Draw a cuboid

Draw a cuboid
You are encouraged to solve this task according to the task description, using any language you may know.

Draw a   cuboid   with relative dimensions of   2 × 3 × 4.

The cuboid can be represented graphically, or in   ASCII art,   depending on the language capabilities.

To fulfill the criteria of being a cuboid, three faces must be visible.

Either static or rotational projection is acceptable for this task.

11l

Translation of: Nim
```F cline(n, x, y, cde)
print(String(cde[0]).rjust(n + 1)‘’
(cde[1] * (9 * x - 1))‘’
cde[0]‘’
(I cde.len > 2 {String(cde[2]).rjust(y + 1)} E ‘’))

F cuboid(x, y, z)
cline(y + 1, x, 0, ‘+-’)
L(i) 1 .. y
cline(y - i + 1, x, i - 1, ‘/ |’)
cline(0, x, y, ‘+-|’)
L 0 .. 4 * z - y - 3
cline(0, x, y, ‘| |’)
cline(0, x, y, ‘| +’)
L(i) (y - 1 .. 0).step(-1)
cline(0, x, i, ‘| /’)
cline(0, x, 0, "+-\n")

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)```
Output:
```    +-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+

```

Action!

```PROC DrawCuboid(CARD x,y BYTE w,h,d)
BYTE wsize=[10],hsize=[10],dsize=[5]
BYTE i

FOR i=0 TO w
DO
Plot(x+i*wsize,y+h*hsize)
DrawTo(x+i*wsize,y)
DrawTo(x+i*wsize+d*dsize,y-d*dsize)
OD
FOR i=0 TO h
DO
Plot(x,y+i*hsize)
DrawTo(x+w*wsize,y+i*hsize)
DrawTo(x+w*wsize+d*dsize,y+i*hsize-d*dsize)
OD
FOR i=1 TO d
DO
Plot(x+i*dsize,y-i*dsize)
DrawTo(x+w*wsize+i*dsize,y-i*dsize)
DrawTo(x+w*wsize+i*dsize,y+h*hsize-i*dsize)
OD
RETURN

PROC Main()
BYTE CH=\$02FC,COLOR1=\$02C5,COLOR2=\$02C6

Graphics(8+16)
COLOR1=\$0C
COLOR2=\$02
Color=1

DrawCuboid(60,45,2,3,4)
DrawCuboid(130,40,2,4,3)
DrawCuboid(205,50,3,2,4)
DrawCuboid(55,120,3,4,2)
DrawCuboid(120,130,4,2,3)
DrawCuboid(200,125,4,3,2)

DO UNTIL CH#\$FF OD
CH=\$FF
RETURN```
Output:

ASCII-Art output, one width unit is two characters long ('--').

```with Ada.Text_IO;

procedure Main is
type Char_Matrix is
array (Positive range <>, Positive range <>) of Character;

function Create_Cuboid
(Width, Height, Depth : Positive)
return                 Char_Matrix
is
Result : Char_Matrix (1 .. Height + Depth + 3,
1 .. 2 * Width + Depth + 3) := (others => (others => ' '));
begin
-- points
Result (1, 1)                                      := '+';
Result (Height + 2, 1)                             := '+';
Result (1, 2 * Width + 2)                          := '+';
Result (Height + 2, 2 * Width + 2)                 := '+';
Result (Height + Depth + 3, Depth + 2)             := '+';
Result (Depth + 2, 2 * Width + Depth + 3)          := '+';
Result (Height + Depth + 3, 2 * Width + Depth + 3) := '+';
-- width lines
for I in 1 .. 2 * Width loop
Result (1, I + 1)                          := '-';
Result (Height + 2, I + 1)                 := '-';
Result (Height + Depth + 3, Depth + I + 2) := '-';
end loop;
-- height lines
for I in 1 .. Height loop
Result (I + 1, 1)                             := '|';
Result (I + 1, 2 * Width + 2)                 := '|';
Result (Depth + I + 2, 2 * Width + Depth + 3) := '|';
end loop;
-- depth lines
for I in 1 .. Depth loop
Result (Height + 2 + I, 1 + I)             := '/';
Result (1 + I, 2 * Width + 2 + I)          := '/';
Result (Height + 2 + I, 2 * Width + 2 + I) := '/';
end loop;
return Result;
end Create_Cuboid;

procedure Print_Cuboid (Width, Height, Depth : Positive) is
Cuboid : Char_Matrix := Create_Cuboid (Width, Height, Depth);
begin
for Row in reverse Cuboid'Range (1) loop
for Col in Cuboid'Range (2) loop
end loop;
end loop;
end Print_Cuboid;
begin
Print_Cuboid (2, 3, 4);
end Main;
```
Output:
```     +----+
/    /|
/    / |
/    /  |
/    /   +
+----+   /
|    |  /
|    | /
|    |/
+----+     ```

ALGOL 68

Draws a static cuboid using ASCII art - orientated in the same fashion as in the Befunge sample.
(I'm not au-fait with Befunge, so I've no idea how similar the algorithm is...)

```BEGIN # draw some cuboids using ASCII art                                    #

# draws a cuboid standing on one edge using ASCII art                    #
PROC aa cuboid = ( INT h, w, l )VOID:
BEGIN
# top line                                                      #
FOR i TO l     DO print( ( " " ) ) OD;
FOR i TO w + 1 DO print( ( "_" ) ) OD;
print( ( newline ) );
# rest of the top face and part of the visible side             #
INT face width := 0;
INT edge pos   := 0;
FOR i TO l DO
FOR j TO l - i DO print( ( " " ) ) OD;
print( ( "/" ) );
FOR j TO w DO print( ( IF i = l THEN "_" ELSE " " FI ) ) OD;
print( ( "/" ) );
edge pos +:= 1;
IF edge pos <= h THEN
# drsw the back edge                                    #
face width := 2 * ( edge pos - 1 );
FOR j TO face width DO print( ( " " ) ) OD;
print( ( "\" ) )
ELSE
# draw the bottom edge                                  #
FOR j TO face width + 1 DO print( ( " " ) ) OD;
print( ( "/" ) )
FI;
print( ( newline ) )
OD;
# other vidible face                                            #
FOR i TO h DO
FOR j TO i - 1 DO print( ( " " ) ) OD;
print( ( "\" ) );
FOR j TO w DO print( ( IF i = h THEN "_" ELSE " " FI ) ) OD;
print( ( "\" ) );
edge pos +:= 1;
IF edge pos <= h THEN
# drsw the back edge                                    #
FOR j TO face width + 1 DO print( ( " " ) ) OD;
print( ( "\" ) )
ELSE
# draw the bottom edge                                  #
FOR j TO face width DO print( ( " " ) ) OD;
face width -:= 2;
print( ( "/" ) )
FI;
print( ( newline ) )
OD

END # aa cuboid # ;

aa cuboid( 3, 2, 4 );
aa cuboid( 4, 3, 2 );
aa cuboid( 2, 4, 3 );
aa cuboid( 2, 3, 4 )

END```
Output:
```    ___
/  /\
/  /  \
/  /    \
/__/     /
\  \    /
\  \  /
\__\/
____
/   /\
/___/  \
\   \   \
\   \   \
\   \  /
\___\/
_____
/    /\
/    /  \
/____/   /
\    \  /
\____\/
____
/   /\
/   /  \
/   /   /
/___/   /
\   \  /
\___\/
```

Arturo

Translation of: PicoLisp
```cline: function [n,a,b,cde][
print (pad to :string first cde n+1) ++
(repeat to :string cde\1 dec 9*a)++
(to :string cde\0)++
(2 < size cde)? -> pad to :string cde\2 b+1 -> ""
]

cuboid: function [x,y,z][
cline y+1 x 0 "+-"
loop 1..y 'i -> cline 1+y-i x i-1 "/ |"
cline 0 x y "+-|"
loop 0..((4*z)-y)-3 'i -> cline 0 x y "| |"
cline 0 x y "| +"
loop (y-1)..0 'i -> cline 0 x i "| /"
cline 0 x 0 "+-\n"
]

cuboid 2 3 4
cuboid 1 1 1
cuboid 6 2 1
```
Output:
```    +-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  |
|                                                     |  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+```

AutoHotkey

Library: GDIP

Some portions of code from Gdip examples.

```Angle := 45
C := 0.01745329252
W := 200
H := 300
L := 400
LX := L * Cos(Angle * C), LY := L * Sin(Angle * C)

If !pToken := Gdip_Startup()
{
MsgBox, 48, gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit, Exit

A := 50, B := 650, WinWidth := 700, WinHeight := 700
TopX := (A_ScreenWidth - WinWidth) //2, TopY := (A_ScreenHeight - WinHeight) //2

Gui, 1: -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs
Gui, 1: Show, NA
hwnd1 := WinExist(), hbm := CreateDIBSection(WinWidth, WinHeight), hdc := CreateCompatibleDC()
, obm := SelectObject(hdc, hbm), G := Gdip_GraphicsFromHDC(hdc), Gdip_SetSmoothingMode(G, 4)

Points := A "," B "|" A+W "," B "|" A+W "," B-H "|" A "," B-H
, DrawFace(Points, 0xff0066ff, G)

Points := A+W "," B "|" A+W+LX "," B-LY "|" A+W+LX "," B-LY-H "|" A+W "," B-H
, DrawFace(Points, 0xff00d400, G)

Points := A "," B-H "|" A+W "," B-H "|" A+W+LX "," B-LY-H "|" A+LX "," B-LY-H
, DrawFace(Points, 0xffd40055, G)

UpdateLayeredWindow(hwnd1, hdc, TopX, TopY, WinWidth, WinHeight)

SelectObject(hdc, obm), DeleteObject(hbm), DeleteDC(hdc)
, Gdip_DeleteGraphics(G)
return

DrawFace(Points, Color, G) {
pBrush := Gdip_BrushCreateSolid(Color)
, Gdip_FillPolygon(G, pBrush, Points, 1)
, Gdip_DeleteBrush(pBrush)
return
}

Esc::
Exit:
Gdip_Shutdown(pToken)
ExitApp
```

AWK

```# syntax: GAWK -f DRAW_A_CUBOID.AWK [-v x=?] [-v y=?] [-v z=?]
# example: GAWK -f DRAW_A_CUBOID.AWK -v x=12 -v y=4 -v z=6
# converted from VBSCRIPT
BEGIN {
init_sides()
draw_cuboid(2,3,4)
draw_cuboid(1,1,1)
draw_cuboid(6,2,1)
exit (errors == 0) ? 0 : 1
}
function draw_cuboid(nx,ny,nz,  esf,i,i_max,j,j_max,lx,ly,lz) {
esf = errors # errors so far
if (nx !~ /^[0-9]+\$/ || nx <= 0) { error(nx,ny,nz,1) }
if (ny !~ /^[0-9]+\$/ || ny <= 0) { error(nx,ny,nz,2) }
if (nz !~ /^[0-9]+\$/ || nz <= 0) { error(nx,ny,nz,3) }
if (errors > esf) { return }
lx = x * nx
ly = y * ny
lz = z * nz
# define the array size
i_max = ly + lz
j_max = lx + ly
delete arr
printf("%s %s %s (%d rows x %d columns)\n",nx,ny,nz,i_max+1,j_max+1)
# draw lines
for (i=0; i<=nz-1; i++) { draw_line(lx,0,z*i,"-") }
for (i=0; i<=ny; i++)   { draw_line(lx,y*i,lz+y*i,"-") }
for (i=0; i<=nx-1; i++) { draw_line(lz,x*i,0,"|") }
for (i=0; i<=ny; i++)   { draw_line(lz,lx+y*i,y*i,"|") }
for (i=0; i<=nz-1; i++) { draw_line(ly,lx,z*i,"/") }
for (i=0; i<=nx; i++)   { draw_line(ly,x*i,lz,"/") }
# output the cuboid
for (i=i_max; i>=0; i--) {
for (j=0; j<=j_max; j++) {
printf("%1s",arr[i,j])
}
printf("\n")
}
}
function draw_line(n,x,y,c,  dx,dy,i,xi,yi) {
if      (c == "-") { dx = 1 ; dy = 0 }
else if (c == "|") { dx = 0 ; dy = 1 }
else if (c == "/") { dx = 1 ; dy = 1 }
for (i=0; i<=n; i++) {
xi = x + i * dx
yi = y + i * dy
arr[yi,xi] = (arr[yi,xi] ~ /^ ?\$/) ? c : "+"
}
}
function error(x,y,z,arg) {
printf("error: '%s,%s,%s' argument %d is invalid\n",x,y,z,arg)
errors++
}
function init_sides() {
# to change the defaults on the command line use: -v x=? -v y=? -v z=?
if (x+0 < 2) { x = 6 } # top
if (y+0 < 2) { y = 2 } # right
if (z+0 < 2) { z = 3 } # front
}
```
Output:
```2 3 4 (19 rows x 19 columns)
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
1 1 1 (6 rows x 9 columns)
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
6 2 1 (8 rows x 41 columns)
+-----+-----+-----+-----+-----+-----+
/     /     /     /     /     /     /|
+-----+-----+-----+-----+-----+-----+ |
/     /     /     /     /     /     /| +
+-----+-----+-----+-----+-----+-----+ |/
|     |     |     |     |     |     | +
|     |     |     |     |     |     |/
+-----+-----+-----+-----+-----+-----+
```

BBC BASIC

Uses BBC BASIC's native parallelogram plot.

```      ORIGIN 100, 100
PROCcuboid(200, 300, 400)
END

DEF PROCcuboid(x, y, z)
MOVE 0, 0 : MOVE 0, y
GCOL 1 : PLOT 117, x, y
GCOL 2 : PLOT 117, x + z * 0.4, y + z * 0.4
GCOL 4 : PLOT 117, x + z * 0.4, z * 0.4
ENDPROC
```
Output:

Befunge

Given a width, height, and depth, this produces an approximate isometric representation of the shape using ASCII art.

```"  :htdiW">:#,_>&>00p" :thgieH">:#,_>&>:10p0"  :htpeD">:#,_\$>&>:20p55+,+:1`*:vv
v\-*`0:-g01\++*`\0:-\-1g01:\-*`0:-g02\+*`\0:-\-1g02<:::::<\g3`\g01:\1\+55\1-1_v
>":"\1\:20g\`!3g:30p\00g2*\::20g\`\20g1-\`+1+3g\1\30g\:20g-::0\`\2*1+*-\48*\:^v
/\_ @_\#!:!#\$>#\$_\#!:,#-\#1                         <+1\<*84g02"_"+1*2g00+551\$<
```
Output:
```Width:  2
Height: 3
Depth:  4

_____
/    /\
/    /::\
/    /::::\
/____/:::::/
\\\\\\::::/
\\\\\\::/
\\\\\\/```

In brlcad, we use the rpp (rectangular parallelepiped) primitive to create the cuboid. This defines the cuboid area using the parameters xmin,xmax,ymin,ymax,zmin,zmax

```opendb cuboid.g y            # Create a database to hold our shapes
units cm                     # Set the unit of measure
in cuboid.s rpp 0 2 0 3 0 4  # Create a 2 x 3 x 4 cuboid named cuboid.s```

C

Code works fine but only '.' and ':' characters show up on the cuboid.

```#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void vsub(double *v1, double *v2, double *s) {
s[0] = v1[0] - v2[0];
s[1] = v1[1] - v2[1];
s[2] = v1[2] - v2[2];
}

double normalize(double * v) {
double len = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
v[0] /= len; v[1] /= len; v[2] /= len;
return len;
}

double dot(double *x, double *y) {
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
}

double * cross(double x[3], double y[3], double s[3]) {
s[0] = x[1] * y[2] - x[2] * y[1];
s[1] = x[2] * y[0] - x[0] * y[2];
s[2] = x[0] * y[1] - x[1] * y[0];
return s;
}

double* madd(double *x, double *y, double d, double *r) {
r[0] = x[0] + y[0] * d;
r[1] = x[1] + y[1] * d;
r[2] = x[2] + y[2] * d;
return r;
}

double v000[] = { -4, -3, -2 };
double v100[] = {  4, -3, -2 };
double v010[] = { -4,  3, -2 };
double v110[] = {  4,  3, -2 };
double v001[] = { -4, -3,  2 };
double v101[] = {  4, -3,  2 };
double v011[] = { -4,  3,  2 };
double v111[] = {  4,  3,  2 };

typedef struct {
double * v[4];
double norm[3];
} face_t;

face_t f[] = {
{ { v000, v010, v110, v100 }, {  0,  0, -1 } },
{ { v001, v011, v111, v101 }, {  0,  0,  1 } },
{ { v000, v010, v011, v001 }, { -1,  0,  0 } },
{ { v100, v110, v111, v101 }, {  1,  0,  0 } },
{ { v000, v100, v101, v001 }, {  0, -1,  0 } },
{ { v010, v110, v111, v011 }, {  0,  1,  0 } },
};

int in_range(double x, double x0, double x1) {
return (x - x0) * (x - x1) <= 0;
}

int face_hit(face_t *face, double src[3], double dir[3], double hit[3], double *d)
{
int i;
double dist;
for (i = 0; i < 3; i++)
if (face->norm[i])
dist = (face->v[0][i] - src[i]) / dir[i];

*d = fabs(dot(dir, face->norm) * dist);

if (face->norm[0]) {
return  in_range(hit[1], face->v[0][1], face->v[2][1]) &&
in_range(hit[2], face->v[0][2], face->v[2][2]);
}
else if (face->norm[1]) {
return  in_range(hit[0], face->v[0][0], face->v[2][0]) &&
in_range(hit[2], face->v[0][2], face->v[2][2]);
}
else if (face->norm[2]) {
return  in_range(hit[0], face->v[0][0], face->v[2][0]) &&
in_range(hit[1], face->v[0][1], face->v[2][1]);
}
return 0;
}

int main()
{
int i, j, k;
double eye[3] = { 7, 7, 6 };
double dir[3] = { -1, -1, -1 }, orig[3] = {0, 0, 0};
double hit[3], dx[3], dy[3] = {0, 0, 1}, proj[3];
double d, *norm, dbest, b;
double light[3] = { 6, 8, 6 }, ldist[3], decay, strength = 10;

normalize(cross(eye, dy, dx));
normalize(cross(eye, dx, dy));

for (i = -10; i <= 17; i++) {
for (j = -35; j < 35; j++) {
vsub(orig, orig, proj);
vsub(proj, eye, dir);
dbest = 1e100;
norm = 0;
for (k = 0; k < 6; k++) {
if (!face_hit(f + k, eye, dir, hit, &d)) continue;
if (dbest > d) {
dbest = d;
norm = f[k].norm;
}
}

if (!norm) {
putchar(' ');
continue;
}

vsub(light, hit, ldist);
decay = normalize(ldist);
b = dot(norm, ldist) / decay * strength;
if (b < 0) b = 0;
else if (b > 1) b = 1;
b += .2;
if (b > 1) b = 0;
else b = 1 - b;
}
putchar('\n');
}

return 0;
}
```

Output :

```
.
................
...............................
.............................................
........................................................
...............................................................
..............................................................::
...........................................................::::
.......................................................:::::::
.....................................................::::::::
.................................................::::::::::
:..............................................::::::::::::
:............................................::::::::::::
::..........................................:::::::::::::
:........................................:::::::::::::
......................................::::::::::::::
....................................:::::::::::::
.................................::::::::::::
............................::::::::::::
.........................:::::::::::
......................::::::::::
...................:::::::::
..............:::::::::
...........:::::::::
.........:::::::
.......:::::
.....:::
.::
```

C#

Translation of: Java
```using System;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Windows.Forms;

namespace Cuboid
{
public partial class Form1 : Form
{
double[][] nodes = {
new double[] {-1, -1, -1}, new double[] {-1, -1, 1}, new double[] {-1, 1, -1},
new double[] {-1, 1, 1}, new double[] {1, -1, -1}, new double[] {1, -1, 1},
new double[] {1, 1, -1}, new double[] {1, 1, 1} };

int[][] edges = {
new int[] {0, 1}, new int[] {1, 3}, new int[] {3, 2}, new int[] {2, 0}, new int[] {4, 5},
new int[] {5, 7}, new int[] {7, 6}, new int[] {6, 4}, new int[] {0, 4}, new int[] {1, 5},
new int[] {2, 6}, new int[] {3, 7}};

private int mouseX;
private int prevMouseX;
private int prevMouseY;
private int mouseY;

public Form1()
{
Width = Height = 640;
StartPosition = FormStartPosition.CenterScreen;
SetStyle(
ControlStyles.AllPaintingInWmPaint |
ControlStyles.UserPaint |
ControlStyles.DoubleBuffer,
true);

MouseMove += (s, e) =>
{
prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = e.X;
mouseY = e.Y;

double incrX = (mouseX - prevMouseX) * 0.01;
double incrY = (mouseY - prevMouseY) * 0.01;

RotateCuboid(incrX, incrY);
Refresh();
};

MouseDown += (s, e) =>
{
mouseX = e.X;
mouseY = e.Y;
};

Scale(80, 120, 160);
RotateCuboid(Math.PI / 5, Math.PI / 9);
}

private void RotateCuboid(double angleX, double angleY)
{
double sinX = Math.Sin(angleX);
double cosX = Math.Cos(angleX);

double sinY = Math.Sin(angleY);
double cosY = Math.Cos(angleY);

foreach (var node in nodes)
{
double x = node[0];
double y = node[1];
double z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
}
}

private void Scale(int v1, int v2, int v3)
{
foreach (var item in nodes)
{
item[0] *= v1;
item[1] *= v2;
item[2] *= v3;
}
}

protected override void OnPaint(PaintEventArgs args)
{
var g = args.Graphics;
g.SmoothingMode = SmoothingMode.HighQuality;
g.Clear(Color.White);

g.TranslateTransform(Width / 2, Height / 2);

foreach (var edge in edges)
{
double[] xy1 = nodes[edge[0]];
double[] xy2 = nodes[edge[1]];
g.DrawLine(Pens.Black, (int)Math.Round(xy1[0]), (int)Math.Round(xy1[1]),
(int)Math.Round(xy2[0]), (int)Math.Round(xy2[1]));
}

foreach (var node in nodes)
{
g.FillEllipse(Brushes.Black, (int)Math.Round(node[0]) - 4,
(int)Math.Round(node[1]) - 4, 8, 8);
}
}
}
}
```

C++

This code needs the BGI for Windows available at Colorado State University.

```#include<graphics.h>
#include<iostream>

int main()
{
int k;
initwindow(1500,810,"Rosetta Cuboid");

do{
std::cout<<"Enter ratio of sides ( 0 or -ve to exit) : ";
std::cin>>k;

if(k>0){
bar3d(100, 100, 100 + 2*k, 100 + 4*k, 3*k, 1);
}
}while(k>0);

return 0;
}
```

Clojure

Library: quil
```(use 'quil.core)

(def w 500)
(def h 400)

(defn setup []
(background 0))

(defn draw []
(push-matrix)
(translate (/ w 2) (/ h 2) 0)
(rotate-x 0.7)
(rotate-z 0.5)
(box 100 150 200)  ; 2x3x4 relative dimensions
(pop-matrix))

(defsketch main
:title "cuboid"
:setup setup
:size [w h]
:draw draw
:renderer :opengl)
```
Output:

D

Translation of: Go
```import std.stdio, std.array;

void printCuboid(in int dx, in int dy, in int dz) {
static cline(in int n, in int dx, in int dy, in string cde) {
writef("%*s", n+1, cde[0 .. 1]);
write(cde[1 .. 2].replicate(9*dx - 1));
write(cde[0]);
writefln("%*s", dy+1, cde[2 .. \$]);
}

cline(dy+1, dx, 0, "+-");
foreach (i; 1 .. dy+1)
cline(dy-i+1, dx, i-1, "/ |");
cline(0, dx, dy, "+-|");
foreach (_; 0 .. 4*dz - dy - 2)
cline(0, dx, dy, "| |");
cline(0, dx, dy, "| +");
foreach_reverse (i; 0 .. dy)
cline(0, dx, i, "| /");
cline(0, dx, 0, "+-\n");
}

void main() {
printCuboid(2, 3, 4);
printCuboid(1, 1, 1);
printCuboid(6, 2, 1);
}
```
Output:
```    +-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+```

Delphi

Translation of: Go
```program Draw_a_cuboid;

{\$APPTYPE CONSOLE}

uses
System.SysUtils;

procedure cubLine(n, dx, dy: Integer; cde: string);
var
i: integer;
begin
write(format('%' + (n + 1).ToString + 's', [cde.Substring(0, 1)]));

for i := 9 * dx - 1 downto 1 do
Write(cde.Substring(1, 1));

Write(cde.Substring(0, 1));
end;

procedure cuboid(dx, dy, dz: integer);
var
i: integer;
begin
Writeln(Format('cuboid %d %d %d:', [dx, dy, dz]));

cubLine(dy + 1, dx, 0, '+-');

for i := 1 to dy do
cubLine(dy - i + 1, dx, i - 1, '/ |');

cubLine(0, dx, dy, '+-|');

for i := 4 * dz - dy - 2 downto 1 do
cubLine(0, dx, dy, '| |');

cubLine(0, dx, dy, '| +');

for i := 1 to dy do
cubLine(0, dx, dy - i, '| /');

cubLine(0, dx, 0, '+-');
Writeln;
end;

begin
cuboid(2, 3, 4);
cuboid(1, 1, 1);
cuboid(6, 2, 1);

end.
```

EasyLang

```node[][] = [ [ -1 -2 -2 ] [ -1 -2 1 ] [ -1 2 -2 ] [ -1 2 1 ] [ 1 -2 -2 ] [ 1 -2 1 ] [ 1 2 -2 ] [ 1 2 1 ] ]
edge[][] = [ [ 1 2 ] [ 2 4 ] [ 4 3 ] [ 3 1 ] [ 5 6 ] [ 6 8 ] [ 8 7 ] [ 7 5 ] [ 1 5 ] [ 2 6 ] [ 3 7 ] [ 4 8 ] ]
#
proc scale f . .
for i = 1 to len node[][]
for d = 1 to 3
node[i][d] *= f
.
.
.
proc rotate angx angy . .
sinx = sin angx
cosx = cos angx
siny = sin angy
cosy = cos angy
for i = 1 to len node[][]
x = node[i][1]
z = node[i][3]
node[i][1] = x * cosx - z * sinx
y = node[i][2]
z = z * cosx + x * sinx
node[i][2] = y * cosy - z * siny
node[i][3] = z * cosy + y * siny
.
.
len nd[] 3
proc draw . .
clear
move 2 2
text "Arrow keys to rotate"
m = 99999
mi = -1
for i = 1 to len node[][]
if node[i][3] < m
m = node[i][3]
mi = i
.
.
ix = 1
for i = 1 to len edge[][]
if edge[i][1] = mi
nd[ix] = edge[i][2]
ix += 1
elif edge[i][2] = mi
nd[ix] = edge[i][1]
ix += 1
.
.
for ni = 1 to len nd[]
for i = 1 to len edge[][]
if edge[i][1] = nd[ni] or edge[i][2] = nd[ni]
x1 = node[edge[i][1]][1]
y1 = node[edge[i][1]][2]
x2 = node[edge[i][2]][1]
y2 = node[edge[i][2]][2]
move x1 + 50 y1 + 50
line x2 + 50 y2 + 50
.
.
.
.
textsize 3
scale 15
rotate 45 45
draw
on key
if keybkey = "ArrowUp"
rotate 0 1
elif keybkey = "ArrowDown"
rotate 0 -1
elif keybkey = "ArrowLeft"
rotate -1 0
elif keybkey = "ArrowRight"
rotate 1 0
.
draw
.
```

Elixir

Translation of: Ruby
```defmodule Cuboid do
@x 6
@y 2
@z 3
@dir %{-: {1,0}, |: {0,1}, /: {1,1}}

def draw(nx, ny, nz) do
IO.puts "cuboid #{nx} #{ny} #{nz}:"
{x, y, z} = {@x*nx, @y*ny, @z*nz}
area = Map.new
area = Enum.reduce(0..nz-1, area, fn i,acc -> draw_line(acc, x,      0,   @z*i, :-) end)
area = Enum.reduce(0..ny,   area, fn i,acc -> draw_line(acc, x,   @y*i, z+@y*i, :-) end)
area = Enum.reduce(0..nx-1, area, fn i,acc -> draw_line(acc, z,   @x*i,      0, :|) end)
area = Enum.reduce(0..ny,   area, fn i,acc -> draw_line(acc, z, x+@y*i,   @y*i, :|) end)
area = Enum.reduce(0..nz-1, area, fn i,acc -> draw_line(acc, y,      x,   @z*i, :/) end)
area = Enum.reduce(0..nx,   area, fn i,acc -> draw_line(acc, y,   @x*i,      z, :/) end)
Enum.each(y+z..0, fn j ->
IO.puts Enum.map_join(0..x+y, fn i -> Map.get(area, {i,j}, " ") end)
end)
end

defp draw_line(area, n, sx, sy, c) do
{dx, dy} = Map.get(@dir, c)
draw_line(area, n, sx, sy, c, dx, dy)
end

defp draw_line(area, n, _, _, _, _, _) when n<0, do: area
defp draw_line(area, n, i, j, c, dx, dy) do
Map.update(area, {i,j}, c, fn _ -> :+ end)
|> draw_line(n-1, i+dx, j+dy, c, dx, dy)
end
end

Cuboid.draw(2,3,4)
Cuboid.draw(1,1,1)
Cuboid.draw(2,4,1)
Cuboid.draw(4,2,1)
```
Output:
```cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 1 1 1:
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
cuboid 2 4 1:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 4 2 1:
+-----+-----+-----+-----+
/     /     /     /     /|
+-----+-----+-----+-----+ |
/     /     /     /     /| +
+-----+-----+-----+-----+ |/
|     |     |     |     | +
|     |     |     |     |/
+-----+-----+-----+-----+
```

Evaldraw

Solid and stippled lines

Translation of: XPL0

Based on the XPL0 solution, but provides its own stippled line drawing routine, since evaldraw only supports solid lines out of the box.

```static points_x[8] = {-2.0, +2.0, +2.0, -2.0,  -2.0, +2.0, +2.0, -2.0};
static points_y[8] = {-1.5, -1.5, +1.5, +1.5,  -1.5, -1.5, +1.5, +1.5};
static points_z[8] = {-1.0, -1.0, -1.0, -1.0,  +1.0, +1.0, +1.0, +1.0};
static segment[2*12] = {0,1, 1,2, 2,3, 3,0, 4,5, 5,6, 6,7, 7,4, 0,4, 1,5, 2,6, 3,7};
static size=50, sz=0.008, sx=-0.013; // drawing size and tumbling speeds
() {
mind = 0.0; si=0;
for(i=0; i<8; i++) {
if (points_z[i] < mind) { mind=points_z[i]; si=i;}
}
cls(0); // Clear Color Buffer

for(i=0; i<2*12-1; i+=2) {
j=segment[i];
x0 = points_x[j]*size + xres/2;
y0 = points_y[j]*size + yres/2;
k=segment[i+1];
x1 = points_x[k]*size + xres/2;
y1 = points_y[k]*size + yres/2;

if (j!=si && k!=si) {
setcol(255,0,0);
moveto(x0,y0); lineto(x1,y1);
} else {
setcol(255,255,0);
drawLineStipple(x0,y0,x1,y1,8);
}
}
sleep(16); // Sleep for 16 millis so cube tumbles slowly
for(i=0; i<8; i++) {
points_x[i] = points_x[i] + points_y[i]*Sz; //rotate vertices in X-Y plane
points_y[i] = points_y[i] - points_x[i]*Sz;
points_y[i] = points_y[i] + points_z[i]*Sx; //rotate vertices in Y-Z plane
points_z[i] = points_z[i] - points_y[i]*Sx;
}
}

drawLineStipple(x1,y1,x2,y2,stipple_dist) {
xdist = x1-x2; ydist=y1-y2;
stipple_dist2 = stipple_dist / 2;
if ( abs(xdist^2 + ydist^2) < stipple_dist2^2 ) return;
if(xdist < 0) xdist=-xdist;
if(ydist < 0) ydist=-ydist;
mv=0; if(ydist > xdist) mv = ydist; else mv = xdist;
x = x1; y = y1;
stepx = xdist/mv; if(x1 > x2) stepx = -stepx;
stepy = ydist/mv; if(y1 > y2) stepy = -stepy;

for(nc=0; nc<int(mv); nc++) {
if( nc % stipple_dist < stipple_dist2) setpix(x,y);
x+=stepx; y+=stepy;
}
}
```

OpenGL-like filled polygons

```// We can define our own vec3 struct
struct vec3{x,y,z;}

// Static allows for globals
static modelMatrix[9];
() {
cls(0,0,32); // clear screen
clz(1e32); // clear depth buffer
setcam(0,0,-10,0,0); // set camera some units back

// create two local arrays to hold rotation matrices
double roty[9], rotz[9];

// we can access current mouse position and screen size
rotateZ( rotz, mousy/yres*2*pi );
rotateY( roty, mousx/xres*2*pi );

// evaldraw does support some GL-like drawing
// modes, but any transformations must be done by hand
// Here we use a global model matrix that
// transforms vertices created by the myVertex function
mult(modelMatrix, roty, rotz);

drawcuboid(0,0,0,2,3,4);

sleep(10);
}

drawcuboid(x,y,z,sx,sy,sz) {
setcol(192,0,0);
glTexCoord(0,0); myVertex(x-sx,y-sy,z-sz);
glTexCoord(1,0); myVertex(x+sx,y-sy,z-sz);
glTexCoord(1,1); myVertex(x+sx,y+sy,z-sz);
glTexCoord(0,1); myVertex(x-sx,y+sy,z-sz);

setcol(0,192,0);
glTexCoord(0,0); myVertex(x-sx,y-sy,z+sz);
glTexCoord(1,0); myVertex(x-sx,y-sy,z-sz);
glTexCoord(1,1); myVertex(x-sx,y+sy,z-sz);
glTexCoord(0,1); myVertex(x-sx,y+sy,z+sz);

setcol(0,0,192);
glTexCoord(0,0); myVertex(x+sx,y-sy,z+sz);
glTexCoord(1,0); myVertex(x-sx,y-sy,z+sz);
glTexCoord(1,1); myVertex(x-sx,y+sy,z+sz);
glTexCoord(0,1); myVertex(x+sx,y+sy,z+sz);

setcol(192,192,0);
glTexCoord(0,0); myVertex(x+sx,y-sy,z-sz);
glTexCoord(1,0); myVertex(x+sx,y-sy,z+sz);
glTexCoord(1,1); myVertex(x+sx,y+sy,z+sz);
glTexCoord(0,1); myVertex(x+sx,y+sy,z-sz);

setcol(192,0,192);
glTexCoord(0,0); myVertex(x-sx,y-sy,z+sz);
glTexCoord(1,0); myVertex(x+sx,y-sy,z+sz);
glTexCoord(1,1); myVertex(x+sx,y-sy,z-sz);
glTexCoord(0,1); myVertex(x-sx,y-sy,z-sz);

setcol(0,192,192);
glTexCoord(0,0); myVertex(x-sx,y+sy,z-sz);
glTexCoord(1,0); myVertex(x+sx,y+sy,z-sz);
glTexCoord(1,1); myVertex(x+sx,y+sy,z+sz);
glTexCoord(0,1); myVertex(x-sx,y+sy,z+sz);
glEnd();
}

myVertex(x,y,z) {
// Initialize a struct value
vec3 v = {x,y,z};

// Apply global model matrix transformation
transformPoint(v, modelMatrix);

// Submit the vertex to draw list
glVertex(v.x, v.y, v.z);
}

rotateX(m[9], r) { // structs and arrays are pass-by-ref
c = cos(r); s=sin(r);
m[0] = 1; m[1] = 0;  m[2] = 0;
m[3] = 0; m[4] = c;  m[5] = -s;
m[6] = 0; m[7] = s;  m[8] = c;
}

rotateY(m[9], r) {
c = cos(r); s=sin(r);
m[0] = c; m[1] = 0; m[2] = s;
m[3] = 0; m[4] = 1;  m[5] = 0;
m[6] = -s; m[7] = 0;  m[8] = c;
}

rotateZ(m[9], r) {
c = cos(r); s=sin(r);
m[0] = c; m[1] = -s; m[2] = 0;
m[3] = s; m[4] = c;  m[5] = 0;
m[6] = 0; m[7] = 0;  m[8] = 1;
}

transformPoint(vec3 v, m[9]) {
x2 = v.x * m[0] + v.y * m[1] + v.z * m[2];
y2 = v.x * m[3] + v.y * m[4] + v.z * m[5];
z2 = v.x * m[6] + v.y * m[7] + v.z * m[8];
// Mutate the struct v with new values
v.x=x2; v.y=y2; v.z=z2;
}

mult(c[9],a[9],b[9]) { // C = AB
// multiply a row in A with a column in B
for(i=0; i<3; i++)
for(j=0; j<3; j++) {
sum = 0.0;
for(k=0; k<3; k++) {
sum += A[k*3+i] * B[k*3+j];
}
C[i*3+j] = sum;
}
}
```

Factor

Library: raylib
Works with: Factor version 0.99 development release 2019-07-10
```USING: classes.struct kernel raylib.ffi ;

640 480 "cuboid" init-window

S{ Camera3D
{ position S{ Vector3 f 4.5 4.5 4.5 } }
{ target S{ Vector3 f 0 0 0 } }
{ up S{ Vector3 f 0 1 0 } }
{ fovy 45.0 }
{ type 0 }
}

60 set-target-fps

[ window-should-close ] [
begin-drawing
BLACK clear-background dup
begin-mode-3d
S{ Vector3 f 0 0 0 } 2 3 4 LIME draw-cube-wires
end-mode-3d
end-drawing
] until drop close-window
```
Output:

Forth

Works with: gforth version 0.7.3

ASCII lines

Translation of: PicoLisp
```: line ( e dy d dx c n -- )
spaces dup >r emit
9 *  1- 0 do dup emit loop drop
r> emit
spaces emit cr
;

: cuboid { dz dy dx -- }
cr
bl 0 '- dx '+ dy 1+ line
dy 0 ?do
'| i bl dx '/ dy i - line loop
'| dy '- dx '+ 0 line
dz 4 * dy - 2 - 0 ?do
'| dy bl dx '| 0 line loop
'+ dy bl dx '| 0 line
dy 0 ?do
'/ dy i - 1- bl dx '| 0 line loop
bl 0 '- dx '+ 0 line
;
```
Output:
```4 3 2 cuboid
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+
ok
1 1 1 cuboid
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+
ok
1 2 6 cuboid
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+
ok
```

ASCII faces

Inspired from X86 Assembly

```: hline ( char len )
0 ?do dup emit loop drop ;
: vline ( char len )
0 ?do dup emit -1 1 at-deltaxy loop drop ;

: cuboid { dz dy dx -- }
page
dy 0 ?do   dy i -   i        at-xy   '# dx hline loop
dz 0 ?do   0        dy i +   at-xy   '+ dx hline loop
dy 0 ?do   dx i +   dy i -   at-xy   '/ dz vline loop
;
```
Output:
```4 3 2 cuboid
```
```   ##
##/
##//
++///
++///
++// ok
++/
```
```5 5 5 cuboid
```
```     #####
#####/
#####//
#####///
#####////
+++++/////
+++++//// ok
+++++///
+++++//
+++++/
```

FreeBASIC

Adapted from OpenGL code that comes with FreeBASIC distributions.

```#include once "GL/gl.bi"
#include once "GL/glu.bi"

screen 18, 16, , 2

glViewport 0, 0, 640, 480                      '' Reset The Current Viewport
glMatrixMode GL_PROJECTION                     '' Select The Projection Matrix
glLoadIdentity                                 '' Reset The Projection Matrix
gluPerspective 45.0, 640.0/480.0, 0.1, 100.0   '' Calculate The Aspect Ratio Of The Window
glMatrixMode GL_MODELVIEW                      '' Select The Modelview Matrix
glLoadIdentity                                 '' Reset The Modelview Matrix
glClearColor 0.0, 0.0, 0.0, 0.5                '' Black Background
glClearDepth 1.0                               '' Depth Buffer Setup
glEnable GL_DEPTH_TEST                         '' Enables Depth Testing
glDepthFunc GL_LEQUAL                          '' The Type Of Depth Testing To Do
glHint GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST    '' Really Nice Perspective Calculations
do
glClear GL_COLOR_BUFFER_BIT OR GL_DEPTH_BUFFER_BIT      '' Clear Screen And Depth Buffer
glLoadIdentity                                          '' Reset The Current Modelview Matrix

glLoadIdentity                                          '' Reset The Current Modelview Matrix
glTranslatef 0.0, 0.0, -7.0                             '' Move Right 1.5 Into The Screen 7.0
glRotatef rquad,1.0, 1.0, 1.0                           '' Rotate The Quad On The X axis ( NEW )

glColor3f 0.0, 1.0, 0.0                              '' Set The Color To Blue
glVertex3f 1.0, 1.5, -2.0                            '' Top Right Of The Quad (Top)
glVertex3f -1.0, 1.5, -2.0                           '' Top Left Of The Quad (Top)
glVertex3f -1.0, 1.5, 2.0                            '' Bottom Left Of The Quad (Top)
glVertex3f 1.0, 1.5, 2.0                             '' Bottom Right Of The Quad (Top)

glColor3f 1.0, 0.5, 0.0                              '' Set The Color To Orange
glVertex3f 1.0, -1.5, 2.0                            '' Top Right Of The Quad (Bottom)
glVertex3f -1.0, -1.5, 2.0                           '' Top Left Of The Quad (Bottom)
glVertex3f -1.0, -1.5, -2.0                          '' Bottom Left Of The Quad (Bottom)
glVertex3f 1.0, -1.5, -2.0                           '' Bottom Right Of The Quad (Bottom)

glColor3f 1.0, 0.0, 0.0                              '' Set The Color To Red
glVertex3f 1.0, 1.5, 2.0                             '' Top Right Of The Quad (Front)
glVertex3f -1.0, 1.5, 2.0                            '' Top Left Of The Quad (Front)
glVertex3f -1.0, -1.5, 2.0                           '' Bottom Left Of The Quad (Front)
glVertex3f 1.0, -1.5, 2.0                            '' Bottom Right Of The Quad (Front)

glColor3f 1.0, 1.0, 0.0                              '' Set The Color To Yellow
glVertex3f 1.0, -1.5, -2.0                           '' Top Right Of The Quad (Back)
glVertex3f -1.0, -1.5, -2.0                          '' Top Left Of The Quad (Back)
glVertex3f -1.0, 1.5, -2.0                           '' Bottom Left Of The Quad (Back)
glVertex3f 1.0, 1.5, -2.0                            '' Bottom Right Of The Quad (Back)

glColor3f 0.0, 0.0, 1.0                              '' Set The Color To Blue
glVertex3f -1.0, 1.5, 2.0                            '' Top Right Of The Quad (Left)
glVertex3f -1.0, 1.5, -2.0                           '' Top Left Of The Quad (Left)
glVertex3f -1.0, -1.5, -2.0                          '' Bottom Left Of The Quad (Left)
glVertex3f -1.0, -1.5, 2.0                           '' Bottom Right Of The Quad (Left)

glColor3f 1.0, 0.0, 1.0                              '' Set The Color To Violet
glVertex3f 1.0, 1.5, -2.0                            '' Top Right Of The Quad (Right)
glVertex3f 1.0, 1.5, 2.0                             '' Top Left Of The Quad (Right)
glVertex3f 1.0, -1.5, 2.0                            '' Bottom Left Of The Quad (Right)
glVertex3f 1.0, -1.5, -2.0                           '' Bottom Right Of The Quad (Right)
glEnd                                                   '' Done Drawing The Quad

flip
loop while inkey = ""
```

Frink

This program not only draws a cube and renders it onscreen projected on the x,y, and z axes but also outputs a `.stl` file for 3-D printing or display in a 3-D modeling package like MeshLab! Frink has built-in routines for 3-D modeling and can emit STL files or Wavefront OBJ files natively.

```res = 254 / in
s = 1/2 inch res
v = callJava["frink.graphics.VoxelArray", "cube", [-s, s, -s, s, -s, s, true]]

v.projectX[undef].show["X"]
v.projectY[undef].show["Y"]
v.projectZ[undef].show["Z"]

filename = "cube.stl"
print["Writing \$filename..."]
w = new Writer[filename]
w.println[v.toSTLFormat["cube", 1/(res mm)]]
w.close[]
println["done."]```

FutureBasic

This code compiles into a macOS application that allows 360-degree mouse rotation of the cuboid. All six faces of the cuboid have different colors.

```include "Tlbx SceneKit.incl"

_window = 1
begin enum output 1
_sceneView
end enum

local fn Cuboid as SCNSceneRef
SCNSceneRef   scene = fn SCNSceneInit
SCNNodeRef rootNode = fn SCNSceneRootNode( scene )

SCNCameraRef camera = fn SCNCameraInit
SCNNodeRef cameraNode = fn SCNNodeInit
SCNNodeSetCamera( cameraNode, camera )

SCNVector3 cameraPos = {0.0, 0.0, 10.0}
SCNNodeSetPosition( cameraNode, cameraPos )

SCNNodeRef lightNode = fn SCNNodeInit
SCNLightRef    light = fn SCNLightInit
SCNLightSetType( light, SCNLightTypeOmni )
SCNNodeSetPosition( lightNode, fn SCNVector3Make( 0.0, 10.0, 10.0 ) )

SCNNodeRef    ambientLightNode = fn SCNNodeInit
SCNLightRef       ambientLight = fn SCNLightInit
SCNLightSetType(  ambientLight, SCNLightTypeAmbient )
SCNLightSetColor( ambientLight, fn ColorGray )
SCNNodeSetLight( ambientLightNode, ambientLight )

SCNBoxRef  boxGeometry = fn SCNBoxInit( 2.0, 3.0, 4.0, 0.0 )
SCNNodeRef boxNode = fn SCNNodeWithGeometry( boxGeometry )

SCNMaterialRef side1 = fn SCNMaterialInit
SCNMaterialRef side2 = fn SCNMaterialInit
SCNMaterialRef side3 = fn SCNMaterialInit
SCNMaterialRef side4 = fn SCNMaterialInit
SCNMaterialRef side5 = fn SCNMaterialInit
SCNMaterialRef side6 = fn SCNMaterialInit

SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side1 ), fn ColorBlue   )
SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side2 ), fn ColorOrange )
SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side3 ), fn ColorRed    )
SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side4 ), fn ColorGreen  )
SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side5 ), fn ColorYellow )
SCNMaterialPropertySetContents( fn SCNMaterialMultiply( side6 ), fn ColorCyan   )

SCNGeometrySetMaterials( boxGeometry, @[side1,side2,side3,side4,side5,side6] )
SCNActionableRunAction( boxNode, fn SCNActionRotateByAngle( M_PI, fn SCNVector3Make( 1.0, 1.0, 1.0 ), 0.0 ) )
end fn = scene

void local fn BuildWindow
CGRect r = fn CGRectMake( 0, 0, 400, 400 )
window _window, @"Rosetta Code 2-3-4 Cuboid", r
scnview _sceneView, fn Cuboid, r
SCNViewSetBackgroundColor( _sceneView, fn ColorBlack )
SCNViewSetAllowsCameraControl( _sceneView, YES )
end fn

void local fn DoDialog( ev as long, tag as long, wnd as long )
select (ev)
case _windowWillClose : end
end select
end fn

on dialog fn DoDialog

fn BuildWindow

HandleEvents```
Output:

Go

Translation of: PicoLisp
```package main

import "fmt"

func cuboid(dx, dy, dz int) {
fmt.Printf("cuboid %d %d %d:\n", dx, dy, dz)
cubLine(dy+1, dx, 0, "+-")
for i := 1; i <= dy; i++ {
cubLine(dy-i+1, dx, i-1, "/ |")
}
cubLine(0, dx, dy, "+-|")
for i := 4*dz - dy - 2; i > 0; i-- {
cubLine(0, dx, dy, "| |")
}
cubLine(0, dx, dy, "| +")
for i := 1; i <= dy; i++ {
cubLine(0, dx, dy-i, "| /")
}
cubLine(0, dx, 0, "+-\n")
}

func cubLine(n, dx, dy int, cde string) {
fmt.Printf("%*s", n+1, cde[:1])
for d := 9*dx - 1; d > 0; d-- {
fmt.Print(cde[1:2])
}
fmt.Print(cde[:1])
fmt.Printf("%*s\n", dy+1, cde[2:])
}

func main() {
cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
}
```
Output:
```cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+
```

```import Graphics.Rendering.OpenGL
import Graphics.UI.GLUT

-- Draw a cuboid.  Its vertices are those of a unit cube, which is then scaled
-- to the required dimensions.  We only specify the visible faces, each of
-- which is composed of two triangles.  The faces are rotated into position and
-- rendered with a perspective transformation.

type Fl = GLfloat

cuboid :: IO ()
cuboid = do
color red   ; render front
color green ; render side
color blue  ; render top

red,green,blue :: Color4 GLfloat
red   = Color4 1 0 0 1
green = Color4 0 1 0 1
blue  = Color4 0 0 1 1

render :: [(Fl, Fl, Fl)] -> IO ()
render = renderPrimitive TriangleStrip . mapM_ toVertex
where toVertex (x,y,z) = vertex \$ Vertex3 x y z

front,side,top :: [(Fl,Fl,Fl)]
front = vertices [0,1,2,3]
side  = vertices [4,1,5,3]
top   = vertices [3,2,5,6]

vertices :: [Int] -> [(Fl,Fl,Fl)]
vertices = map (verts !!)

verts :: [(Fl,Fl,Fl)]
verts = [(0,0,1), (1,0,1), (0,1,1), (1,1,1), (1,0,0), (1,1,0), (0,1,0)]

transform :: IO ()
transform = do
translate \$ Vector3 0 0 (-10 :: Fl)
rotate (-14) \$ Vector3 0 0 (1 :: Fl)
rotate (-30) \$ Vector3 0 1 (0 :: Fl)
rotate   25  \$ Vector3 1 0 (0 :: Fl)
scale 2 3 (4 :: Fl)
translate \$ Vector3 (-0.5) (-0.5) (-0.5 :: Fl)

display :: IO ()
display = do
clear [ColorBuffer]
perspective 40 1 1 (15 :: GLdouble)
transform
cuboid
flush

main :: IO ()
main = do
let name = "Cuboid"
initialize name []
createWindow name
displayCallback \$= display
mainLoop
```

J

Hack alert! I haven't even bothered to center the display. With larger resolutions and the viewmat script, this code can generate reasonable 2D displays with a different color for each face.

```   vectors =. ((% +/&.:*:"1) _1 1 0,:_1 _1 3) +/@:*"1/~ 2 3 4*=i.3
' .*o' {~  +/ 1 2 3* (|:"2 -."_ 1~ vectors) ([:*./ 1 = 0 1 I. %.~)"_ 1"_1 _ ]4j21 ,~"0/&:i: 4j41

oooo
ooooooooooooo
oooooooooooooo....
*****oooo.........
*******...........
*******...........
*******...........
*******...........
*******...........
*******...........
*******...........
*******.........
*****.....
```

Java

Works with: Java version 8
```import java.awt.*;
import java.awt.event.*;
import static java.lang.Math.*;
import javax.swing.*;

public class Cuboid extends JPanel {
double[][] nodes = {{-1, -1, -1}, {-1, -1, 1}, {-1, 1, -1}, {-1, 1, 1},
{1, -1, -1}, {1, -1, 1}, {1, 1, -1}, {1, 1, 1}};

int[][] edges = {{0, 1}, {1, 3}, {3, 2}, {2, 0}, {4, 5}, {5, 7}, {7, 6},
{6, 4}, {0, 4}, {1, 5}, {2, 6}, {3, 7}};

int mouseX, prevMouseX, mouseY, prevMouseY;

public Cuboid() {
setPreferredSize(new Dimension(640, 640));
setBackground(Color.white);

scale(80, 120, 160);
rotateCube(PI / 5, PI / 9);

@Override
public void mousePressed(MouseEvent e) {
mouseX = e.getX();
mouseY = e.getY();
}
});

@Override
public void mouseDragged(MouseEvent e) {
prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = e.getX();
mouseY = e.getY();

double incrX = (mouseX - prevMouseX) * 0.01;
double incrY = (mouseY - prevMouseY) * 0.01;

rotateCube(incrX, incrY);
repaint();
}
});
}

private void scale(double sx, double sy, double sz) {
for (double[] node : nodes) {
node[0] *= sx;
node[1] *= sy;
node[2] *= sz;
}
}

private void rotateCube(double angleX, double angleY) {
double sinX = sin(angleX);
double cosX = cos(angleX);

double sinY = sin(angleY);
double cosY = cos(angleY);

for (double[] node : nodes) {
double x = node[0];
double y = node[1];
double z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
}
}

void drawCube(Graphics2D g) {
g.translate(getWidth() / 2, getHeight() / 2);

for (int[] edge : edges) {
double[] xy1 = nodes[edge[0]];
double[] xy2 = nodes[edge[1]];
g.drawLine((int) round(xy1[0]), (int) round(xy1[1]),
(int) round(xy2[0]), (int) round(xy2[1]));
}

for (double[] node : nodes) {
g.fillOval((int) round(node[0]) - 4, (int) round(node[1]) - 4, 8, 8);
}
}

@Override
public void paintComponent(Graphics gg) {
super.paintComponent(gg);
Graphics2D g = (Graphics2D) gg;
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);

drawCube(g);
}

public static void main(String[] args) {
SwingUtilities.invokeLater(() -> {
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setTitle("Cuboid");
f.setResizable(false);
f.pack();
f.setLocationRelativeTo(null);
f.setVisible(true);
});
}
}
```

JavaScript

Translation of: Java
```<!DOCTYPE html>
<html lang="en">

<meta charset="UTF-8">
<style>
canvas {
background-color: black;
}
</style>
<body>
<canvas></canvas>
<script>
var canvas = document.querySelector("canvas");
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

var g = canvas.getContext("2d");

prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = event.x;
mouseY = event.y;

var incrX = (mouseX - prevMouseX) * 0.01;
var incrY = (mouseY - prevMouseY) * 0.01;

rotateCuboid(incrX, incrY);
drawCuboid();
});

var nodes = [[-1, -1, -1], [-1, -1, 1], [-1, 1, -1], [-1, 1, 1],
[1, -1, -1], [1, -1, 1], [1, 1, -1], [1, 1, 1]];

var edges = [[0, 1], [1, 3], [3, 2], [2, 0], [4, 5], [5, 7], [7, 6],
[6, 4], [0, 4], [1, 5], [2, 6], [3, 7]];

var mouseX = 0, prevMouseX, mouseY = 0, prevMouseY;

function scale(factor0, factor1, factor2) {
nodes.forEach(function (node) {
node[0] *= factor0;
node[1] *= factor1;
node[2] *= factor2;
});
}

function rotateCuboid(angleX, angleY) {

var sinX = Math.sin(angleX);
var cosX = Math.cos(angleX);

var sinY = Math.sin(angleY);
var cosY = Math.cos(angleY);

nodes.forEach(function (node) {
var x = node[0];
var y = node[1];
var z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
});
}

function drawCuboid() {
g.save();

g.clearRect(0, 0, canvas.width, canvas.height);
g.translate(canvas.width / 2, canvas.height / 2);
g.strokeStyle = "#FFFFFF";
g.beginPath();

edges.forEach(function (edge) {
var p1 = nodes[edge[0]];
var p2 = nodes[edge[1]];
g.moveTo(p1[0], p1[1]);
g.lineTo(p2[0], p2[1]);
});

g.closePath();
g.stroke();

g.restore();
}

scale(80, 120, 160);
rotateCuboid(Math.PI / 5, Math.PI / 9);
</script>

</body>
</html>
```

jq

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

The following has been written so as to produce identical results using any of these three implementations of jq.

```def cubLine(\$n; \$dx; \$dy; \$cde):
def s: if . == 0 then "" else . * " " end;  # for jaq
reduce range(1; 9*\$dx) as \$d ("\(\$n|s)\(\$cde[0:1])";
. + \$cde[1:2] )
+ \$cde[0:1]
+ ("\(\$dy|s)\(\$cde[2:])");

def cuboid(\$dx; \$dy; \$dz):
"cuboid \(\$dx) \(\$dy) \(\$dz):",
# top
cubLine(\$dy+1; \$dx; 0; "+-"),
# top and side
(range(1; 1+\$dy) as \$i        | cubLine(\$dy-\$i+1; \$dx; \$i-1; "/ |")),
cubLine(0; \$dx; \$dy; "+-|"),
# front and side
(range(1; 4*\$dz -\$dy-2) as \$i | cubLine(0; \$dx; \$dy; "| |")),
cubLine(0; \$dx; \$dy; "| +"),
# front and bottom
(range(1; 1+\$dy) as \$i        | cubLine(0; \$dx; \$dy-\$i; "| /")),
# bottom
cubLine(0; \$dx; 0; "+-\n");

cuboid(2; 3; 4),
"",
cuboid(1; 1; 1),
"",
cuboid(6; 2; 1)```
Output:
```cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+
```

Julia

ASCII Art

Translation of: Python
Works with: Julia version 0.6
```_pr(t::Dict, x::Int, y::Int, z::Int) = join((rstrip(join(t[(n, m)] for n in range(0, 3+x+z))) for m in reverse(range(0, 3+y+z))), "\n")

function cuboid(x::Int, y::Int, z::Int)
t = Dict((n, m) => " " for n in range(0, 3 + x + z), m in range(0, 3 + y + z))
xrow = vcat("+", collect("\$(i % 10)" for i in range(0, x)), "+")
for (i, ch) in enumerate(xrow) t[(i, 0)] = t[(i, 1+y)] = t[(1+z+i, 2+y+z)] = ch end
yrow = vcat("+", collect("\$(j % 10)" for j in range(0, y)), "+")
for (j, ch) in enumerate(yrow) t[(0, j)] = t[(x+1, j)] = t[(2+x+z, 1+z+j)] = ch end
zdep = vcat("+", collect("\$(k % 10)" for k in range(0, y)), "+")
for (k, ch) in enumerate(xrow) t[(k, 1+y+k)] = t[(1+x+k, 1+y+k)] = t[(1+x+k, k)] = ch end

return _pr(t, x, y, z)
end

for (x, y, z) in [(2, 3, 4), (3, 4, 2), (4, 2, 3), (5, 5, 6)]
println("\nCUBOID(\$x, \$y, \$z)\n")
println(cuboid(x, y, z))
end
```
Output:
```CUBOID(2, 3, 4)

+02
+  +1
1  1 0
0  0  +
++ ++
2+02+  +
1  1  1
0  0 0
+  ++
+01+

CUBOID(3, 4, 2)

1+011
0   02
++  ++ 1
3+013+ 0
2   2  +
1   1  1
0   0 0
+   ++
+012+

CUBOID(4, 2, 3)

2+0122
1    10
0    0 +
++   ++  2
1+0121+ 1
0    0 0
+    ++
+0123+

CUBOID(5, 5, 6)

++0123+
4     43
3     3 2
2     2  1
1     1   0
0     0    +
++    ++     +
4+01234+    4
3     3    3
2     2   2
1     1  1
0     0 0
+     ++
+01234+```

Kotlin

Translation of: Java
```// version 1.1

import java.awt.*
import java.awt.event.MouseEvent
import javax.swing.*

class Cuboid: JPanel() {
private val nodes = arrayOf(
doubleArrayOf(-1.0, -1.0, -1.0),
doubleArrayOf(-1.0, -1.0,  1.0),
doubleArrayOf(-1.0,  1.0, -1.0),
doubleArrayOf(-1.0,  1.0,  1.0),
doubleArrayOf( 1.0, -1.0, -1.0),
doubleArrayOf( 1.0, -1.0,  1.0),
doubleArrayOf( 1.0,  1.0, -1.0),
doubleArrayOf( 1.0,  1.0,  1.0)
)
private val edges = arrayOf(
intArrayOf(0, 1),
intArrayOf(1, 3),
intArrayOf(3, 2),
intArrayOf(2, 0),
intArrayOf(4, 5),
intArrayOf(5, 7),
intArrayOf(7, 6),
intArrayOf(6, 4),
intArrayOf(0, 4),
intArrayOf(1, 5),
intArrayOf(2, 6),
intArrayOf(3, 7)
)

private var mouseX: Int = 0
private var prevMouseX: Int = 0
private var mouseY: Int = 0
private var prevMouseY: Int = 0

init {
preferredSize = Dimension(640, 640)
background = Color.white
scale(80.0, 120.0, 160.0)
rotateCube(Math.PI / 5.0, Math.PI / 9.0)
override fun mousePressed(e: MouseEvent) {
mouseX = e.x
mouseY = e.y
}
})

override fun mouseDragged(e: MouseEvent) {
prevMouseX = mouseX
prevMouseY = mouseY
mouseX = e.x
mouseY = e.y
val incrX = (mouseX - prevMouseX) * 0.01
val incrY = (mouseY - prevMouseY) * 0.01
rotateCube(incrX, incrY)
repaint()
}
})
}

private fun scale(sx: Double, sy: Double, sz: Double) {
for (node in nodes) {
node[0] *= sx
node[1] *= sy
node[2] *= sz
}
}

private fun rotateCube(angleX: Double, angleY: Double) {
val sinX = Math.sin(angleX)
val cosX = Math.cos(angleX)
val sinY = Math.sin(angleY)
val cosY = Math.cos(angleY)
for (node in nodes) {
val x = node[0]
val y = node[1]
var z = node[2]
node[0] = x * cosX - z * sinX
node[2] = z * cosX + x * sinX
z = node[2]
node[1] = y * cosY - z * sinY
node[2] = z * cosY + y * sinY
}
}

private fun drawCube(g: Graphics2D) {
g.translate(width / 2, height / 2)
for (edge in edges) {
val xy1 = nodes[edge[0]]
val xy2 = nodes[edge[1]]
g.drawLine(Math.round(xy1[0]).toInt(), Math.round(xy1[1]).toInt(),
Math.round(xy2[0]).toInt(), Math.round(xy2[1]).toInt())
}
for (node in nodes) {
g.fillOval(Math.round(node[0]).toInt() - 4, Math.round(node[1]).toInt() - 4, 8, 8)
}
}

override public fun paintComponent(gg: Graphics) {
super.paintComponent(gg)
val g = gg as Graphics2D
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
g.color = Color.blue
drawCube(g)
}
}

fun main(args: Array<String>) {
SwingUtilities.invokeLater {
val f = JFrame()
f.defaultCloseOperation = JFrame.EXIT_ON_CLOSE
f.title = "Cuboid"
f.isResizable = false
f.pack()
f.setLocationRelativeTo(null)
f.isVisible = true
}
}
```

Lambdatalk

Translation of: javascript

An adaptation working in the lambdaway project (where wiki pages are editable in realtime and inline:): http://lambdaway.free.fr/lambdawalks/?view=cuboid .

```1) creating the canvas

{canvas {@ width="580" height="580"}}

2) calling javascript

{script
var canvas, g, width, height;
var mouseX = 0, prevMouseX, mouseY = 0, prevMouseY;

function run() {
canvas = document.querySelector("canvas");
width = canvas.width;
height = canvas.height;
g = canvas.getContext("2d");

function (event) {
prevMouseX = mouseX;
prevMouseY = mouseY;
mouseX = event.x;
mouseY = event.y;

var incrX = (mouseX - prevMouseX) * 0.01;
var incrY = (mouseY - prevMouseY) * 0.01;

rotateCuboid(incrX, incrY);
drawCuboid();
});

scale(80, 120, 160);
rotateCuboid(Math.PI / 5, Math.PI / 9);
drawCuboid()

}

var nodes = [[-1, -1, -1], [-1, -1, 1], [-1, 1, -1], [-1, 1, 1],
[1, -1, -1], [1, -1, 1], [1, 1, -1], [1, 1, 1]];

var edges = [[0, 1], [1, 3], [3, 2], [2, 0], [4, 5], [5, 7], [7, 6],
[6, 4], [0, 4], [1, 5], [2, 6], [3, 7]];

function scale(factor0, factor1, factor2) {
nodes.forEach(function (node) {
node[0] *= factor0;
node[1] *= factor1;
node[2] *= factor2;
});
}

function rotateCuboid(angleX, angleY) {

var sinX = Math.sin(angleX);
var cosX = Math.cos(angleX);

var sinY = Math.sin(angleY);
var cosY = Math.cos(angleY);

nodes.forEach(function (node) {
var x = node[0];
var y = node[1];
var z = node[2];

node[0] = x * cosX - z * sinX;
node[2] = z * cosX + x * sinX;

z = node[2];

node[1] = y * cosY - z * sinY;
node[2] = z * cosY + y * sinY;
});
}

function drawCuboid() {
g.save();

g.clearRect(0, 0, width, height);
g.translate(width / 2, height / 2);
g.strokeStyle = "#000";
g.beginPath();

edges.forEach(function (edge) {
var p1 = nodes[edge[0]];
var p2 = nodes[edge[1]];
g.moveTo(p1[0], p1[1]);
g.lineTo(p2[0], p2[1]);
});

g.closePath();
g.stroke();

g.restore();
}

setTimeout( run, 1 )
}
```

Liberty BASIC

Text solution

```Call cuboid 1,3,4

End

Sub cuboid width, height, depth
wd=width*7+2: hi=height*3: dp=depth
For i=1 To wd-2
w\$=w\$+"-":h\$=h\$+" "
Next
w\$="+"+w\$+"+":d\$="/"+h\$+"/":h\$="|"+h\$+"|"
px=dp+2:py=1:Locate dp+2,py:Print w\$;
For i=2 To hi+1
Locate wd+dp+1,i:Print"|";
Next
Locate wd+dp+1, i: Print "+";
For i=dp+1 To 1 Step -1
py=py+1:Locate i,py:Print d\$;
Next
For i=1 To dp
Locate wd+(dp+1)-i,hi+d+2+i:Print "/";
Next
Locate 1, dp+2: Print w\$;
For i=dp+3 To hi+dp+2
Locate 1,i:Print h\$;
Next
Locate 1, dp+hi+3: Print w\$
End Sub```
Output:
```     +-------+
/       /|
/       / |
/       /  |
/       /   |
+-------+    |
|       |    |
|       |    |
|       |    |
|       |    |
|       |    +
|       |   /
|       |  /
|       | /
|       |/
+-------+
```

Graphic solution

```NoMainWin
Global sw, sh
sw = 400: sh = 400
WindowWidth = sw+6
WindowHeight= sh+32
Open "[RC] Draw Cuboid" For graphics_nsb_nf As #g
#g "Down; Fill black; TrapClose [xit]"
#g "when leftButtonDown [xit]"

Call drawCuboid 3,4,5

Wait

[xit]
Close #g
End

Sub drawCuboid width, height, depth
wd = width*50
ht = height*50
dp = depth*20
sx = Int((sw-(wd+dp))/2)
sy = Int((sh-(ht-dp))/2)
#g "Color 0 128 255; BackColor 0 128 255"
#g "Place ";sx;" ";sy
#g "boxFilled ";sx+wd;" ";sy+ht
x1 = sx+dp : y1 = sy-dp
x2 = x1+wd-1 : y2 = y1+1
#g "Color 0 64 128"
Call triFill sx,sy, x1,y1, x2,y2
Call triFill sx,sy, x2,y2, sx+wd, sy
#g "Color 0 96 192"
x3 = x2: y3 = y2+ht
Call triFill x2,y2, x3,y3, sx+wd-1, sy+ht-1
Call triFill x2,y2, sx+wd-1, sy+ht-1, sx+wd-1, sy
#g "Color white;BackColor black;Place 5 20"
#g "\Size: ";width;", ";height;", ";depth
End Sub

Sub triFill x1,y1, x2,y2, x3,y3
If x2<x1 Then x=x2: y=y2: x2=x1: y2=y1: x1=x: y1=y
If x3<x1 Then x=x3: y=y3: x3=x1: y3=y1: x1=x: y1=y
If x3<x2 Then x=x3: y=y3: x3=x2: y3=y2: x2=x: y2=y
If x1<>x3 Then slope1=(y3-y1)/(x3-x1)
length=x2-x1
If length<>0 Then
slope2=(y2-y1)/(x2-x1)
For x = 0 To length
#g "Line ";Int(x+x1);" ";Int(x*slope1+y1);" ";Int(x+x1);" ";Int(x*slope2+y1)
Next
End If
y = length*slope1+y1 :length=x3-x2
If length<>0 Then
slope3=(y3-y2)/(x3-x2)
For x = 0 To length
#g "Line ";Int(x+x2);" ";Int(x*slope1+y);" ";Int(x+x2);" ";Int(x*slope3+y2)
Next
End If
End Sub```

Locomotive Basic

Translation of: ZX Spectrum Basic

`WIDTH` is a reserved word for printer handling in Locomotive Basic, so it cannot be used as a variable name, unlike on the ZX Spectrum.

```10 mode 2: origin 100,0: w=120:  height=w*1.5:  depth=w*2
20 x=80:  y=10
30 plot x,y
40 drawr 0,height: drawr w,0: drawr 0,-height: drawr -w,0: rem front
50 plot x,y+height: drawr depth/2,height: drawr w,0: drawr 0,-height: drawr -w,-height
60 plot x+w,y+height: drawr depth/2,height```

Logo

In Logo, we can use the perspective function to make drawing 3D-objects easier.

Works with: MSWlogo

Simple implementation, just moving to the appropriate points every time.

```to cuboid :l1 :l2 :l3
cs perspective ;making the room ready to use
setxyz :l1   0    0
setxyz :l1 :l2    0
setxyz   0 :l2    0
setxyz   0   0    0
setxyz :l1   0    0
setxyz :l1   0 -:l3
setxyz :l1 :l2 -:l3
setxyz :l1 :l2    0
setxyz   0 :l2    0
setxyz   0 :l2 -:l3
setxyz :l1 :l2 -:l3
end```

`cuboid 50 100 150`

LSL

Rez a box on the ground, raise it up a few meters, add the following as a New Script.

```vector vSCALE = <2.0, 3.0, 4.0>;
default {
state_entry() {
llSetScale(vSCALE);
}
}
```
Output:

Ahhhhh; I always wondered what a Cuboid looked like, now I know!

)

A Cuboid in a Sandbox.

Lua

Begin with the code in the Draw_a_rotating_cube task, then extend the cube object as follows:

```-- needed for actual task
cube.scale = function(self, sx, sy, sz)
for i,v in ipairs(self.verts) do
v[1], v[2], v[3] = v[1]*sx, v[2]*sy, v[3]*sz
end
end
-- only needed for output
-- (to size it for screen, given a limited camera)
cube.translate = function(self, tx, ty, tz)
for i,v in ipairs(self.verts) do
v[1], v[2], v[3] = v[1]+tx, v[2]+ty, v[3]+tz
end
end
```

Then replace all of the "demo" code below the empty comment line "--" with:

```--
bitmap:init(40,40)
cube:scale(2,3,4)
cube:rotate(-pi/4, -pi/6)
cube:translate(0,0,10)
bitmap:clear("··")
renderer:render(cube, camera, bitmap)
screen:clear()
bitmap:render()
```
Output:
```················································································
················································································
················································································
················································································
················································································
··························████··················································
················██████████··██████████··········································
········████████············██········████████··································
········██████··············██················██████····························
········██····██████········██······················████████····················
········██··········████····██······························████████············
··········██············██████······································██████······
··········██··················████··································██████······
··········██··················██··████··························████····██······
··········██··················██······██████················████······██········
··········██··················██············████········████··········██········
············██················██················████████··············██········
············██················██····················██················██········
············██················██····················██··············██··········
············██················██····················██··············██··········
············██··············████····················██··············██··········
············██··········████····██··················██··············██··········
··············██····████··········████············██················██··········
··············██████··················████········██··············██············
··············██··························████····██··············██············
················██····························██████··············██············
··················██······························████············██············
····················██····························██··████······██··············
······················██··························██······████··██··············
························████······················██··········████··············
····························██····················██··········██················
······························██··················██········██··················
································████··············██······██····················
····································██··········██······██······················
······································██········██····██························
········································████····██··██··························
············································██··████····························
··············································████······························
················································································
················································································```

Maple

This creates a cuboid with one corner at (0,0,0) and the opposite at (2,3,4):

`plots:-display(plottools:-parallelepiped([2, 0, 0], [0, 0, 4], [0, 3, 0]), orientation = [45, 60])`

Mathematica / Wolfram Language

This creates a cuboid with one corner at (0,0,0) and the opposite at (2,3,4):

```Graphics3D[Cuboid[{0,0,0},{2,3,4}]]
```

Output would be fully-rendered, rotatable 3D in the notebook. Also, many aspects of the cuboid's appearance and lighting can be controlled quite easily. For those, see Mathematica's documentation in the program or on the web.

Maxima

```load(draw)\$

draw3d(xu_grid=100, yv_grid=100, surface_hide=true,
palette=gray, enhanced3d=[x - z / 4 - y / 4, x, y, z],
implicit(max(abs(x / 4), abs(y / 6), abs(z / 8)) = 1,
x,-10,10,y,-10,10,z,-10,10))\$
```

MiniScript

Works with: Mini Micro

This uses the rotateAndProject function from the Draw a rotating cube task, but reduces the rest of the code to just drawing three static faces.

```import "mathUtil"
scale = 20

clear; gfx.clear color.gray

// Rotate the given [x,y,z] point by some number of degrees
// around the Y axis, then project to the screen.
rotateAndProject = function(point3d, rotDegrees)
// First, rotate around the Y axis in 3D space
x = point3d[0] * cosAng - point3d[2] * sinAng
y = point3d[1]
z = point3d[0] * sinAng + point3d[2] * cosAng
// Then, project this to the screen
result = [480 + x * scale, 320 + y * scale]
p = (80 - z) / 80  // (perspective factor)
return mathUtil.lerp2d(result, [480,800], 1-p)
end function

sp = new Face
sp.image = img
corners = []
for p in points3d
corners.push rotateAndProject(p, -45)
end for
sp.setCorners corners
sp.tint = tint
display(4).sprites.push sp
end function

w = 3; h = 2; d = 4
```
Output:

Nim

Translation of: PicoLisp
```import strutils

proc cline(n, x, y: int, cde: string) =
echo cde[0..0].align n+1,
repeat(cde[1], 9*x-1),
cde[0],
if cde.len > 2: cde[2..2].align y+1 else: ""

proc cuboid(x, y, z: int) =
cline y+1, x, 0, "+-"
for i in 1..y: cline y-i+1, x, i-1, "/ |"
cline 0, x, y, "+-|"
for i in 0..4*z-y-3: cline 0, x, y, "| |"
cline 0, x, y, "| +"
for i in countdown(y-1, 0): cline 0, x, i, "| /"
cline 0, x, 0, "+-\n"

cuboid 2, 3, 4
cuboid 1, 1, 1
cuboid 6, 2, 1
```
Output:
```    +-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+```

Drawing a cuboid is easy in openscad:

```// This will produce a simple cuboid
cube([2,3,4]);
```

OxygenBasic

Using an OpenGl-based console

```  % Title "Cuboid 2x3x4"
'% Animated
% PlaceCentral
uses ConsoleG

sub main
========
cls 0.0, 0.2, 0.7
scale 3
pushstate
GoldMaterial.act
static float ang=45
rotateX ang
rotateY ang
scale 2,3,4
go cube
popstate
end sub

EndScript
```

PARI/GP

Plotting lines and scaling in PARI/GP is not designed for "cuboids". But you are welcome to play with parameters of this Cuboid() function.

Works with: PARI/GP version 2.7.4 and above
```\\ Simple "cuboid". Try different parameters of this Cuboid() function.
\\ 4/11/16 aev
Cuboid(a,b,c,u=10)={
my(dx,dy,ttl="Cuboid AxBxC: ",size=200,da=a*u,db=b*u,dc=c*u);
print(" *** ",ttl,a,"x",b,"x",c,"; u=",u);
plotinit(0);
plotscale(0, 0,size, 0,size);
plotcolor(0,7); \\grey
plotmove(0, 0,0);
plotrline(0,dc,da\2); plotrline(0,db,0); plotrline(0,-db,0);
plotrline(0,0,da);
plotcolor(0,2); \\black
plotmove(0, db,da);
plotrline(0,0,-da); plotrline(0,-db,0);
plotrline(0,0,da); plotrline(0,db,0);
plotrline(0,dc,da\2); plotrline(0,-db,0); plotrline(0,-dc,-da\2);
plotmove(0, db,0);
plotrline(0,dc,da\2); plotrline(0,0,da);
plotdraw([0,size,size]);
}

{\\ Executing:
Cuboid(2,3,4,20); \\Cuboid1.png
Cuboid(5,3,1,20); \\Cuboid2.png
}```
Output:
```> Cuboid(2,3,4,20); \\Cuboid1.png
*** Cuboid AxBxC: 2x3x4; u=20
> Cuboid(5,3,1,20); \\Cuboid2.png
*** Cuboid AxBxC: 5x3x1; u=20
```

Pascal

Works with: Free_Pascal
```program Cuboid_Demo(output);

procedure DoCuboid(sWidth, sHeight, Depth: integer);
const
widthScale  = 4;
heightScale = 3;
type
TPage = array of array of char;
var
Cuboid: TPage;
i, j: integer;
Width, Height: integer;
totalWidth, totalHeight: integer;
begin
Width  := widthScale  * sWidth;
Height := heightScale * sHeight;
totalWidth  := 2 * Width + Depth + 3;
totalHeight := Height + Depth + 3;
setlength (Cuboid, totalHeight + 1);
for i := 1 to totalHeight do
setlength (Cuboid[i], totalwidth + 1);
// points
for i := low(Cuboid) to high(Cuboid) do
for j := low(Cuboid[i]) to high(Cuboid[i]) do
Cuboid[i,j] := ' ';
Cuboid [1, 1]                      := '+';
Cuboid [Height + 2, 1]             := '+';
Cuboid [1, 2 * Width + 2]          := '+';
Cuboid [Height + 2, 2 * Width + 2] := '+';
Cuboid [totalHeight, Depth + 2]    := '+';
Cuboid [Depth + 2, totalWidth]     := '+';
Cuboid [totalHeight, totalWidth]   := '+';
// width lines
for I := 1 to 2 * Width do
begin
Cuboid [1, I + 1]                   := '-';
Cuboid [Height + 2, I + 1]          := '-';
Cuboid [totalHeight, Depth + I + 2] := '-';
end;
// height lines
for I := 1 to Height do
begin
Cuboid [I + 1, 1]                  := '|';
Cuboid [I + 1, 2 * Width + 2]      := '|';
Cuboid [Depth + I + 2, totalWidth] := '|';
end;
// depth lines
for I := 1 to Depth do
begin
Cuboid [Height + 2 + I, 1 + I]             := '/';
Cuboid [1 + I, 2 * Width + 2 + I]          := '/';
Cuboid [Height + 2 + I, 2 * Width + 2 + I] := '/';
end;
for i := high(Cuboid) downto 1 do
begin
for j := 1 to high(Cuboid[i]) do
write (Cuboid[i,j]);
writeln;
end;
end;

begin
writeln('1, 1, 1:');
DoCuboid(1, 1, 1);
writeln('2, 3, 4:');
DoCuboid(2, 3, 4);
writeln('6, 2, 1:');
DoCuboid(6, 2, 1);
end.
```
Output:
```% ./Cuboid
1, 1, 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+
2, 3, 4:
+----------------+
/                /|
/                / |
/                /  |
/                /   |
+----------------+    |
|                |    |
|                |    |
|                |    |
|                |    |
|                |    +
|                |   /
|                |  /
|                | /
|                |/
+----------------+
6, 2, 1:
+------------------------------------------------+
/                                                /|
+------------------------------------------------+ |
|                                                | |
|                                                | |
|                                                | |
|                                                | |
|                                                | +
|                                                |/
+------------------------------------------------+ ```

Perl

Translation of: Go
```sub cubLine (\$\$\$\$) {
my (\$n, \$dx, \$dy, \$cde) = @_;

printf '%*s', \$n + 1, substr(\$cde, 0, 1);

for (my \$d = 9 * \$dx - 1 ; \$d > 0 ; --\$d) {
print substr(\$cde, 1, 1);
}

print substr(\$cde, 0, 1);
printf "%*s\n", \$dy + 1, substr(\$cde, 2, 1);
}

sub cuboid (\$\$\$) {
my (\$dx, \$dy, \$dz) = @_;

printf "cuboid %d %d %d:\n", \$dx, \$dy, \$dz;
cubLine \$dy + 1, \$dx, 0, '+-';

for (my \$i = 1 ; \$i <= \$dy ; ++\$i) {
cubLine \$dy - \$i + 1, \$dx, \$i - 1, '/ |';
}
cubLine 0, \$dx, \$dy, '+-|';

for (my \$i = 4 * \$dz - \$dy - 2 ; \$i > 0 ; --\$i) {
cubLine 0, \$dx, \$dy, '| |';
}
cubLine 0, \$dx, \$dy, '| +';

for (my \$i = 1 ; \$i <= \$dy ; ++\$i) {
cubLine 0, \$dx, \$dy - \$i, '| /';
}
cubLine 0, \$dx, 0, "+-\n";
}

cuboid 2, 3, 4;
cuboid 1, 1, 1;
cuboid 6, 2, 1;
```
Output:
```cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+
```

ASCII Art

```use 5.010;

# usage: script X Y Z [S]

sub cuboid {

# Constant dimnesions of the cuboid
my (\$x, \$y, \$z) = map int, @_[0 .. 2];

# ASCII characters
# \$c = corner point
# \$h = horizontal line
# \$v = vertical line
# \$d = diagonal line
# \$s = space (inside the cuboid)
my (\$c, \$h, \$v, \$d, \$s) = ('+', '-', '|', '/', shift(@ARGV) // q{ });

say q{ } x (\$z + 1), \$c, \$h x \$x, \$c;
say q{ } x (\$z - \$_ + 1), \$d, \$s x \$x, \$d, \$s x (\$_ - (\$_ > \$y ? (\$_ - \$y) : 1)),
\$_ - 1 == \$y ? \$c : \$_ > \$y ? \$d : \$v for 1 .. \$z;
say \$c, \$h x \$x, \$c, (\$s x (\$z < \$y ? \$z : \$y), \$z < \$y ? \$v : \$z == \$y ? \$c : \$d);
say \$v, \$s x \$x, \$v, \$z > \$y ? \$_ >= \$z ? (\$s x \$x, \$c) : (\$s x (\$y - \$_), \$d)
: \$y - \$_ > \$z ? (\$s x \$z, \$v) : (\$s x (\$y - \$_), \$y - \$_ == \$z ? \$c : \$d) for 1 .. \$y;
say \$c, \$h x \$x, \$c;
}

cuboid shift // rand 20, shift // rand 10, shift // rand 10;
```

Cuboid(2,3,4)

```     +--+
/  /|
/  / |
/  /  |
/  /   +
+--+   /
|  |  /
|  | /
|  |/
+--+```

Phix

Library: Phix/pGUI
Library: Phix/online

Translated from XPL0.
Press space to toggle auto-rotate on and off, cursor keys to rotate manually, and +/- to zoom in/out. Simple orthogonal projection, no perspective. You can run this online here.

```--
-- demo\rosetta\draw_cuboid.exw
-- ============================
--
-- Author Pete Lomax, August 2015
--  Translated from XPL0.
--  Ported to pGUI August 2017
--
--  Press space to toggle auto-rotate on and off,
--        cursor keys to rotate manually, and
--        +/- to zoom in/out.
--
--  Note this uses simple orthogonal projection;
--            there is no perspective here!
--            (For that see DrawRotatingCube.exw)
--
with javascript_semantics
include pGUI.e

constant title = "Draw Cuboid"
Ihandle dlg, canvas, hTimer
cdCanvas cd_canvas

-- arrays: 3D coordinates of vertices
sequence x = {-2.0, +2.0, +2.0, -2.0,  -2.0, +2.0, +2.0, -2.0},
y = {-1.5, -1.5, +1.5, +1.5,  -1.5, -1.5, +1.5, +1.5},
z = {-1.0, -1.0, -1.0, -1.0,  +1.0, +1.0, +1.0, +1.0}

constant segments = {{1,2}, {2,3}, {3,4}, {4,1}, {5,6}, {6,7},
{7,8}, {8,5}, {1,5}, {2,6}, {3,7}, {4,8}}

atom Size = 50.0,       -- drawing size
Sz = 0.008,        -- tumbling speeds
Sx =-0.013,        -- ""
Sy = 0.005,        -- ""
S = 2

procedure draw_cube(integer cx, cy)
-- {cx,cy} is the centre point of the canvas
integer farthest = largest(z,true)
for s=1 to length(segments) do
integer {va,vb} = segments[s],
bNear = not find(farthest,segments[s])
cdCanvasSetForeground(cd_canvas, iff(bNear?CD_RED:CD_BLUE))
cdCanvasSetLineStyle(cd_canvas, iff(bNear?CD_CONTINUOUS:CD_DASHED))
atom x1 = x[va]*Size+cx,
y1 = y[va]*Size+cy,
x2 = x[vb]*Size+cx,
y2 = y[vb]*Size+cy
cdCanvasLine(cd_canvas,x1,y1,x2,y2)
end for
end procedure

function canvas_action_cb(Ihandle canvas)
cdCanvasActivate(cd_canvas)
cdCanvasClear(cd_canvas)
integer {w, h} = IupGetIntInt(canvas, "DRAWSIZE")
draw_cube(floor(w/2),floor(h/2))
cdCanvasFlush(cd_canvas)
return IUP_DEFAULT
end function

function canvas_map_cb(Ihandle canvas)
IupGLMakeCurrent(canvas)
if platform()=JS then
cd_canvas = cdCreateCanvas(CD_IUP, canvas)
else
atom res = IupGetDouble(NULL, "SCREENDPI")/25.4
cd_canvas = cdCreateCanvas(CD_GL, "10x10 %g", {res})
end if
--  cdCanvasSetBackground(cd_canvas, CD_PARCHMENT)
cdCanvasSetBackground(cd_canvas, CD_BLACK)
return IUP_DEFAULT
end function

function canvas_unmap_cb(Ihandle canvas)
cdKillCanvas(cd_canvas)
return IUP_DEFAULT
end function

function canvas_resize_cb(Ihandle /*canvas*/)
integer {canvas_width, canvas_height} = IupGetIntInt(canvas, "DRAWSIZE")
atom res = IupGetDouble(NULL, "SCREENDPI")/25.4
cdCanvasSetAttribute(cd_canvas, "SIZE", "%dx%d %g", {canvas_width, canvas_height, res})
return IUP_DEFAULT
end function

function key_cb(Ihandle /*ih*/, atom c)
if c=K_ESC then
return IUP_CLOSE
elsif c=K_UP then
for i=1 to 8 do
y[i] += z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] -= y[i]*Sx*S
end for
elsif c=K_DOWN then
for i=1 to 8 do
y[i] -= z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] += y[i]*Sx*S
end for
elsif c=K_LEFT then
for i=1 to 8 do
x[i] += z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] -= x[i]*Sy*S
end for
elsif c=K_RIGHT then
for i=1 to 8 do
x[i] -= z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] += x[i]*Sy*S
end for
elsif c='+' then
Size = min(500,Size+5)
elsif c='-' then
Size = max( 10,Size-5)
elsif c=' ' then
IupSetInt(hTimer,"RUN",not IupGetInt(hTimer,"RUN"))
end if
IupUpdate(canvas)
return IUP_CONTINUE
end function

function timer_cb(Ihandle /*ih*/)
for i=1 to 8 do
x[i] = x[i]+y[i]*Sz*S   -- rotate vertices in X-Y plane
y[i] = y[i]-x[i]*Sz*S
y[i] = y[i]+z[i]*Sx*S   -- rotate vertices in Y-Z plane
z[i] = z[i]-y[i]*Sx*S
x[i] = x[i]+z[i]*Sy*S   -- rotate vertices in X-Z plane
z[i] = z[i]-x[i]*Sy*S
end for
IupUpdate(canvas)
return IUP_IGNORE
end function

procedure main()
IupOpen()
canvas = IupGLCanvas("RASTERSIZE=640x480")
IupSetCallbacks(canvas, {"ACTION", Icallback("canvas_action_cb"),
"MAP_CB", Icallback("canvas_map_cb"),
"UNMAP_CB", Icallback("canvas_unmap_cb"),
"RESIZE_CB", Icallback("canvas_resize_cb")})
--  dlg = IupDialog(IupVbox({canvas}),`TITLE="%s"`,{title})
dlg = IupDialog(canvas,`TITLE="%s"`,{title})
IupSetCallback(dlg, "KEY_CB",  Icallback("key_cb"))
IupShow(dlg)
IupSetAttribute(canvas, "RASTERSIZE", NULL)
hTimer = IupTimer(Icallback("timer_cb"), 40)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure

main()
```

ascii

Two versions: the first uses a complete/rectangular grid and outputs at the end, whereas the second uses a slightly trickier line-by-line approach.

```with javascript_semantics
function draw_line(sequence res, integer x,y,dx,dy,len,c)
string line = '+'&repeat(c,len-2)&'+'
for i=1 to len do
res[y,x] = line[i]
y += dy; x += dx
end for
return res
end function

procedure ascii_cuboid(integer x,y,z)
sequence res = repeat(repeat(' ',x+z+3),y+z+3)
res = draw_line(res,    1,  z+2,+1,-1,z+2,'/')
res = draw_line(res,  x+2,  z+2,+1,-1,z+2,'/')
res = draw_line(res,  x+2,y+z+3,+1,-1,z+2,'/')
res = draw_line(res,    1,  z+2, 0,+1,y+2,'|')
res = draw_line(res,  x+2,  z+2, 0,+1,y+2,'|')
res = draw_line(res,x+z+3,    1, 0,+1,y+2,'|')
res = draw_line(res,  z+2,    1,+1, 0,x+2,'-')
res = draw_line(res,    1,  z+2,+1, 0,x+2,'-')
res = draw_line(res,    1,y+z+3,+1, 0,x+2,'-')
printf(1,"%s\n",{join(res,"\n")})
end procedure
ascii_cuboid(0,0,0)
ascii_cuboid(1,1,1)
ascii_cuboid(2,1,2)
ascii_cuboid(3,2,1)
```
Output:
``` ++
+++
++
+-+
/ /|
+-+ +
| |/
+-+
+--+
/  /|
/  / +
+--+ /
|  |/
+--+
+---+
/   /|
+---+ |
|   | +
|   |/
+---+
```

And as promised a line-by-line solution. Same output.

```with javascript_semantics
procedure cuboid(integer x,y,z)
--
--                                        +-+   -- 1) (with x -)
--                                       / /|   -- 2) (times z)
--  Output an x by y by z cube such as  +-+ +   -- 3) (with x -)
--                                      | |/    -- 4) (times y)
--                                      +-+     -- 5) (with x -)
--
--  Nb: trailing '+' shown on stage 3 can occur higher or lower.
--
integer mn = min(y,z)+1, mx = max(y,z)+1,
stage = 1, -- (1..5 as above)
pre = z+1, spc = -1, last = 1
for l=1 to y+z+3 do
integer c = "+/+|+"[stage]   -- (front/top corner/edge)
puts(1,repeat(' ',pre)&c&repeat(iff(c='+'?'-':' '),x)&c&
iff(spc>=0?repeat(' ',spc)&"|+/"[last]:"")&"\n")
pre -= pre>0   -- (shrink the initial lhs space prefix)
spc += (l<=mn)-(l>mx) -- +1 early on, -1 later, or both
stage += (c='+') + (l=z+1 or l=y+z+2) -- (can skip 2&4)
last += (last=2 or l=y+1 or l=y+z+2) -- ('|'->'+'->'/')
end for
end procedure
cuboid(0, 0, 0)
cuboid(1, 1, 1)
cuboid(2, 1, 2)
cuboid(3, 2, 1)
```

PicoLisp

Using ASCII

```(de cuboid (DX DY DZ)
(cubLine (inc DY) "+" DX "-" 0)
(for I DY
(cubLine (- DY I -1) "/" DX " " (dec I) "|") )
(cubLine 0 "+" DX "-" DY "|")
(do (- (* 4 DZ) DY 2)
(cubLine 0 "|" DX " " DY "|") )
(cubLine 0 "|" DX " " DY "+")
(for I DY
(cubLine 0 "|" DX " " (- DY I) "/") )
(cubLine 0 "+" DX "-" 0) )

(de cubLine (N C DX D DY E)
(space N)
(prin C)
(do (dec (* 9 DX)) (prin D))
(prin C)
(space DY)
(prinl E) )```
Output:
```: (cuboid 2 3 4)
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

: (cuboid 1 1 1)
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

: (cuboid 6 2 1)
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+```

Using OpenGL

Library: GLUT
```(load "@lib/openGl.l")

(setq *AngleX -26.0 *AngleY 74.0)
(setq *LastX 0 *LastY 0)

(glutInit)
(glutInitDisplayMode (| GLUT_RGBA GLUT_DOUBLE GLUT_DEPTH))
(glutInitWindowSize 512 512)
(glutInitWindowPosition 10 50)
(glutCreateWindow "PicoLisp Cube")

(glClearColor 1.0 1.0 1.0 1.0)	# The background color
(glEnable GL_DEPTH_TEST)
(glEnable GL_LIGHTING)
(glEnable GL_LIGHT0)
(glDisable GL_CULL_FACE)

(glEnable GL_BLEND)
(glBlendFunc GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA)
(glEnable GL_LINE_SMOOTH)
(glHint GL_LINE_SMOOTH_HINT GL_NICEST)
(glLineWidth 2.0)

(mouseFunc
'((Btn State X Y)
(setq *LastX X  *LastY Y) ) )

(motionFunc
'((X Y)
(inc '*AngleX (* (- Y *LastY) 1.0))
(inc '*AngleY (* (- X *LastX) 1.0))
(setq *LastX X  *LastY Y)
(glutPostRedisplay) ) )

(reshapeFunc
'((Width Height)
(glMatrixMode GL_PROJECTION)
(gluPerspective 45.0 (*/ Width 1.0 Height) 1.0 10.0)
(glMatrixMode GL_MODELVIEW)
(glViewport 0 0 Width Height) ) )

(displayPrg
(glClear (| GL_COLOR_BUFFER_BIT GL_DEPTH_BUFFER_BIT))
(glTranslatef 0.0 0.0 -3.0)
(glRotatef *AngleX 1 0 0)
(glRotatef *AngleY 0 1 0)
(glutSolidCube 1.0)

(glDisable GL_LIGHTING)
(glColor4f 0.4 0.4 0.4 1.0)
(glutWireCube 1.002)
(glEnable GL_LIGHTING)

(glFlush)
(glutSwapBuffers) )

(glutMainLoop)```

PL/M

Works with: 8080 PL/M Compiler

... under CP/M (or an emulator)

Translation of: ALGOL 68
```100H: /* DRAW SOME CUBOIDS USING ASCII ART                                  */

/* CP/M BDOS SYSTEM CALL AND I/O ROUTINES                                */
BDOS: PROCEDURE( FN, ARG );   DECLARE FN BYTE, ARG ADDRESS; GOTO 5; END;
PR\$CHAR:   PROCEDURE( C ); DECLARE C BYTE;    CALL BDOS( 2, C );    END;
PR\$NL:     PROCEDURE; CALL PR\$CHAR( 0DH ); CALL PR\$CHAR( 0AH );     END;

/* DRAWS A CUBOID STANDING ON ONE EDGE USING ASCII ART                   */
DRAW\$CUBOID: PROCEDURE( H, W, L );
DECLARE ( H, W, L ) BYTE;
DECLARE ( I, J, FACE\$WIDTH, EDGE\$POS ) BYTE;

BACKSLASH: PROCEDURE; CALL PR\$CHAR( 92 ); END;  /* PRINTS A BACKSLASH */
REPEAT\$CHAR: PROCEDURE( CH, COUNT );         /* PRINTS CH COUNT TIMES */
DECLARE ( CH, COUNT ) BYTE;
DECLARE I             BYTE;
IF COUNT > 0 THEN DO;
DO I = 1 TO COUNT; CALL PR\$CHAR( CH ); END;
END;
END REPEAT\$CHAR;
UNDERSCORES: PROCEDURE( COUNT );          /* PRINTS COUNT UNDERSCORES */
DECLARE COUNT BYTE;
CALL REPEAT\$CHAR( 95, COUNT );
END UNDERSCORES;

/* TOP LINE                                                           */
CALL REPEAT\$CHAR( ' ', L ); CALL UNDERSCORES( W + 1 ); CALL PR\$NL;
/* REST OF THE TOP FACE AND PART OF THE VISIBLE SIDE                  */
FACE\$WIDTH = 0;
EDGE\$POS   = 0;
DO I = 1 TO L;
CALL REPEAT\$CHAR( ' ', L - I );
CALL PR\$CHAR( '/' );
IF I = L THEN CALL UNDERSCORES(      W );
ELSE CALL REPEAT\$CHAR( ' ', W );
CALL PR\$CHAR( '/' );
EDGE\$POS = EDGE\$POS + 1;
IF EDGE\$POS <= H THEN DO;
/* DRAW THE BACK EDGE                                           */
FACE\$WIDTH = 2 * ( EDGE\$POS - 1 );
CALL REPEAT\$CHAR( ' ', FACE\$WIDTH );
CALL BACKSLASH;
END;
ELSE DO;
/* DRAW THE BOTTOM EDGE AND THE MORE OF THE VISIBLE SIDE        */
CALL REPEAT\$CHAR( ' ', FACE\$WIDTH + 1 );
CALL PR\$CHAR( '/' );
END;
CALL PR\$NL;
END;
/* OTHER VISIBLE FACE                                                 */
DO I = 1 TO H;
CALL REPEAT\$CHAR( ' ', I - 1 );
CALL BACKSLASH;
IF I = H THEN CALL UNDERSCORES( W );
ELSE CALL REPEAT\$CHAR( ' ', W );
CALL BACKSLASH;
EDGE\$POS = EDGE\$POS + 1;
IF EDGE\$POS <= H THEN DO;
/* DRAW THE BACK EDGE                                           */
CALL REPEAT\$CHAR( ' ', FACE\$WIDTH + 1 );
CALL BACKSLASH;
END;
ELSE DO;
/* DRAW THE BOTTOM EDGE                                         */
CALL REPEAT\$CHAR( ' ', FACE\$WIDTH );
FACE\$WIDTH = FACE\$WIDTH - 2;
CALL PR\$CHAR( '/' );
END;
CALL PR\$NL;
END;
END DRAW\$CUBOID;

CALL DRAW\$CUBOID( 3, 2, 4 );
CALL DRAW\$CUBOID( 4, 3, 2 );
CALL DRAW\$CUBOID( 2, 4, 3 );
CALL DRAW\$CUBOID( 2, 3, 4 );

EOF```
Output:
```    ___
/  /\
/  /  \
/  /    \
/__/     /
\  \    /
\  \  /
\__\/
____
/   /\
/___/  \
\   \   \
\   \   \
\   \  /
\___\/
_____
/    /\
/    /  \
/____/   /
\    \  /
\____\/
____
/   /\
/   /  \
/   /   /
/___/   /
\   \  /
\___\/
```

POV-Ray

```camera { perspective location <2.6,2.2,-4.2> look_at <0,-.5,0>
aperture .05 blur_samples 100 variance 1/100000 focal_point <2,1,-2>}

light_source{< 60,20,-20> color rgb 2}

sky_sphere { pigment{ gradient z color_map{[0 rgb 0.3][.1 rgb <.7,.8,1>][1 rgb .2]} }}

box { <0,0,0> <3,2,4>
texture {
pigment{ agate }
normal { checker }
finish { reflection {0.20 metallic 0.2} }
}
translate <-1,-.5,-2>
}
```

Processing

A cuboid in Processing is created with box(). It may be styled with stroke, fill, and lighting.

```size(500, 500, P3D);
background(0);
// position
translate(width/2, height/2, -width/2);
// optional fill and lighting colors
noStroke();
fill(192, 255, 192);
pointLight(255, 255, 255, 400, -400, 400);
// draw box
box(200, 300, 400);```

Prolog

Works with SWI-Prolog and XPCE.

```cuboid(D1,D2,D3) :-
W is D1 * 50,
H is D2 * 50,
D is D3 * 50,

new(C, window(cuboid)),

% compute the size of the window
Width is W + ceiling(sqrt(H * 48)) + 50,
Height is H +  ceiling(sqrt(H * 48)) + 50,
send(C, size, new(_,size(Width,Height))),

%compute the top-left corner of the front face of the cuboid
PX is 25,
PY is 25 + ceiling(sqrt(H * 48)),

% colors of the faces
new(C1, colour(@default, 65535, 0, 0)),
new(C2, colour(@default, 0, 65535, 0)),
new(C3, colour(@default, 0, 0, 65535)),

% the front face
new(B1, box(W, H)),
send(B1, fill_pattern, C1),
send(C, display,B1, point(PX, PY)),

% the top face
new(B2, hpara(point(PX,PY), W, D, C2)),
send(C, display, B2),

% the left face
PX1 is PX + W,
new(B3, vpara(point(PX1,PY), H, D, C3)),
send(C, display, B3),

send(C, open).

:- pce_begin_class(hpara, path, "drawing of a horizontal parallelogram").

initialise(P, Pos, Width, Height, Color) :->
send(P, send_super, initialise),
send(P, append, Pos),
H is ceiling(sqrt(Height * 48)),
get(Pos, x, X),
get(Pos, y, Y),
X1 is X + H,
Y1 is Y - H,
send(P, append, point(X1, Y1)),
X2 is X1 + Width,
send(P, append, point(X2, Y1)),
X3 is X2 - H,
send(P, append, point(X3, Pos?y)),
send(P, append, Pos),
send(P, fill_pattern, Color).

:- pce_end_class.

:- pce_begin_class(vpara, path, "drawing of a vertical parallelogram").

initialise(P, Pos, Height, Depth, Color) :->
send(P, send_super, initialise),
send(P, append, Pos),
H is ceiling(sqrt(Depth * 48)),
get(Pos, x, X),
get(Pos, y, Y),
X1 is X + H,
Y1 is Y - H,
send(P, append, point(X1, Y1)),
Y2 is Y1 + Height,
send(P, append, point(X1, Y2)),
Y3 is Y2 + H,
send(P, append, point(X, Y3)),
send(P, append, Pos),
send(P, fill_pattern, Color).

:- pce_end_class.
```
Output:
```?- cuboid(2,3,4).
true.
```

Pure Data

Requires `Gem`

```#N canvas 1 51 450 300 10;
#X obj 66 67 gemwin;
#X obj 239 148 cuboid 2 3 4;
#X obj 239 68 scale 0.3;
#X msg 66 45 lighting 1 \, create \, 1;
#X obj 61 140 world_light;
#X msg 294 90 1;
#X obj 239 90 t a b;
#X obj 239 118 accumrotate;
#X connect 2 0 3 0;
#X connect 3 0 8 0;
#X connect 4 0 0 0;
#X connect 5 0 6 0;
#X connect 7 0 9 1;
#X connect 7 0 9 2;
#X connect 7 0 9 3;
#X connect 8 0 9 0;
#X connect 8 1 7 0;
#X connect 9 0 1 0;```

Displays a rotating cuboid.

PureBasic

Using generic PureBasic 2D-library.

```Procedure Draw_a_Cuboid(Window, X,Y,Z)
w=WindowWidth(Window)
h=WindowHeight(Window)
diag.f=1.9
If Not (w And h): ProcedureReturn: EndIf
xscale.f = w/(x+z/diag)*0.98
yscale.f = h/(y+z/diag)*0.98
If xscale<yscale
Scale.f = xscale
Else
Scale = yscale
EndIf
x*Scale: Y*Scale: Z*Scale
CreateImage(0,w,h)
If StartDrawing(ImageOutput(0))
c= RGB(250, 40, 5)

;- Calculate the cones in the Cuboid
xk = w/50     : yk = h/50
x0 = Z/2 + xk : y0 = yk
x1 = x0 + X   : y1 = y0
x2 = xk       : y2 = y0 + Z/2
x3 = x2 + X   : y3 = y2
x4 = x2       : y4 = y2 + Y
x5 = x4 + X   : y5 = y4
x6 = x5 + Z/2 : y6 = y5 - Z/2

;- Draw it
LineXY(x0,y0,x1,y1,c)
LineXY(x0,y0,x2,y2,c)
LineXY(x2,y2,x3,y3,c)
LineXY(x1,y1,x3,y3,c)
LineXY(x2,y2,x4,y4,c)
LineXY(x4,y4,x5,y5,c)
LineXY(x5,y5,x4,y4,c)
LineXY(x5,y5,x6,y6,c)
LineXY(x5,y5,x3,y3,c)
LineXY(x6,y6,x1,y1,c)

;- Fill the areas
FillArea(x,y,-1,RGB(255, 0, 0))
FillArea(x,y-z/2,-1,RGB(0, 0, 255))
FillArea(x+z/2,y,-1,RGB(0, 255, 0))
StopDrawing()
EndIf
;- Update the graphic
EndProcedure

#title  = "PureBasic Cuboid"
MyWin = OpenWindow(#PB_Any, 0, 0, 200, 250, #title, #WFlags)

Repeat
WEvent = WaitWindowEvent()
If WEvent = #PB_Event_SizeWindow
Draw_a_Cuboid(MyWin, 2, 3, 4)
EndIf
Until WEvent = #PB_Event_CloseWindow

;-  Save the image?
UsePNGImageEncoder()
respons = MessageRequester("Question","Save the image?",#PB_MessageRequester_YesNo)
If respons=#PB_MessageRequester_Yes
SaveImage(0, SaveFileRequester("","","",0),#PB_ImagePlugin_PNG,9)
EndIf
```

Python

Ascii-Art

```def _pr(t, x, y, z):
txt = '\n'.join(''.join(t[(n,m)] for n in range(3+x+z)).rstrip()
for m in reversed(range(3+y+z)))
return txt

def cuboid(x,y,z):
t = {(n,m):' ' for n in range(3+x+z) for m in range(3+y+z)}
xrow = ['+'] + ['%i' % (i % 10) for i in range(x)] + ['+']
for i,ch in enumerate(xrow):
t[(i,0)] = t[(i,1+y)] = t[(1+z+i,2+y+z)] = ch
if _debug: print(_pr(t, x, y, z))
ycol = ['+'] + ['%i' % (j % 10) for j in range(y)] + ['+']
for j,ch in enumerate(ycol):
t[(0,j)] = t[(x+1,j)] = t[(2+x+z,1+z+j)] = ch
zdepth = ['+'] + ['%i' % (k % 10) for k in range(z)] + ['+']
if _debug: print(_pr(t, x, y, z))
for k,ch in enumerate(zdepth):
t[(k,1+y+k)] = t[(1+x+k,1+y+k)] = t[(1+x+k,k)] = ch

return _pr(t, x, y, z)

_debug = False
if __name__ == '__main__':
for dim in ((2,3,4), (3,4,2), (4,2,3)):
print("CUBOID%r" % (dim,), cuboid(*dim), sep='\n')
```
Output:
```CUBOID(2, 3, 4)
+01+
3  32
2  2 1
1  1  0
0  0   +
+01+   3
2  2  2
1  1 1
0  00
+01+
CUBOID(3, 4, 2)
+012+
1   13
0   0 2
+012+  1
3   3  0
2   2  +
1   1 1
0   00
+012+
CUBOID(4, 2, 3)
+0123+
2    21
1    1 0
0    0  +
+0123+  2
1    1 1
0    00
+0123+```

Library: VPython

The cuboid (otherwise known as a "box" :)

Works with: Python version 2.7.5

Short version

```from visual import *
mybox = box(pos=(0,0,0), length=4, height=2, width=3, axis=(-0.1,-0.1,0.1) )
scene.title = "VPython: cuboid"
```

Cuboid viewer

This has a lot of extras around the cuboid, so you can rotate the box (stepwise and continous), change the background, color, transparancy, material, show infos about scene and object, plus a selfrunning demo-mode that cycles thru everything.

```from __future__ import print_function, division
from visual import *
import itertools

title = "VPython: Draw a cuboid"
scene.title = title
print( "%s\n" % title )

msg = """
Drag with right mousebutton to rotate view.
Drag up+down with middle mousebutton to zoom.
Left mouseclick to show info.

Press x,X, y,Y, z,Z to rotate the box in single steps.
Press b, c,o,m to change background, color, opacity, material.
Press r,R to rotate, d,a for demo, automatic,  space to stop.
Press h to show this help,  ESC or q to quit.
"""

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

## Rotate one step per keypress:

def rotX(obj, a) :
obj.rotate( angle=a, axis=(1,0,0) )
def rotY(obj, a) :
obj.rotate( angle=a, axis=(0,1,0) )
def rotZ(obj, a) :
obj.rotate( angle=a, axis=(0,0,1) )

## Selection of background-colors:

bg_list = [color.gray(0.2), color.gray(0.4), color.gray(0.7), color.gray(0.9)]
bg = itertools.cycle(bg_list)
def backgr() :
b = next(bg)
print("BackgroundColor=",b)
scene.background = b

## Selection of colors:

col_list = [color.white, color.red,  color.orange, color.yellow,
color.green, color.blue, color.cyan,   color.magenta,
color.black]
col = itertools.cycle(col_list)
#c = col.next()
#c = next(col)
def paint(obj) :
c = next(col)
print("Color=",c)
obj.color = c

## Selection of opacity / transparancy :

opa_list = [1.0, 0.7, 0.5, 0.2]
opa = itertools.cycle(opa_list)
def solid(obj) :
o = next(opa)
print("opacity =",o)
obj.opacity = o

## Selection of materials:

mName_list = ["None",
"wood",
"rough",
"bricks",
"glass",
"earth",
"plastic",
"ice",
"diffuse",
"marble" ]
mat_list  = [ None,
materials.wood,
materials.rough,
materials.bricks,
materials.glass,
materials.earth,
materials.plastic,
materials.ice,
materials.diffuse,
materials.marble ]
mName = itertools.cycle(mName_list)
mat   = itertools.cycle(mat_list)
def surface(obj) :
mM = next(mat)
mN = next(mName)
print("Material:", mN)
obj.material = mM
obj.mat      = mN

## Selection for rotation-angle & axis :

rotAng_list = [ 0.0, 0.005, 0.0, -0.005 ]
rotDir_list = [ (1,0,0), (0,1,0), (0,0,1) ]

rotAng = itertools.cycle(rotAng_list)
rotDir = itertools.cycle(rotDir_list)

rotAn = next(rotAng)     # rotAn = 0.005
rotAx = next(rotDir)     # rotAx = (1,0,0)

def rotAngle() :
global rotAn
rotAn = next(rotAng)
print("RotateAngle=",rotAn)

def rotAxis() :
global rotAx
rotAx = next(rotDir)
print("RotateAxis=",rotAx)

## List of keypresses for demo:

#demoC_list = [ "h", "c", "a", "o", "m", "b" ]
demoCmd_list = "rcbr"+"robr"+"rmR_r?"
demoCmd = itertools.cycle(demoCmd_list)
def demoStep() :
k = next(demoCmd)
print("Demo:",k)
cmd(k)

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

def objCount():
n=0
for obj in scene.objects:
n=n+1
return n

def objInfo(obj) :
print( "\nObject:", obj )
print( "Pos:",  obj.pos,   "Size:", obj.size )
print( "Axis:", obj.axis,  "Up:",   obj.up )
print( "Color", obj.color, obj.opacity )
print( "Mat:",  obj.mat,   obj.material )

def sceneInfo(sc) :
print( "\nScene:",  sc )
print( ".width x height:",   sc.width, "x", sc.height )
print( ".range:",   sc.range, ".scale:", sc.scale )
print( ".center:",  sc.center )    # Camera
print( ".forward:", sc.forward, ".fov:", sc.fov )
print( "Mouse:",    sc.mouse.camera, "ray:", sc.mouse.ray )
print( ".ambient:", sc.ambient )
print( "Lights:",   sc.lights  )    # distant_light
print( "objects:", objCount(), scene.objects )

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

scene.width  = 600
scene.height = 400
scene.range  = 4
#scene.autocenter = True
#scene.background = color.gray(0.2)
scene.background = next(bg)

autoDemo = -1

print( msg )

## Create cuboid (aka "box") :

# c = box()     # using default-values --> cube
# c = box(pos=(0,0,0), length=4, height=2, width=3, axis=(-0.1,-0.1,0.1) )
##c  = box(pos =( 0.0, 0.0, 0.0 ),
##         size=( 4, 2, 3 ),            # L,H,W
##         axis=( 1.0, 0.0, 0.0 ),
##         up  =( 0.0, 1.0, 0.0 ),
##         color   = color.orange,
##         opacity = 1.0,
##         material= materials.marble
##         )
c  = box(pos =( 0.0, 0.0, 0.0 ),
size=( 4, 2, 3 ),            # L,H,W
axis=( 1.0, 0.0, 0.0 ),
up  =( 0.0, 1.0, 0.0 )
)
print("Box:", c)
paint(c)     # c.color    = color.red
solid(c)     # c.opacity  = 1.0
surface(c)   # c.material = materials.marble

rotX(c,0.4)         # rotate box, to bring three faces into view
rotY(c,0.6)

#sceneInfo(scene)
#objInfo(c)
print("\nPress 'a' to start auto-running demo.")

#...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+...

## Processing of input:

cCount = 0
def click():
global cCount
cCount=cCount+1
sceneInfo(scene)
objInfo(c)
scene.bind( 'click', click )

def keyInput():
key = scene.kb.getkey()
print( 'Key: "%s"' % key )

if ( (key == 'esc') or (key == 'q') ) :
print( "Bye!" )
exit(0)
else :
cmd(key)
scene.bind('keydown', keyInput)

def cmd(key):
global autoDemo
if (key == 'h') :  print( msg )
if (key == '?') :  print( msg )
if (key == 's') :  sceneInfo(scene)
if (key == 'i') :  objInfo(c)

if (key == 'x') :  rotX(c, 0.1)
if (key == 'X') :  rotX(c,-0.1)
if (key == 'y') :  rotY(c, 0.1)
if (key == 'Y') :  rotY(c,-0.1)
if (key == 'z') :  rotZ(c, 0.1)
if (key == 'Z') :  rotZ(c,-0.1)

if (key == 'c') :  paint(c)
if (key == 'o') :  solid(c)
if (key == 'm') :  surface(c)

if (key == 'b') :  backgr()
if (key == 'r') :  rotAngle()
if (key == 'R') :  rotAxis()
if (key == 'd') :  demoStep()
if (key == 'a') :  autoDemo = -autoDemo
if (key == 'A') :  autoDemo = -autoDemo
if (key == ' ') :  stop()

def stop() :
global autoDemo, rotAn
autoDemo = -1
while rotAn <> 0 :
rotAngle()
print("**Stop**")

r=100
t=0
while True:                 # Animation-loop
rate(50)
t = t+1
if rotAn != 0 :
c.rotate( angle=rotAn, axis=rotAx )

if t>=r :
t=0
if autoDemo>0 :
demoStep()
```

Quackery

```  [ \$ "turtleduck.qky" loadfile ] now!

[ ' [ 192 192 192 ]
fill
[ 2 times
[ 300 1 walk
1 4 turn
400 1 walk
1 4 turn ] ] ]  is front  ( --> )

[ ' [ 128 128 128 ]
fill
[ 2 times
[ 300 1 walk
-1 3 turn
200 1 walk
-1 6 turn ] ] ] is top    ( --> )

[ ' [ 64 64 64 ]
fill
[ 1 4 turn
2 times
[ 400 1 walk
5 12 turn
200 1 walk
1 12 turn ]
-1 4 turn ] ]     is side   ( --> )

[ front top side ]      is cuboid ( --> )

turtle
-1 4 turn
120 1 fly
1 4 turn
cuboid
1 4 turn
120 1 fly
-1 4 turn```
Output:

Racket

```#lang racket/gui
(require sgl/gl)

; Macro to delimit and automatically end glBegin - glEnd contexts.
(define-syntax-rule (gl-begin-end Vertex-Mode statement ...)
(let () (glBegin Vertex-Mode) statement ... (glEnd)))

(define (resize w h)
(glViewport 0 0 w h))

(define (draw-opengl x y z)
(glClearColor 0.0 0.0 0.0 0.0)
(glEnable GL_DEPTH_TEST)
(glClear GL_COLOR_BUFFER_BIT)
(glClear GL_DEPTH_BUFFER_BIT)

(define max-axis (add1 (max x y z)))

(glMatrixMode GL_PROJECTION)
(glOrtho (/ (- max-axis) 2) max-axis (/ (- max-axis) 2) max-axis (/ (- max-axis) 2) max-axis)
(glMatrixMode GL_MODELVIEW)
(glRotatef -45 1.0 0.0 0.0)
(glRotatef 45 0.0 1.0 0.0)

(glColor3f 0 0 1)
(glVertex3d x 0.0 z)
(glVertex3d x y z)
(glVertex3d x y 0.0)
(glVertex3d x 0.0 0.0))
(glColor3f 1 0 0)
(glVertex3d x 0.0 0.0)
(glVertex3d x y 0.0)
(glVertex3d 0.0 y 0.0)
(glVertex3d 0.0 0.0 0.0))
(glColor3f 0 1 0)
(glVertex3d x y 0.0)
(glVertex3d x y z)
(glVertex3d 0.0 y z)
(glVertex3d 0.0 y 0.0)))

(define my-canvas%
(class* canvas% ()
(inherit with-gl-context swap-gl-buffers)
(init-field (x 2) (y 3) (z 4))

(define/override (on-paint)
(with-gl-context
(lambda ()
(draw-opengl x y z)
(swap-gl-buffers))))

(define/override (on-size width height)
(with-gl-context
(lambda ()
(resize width height))))

(super-instantiate () (style '(gl)))))

(define win (new frame% (label "Racket Draw a cuboid") (min-width 300) (min-height 300)))
(define gl  (new my-canvas% (parent win) (x 2) (y 3) (z 4)))

(send win show #t)
```

Raku

(formerly Perl 6)

Works with: moar version 2015-11-27
```sub braille-graphics (%a) {
my (\$ylo, \$yhi, \$xlo, \$xhi);
for %a.keys -> \$y {
\$ylo min= +\$y; \$yhi max= +\$y;
for %a{\$y}.keys -> \$x {
\$xlo min= +\$x; \$xhi max= +\$x;
}
}

for \$ylo, \$ylo + 4 ...^ * > \$yhi -> \y {
for \$xlo, \$xlo + 2 ...^ * > \$xhi -> \x {
my \$cell = 0x2800;
\$cell += 1   if %a{y + 0}{x + 0};
\$cell += 2   if %a{y + 1}{x + 0};
\$cell += 4   if %a{y + 2}{x + 0};
\$cell += 8   if %a{y + 0}{x + 1};
\$cell += 16  if %a{y + 1}{x + 1};
\$cell += 32  if %a{y + 2}{x + 1};
\$cell += 64  if %a{y + 3}{x + 0};
\$cell += 128 if %a{y + 3}{x + 1};
print chr(\$cell);
}
print "\n";
}
}

sub cuboid ( [\$x, \$y, \$z] ) {
my \x = \$x * 4;
my \y = \$y * 4;
my \z = \$z * 2;
my %t;
sub horz (\$X, \$Y) { %t{\$Y     }{\$X + \$_} = True for 0 .. x }
sub vert (\$X, \$Y) { %t{\$Y + \$_}{\$X     } = True for 0 .. y }
sub diag (\$X, \$Y) { %t{\$Y - \$_}{\$X + \$_} = True for 0 .. z }

horz(0, z); horz(z, 0); horz(  0, z+y);
vert(0, z); vert(x, z); vert(z+x,   0);
diag(0, z); diag(x, z); diag(  x, z+y);

say "[\$x, \$y, \$z]";
braille-graphics %t;
}

cuboid \$_ for [2,3,4], [3,4,2], [4,2,3], [1,1,1], [8,1,1], [1,8,1], [1,1,8];
```
Output:

Retro

```3 elements d h w

: spaces  ( n- )  &space times ;
: ---     ( -  )  '+ putc @w 2 * [ '- putc ] times '+ putc ;
: ?       ( n- )  @h <> [ '| ] [ '+ ] if ;
: slice   ( n- )  '/ putc @w 2 * spaces '/ putc @d swap - dup spaces ? putc cr ;
: |...|/  ( -  )  @h [ '| putc @w 2 * spaces '| putc 1- spaces '/ putc cr ] iterd ;
: face    ( -  )
---    @w 1+ spaces '/ putc cr
|...|/
---    cr ;

: cuboid  ( whd- )
!d !h !w cr
@d 1+ spaces --- cr
@d [ dup spaces slice ] iterd
face ;

2 3 4 cuboid```
Output:
```     +----+
/    /|
/    / |
/    /  |
/    /   +
+----+   /
|    |  /
|    | /
|    |/
+----+
```

REXX

```/*REXX program displays a cuboid  (dimensions, if specified, must be positive integers).*/
parse arg x  y  z  indent .                      /*x, y, z:  dimensions and indentation.*/
x=p(x 2);  y=p(y 3);  z=p(z 4);  in=p(indent 0)  /*use the defaults if not specified.   */
pad=left('', in)                                 /*indentation must be non-negative.    */
call show  y+2  ,        ,     "+-"
do j=1  for y;   call show  y-j+2,     j-1,     "/ |"     ;       end  /*j*/
call show       ,     y  ,     "+-|"
do z-1;          call show       ,     y  ,     "| |"     ;       end  /*z-1*/
call show       ,     y  ,     "| +"
do j=1  for y;   call show       ,     y-j,     "| /"     ;       end  /*j*/
call show       ,        ,     "+-"
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
p:     return word( arg(1), 1)                   /*pick the first number or word in list*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
show:  parse arg #,\$,a 2 b 3 c 4                 /*get the arguments (or parts thereof).*/
say pad || right(a, p(# 1) )copies(b, 4*x)a || right(c, p(\$ 0) + 1);         return
```

output   when using the input of:   2   3   4   35

```                                       +--------+
/        /|
/        / |
/        /  |
+--------+   |
|        |   |
|        |   |
|        |   |
|        |   +
|        |  /
|        | /
|        |/
+--------+
```

output   when using the input of:   1   1   1

```  +----+
/    /|
+----+ |
|    | +
|    |/
+----+
```

output   when using the input of:   6   2   1   25

```                            +------------------------+
/                        /|
/                        / |
+------------------------+  |
|                        |  +
|                        | /
|                        |/
+------------------------+
```

Ring

```# Project : Draw a cuboid

paint = null

new qapp
{
win1 = new qwidget() {
setwindowtitle("Draw a cuboid")
setgeometry(100,100,500,600)
label1 = new qlabel(win1) {
setgeometry(10,10,400,400)
settext("")
}
new qpushbutton(win1) {
setgeometry(150,500,100,30)
settext("draw")
setclickevent("draw()")
}
show()
}
exec()
}

func draw
p1 = new qpicture()
color = new qcolor() {
setrgb(0,0,255,255)
}
pen = new qpen() {
setcolor(color)
setwidth(1)
}
paint = new qpainter() {
begin(p1)
setpen(pen)

color = new qcolor()
color.setrgb(255,0,0,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[200,200],[300,200],[300,100],[200,100]], 0)
color = new qcolor()
color.setrgb(0,255,0,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[200,100],[250,50],[350,50],[300,100]], 0)
color = new qcolor()
color.setrgb(0, 0, 255,255)
mybrush = new qbrush() {setstyle(1) setcolor(color)}
setbrush(mybrush)
paint.drawPolygon([[350,50],[350,150],[300,200],[300,100]], 0)

endpaint()
}
label1 { setpicture(p1) show() }
return```

Output:

Ruby

```X, Y, Z = 6, 2, 3
DIR = {"-" => [1,0], "|" => [0,1], "/" => [1,1]}

def cuboid(nx, ny, nz)
puts "cuboid %d %d %d:" % [nx, ny, nz]
x, y, z = X*nx, Y*ny, Z*nz
area = Array.new(y+z+1){" " * (x+y+1)}
draw_line = lambda do |n, sx, sy, c|
dx, dy = DIR[c]
(n+1).times do |i|
xi, yi = sx+i*dx, sy+i*dy
area[yi][xi] = (area[yi][xi]==" " ? c : "+")
end
end
nz    .times {|i| draw_line[x,     0,   Z*i, "-"]}
(ny+1).times {|i| draw_line[x,   Y*i, z+Y*i, "-"]}
nx    .times {|i| draw_line[z,   X*i,     0, "|"]}
(ny+1).times {|i| draw_line[z, x+Y*i,   Y*i, "|"]}
nz    .times {|i| draw_line[y,     x,   Z*i, "/"]}
(nx+1).times {|i| draw_line[y,   X*i,     z, "/"]}
puts area.reverse
end

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)
```
Output:
```cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
cuboid 1 1 1:
+-----+
/     /|
+-----+ |
|     | +
|     |/
+-----+
cuboid 6 2 1:
+-----+-----+-----+-----+-----+-----+
/     /     /     /     /     /     /|
+-----+-----+-----+-----+-----+-----+ |
/     /     /     /     /     /     /| +
+-----+-----+-----+-----+-----+-----+ |/
|     |     |     |     |     |     | +
|     |     |     |     |     |     |/
+-----+-----+-----+-----+-----+-----+
cuboid 2 4 1:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
/     /     /| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
```

Scala

Java Swing Interoperability

```import java.awt._

import javax.swing._

import scala.math.{Pi, cos, sin}

object Cuboid extends App {
SwingUtilities.invokeLater(() => {

class Cuboid extends JPanel {
private val nodes: Array[Array[Double]] =
Array(Array(-1, -1, -1), Array(-1, -1, 1), Array(-1, 1, -1), Array(-1, 1, 1),
Array(1, -1, -1), Array(1, -1, 1), Array(1, 1, -1), Array(1, 1, 1))
private var mouseX, prevMouseX, mouseY, prevMouseY: Int = _

private def edges =
Seq(Seq(0, 1), Seq(1, 3), Seq(3, 2), Seq(2, 0),
Seq(4, 5), Seq(5, 7), Seq(7, 6), Seq(6, 4),
Seq(0, 4), Seq(1, 5), Seq(2, 6), Seq(3, 7))

override def paintComponent(gg: Graphics): Unit = {
val g = gg.asInstanceOf[Graphics2D]

def drawCube(g: Graphics2D): Unit = {
g.translate(getWidth / 2, getHeight / 2)
for (edge <- edges) {
nodes(edge(1))(0).round.toInt, nodes(edge(1))(1).round.toInt)
}
for (node <- nodes) g.fillOval(node(0).round.toInt - 4, node(1).round.toInt - 4, 8, 8)
}

super.paintComponent(gg)
g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON)
drawCube(g)
}

private def scale(sx: Double, sy: Double, sz: Double): Unit = {
for (node <- nodes) {
node(0) *= sx
node(1) *= sy
node(2) *= sz
}
}

private def rotateCube(angleX: Double, angleY: Double): Unit = {
val (sinX, cosX, sinY, cosY) = (sin(angleX), cos(angleX), sin(angleY), cos(angleY))
for (node <- nodes) {
val (x, y, z) = (node.head, node(1), node(2))
node(0) = x * cosX - z * sinX
node(2) = z * cosX + x * sinX
node(1) = y * cosY - node(2) * sinY
node(2) = node(2) * cosY + y * sinY
}
}

override def mousePressed(e: MouseEvent): Unit = {
mouseX = e.getX
mouseY = e.getY
}
})

override def mouseDragged(e: MouseEvent): Unit = {
prevMouseX = mouseX
prevMouseY = mouseY
mouseX = e.getX
mouseY = e.getY
rotateCube((mouseX - prevMouseX) * 0.01, (mouseY - prevMouseY) * 0.01)
repaint()
}
})

scale(80, 120, 160)
rotateCube(Pi / 5, Pi / 9)
setPreferredSize(new Dimension(640, 640))
setBackground(Color.white)
}

new JFrame("Cuboid") {
pack()
setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE)
setLocationRelativeTo(null)
setResizable(false)
setVisible(true)
}
})
}
```

Sidef

Translation of: Ruby
```const dirs = Hash("-" => [1,0], "|" => [0,1], "/" => [1,1])

func cuboid(nx, ny, nz) {
say("cuboid %d %d %d:" % [nx, ny, nz])
var(x, y, z) = (8*nx, 2*ny, 4*nz)
var area = []
var line = func(n, sx, sy, c) {
var(dx, dy) = dirs{c}...
for i (0..n) {
var (xi, yi) = (sx + i*dx, sy + i*dy)
area[yi] \\= [" "]*(x+y+1)
area[yi][xi] = (area[yi][xi] == " " ? c : '+')
}
}

0 .. nz-1 -> each {|i| line(x,       0,     4*i, "-") }
0 .. ny   -> each {|i| line(x,     2*i, z + 2*i, "-") }
0 .. nx-1 -> each {|i| line(z,     8*i,       0, "|") }
0 .. ny   -> each {|i| line(z, x + 2*i,     2*i, "|") }
0 .. nz-1 -> each {|i| line(y,       x,     4*i, "/") }
0 .. nx   -> each {|i| line(y,     8*i,       z, "/") }

area.reverse.each { |line|
say line.join('')
}
}

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)
```

A faster approach:

```func cuboid (x=1,y=1,z=1,s=' ',c='+',h='-',v='|',d='/') {
say("cuboid %d %d %d:" % (x, y, z))
' ' * z+1 + c + h*x + c -> say

{ |i|
' ' * (z - i + 1) + d + s*x + d +
(s * (i - (i > y ? i-y : 1))) +
(i - 1 == y ? c : (i > y ? d : v)) -> say
}.for(1..z)

c + h*x + c + (s * (z < y ? z : y) +
(z < y ? v : (z == y ? c : d))) -> say

{ |i|
v + s*x + v + (z > y
? (i >= z ? (s*x + c) : (s * y-i + d))
: (y - i > z
? (s * z + v)
: (s * y-i + (y-i == z ? c : d))
)
) -> say;
}.for(1..y)

c + h*x + c -> say
}

cuboid(2, 3, 4)
cuboid(1, 1, 1)
cuboid(6, 2, 1)
cuboid(2, 4, 1)
```
Output:
```cuboid 2 3 4:
+--+
/  /|
/  / |
/  /  |
/  /   +
+--+   /
|  |  /
|  | /
|  |/
+--+
cuboid 1 1 1:
+-+
/ /|
+-+ +
| |/
+-+
cuboid 6 2 1:
+------+
/      /|
+------+ |
|      | +
|      |/
+------+
cuboid 2 4 1:
+--+
/  /|
+--+ |
|  | |
|  | |
|  | +
|  |/
+--+```

Tcl

Library: Tk
Library: Tcllib (Package: math::linearalgebra)
Library: Tcllib (Package: math::constants)
```package require Tcl 8.5
package require Tk
package require math::linearalgebra
package require math::constants

# Helper for constructing a rectangular face in 3D
proc face {px1 py1 pz1 px2 py2 pz2 px3 py3 pz3 px4 py4 pz4 color} {
set centroidX [expr {(\$px1+\$px2+\$px3+\$px4)/4.0}]
set centroidY [expr {(\$py1+\$py2+\$py3+\$py4)/4.0}]
set centroidZ [expr {(\$pz1+\$pz2+\$pz3+\$pz4)/4.0}]
list [list \
[list [expr {double(\$px1)}] [expr {double(\$py1)}] [expr {double(\$pz1)}]] \
[list [expr {double(\$px2)}] [expr {double(\$py2)}] [expr {double(\$pz2)}]] \
[list [expr {double(\$px3)}] [expr {double(\$py3)}] [expr {double(\$pz3)}]] \
[list [expr {double(\$px4)}] [expr {double(\$py4)}] [expr {double(\$pz4)}]]] \
[list \$centroidX \$centroidY \$centroidZ] \
\$color
}

# How to make a cuboid of given size at the origin
proc makeCuboid {size} {
lassign \$size x y z
list \
[face  0  0  0   0 \$y  0  \$x \$y  0  \$x  0  0  "#800000"] \
[face  0  0  0   0 \$y  0   0 \$y \$z   0  0 \$z  "#ff8080"] \
[face  0  0  0  \$x  0  0  \$x  0 \$z   0  0 \$z  "#000080"] \
[face \$x  0  0  \$x \$y  0  \$x \$y \$z  \$x  0 \$z  "#008000"] \
[face  0 \$y  0  \$x \$y  0  \$x \$y \$z   0 \$y \$z  "#80ff80"] \
[face  0  0 \$z  \$x  0 \$z  \$x \$y \$z   0 \$y \$z  "#8080ff"]
}

# Project a shape onto a surface (Tk canvas); assumes that the shape's faces
# are simple and non-intersecting (i.e., it sorts by centroid z-order).
proc drawShape {surface shape} {
global projection
lassign \$projection pmat poff
lassign \$poff px py pz
foreach side \$shape {
lassign \$side points centroid color
set pc [::math::linearalgebra::matmul \$pmat \$centroid]
lappend sorting [list [expr {[lindex \$pc 2]+\$pz}] \$points \$color]
}
foreach side [lsort -real -decreasing -index 0 \$sorting] {
lassign \$side sortCriterion points color
set plotpoints {}
foreach p \$points {
set p [::math::linearalgebra::matmul \$pmat \$p]
lappend plotpoints \
[expr {[lindex \$p 0]+\$px}] [expr {[lindex \$p 1]+\$py}]
}
\$surface create poly \$plotpoints -outline {} -fill \$color
}
}

# How to construct the projection transform.
# This is instead of using a hokey hard-coded version
namespace eval transform {
namespace import ::math::linearalgebra::*
::math::constants::constants pi
proc make {angle scale offset} {
variable pi
set c [expr {cos(\$angle*\$pi/180)}]
set s [expr {sin(\$angle*\$pi/180)}]
set ms [expr {-\$s}]
set rotX [list {1.0 0.0 0.0} [list 0.0 \$c \$ms] [list 0.0 \$s \$c]]
set rotY [list [list \$c 0.0 \$s] {0.0 1.0 0.0} [list \$ms 0.0 \$c]]
set rotZ [list [list \$c \$s 0.0] [list \$ms \$c 0.0] {0.0 0.0 1.0}]
set mat [scale \$scale [mkIdentity 3]]
set mat [matmul [matmul [matmul \$mat \$rotX] \$rotY] \$rotZ]
return [list \$mat \$offset]
}
}
### End of definitions

# Put the pieces together
pack [canvas .c -width 400 -height 400]
set cuboid [makeCuboid {2 3 4}]
set projection [transform::make 15 50 {100 100 100}]
drawShape .c \$cuboid
```

This becomes more engaging if the drawing is animated with a final driver piece like this (the definitions part of the code is identical to above):

```pack [canvas .c -width 400 -height 400]
set cuboid [makeCuboid {2 3 4}]
wm protocol . WM_DELETE_WINDOW { exit }
while 1 {
incr i
.c delete all
set projection [transform::make \$i 40 {150 150 100}]
drawShape .c \$cuboid
update
after 50
}
```

VBScript

Translation of: Ruby
```x = 6 : y = 2 : z = 3

Sub cuboid(nx, ny, nz)
WScript.StdOut.WriteLine "Cuboid " & nx & " " & ny & " " & nz & ":"
lx = X * nx : ly = y * ny : lz = z * nz

'define the array
Dim area(): ReDim area(ly+lz, lx+ly)
For i = 0 to ly+lz
For j = 0 to lx+ly : area(i,j) = " " : Next
Next

'drawing lines
For i = 0 to nz-1 : drawLine area, lx,      0,    Z*i, "-" : Next
For i = 0 to ny   : drawLine area, lx,    y*i, lz+y*i, "-" : Next
For i = 0 to nx-1 : drawLine area, lz,    x*i,      0, "|" : Next
For i = 0 to ny   : drawLine area, lz, lx+y*i,    y*i, "|" : Next
For i = 0 to nz-1 : drawLine area, ly,     lx,    z*i, "/" : Next
For i = 0 to nx   : drawLine area, ly,    x*i,     lz, "/" : Next

'output the cuboid (in reverse)
For i = UBound(area,1) to 0 Step -1
linOut = ""
For j = 0 to UBound(area,2) : linOut = linOut & area(i,j) : Next
WScript.StdOut.WriteLine linOut
Next
End Sub

Sub drawLine(arr, n, sx, sy, c)
Select Case c
Case "-"
dx = 1 : dy = 0
Case "|"
dx = 0 : dy = 1
Case "/"
dx = 1 : dy = 1
End Select
For i = 0 to n
xi = sx + (i * dx) : yi = sy + (i * dy)
If arr(yi, xi) = " " Then
arr(yi, xi) = c
Else
arr(yi, xi) = "+"
End If
Next
End Sub

cuboid 2,3,4
```
Output:
```Cuboid 2 3 4:
+-----+-----+
/     /     /|
+-----+-----+ |
/     /     /| +
+-----+-----+ |/|
/     /     /| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/|
|     |     |/| + |
+-----+-----+ |/| +
|     |     | + |/
|     |     |/| +
+-----+-----+ |/
|     |     | +
|     |     |/
+-----+-----+
```

Wren

Translation of: Go
Library: Wren-fmt
```import "./fmt" for Fmt

var cubLine = Fn.new { |n, dx, dy, cde|
Fmt.write("\$*s", n + 1, cde[0])
for (d in 9*dx - 1...0) System.write(cde[1])
System.write(cde[0])
Fmt.print("\$*s", dy + 1, cde[2..-1])
}

var cuboid = Fn.new { |dx, dy, dz|
Fmt.print("cuboid \$d \$d \$d:", dx, dy, dz)
cubLine.call(dy+1, dx, 0, "+-")
for (i in 1..dy) cubLine.call(dy-i+1, dx, i-1, "/ |")
cubLine.call(0, dx, dy, "+-|")
for (i in 4*dz - dy - 2...0) cubLine.call(0, dx, dy, "| |")
cubLine.call(0, dx, dy, "| +")
for (i in 1..dy) cubLine.call(0, dx, dy-i, "| /")
cubLine.call(0, dx, 0, "+-\n")
}

cuboid.call(2, 3, 4)
cuboid.call(1, 1, 1)
cuboid.call(6, 2, 1)
```
Output:
```cuboid 2 3 4:
+-----------------+
/                 /|
/                 / |
/                 /  |
+-----------------+   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   |
|                 |   +
|                 |  /
|                 | /
|                 |/
+-----------------+

cuboid 1 1 1:
+--------+
/        /|
+--------+ |
|        | |
|        | +
|        |/
+--------+

cuboid 6 2 1:
+-----------------------------------------------------+
/                                                     /|
/                                                     / |
+-----------------------------------------------------+  |
|                                                     |  +
|                                                     | /
|                                                     |/
+-----------------------------------------------------+
```

X86 Assembly

Sixty bytes does it.

```      1                                  ;Assemble with: tasm, tlink /t
2     0000                                 .model  tiny
3     0000                                 .code
4                                          .386
5                                          org     100h
6                                  ;assume: ax=0000h, bx=0000h, cx=00ff, and
7                                  ; direction bit is clear (so di increments)
8                                                                  ;                  ____
9           =0050                  X0      equ     80              ;                 /   /|
10           =0050                  Y0      equ     80              ;                /   / |
11           =0050                  wide    equ     2*40            ;         X0,Y0 +---+  |
12           =0064                  tall    equ     3*40*200/240    ;               |   |  |
13           =0035                  deep    equ     4*40/3          ;               |   | /
14                                                                  ;               |___|/
15
16     0100  B0 13                  start:  mov     al, 13h         ;set 320x200x8 graphic screen
17     0102  CD 10                          int     10h
18     0104  68 A000                        push    0A000h          ;point es to graphic memory segment
19     0107  07                             pop     es
20
21                                  ;Draw front of cuboid using horizontal lines
22     0108  B3 64                          mov     bl, tall
23     010A  BF E150                        mov     di, X0+(Y0+tall)*320 ;set pen at lower-left corner
24     010D  B0 04                          mov     al, 4           ;use red ink
25     010F  B1 50                  dc10:   mov     cl, wide        ;draw horizontal line
26     0111  F3> AA                         rep     stosb           ;es:[di++], al; cx--
27     0113  81 EF 0190                     sub     di, wide+320    ;move up to start of next line
28     0117  4B                             dec     bx              ;at top of face?
29     0118  75 F5                          jne     dc10            ;loop if not
30
31     011A  B3 35                          mov     bl, deep
32                                  ;Draw top using horizontal lines
33     011C  B0 02                  dc20:   mov     al, 2           ;use green ink
34     011E  B1 50                          mov     cl, wide        ;draw horizontal line
35     0120  F3> AA                         rep     stosb           ;es:[di++], al; cx--
36
37                                  ;Draw side using vertical lines
38     0122  B0 01                          mov     al, 1           ;use blue ink
39     0124  B1 64                          mov     cl, tall        ;draw vertical line
40     0126  AA                     dc30:   stosb                   ;es:[di++], al
41     0127  81 C7 013F                     add     di, 320-1       ;move down a pixel
42     012B  E2 F9                          loop    dc30
43
44     012D  81 EF 7E8F                     sub     di, wide+(tall+1)*320-1 ;move to start of next top line
45     0131  4B                             dec     bx              ;at deep limit?
46     0132  75 E8                          jne     dc20            ;loop if not
47
48     0134  CD 16                          int     16h             ;wait for keystroke (ah=0)
49     0136  B8 0003                        mov     ax, 0003h       ;restore normal text-mode screen
50     0139  CD 10                          int     10h
52
53                                          end     start
```
Output:

XPL0

```include c:\cxpl\codes;                  \intrinsic 'code' declarations
real X, Y, Z, Farthest;                 \arrays: 3D coordinates of vertices
int  I, J, K, SI, Segment;
def  Size=50.0, Sz=0.008, Sx=-0.013;    \drawing size and tumbling speeds
[X:= [-2.0, +2.0, +2.0, -2.0,  -2.0, +2.0, +2.0, -2.0];
Y:= [-1.5, -1.5, +1.5, +1.5,  -1.5, -1.5, +1.5, +1.5];
Z:= [-1.0, -1.0, -1.0, -1.0,  +1.0, +1.0, +1.0, +1.0];
Segment:= [0,1, 1,2, 2,3, 3,0, 4,5, 5,6, 6,7, 7,4, 0,4, 1,5, 2,6, 3,7];
SetVid(\$101);                           \set 640x480 graphics with 256 colors
repeat  Farthest:= 0.0;                 \find the farthest vertex
for I:= 0 to 8-1 do
if Z(I) > Farthest then [Farthest:= Z(I);  SI:= I];
Clear;                          \erase screen
for I:= 0 to 2*12-1 do          \for all the vertices...
[J:= Segment(I);  I:= I+1;  \get vertex number
Move(fix(X(J)*Size)+640/2, fix(Y(J)*Size)+480/2);
K:= Segment(I);
Line(fix(X(K)*Size)+640/2, fix(Y(K)*Size)+480/2,
if J=SI ! K=SI then \$F009 \dashed blue\ else \$C \red\);
];
Sound(0, 1, 1);                 \delay 1/18 second to prevent flicker
for I:= 0 to 8-1 do
[X(I):= X(I) + Y(I)*Sz;     \rotate vertices in X-Y plane
Y(I):= Y(I) - X(I)*Sz;
Y(I):= Y(I) + Z(I)*Sx;     \rotate vertices in Y-Z plane
Z(I):= Z(I) - Y(I)*Sx;
];
until KeyHit;                           \run until a key is struck
SetVid(3);                              \restore normal text mode (for DOS)
]```

Zig

Translation of: Factor
Library: raylib
```const std = @import("std");
const c = @cImport({
@cInclude("raylib.h");
});

pub fn main() !void {
c.SetConfigFlags(c.FLAG_WINDOW_RESIZABLE | c.FLAG_VSYNC_HINT);
c.InitWindow(600, 480, "cuboid");
defer c.CloseWindow();

const camera = c.Camera3D{
.position = .{ .x = 4.5, .y = 4.5, .z = 4.5 },
.target = .{ .x = 0, .y = 0, .z = 0 },
.up = .{ .x = 0, .y = 1, .z = 0 },
.fovy = 45.0,
.projection = c.CAMERA_PERSPECTIVE,
};

c.SetTargetFPS(60);

while (!c.WindowShouldClose()) {
c.BeginDrawing();
defer c.EndDrawing();

c.ClearBackground(c.BLACK);

{
c.BeginMode3D(camera);
defer c.EndMode3D();

c.DrawCubeWires(.{ .x = 0, .y = 0, .z = 0 }, 2, 3, 4, c.LIME);
}
}
}
```

zkl

Draws a wire frame PPM image, no hidden/dotted lines.
Uses the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

```var [const] M=50.0;
fcn cuboid(w,h,z){
w*=M; h*=M; z*=M; // relative to abs dimensions
bitmap:=PPM(400,400);

clr:=0xff0000;  // red facing rectangle
bitmap.line(0,0, w,0, clr); bitmap.line(0,0, 0,h, clr);
bitmap.line(0,h, w,h, clr); bitmap.line(w,0, w,h, clr);

r,a:=(w+z).toFloat().toPolar(0);  // relative to the origin
clr=0xff; // blue right side of cuboid
bitmap.line(w,0, a,b, clr); bitmap.line(a,b, c,d, clr);
bitmap.line(w,h, c,d, clr);

e:=c-w;
clr=0xfff00; // green top of cuboid
bitmap.line(0,h, e,d, clr); bitmap.line(c,d, e,d, clr);

bitmap.write(File("foo.ppm","wb"));
}(2,3,4);```
Output:

ZX Spectrum Basic

```10 LET width=50: LET height=width*1.5: LET depth=width*2
20 LET x=80: LET y=10
30 PLOT x,y
40 DRAW 0,height: DRAW width,0: DRAW 0,-height: DRAW -width,0: REM Front
50 PLOT x,y+height: DRAW depth/2,height: DRAW width,0: DRAW 0,-height: DRAW -width,-height
60 PLOT x+width,y+height: DRAW depth/2,height
```