuple(
p5(x) + p5(y),
Tuple(x, y)
)
)
)
);
// mbExample :: Maybe (Int, Int)
const mbExample = find(
tpl => member(fst(tpl) - snd(tpl), sumMap),
bind(
map(x => parseInt(x, 10),
keys(powerMap)
),
p => bind(
takeWhile(
x => x < p,
map(x => parseInt(x, 10),
keys(sumMap)
)
),
s => [Tuple(p, s)]
)
)
);
// showExample :: (Int, Int) -> String
const showExample = tpl => {
const [p, s] = Array.from(tpl);
const [a, b] = Array.from(sumMap[p - s]);
const [c, d] = Array.from(sumMap[s]);
return 'Counter-example found:\n' + intercalate(
'^5 + ',
map(str, [a, b, c, d])
) + '^5 = ' + str(powerMap[p]) + '^5';
};
return maybe(
'No counter-example found',
showExample,
mbExample
);
};
// GENERIC FUNCTIONS ----------------------------------
// Just :: a -> Maybe a
const Just = x => ({
type: 'Maybe',
Nothing: false,
Just: x
});
// Nothing :: Maybe a
const Nothing = () => ({
type: 'Maybe',
Nothing: true,
});
// Tuple (,) :: a -> b -> (a, b)
const Tuple = (a, b) => ({
type: 'Tuple',
'0': a,
'1': b,
length: 2
});
// bind (>>=) :: [a] -> (a -> [b]) -> [b]
const bind = (xs, mf) => [].concat.apply([], xs.map(mf));
// concat :: [[a]] -> [a]
// concat :: [String] -> String
const concat = xs =>
0 < xs.length ? (() => {
const unit = 'string' !== typeof xs[0] ? (
[]
) : '';
return unit.concat.apply(unit, xs);
})() : [];
// enumFromTo :: (Int, Int) -> [Int]
const enumFromTo = (m, n) =>
Array.from({
length: 1 + n - m
}, (_, i) => m + i);
// find :: (a -> Bool) -> [a] -> Maybe a
const find = (p, xs) => {
for (let i = 0, lng = xs.length; i < lng; i++) {
if (p(xs[i])) return Just(xs[i]);
}
return Nothing();
};
// fst :: (a, b) -> a
const fst = tpl => tpl[0];
// intercalate :: [a] -> [[a]] -> [a]
// intercalate :: String -> [String] -> String
const intercalate = (sep, xs) =>
0 < xs.length && 'string' === typeof sep &&
'string' === typeof xs[0] ? (
xs.join(sep)
) : concat(intersperse(sep, xs));
// intersperse(0, [1,2,3]) -> [1, 0, 2, 0, 3]
// intersperse :: a -> [a] -> [a]
// intersperse :: Char -> String -> String
const intersperse = (sep, xs) => {
const bln = 'string' === typeof xs;
return xs.length > 1 ? (
(bln ? concat : x => x)(
(bln ? (
xs.split('')
) : xs)
.slice(1)
.reduce((a, x) => a.concat([sep, x]), [xs[0]])
)) : xs;
};
// keys :: Dict -> [String]
const keys = Object.keys;
// Returns Infinity over objects without finite length.
// This enables zip and zipWith to choose the shorter
// argument when one is non-finite, like cycle, repeat etc
// length :: [a] -> Int
const length = xs =>
(Array.isArray(xs) || 'string' === typeof xs) ? (
xs.length
) : Infinity;
// map :: (a -> b) -> [a] -> [b]
const map = (f, xs) =>
(Array.isArray(xs) ? (
xs
) : xs.split('')).map(f);
// mapFromList :: [(k, v)] -> Dict
const mapFromList = kvs =>
kvs.reduce(
(a, kv) => {
const k = kv[0];
return Object.assign(a, {
[
(('string' === typeof k) && k) || JSON.stringify(k)
]: kv[1]
});
}, {}
);
// Default value (v) if m.Nothing, or f(m.Just)
// maybe :: b -> (a -> b) -> Maybe a -> b
const maybe = (v, f, m) =>
m.Nothing ? v : f(m.Just);
// member :: Key -> Dict -> Bool
const member = (k, dct) => k in dct;
// snd :: (a, b) -> b
const snd = tpl => tpl[1];
// str :: a -> String
const str = x => x.toString();
// tail :: [a] -> [a]
const tail = xs => 0 < xs.length ? xs.slice(1) : [];
// take :: Int -> [a] -> [a]
// take :: Int -> String -> String
const take = (n, xs) =>
'GeneratorFunction' !== xs.constructor.constructor.name ? (
xs.slice(0, n)
) : [].concat.apply([], Array.from({
length: n
}, () => {
const x = xs.next();
return x.done ? [] : [x.value];
}));
// takeWhile :: (a -> Bool) -> [a] -> [a]
// takeWhile :: (Char -> Bool) -> String -> String
const takeWhile = (p, xs) =>
xs.constructor.constructor.name !==
'GeneratorFunction' ? (() => {
const lng = xs.length;
return 0 < lng ? xs.slice(
0,
until(
i => lng === i || !p(xs[i]),
i => 1 + i,
0
)
) : [];
})() : takeWhileGen(p, xs);
// until :: (a -> Bool) -> (a -> a) -> a -> a
const until = (p, f, x) => {
let v = x;
while (!p(v)) v = f(v);
return v;
};
// Use of `take` and `length` here allows for zipping with non-finite
// lists - i.e. generators like cycle, repeat, iterate.
// zip :: [a] -> [b] -> [(a, b)]
const zip = (xs, ys) => {
const lng = Math.min(length(xs), length(ys));
return Infinity !== lng ? (() => {
const bs = take(lng, ys);
return take(lng, xs).map((x, i) => Tuple(x, bs[i]));
})() : zipGen(xs, ys);
};
// MAIN ---
return main();
})();
- Output:
Counter-example found: 133^5 + 110^5 + 84^5 + 27^5 = 144^5
jq
This version finds all non-decreasing solutions within the specified bounds, using a brute-force but not entirely blind approach.
# Search for y in 1 .. maxn (inclusive) for a solution to SIGMA (xi ^ 5) = y^5
# and for each solution with x0<=x1<=...<x3, print [x0, x1, x3, x3, y]
#
def sum_of_powers_conjecture(maxn):
def p5: . as $in | (.*.) | ((.*.) * $in);
def fifth: log / 5 | exp;
# return the fifth root if . is a power of 5
def integral_fifth_root: fifth | if . == floor then . else false end;
(maxn | p5) as $uber
| range(1; maxn) as $x0
| ($x0 | p5) as $s0
| if $s0 < $uber then range($x0; ($uber - $s0 | fifth) + 1) as $x1
| ($s0 + ($x1 | p5)) as $s1
| if $s1 < $uber then range($x1; ($uber - $s1 | fifth) + 1) as $x2
| ($s1 + ($x2 | p5)) as $s2
| if $s2 < $uber then range($x2; ($uber - $s2 | fifth) + 1) as $x3
| ($s2 + ($x3 | p5)) as $sumx
| ($sumx | integral_fifth_root)
| if . then [$x0,$x1,$x2,$x3,.] else empty end
else empty
end
else empty
end
else empty
end ;
The task:
sum_of_powers_conjecture(249)
- Output:
$ jq -c -n -f Euler_sum_of_powers_conjecture_fifth_root.jq
[27,84,110,133,144]
Julia
const lim = 250
const pwr = 5
const p = [i^pwr for i in 1:lim]
x = zeros(Int, pwr-1)
y = 0
for a in combinations(1:lim, pwr-1)
b = searchsorted(p, sum(p[a]))
0 < length(b) || continue
x = a
y = b[1]
break
end
if y == 0
println("No solution found for power = ", pwr, " and limit = ", lim, ".")
else
s = [@sprintf("%d^%d", i, pwr) for i in x]
s = join(s, " + ")
println("A solution is ", s, " = ", @sprintf("%d^%d", y, pwr), ".")
end
- Output:
A solution is 27^5 + 84^5 + 110^5 + 133^5 = 144^5.
Kotlin
fun main(args: Array<String>) {
val p5 = LongArray(250){ it.toLong() * it * it * it * it }
var sum: Long
var y: Int
var found = false
loop@ for (x0 in 0 .. 249)
for (x1 in 0 .. x0 - 1)
for (x2 in 0 .. x1 - 1)
for (x3 in 0 .. x2 - 1) {
sum = p5[x0] + p5[x1] + p5[x2] + p5[x3]
y = p5.binarySearch(sum)
if (y >= 0) {
println("$x0^5 + $x1^5 + $x2^5 + $x3^5 = $y^5")
found = true
break@loop
}
}
if (!found) println("No solution was found")
}
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Lua
Brute force but still takes under two seconds with LuaJIT.
-- Fast table search (only works if table values are in order)
function binarySearch (t, n)
local start, stop, mid = 1, #t
while start < stop do
mid = math.floor((start + stop) / 2)
if n == t[mid] then
return mid
elseif n < t[mid] then
stop = mid - 1
else
start = mid + 1
end
end
return nil
end
-- Test Euler's sum of powers conjecture
function euler (limit)
local pow5, sum = {}
for i = 1, limit do pow5[i] = i^5 end
for x0 = 1, limit do
for x1 = 1, x0 do
for x2 = 1, x1 do
for x3 = 1, x2 do
sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3]
if binarySearch(pow5, sum) then
print(x0 .. "^5 + " .. x1 .. "^5 + " .. x2 .. "^5 + " .. x3 .. "^5 = " .. sum^(1/5) .. "^5")
return true
end
end
end
end
end
return false
end
-- Main procedure
if euler(249) then
print("Time taken: " .. os.clock() .. " seconds")
else
print("Looks like he was right after all...")
end
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5 Time taken: 1.247 seconds
Mathematica /Wolfram Language
Sort[FindInstance[
x0^5 + x1^5 + x2^5 + x3^5 == y^5 && x0 > 0 && x1 > 0 && x2 > 0 &&
x3 > 0, {x0, x1, x2, x3, y}, Integers][[1, All, -1]]]
- Output:
{27,84,110,133,144}
Modula-2
MODULE EulerConjecture;
FROM FormatString IMPORT FormatString;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;
PROCEDURE Pow5(a : LONGINT) : LONGINT;
BEGIN
RETURN a * a * a * a * a
END Pow5;
VAR
buf : ARRAY[0..63] OF CHAR;
a,b,c,d,e,sum,curr : LONGINT;
BEGIN
FOR a:=0 TO 250 DO
FOR b:=a TO 250 DO
IF b=a THEN CONTINUE END;
FOR c:=b TO 250 DO
IF (c=a) OR (c=b) THEN CONTINUE END;
FOR d:=c TO 250 DO
IF (d=a) OR (d=b) OR (d=c) THEN CONTINUE END;
sum := Pow5(a) + Pow5(b) + Pow5(c) + Pow5(d);
FOR e:=d TO 250 DO
IF (e=a) OR (e=b) OR (e=c) OR (e=d) THEN CONTINUE END;
curr := Pow5(e);
IF (sum#0) AND (sum=curr) THEN
FormatString("%l^5 + %l^5 + %l^5 + %l^5 = %l^5\n", buf, a, b, c, d, e);
WriteString(buf)
ELSIF curr > sum THEN
BREAK
END
END;
END;
END;
END;
END;
WriteString("Done");
WriteLn;
ReadChar
END EulerConjecture.
Alternative
Uses the same idea as the QL SuperBASIC solution, i.e. if the desired equation holds modulo several positive integers M0, M1, ..., and if the LCM of M0, M1, ... is greater than 4*(249^5), then the equation holds absolutely. This makes it unnecessary to have variables with enough bits to store the fifth powers up to 249^5. It isn't clear why the fifth powers in a counterexample must be all different, as the task description seems to assume, so the demo program doesn't enforce this.
MODULE EulerFifthPowers;
FROM InOut IMPORT WriteString, WriteLn, WriteCard;
TYPE
(* CARDINAL in XDS Modula-2 is 32-bit unsigned integer *)
TModArray = ARRAY [0..4] OF CARDINAL;
CONST
Modulus = TModArray {327, 329, 334, 335, 337};
MaxTerm = 249;
VAR
res : ARRAY [0..4] OF ARRAY [0..Modulus[4]-1] OF CARDINAL;
inv : ARRAY [0..Modulus[0]-1] OF CARDINAL;
m, s0, s1, s2, s3, x, x0, x1, x2, x3, y : CARDINAL;
BEGIN
(* Set up arrays of 5th powers w.r.t. each modulus *)
FOR m := 0 TO 4 DO
FOR x := 0 TO Modulus[m] - 1 DO
y := (x*x) MOD Modulus[m];
y := (y*y) MOD Modulus[m];
res[m][x] := (x*y) MOD Modulus[m];
END;
END;
(* For Modulus[0] only, set up an inverse array (having checked
elsewhere that 5th powers MOD Modulus[0] are all different) *)
FOR x := 0 TO Modulus[0] - 1 DO
y := res[0][x];
inv[y] := x;
END;
(* Test sums of four 5th powers *)
FOR x0 := 1 TO MaxTerm DO
s0 := res[0][x0];
FOR x1 := x0 TO MaxTerm DO
s1 := (s0 + res[0][x1]) MOD Modulus[0];
FOR x2 := x1 TO MaxTerm DO
s2 := (s1 + res[0][x2]) MOD Modulus[0];
FOR x3 := x2 TO MaxTerm DO
s3 := (s2 + res[0][x3]) MOD Modulus[0];
y := inv[s3];
IF y <= MaxTerm THEN
(* Here, by definition of y, we have
x0^5 + x1^5 + x2^5 + x3^5 = y^5 MOD Modulus[0].
Now test the congruence for the other moduli. *)
m := 1;
WHILE (m <= 4) AND
((res[m][x0] + res[m][x1] + res[m][x2] + res[m][x3])
MOD Modulus[m] = res[m][y])
DO INC(m); END;
IF (m = 5) THEN
WriteString('Counterexample: ');
WriteCard( x0, 1); WriteString('^5 + ');
WriteCard( x1, 1); WriteString('^5 + ');
WriteCard( x2, 1); WriteString('^5 + ');
WriteCard( x3, 1); WriteString('^5 = ');
WriteCard( y, 1); WriteString('^5');
WriteLn;
END; (* IF m... *)
END; (* IF y... *)
END; (* FOR x3 *)
END; (* FOR x2 *)
END; (* FOR x1 *)
END; (* FOR x0 *)
END EulerFifthPowers.
- Output:
Counterexample: 27^5 + 84^5 + 110^5 + 133^5 = 144^5
Nim
# Brute force approach
import times
# assumes an array of non-decreasing positive integers
proc binarySearch(a : openArray[int], target : int) : int =
var left, right, mid : int
left = 0
right = len(a) - 1
while true :
if left > right : return 0 # no match found
mid = (left + right) div 2
if a[mid] < target :
left = mid + 1
elif a[mid] > target :
right = mid - 1
else :
return mid # match found
var
p5 : array[250, int]
sum = 0
y, t1 : int
let t0 = cpuTime()
for i in 1 .. 249 :
p5[i] = i * i * i * i * i
for x0 in 1 .. 249 :
for x1 in 1 .. x0 - 1 :
for x2 in 1 .. x1 - 1 :
for x3 in 1 .. x2 - 1 :
sum = p5[x0] + p5[x1] + p5[x2] + p5[x3]
y = binarySearch(p5, sum)
if y > 0 :
t1 = int((cputime() - t0) * 1000.0)
echo "Time : ", t1, " milliseconds"
echo $x0 & "^5 + " & $x1 & "^5 + " & $x2 & "^5 + " & $x3 & "^5 = " & $y & "^5"
quit()
if y == 0 :
echo "No solution was found"
- Output:
Time : 156 milliseconds 133^5 + 110^5 + 84^5 + 27^5 = 144^5
Oforth
: eulerSum
| i j k l ip jp kp |
250 loop: i [
i 5 pow ->ip
i 1 + 250 for: j [
j 5 pow ip + ->jp
j 1 + 250 for: k [
k 5 pow jp + ->kp
k 1 + 250 for: l [
kp l 5 pow + 0.2 powf dup asInteger == ifTrue: [ [ i, j, k, l ] println ]
]
]
]
] ;
- Output:
>eulerSum [27, 84, 110, 133]
PARI/GP
Naive script:
forvec(v=vector(4,i,[0,250]), if(ispower(v[1]^5+v[2]^5+v[3]^5+v[4]^5,5,&n), print(n" "v)), 2)
- Output:
144 [27, 84, 110, 133]
Naive + caching (setbinop
):
{
v2=setbinop((x,y)->[min(x,y),max(x,y),x^5+y^5],[0..250]); \\ sums of two fifth powers
for(i=2,#v2,
for(j=1,i-1,
if(v2[i][2]<v2[j][2] && ispower(v2[i][3]+v2[j][3],5,&n) && #(v=Set([v2[i][1],v2[i][2],v2[j][1],v2[j][2]]))==4,
print(n" "v)
)
)
)
}
- Output:
144 [27, 84, 110, 133]
Pascal
slightly improved.Reducing calculation time by temporary sum and early break.
program Pot5Test;
{$IFDEF FPC} {$MODE DELPHI}{$ELSE]{$APPTYPE CONSOLE}{$ENDIF}
type
tTest = double;//UInt64;{ On linux 32Bit double is faster than Uint64 }
var
Pot5 : array[0..255] of tTest;
res,tmpSum : tTest;
x0,x1,x2,x3, y : NativeUint;//= Uint32 or 64 depending on OS xx-Bit
i : byte;
BEGIN
For i := 1 to 255 do
Pot5[i] := (i*i*i*i)*Uint64(i);
For x0 := 1 to 250-3 do
For x1 := x0+1 to 250-2 do
For x2 := x1+1 to 250-1 do
Begin
//set y here only, because pot5 is strong monoton growing,
//therefor the sum is strong monoton growing too.
y := x2+2;// aka x3+1
tmpSum := Pot5[x0]+Pot5[x1]+Pot5[x2];
For x3 := x2+1 to 250 do
Begin
res := tmpSum+Pot5[x3];
while (y< 250) AND (res > Pot5[y]) do
inc(y);
IF y > 250 then BREAK;
if res = Pot5[y] then
writeln(x0,'^5+',x1,'^5+',x2,'^5+',x3,'^5 = ',y,'^5');
end;
end;
END.
- output
27^5+84^5+110^5+133^5 = 144^5 real 0m1.091s {Uint64; Linux 32}real 0m0.761s {double; Linux 32}real 0m0.511s{Uint64; Linux 64}
Perl
Brute Force:
use constant MAX => 250;
my @p5 = (0,map { $_**5 } 1 .. MAX-1);
my $s = 0;
my %p5 = map { $_ => $s++ } @p5;
for my $x0 (1..MAX-1) {
for my $x1 (1..$x0-1) {
for my $x2 (1..$x1-1) {
for my $x3 (1..$x2-1) {
my $sum = $p5[$x0] + $p5[$x1] + $p5[$x2] + $p5[$x3];
die "$x3 $x2 $x1 $x0 $p5{$sum}\n" if exists $p5{$sum};
}
}
}
}
- Output:
27 84 110 133 144
Adding some optimizations makes it 5x faster with similar output, but obfuscates things.
use constant MAX => 250;
my @p5 = (0,map { $_**5 } 1 .. MAX-1);
my $rs = 5;
for my $x0 (1..MAX-1) {
for my $x1 (1..$x0-1) {
for my $x2 (1..$x1-1) {
my $s2 = $p5[$x0] + $p5[$x1] + $p5[$x2];
$rs-- while $rs > 0 && $p5[$rs] > $s2;
for (my $x3 = 1; $x3 < $x2; $x3++) {
my $e30 = ($x0 + $x1 + $x2 + $x3 - $rs) % 30;
$x3 += (30-$e30) if $e30;
last if $x3 >= $x2;
my $sum = $s2 + $p5[$x3];
$rs++ while $rs < MAX-1 && $p5[$rs] < $sum;
die "$x3 $x2 $x1 $x0 $rs\n" if $p5[$rs] == $sum;
}
}
}
}
Phix
Around four seconds, not spectacularly fast. My naive brute force was over a minute. This is not where Phix shines.
Quitting when the first is found drops the main loop to 0.7s, so 1.1s in all, vs 4.3s for the full search.
Without the return 0, you just get six permutes (of ordered pairs) for 144.
with javascript_semantics constant MAX = 250 constant p5 = new_dict(), sum2 = new_dict() atom t0 = time() for i=1 to MAX do atom i5 = power(i,5) setd(i5,i,p5) for j=1 to i-1 do atom j5 = power(j,5) setd(j5+i5,{j,i},sum2) end for end for ?time()-t0 function forsum2(object s, object data, object p) if p<=s then return 0 end if integer k = getd_index(p-s,sum2) if k!=NULL then ?getd(p,p5)&data&getd_by_index(k,sum2) return 0 -- (show one solution per p) end if return 1 end function function forp5(object key, object /*data*/, object /*user_data*/) traverse_dict(forsum2,key,sum2) return 1 end function traverse_dict(forp5,0,p5) ?time()-t0
- Output:
0.421 {144,27,84,110,133} 4.312
PHP
<?php
function eulers_sum_of_powers () {
$max_n = 250;
$pow_5 = array();
$pow_5_to_n = array();
for ($p = 1; $p <= $max_n; $p ++) {
$pow5 = pow($p, 5);
$pow_5 [$p] = $pow5;
$pow_5_to_n[$pow5] = $p;
}
foreach ($pow_5 as $n_0 => $p_0) {
foreach ($pow_5 as $n_1 => $p_1) {
if ($n_0 < $n_1) continue;
foreach ($pow_5 as $n_2 => $p_2) {
if ($n_1 < $n_2) continue;
foreach ($pow_5 as $n_3 => $p_3) {
if ($n_2 < $n_3) continue;
$pow_5_sum = $p_0 + $p_1 + $p_2 + $p_3;
if (isset($pow_5_to_n[$pow_5_sum])) {
return array($n_0, $n_1, $n_2, $n_3, $pow_5_to_n[$pow_5_sum]);
}
}
}
}
}
}
list($n_0, $n_1, $n_2, $n_3, $y) = eulers_sum_of_powers();
echo "$n_0^5 + $n_1^5 + $n_2^5 + $n_3^5 = $y^5";
?>
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Picat
import sat.
main =>
X = new_list(5), X :: 1..150, decreasing_strict(X),
X[1]**5 #= sum([X[I]**5 : I in 2..5]),
solve(X), printf("%d**5 = %d**5 + %d**5 + %d**5 + %d**5", X[1], X[2], X[3], X[4], X[5]).
- Output:
144**5 = 133**5 + 110**5 + 84**5 + 27**5
CPU time 6.626 seconds
PicoLisp
(off P)
(off S)
(for I 250
(idx
'P
(list (setq @@ (** I 5)) I)
T )
(for (J I (>= 250 J) (inc J))
(idx
'S
(list (+ @@ (** J 5)) (list I J))
T ) ) )
(println
(catch 'found
(for A (idx 'P)
(for B (idx 'S)
(T (<= (car A) (car B)))
(and
(lup S (- (car A) (car B)))
(throw 'found
(conc
(cadr (lup S (car B)))
(cadr (lup S (- (car A) (car B))))
(cdr (lup P (car A))) ) ) ) ) ) ) )
- Output:
(27 84 110 133 144)
PowerShell
Brute Force Search
This is a slow algorithm, so attempts have been made to speed it up, including pre-computing the powers, using an ArrayList for them, and using [int] to cast the 5th root rather than use truncate.
# EULER.PS1
$max = 250
$powers = New-Object System.Collections.ArrayList
for ($i = 0; $i -lt $max; $i++) {
$tmp = $powers.Add([Math]::Pow($i, 5))
}
for ($x0 = 1; $x0 -lt $max; $x0++) {
for ($x1 = 1; $x1 -lt $x0; $x1++) {
for ($x2 = 1; $x2 -lt $x1; $x2++) {
for ($x3 = 1; $x3 -lt $x2; $x3++) {
$sum = $powers[$x0] + $powers[$x1] + $powers[$x2] + $powers[$x3]
$S1 = [int][Math]::pow($sum,0.2)
if ($sum -eq $powers[$S1]) {
Write-host "$x0^5 + $x1^5 + $x2^5 + $x3^5 = $S1^5"
return
}
}
}
}
}
- Output:
PS > measure-command { .\euler.ps1 | out-default } 133^5 + 110^5 + 84^5 + 27^5 = 144^5 Days : 0 Hours : 0 Minutes : 0 Seconds : 31 Milliseconds : 608 Ticks : 316082251 TotalDays : 0.000365835938657407
Prolog
makepowers :-
retractall(pow5(_, _)),
between(1, 249, X),
Y is X * X * X * X * X,
assert(pow5(X, Y)),
fail.
makepowers.
within(A, Bx, N) :- % like between but with an exclusive upper bound
succ(B, Bx),
between(A, B, N).
solution(X0, X1, X2, X3, Y) :-
makepowers,
within(4, 250, X0), pow5(X0, X0_5th),
within(3, X0, X1), pow5(X1, X1_5th),
within(2, X1, X2), pow5(X2, X2_5th),
within(1, X2, X3), pow5(X3, X3_5th),
Y_5th is X0_5th + X1_5th + X2_5th + X3_5th,
pow5(Y, Y_5th).
- Output:
?- solution(X0,X1,X2,X3,Y). X0 = 133, X1 = 110, X2 = 84, X3 = 27, Y = 144 .
Python
Procedural
def eulers_sum_of_powers():
max_n = 250
pow_5 = [n**5 for n in range(max_n)]
pow5_to_n = {n**5: n for n in range(max_n)}
for x0 in range(1, max_n):
for x1 in range(1, x0):
for x2 in range(1, x1):
for x3 in range(1, x2):
pow_5_sum = sum(pow_5[i] for i in (x0, x1, x2, x3))
if pow_5_sum in pow5_to_n:
y = pow5_to_n[pow_5_sum]
return (x0, x1, x2, x3, y)
print("%i**5 + %i**5 + %i**5 + %i**5 == %i**5" % eulers_sum_of_powers())
- Output:
133**5 + 110**5 + 84**5 + 27**5 == 144**5
The above can be written as:
from itertools import combinations
def eulers_sum_of_powers():
max_n = 250
pow_5 = [n**5 for n in range(max_n)]
pow5_to_n = {n**5: n for n in range(max_n)}
for x0, x1, x2, x3 in combinations(range(1, max_n), 4):
pow_5_sum = sum(pow_5[i] for i in (x0, x1, x2, x3))
if pow_5_sum in pow5_to_n:
y = pow5_to_n[pow_5_sum]
return (x0, x1, x2, x3, y)
print("%i**5 + %i**5 + %i**5 + %i**5 == %i**5" % eulers_sum_of_powers())
- Output:
27**5 + 84**5 + 110**5 + 133**5 == 144**5
It's much faster to cache and look up sums of two fifth powers, due to the small allowed range:
MAX = 250
p5, sum2 = {}, {}
for i in range(1, MAX):
p5[i**5] = i
for j in range(i, MAX):
sum2[i**5 + j**5] = (i, j)
sk = sorted(sum2.keys())
for p in sorted(p5.keys()):
for s in sk:
if p <= s: break
if p - s in sum2:
print(p5[p], sum2[s] + sum2[p-s])
exit()
- Output:
144 (27, 84, 110, 133)
Composition of pure functions
'''Euler's sum of powers conjecture'''
from itertools import (chain, takewhile)
# main :: IO ()
def main():
'''Search for counter-example'''
xs = enumFromTo(1)(249)
powerMap = {x**5: x for x in xs}
sumMap = {
x**5 + y**5: (x, y)
for x in xs[1:]
for y in xs if x > y
}
# isExample :: (Int, Int) -> Bool
def isExample(ps):
p, s = ps
return p - s in sumMap
# display :: (Int, Int) -> String
def display(ps):
p, s = ps
a, b = sumMap[p - s]
c, d = sumMap[s]
return '^5 + '.join([str(n) for n in [a, b, c, d]]) + (
'^5 = ' + str(powerMap[p]) + '^5'
)
print(__doc__ + ' – counter-example:\n')
print(
maybe('No counter-example found.')(display)(
find(isExample)(
bind(powerMap.keys())(
lambda p: bind(
takewhile(
lambda x: p > x,
sumMap.keys()
)
)(lambda s: [(p, s)])
)
)
)
)
# ----------------------- GENERIC ------------------------
# Just :: a -> Maybe a
def Just(x):
'''Constructor for an inhabited Maybe (option type) value.
Wrapper containing the result of a computation.
'''
return {'type': 'Maybe', 'Nothing': False, 'Just': x}
# Nothing :: () -> Maybe a
def Nothing():
'''Constructor for an empty Maybe (option type) value.
Empty wrapper returned where a computation is not possible.
'''
return {'type': 'Maybe', 'Nothing': True}
# bind (>>=) :: [a] -> (a -> [b]) -> [b]
def bind(xs):
'''List monad injection operator.
Two computations sequentially composed,
with any value produced by the first
passed as an argument to the second.
'''
def go(f):
return chain.from_iterable(map(f, xs))
return go
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: range(m, 1 + n)
# find :: (a -> Bool) -> [a] -> Maybe a
def find(p):
'''Just the first element in the list that matches p,
or Nothing if no elements match.
'''
def go(xs):
try:
return Just(next(x for x in xs if p(x)))
except StopIteration:
return Nothing()
return go
# maybe :: b -> (a -> b) -> Maybe a -> b
def maybe(v):
'''Either the default value v, if m is Nothing,
or the application of f to x,
where m is Just(x).
'''
return lambda f: lambda m: v if (
None is m or m.get('Nothing')
) else f(m.get('Just'))
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Euler's sum of powers conjecture – counter-example: 133^5 + 110^5 + 84^5 + 27^5 = 144^5
Racket
#lang racket
(define MAX 250)
(define pow5 (make-vector MAX))
(for ([i (in-range 1 MAX)])
(vector-set! pow5 i (expt i 5)))
(define pow5s (list->set (vector->list pow5)))
(let/ec break
(for* ([x0 (in-range 1 MAX)]
[x1 (in-range 1 x0)]
[x2 (in-range 1 x1)]
[x3 (in-range 1 x2)])
(define sum (+ (vector-ref pow5 x0)
(vector-ref pow5 x1)
(vector-ref pow5 x2)
(vector-ref pow5 x3)))
(when (set-member? pow5s sum)
(displayln (list x0 x1 x2 x3 (inexact->exact (round (expt sum 1/5)))))
(break))))
- Output:
(133 110 84 27 144)
Raku
(formerly Perl 6)
constant MAX = 250;
my %po5{Int};
my %sum2{Int};
for 1..MAX -> \i {
%po5{i⁵} = i;
for 1..MAX -> \j {
%sum2{i⁵ + j⁵} = i, j;
}
}
%po5.keys.sort.race.map: -> \p {
for %sum2.keys.sort -> \s {
if p > s and %sum2{p - s} {
say ((sort |%sum2{s},|%sum2{p - s}) X~ '⁵').join(' + '), " = %po5{p}", "⁵" and exit
}
}
}
- Output:
27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵
REXX
fast computation
Programming note: the 3rd argument can be specified which causes an attempt to find N solutions.
The starting and ending (low and high) values can also be specified (to limit or expand the search range).
If any of the arguments are omitted, they default to the Rosetta Code task's specifications.
The method used is:
- precompute all powers of five (within the confines of allowed integers)
- precompute all (positive) differences between two applicable 5th powers
- see if any of the sums of any three 5th powers are equal to any of those (above) differences
- {thanks to the real nifty idea (↑↑↑) from user ID G. Brougnard}
- see if the sum of any four 5th powers is equal to any 5th power
- (this is needed as the fourth number d isn't known yet).
- {all of the above utilizes REXX's sparse stemmed array hashing which eliminates the need for sorting.}
By implementing (user ID) G. Brougnard's idea of differences of two 5th powers,
the time used for computation was reduced by over a factor of seventy.
In essence, the new formula being solved is: a5 + b5 + c5 == x5 ─ d5
which lends itself to algorithm optimization by (only) having to:
- [the right side of the above equation] pre-compute all possible differences between any two applicable
integer powers of five (there are 30,135 unique differences) - [the left side of the above equation] sum any applicable three integer powers of five
- [the == part of the above equation] see if any of the above left─side sums match any of the ≈30k right─side differences
- [the right side of the above equation] pre-compute all possible differences between any two applicable
/*REXX program finds unique positive integers for ────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where n=5 */
parse arg L H N . /*get optional LOW, HIGH, #solutions.*/
if L=='' | L=="," then L= 0 + 1 /*Not specified? Then use the default.*/
if H=='' | H=="," then H= 250 - 1 /* " " " " " " */
if N=='' | N=="," then N= 1 /* " " " " " " */
w= length(H) /*W: used for display aligned numbers.*/
say center(' 'subword(sourceLine(1), 9, 3)" ", 70 +5*w, '─') /*show title from 1st line*/
numeric digits 1000 /*be able to handle the next expression*/
numeric digits max(9, length(3*H**5) ) /* " " " " 3* [H to 5th power]*/
bH= H - 2; cH= H - 1 /*calculate the upper DO loop limits.*/
!.= 0 /* [↓] define values of 5th powers. */
do pow=1 for H; @.pow= pow**5; _= @.pow; !._= 1; $._= pow
end /*pow*/
?.= !.
do j=4 for H-3 /*use the range of: four to cH. */
do k=j+1 to H; _= @.k - @.j; ?._= 1 /*compute the xⁿ - dⁿ differences.*/
end /*k*/ /* [↑] diff. is always positive as k>j*/
end /*j*/ /*define [↑] 5th power differences.*/
#= 0 /*#: is the number of solutions found.*/ /* [↓] for N=∞ solutions.*/
do a=L to H-3 /*traipse through possible A values. */ /*◄──done 246 times.*/
do b=a+1 to bH; s1= @.a + @.b /* " " " B " */ /*◄──done 30,381 times.*/
do c=b+1 to cH; s2= s1 + @.c /* " " " C " */ /*◄──done 2,511,496 times.*/
if ?.s2 then do d=c+1 to H; s= s2+@.d /*find the appropriate solution. */
if !.s then call show /*Is it a solution? Then display it. */
end /*d*/ /* [↑] !.S is a boolean. */
end /*c*/
end /*b*/
end /*a*/
if #==0 then say "Didn't find a solution."; exit 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
show: _= left('', 5); #= # + 1 /*_: used as a spacer; bump # counter.*/
say _ 'solution' right(#, length(N))":" _ 'a='right(a, w) _ "b="right(b, w),
_ 'c='right(c, w) _ "d="right(d, w) _ 'x='right($.s, w+1)
if #<N then return /*return, keep searching for more sols.*/
exit # /*stick a fork in it, we're all done. */
- output when using the default input:
──────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where ⁿ=5 ───────────────────────────── solution 1: a= 27 b= 84 c=110 d=133 x= 144
- output when using the input of: 1 4000 999
─────────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where ⁿ=5 ─────────────────────────────── solution 1: a= 27 b= 84 c= 110 d= 133 x= 144 solution 2: a= 54 b= 168 c= 220 d= 266 x= 288 solution 3: a= 81 b= 252 c= 330 d= 399 x= 432 solution 4: a= 108 b= 336 c= 440 d= 532 x= 576 solution 5: a= 135 b= 420 c= 550 d= 665 x= 720 solution 6: a= 162 b= 504 c= 660 d= 798 x= 864 solution 7: a= 189 b= 588 c= 770 d= 931 x= 1008 solution 8: a= 216 b= 672 c= 880 d=1064 x= 1152 solution 9: a= 243 b= 756 c= 990 d=1197 x= 1296 solution 10: a= 270 b= 840 c=1100 d=1330 x= 1440 solution 11: a= 297 b= 924 c=1210 d=1463 x= 1584 solution 12: a= 324 b=1008 c=1320 d=1596 x= 1728 solution 13: a= 351 b=1092 c=1430 d=1729 x= 1872 solution 14: a= 378 b=1176 c=1540 d=1862 x= 2016 solution 15: a= 405 b=1260 c=1650 d=1995 x= 2160 solution 16: a= 432 b=1344 c=1760 d=2128 x= 2304 solution 17: a= 459 b=1428 c=1870 d=2261 x= 2448 solution 18: a= 486 b=1512 c=1980 d=2394 x= 2592 solution 19: a= 513 b=1596 c=2090 d=2527 x= 2736 solution 20: a= 540 b=1680 c=2200 d=2660 x= 2880 solution 21: a= 567 b=1764 c=2310 d=2793 x= 3024 solution 22: a= 594 b=1848 c=2420 d=2926 x= 3168 solution 23: a= 621 b=1932 c=2530 d=3059 x= 3312 solution 24: a= 648 b=2016 c=2640 d=3192 x= 3456 solution 25: a= 675 b=2100 c=2750 d=3325 x= 3600 solution 26: a= 702 b=2184 c=2860 d=3458 x= 3744 solution 27: a= 729 b=2268 c=2970 d=3591 x= 3888
lightning-fast computation
Programming note: it can be observed from the 1st REXX program's output (2nd example) that all of the index solutions are just multiples of the 1st known set:
for A, a multiple of 27 for B, a multiple of 84 for C, a multiple of 110 for D, a multiple of 133 for X, a multiple of 144
where "a multiple" is some positive integer.
Intrepid and resourceful Rosetta Code userid Pat Garrett has found that in a research paper that Jim Frye found another solution:
- 555 + 31835 + 289695 + 852825 = 853595
The paper can be seen at: A variety of Euler's conjecture.
So this 2nd known set was added to the program below.
So, index solutions are also multiples of the 2nd known set:
for A, a multiple of 55 for B, a multiple of 3,183 for C, a multiple of 28,969 for D, a multiple of 85,282 for X, a multiple of 85,359
Execution time for computing/displaying/writing 200 numbers on a slow PC is about 1/16 second.
Execution time on a slow PC for computing (alone) for 6,000 numbers is less than one second.
Execution time on a fast PC for computing (alone) for 23,686 numbers is exactly 1.00 seconds.
/*REXX program shows unique positive integers for ────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where n=5 */
numeric digits 1000 /*ensure enough decimal digs for powers*/
parse arg N oFID . /*obtain optional arguments from the CL*/
if N=='' | N=="," then N= 200 /*Not specified? Then use the default.*/
if oFID==''|oFID=="," then oFID= 'EULERSUM.OUT' /* " " " " " " */
tell= N>=0 /*if N is ≥ 0, show output to terminal.*/
N= abs(N) /*use the absolute value of N. */
a.1= 27 ; a.2= 55 /*the A values for the two sets. */
b.1= 84 ; b.2= 3183 /* " B " " " " " */
c.1= 110 ; c.2= 28969 /* " C " " " " " */
d.1= 133 ; d.2= 85282 /* " D " " " " " */
x.1= 144 ; x.2= 85359 /* " X " " " " " */
w= length( commas(N * x.2) ) /*W: used to align displayed numbers. */
$= center(' 'subword( sourceLine(1), 9, 3)" ", 70 +5*w, '─') /*create a title.*/
call show /*show a title (from 1st line of pgm).*/
pad= left('',5) /*used for padding (spacing) the output*/
oo= 1; tt= 1 /*a counter for the A.1 & A.2 sets.*/
#= 0 /*count of number of solutions so far. */
do j=1 until #>N /*step through the possible solutions. */
one= a.1 * oo /*calculate the 1st set's A.1 value. */
two= a.2 * tt /* " " 2nd " A.2 " */
use= min(one, two) /*pick which "set" that is to be used. */
#= # + 1 /*bump counter for number of solutions.*/
if one==use then do; mult=oo; oo= oo + 1; which= 1; end
if two==use then do; mult=tt; tt= tt + 1; which= 2; end
$= pad 'solution' right(#,length(N))": " 'a='right( commas(a.which * mult), w),
pad 'b='right( commas(b.which * mult), w),
pad 'c='right( commas(c.which * mult), w),
pad 'd='right( commas(d.which * mult), w),
pad 'x='right( commas(x.which * mult), w)
call show /*write; maybe show output to terminal.*/
res= (x.which * mult) **5 /*compute the sum of the right side. */
sum= (a.which * mult) **5 + , /* " " " " " left " */
(b.which * mult) **5 + ,
(c.which * mult) **5 + ,
(d.which * mult) **5
if sum==res then iterate /*All is kosher? Then keep truckin'. */
$= "***error*** the left side sum doesn't equal the right side result (X**5)."
tell=1; call show; exit 13 /*force telling of error to terminal. */
end /*j*/
tell=1; call show
$= pad ' Showed ' commas(N) " solutions, output written to file: " oFID; call show
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: parse arg _; do jc=length(_)-3 to 1 by -3; _=insert(',', _, jc); end; return _
show: if tell then say $; call lineout oFID, $; $=; return /*show and/or write it*/
- output when using the default input of: 200
(Shown at three-quarter size.)
────────────────────────────────────────────── aⁿ+bⁿ+cⁿ+dⁿ==xⁿ where n=5 ────────────────────────────────────────────── solution 1: a= 27 b= 84 c= 110 d= 133 x= 144 solution 2: a= 54 b= 168 c= 220 d= 266 x= 288 solution 3: a= 55 b= 3,183 c= 28,969 d= 85,282 x= 85,359 solution 4: a= 81 b= 252 c= 330 d= 399 x= 432 solution 5: a= 108 b= 336 c= 440 d= 532 x= 576 solution 6: a= 110 b= 6,366 c= 57,938 d= 170,564 x= 170,718 solution 7: a= 135 b= 420 c= 550 d= 665 x= 720 solution 8: a= 162 b= 504 c= 660 d= 798 x= 864 solution 9: a= 165 b= 9,549 c= 86,907 d= 255,846 x= 256,077 solution 10: a= 189 b= 588 c= 770 d= 931 x= 1,008 solution 11: a= 216 b= 672 c= 880 d= 1,064 x= 1,152 solution 12: a= 220 b= 12,732 c= 115,876 d= 341,128 x= 341,436 solution 13: a= 243 b= 756 c= 990 d= 1,197 x= 1,296 solution 14: a= 270 b= 840 c= 1,100 d= 1,330 x= 1,440 solution 15: a= 275 b= 15,915 c= 144,845 d= 426,410 x= 426,795 solution 16: a= 297 b= 924 c= 1,210 d= 1,463 x= 1,584 solution 17: a= 324 b= 1,008 c= 1,320 d= 1,596 x= 1,728 solution 18: a= 330 b= 19,098 c= 173,814 d= 511,692 x= 512,154 solution 19: a= 351 b= 1,092 c= 1,430 d= 1,729 x= 1,872 solution 20: a= 378 b= 1,176 c= 1,540 d= 1,862 x= 2,016 solution 21: a= 385 b= 22,281 c= 202,783 d= 596,974 x= 597,513 solution 22: a= 405 b= 1,260 c= 1,650 d= 1,995 x= 2,160 solution 23: a= 432 b= 1,344 c= 1,760 d= 2,128 x= 2,304 solution 24: a= 440 b= 25,464 c= 231,752 d= 682,256 x= 682,872 solution 25: a= 459 b= 1,428 c= 1,870 d= 2,261 x= 2,448 solution 26: a= 486 b= 1,512 c= 1,980 d= 2,394 x= 2,592 solution 27: a= 495 b= 28,647 c= 260,721 d= 767,538 x= 768,231 solution 28: a= 513 b= 1,596 c= 2,090 d= 2,527 x= 2,736 solution 29: a= 540 b= 1,680 c= 2,200 d= 2,660 x= 2,880 solution 30: a= 550 b= 31,830 c= 289,690 d= 852,820 x= 853,590 solution 31: a= 567 b= 1,764 c= 2,310 d= 2,793 x= 3,024 solution 32: a= 594 b= 1,848 c= 2,420 d= 2,926 x= 3,168 solution 33: a= 605 b= 35,013 c= 318,659 d= 938,102 x= 938,949 solution 34: a= 621 b= 1,932 c= 2,530 d= 3,059 x= 3,312 solution 35: a= 648 b= 2,016 c= 2,640 d= 3,192 x= 3,456 solution 36: a= 660 b= 38,196 c= 347,628 d= 1,023,384 x= 1,024,308 solution 37: a= 675 b= 2,100 c= 2,750 d= 3,325 x= 3,600 solution 38: a= 702 b= 2,184 c= 2,860 d= 3,458 x= 3,744 solution 39: a= 715 b= 41,379 c= 376,597 d= 1,108,666 x= 1,109,667 solution 40: a= 729 b= 2,268 c= 2,970 d= 3,591 x= 3,888 solution 41: a= 756 b= 2,352 c= 3,080 d= 3,724 x= 4,032 solution 42: a= 770 b= 44,562 c= 405,566 d= 1,193,948 x= 1,195,026 solution 43: a= 783 b= 2,436 c= 3,190 d= 3,857 x= 4,176 solution 44: a= 810 b= 2,520 c= 3,300 d= 3,990 x= 4,320 solution 45: a= 825 b= 47,745 c= 434,535 d= 1,279,230 x= 1,280,385 solution 46: a= 837 b= 2,604 c= 3,410 d= 4,123 x= 4,464 solution 47: a= 864 b= 2,688 c= 3,520 d= 4,256 x= 4,608 solution 48: a= 880 b= 50,928 c= 463,504 d= 1,364,512 x= 1,365,744 solution 49: a= 891 b= 2,772 c= 3,630 d= 4,389 x= 4,752 solution 50: a= 918 b= 2,856 c= 3,740 d= 4,522 x= 4,896 solution 51: a= 935 b= 54,111 c= 492,473 d= 1,449,794 x= 1,451,103 solution 52: a= 945 b= 2,940 c= 3,850 d= 4,655 x= 5,040 solution 53: a= 972 b= 3,024 c= 3,960 d= 4,788 x= 5,184 solution 54: a= 990 b= 57,294 c= 521,442 d= 1,535,076 x= 1,536,462 solution 55: a= 999 b= 3,108 c= 4,070 d= 4,921 x= 5,328 solution 56: a= 1,026 b= 3,192 c= 4,180 d= 5,054 x= 5,472 solution 57: a= 1,045 b= 60,477 c= 550,411 d= 1,620,358 x= 1,621,821 solution 58: a= 1,053 b= 3,276 c= 4,290 d= 5,187 x= 5,616 solution 59: a= 1,080 b= 3,360 c= 4,400 d= 5,320 x= 5,760 solution 60: a= 1,100 b= 63,660 c= 579,380 d= 1,705,640 x= 1,707,180 solution 61: a= 1,107 b= 3,444 c= 4,510 d= 5,453 x= 5,904 solution 62: a= 1,134 b= 3,528 c= 4,620 d= 5,586 x= 6,048 solution 63: a= 1,155 b= 66,843 c= 608,349 d= 1,790,922 x= 1,792,539 solution 64: a= 1,161 b= 3,612 c= 4,730 d= 5,719 x= 6,192 solution 65: a= 1,188 b= 3,696 c= 4,840 d= 5,852 x= 6,336 solution 66: a= 1,210 b= 70,026 c= 637,318 d= 1,876,204 x= 1,877,898 solution 67: a= 1,215 b= 3,780 c= 4,950 d= 5,985 x= 6,480 solution 68: a= 1,242 b= 3,864 c= 5,060 d= 6,118 x= 6,624 solution 69: a= 1,265 b= 73,209 c= 666,287 d= 1,961,486 x= 1,963,257 solution 70: a= 1,269 b= 3,948 c= 5,170 d= 6,251 x= 6,768 solution 71: a= 1,296 b= 4,032 c= 5,280 d= 6,384 x= 6,912 solution 72: a= 1,320 b= 76,392 c= 695,256 d= 2,046,768 x= 2,048,616 solution 73: a= 1,323 b= 4,116 c= 5,390 d= 6,517 x= 7,056 solution 74: a= 1,350 b= 4,200 c= 5,500 d= 6,650 x= 7,200 solution 75: a= 1,375 b= 79,575 c= 724,225 d= 2,132,050 x= 2,133,975 solution 76: a= 1,377 b= 4,284 c= 5,610 d= 6,783 x= 7,344 solution 77: a= 1,404 b= 4,368 c= 5,720 d= 6,916 x= 7,488 solution 78: a= 1,430 b= 82,758 c= 753,194 d= 2,217,332 x= 2,219,334 solution 79: a= 1,431 b= 4,452 c= 5,830 d= 7,049 x= 7,632 solution 80: a= 1,458 b= 4,536 c= 5,940 d= 7,182 x= 7,776 solution 81: a= 1,485 b= 85,941 c= 782,163 d= 2,302,614 x= 2,304,693 solution 82: a= 1,512 b= 4,704 c= 6,160 d= 7,448 x= 8,064 solution 83: a= 1,539 b= 4,788 c= 6,270 d= 7,581 x= 8,208 solution 84: a= 1,540 b= 89,124 c= 811,132 d= 2,387,896 x= 2,390,052 solution 85: a= 1,566 b= 4,872 c= 6,380 d= 7,714 x= 8,352 solution 86: a= 1,593 b= 4,956 c= 6,490 d= 7,847 x= 8,496 solution 87: a= 1,595 b= 92,307 c= 840,101 d= 2,473,178 x= 2,475,411 solution 88: a= 1,620 b= 5,040 c= 6,600 d= 7,980 x= 8,640 solution 89: a= 1,647 b= 5,124 c= 6,710 d= 8,113 x= 8,784 solution 90: a= 1,650 b= 95,490 c= 869,070 d= 2,558,460 x= 2,560,770 solution 91: a= 1,674 b= 5,208 c= 6,820 d= 8,246 x= 8,928 solution 92: a= 1,701 b= 5,292 c= 6,930 d= 8,379 x= 9,072 solution 93: a= 1,705 b= 98,673 c= 898,039 d= 2,643,742 x= 2,646,129 solution 94: a= 1,728 b= 5,376 c= 7,040 d= 8,512 x= 9,216 solution 95: a= 1,755 b= 5,460 c= 7,150 d= 8,645 x= 9,360 solution 96: a= 1,760 b= 101,856 c= 927,008 d= 2,729,024 x= 2,731,488 solution 97: a= 1,782 b= 5,544 c= 7,260 d= 8,778 x= 9,504 solution 98: a= 1,809 b= 5,628 c= 7,370 d= 8,911 x= 9,648 solution 99: a= 1,815 b= 105,039 c= 955,977 d= 2,814,306 x= 2,816,847 solution 100: a= 1,836 b= 5,712 c= 7,480 d= 9,044 x= 9,792 solution 101: a= 1,863 b= 5,796 c= 7,590 d= 9,177 x= 9,936 solution 102: a= 1,870 b= 108,222 c= 984,946 d= 2,899,588 x= 2,902,206 solution 103: a= 1,890 b= 5,880 c= 7,700 d= 9,310 x= 10,080 solution 104: a= 1,917 b= 5,964 c= 7,810 d= 9,443 x= 10,224 solution 105: a= 1,925 b= 111,405 c= 1,013,915 d= 2,984,870 x= 2,987,565 solution 106: a= 1,944 b= 6,048 c= 7,920 d= 9,576 x= 10,368 solution 107: a= 1,971 b= 6,132 c= 8,030 d= 9,709 x= 10,512 solution 108: a= 1,980 b= 114,588 c= 1,042,884 d= 3,070,152 x= 3,072,924 solution 109: a= 1,998 b= 6,216 c= 8,140 d= 9,842 x= 10,656 solution 110: a= 2,025 b= 6,300 c= 8,250 d= 9,975 x= 10,800 solution 111: a= 2,035 b= 117,771 c= 1,071,853 d= 3,155,434 x= 3,158,283 solution 112: a= 2,052 b= 6,384 c= 8,360 d= 10,108 x= 10,944 solution 113: a= 2,079 b= 6,468 c= 8,470 d= 10,241 x= 11,088 solution 114: a= 2,090 b= 120,954 c= 1,100,822 d= 3,240,716 x= 3,243,642 solution 115: a= 2,106 b= 6,552 c= 8,580 d= 10,374 x= 11,232 solution 116: a= 2,133 b= 6,636 c= 8,690 d= 10,507 x= 11,376 solution 117: a= 2,145 b= 124,137 c= 1,129,791 d= 3,325,998 x= 3,329,001 solution 118: a= 2,160 b= 6,720 c= 8,800 d= 10,640 x= 11,520 solution 119: a= 2,187 b= 6,804 c= 8,910 d= 10,773 x= 11,664 solution 120: a= 2,200 b= 127,320 c= 1,158,760 d= 3,411,280 x= 3,414,360 solution 121: a= 2,214 b= 6,888 c= 9,020 d= 10,906 x= 11,808 solution 122: a= 2,241 b= 6,972 c= 9,130 d= 11,039 x= 11,952 solution 123: a= 2,255 b= 130,503 c= 1,187,729 d= 3,496,562 x= 3,499,719 solution 124: a= 2,268 b= 7,056 c= 9,240 d= 11,172 x= 12,096 solution 125: a= 2,295 b= 7,140 c= 9,350 d= 11,305 x= 12,240 solution 126: a= 2,310 b= 133,686 c= 1,216,698 d= 3,581,844 x= 3,585,078 solution 127: a= 2,322 b= 7,224 c= 9,460 d= 11,438 x= 12,384 solution 128: a= 2,349 b= 7,308 c= 9,570 d= 11,571 x= 12,528 solution 129: a= 2,365 b= 136,869 c= 1,245,667 d= 3,667,126 x= 3,670,437 solution 130: a= 2,376 b= 7,392 c= 9,680 d= 11,704 x= 12,672 solution 131: a= 2,403 b= 7,476 c= 9,790 d= 11,837 x= 12,816 solution 132: a= 2,420 b= 140,052 c= 1,274,636 d= 3,752,408 x= 3,755,796 solution 133: a= 2,430 b= 7,560 c= 9,900 d= 11,970 x= 12,960 solution 134: a= 2,457 b= 7,644 c= 10,010 d= 12,103 x= 13,104 solution 135: a= 2,475 b= 143,235 c= 1,303,605 d= 3,837,690 x= 3,841,155 solution 136: a= 2,484 b= 7,728 c= 10,120 d= 12,236 x= 13,248 solution 137: a= 2,511 b= 7,812 c= 10,230 d= 12,369 x= 13,392 solution 138: a= 2,530 b= 146,418 c= 1,332,574 d= 3,922,972 x= 3,926,514 solution 139: a= 2,538 b= 7,896 c= 10,340 d= 12,502 x= 13,536 solution 140: a= 2,565 b= 7,980 c= 10,450 d= 12,635 x= 13,680 solution 141: a= 2,585 b= 149,601 c= 1,361,543 d= 4,008,254 x= 4,011,873 solution 142: a= 2,592 b= 8,064 c= 10,560 d= 12,768 x= 13,824 solution 143: a= 2,619 b= 8,148 c= 10,670 d= 12,901 x= 13,968 solution 144: a= 2,640 b= 152,784 c= 1,390,512 d= 4,093,536 x= 4,097,232 solution 145: a= 2,646 b= 8,232 c= 10,780 d= 13,034 x= 14,112 solution 146: a= 2,673 b= 8,316 c= 10,890 d= 13,167 x= 14,256 solution 147: a= 2,695 b= 155,967 c= 1,419,481 d= 4,178,818 x= 4,182,591 solution 148: a= 2,700 b= 8,400 c= 11,000 d= 13,300 x= 14,400 solution 149: a= 2,727 b= 8,484 c= 11,110 d= 13,433 x= 14,544 solution 150: a= 2,750 b= 159,150 c= 1,448,450 d= 4,264,100 x= 4,267,950 solution 151: a= 2,754 b= 8,568 c= 11,220 d= 13,566 x= 14,688 solution 152: a= 2,781 b= 8,652 c= 11,330 d= 13,699 x= 14,832 solution 153: a= 2,805 b= 162,333 c= 1,477,419 d= 4,349,382 x= 4,353,309 solution 154: a= 2,808 b= 8,736 c= 11,440 d= 13,832 x= 14,976 solution 155: a= 2,835 b= 8,820 c= 11,550 d= 13,965 x= 15,120 solution 156: a= 2,860 b= 165,516 c= 1,506,388 d= 4,434,664 x= 4,438,668 solution 157: a= 2,862 b= 8,904 c= 11,660 d= 14,098 x= 15,264 solution 158: a= 2,889 b= 8,988 c= 11,770 d= 14,231 x= 15,408 solution 159: a= 2,915 b= 168,699 c= 1,535,357 d= 4,519,946 x= 4,524,027 solution 160: a= 2,916 b= 9,072 c= 11,880 d= 14,364 x= 15,552 solution 161: a= 2,943 b= 9,156 c= 11,990 d= 14,497 x= 15,696 solution 162: a= 2,970 b= 171,882 c= 1,564,326 d= 4,605,228 x= 4,609,386 solution 163: a= 2,997 b= 9,324 c= 12,210 d= 14,763 x= 15,984 solution 164: a= 3,024 b= 9,408 c= 12,320 d= 14,896 x= 16,128 solution 165: a= 3,025 b= 175,065 c= 1,593,295 d= 4,690,510 x= 4,694,745 solution 166: a= 3,051 b= 9,492 c= 12,430 d= 15,029 x= 16,272 solution 167: a= 3,078 b= 9,576 c= 12,540 d= 15,162 x= 16,416 solution 168: a= 3,080 b= 178,248 c= 1,622,264 d= 4,775,792 x= 4,780,104 solution 169: a= 3,105 b= 9,660 c= 12,650 d= 15,295 x= 16,560 solution 170: a= 3,132 b= 9,744 c= 12,760 d= 15,428 x= 16,704 solution 171: a= 3,135 b= 181,431 c= 1,651,233 d= 4,861,074 x= 4,865,463 solution 172: a= 3,159 b= 9,828 c= 12,870 d= 15,561 x= 16,848 solution 173: a= 3,186 b= 9,912 c= 12,980 d= 15,694 x= 16,992 solution 174: a= 3,190 b= 184,614 c= 1,680,202 d= 4,946,356 x= 4,950,822 solution 175: a= 3,213 b= 9,996 c= 13,090 d= 15,827 x= 17,136 solution 176: a= 3,240 b= 10,080 c= 13,200 d= 15,960 x= 17,280 solution 177: a= 3,245 b= 187,797 c= 1,709,171 d= 5,031,638 x= 5,036,181 solution 178: a= 3,267 b= 10,164 c= 13,310 d= 16,093 x= 17,424 solution 179: a= 3,294 b= 10,248 c= 13,420 d= 16,226 x= 17,568 solution 180: a= 3,300 b= 190,980 c= 1,738,140 d= 5,116,920 x= 5,121,540 solution 181: a= 3,321 b= 10,332 c= 13,530 d= 16,359 x= 17,712 solution 182: a= 3,348 b= 10,416 c= 13,640 d= 16,492 x= 17,856 solution 183: a= 3,355 b= 194,163 c= 1,767,109 d= 5,202,202 x= 5,206,899 solution 184: a= 3,375 b= 10,500 c= 13,750 d= 16,625 x= 18,000 solution 185: a= 3,402 b= 10,584 c= 13,860 d= 16,758 x= 18,144 solution 186: a= 3,410 b= 197,346 c= 1,796,078 d= 5,287,484 x= 5,292,258 solution 187: a= 3,429 b= 10,668 c= 13,970 d= 16,891 x= 18,288 solution 188: a= 3,456 b= 10,752 c= 14,080 d= 17,024 x= 18,432 solution 189: a= 3,465 b= 200,529 c= 1,825,047 d= 5,372,766 x= 5,377,617 solution 190: a= 3,483 b= 10,836 c= 14,190 d= 17,157 x= 18,576 solution 191: a= 3,510 b= 10,920 c= 14,300 d= 17,290 x= 18,720 solution 192: a= 3,520 b= 203,712 c= 1,854,016 d= 5,458,048 x= 5,462,976 solution 193: a= 3,537 b= 11,004 c= 14,410 d= 17,423 x= 18,864 solution 194: a= 3,564 b= 11,088 c= 14,520 d= 17,556 x= 19,008 solution 195: a= 3,575 b= 206,895 c= 1,882,985 d= 5,543,330 x= 5,548,335 solution 196: a= 3,591 b= 11,172 c= 14,630 d= 17,689 x= 19,152 solution 197: a= 3,618 b= 11,256 c= 14,740 d= 17,822 x= 19,296 solution 198: a= 3,630 b= 210,078 c= 1,911,954 d= 5,628,612 x= 5,633,694 solution 199: a= 3,645 b= 11,340 c= 14,850 d= 17,955 x= 19,440 solution 200: a= 3,672 b= 11,424 c= 14,960 d= 18,088 x= 19,584 Showed 200 solutions, output written to file: EULERSUM.OUT
Ring
# Project : Euler's sum of powers conjecture
max=250
for w = 1 to max
for x = 1 to w
for y = 1 to x
for z = 1 to y
sum = pow(w,5) + pow(x,5) + pow(y,5) + pow(z,5)
s1 = floor(pow(sum,0.2))
if sum = pow(s1,5)
see "" + w + "^5 + " + x + "^5 + " + y + "^5 + " + z + "^5 = " + s1 + "^5"
ok
next
next
next
next
Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Ruby
Brute force:
power5 = (1..250).each_with_object({}){|i,h| h[i**5]=i}
result = power5.keys.repeated_combination(4).select{|a| power5[a.inject(:+)]}
puts result.map{|a| a.map{|i| "#{power5[i]}**5"}.join(' + ') + " = #{power5[a.inject(:+)]}**5"}
- Output:
27**5 + 84**5 + 110**5 + 133**5 = 144**5
Faster version:
p5, sum2, max = {}, {}, 250
(1..max).each do |i|
p5[i**5] = i
(i..max).each{|j| sum2[i**5 + j**5] = [i,j]}
end
result = {}
sk = sum2.keys.sort
p5.keys.sort.each do |p|
sk.each do |s|
break if p <= s
result[(sum2[s] + sum2[p-s]).sort] = p5[p] if sum2[p - s]
end
end
result.each{|k,v| puts k.map{|i| "#{i}**5"}.join(' + ') + " = #{v}**5"}
The output is the same above.
Rust
const MAX_N : u64 = 250;
fn eulers_sum_of_powers() -> (usize, usize, usize, usize, usize) {
let pow5: Vec<u64> = (0..MAX_N).map(|i| i.pow(5)).collect();
let pow5_to_n = |pow| pow5.binary_search(&pow);
for x0 in 1..MAX_N as usize {
for x1 in 1..x0 {
for x2 in 1..x1 {
for x3 in 1..x2 {
let pow_sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
if let Ok(n) = pow5_to_n(pow_sum) {
return (x0, x1, x2, x3, n)
}
}
}
}
}
panic!();
}
fn main() {
let (x0, x1, x2, x3, y) = eulers_sum_of_powers();
println!("{}^5 + {}^5 + {}^5 + {}^5 == {}^5", x0, x1, x2, x3, y)
}
- Output:
133^5 + 110^5 + 84^5 + 27^5 == 144^5
Scala
Functional programming
import scala.collection.Searching.{Found, search}
object EulerSopConjecture extends App {
val (maxNumber, fifth) = (250, (1 to 250).map { i => math.pow(i, 5).toLong })
def binSearch(fact: Int*) = fifth.search(fact.map(f => fifth(f)).sum)
def sop = (0 until maxNumber)
.flatMap(a => (a until maxNumber)
.flatMap(b => (b until maxNumber)
.flatMap(c => (c until maxNumber)
.map { case x$1@d => (binSearch(a, b, c, d), x$1) }
.withFilter { case (f, _) => f.isInstanceOf[Found] }
.map { case (f, d) => (a + 1, b + 1, c + 1, d + 1, f.insertionPoint + 1) }))).take(1)
.map { case (a, b, c, d, f) => s"$a⁵ + $b⁵ + $c⁵ + $d⁵ = $f⁵" }
println(sop)
}
- Output:
Vector(27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵)
Seed7
$ include "seed7_05.s7i";
const func integer: binarySearch (in array integer: arr, in integer: aKey) is func
result
var integer: index is 0;
local
var integer: low is 1;
var integer: high is 0;
var integer: middle is 0;
begin
high := length(arr);
while index = 0 and low <= high do
middle := (low + high) div 2;
if aKey < arr[middle] then
high := pred(middle);
elsif aKey > arr[middle] then
low := succ(middle);
else
index := middle;
end if;
end while;
end func;
const proc: main is func
local
var array integer: p5 is 249 times 0;
var integer: i is 0;
var integer: x0 is 0;
var integer: x1 is 0;
var integer: x2 is 0;
var integer: x3 is 0;
var integer: sum is 0;
var integer: y is 0;
var boolean: found is FALSE;
begin
for i range 1 to 249 do
p5[i] := i ** 5;
end for;
for x0 range 1 to 249 until found do
for x1 range 1 to pred(x0) until found do
for x2 range 1 to pred(x1) until found do
for x3 range 1 to pred(x2) until found do
sum := p5[x0] + p5[x1] + p5[x2] + p5[x3];
y := binarySearch(p5, sum);
if y > 0 then
writeln(x0 <& "**5 + " <& x1 <& "**5 + " <& x2 <& "**5 + " <& x3 <& "**5 = " <& y <& "**5");
found := TRUE;
end if;
end for;
end for;
end for;
end for;
if not found then
writeln("No solution was found");
end if;
end func;
- Output:
133**5 + 110**5 + 84**5 + 27**5 = 144**5
SenseTalk
findEulerSumOfPowers
to findEulerSumOfPowers
set MAX_NUMBER to 250
set possibleValues to 1..MAX_NUMBER
set possible5thPowers to each item of possibleValues to the power of 5
repeat for x0 in 1..250
repeat for x1 in 1..x0
repeat for x2 in 1..x1
repeat for x3 in 1..x2
set possibleSum to item x0 of possible5thPowers \
plus item x1 of possible5thPowers \
plus item x2 of possible5thPowers \
plus item x3 of possible5thPowers
if possibleSum is in possible5thPowers
put x0 & "^5 + " & x1 & "^5 + " & x2 & "^5 + " & x3 & "^5 = " & the item number of possibleSum within possible5thPowers & "^5"
return
end if
end repeat
end repeat
end repeat
end repeat
end findEulerSumOfPowers
Sidef
define range = (1 ..^ 250)
var p5 = Hash()
var sum2 = Hash()
for i in (range) {
p5{i**5} = i
for j in (range) {
sum2{i**5 + j**5} = [i, j]
}
}
var sk = sum2.keys.map{ Num(_) }.sort
for p in (p5.keys.map{ Num(_) }.sort) {
var s = sk.first {|s|
p > s && sum2.exists(p-s)
} \\ next
var t = (sum2{s} + sum2{p-s} -> map{|n| "#{n}⁵" }.join(' + '))
say "#{t} = #{p5{p}}⁵"
break
}
- Output:
84⁵ + 27⁵ + 133⁵ + 110⁵ = 144⁵
Swift
extension BinaryInteger {
@inlinable
public func power(_ n: Self) -> Self {
return stride(from: 0, to: n, by: 1).lazy.map({_ in self }).reduce(1, *)
}
}
func sumOfPowers(maxN: Int = 250) -> (Int, Int, Int, Int, Int) {
let pow5 = (0..<maxN).map({ $0.power(5) })
let pow5ToN = {n in pow5.firstIndex(of: n)}
for x0 in 1..<maxN {
for x1 in 1..<x0 {
for x2 in 1..<x1 {
for x3 in 1..<x2 {
let powSum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3]
if let idx = pow5ToN(powSum) {
return (x0, x1, x2, x3, idx)
}
}
}
}
}
fatalError("Did not find solution")
}
let (x0, x1, x2, x3, y) = sumOfPowers()
print("\(x0)^5 + \(x1)^5 + \(x2)^5 \(x3)^5 = \(y)^5")
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Tcl
proc doit {{badx 250} {complete 0}} {
## NB: $badx is exclusive upper limit, and also limits y!
for {set y 1} {$y < $badx} {incr y} {
set s [expr {$y ** 5}]
set r5($s) $y ;# fifth roots of valid sums
}
for {set a 1} {$a < $badx} {incr a} {
set suma [expr {$a ** 5}]
for {set b 1} {$b <= $a} {incr b} {
set sumb [expr {$suma + ($b ** 5)}]
for {set c 1} {$c <= $b} {incr c} {
set sumc [expr {$sumb + ($c ** 5)}]
for {set d 1} {$d <= $c} {incr d} {
set sumd [expr {$sumc + ($d ** 5)}]
if {[info exists r5($sumd)]} {
set e $r5($sumd)
puts "$e^5 = $a^5 + $b^5 + $c^5 + $d^5"
if {!$complete} {
return
}
}
}
}
}
}
puts "search complete (x < $badx)"
}
doit
- Output:
144^5 = 133^5 + 110^5 + 84^5 + 27^5
real 0m2.387s
UNIX Shell
Shell is not the go-to language for number-crunching, but if you're going to use a shell, it looks like ksh is the fastest option, at about 8x faster than bash and 2x faster than zsh.
MAX=250
pow5=()
for (( i=1; i<MAX; ++i )); do
pow5[i]=$(( i*i*i*i*i ))
done
for (( a=1; a<MAX; ++a )); do
for (( b=a+1; b<MAX; ++b )); do
for (( c=b+1; c<MAX; ++c )); do
for (( d=c+1; d<MAX; ++d )); do
(( sum=pow5[a]+pow5[b]+pow5[c]+pow5[d] ))
(( low=d+3 ))
(( high=MAX ))
while (( low <= high )); do
(( guess=(low+high)/2 ))
if (( pow5[guess] == sum )); then
printf 'Found example: %d⁵+%d⁵+%d⁵+%d⁵=%d⁵\n' "$a" "$b" "$c" "$d" "$guess"
exit 0
elif (( pow5[guess] < sum )); then
(( low=guess+1 ))
else
(( high=guess-1 ))
fi
done
done
done
done
done
printf 'No examples found.\n'
exit 1
- Output:
$ time bash esop.sh Found example: 27⁵+84⁵+110⁵+133⁵=144⁵ bash esop.sh 6953.75s user 37.53s system 99% cpu 1:57:02.41 total $ time ksh esop.sh Found example: 27⁵+84⁵+110⁵+133⁵=144⁵ ksh esop.sh 855.66s user 5.30s system 99% cpu 14:26.78 total $ time zsh esop.sh Found example: 27⁵+84⁵+110⁵+133⁵=144⁵ zsh esop.sh 1969.48s user 250.82s system 99% cpu 37:11.62 total
VBScript
Max=250
For X0=1 To Max
For X1=1 To X0
For X2=1 To X1
For X3=1 To X2
Sum=fnP5(X0)+fnP5(X1)+fnP5(X2)+fnP5(X3)
S1=Int(Sum^0.2)
If Sum=fnP5(S1) Then
WScript.StdOut.Write X0 & " " & X1 & " " & X2 & " " & X3 & " " & S1
WScript.Quit
End If
Next
Next
Next
Next
Function fnP5(n)
fnP5 = n ^ 5
End Function
- Output:
133 110 84 27 144
Visual Basic .NET
' Euler's sum of powers of 4 conjecture - Patrice Grandin - 17/05/2020
' x1^4 + x2^4 + x3^4 + x4^4 = x5^4
' Project\Add reference\Assembly\Framework System.Numerics
Imports System.Numerics 'BigInteger
Public Class EulerPower4Sum
Private Sub MyForm_Load(sender As Object, e As EventArgs) Handles MyBase.Load
Dim t1, t2 As DateTime
t1 = Now
EulerPower45Sum() '16.7 sec
'EulerPower44Sum() '633 years !!
t2 = Now
Console.WriteLine((t2 - t1).TotalSeconds & " sec")
End Sub 'Load
Private Sub EulerPower45Sum()
'30^4 + 120^4 + 272^4 + 315^4 = 353^4
Const MaxN = 360
Dim i, j, i1, i2, i3, i4, i5 As Int32
Dim p4(MaxN), n, sumx As Int64
Debug.Print(">EulerPower45Sum")
For i = 1 To MaxN
n = 1
For j = 1 To 4
n *= i
Next j
p4(i) = n
Next i
For i1 = 1 To MaxN
If i1 Mod 5 = 0 Then Debug.Print(">i1=" & i1)
For i2 = i1 To MaxN
For i3 = i2 To MaxN
For i4 = i3 To MaxN
sumx = p4(i1) + p4(i2) + p4(i3) + p4(i4)
i5 = i4 + 1
While i5 <= MaxN AndAlso p4(i5) <= sumx
If p4(i5) = sumx Then
Debug.Print(i1 & " " & i2 & " " & i3 & " " & i4 & " " & i5)
Exit Sub
End If
i5 += 1
End While
Next i4
Next i3
Next i2
Next i1
Debug.Print("Not found!")
End Sub 'EulerPower45Sum
Private Sub EulerPower44Sum()
'95800^4 + 217519^4 + 414560^4 = 422481^4
Const MaxN = 500000 '500000^4 => decimal(23) => binary(76) !!
Dim i, j, i1, i2, i3, i4 As Int32
Dim p4(MaxN), n, sumx As BigInteger
Dim t0 As DateTime
Debug.Print(">EulerPower44Sum")
For i = 1 To MaxN
n = 1
For j = 1 To 4
n *= i
Next j
p4(i) = n
Next i
t0 = Now
For i1 = 1 To MaxN
Debug.Print(">i1=" & i1)
For i2 = i1 To MaxN
If i2 Mod 100 = 0 Then Debug.Print(">i1=" & i1 & " i2=" & i2 & " " & Int((Now - t0).TotalSeconds) & " sec")
For i3 = i2 To MaxN
sumx = p4(i1) + p4(i2) + p4(i3)
i4 = i3 + 1
While i4 <= MaxN AndAlso p4(i4) <= sumx
If p4(i4) = sumx Then
Debug.Print(i1 & " " & i2 & " " & i3 & " " & i4)
Exit Sub
End If
i4 += 1
End While
Next i3
Next i2
Next i1
Debug.Print("Not found!")
End Sub 'EulerPower44Sum
End Class
- Output:
133 110 84 27 144
Wren
var start = System.clock
var n = 250
var m = 30
var p5 = List.filled(n+m+1, 0)
var s = 0
while (s < n) {
var sq = s * s
p5[s] = sq * sq * s
s = s + 1
}
var max = p5[n-1]
while (s < p5.count) {
p5[s] = max + 1
s = s + 1
}
for (a in 1...n-3) {
for (b in a + 1...n-2) {
for (c in b + 1...n-1) {
var d = c + 1
var t = p5[a] + p5[b] + p5[c]
var e = d + (t % m)
s = t + p5[d]
while (s <= max) {
e = e - m
while (p5[e+m] <= s) e = e + m
if (p5[e] == s) {
System.print("%(a)⁵ + %(b)⁵ + %(c)⁵ + %(d)⁵ = %(e)⁵")
System.print("Took %(System.clock - start) seconds")
return
}
d = d + 1
e = e + 1
s = t + p5[d]
}
}
}
}
- Output:
Timing is for an Intel Core i7-8565U machine running Wren 0.4.0 on Ubuntu 22.04.
27⁵ + 84⁵ + 110⁵ + 133⁵ = 144⁵ Took 7.168733 seconds
XPL0
Runs in 50.3 seconds on Pi4.
func real Pow5(N);
int N;
real X, P;
[X:= float(N);
P:= X*X;
P:= P*P;
return P*X;
];
int X0, X1, X2, X3, Y;
real SP;
[for X0:= 1 to 250 do
for X1:= 1 to X0-1 do
for X2:= 1 to X1-1 do
for X3:= 1 to X2-1 do
[SP:= Pow5(X0) + Pow5(X1) + Pow5(X2) + Pow5(X3);
for Y:= X0+1 to 250 do
if Pow5(Y) = SP then
[IntOut(0, X0); Text(0, "^^5 + ");
IntOut(0, X1); Text(0, "^^5 + ");
IntOut(0, X2); Text(0, "^^5 + ");
IntOut(0, X3); Text(0, "^^5 = ");
IntOut(0, Y); Text(0, "^^5^m^j");
exit;
];
];
]
- Output:
133^5 + 110^5 + 84^5 + 27^5 = 144^5
Zig
const std = @import("std");
const stdout = std.io.getStdOut().outStream();
pub fn main() !void {
var pow5: [250]i64 = undefined;
for (pow5) |*e, i| {
const n = @intCast(i64, i);
e.* = n * n * n * n * n;
}
var x0: u16 = 4;
while (x0 < pow5.len) : (x0 += 1) {
var x1: u16 = 3;
while (x1 < x0) : (x1 += 1) {
var x2: u16 = 2;
while (x2 < x1) : (x2 += 1) {
var x3: u16 = 1;
while (x3 < x2) : (x3 += 1) {
const sum = pow5[x0] + pow5[x1] + pow5[x2] + pow5[x3];
var y: u16 = x0 + 1;
while (y < pow5.len) : (y += 1) if (sum == pow5[y]) {
try stdout.print("{}⁵ + {}⁵ + {}⁵ + {}⁵ = {}⁵\n", .{ x0, x1, x2, x3, y });
return;
};
}
}
}
}
try stdout.print("Sorry, no solution found.\n", .{});
}
- Output:
133⁵ + 110⁵ + 84⁵ + 27⁵ = 144⁵
zkl
Uses two look up tables for efficiency. Counts from 0 for ease of coding.
pow5s:=[1..249].apply("pow",5); // (1^5, 2^5, 3^5 .. 249^5)
pow5r:=pow5s.enumerate().apply("reverse").toDictionary(); // [144^5:144, ...]
foreach x0,x1,x2,x3 in (249,x0,x1,x2){
sum:=pow5s[x0] + pow5s[x1] + pow5s[x2] + pow5s[x3];
if(pow5r.holds(sum))
println("%d^5 + %d^5 + %d^5 + %d^5 = %d^5"
.fmt(x3+1,x2+1,x1+1,x0+1,pow5r[sum]+1));
break(4); // the foreach is actually four loops
}
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
Using the Python technique of caching double sums results in a 5x speed up [to the first/only solution]; actually the speed up is close to 25x but creating the caches dominates the runtime to the first solution.
p5,sum2:=Dictionary(),Dictionary();
foreach i in ([1..249]){
p5[i.pow(5)]=i;
foreach j in ([i..249]){ sum2[i.pow(5) + j.pow(5)]=T(i,j) } // 31,125 keys
}
sk:=sum2.keys.apply("toInt").copy().sort(); // RW list sorts faster than a RO one
foreach p,s in (p5.keys.apply("toInt"),sk){
if(p<=s) break;
if(sum2.holds(p - s)){
println("%d^5 + %d^5 + %d^5 + %d^5 = %d^5"
.fmt(sum2[s].xplode(),sum2[p - s].xplode(),p5[p]));
break(2); // or get permutations
}
}
Note: dictionary keys are always strings and copying a read only list creates a read write list.
- Output:
27^5 + 84^5 + 110^5 + 133^5 = 144^5
- Programming Tasks
- Solutions by Programming Task
- 11l
- 360 Assembly
- 6502 Assembly
- Ada
- ALGOL 68
- ALGOL W
- Arturo
- AWK
- BASIC
- BASIC256
- Chipmunk Basic
- FreeBASIC
- Microsoft Small Basic
- Minimal BASIC
- PureBasic
- QL SuperBASIC
- Run BASIC
- True BASIC
- VBA
- Visual Basic .NET
- Yabasic
- ZX Spectrum Basic
- BCPL
- Bracmat
- C
- C sharp
- C++
- Clojure
- COBOL
- Common Lisp
- D
- Delphi
- EasyLang
- EchoLisp
- Elixir
- ERRE
- F Sharp
- Factor
- Forth
- Fortran
- FutureBasic
- Go
- Groovy
- Haskell
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Lua
- Mathematica
- Wolfram Language
- Modula-2
- Modula-2 examples needing attention
- Examples needing attention
- Nim
- Oforth
- PARI/GP
- Pascal
- Perl
- Phix
- PHP
- Picat
- PicoLisp
- PowerShell
- Prolog
- Python
- Racket
- Raku
- REXX
- Ring
- Ruby
- Rust
- Scala
- Seed7
- SenseTalk
- Sidef
- Swift
- Tcl
- UNIX Shell
- VBScript
- Wren
- XPL0
- Zig
- Zkl