Combinations
You are encouraged to solve this task according to the task description, using any language you may know.
- Task
Given non-negative integers m and n, generate all size m combinations of the integers from 0 (zero) to n-1 in sorted order (each combination is sorted and the entire table is sorted).
- Example
3 comb 5 is:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
If it is more "natural" in your language to start counting from 1 (unity) instead of 0 (zero),
the combinations can be of the integers from 1 to n.
- See also
The number of samples of size k from n objects.
With combinations and permutations generation tasks.
Order Unimportant Order Important Without replacement Task: Combinations Task: Permutations With replacement Task: Combinations with repetitions Task: Permutations with repetitions
11l
F comb(arr, k)
I k == 0
R [[Int]()]
[[Int]] result
L(x) arr
V i = L.index
L(suffix) comb(arr[i+1..], k-1)
result [+]= x [+] suffix
R result
print(comb([0, 1, 2, 3, 4], 3))
- Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
360 Assembly
Nice algorithm without recursion borrowed from C. Recursion is elegant but iteration is efficient. For maximum compatibility, this program uses only the basic instruction set (S/360) and two ASSIST macros (XDECO, XPRNT) to keep the code as short as possible.
* Combinations 26/05/2016
COMBINE CSECT
USING COMBINE,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) "
ST R15,8(R13) "
LR R13,R15 "
SR R3,R3 clear
LA R7,C @c(1)
LH R8,N v=n
LOOPI1 STC R8,0(R7) do i=1 to n; c(i)=n-i+1
LA R7,1(R7) @c(i)++
BCT R8,LOOPI1 next i
LOOPBIG LA R10,PG big loop {------------------
LH R1,N n
LA R7,C-1(R1) @c(i)
LH R6,N i=n
LOOPI2 IC R3,0(R7) do i=n to 1 by -1; r2=c(i)
XDECO R3,PG+80 edit c(i)
MVC 0(2,R10),PG+90 output c(i)
LA R10,3(R10) @pgi=@pgi+3
BCTR R7,0 @c(i)--
BCT R6,LOOPI2 next i
XPRNT PG,80 print buffer
LA R7,C @c(1)
LH R8,M v=m
LA R6,1 i=1
LOOPI3 LR R1,R6 do i=1 by 1; r1=i
IC R3,0(R7) c(i)
CR R3,R8 while c(i)>=m-i+1
BL ELOOPI3 leave i
CH R6,N if i>=n
BNL ELOOPBIG exit loop
BCTR R8,0 v=v-1
LA R7,1(R7) @c(i)++
LA R6,1(R6) i=i+1
B LOOPI3 next i
ELOOPI3 LR R1,R6 i
LA R4,C-1(R1) @c(i)
IC R3,0(R4) c(i)
LA R3,1(R3) c(i)+1
STC R3,0(R4) c(i)=c(i)+1
BCTR R7,0 @c(i)--
LOOPI4 CH R6,=H'2' do i=i to 2 by -1
BL ELOOPI4 leave i
IC R3,1(R7) c(i)
LA R3,1(R3) c(i)+1
STC R3,0(R7) c(i-1)=c(i)+1
BCTR R7,0 @c(i)--
BCTR R6,0 i=i-1
B LOOPI4 next i
ELOOPI4 B LOOPBIG big loop }------------------
ELOOPBIG L R13,4(0,R13) epilog
LM R14,R12,12(R13) "
XR R15,R15 "
BR R14 exit
M DC H'5' <=input
N DC H'3' <=input
C DS 64X array of 8 bit integers
PG DC CL92' ' buffer
YREGS
END COMBINE
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Acornsoft Lisp
(defun comb (m n (i . 0))
(cond ((zerop m) '(()))
((eq i n) '())
(t (append
(mapc '(lambda (rest) (cons i rest))
(comb (sub1 m) n (add1 i)))
(comb m n (add1 i))))))
(defun append (a b)
(cond ((null a) b)
(t (cons (car a) (append (cdr a) b)))))
(map print (comb 3 5))
- Output:
(0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4)
Action!
PROC PrintComb(BYTE ARRAY c BYTE len)
BYTE i
Put('()
FOR i=0 TO len-1
DO
IF i>0 THEN Put(',) FI
PrintB(c(i))
OD
Put(')) PutE()
RETURN
BYTE FUNC Increasing(BYTE ARRAY c BYTE len)
BYTE i
IF len<2 THEN RETURN (1) FI
FOR i=0 TO len-2
DO
IF c(i)>=c(i+1) THEN
RETURN (0)
FI
OD
RETURN (1)
BYTE FUNC NextComb(BYTE ARRAY c BYTE n,k)
INT pos,i
DO
pos=k-1
DO
c(pos)==+1
IF c(pos)<n THEN
EXIT
ELSE
pos==-1
IF pos<0 THEN RETURN (0) FI
FI
FOR i=pos+1 TO k-1
DO
c(i)=c(pos)
OD
OD
UNTIL Increasing(c,k)
OD
RETURN (1)
PROC Comb(BYTE n,k)
BYTE ARRAY c(10)
BYTE i
IF k>n THEN
Print("Error! k is greater than n.")
Break()
FI
FOR i=0 TO k-1
DO
c(i)=i
OD
DO
PrintComb(c,k)
UNTIL NextComb(c,n,k)=0
OD
RETURN
PROC Main()
Comb(5,3)
RETURN
- Output:
Screenshot from Atari 8-bit computer
(0,1,2) (0,1,3) (0,1,4) (0,2,3) (0,2,4) (0,3,4) (1,2,3) (1,2,4) (1,3,4) (2,3,4)
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Combinations is
generic
type Integers is range <>;
package Combinations is
type Combination is array (Positive range <>) of Integers;
procedure First (X : in out Combination);
procedure Next (X : in out Combination);
procedure Put (X : Combination);
end Combinations;
package body Combinations is
procedure First (X : in out Combination) is
begin
X (1) := Integers'First;
for I in 2..X'Last loop
X (I) := X (I - 1) + 1;
end loop;
end First;
procedure Next (X : in out Combination) is
begin
for I in reverse X'Range loop
if X (I) < Integers'Val (Integers'Pos (Integers'Last) - X'Last + I) then
X (I) := X (I) + 1;
for J in I + 1..X'Last loop
X (J) := X (J - 1) + 1;
end loop;
return;
end if;
end loop;
raise Constraint_Error;
end Next;
procedure Put (X : Combination) is
begin
for I in X'Range loop
Put (Integers'Image (X (I)));
end loop;
end Put;
end Combinations;
type Five is range 0..4;
package Fives is new Combinations (Five);
use Fives;
X : Combination (1..3);
begin
First (X);
loop
Put (X); New_Line;
Next (X);
end loop;
exception
when Constraint_Error =>
null;
end Test_Combinations;
The solution is generic the formal parameter is the integer type to make combinations of. The type range determines n. In the example it is
type Five is range 0..4;
The parameter m is the object's constraint. When n < m the procedure First (selects the first combination) will propagate Constraint_Error. The procedure Next selects the next combination. Constraint_Error is propagated when it is the last one.
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
ALGOL 68
File: prelude_combinations.a68
# -*- coding: utf-8 -*- #
COMMENT REQUIRED BY "prelude_combinations_generative.a68"
MODE COMBDATA = ~;
PROVIDES:
# COMBDATA*=~* #
# comb*=~ list* #
END COMMENT
MODE COMBDATALIST = REF[]COMBDATA;
MODE COMBDATALISTYIELD = PROC(COMBDATALIST)VOID;
PROC comb gen combinations = (INT m, COMBDATALIST list, COMBDATALISTYIELD yield)VOID:(
CASE m IN
# case 1: transpose list #
FOR i TO UPB list DO yield(list[i]) OD
OUT
[m + LWB list - 1]COMBDATA out;
INT index out := 1;
FOR i TO UPB list DO
COMBDATA first = list[i];
# FOR COMBDATALIST sub recombination IN # comb gen combinations(m - 1, list[i+1:] #) DO (#,
## (COMBDATALIST sub recombination)VOID:(
out[LWB list ] := first;
out[LWB list+1:] := sub recombination;
yield(out)
# OD #))
OD
ESAC
);
SKIP
File: test_combinations.a68
#!/usr/bin/a68g --script #
# -*- coding: utf-8 -*- #
CO REQUIRED BY "prelude_combinations.a68" CO
MODE COMBDATA = INT;
#PROVIDES:#
# COMBDATA~=INT~ #
# comb ~=int list ~#
PR READ "prelude_combinations.a68" PR;
FORMAT data fmt = $g(0)$;
main:(
INT m = 3;
FORMAT list fmt = $"("n(m-1)(f(data fmt)",")f(data fmt)")"$;
FLEX[0]COMBDATA test data list := (1,2,3,4,5);
# FOR COMBDATALIST recombination data IN # comb gen combinations(m, test data list #) DO (#,
## (COMBDATALIST recombination)VOID:(
printf ((list fmt, recombination, $l$))
# OD # ))
)
- Output:
(1,2,3) (1,2,4) (1,2,5) (1,3,4) (1,3,5) (1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)
APL
From Roger Hui's paper "A History of APL in 50 Functions":
comb←{(⍺=0)∨⍺=⍵:⌷⍉⍪⍳⍺ ⋄ (0,1+(⍺-1)∇ ⍵-1)⍪1+⍺ ∇ ⍵-1}
4 comb 5
0 1 2 3
0 1 2 5
0 1 4 5
0 3 4 5
2 3 4 5
comb←{
⍺{
0=⍺:⊂⍬
0=≢⍵:⍬
((⊃⍵),¨(⍺-1)∇r),⍺∇r←1↓⍵
}⍳⍵
}
- Output:
3 comb 5 ┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ │1 2 3│1 2 4│1 2 5│1 3 4│1 3 5│1 4 5│2 3 4│2 3 5│2 4 5│3 4 5│ └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
AppleScript
Iteration
on comb(n, k)
set c to {}
repeat with i from 1 to k
set end of c to i's contents
end repeat
set r to {c's contents}
repeat while my next_comb(c, k, n)
set end of r to c's contents
end repeat
return r
end comb
on next_comb(c, k, n)
set i to k
set c's item i to (c's item i) + 1
repeat while (i > 1 and c's item i ≥ n - k + 1 + i)
set i to i - 1
set c's item i to (c's item i) + 1
end repeat
if (c's item 1 > n - k + 1) then return false
repeat with i from i + 1 to k
set c's item i to (c's item (i - 1)) + 1
end repeat
return true
end next_comb
return comb(5, 3)
- Output:
{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}
Functional composition
----------------------- COMBINATIONS ---------------------
-- comb :: Int -> [a] -> [[a]]
on comb(n, lst)
if 1 > n then
{{}}
else
if not isNull(lst) then
set {h, xs} to uncons(lst)
map(cons(h), ¬
comb(n - 1, xs)) & comb(n, xs)
else
{}
end if
end if
end comb
--------------------------- TEST -------------------------
on run
intercalate(linefeed, ¬
map(unwords, comb(3, enumFromTo(0, 4))))
end run
-------------------- GENERIC FUNCTIONS -------------------
-- cons :: a -> [a] -> [a]
on cons(x)
script
on |λ|(xs)
{x} & xs
end |λ|
end script
end cons
-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if m ≤ n then
set lst to {}
repeat with i from m to n
set end of lst to i
end repeat
lst
else
{}
end if
end enumFromTo
-- intercalate :: Text -> [Text] -> Text
on intercalate(strText, lstText)
set {dlm, my text item delimiters} to {my text item delimiters, strText}
set strJoined to lstText as text
set my text item delimiters to dlm
return strJoined
end intercalate
-- isNull :: [a] -> Bool
on isNull(xs)
if class of xs is string then
xs = ""
else
xs = {}
end if
end isNull
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
set lng to length of xs
if lng > 0 then
if class of xs is string then
set cs to text items of xs
{item 1 of cs, rest of cs}
else
{item 1 of xs, rest of xs}
end if
else
missing value
end if
end uncons
-- unwords :: [String] -> String
on unwords(xs)
intercalate(space, xs)
end unwords
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Arturo
print.lines combine.by:3 @0..4
- Output:
[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]
AutoHotkey
contributed by Laszlo on the ahk forum
MsgBox % Comb(1,1)
MsgBox % Comb(3,3)
MsgBox % Comb(3,2)
MsgBox % Comb(2,3)
MsgBox % Comb(5,3)
Comb(n,t) { ; Generate all n choose t combinations of 1..n, lexicographically
IfLess n,%t%, Return
Loop %t%
c%A_Index% := A_Index
i := t+1, c%i% := n+1
Loop {
Loop %t%
i := t+1-A_Index, c .= c%i% " "
c .= "`n" ; combinations in new lines
j := 1, i := 2
Loop
If (c%j%+1 = c%i%)
c%j% := j, ++j, ++i
Else Break
If (j > t)
Return c
c%j% += 1
}
}
AWK
BEGIN {
## Default values for r and n (Choose 3 from pool of 5). Can
## alternatively be set on the command line:-
## awk -v r=<number of items being chosen> -v n=<how many to choose from> -f <scriptname>
if (length(r) == 0) r = 3
if (length(n) == 0) n = 5
for (i=1; i <= r; i++) { ## First combination of items:
A[i] = i
if (i < r ) printf i OFS
else print i}
## While 1st item is less than its maximum permitted value...
while (A[1] < n - r + 1) {
## loop backwards through all items in the previous
## combination of items until an item is found that is
## less than its maximum permitted value:
for (i = r; i >= 1; i--) {
## If the equivalently positioned item in the
## previous combination of items is less than its
## maximum permitted value...
if (A[i] < n - r + i) {
## increment the current item by 1:
A[i]++
## Save the current position-index for use
## outside this "for" loop:
p = i
break}}
## Put consecutive numbers in the remainder of the array,
## counting up from position-index p.
for (i = p + 1; i <= r; i++) A[i] = A[i - 1] + 1
## Print the current combination of items:
for (i=1; i <= r; i++) {
if (i < r) printf A[i] OFS
else print A[i]}}
exit}
Usage:
awk -v r=3 -v n=5 -f combn.awk
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
BASIC
BASIC256
input "Enter n comb m. ", n
input m
outstr$ = ""
call iterate (outstr$, 0, m-1, n-1)
end
subroutine iterate (curr$, start, stp, depth)
for i = start to stp
if depth = 0 then print curr$ + " " + string(i)
call iterate (curr$ + " " + string(i), i+1, stp, depth-1)
next i
end subroutine
- Output:
Enter n comb m. 3 5 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
IS-BASIC
100 PROGRAM "Combinat.bas"
110 LET MMAX=3:LET NMAX=5
120 NUMERIC COMB(0 TO MMAX)
130 CALL GENERATE(1)
140 DEF GENERATE(M)
150 NUMERIC N,I
160 IF M>MMAX THEN
170 FOR I=1 TO MMAX
180 PRINT COMB(I);
190 NEXT
200 PRINT
220 ELSE
230 FOR N=0 TO NMAX-1
240 IF M=1 OR N>COMB(M-1) THEN
250 LET COMB(M)=N
260 CALL GENERATE(M+1)
270 END IF
280 NEXT
290 END IF
300 END DEF
QBasic
SUB iterate (curr$, start, stp, depth)
FOR i = start TO stp
IF depth = 0 THEN PRINT curr$ + " " + STR$(i)
CALL iterate(curr$ + " " + STR$(i), i + 1, stp, depth - 1)
NEXT i
END SUB
INPUT "Enter n comb m. ", n, m
outstr$ = ""
CALL iterate(outstr$, 0, m - 1, n - 1)
END
- Output:
Same as FreeBASIC entry.
Run BASIC
sub iterate curr$, start, stp, depth
for i = start to stp
if depth = 0 then print curr$ + " " + str$(i)
call iterate curr$ + " " + str$(i), i+1, stp, depth-1
next i
end sub
input "Enter n comb m. "; n, m
outstr$ = ""
call iterate outstr$, 0, m-1, n-1
end
XBasic
PROGRAM "Combinations"
VERSION "0.0000"
DECLARE FUNCTION Entry ()
DECLARE FUNCTION iterate (curr$, start, stp, depth)
FUNCTION Entry ()
n = 3
m = 5
outstr$ = ""
iterate(outstr$, 0, m - 1, n - 1)
END FUNCTION
FUNCTION iterate (curr$, start, stp, depth)
FOR i = start TO stp
IF depth = 0 THEN PRINT curr$ + " " + STR$(i)
iterate(curr$ + " " + STR$(i), i + 1, stp, depth - 1)
NEXT i
RETURN
END FUNCTION
END PROGRAM
BBC BASIC
INSTALL @lib$+"SORTLIB"
sort% = FN_sortinit(0,0)
M% = 3
N% = 5
C% = FNfact(N%)/(FNfact(M%)*FNfact(N%-M%))
DIM s$(C%)
PROCcomb(M%, N%, s$())
CALL sort%, s$(0)
FOR I% = 0 TO C%-1
PRINT s$(I%)
NEXT
END
DEF PROCcomb(C%, N%, s$())
LOCAL I%, U%
FOR U% = 0 TO 2^N%-1
IF FNbits(U%) = C% THEN
s$(I%) = FNlist(U%)
I% += 1
ENDIF
NEXT
ENDPROC
DEF FNbits(U%)
LOCAL N%
WHILE U%
N% += 1
U% = U% AND (U%-1)
ENDWHILE
= N%
DEF FNlist(U%)
LOCAL N%, s$
WHILE U%
IF U% AND 1 s$ += STR$(N%) + " "
N% += 1
U% = U% >> 1
ENDWHILE
= s$
DEF FNfact(N%)
IF N%<=1 THEN = 1 ELSE = N%*FNfact(N%-1)
BQN
Cmat←{⊑𝕨∊0‿𝕩?≍↕𝕨;0⊸∾˘⊸∾´1+(𝕨-1‿0)𝕊¨𝕩-1} # Recursive
Cmat1←{k←⌽↕d←𝕩¬𝕨⋄∾⌽{k∾˘¨∾˜`1+𝕩}⍟𝕨d↑↓1‿0⥊0} # Roger Hui
┌─
╵ 0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
┘
Bracmat
The program first constructs a pattern with m
variables and an expression that evaluates m
variables into a combination.
Then the program constructs a list of the integers 0 ... n-1
.
The real work is done in the expression !list:!pat
. When a combination is found, it is added to the list of combinations. Then we force the program to backtrack and find the next combination by evaluating the always failing ~
.
When all combinations are found, the pattern fails and we are in the rhs of the last |
operator.
(comb=
bvar combination combinations list m n pat pvar var
. !arg:(?m.?n)
& ( pat
= ?
& !combinations (.!combination):?combinations
& ~
)
& :?list:?combination:?combinations
& whl
' ( !m+-1:~<0:?m
& chu$(utf$a+!m):?var
& glf$('(%@?.$var)):(=?pvar)
& '(? ()$pvar ()$pat):(=?pat)
& glf$('(!.$var)):(=?bvar)
& ( '$combination:(=)
& '$bvar:(=?combination)
| '($bvar ()$combination):(=?combination)
)
)
& whl
' (!n+-1:~<0:?n&!n !list:?list)
& !list:!pat
| !combinations);
comb$(3.5)
(.0 1 2) (.0 1 3) (.0 1 4) (.0 2 3) (.0 2 4) (.0 3 4) (.1 2 3) (.1 2 4) (.1 3 4) (.2 3 4)
C
#include <stdio.h>
/* Type marker stick: using bits to indicate what's chosen. The stick can't
* handle more than 32 items, but the idea is there; at worst, use array instead */
typedef unsigned long marker;
marker one = 1;
void comb(int pool, int need, marker chosen, int at)
{
if (pool < need + at) return; /* not enough bits left */
if (!need) {
/* got all we needed; print the thing. if other actions are
* desired, we could have passed in a callback function. */
for (at = 0; at < pool; at++)
if (chosen & (one << at)) printf("%d ", at);
printf("\n");
return;
}
/* if we choose the current item, "or" (|) the bit to mark it so. */
comb(pool, need - 1, chosen | (one << at), at + 1);
comb(pool, need, chosen, at + 1); /* or don't choose it, go to next */
}
int main()
{
comb(5, 3, 0, 0);
return 0;
}
Lexicographic ordered generation
Without recursions, generate all combinations in sequence. Basic logic: put n items in the first n of m slots; each step, if right most slot can be moved one slot further right, do so; otherwise find right most item that can be moved, move it one step and put all items already to its right next to it.
#include <stdio.h>
void comb(int m, int n, unsigned char *c)
{
int i;
for (i = 0; i < n; i++) c[i] = n - i;
while (1) {
for (i = n; i--;)
printf("%d%c", c[i], i ? ' ': '\n');
/* this check is not strictly necessary, but if m is not close to n,
it makes the whole thing quite a bit faster */
i = 0;
if (c[i]++ < m) continue;
for (; c[i] >= m - i;) if (++i >= n) return;
for (c[i]++; i; i--) c[i-1] = c[i] + 1;
}
}
int main()
{
unsigned char buf[100];
comb(5, 3, buf);
return 0;
}
C#
using System;
using System.Collections.Generic;
public class Program
{
public static IEnumerable<int[]> Combinations(int m, int n)
{
int[] result = new int[m];
Stack<int> stack = new Stack<int>();
stack.Push(0);
while (stack.Count > 0)
{
int index = stack.Count - 1;
int value = stack.Pop();
while (value < n)
{
result[index++] = ++value;
stack.Push(value);
if (index == m)
{
yield return result;
break;
}
}
}
}
static void Main()
{
foreach (int[] c in Combinations(3, 5))
{
Console.WriteLine(string.Join(",", c));
Console.WriteLine();
}
}
}
Here is another implementation that uses recursion, intead of an explicit stack:
using System;
using System.Collections.Generic;
public class Program
{
public static IEnumerable<int[]> FindCombosRec(int[] buffer, int done, int begin, int end)
{
for (int i = begin; i < end; i++)
{
buffer[done] = i;
if (done == buffer.Length - 1)
yield return buffer;
else
foreach (int[] child in FindCombosRec(buffer, done+1, i+1, end))
yield return child;
}
}
public static IEnumerable<int[]> FindCombinations(int m, int n)
{
return FindCombosRec(new int[m], 0, 0, n);
}
static void Main()
{
foreach (int[] c in FindCombinations(3, 5))
{
for (int i = 0; i < c.Length; i++)
{
Console.Write(c[i] + " ");
}
Console.WriteLine();
}
}
}
Recursive version
using System;
class Combinations
{
static int k = 3, n = 5;
static int [] buf = new int [k];
static void Main()
{
rec(0, 0);
}
static void rec(int ind, int begin)
{
for (int i = begin; i < n; i++)
{
buf [ind] = i;
if (ind + 1 < k) rec(ind + 1, buf [ind] + 1);
else Console.WriteLine(string.Join(",", buf));
}
}
}
C++
#include <algorithm>
#include <iostream>
#include <string>
void comb(int N, int K)
{
std::string bitmask(K, 1); // K leading 1's
bitmask.resize(N, 0); // N-K trailing 0's
// print integers and permute bitmask
do {
for (int i = 0; i < N; ++i) // [0..N-1] integers
{
if (bitmask[i]) std::cout << " " << i;
}
std::cout << std::endl;
} while (std::prev_permutation(bitmask.begin(), bitmask.end()));
}
int main()
{
comb(5, 3);
}
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Clojure
(defn combinations
"If m=1, generate a nested list of numbers [0,n)
If m>1, for each x in [0,n), and for each list in the recursion on [x+1,n), cons the two"
[m n]
(letfn [(comb-aux
[m start]
(if (= 1 m)
(for [x (range start n)]
(list x))
(for [x (range start n)
xs (comb-aux (dec m) (inc x))]
(cons x xs))))]
(comb-aux m 0)))
(defn print-combinations
[m n]
(doseq [line (combinations m n)]
(doseq [n line]
(printf "%s " n))
(printf "%n")))
The below code do not comply to the task described above. However, the combinations of n elements taken from m elements might be more natural to be expressed as a set of unordered sets of elements in Clojure using its Set data structure.
(defn combinations
"Generate the combinations of n elements from a list of [0..m)"
[m n]
(let [xs (range m)]
(loop [i (int 0) res #{#{}}]
(if (== i n)
res
(recur (+ 1 i)
(set (for [x xs r res
:when (not-any? #{x} r)]
(conj r x))))))))
CLU
% generate the size-M combinations from 0 to n-1
combinations = iter (m, n: int) yields (sequence[int])
if m<=n then
state: array[int] := array[int]$predict(1, m)
for i: int in int$from_to(0, m-1) do
array[int]$addh(state, i)
end
i: int := m
while i>0 do
yield (sequence[int]$a2s(state))
i := m
while i>0 do
state[i] := state[i] + 1
for j: int in int$from_to(i,m-1) do
state[j+1] := state[j] + 1
end
if state[i] < n-(m-i) then break end
i := i - 1
end
end
end
end combinations
% print a combination
print_comb = proc (s: stream, comb: sequence[int])
for i: int in sequence[int]$elements(comb) do
stream$puts(s, int$unparse(i) || " ")
end
end print_comb
start_up = proc ()
po: stream := stream$primary_output()
for comb: sequence[int] in combinations(3, 5) do
print_comb(po, comb)
stream$putl(po, "")
end
end start_up
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
CoffeeScript
Basic backtracking solution.
combinations = (n, p) ->
return [ [] ] if p == 0
i = 0
combos = []
combo = []
while combo.length < p
if i < n
combo.push i
i += 1
else
break if combo.length == 0
i = combo.pop() + 1
if combo.length == p
combos.push clone combo
i = combo.pop() + 1
combos
clone = (arr) -> (n for n in arr)
N = 5
for i in [0..N]
console.log "------ #{N} #{i}"
for combo in combinations N, i
console.log combo
- Output:
> coffee combo.coffee ------ 5 0 [] ------ 5 1 [ 0 ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] ------ 5 2 [ 0, 1 ] [ 0, 2 ] [ 0, 3 ] [ 0, 4 ] [ 1, 2 ] [ 1, 3 ] [ 1, 4 ] [ 2, 3 ] [ 2, 4 ] [ 3, 4 ] ------ 5 3 [ 0, 1, 2 ] [ 0, 1, 3 ] [ 0, 1, 4 ] [ 0, 2, 3 ] [ 0, 2, 4 ] [ 0, 3, 4 ] [ 1, 2, 3 ] [ 1, 2, 4 ] [ 1, 3, 4 ] [ 2, 3, 4 ] ------ 5 4 [ 0, 1, 2, 3 ] [ 0, 1, 2, 4 ] [ 0, 1, 3, 4 ] [ 0, 2, 3, 4 ] [ 1, 2, 3, 4 ] ------ 5 5 [ 0, 1, 2, 3, 4 ]
Common Lisp
(defun map-combinations (m n fn)
"Call fn with each m combination of the integers from 0 to n-1 as a list. The list may be destroyed after fn returns."
(let ((combination (make-list m)))
(labels ((up-from (low)
(let ((start (1- low)))
(lambda () (incf start))))
(mc (curr left needed comb-tail)
(cond
((zerop needed)
(funcall fn combination))
((= left needed)
(map-into comb-tail (up-from curr))
(funcall fn combination))
(t
(setf (first comb-tail) curr)
(mc (1+ curr) (1- left) (1- needed) (rest comb-tail))
(mc (1+ curr) (1- left) needed comb-tail)))))
(mc 0 n m combination))))
- Output:
Example use
> (map-combinations 3 5 'print) (0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4) (2 3 4)
Recursive method
(defun comb (m list fn)
(labels ((comb1 (l c m)
(when (>= (length l) m)
(if (zerop m) (return-from comb1 (funcall fn c)))
(comb1 (cdr l) c m)
(comb1 (cdr l) (cons (first l) c) (1- m)))))
(comb1 list nil m)))
(comb 3 '(0 1 2 3 4 5) #'print)
Alternate, iterative method
(defun next-combination (n a)
(let ((k (length a)) m)
(loop for i from 1 do
(when (> i k) (return nil))
(when (< (aref a (- k i)) (- n i))
(setf m (aref a (- k i)))
(loop for j from i downto 1 do
(incf m)
(setf (aref a (- k j)) m))
(return t)))))
(defun all-combinations (n k)
(if (or (< k 0) (< n k)) '()
(let ((a (make-array k)))
(loop for i below k do (setf (aref a i) i))
(loop collect (coerce a 'list) while (next-combination n a)))))
(defun map-combinations (n k fun)
(if (and (>= k 0) (>= n k))
(let ((a (make-array k)))
(loop for i below k do (setf (aref a i) i))
(loop do (funcall fun (coerce a 'list)) while (next-combination n a)))))
; all-combinations returns a list of lists
> (all-combinations 4 3)
((0 1 2) (0 1 3) (0 2 3) (1 2 3))
; map-combinations applies a function to each combination
> (map-combinations 6 4 #'print)
(0 1 2 3)
(0 1 2 4)
(0 1 2 5)
(0 1 3 4)
(0 1 3 5)
(0 1 4 5)
(0 2 3 4)
(0 2 3 5)
(0 2 4 5)
(0 3 4 5)
(1 2 3 4)
(1 2 3 5)
(1 2 4 5)
(1 3 4 5)
(2 3 4 5)
Crystal
def comb(m, n)
(0...n).to_a.each_combination(m) { |p| puts(p) }
end
[0, 1, 2]
[0, 1, 3]
[0, 1, 4]
[0, 2, 3]
[0, 2, 4]
[0, 3, 4]
[1, 2, 3]
[1, 2, 4]
[1, 3, 4]
[2, 3, 4]
D
Slow Recursive Version
T[][] comb(T)(in T[] arr, in int k) pure nothrow {
if (k == 0) return [[]];
typeof(return) result;
foreach (immutable i, immutable x; arr)
foreach (suffix; arr[i + 1 .. $].comb(k - 1))
result ~= x ~ suffix;
return result;
}
void main() {
import std.stdio;
[0, 1, 2, 3].comb(2).writeln;
}
- Output:
[[0, 1], [0, 2], [0, 3], [1, 2], [1, 3], [2, 3]]
More Functional Recursive Version
Same output.
import std.stdio, std.algorithm, std.range;
immutable(int)[][] comb(immutable int[] s, in int m) pure nothrow @safe {
if (!m) return [[]];
if (s.empty) return [];
return s[1 .. $].comb(m - 1).map!(x => s[0] ~ x).array ~ s[1 .. $].comb(m);
}
void main() {
4.iota.array.comb(2).writeln;
}
Lazy Version
module combinations3;
import std.traits: Unqual;
struct Combinations(T, bool copy=true) {
Unqual!T[] pool, front;
size_t r, n;
bool empty = false;
size_t[] indices;
size_t len;
bool lenComputed = false;
this(T[] pool_, in size_t r_) pure nothrow @safe {
this.pool = pool_.dup;
this.r = r_;
this.n = pool.length;
if (r > n)
empty = true;
indices.length = r;
foreach (immutable i, ref ini; indices)
ini = i;
front.length = r;
foreach (immutable i, immutable idx; indices)
front[i] = pool[idx];
}
@property size_t length() /*logic_const*/ pure nothrow @nogc {
static size_t binomial(size_t n, size_t k) pure nothrow @safe @nogc
in {
assert(n > 0, "binomial: n must be > 0.");
} body {
if (k < 0 || k > n)
return 0;
if (k > (n / 2))
k = n - k;
size_t result = 1;
foreach (size_t d; 1 .. k + 1) {
result *= n;
n--;
result /= d;
}
return result;
}
if (!lenComputed) {
// Set cache.
len = binomial(n, r);
lenComputed = true;
}
return len;
}
void popFront() pure nothrow @safe {
if (!empty) {
bool broken = false;
size_t pos = 0;
foreach_reverse (immutable i; 0 .. r) {
pos = i;
if (indices[i] != i + n - r) {
broken = true;
break;
}
}
if (!broken) {
empty = true;
return;
}
indices[pos]++;
foreach (immutable j; pos + 1 .. r)
indices[j] = indices[j - 1] + 1;
static if (copy)
front = new Unqual!T[front.length];
foreach (immutable i, immutable idx; indices)
front[i] = pool[idx];
}
}
}
Combinations!(T, copy) combinations(bool copy=true, T)
(T[] items, in size_t k)
in {
assert(items.length, "combinations: items can't be empty.");
} body {
return typeof(return)(items, k);
}
// Compile with -version=combinations3_main to run main.
version(combinations3_main)
void main() {
import std.stdio, std.array, std.algorithm;
[1, 2, 3, 4].combinations!false(2).array.writeln;
[1, 2, 3, 4].combinations!true(2).array.writeln;
[1, 2, 3, 4].combinations(2).map!(x => x).writeln;
}
Lazy Lexicographical Combinations
Includes an algorithm to find mth Lexicographical Element of a Combination.
module combinations4;
import std.stdio, std.algorithm, std.conv;
ulong choose(int n, int k) nothrow
in {
assert(n >= 0 && k >= 0, "choose: no negative input.");
} body {
static ulong[][] cache;
if (n < k)
return 0;
else if (n == k)
return 1;
while (n >= cache.length)
cache ~= [1UL]; // = choose(m, 0);
auto kmax = min(k, n - k);
while(kmax >= cache[n].length) {
immutable h = cache[n].length;
cache[n] ~= choose(n - 1, h - 1) + choose(n - 1, h);
}
return cache[n][kmax];
}
int largestV(in int p, in int q, in long r) nothrow
in {
assert(p > 0 && q >= 0 && r >= 0, "largestV: no negative input.");
} body {
auto v = p - 1;
while (choose(v, q) > r)
v--;
return v;
}
struct Comb {
immutable int n, m;
@property size_t length() const /*nothrow*/ {
return to!size_t(choose(n, m));
}
int[] opIndex(in size_t idx) const {
if (m < 0 || n < 0)
return [];
if (idx >= length)
throw new Exception("Out of bound");
ulong x = choose(n, m) - 1 - idx;
int a = n, b = m;
auto res = new int[m];
foreach (i; 0 .. m) {
a = largestV(a, b, x);
x = x - choose(a, b);
b = b - 1;
res[i] = n - 1 - a;
}
return res;
}
int opApply(int delegate(ref int[]) dg) const {
int[] yield;
foreach (i; 0 .. length) {
yield = this[i];
if (dg(yield))
break;
}
return 0;
}
static auto On(T)(in T[] arr, in int m) {
auto comb = Comb(arr.length, m);
return new class {
@property size_t length() const /*nothrow*/ {
return comb.length;
}
int opApply(int delegate(ref T[]) dg) const {
auto yield = new T[m];
foreach (c; comb) {
foreach (idx; 0 .. m)
yield[idx] = arr[c[idx]];
if (dg(yield))
break;
}
return 0;
}
};
}
}
version(combinations4_main)
void main() {
foreach (c; Comb.On([1, 2, 3], 2))
writeln(c);
}
Delphi
See Pascal.
E
def combinations(m, range) {
return if (m <=> 0) { [[]] } else {
def combGenerator {
to iterate(f) {
for i in range {
for suffix in combinations(m.previous(), range & (int > i)) {
f(null, [i] + suffix)
}
}
}
}
}
}
? for x in combinations(3, 0..4) { println(x) }
EasyLang
n = 5
m = 3
len result[] m
#
proc combinations pos val . .
if pos > m
print result[]
return
.
for i = val to pos + n - m
result[pos] = i
combinations pos + 1 i + 1
.
.
combinations 1 1
- Output:
[ 1 2 3 ] [ 1 2 4 ] [ 1 2 5 ] [ 1 3 4 ] [ 1 3 5 ] [ 1 4 5 ] [ 2 3 4 ] [ 2 3 5 ] [ 2 4 5 ] [ 3 4 5 ]
EchoLisp
;;
;; using the native (combinations) function
(lib 'list)
(combinations (iota 5) 3)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
;;
;; using an iterator
;;
(lib 'sequences)
(take (combinator (iota 5) 3) #:all)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
;;
;; defining a function
;;
(define (combine lst p) (cond
[(null? lst) null]
[(< (length lst) p) null]
[(= (length lst) p) (list lst)]
[(= p 1) (map list lst)]
[else (append
(map cons (circular-list (first lst)) (combine (rest lst) (1- p)))
(combine (rest lst) p))]))
(combine (iota 5) 3)
→ ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
Egison
(define $comb
(lambda [$n $xs]
(match-all xs (list integer)
[(loop $i [1 ,n] <join _ <cons $a_i ...>> _) a])))
(test (comb 3 (between 0 4)))
- Output:
{[|0 1 2|] [|0 1 3|] [|0 2 3|] [|1 2 3|] [|0 1 4|] [|0 2 4|] [|0 3 4|] [|1 2 4|] [|1 3 4|] [|2 3 4|]}
Eiffel
The core of the program is the recursive feature solve, which returns all possible strings of length n with k "ones" and n-k "zeros". The strings are then evaluated, each resulting in k corresponding integers for the digits where ones are found.
class
COMBINATIONS
create
make
feature
make (n, k: INTEGER)
require
n_positive: n > 0
k_positive: k > 0
k_smaller_equal: k <= n
do
create set.make
set.extend ("")
create sol.make
sol := solve (set, k, n - k)
sol := convert_solution (n, sol)
ensure
correct_num_of_sol: num_of_comb (n, k) = sol.count
end
sol: LINKED_LIST [STRING]
feature {None}
set: LINKED_LIST [STRING]
convert_solution (n: INTEGER; solution: LINKED_LIST [STRING]): LINKED_LIST [STRING]
-- strings of 'k' digits between 1 and 'n'
local
i, j: INTEGER
temp: STRING
do
create temp.make (n)
from
i := 1
until
i > solution.count
loop
from
j := 1
until
j > n
loop
if solution [i].at (j) = '1' then
temp.append (j.out)
end
j := j + 1
end
solution [i].deep_copy (temp)
temp.wipe_out
i := i + 1
end
Result := solution
end
solve (seta: LINKED_LIST [STRING]; one, zero: INTEGER): LINKED_LIST [STRING]
-- list of strings with a number of 'one' 1s and 'zero' 0, standig for wether the corresponing digit is taken or not.
local
new_P1, new_P0: LINKED_LIST [STRING]
do
create new_P1.make
create new_P0.make
if one > 0 then
new_P1.deep_copy (seta)
across
new_P1 as P1
loop
new_P1.item.append ("1")
end
new_P1 := solve (new_P1, one - 1, zero)
end
if zero > 0 then
new_P0.deep_copy (seta)
across
new_P0 as P0
loop
new_P0.item.append ("0")
end
new_P0 := solve (new_P0, one, zero - 1)
end
if one = 0 and zero = 0 then
Result := seta
else
create Result.make
Result.fill (new_p0)
Result.fill (new_p1)
end
end
num_of_comb (n, k: INTEGER): INTEGER
-- number of 'k' sized combinations out of 'n'.
local
upper, lower, m, l: INTEGER
do
upper := 1
lower := 1
m := n
l := k
from
until
m < n - k + 1
loop
upper := m * upper
lower := l * lower
m := m - 1
l := l - 1
end
Result := upper // lower
end
end
Test:
class
APPLICATION
create
make
feature
make
do
create comb.make (5, 3)
across
comb.sol as ar
loop
io.put_string (ar.item.out + "%T")
end
end
comb: COMBINATIONS
end
- Output:
345 245 235 234 145 135 134 125 124 123
Elena
ELENA 6.x :
import system'routines;
import extensions;
import extensions'routines;
const int M = 3;
const int N = 5;
Numbers(n)
{
^ Array.allocate(n).populate::(int n => n)
}
public program()
{
var numbers := Numbers(N);
Combinator.new(M, numbers).forEach::(row)
{
console.printLine(row.toString())
};
console.readChar()
}
- Output:
0,1,2 0,1,3 0,1,4 0,2,3 0,2,4 0,3,4 1,2,3 1,2,4 1,3,4 2,3,4
Elixir
defmodule RC do
def comb(0, _), do: [[]]
def comb(_, []), do: []
def comb(m, [h|t]) do
(for l <- comb(m-1, t), do: [h|l]) ++ comb(m, t)
end
end
{m, n} = {3, 5}
list = for i <- 1..n, do: i
Enum.each(RC.comb(m, list), fn x -> IO.inspect x end)
- Output:
[1, 2, 3] [1, 2, 4] [1, 2, 5] [1, 3, 4] [1, 3, 5] [1, 4, 5] [2, 3, 4] [2, 3, 5] [2, 4, 5] [3, 4, 5]
Emacs Lisp
(defun comb-recurse (m n n-max)
(cond ((zerop m) '(()))
((= n-max n) '())
(t (append (mapcar #'(lambda (rest) (cons n rest))
(comb-recurse (1- m) (1+ n) n-max))
(comb-recurse m (1+ n) n-max)))))
(defun comb (m n)
(comb-recurse m 0 n))
(comb 3 5)
- Output:
((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
Erlang
-module(comb).
-compile(export_all).
comb(0,_) ->
[[]];
comb(_,[]) ->
[];
comb(N,[H|T]) ->
[[H|L] || L <- comb(N-1,T)]++comb(N,T).
Dynamic Programming
Could be optimized with a custom zipwith/3
function instead of using lists:sublist/2
.
-module(comb).
-export([combinations/2]).
combinations(K, List) ->
lists:last(all_combinations(K, List)).
all_combinations(K, List) ->
lists:foldr(
fun(X, Next) ->
Sub = lists:sublist(Next, length(Next) - 1),
Step = [[]] ++ [[[X|S] || S <- L] || L <- Sub],
lists:zipwith(fun lists:append/2, Step, Next)
end, [[[]]] ++ lists:duplicate(K, []), List).
ERRE
PROGRAM COMBINATIONS
CONST M_MAX=3,N_MAX=5
DIM COMBINATION[M_MAX],STACK[100,1]
PROCEDURE GENERATE(M)
LOCAL I
IF (M>M_MAX) THEN
FOR I=1 TO M_MAX DO
PRINT(COMBINATION[I];" ";)
END FOR
PRINT
ELSE
FOR N=1 TO N_MAX DO
IF ((M=1) OR (N>COMBINATION[M-1])) THEN
COMBINATION[M]=N
! --- PUSH STACK -----------
STACK[SP,0]=M STACK[SP,1]=N
SP=SP+1
! --------------------------
GENERATE(M+1)
! --- POP STACK ------------
SP=SP-1
M=STACK[SP,0] N=STACK[SP,1]
! --------------------------
END IF
END FOR
END IF
END PROCEDURE
BEGIN
GENERATE(1)
END PROGRAM
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
F#
let choose m n =
let rec fC prefix m from = seq {
let rec loopFor f = seq {
match f with
| [] -> ()
| x::xs ->
yield (x, fC [] (m-1) xs)
yield! loopFor xs
}
if m = 0 then yield prefix
else
for (i, s) in loopFor from do
for x in s do
yield prefix@[i]@x
}
fC [] m [0..(n-1)]
[<EntryPoint>]
let main argv =
choose 3 5
|> Seq.iter (printfn "%A")
0
- Output:
[0; 1; 2] [0; 1; 3] [0; 1; 4] [0; 2; 3] [0; 2; 4] [0; 3; 4] [1; 2; 3] [1; 2; 4] [1; 3; 4] [2; 3; 4]
Factor
USING: math.combinatorics prettyprint ;
5 iota 3 all-combinations .
{ { 0 1 2 } { 0 1 3 } { 0 1 4 } { 0 2 3 } { 0 2 4 } { 0 3 4 } { 1 2 3 } { 1 2 4 } { 1 3 4 } { 2 3 4 } }
This works with any kind of sequence:
{ "a" "b" "c" } 2 all-combinations .
{ { "a" "b" } { "a" "c" } { "b" "c" } }
FOCAL
01.10 S M=3
01.20 S N=5
01.30 D 2
01.40 Q
02.10 F I=1,M;S C(I)=I-1
02.20 D 3
02.30 S I=M
02.40 S C(I)=C(I)+1
02.50 I (C(I)-N+M-I)2.8
02.60 S I=I-1
02.70 I (-I)2.4;R
02.80 F J=I+1,M;S C(J)=C(J-1)+1
02.90 G 2.2
03.10 F I=1,M;T %3,C(I)
03.20 T !
- Output:
= 0= 1= 2 = 0= 1= 3 = 0= 1= 4 = 0= 2= 3 = 0= 2= 4 = 0= 3= 4 = 1= 2= 3 = 1= 2= 4 = 1= 3= 4 = 2= 3= 4
Fortran
program Combinations
use iso_fortran_env
implicit none
type comb_result
integer, dimension(:), allocatable :: combs
end type comb_result
type(comb_result), dimension(:), pointer :: r
integer :: i, j
call comb(5, 3, r)
do i = 0, choose(5, 3) - 1
do j = 2, 0, -1
write(*, "(I4, ' ')", advance="no") r(i)%combs(j)
end do
deallocate(r(i)%combs)
write(*,*) ""
end do
deallocate(r)
contains
function choose(n, k, err)
integer :: choose
integer, intent(in) :: n, k
integer, optional, intent(out) :: err
integer :: imax, i, imin, ie
ie = 0
if ( (n < 0 ) .or. (k < 0 ) ) then
write(ERROR_UNIT, *) "negative in choose"
choose = 0
ie = 1
else
if ( n < k ) then
choose = 0
else if ( n == k ) then
choose = 1
else
imax = max(k, n-k)
imin = min(k, n-k)
choose = 1
do i = imax+1, n
choose = choose * i
end do
do i = 2, imin
choose = choose / i
end do
end if
end if
if ( present(err) ) err = ie
end function choose
subroutine comb(n, k, co)
integer, intent(in) :: n, k
type(comb_result), dimension(:), pointer, intent(out) :: co
integer :: i, j, s, ix, kx, hm, t
integer :: err
hm = choose(n, k, err)
if ( err /= 0 ) then
nullify(co)
return
end if
allocate(co(0:hm-1))
do i = 0, hm-1
allocate(co(i)%combs(0:k-1))
end do
do i = 0, hm-1
ix = i; kx = k
do s = 0, n-1
if ( kx == 0 ) exit
t = choose(n-(s+1), kx-1)
if ( ix < t ) then
co(i)%combs(kx-1) = s
kx = kx - 1
else
ix = ix - t
end if
end do
end do
end subroutine comb
end program Combinations
Alternatively:
program combinations
implicit none
integer, parameter :: m_max = 3
integer, parameter :: n_max = 5
integer, dimension (m_max) :: comb
character (*), parameter :: fmt = '(i0' // repeat (', 1x, i0', m_max - 1) // ')'
call gen (1)
contains
recursive subroutine gen (m)
implicit none
integer, intent (in) :: m
integer :: n
if (m > m_max) then
write (*, fmt) comb
else
do n = 1, n_max
if ((m == 1) .or. (n > comb (m - 1))) then
comb (m) = n
call gen (m + 1)
end if
end do
end if
end subroutine gen
end program combinations
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
FreeBASIC
This is remarkably compact and elegant.
sub iterate( byval curr as string, byval start as uinteger,_
byval stp as uinteger, byval depth as uinteger )
dim as uinteger i
for i = start to stp
if depth = 0 then
print curr + " " + str(i)
end if
iterate( curr+" "+str(i), i+1, stp, depth-1 )
next i
return
end sub
dim as uinteger m, n
input "Enter n comb m. ", n, m
dim as string outstr = ""
iterate outstr, 0, m-1, n-1
- Output:
Enter n comb m. 3,5 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
FutureBasic
void local fn Combinations( currStr as CFStringRef, start as int, stp as int, depth as int )
int i
for i = start to stp
if depth = 0 then printf @"%@ %d", currStr, i
fn Combinations( fn StringWithFormat( @"%@ %d", currStr, i ), i+1, stp, depth-1 )
next
end fn
int n : n = 3
int m : m = 5
printf @" %d combinations of integers 0 through %d are:", n, m-1
fn Combinations( @"", 0, m-1, n-1 )
HandleEvents
- Output:
3 combinations of integers 0 through 4 are: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
GAP
# Built-in
Combinations([1 .. n], m);
Combinations([1 .. 5], 3);
# [ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ], [ 1, 3, 4 ], [ 1, 3, 5 ],
# [ 1, 4, 5 ], [ 2, 3, 4 ], [ 2, 3, 5 ], [ 2, 4, 5 ], [ 3, 4, 5 ] ]
Glee
5!3 >>> ,,\
$$(5!3) give all combinations of 3 out of 5
$$(>>>) sorted up,
$$(,,\) printed with crlf delimiters.
Result:
Result:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
Go
package main
import (
"fmt"
)
func main() {
comb(5, 3, func(c []int) {
fmt.Println(c)
})
}
func comb(n, m int, emit func([]int)) {
s := make([]int, m)
last := m - 1
var rc func(int, int)
rc = func(i, next int) {
for j := next; j < n; j++ {
s[i] = j
if i == last {
emit(s)
} else {
rc(i+1, j+1)
}
}
return
}
rc(0, 0)
}
- Output:
[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]
Groovy
Following the spirit of the Haskell solution.
In General
A recursive closure must be pre-declared.
def comb
comb = { m, list ->
def n = list.size()
m == 0 ?
[[]] :
(0..(n-m)).inject([]) { newlist, k ->
def sublist = (k+1 == n) ? [] : list[(k+1)..<n]
newlist += comb(m-1, sublist).collect { [list[k]] + it }
}
}
Test program:
def csny = [ "Crosby", "Stills", "Nash", "Young" ]
println "Choose from ${csny}"
(0..(csny.size())).each { i -> println "Choose ${i}:"; comb(i, csny).each { println it }; println() }
- Output:
Choose from [Crosby, Stills, Nash, Young] Choose 0: [] Choose 1: [Crosby] [Stills] [Nash] [Young] Choose 2: [Crosby, Stills] [Crosby, Nash] [Crosby, Young] [Stills, Nash] [Stills, Young] [Nash, Young] Choose 3: [Crosby, Stills, Nash] [Crosby, Stills, Young] [Crosby, Nash, Young] [Stills, Nash, Young] Choose 4: [Crosby, Stills, Nash, Young]
Zero-based Integers
def comb0 = { m, n -> comb(m, (0..<n)) }
Test program:
println "Choose out of 5 (zero-based):"
(0..3).each { i -> println "Choose ${i}:"; comb0(i, 5).each { println it }; println() }
- Output:
Choose out of 5 (zero-based): Choose 0: [] Choose 1: [0] [1] [2] [3] [4] Choose 2: [0, 1] [0, 2] [0, 3] [0, 4] [1, 2] [1, 3] [1, 4] [2, 3] [2, 4] [3, 4] Choose 3: [0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 2, 3] [0, 2, 4] [0, 3, 4] [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]
One-based Integers
def comb1 = { m, n -> comb(m, (1..n)) }
Test program:
println "Choose out of 5 (one-based):"
(0..3).each { i -> println "Choose ${i}:"; comb1(i, 5).each { println it }; println() }
- Output:
Choose out of 5 (one-based): Choose 0: [] Choose 1: [1] [2] [3] [4] [5] Choose 2: [1, 2] [1, 3] [1, 4] [1, 5] [2, 3] [2, 4] [2, 5] [3, 4] [3, 5] [4, 5] Choose 3: [1, 2, 3] [1, 2, 4] [1, 2, 5] [1, 3, 4] [1, 3, 5] [1, 4, 5] [2, 3, 4] [2, 3, 5] [2, 4, 5] [3, 4, 5]
Haskell
It's more natural to extend the task to all (ordered) sublists of size m of a list.
Straightforward, unoptimized implementation with divide-and-conquer:
comb :: Int -> [a] -> [[a]]
comb 0 _ = [[]]
comb _ [] = []
comb m (x:xs) = map (x:) (comb (m-1) xs) ++ comb m xs
In the induction step, either x is not in the result and the recursion proceeds with the rest of the list xs, or it is in the result and then we only need m-1 elements.
Shorter version of the above:
import Data.List (tails)
comb :: Int -> [a] -> [[a]]
comb 0 _ = [[]]
comb m l = [x:ys | x:xs <- tails l, ys <- comb (m-1) xs]
To generate combinations of integers between 0 and n-1, use
comb0 m n = comb m [0..n-1]
Similar, for integers between 1 and n, use
comb1 m n = comb m [1..n]
Another method is to use the built in Data.List.subsequences function, filter for subsequences of length m and then sort:
import Data.List (sort, subsequences)
comb m n = sort . filter ((==m) . length) $ subsequences [0..n-1]
And yet another way is to use the list monad to generate all possible subsets:
comb m n = filter ((==m . length) $ filterM (const [True, False]) [0..n-1]
Dynamic Programming
The first solution is inefficient because it repeatedly calculates the same subproblem in different branches of recursion. For example, comb m (x1:x2:xs)
involves computing comb (m-1) (x2:xs)
and comb m (x2:xs)
, both of which (separately) compute comb (m-1) xs
. To avoid repeated computation, we can use dynamic programming:
comb :: Int -> [a] -> [[a]]
comb m xs = combsBySize xs !! m
where
combsBySize = foldr f ([[]] : repeat [])
f x next =
zipWith
(<>)
(fmap (x :) <$> ([] : next))
next
main :: IO ()
main = print $ comb 3 [0 .. 4]
- Output:
[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
Icon and Unicon
The
provides the core procedure lcomb in lists written by Ralph E. Griswold and Richard L. Goerwitz.
- Output:
3 combinations of 5 integers starting from 0 Intial list [ 0 1 2 3 4 ] Combinations: [ 0 1 2 ] [ 0 1 3 ] [ 0 1 4 ] [ 0 2 3 ] [ 0 2 4 ] [ 0 3 4 ] [ 1 2 3 ] [ 1 2 4 ] [ 1 3 4 ] [ 2 3 4 ]
J
Library
require'stats'
Example use:
3 comb 5
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
All implementations here give that same result if given the same arguments.
Iteration
comb1=: dyad define
c=. 1 {.~ - d=. 1+y-x
z=. i.1 0
for_j. (d-1+y)+/&i.d do. z=. (c#j) ,. z{~;(-c){.&.><i.{.c=. +/\.c end.
)
another iteration version
comb2=: dyad define
d =. 1 + y - x
k =. >: |. i. d
z =. < \. |. i. d
for. i.x-1 do.
z=. , each /\. k ,. each z
k =. 1 + k
end.
;{.z
)
Recursion
combr=: ((0,.$:&.<:),1+($:<:))` (<:i.@,[) @.(>:+.0=[)M.
or expressed explicitly:
combr=: dyad define M.
if. (x>:y)+.0=x do. i.(x<:y),x else. (0,.x combr&.<: y),1+x combr y-1 end.
)
The M.
uses memoization (caching) which greatly reduces the running time. As a result, this is probably the fastest of the implementations here.
A less efficient but easier to understand recursion (similar to Python and Haskell):
combr1=: (({.@],.<:@[$:}.@]),($:}.))` ] @.((= #)+.1=[)
and its explicit equivalent:
combr1=: dyad define
if.(x=#y) +. x=1 do.
y
else.
(({.y) ,. (x-1) combr (}.y)) , (x combr }.y)
end.
)
You need to supply the "list" for example i.5
3 combr1 i.5 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Brute Force
A compact iterative version requiring exponential space & time in the size of the result
comb3=: ((= +/"1) |.@:I.@# ]) #:@i.@(2&^)
We can also generate all permutations and exclude those which are not properly sorted combinations. This is inefficient, but efficiency is not always important.
combb=: (#~ ((-:/:~)>/:~-:\:~)"1)@(# #: [: i. ^~)
Java
import java.util.Collections;
import java.util.LinkedList;
public class Comb{
public static void main(String[] args){
System.out.println(comb(3,5));
}
public static String bitprint(int u){
String s= "";
for(int n= 0;u > 0;++n, u>>= 1)
if((u & 1) > 0) s+= n + " ";
return s;
}
public static int bitcount(int u){
int n;
for(n= 0;u > 0;++n, u&= (u - 1));//Turn the last set bit to a 0
return n;
}
public static LinkedList<String> comb(int c, int n){
LinkedList<String> s= new LinkedList<String>();
for(int u= 0;u < 1 << n;u++)
if(bitcount(u) == c) s.push(bitprint(u));
Collections.sort(s);
return s;
}
}
Using Java version 8
import java.util.ArrayList;
import java.util.List;
public final class Combinations {
public static void main(String[] args) {
System.out.println(createCombinations(List.of( 0, 1, 2, 3, 4 ), 3));
System.out.println(createCombinations(List.of( "Crosby", "Nash", "Stills", "Young" ), 3));
}
private static <T> List<List<T>> createCombinations(List<T> elements, int k) {
List<List<T>> combinations = new ArrayList<List<T>>();
createCombinations(elements, k, new ArrayList<T>(), combinations, 0);
return combinations;
}
private static <T> void createCombinations(
List<T> elements, int k, List<T> accumulator, List<List<T>> combinations, int index) {
if ( accumulator.size() == k ) {
combinations.addFirst( new ArrayList<T>(accumulator) );
} else if ( k - accumulator.size() <= elements.size() - index ) {
createCombinations(elements, k, accumulator, combinations, index + 1);
accumulator.add(elements.get(index));
createCombinations(elements, k, accumulator, combinations, index + 1);
accumulator.removeLast();
}
}
}
- Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]] [[Crosby, Nash, Stills], [Crosby, Nash, Young], [Crosby, Stills, Young], [Nash, Stills, Young]]
JavaScript
Imperative
function bitprint(u) {
var s="";
for (var n=0; u; ++n, u>>=1)
if (u&1) s+=n+" ";
return s;
}
function bitcount(u) {
for (var n=0; u; ++n, u=u&(u-1));
return n;
}
function comb(c,n) {
var s=[];
for (var u=0; u<1<<n; u++)
if (bitcount(u)==c)
s.push(bitprint(u))
return s.sort();
}
comb(3,5)
Alternative recursive version using and an array of values instead of length:
function combinations(arr, k){
var i,
subI,
ret = [],
sub,
next;
for(i = 0; i < arr.length; i++){
if(k === 1){
ret.push( [ arr[i] ] );
}else{
sub = combinations(arr.slice(i+1, arr.length), k-1);
for(subI = 0; subI < sub.length; subI++ ){
next = sub[subI];
next.unshift(arr[i]);
ret.push( next );
}
}
}
return ret;
}
combinations([0,1,2,3,4], 3);
// produces: [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
combinations(["Crosby", "Stills", "Nash", "Young"], 3);
// produces: [["Crosby", "Stills", "Nash"], ["Crosby", "Stills", "Young"], ["Crosby", "Nash", "Young"], ["Stills", "Nash", "Young"]]
Functional
ES5
Simple recursion:
(function () {
function comb(n, lst) {
if (!n) return [[]];
if (!lst.length) return [];
var x = lst[0],
xs = lst.slice(1);
return comb(n - 1, xs).map(function (t) {
return [x].concat(t);
}).concat(comb(n, xs));
}
// [m..n]
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
return m + i;
});
}
return comb(3, range(0, 4))
.map(function (x) {
return x.join(' ');
}).join('\n');
})();
We can significantly improve on the performance of the simple recursive function by deriving a memoized version of it, which stores intermediate results for repeated use.
(function (n) {
// n -> [a] -> [[a]]
function comb(n, lst) {
if (!n) return [[]];
if (!lst.length) return [];
var x = lst[0],
xs = lst.slice(1);
return comb(n - 1, xs).map(function (t) {
return [x].concat(t);
}).concat(comb(n, xs));
}
// f -> f
function memoized(fn) {
m = {};
return function (x) {
var args = [].slice.call(arguments),
strKey = args.join('-');
v = m[strKey];
if ('u' === (typeof v)[0])
m[strKey] = v = fn.apply(null, args);
return v;
}
}
// [m..n]
function range(m, n) {
return Array.apply(null, Array(n - m + 1)).map(function (x, i) {
return m + i;
});
}
var fnMemoized = memoized(comb),
lstRange = range(0, 4);
return fnMemoized(n, lstRange)
.map(function (x) {
return x.join(' ');
}).join('\n');
})(3);
- Output:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
ES6
Defined in terms of a recursive helper function:
(() => {
'use strict';
// ------------------ COMBINATIONS -------------------
// combinations :: Int -> [a] -> [[a]]
const combinations = n =>
xs => {
const comb = n => xs => {
return 1 > n ? [
[]
] : 0 === xs.length ? (
[]
) : (() => {
const
h = xs[0],
tail = xs.slice(1);
return comb(n - 1)(tail)
.map(cons(h))
.concat(comb(n)(tail));
})()
};
return comb(n)(xs);
};
// ---------------------- TEST -----------------------
const main = () =>
show(
combinations(3)(
enumFromTo(0)(4)
)
);
// ---------------- GENERIC FUNCTIONS ----------------
// cons :: a -> [a] -> [a]
const cons = x =>
// A list constructed from the item x,
// followed by the existing list xs.
xs => [x].concat(xs);
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => !isNaN(m) ? (
Array.from({
length: 1 + n - m
}, (_, i) => m + i)
) : enumFromTo_(m)(n);
// show :: a -> String
const show = (...x) =>
JSON.stringify.apply(
null, x.length > 1 ? [x[0], null, x[1]] : x
);
// MAIN ---
return main();
})();
- Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
Or, defining combinations in terms of a more general subsequences function:
(() => {
'use strict';
// ------------------ COMBINATIONS -------------------
// comb :: Int -> Int -> [[Int]]
const comb = m =>
n => combinations(m)(
enumFromTo(0)(n - 1)
);
// combinations :: Int -> [a] -> [[a]]
const combinations = k =>
xs => sort(
filter(xs => k === xs.length)(
subsequences(xs)
)
);
// --------------------- TEST ---------------------
const main = () =>
show(
comb(3)(5)
);
// ---------------- GENERIC FUNCTIONS ----------------
// cons :: a -> [a] -> [a]
const cons = x =>
// A list constructed from the item x,
// followed by the existing list xs.
xs => [x].concat(xs);
// enumFromTo :: Int -> Int -> [Int]
const enumFromTo = m =>
n => !isNaN(m) ? (
Array.from({
length: 1 + n - m
}, (_, i) => m + i)
) : enumFromTo_(m)(n);
// filter :: (a -> Bool) -> [a] -> [a]
const filter = p =>
// The elements of xs which match
// the predicate p.
xs => [...xs].filter(p);
// list :: StringOrArrayLike b => b -> [a]
const list = xs =>
// xs itself, if it is an Array,
// or an Array derived from xs.
Array.isArray(xs) ? (
xs
) : Array.from(xs || []);
// show :: a -> String
const show = x =>
// JSON stringification of a JS value.
JSON.stringify(x)
// sort :: Ord a => [a] -> [a]
const sort = xs => list(xs).slice()
.sort((a, b) => a < b ? -1 : (a > b ? 1 : 0));
// subsequences :: [a] -> [[a]]
// subsequences :: String -> [String]
const subsequences = xs => {
const
// nonEmptySubsequences :: [a] -> [[a]]
nonEmptySubsequences = xxs => {
if (xxs.length < 1) return [];
const [x, xs] = [xxs[0], xxs.slice(1)];
const f = (r, ys) => cons(ys)(cons(cons(x)(ys))(r));
return cons([x])(nonEmptySubsequences(xs)
.reduceRight(f, []));
};
return ('string' === typeof xs) ? (
cons('')(nonEmptySubsequences(xs.split(''))
.map(x => ''.concat.apply('', x)))
) : cons([])(nonEmptySubsequences(xs));
};
// MAIN ---
return main();
})();
- Output:
[[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
With recursions:
function combinations(k, arr, prefix = []) {
if (prefix.length == 0) arr = [...Array(arr).keys()];
if (k == 0) return [prefix];
return arr.flatMap((v, i) =>
combinations(k - 1, arr.slice(i + 1), [...prefix, v])
);
}
jq
combination(r) generates a stream of combinations of the input array. The stream can be captured in an array as shown in the second example.
def combination(r):
if r > length or r < 0 then empty
elif r == length then .
else ( [.[0]] + (.[1:]|combination(r-1))),
( .[1:]|combination(r))
end;
# select r integers from the set (0 .. n-1)
def combinations(n;r): [range(0;n)] | combination(r);
Example 1
combinations(5;3)
- Output:
[0,1,2] [0,1,3] [0,1,4] [0,2,3] [0,2,4] [0,3,4] [1,2,3] [1,2,4] [1,3,4] [2,3,4]
Example 2
["a", "b", "c", "d", "e"] | combination(3) ] | length
- Output:
10
Julia
The combinations
function in the Combinatorics.jl
package generates an iterable sequence of the combinations that you can loop over. (Note that the combinations are computed on the fly during the loop iteration, and are not pre-computed or stored since there many be a very large number of them.)
using Combinatorics
n = 4
m = 3
for i in combinations(0:n,m)
println(i')
end
- Output:
[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]
Recursive solution without the library
The previous solution is the best: it is most elegant, production stile solution.
If, on the other hand we wanted to show how it could be done in Julia, this recursive solution shows some potentials of Julia lang.
##############################
# COMBINATIONS OF 3 OUT OF 5 #
##############################
# Set n and m
m = 5
n = 3
# Prepare the boundary of the calculation. Only m - n numbers are changing in each position.
max_n = m - n
#Prepare an array for result
result = zeros(Int64, n)
function combinations(pos, val) # n, max_n and result are visible in the function
for i = val:max_n # from current value to the boundary
result[pos] = pos + i # fill the position of result
if pos < n # if combination isn't complete,
combinations(pos+1, i) # go to the next position
else
println(result) # combination is complete, print it
end
end
end
combinations(1, 0)
end
- Output:
[1, 2, 3] [1, 2, 4] [1, 2, 5] [1, 3, 4] [1, 3, 5] [1, 4, 5] [2, 3, 4] [2, 3, 5] [2, 4, 5] [3, 4, 5]
Iterator Solution
Alternatively, Julia's Iterators can be used for a very nice solution for any collection.
using Base.Iterators
function bitmask(u, max_size)
res = BitArray(undef, max_size)
res.chunks[1] = u%UInt64
res
end
function combinations(input_collection::Vector{T}, choice_size::Int)::Vector{Vector{T}} where T
num_elements = length(input_collection)
size_filter(x) = Iterators.filter(y -> count_ones(y) == choice_size, x)
bitmask_map(x) = Iterators.map(y -> bitmask(y, num_elements), x)
getindex_map(x) = Iterators.map(y -> input_collection[y], x)
UnitRange(0, (2^num_elements)-1) |>
size_filter |>
bitmask_map |>
getindex_map |>
collect
end
- Output:
julia> show(combinations([1,2,3,4,5], 3)) [[1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4], [1, 2, 5], [1, 3, 5], [2, 3, 5], [1, 4, 5], [2, 4, 5], [3, 4, 5]]
end
K
Recursive implementation:
comb:{[n;k]
f:{:[k=#x; :,x; :,/_f' x,'(1+*|x) _ !n]}
:,/f' !n
}
Lambdatalk
Translation from Emacs-lisp
{def comb
{def comb.r
{lambda {:m :n :N}
{if {= :m 0}
then {A.new {A.new}}
else {if {= :n :N}
then {A.new}
else {A.concat
{A.map {{lambda {:n :rest} {A.addfirst! :n :rest}} :n}
{comb.r {- :m 1} {+ :n 1} :N}}
{comb.r :m {+ :n 1} :N}}}}}}
{lambda {:m :n}
{comb.r :m 0 :n}}}
-> comb
{comb 3 5}
-> [[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,2,4],[0,3,4],
[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
Kotlin
Recursion
class Combinations(val m: Int, val n: Int) {
private val combination = IntArray(m)
init {
generate(0)
}
private fun generate(k: Int) {
if (k >= m) {
for (i in 0 until m) print("${combination[i]} ")
println()
}
else {
for (j in 0 until n)
if (k == 0 || j > combination[k - 1]) {
combination[k] = j
generate(k + 1)
}
}
}
}
fun main(args: Array<String>) {
Combinations(3, 5)
}
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Lazy
import java.util.LinkedList
inline fun <reified T> combinations(arr: Array<T>, m: Int) = sequence {
val n = arr.size
val result = Array(m) { arr[0] }
val stack = LinkedList<Int>()
stack.push(0)
while (stack.isNotEmpty()) {
var resIndex = stack.size - 1;
var arrIndex = stack.pop()
while (arrIndex < n) {
result[resIndex++] = arr[arrIndex++]
stack.push(arrIndex)
if (resIndex == m) {
yield(result.toList())
break
}
}
}
}
fun main() {
val n = 5
val m = 3
combinations((1..n).toList().toTypedArray(), m).forEach { println(it.joinToString(separator = " ")) }
}
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Lobster
import std
// combi is an itertor that solves the Combinations problem for iota arrays as stated
def combi(m, n, f):
let c = map(n): _
while true:
f(c)
var i = n-1
c[i] = c[i] + 1
if c[i] > m - 1:
while c[i] >= m - n + i:
i -= 1
if i < 0: return
c[i] = c[i] + 1
while i < n-1:
c[i+1] = c[i] + 1
i += 1
combi(5, 3): print(_)
- Output:
[0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 2, 3] [0, 2, 4] [0, 3, 4] [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]
import std
// comba solves the general problem for any values in an input array
def comba<T>(arr: [T], k) -> [[T]]:
let ret = []
for(arr.length) i:
if k == 1:
ret.push([arr[i]])
else:
let sub = comba(arr.slice(i+1, -1), k-1)
for(sub) next:
next.insert(0, arr[i])
ret.push(next)
return ret
print comba([0,1,2,3,4], 3)
print comba(["Crosby", "Stills", "Nash", "Young"], 3)
// Of course once could use combi to index the input array instead
var s = ""
combi(4, 3): s += (map(_) i: ["Crosby", "Stills", "Nash", "Young"][i]) + " "
print s
- Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]] [["Crosby", "Stills", "Nash"], ["Crosby", "Stills", "Young"], ["Crosby", "Nash", "Young"], ["Stills", "Nash", "Young"]] ["Crosby", "Stills", "Nash"] ["Crosby", "Stills", "Young"] ["Crosby", "Nash", "Young"] ["Stills", "Nash", "Young"]
Logo
to comb :n :list
if :n = 0 [output [[]]]
if empty? :list [output []]
output sentence map [sentence first :list ?] comb :n-1 bf :list ~
comb :n bf :list
end
print comb 3 [0 1 2 3 4]
Lua
function map(f, a, ...) if a then return f(a), map(f, ...) end end
function incr(k) return function(a) return k > a and a or a+1 end end
function combs(m, n)
if m * n == 0 then return {{}} end
local ret, old = {}, combs(m-1, n-1)
for i = 1, n do
for k, v in ipairs(old) do ret[#ret+1] = {i, map(incr(i), unpack(v))} end
end
return ret
end
for k, v in ipairs(combs(3, 5)) do print(unpack(v)) end
M2000 Interpreter
Including a helper sub to export result to clipboard through a global variable (a temporary global variable)
Module Checkit {
Global a$
Document a$
Module Combinations (m as long, n as long){
Module Level (n, s, h) {
If n=1 then {
while Len(s) {
Print h, car(s)
ToClipBoard()
s=cdr(s)
}
} Else {
While len(s) {
call Level n-1, cdr(s), cons(h, car(s))
s=cdr(s)
}
}
Sub ToClipBoard()
local m=each(h)
Local b$=""
While m {
b$+=If$(Len(b$)<>0->" ","")+Format$("{0::-10}",Array(m))
}
b$+=If$(Len(b$)<>0->" ","")+Format$("{0::-10}",Array(s,0))+{
}
a$<=b$ ' assign to global need <=
End Sub
}
If m<1 or n<1 then Error
s=(,)
for i=0 to n-1 {
s=cons(s, (i,))
}
Head=(,)
Call Level m, s, Head
}
Clear a$
Combinations 3, 5
ClipBoard a$
}
Checkit
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Step by Step
Module StepByStep {
Function CombinationsStep (a, nn) {
c1=lambda (&f, &a) ->{
=car(a) : a=cdr(a) : f=len(a)=0
}
m=len(a)
c=c1
n=m-nn+1
p=2
while m>n {
c1=lambda c2=c,n=p, z=(,) (&f, &m) ->{
if len(z)=0 then z=cdr(m)
=cons(car(m),c2(&f, &z))
if f then z=(,) : m=cdr(m) : f=len(m)+len(z)<n
}
c=c1
p++
m--
}
=lambda c, a (&f) -> {
=c(&f, &a)
}
}
k=false
StepA=CombinationsStep((1, 2, 3, 4,5), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep((0, 1, 2, 3, 4), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep(("A", "B", "C", "D","E"), 3)
while not k {
Print StepA(&k)
}
k=false
StepA=CombinationsStep(("CAT", "DOG", "BAT"), 2)
while not k {
Print StepA(&k)
}
}
StepByStep
M4
divert(-1)
define(`set',`define(`$1[$2]',`$3')')
define(`get',`defn(`$1[$2]')')
define(`setrange',`ifelse(`$3',`',$2,`define($1[$2],$3)`'setrange($1,
incr($2),shift(shift(shift($@))))')')
define(`for',
`ifelse($#,0,``$0'',
`ifelse(eval($2<=$3),1,
`pushdef(`$1',$2)$4`'popdef(`$1')$0(`$1',incr($2),$3,`$4')')')')
define(`show',
`for(`k',0,decr($1),`get(a,k) ')')
define(`chklim',
`ifelse(get(`a',$3),eval($2-($1-$3)),
`chklim($1,$2,decr($3))',
`set(`a',$3,incr(get(`a',$3)))`'for(`k',incr($3),decr($2),
`set(`a',k,incr(get(`a',decr(k))))')`'nextcomb($1,$2)')')
define(`nextcomb',
`show($1)
ifelse(eval(get(`a',0)<$2-$1),1,
`chklim($1,$2,decr($1))')')
define(`comb',
`for(`j',0,decr($1),`set(`a',j,j)')`'nextcomb($1,$2)')
divert
comb(3,5)
Maple
This is built-in in Maple:
> combinat:-choose( 5, 3 );
[[1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [1, 4, 5], [2, 3, 4], [2, 3, 5],
[2, 4, 5], [3, 4, 5]]
Mathematica /Wolfram Language
combinations[n_Integer, m_Integer]/;m>= 0:=Union[Sort /@ Permutations[Range[0, n - 1], {m}]]
built-in function example
Subsets[Range[5], {2}]
MATLAB
This a built-in function in MATLAB called "nchoosek(n,k)". The argument "n" is a vector of values from which the combinations are made, and "k" is a scalar representing the amount of values to include in each combination.
Task Solution:
>> nchoosek((0:4),3)
ans =
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
Maxima
next_comb(n, p, a) := block(
[a: copylist(a), i: p],
if a[1] + p = n + 1 then return(und),
while a[i] - i >= n - p do i: i - 1,
a[i]: a[i] + 1,
for j from i + 1 thru p do a[j]: a[j - 1] + 1,
a
)$
combinations(n, p) := block(
[a: makelist(i, i, 1, p), v: [ ]],
while a # 'und do (v: endcons(a, v), a: next_comb(n, p, a)),
v
)$
combinations(5, 3);
/* [[1, 2, 3],
[1, 2, 4],
[1, 2, 5],
[1, 3, 4],
[1, 3, 5],
[1, 4, 5],
[2, 3, 4],
[2, 3, 5],
[2, 4, 5],
[3, 4, 5]] */
Miranda
main :: [sys_message]
main = [Stdout (lay (map show (comb 3 5)))]
comb :: num->num->[[num]]
comb m n = comb' m [0..n-1]
where comb' 0 xs = [[]]
comb' m [] = []
comb' m (x:xs) = map (x:) (comb' (m-1) xs) ++ comb' m xs
- Output:
[0,1,2] [0,1,3] [0,1,4] [0,2,3] [0,2,4] [0,3,4] [1,2,3] [1,2,4] [1,3,4] [2,3,4]
Modula-2
MODULE Combinations;
FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;
CONST
MMax = 3;
NMax = 5;
VAR
Combination: ARRAY [0 .. MMax] OF CARDINAL;
PROCEDURE Generate(M: CARDINAL);
VAR
N, I: CARDINAL;
BEGIN
IF (M > MMax) THEN
FOR I := 1 TO MMax DO
WriteInt(Combination[I], 1);
WriteString(' ');
END;
WriteLn;
ELSE
FOR N := 1 TO NMax DO
IF (M = 1) OR (N > Combination[M - 1]) THEN
Combination[M] := N;
Generate(M + 1);
END
END
END
END Generate;
BEGIN
Generate(1);
END Combinations.
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Nim
iterator comb(m, n: int): seq[int] =
var c = newSeq[int](n)
for i in 0 ..< n: c[i] = i
block outer:
while true:
yield c
var i = n - 1
inc c[i]
if c[i] <= m - 1: continue
while c[i] >= m - n + i:
dec i
if i < 0: break outer
inc c[i]
while i < n-1:
c[i+1] = c[i] + 1
inc i
for i in comb(5, 3):
echo i
- Output:
@[0, 1, 2] @[0, 1, 3] @[0, 1, 4] @[0, 2, 3] @[0, 2, 4] @[0, 3, 4] @[1, 2, 3] @[1, 2, 4] @[1, 3, 4] @[2, 3, 4]
Another way, using a stack. Adapted from C#:
iterator combinations(m: int, n: int): seq[int] =
var result = newSeq[int](n)
var stack = newSeq[int]()
stack.add 0
while stack.len > 0:
var index = stack.high
var value = stack.pop()
while value < m:
result[index] = value
inc value
inc index
stack.add value
if index == n:
yield result
break
for i in combinations(5, 3):
echo i
OCaml
let combinations m n =
let rec c = function
| (0,_) -> [[]]
| (_,0) -> []
| (p,q) -> List.append
(List.map (List.cons (n-q)) (c (p-1, q-1)))
(c (p , q-1))
in c (m , n)
let () =
let rec print_list = function
| [] -> print_newline ()
| hd :: tl -> print_int hd ; print_string " "; print_list tl
in List.iter print_list (combinations 3 5)
Octave
nchoosek([0:4], 3)
OpenEdge/Progress
define variable r as integer no-undo extent 3.
define variable m as integer no-undo initial 5.
define variable n as integer no-undo initial 3.
define variable max_n as integer no-undo.
max_n = m - n.
function combinations returns logical (input pos as integer, input val as integer):
define variable i as integer no-undo.
do i = val to max_n:
r[pos] = pos + i.
if pos lt n then
combinations(pos + 1, i).
else
message r[1] - 1 r[2] - 1 r[3] - 1.
end.
end function.
combinations(1, 0).
- Output:
0 1 2
0 1 3
0 1 4
0 2 3
0 2 4
0 3 4
1 2 3
1 2 4
1 3 4
2 3 4
Oz
This can be implemented as a trivial application of finite set constraints:
declare
fun {Comb M N}
proc {CombScript Comb}
%% Comb is a subset of [0..N-1]
Comb = {FS.var.upperBound {List.number 0 N-1 1}}
%% Comb has cardinality M
{FS.card Comb M}
%% enumerate all possibilities
{FS.distribute naive [Comb]}
end
in
%% Collect all solutions and convert to lists
{Map {SearchAll CombScript} FS.reflect.upperBoundList}
end
in
{Inspect {Comb 3 5}}
PARI/GP
Crv ( k, v, d ) = {
if( d == k,
print ( vecextract( v , "2..-2" ) )
,
for( i = v[ d + 1 ] + 1, #v,
v[ d + 2 ] = i;
Crv( k, v, d + 1 ) ));
}
combRV( n, k ) = Crv ( k, vector( n, X, X-1), 0 );
Cr ( c, z, b, n, k ) = {
if( z < b, print1( c, " " );
if( n>0, Cr( c+1, z , b* k \n, n-1, k - 1 ))
,
if( n>0, Cr( c+1, z-b, b*(n-k)\n, n-1, k ))
);
}
combR( n, k ) = {
local(
bnk = binomial( n, k ),
b11 = bnk * k \ n ); \\binomial( n-1, k-1 )
for( z = 0, bnk - 1,
Cr( 1, z, b11, n-1, k-1 );
print
);
}
Ci( z, b, n, k ) = { local( c = 1 );
n--; k--;
while( k >= 0 ,
if( z < b,
print1(c, " ");
c++;
if( n > 0,
b = b*k \ n);
n--; k--;
,
c++;
z -= b;
b = b*(n-k)\n;
n--
)
);
print;
}
combI( n, k ) = {
local( bnk = binomial( n, k ),
b11 = bnk * k \ n ); \\ binomial( n-1, k-1 )
for( z = 0, bnk - 1,
Ci(z, b11, n, k ) );
}
Pascal
Program Combinations;
const
m_max = 3;
n_max = 5;
var
combination: array [0..m_max] of integer;
procedure generate(m: integer);
var
n, i: integer;
begin
if (m > m_max) then
begin
for i := 1 to m_max do
write (combination[i], ' ');
writeln;
end
else
for n := 1 to n_max do
if ((m = 1) or (n > combination[m-1])) then
begin
combination[m] := n;
generate(m + 1);
end;
end;
begin
generate(1);
end.
- Output:
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
PascalABC.NET
##
(0..4).combinations(3).printlines;
- Output:
[0,1,2] [0,1,3] [0,1,4] [0,2,3] [0,2,4] [0,3,4] [1,2,3] [1,2,4] [1,3,4] [2,3,4]
Perl
The ntheory module has a combinations iterator that runs in lexicographic order.
use ntheory qw/forcomb/;
forcomb { print "@_\n" } 5,3
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Algorithm::Combinatorics also does lexicographic order and can return the whole array or an iterator:
use Algorithm::Combinatorics qw/combinations/;
my @c = combinations( [0..4], 3 );
print "@$_\n" for @c;
use Algorithm::Combinatorics qw/combinations/;
my $iter = combinations([0..4],3);
while (my $c = $iter->next) {
print "@$c\n";
}
Math::Combinatorics is another option but results will not be in lexicographic order as specified by the task.
Perl5i
Use a recursive solution, derived from the Raku (Haskell) solution
- If we run out of eligable characters, we've gone too far, and won't find a solution along this path.
- If we are looking for a single character, each character in @set is elegible, so return each as the single element of an array.
- We have not yet reached the last character, so there are two possibilities:
- push the first element of the set onto the front of an N-1 length combination from the remainder of the set.
- skip the current element, and generate an N-length combination from the remainder
The major Perl5i -isms are the implicit "autoboxing" of the intermediate resulting array into an array object, with the use of unshift() as a method, and the "func" keyword and signature. Note that Perl can construct ranges of numbers or of letters, so it is natural to identify the characters as 'a' .. 'e'.
use perl5i::2;
# ----------------------------------------
# generate combinations of length $n consisting of characters
# from the sorted set @set, using each character once in a
# combination, with sorted strings in sorted order.
#
# Returns a list of array references, each containing one combination.
#
func combine($n, @set) {
return unless @set;
return map { [ $_ ] } @set if $n == 1;
my ($head) = shift @set;
my @result = combine( $n-1, @set );
for my $subarray ( @result ) {
$subarray->unshift( $head );
}
return ( @result, combine( $n, @set ) );
}
say @$_ for combine( 3, ('a'..'e') );
- Output:
abc abd abe acd ace ade bcd bce bde cde
Phix
It does not get much simpler or easier than this. See Sudoku for a practical application of this algorithm
with javascript_semantics procedure comb(integer pool, needed, done=0, sequence chosen={}) if needed=0 then -- got a full set ?chosen -- (or use a routine_id, result arg, or whatever) return end if if done+needed>pool then return end if -- cannot fulfil -- get all combinations with and without the next item: done += 1 comb(pool,needed-1,done,append(deep_copy(chosen),done)) comb(pool,needed,done,chosen) end procedure comb(5,3)
- Output:
{1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5}
As of 1.0.2 there is a builtin combinations() function. Using a string here for simplicity and neater output, but it works with any sequence:
?join(combinations("12345",3),',')
- Output:
"123,124,125,134,135,145,234,235,245,345"
PHP
non-recursive
Full non-recursive algorithm generating all combinations without repetions. Taken from here: [1]
Much slower than normal algorithm.
<?php
$a=array(1,2,3,4,5);
$k=3;
$n=5;
$c=array_splice($a, $k);
$b=array_splice($a, 0, $k);
$j=$k-1;
print_r($b);
while (1) {
$m=array_search($b[$j]+1,$c);
if ($m!==false) {
$c[$m]-=1;
$b[$j]=$b[$j]+1;
print_r($b);
}
if ($b[$k-1]==$n) {
$i=$k-1;
while ($i >= 0) {
if ($i == 0 && $b[$i] == $n-$k+1) break 2;
$m=array_search($b[$i]+1,$c);
if ($m!==false) {
$c[$m]=$c[$m]-1;
$b[$i]=$b[$i]+1;
$g=$i;
while ($g != $k-1) {
array_unshift ($c, $b[$g+1]);
$b[$g+1]=$b[$g]+1;
$g++;
}
$c=array_diff($c,$b);
print_r($b);
break;
}
$i--;
}
}
}
?>
Output:
Array ( [0] => 1 [1] => 2 ) Array ( [0] => 1 [1] => 3 ) Array ( [0] => 2 [1] => 3 )
recursive
<?php
function combinations_set($set = [], $size = 0) {
if ($size == 0) {
return [[]];
}
if ($set == []) {
return [];
}
$prefix = [array_shift($set)];
$result = [];
foreach (combinations_set($set, $size-1) as $suffix) {
$result[] = array_merge($prefix, $suffix);
}
foreach (combinations_set($set, $size) as $next) {
$result[] = $next;
}
return $result;
}
function combination_integer($n, $m) {
return combinations_set(range(0, $n-1), $m);
}
assert(combination_integer(5, 3) == [
[0, 1, 2],
[0, 1, 3],
[0, 1, 4],
[0, 2, 3],
[0, 2, 4],
[0, 3, 4],
[1, 2, 3],
[1, 2, 4],
[1, 3, 4],
[2, 3, 4]
]);
echo "3 comb 5:\n";
foreach (combination_integer(5, 3) as $combination) {
echo implode(", ", $combination), "\n";
}
Outputs:
3 comb 5: 0, 1, 2 0, 1, 3 0, 1, 4 0, 2, 3 0, 2, 4 0, 3, 4 1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4
Picat
Recursion
go =>
% Integers 1..K
N = 3,
K = 5,
printf("comb1(3,5): %w\n", comb1(N,K)),
nl.
% Recursive (numbers)
comb1(M,N) = comb1_(M, 1..N).
comb1_(0, _X) = [[]].
comb1_(_M, []) = [].
comb1_(M, [X|Xs]) = [ [X] ++ Xs2 : Xs2 in comb1_(M-1, Xs) ] ++ comb1_(M, Xs).
- Output:
comb1(3,5): [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]]
Using built-in power_set
comb2(K, N) = sort([[J : J in I] : I in power_set(1..N), I.length == K]).
Combinations from a list
go3 =>
L = "abcde",
printf("comb3(%d,%w): %w\n",3,L,comb3(3,L)).
comb3(M, List) = [ [List[P[I]] : I in 1..P.length] : P in comb1(M,List.length)].
- Output:
comb3(3,abcde): [abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde]
PicoLisp
(de comb (M Lst)
(cond
((=0 M) '(NIL))
((not Lst))
(T
(conc
(mapcar
'((Y) (cons (car Lst) Y))
(comb (dec M) (cdr Lst)) )
(comb M (cdr Lst)) ) ) ) )
(comb 3 (1 2 3 4 5))
Pop11
Natural recursive solution: first we choose first number i and then we recursively generate all combinations of m - 1 numbers between i + 1 and n - 1. Main work is done in the internal 'do_combs' function, the outer 'comb' just sets up variable to accumulate results and reverses the final result.
The 'el_lst' parameter to 'do_combs' contains partial combination (list of numbers which were chosen in previous steps) in reverse order.
define comb(n, m);
lvars ress = [];
define do_combs(l, m, el_lst);
lvars i;
if m = 0 then
cons(rev(el_lst), ress) -> ress;
else
for i from l to n - m do
do_combs(i + 1, m - 1, cons(i, el_lst));
endfor;
endif;
enddefine;
do_combs(0, m, []);
rev(ress);
enddefine;
comb(5, 3) ==>
PowerShell
An example of how PowerShell itself can translate C# code:
$source = @'
using System;
using System.Collections.Generic;
namespace Powershell
{
public class CSharp
{
public static IEnumerable<int[]> Combinations(int m, int n)
{
int[] result = new int[m];
Stack<int> stack = new Stack<int>();
stack.Push(0);
while (stack.Count > 0) {
int index = stack.Count - 1;
int value = stack.Pop();
while (value < n) {
result[index++] = value++;
stack.Push(value);
if (index == m) {
yield return result;
break;
}
}
}
}
}
}
'@
Add-Type -TypeDefinition $source -Language CSharp
[Powershell.CSharp]::Combinations(3,5) | Format-Wide {$_} -Column 3 -Force
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Prolog
The solutions work with SWI-Prolog
Solution with library clpfd : we first create a list of M elements, we say that the members of the list are numbers between 1 and N and there are in ascending order, finally we ask for a solution.
:- use_module(library(clpfd)).
comb_clpfd(L, M, N) :-
length(L, M),
L ins 1..N,
chain(L, #<),
label(L).
- Output:
?- comb_clpfd(L, 3, 5), writeln(L), fail. [1,2,3] [1,2,4] [1,2,5] [1,3,4] [1,3,5] [1,4,5] [2,3,4] [2,3,5] [2,4,5] [3,4,5] false.
Another solution :
comb_Prolog(L, M, N) :-
length(L, M),
fill(L, 1, N).
fill([], _, _).
fill([H | T], Min, Max) :-
between(Min, Max, H),
H1 is H + 1,
fill(T, H1, Max).
with the same output.
List comprehension
Works with SWI-Prolog, library clpfd from Markus Triska, and list comprehension (see List comprehensions ).
:- use_module(library(clpfd)).
comb_lstcomp(N, M, V) :-
V <- {L & length(L, N), L ins 1..M & all_distinct(L), chain(L, #<), label(L)}.
- Output:
2?- comb_lstcomp(3, 5, V). V = [[1,2,3],[1,2,4],[1,2,5],[1,3,4],[1,3,5],[1,4,5],[2,3,4],[2,3,5],[2,4,5],[3,4,5]] ; false.
Pure
comb m n = comb m (0..n-1) with
comb 0 _ = [[]];
comb _ [] = [];
comb m (x:xs) = [x:xs | xs = comb (m-1) xs] + comb m xs;
end;
comb 3 5;
PureBasic
Procedure.s Combinations(amount, choose)
NewList comb.s()
; all possible combinations with {amount} Bits
For a = 0 To 1 << amount
count = 0
; count set bits
For x = 0 To amount
If (1 << x)&a
count + 1
EndIf
Next
; if set bits are equal to combination length
; we generate a String representing our combination and add it to list
If count = choose
string$ = ""
For x = 0 To amount
If (a >> x)&1
; replace x by x+1 to start counting with 1
String$ + Str(x) + " "
EndIf
Next
AddElement(comb())
comb() = string$
EndIf
Next
; now we sort our list and format it for output as string
SortList(comb(), #PB_Sort_Ascending)
ForEach comb()
out$ + ", [ " + comb() + "]"
Next
ProcedureReturn Mid(out$, 3)
EndProcedure
Debug Combinations(5, 3)
Pyret
fun combos<a>(lst :: List<a>, size :: Number) -> List<List<a>>:
# return all subsets of lst of a certain size,
# maintaining the original ordering of the list
# Let's handle a bunch of degenerate cases up front
# to be defensive...
if lst.length() < size:
# return an empty list if size is too big
[list:]
else if lst.length() == size:
# combos([list: 1,2,3,4]) == list[list: 1,2,3,4]]
[list: lst]
else if size == 1:
# combos(list: 5, 9]) == list[[list: 5], [list: 9]]
lst.map(lam(elem): [list: elem] end)
else:
# The main resursive step here is to consider
# all the combinations of the list that have the
# first element (aka head) and then those that don't
# don't.
cases(List) lst:
| empty => [list:]
| link(head, rest) =>
# All the subsets of our list either include the
# first element of the list (aka head) or they don't.
with-head-combos = combos(rest, size - 1).map(
lam(combo):
link(head, combo) end
)
without-head-combos = combos(rest, size)
with-head-combos._plus(without-head-combos)
end
end
where:
# define semantics for the degenerate cases, although
# maybe we should just make some of these raise errors
combos([list:], 0) is [list: [list:]]
combos([list:], 1) is [list:]
combos([list: "foo"], 1) is [list: [list: "foo"]]
combos([list: "foo"], 2) is [list:]
# test the normal stuff
lst = [list: 1, 2, 3]
combos(lst, 1) is [list:
[list: 1],
[list: 2],
[list: 3]
]
combos(lst, 2) is [list:
[list: 1, 2],
[list: 1, 3],
[list: 2, 3]
]
combos(lst, 3) is [list:
[list: 1, 2, 3]
]
# remember the 10th row of Pascal's Triangle? :)
lst10 = [list: 1,2,3,4,5,6,7,8,9,10]
combos(lst10, 3).length() is 120
combos(lst10, 4).length() is 210
combos(lst10, 5).length() is 252
combos(lst10, 6).length() is 210
combos(lst10, 7).length() is 120
# more sanity checks...
for each(sublst from combos(lst10, 6)):
sublst.length() is 6
end
for each(sublst from combos(lst10, 9)):
sublst.length() is 9
end
end
fun int-combos(n :: Number, m :: Number) -> List<List<Number>>:
doc: "return all lists of size m containing distinct, ordered nonnegative ints < n"
lst = range(0, n)
combos(lst, m)
where:
int-combos(5, 5) is [list: [list: 0,1,2,3,4]]
int-combos(3, 2) is [list:
[list: 0, 1],
[list: 0, 2],
[list: 1, 2]
]
end
fun display-3-comb-5-for-rosetta-code():
# The very concrete nature of this function is driven
# by the web page from Rosetta Code. We want to display
# output similar to the top of this page:
#
# https://rosettacode.org/wiki/Combinations
results = int-combos(5, 3)
for each(lst from results):
print(lst.join-str(" "))
end
end
display-3-comb-5-for-rosetta-code()
Python
Starting from Python 2.6 and 3.0 you have a pre-defined function that returns an iterator. Here we turn the result into a list for easy printing:
>>> from itertools import combinations
>>> list(combinations(range(5),3))
[(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3), (0, 2, 4), (0, 3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]
Earlier versions could use functions like the following:
def comb(m, lst):
if m == 0: return [[]]
return [[x] + suffix for i, x in enumerate(lst)
for suffix in comb(m - 1, lst[i + 1:])]
Example:
>>> comb(3, range(5))
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
def comb(m, s):
if m == 0: return [[]]
if s == []: return []
return [s[:1] + a for a in comb(m-1, s[1:])] + comb(m, s[1:])
print comb(3, range(5))
A slightly different recursion version
def comb(m, s):
if m == 1: return [[x] for x in s]
if m == len(s): return [s]
return [s[:1] + a for a in comb(m-1, s[1:])] + comb(m, s[1:])
Quackery
Bit Bashing
[ 0 swap
[ dup 0 != while
dup 1 & if
[ dip 1+ ]
1 >> again ]
drop ] is bits ( n --> n )
[ [] unrot
bit times
[ i bits
over = if
[ dip
[ i join ] ] ]
drop ] is combnums ( n n --> [ )
[ [] 0 rot
[ dup 0 != while
dup 1 & if
[ dip
[ dup dip join ] ]
dip 1+
1 >>
again ]
2drop ] is makecomb ( n --> [ )
[ over 0 = iff
[ 2drop [] ] done
combnums
[] swap witheach
[ makecomb
nested join ] ] is comb ( n n --> [ )
[ behead swap witheach max ] is largest ( [ --> n )
[ 0 rot witheach
[ [ dip [ over * ] ] + ]
nip ] is comborder ( [ n --> n )
[ dup [] != while
sortwith
[ 2dup join
largest 1+ dup dip
[ comborder swap ]
comborder < ] ] is sortcombs ( [ --> [ )
3 5 comb
sortcombs
witheach [ witheach [ echo sp ] cr ]
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
Iterative
[ stack ] is comb.stack
[ stack ] is comb.items
[ stack ] is comb.required
[ stack ] is comb.result
[ 1 - comb.items put
1+ comb.required put
0 comb.stack put
[] comb.result put
[ comb.required share
comb.stack size = if
[ comb.result take
comb.stack behead
drop nested join
comb.result put ]
comb.stack take
dup comb.items share
= iff
[ drop
comb.stack size 1 > iff
[ 1 comb.stack tally ] ]
else
[ dup comb.stack put
1+ comb.stack put ]
comb.stack size 1 = until ]
comb.items release
comb.required release
comb.result take ] is comb ( n n --> )
3 5 comb
witheach [ witheach [ echo sp ] cr ]
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
… and a handy tool
Can be used with comb
, and is general purpose.
[ dup size dip
[ witheach
[ over swap peek swap ] ]
nip pack ] is arrange ( [ [ --> [ )
' [ 10 20 30 40 50 ]
3 5 comb
witheach
[ dip dup arrange
witheach [ echo sp ]
cr ]
drop
cr
$ "zero one two three four" nest$
' [ 4 3 1 0 1 4 3 ] arrange
witheach [ echo$ sp ]
- Output:
10 20 30 10 20 40 10 20 50 10 30 40 10 30 50 10 40 50 20 30 40 20 30 50 20 40 50 30 40 50 four three one zero one four three
R
print(combn(0:4, 3))
Combinations are organized per column, so to provide an output similar to the one in the task text, we need the following:
r <- combn(0:4, 3)
for(i in 1:choose(5,3)) print(r[,i])
Racket
(define sublists
(match-lambda**
[(0 _) '(())]
[(_ '()) '()]
[(m (cons x xs)) (append (map (curry cons x) (sublists (- m 1) xs))
(sublists m xs))]))
(define (combinations n m)
(sublists n (range m)))
- Output:
> (combinations 3 5) '((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4))
Raku
(formerly Perl 6)
There actually is a builtin:
.say for combinations(5,3);
- Output:
(0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 3) (1 2 4) (1 3 4) (2 3 4)
Here is an iterative routine with the same output:
sub combinations(Int $n, Int $k) {
return ([],) unless $k;
return if $k > $n || $n <= 0;
my @c = ^$k;
gather loop {
take [@c];
next if @c[$k-1]++ < $n-1;
my $i = $k-2;
$i-- while $i >= 0 && @c[$i] >= $n-($k-$i);
last if $i < 0;
@c[$i]++;
while ++$i < $k { @c[$i] = @c[$i-1] + 1; }
}
}
.say for combinations(5,3);
Refal
$ENTRY Go {
= <Prout <Comb 3 5>>;
};
Comb {
s.M s.N = <Comb1 s.M <Iota 0 <- s.N 1>>>;
};
Comb1 {
0 e.X = ();
s.M = ;
s.M s.X e.X = <PfxEach s.X <Comb1 <- s.M 1> e.X>> <Comb1 s.M e.X>;
};
PfxEach {
s.X = ;
s.X (e.X) e.Y = (s.X e.X) <PfxEach s.X e.Y>;
};
Iota {
s.E s.E = s.E;
s.S s.E = s.S <Iota <+ 1 s.S> s.E>;
};
- Output:
(0 1 2 )(0 1 3 )(0 1 4 )(0 2 3 )(0 2 4 )(0 3 4 )(1 2 3 )(1 2 4 )(1 3 4 )(2 3 4 )
REXX
Version 1
This REXX program supports up to 100 symbols (one symbol for each "thing").
If things taken at a time is negative, the combinations aren't listed, only a count is shown.
The symbol list could be extended by added any unique viewable symbol (character).
/*REXX program displays combination sets for X things taken Y at a time. */
Parse Arg things size chars . /* get optional arguments from the command line */
If things='?' Then Do
Say 'rexx combi things size characters'
Say ' defaults: 5 3 123456789...'
Say 'example rexx combi , , xyzuvw'
Say 'size<0 shows only the number of possible combinations'
Exit
End
If things==''|things=="," Then things=5 /* No things specified? Then use default*/
If size=='' |size=="," Then size=3 /* No size specified? Then use default*/
If chars==''|chars=="," Then /* No chars specified? Then Use default*/
chars='123456789abcdefghijklmnopqrstuvwxyz'||,
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'||,
"~!@#chars%^&*()_+`{}|[]\:;<>?,./¦++++±==˜·" /*some extended chars */
show_details=sign(size) /* -1: Don't show details */
size=abs(size)
If things<size Then
Call exit 'Not enough things ('things') for size ('size').'
Say '------------' things 'things taken' size 'times at a time:'
Say '------------' combn(things,size) 'combinations.'
Exit /* stick a fork in it, we're all */
/*-------------------------------------------------------------------------------*/
combn: Procedure Expose chars show_details
Parse Arg things,size
thingsp=things+1
thingsm=thingsp-size
index.=0
If things=0|size=0 Then
Return 'no'
Do i=1 For size
index.i=i
End
done=0
Do combi=1 By 1 Until done
combination=''
Do d=1 To size
combination=combination substr(chars,index.d,1)
End
If show_details=1 Then
Say combination
index.size=index.size+1
If index.size==thingsp Then
done=.combn(size-1)
End
Return combi
/*---------------------------------------------------------------------------------*/
.combn: Procedure Expose index. size thingsm
Parse Arg d
--Say '.combn' d thingsm show()
If d==0 Then
Return 1
p=index.d
Do u=d To size
index.u=p+1
If index.u==thingsm+u Then
Return .combn(u-1)
p=index.u
End
Return 0
show:
list=''
Do k=1 To size
list=list index.k
End
Return list
exit:
Say '*****error*****' arg(1)
Exit 13
- output when using the input of: 5 3 01234
------------ 5 things taken 3 at a time: 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 ------------ 10 combinations.
- output when using the input of: 5 3 abcde
------------ 5 things taken 3 at a time: a b c a b d a b e a c d a c e a d e b c d b c e b d e c d e ------------ 10 combinations.
- output when using the input of: 44 0
------------ 44 things taken 0 at a time: ------------ no combinations.
- output when using the input of: 52 -5
------------ 52 things taken 5 at a time: ------------ 2598960 combinations.
- output when using the input of: 5 -8
*****error***** Not enough things (5) for size (8).
Version 2
/*REXX program displays combination sets for X things taken Y at a time. */
Parse Arg things size characters
If things='?' Then Do
Say 'rexx combi2 things size characters'
Say ' defaults: 5 3 123456789...'
Say 'example rexx combi2 , , xyzuvw'
Say 'size<0 shows only the number of possible combinations'
Exit
End
If things==''|things=="," Then things=5 /* No things specified? Then use default*/
If size=='' |size=="," Then size=3 /* No size specified? Then use default*/
Numeric Digits 20
show=sign(size)
size=abs(size)
If things<size Then
Call exit 'Not enough things ('things') for size ('size').' Say '----------' things 'things taken' size 'at a time:'
n=2**things-1
nc=0
Do u=1 to n
nc=nc+combinations(u)
End
Say '------------' nc 'combinations.'
Exit
combinations: Procedure Expose things size characters show
Parse Arg u
nc=0
bu=x2b(d2x(u))
bu1=space(translate(bu,' ',0),0)
If length(bu1)=size Then Do
ub=reverse(bu)
res=''
Do i=1 To things
If characters<>'' then
c=substr(characters,i,1)
Else
c=i
If substr(ub,i,1)=1 Then res=res c
End
If show=1 then
Say res
Return 1
End
Else
Return 0
exit:
Say '*****error*****' arg(1)
Exit 13
Ring
# Project : Combinations
n = 5
k = 3
temp = []
comb = []
num = com(n, k)
while true
temp = []
for n = 1 to 3
tm = random(4) + 1
add(temp, tm)
next
bool1 = (temp[1] = temp[2]) and (temp[1] = temp[3]) and (temp[2] = temp[3])
bool2 = (temp[1] < temp[2]) and (temp[2] < temp[3])
if not bool1 and bool2
add(comb, temp)
ok
for p = 1 to len(comb) - 1
for q = p + 1 to len(comb)
if (comb[p][1] = comb[q][1]) and (comb[p][2] = comb[q][2]) and (comb[p][3] = comb[q][3])
del(comb, p)
ok
next
next
if len(comb) = num
exit
ok
end
comb = sortfirst(comb, 1)
see showarray(comb) + nl
func com(n, k)
res1 = 1
for n1 = n - k + 1 to n
res1 = res1 * n1
next
res2 = 1
for n2 = 1 to k
res2 = res2 * n2
next
res3 = res1/res2
return res3
func showarray(vect)
svect = ""
for nrs = 1 to len(vect)
svect = "[" + vect[nrs][1] + " " + vect[nrs][2] + " " + vect[nrs][3] + "]" + nl
see svect
next
Func sortfirst(alist, ind)
aList = sort(aList,ind)
for n = 1 to len(alist)-1
for m= n + 1 to len(aList)
if alist[n][1] = alist[m][1] and alist[m][2] < alist[n][2]
temp = alist[n]
alist[n] = alist[m]
alist[m] = temp
ok
next
next
for n = 1 to len(alist)-1
for m= n + 1 to len(aList)
if alist[n][1] = alist[m][1] and alist[n][2] = alist[m][2] and alist[m][3] < alist[n][3]
temp = alist[n]
alist[n] = alist[m]
alist[m] = temp
ok
next
next
return aList
Output:
[1 2 3] [1 2 4] [1 2 5] [1 3 4] [1 3 5] [1 4 5] [2 3 4] [2 3 5] [2 4 5] [3 4 5]
RPL
≪ → currcomb start stop depth ≪ WHILE start stop ≤ REPEAT currcomb start + 1 'start' STO+ IF depth THEN start stop depth 1 - GENCOMB END END ≫ ≫ 'GENCOMB' STO ≪ { } 0 4 ROLL 1 - 4 ROLL 1 - GENCOMB ≫ 'COMBS' STO
5 3 COMBS
- Output:
10: { 0 1 2 } 9: { 0 1 3 } 8: { 0 1 4 } 7: { 0 2 3 } 6: { 0 2 4 } 5: { 0 3 4 } 4: { 1 2 3 } 3: { 1 2 4 } 2: { 1 3 4 } 1: { 2 3 4 }
Ruby
def comb(m, n)
(0...n).to_a.combination(m).to_a
end
comb(3, 5) # => [[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
Rust
fn comb<T: std::fmt::Default>(arr: &[T], n: uint) {
let mut incl_arr: ~[bool] = std::vec::from_elem(arr.len(), false);
comb_intern(arr, n, incl_arr, 0);
}
fn comb_intern<T: std::fmt::Default>(arr: &[T], n: uint, incl_arr: &mut [bool], index: uint) {
if (arr.len() < n + index) { return; }
if (n == 0) {
let mut it = arr.iter().zip(incl_arr.iter()).filter_map(|(val, incl)|
if (*incl) { Some(val) } else { None }
);
for val in it { print!("{} ", *val); }
print("\n");
return;
}
incl_arr[index] = true;
comb_intern(arr, n-1, incl_arr, index+1);
incl_arr[index] = false;
comb_intern(arr, n, incl_arr, index+1);
}
fn main() {
let arr1 = ~[1, 2, 3, 4, 5];
comb(arr1, 3);
let arr2 = ~["A", "B", "C", "D", "E"];
comb(arr2, 3);
}
struct Combo<T> {
data_len: usize,
chunk_len: usize,
min: usize,
mask: usize,
data: Vec<T>,
}
impl<T: Clone> Combo<T> {
fn new(chunk_len: i32, data: Vec<T>) -> Self {
let d_len = data.len();
let min = 2usize.pow(chunk_len as u32) - 1;
let max = 2usize.pow(d_len as u32) - 2usize.pow((d_len - chunk_len as usize) as u32);
Combo {
data_len: d_len,
chunk_len: chunk_len as usize,
min: min,
mask: max,
data: data,
}
}
fn get_chunk(&self) -> Vec<T> {
let b = format!("{:01$b}", self.mask, self.data_len);
b
.chars()
.enumerate()
.filter(|&(_, e)| e == '1')
.map(|(i, _)| self.data[i].clone())
.collect()
}
}
impl<T: Clone> Iterator for Combo<T> {
type Item = Vec<T>;
fn next(&mut self) -> Option<Self::Item> {
while self.mask >= self.min {
if self.mask.count_ones() == self.chunk_len as u32 {
let res = self.get_chunk();
self.mask -= 1;
return Some(res);
}
self.mask -= 1;
}
None
}
}
fn main() {
let v1 = vec![1, 2, 3, 4, 5];
let combo = Combo::new(3, v1);
for c in combo.into_iter() {
println!("{:?}", c);
}
let v2 = vec!("A", "B", "C", "D", "E");
let combo = Combo::new(3, v2);
for c in combo.into_iter() {
println!("{:?}", c);
}
}
fn comb<T>(slice: &[T], k: usize) -> Vec<Vec<T>>
where
T: Copy,
{
// If k == 1, return a vector containing a vector for each element of the slice.
if k == 1 {
return slice.iter().map(|x| vec![*x]).collect::<Vec<Vec<T>>>();
}
// If k is exactly the slice length, return the slice inside a vector.
if k == slice.len() {
return vec![slice.to_vec()];
}
// Make a vector from the first element + all combinations of k - 1 elements of the rest of the slice.
let mut result = comb(&slice[1..], k - 1)
.into_iter()
.map(|x| [&slice[..1], x.as_slice()].concat())
.collect::<Vec<Vec<T>>>();
// Extend this last vector with the all the combinations of k elements after from index 1 onward.
result.extend(comb(&slice[1..], k));
// Return final vector.
return result;
}
Scala
implicit def toComb(m: Int) = new AnyRef {
def comb(n: Int) = recurse(m, List.range(0, n))
private def recurse(m: Int, l: List[Int]): List[List[Int]] = (m, l) match {
case (0, _) => List(Nil)
case (_, Nil) => Nil
case _ => (recurse(m - 1, l.tail) map (l.head :: _)) ::: recurse(m, l.tail)
}
}
Usage:
scala> 3 comb 5 res170: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))
Lazy version using iterators:
def combs[A](n: Int, l: List[A]): Iterator[List[A]] = n match {
case _ if n < 0 || l.lengthCompare(n) < 0 => Iterator.empty
case 0 => Iterator(List.empty)
case n => l.tails.flatMap({
case Nil => Nil
case x :: xs => combs(n - 1, xs).map(x :: _)
})
}
Usage:
scala> combs(3, (0 to 4).toList).toList res0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))
Dynamic programming
Adapted from Haskell version:
def combs[A](n: Int, xs: List[A]): Stream[List[A]] =
combsBySize(xs)(n)
def combsBySize[A](xs: List[A]): Stream[Stream[List[A]]] = {
val z: Stream[Stream[List[A]]] = Stream(Stream(List())) ++ Stream.continually(Stream.empty)
xs.toStream.foldRight(z)((a, b) => zipWith[Stream[List[A]]](_ ++ _, f(a, b), b))
}
def zipWith[A](f: (A, A) => A, as: Stream[A], bs: Stream[A]): Stream[A] = (as, bs) match {
case (Stream.Empty, _) => Stream.Empty
case (_, Stream.Empty) => Stream.Empty
case (a #:: as, b #:: bs) => f(a, b) #:: zipWith(f, as, bs)
}
def f[A](x: A, xsss: Stream[Stream[List[A]]]): Stream[Stream[List[A]]] =
Stream.empty #:: xsss.map(_.map(x :: _))
Usage:
combs(3, (0 to 4).toList).toList res0: List[List[Int]] = List(List(0, 1, 2), List(0, 1, 3), List(0, 1, 4), List(0, 2, 3), List(0, 2, 4), List(0, 3, 4), List(1, 2, 3), List(1, 2, 4), List(1, 3, 4), List(2, 3, 4))
Using Scala Standard Runtime Library
Scala REPL
scala>(0 to 4).combinations(3).toList
res0: List[scala.collection.immutable.IndexedSeq[Int]] = List(Vector(0, 1, 2), Vector(0, 1, 3), Vector(0, 1, 4), Vector(0, 2, 3), Vector(0, 2, 4), Vector(0, 3, 4), Vector(1, 2, 3), Vector(1, 2, 4), Vector(1, 3, 4), Vector(2, 3, 4))
Other environments
- Output:
See it running in your browser by ScalaFiddle (JavaScript, non JVM) or by Scastie (JVM).
Scheme
Like the Haskell code:
(define (comb m lst)
(cond ((= m 0) '(()))
((null? lst) '())
(else (append (map (lambda (y) (cons (car lst) y))
(comb (- m 1) (cdr lst)))
(comb m (cdr lst))))))
(comb 3 '(0 1 2 3 4))
Seed7
$ include "seed7_05.s7i";
const type: combinations is array array integer;
const func combinations: comb (in array integer: arr, in integer: k) is func
result
var combinations: combResult is combinations.value;
local
var integer: x is 0;
var integer: i is 0;
var array integer: suffix is 0 times 0;
begin
if k = 0 then
combResult := 1 times 0 times 0;
else
for x key i range arr do
for suffix range comb(arr[succ(i) ..], pred(k)) do
combResult &:= [] (x) & suffix;
end for;
end for;
end if;
end func;
const proc: main is func
local
var array integer: aCombination is 0 times 0;
var integer: element is 0;
begin
for aCombination range comb([] (0, 1, 2, 3, 4), 3) do
for element range aCombination do
write(element lpad 3);
end for;
writeln;
end for;
end func;
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
SETL
print({0..4} npow 3);
Sidef
Built-in
combinations(5, 3, {|*c| say c })
Recursive
func combine(n, set) {
set.len || return []
n == 1 && return set.map{[_]}
var (head, result)
head = set.shift
result = combine(n-1, [set...])
for subarray in result {
subarray.prepend(head)
}
result + combine(n, set)
}
combine(3, @^5).each {|c| say c }
Iterative
func forcomb(callback, n, k) {
if (k == 0) {
callback([])
return()
}
if (k<0 || k>n || n==0) {
return()
}
var c = @^k
loop {
callback([c...])
c[k-1]++ < n-1 && next
var i = k-2
while (i>=0 && c[i]>=(n-(k-i))) {
--i
}
i < 0 && break
c[i]++
while (++i < k) {
c[i] = c[i-1]+1
}
}
return()
}
forcomb({|c| say c }, 5, 3)
- Output:
[0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 2, 3] [0, 2, 4] [0, 3, 4] [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]
Smalltalk
(0 to: 4) combinations: 3 atATimeDo: [ :x | Transcript cr; show: x printString].
"output on Transcript:
#(0 1 2)
#(0 1 3)
#(0 1 4)
#(0 2 3)
#(0 2 4)
#(0 3 4)
#(1 2 3)
#(1 2 4)
#(1 3 4)
#(2 3 4)"
SPAD
[reverse subSet(5,3,i)$SGCF for i in 0..binomial(5,3)-1]
[[0,1,2], [0,1,3], [0,2,3], [1,2,3], [0,1,4], [0,2,4], [1,2,4], [0,3,4],
[1,3,4], [2,3,4]]
Type: List(List(Integer))
SGCF ==> SymmetricGroupCombinatoricFunctions
SparForte
As a structured script.
#!/usr/local/bin/spar
pragma annotate( summary, "combinations" )
@( description, "Given non-negative integers m and n, generate all size m" )
@( description, "combinations of the integers from 0 to n-1 in sorted" )
@( description, "order (each combination is sorted and the entire table" )
@( description, "is sorted" )
@( see_also, "http://rosettacode.org/wiki/Combinations" )
@( author, "Ken O. Burtch" );
pragma restriction( no_external_commands );
procedure combinations is
number_of_items : constant natural := 3;
max_item_value : constant natural := 5;
-- get_first_combination
-- return the first combination (e.g. 0,1,2 for 3 items)
function get_first_combination return string is
c : string;
begin
for i in 1..number_of_items loop
c := @ & strings.image( natural( i-1 ) );
end loop;
return c;
end get_first_combination;
-- get_last_combination
-- return the highest value (e.g. 4,4,4 for 3 items
-- with a maximum value of 5).
function get_last_combination return string is
c : string;
begin
for i in 1..number_of_items loop
c := @ & strings.image( max_item_value-1 );
end loop;
return c;
end get_last_combination;
combination : string := get_first_combination;
last_combination : constant string := get_last_combination;
item : natural; -- a number from the combination
bad : boolean; -- true if we know a value is too big
s : string; -- a temp string for deleting leading space
begin
put_line( combination );
while combination /= last_combination loop
-- the combination is 3 numbers with leading spaces
-- so the field positions start at 2 (1 is a null string)
for i in reverse 1..number_of_items loop
item := numerics.value( strings.field( combination, i+1, ' ') );
if item < max_item_value-1 then
item := @+1;
s := strings.image( item );
s := strings.delete( s, 1, 1 );
strings.replace( combination, i+1, s, ' ' );
bad := false;
for j in i+1..number_of_items loop
item := numerics.value( strings.field( combination, j, ' ') );
if item < max_item_value-1 then
item := @+1;
s := strings.image( item );
s := strings.delete( s, 1, 1 );
strings.replace( combination, j+1, s, ' ' );
else
bad;
end if;
end loop;
exit;
end if;
end loop;
if not bad then
put_line( combination );
end if;
end loop;
end combinations;
Standard ML
fun comb (0, _ ) = [[]]
| comb (_, [] ) = []
| comb (m, x::xs) = map (fn y => x :: y) (comb (m-1, xs)) @
comb (m, xs)
;
comb (3, [0,1,2,3,4]);
Stata
program combin
tempfile cp
tempvar k
gen `k'=1
quietly save "`cp'"
rename `1' `1'1
forv i=2/`2' {
joinby `k' using "`cp'"
rename `1' `1'`i'
quietly drop if `1'`i'<=`1'`=`i'-1'
}
sort `1'*
end
Example
. set obs 5
. gen a=_n
. combin a 3
. list
+--------------+
| a1 a2 a3 |
|--------------|
1. | 1 2 3 |
2. | 1 2 4 |
3. | 1 2 5 |
4. | 1 3 4 |
5. | 1 3 5 |
|--------------|
6. | 1 4 5 |
7. | 2 3 4 |
8. | 2 3 5 |
9. | 2 4 5 |
10. | 3 4 5 |
+--------------+
Mata
function combinations(n,k) {
a = J(comb(n,k),k,.)
u = 1..k
for (i=1; 1; i++) {
a[i,.] = u
for (j=k; j>0; j--) {
if (u[j]-j<n-k) break
}
if (j<1) return(a)
u[j..k] = u[j]+1..u[j]+1+k-j
}
}
combinations(5,3)
Output
1 2 3 +-------------+ 1 | 1 2 3 | 2 | 1 2 4 | 3 | 1 2 5 | 4 | 1 3 4 | 5 | 1 3 5 | 6 | 1 4 5 | 7 | 2 3 4 | 8 | 2 3 5 | 9 | 2 4 5 | 10 | 3 4 5 | +-------------+
Swift
func addCombo(prevCombo: [Int], var pivotList: [Int]) -> [([Int], [Int])] {
return (0..<pivotList.count)
.map {
_ -> ([Int], [Int]) in
(prevCombo + [pivotList.removeAtIndex(0)], pivotList)
}
}
func combosOfLength(n: Int, m: Int) -> [[Int]] {
return [Int](1...m)
.reduce([([Int](), [Int](0..<n))]) {
(accum, _) in
accum.flatMap(addCombo)
}.map {
$0.0
}
}
println(combosOfLength(5, 3))
- Output:
[[0, 1, 2], [0, 1, 3], [0, 1, 4], [0, 2, 3], [0, 2, 4], [0, 3, 4], [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]]
Tailspin
operator (m comb n)
[by 0..~$n] -> #
when <[](..~$m)> do [$..., by $(last)~..~$n] -> #
otherwise $!
end comb
(3 comb 5) -> !OUT::write
- Output:
[0, 1, 2][0, 1, 3][0, 1, 4][0, 2, 3][0, 2, 4][0, 3, 4][1, 2, 3][1, 2, 4][1, 3, 4][2, 3, 4]
Tcl
ref[2]
proc comb {m n} {
set set [list]
for {set i 0} {$i < $n} {incr i} {lappend set $i}
return [combinations $set $m]
}
proc combinations {list size} {
if {$size == 0} {
return [list [list]]
}
set retval {}
for {set i 0} {($i + $size) <= [llength $list]} {incr i} {
set firstElement [lindex $list $i]
set remainingElements [lrange $list [expr {$i + 1}] end]
foreach subset [combinations $remainingElements [expr {$size - 1}]] {
lappend retval [linsert $subset 0 $firstElement]
}
}
return $retval
}
comb 3 5 ;# ==> {0 1 2} {0 1 3} {0 1 4} {0 2 3} {0 2 4} {0 3 4} {1 2 3} {1 2 4} {1 3 4} {2 3 4}
TXR
TXR has repeating and non-repeating permutation and combination functions that produce lazy lists. They are generic over lists, strings and vectors. In addition, the combinations function also works over hashes.
Combinations and permutations are produced in lexicographic order (except in the case of hashes).
(defun comb-n-m (n m)
(comb (range* 0 n) m))
(put-line `3 comb 5 = @(comb-n-m 5 3)`)
- Run:
$ txr combinations.tl 3 comb 5 = ((0 1 2) (0 1 3) (0 1 4) (0 2 3) (0 2 4) (0 3 4) (1 2 4) (1 3 4) (2 3 4))
uBasic/4tH
o = 1
Proc _Comb(5, 3, 0, 0)
End
_Comb
Param (4)
If a@ < b@ + d@ Then Return
If b@ = 0 Then
For d@ = 0 To a@-1
If AND(c@, SHL(o, d@)) Then Print d@;" "; : Fi
Next
Print : Return
EndIf
Proc _Comb(a@, b@ - 1, OR(c@, SHL(o, d@)), d@ + 1)
Proc _Comb(a@, b@, c@, d@ + 1)
Return
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 0 OK, 0:33
Uiua
# both from https://github.com/Omnikar/uiua-math/blob/main/lib.ua
PowerSet ← ⍚▽⋯⇡ⁿ:2⧻⟜¤
Perms ← ☇1⍉∧(≡↻⇡⟜↯+1⟜⊂):¤¤°⊂
Permute ← ≡⊏⊙¤⊸(Perms⇡⧻) # Optional helper function.
# Order is unimportant here. If order is important prepend `☇1≡Permute` to the results.
Choose ← ≡°□▽=⊙(⊸(≡◇⧻)PowerSet)
⊏⊸⍏Choose 3 ⇡5 # Choose and sort results
- Output:
╭─ ╷ 0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4 ╯
Ursala
Most of the work is done by the standard library function choices
, whose implementation is shown here for the sake of comparison with other solutions,
choices = ^(iota@r,~&l); leql@a^& ~&al?\&! ~&arh2fabt2RDfalrtPXPRT
where leql
is the predicate that compares list lengths. The main body of the algorithm (~&arh2fabt2RDfalrtPXPRT
) concatenates the results of two recursive calls, one of which finds all combinations of the required size from the tail of the list, and the other of which finds all combinations of one less size from the tail, and then inserts the head into each.
choices
generates combinations of an arbitrary set but
not necessarily in sorted order, which can be done like this.
#import std
#import nat
combinations = @rlX choices^|(iota,~&); -< @p nleq+ ==-~rh
- The sort combinator (
-<
) takes a binary predicate to a function that sorts a list in order of that predicate. - The predicate in this case begins by zipping its two arguments together with
@p
. - The prefiltering operator
-~
scans a list from the beginning until it finds the first item to falsify a predicate (in this case equality,==
) and returns a pair of lists with the scanned items satisfying the predicate on the left and the remaining items on the right. - The
rh
suffix on the-~
operator causes it to return only the head of the right list as its result, which in this case will be the first pair of unequal items in the list. - The
nleq
function then tests whether the left side of this pair is less than or equal to the right. - The overall effect of using everything starting from the
@p
as the predicate to a sort combinator is therefore to sort a list of lists of natural numbers according to the order of the numbers in the first position where they differ.
test program:
#cast %nLL
example = combinations(3,5)
- Output:
< <0,1,2>, <0,1,3>, <0,1,4>, <0,2,3>, <0,2,4>, <0,3,4>, <1,2,3>, <1,2,4>, <1,3,4>, <2,3,4>>
V
like scheme (using variables)
[comb [m lst] let
[ [m zero?] [[[]]]
[lst null?] [[]]
[true] [m pred lst rest comb [lst first swap cons] map
m lst rest comb concat]
] when].
Using destructuring view and stack not *pure at all
[comb
[ [pop zero?] [pop pop [[]]]
[null?] [pop pop []]
[true] [ [m lst : [m pred lst rest comb [lst first swap cons] map
m lst rest comb concat]] view i ]
] when].
Pure concatenative version
[comb
[2dup [a b : a b a b] view].
[2pop pop pop].
[ [pop zero?] [2pop [[]]]
[null?] [2pop []]
[true] [2dup [pred] dip uncons swapd comb [cons] map popd rollup rest comb concat]
] when].
Using it
|3 [0 1 2 3 4] comb =[[0 1 2] [0 1 3] [0 1 4] [0 2 3] [0 2 4] [0 3 4] [1 2 3] [1 2 4] [1 3 4] [2 3 4]]
VBA
Option Explicit
Option Base 0
'Option Base 1
Private ArrResult
Sub test()
'compute
Main_Combine 5, 3
'return
Dim j As Long, i As Long, temp As String
For i = LBound(ArrResult, 1) To UBound(ArrResult, 1)
temp = vbNullString
For j = LBound(ArrResult, 2) To UBound(ArrResult, 2)
temp = temp & " " & ArrResult(i, j)
Next
Debug.Print temp
Next
Erase ArrResult
End Sub
Private Sub Main_Combine(M As Long, N As Long)
Dim MyArr, i As Long
ReDim MyArr(M - 1)
If LBound(MyArr) > 0 Then ReDim MyArr(M) 'Case Option Base 1
For i = LBound(MyArr) To UBound(MyArr)
MyArr(i) = i
Next i
i = IIf(LBound(MyArr) > 0, N, N - 1)
ReDim ArrResult(i, LBound(MyArr))
Combine MyArr, N, LBound(MyArr), LBound(MyArr)
ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) - 1)
'In VBA Excel we can use Application.Transpose instead of personal Function Transposition
ArrResult = Transposition(ArrResult)
End Sub
Private Sub Combine(MyArr As Variant, Nb As Long, Deb As Long, Ind As Long)
Dim i As Long, j As Long, N As Long
For i = Deb To UBound(MyArr, 1)
ArrResult(Ind, UBound(ArrResult, 2)) = MyArr(i)
N = IIf(LBound(ArrResult, 1) = 0, Nb - 1, Nb)
If Ind = N Then
ReDim Preserve ArrResult(UBound(ArrResult, 1), UBound(ArrResult, 2) + 1)
For j = LBound(ArrResult, 1) To UBound(ArrResult, 1)
ArrResult(j, UBound(ArrResult, 2)) = ArrResult(j, UBound(ArrResult, 2) - 1)
Next j
Else
Call Combine(MyArr, Nb, i + 1, Ind + 1)
End If
Next i
End Sub
Private Function Transposition(ByRef MyArr As Variant) As Variant
Dim T, i As Long, j As Long
ReDim T(LBound(MyArr, 2) To UBound(MyArr, 2), LBound(MyArr, 1) To UBound(MyArr, 1))
For i = LBound(MyArr, 1) To UBound(MyArr, 1)
For j = LBound(MyArr, 2) To UBound(MyArr, 2)
T(j, i) = MyArr(i, j)
Next j
Next i
Transposition = T
Erase T
End Function
- Output:
If Option Base 0 :
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
If Option Base 1 :
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Private Sub comb(ByVal pool As Integer, ByVal needed As Integer, Optional ByVal done As Integer = 0, Optional ByVal chosen As Variant)
If needed = 0 Then '-- got a full set
For Each x In chosen: Debug.Print x;: Next x
Debug.Print
Exit Sub
End If
If done + needed > pool Then Exit Sub '-- cannot fulfil
'-- get all combinations with and without the next item:
done = done + 1
Dim tmp As Variant
tmp = chosen
If IsMissing(chosen) Then
ReDim tmp(1)
Else
ReDim Preserve tmp(UBound(chosen) + 1)
End If
tmp(UBound(tmp)) = done
comb pool, needed - 1, done, tmp
comb pool, needed, done, chosen
End Sub
Public Sub main()
comb 5, 3
End Sub
VBScript
Function Dec2Bin(n)
q = n
Dec2Bin = ""
Do Until q = 0
Dec2Bin = CStr(q Mod 2) & Dec2Bin
q = Int(q / 2)
Loop
Dec2Bin = Right("00000" & Dec2Bin,6)
End Function
Sub Combination(n,k)
Dim arr()
ReDim arr(n-1)
For h = 0 To n-1
arr(h) = h + 1
Next
Set list = CreateObject("System.Collections.Arraylist")
For i = 1 To 2^n
bin = Dec2Bin(i)
c = 0
tmp_combo = ""
If Len(Replace(bin,"0","")) = k Then
For j = Len(bin) To 1 Step -1
If CInt(Mid(bin,j,1)) = 1 Then
tmp_combo = tmp_combo & arr(c) & ","
End If
c = c + 1
Next
list.Add Mid(tmp_combo,1,(k*2)-1)
End If
Next
list.Sort
For l = 0 To list.Count-1
WScript.StdOut.Write list(l)
WScript.StdOut.WriteLine
Next
End Sub
'Testing with n = 5 / k = 3
Call Combination(5,3)
- Output:
1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5
Wren
import "./perm" for Comb
var fib = Fiber.new { Comb.generate((0..4).toList, 3) }
while (true) {
var c = fib.call()
if (!c) return
System.print(c)
}
- Output:
[0, 1, 2] [0, 1, 3] [0, 1, 4] [0, 2, 3] [0, 2, 4] [0, 3, 4] [1, 2, 3] [1, 2, 4] [1, 3, 4] [2, 3, 4]
XPL0
code ChOut=8, CrLf=9, IntOut=11;
def M=3, N=5;
int A(N-1);
proc Combos(D, S); \Display all size M combinations of N in sorted order
int D, S; \depth of recursion, starting value of N
int I;
[if D<M then \depth < size
for I:= S to N-1 do
[A(D):= I;
Combos(D+1, I+1);
]
else [for I:= 0 to M-1 do
[IntOut(0, A(I)); ChOut(0, ^ )];
CrLf(0);
];
];
Combos(0, 0)
- Output:
0 1 2 0 1 3 0 1 4 0 2 3 0 2 4 0 3 4 1 2 3 1 2 4 1 3 4 2 3 4
zkl
fcn comb(k,seq){ // no repeats, seq is finite
seq=seq.makeReadOnly(); // because I append to parts of seq
fcn(k,seq){
if(k<=0) return(T(T));
if(not seq) return(T);
self.fcn(k-1,seq[1,*]).pump(List,seq[0,1].extend)
.extend(self.fcn(k,seq[1,*]));
}(k,seq);
}
comb(3,"abcde".split("")).apply("concat")
- Output:
L("abc","abd","abe","acd","ace","ade","bcd","bce","bde","cde")
- Programming Tasks
- Discrete math
- 11l
- 360 Assembly
- Acornsoft Lisp
- Action!
- Ada
- ALGOL 68
- APL
- AppleScript
- Arturo
- AutoHotkey
- AWK
- BASIC
- BASIC256
- IS-BASIC
- QBasic
- Run BASIC
- XBasic
- BBC BASIC
- BQN
- Bracmat
- C
- C sharp
- C++
- Clojure
- CLU
- CoffeeScript
- Common Lisp
- Crystal
- D
- Delphi
- E
- EasyLang
- EchoLisp
- Egison
- Eiffel
- Elena
- Elixir
- Emacs Lisp
- Erlang
- ERRE
- F Sharp
- Factor
- FOCAL
- Fortran
- FreeBASIC
- FutureBasic
- GAP
- Glee
- Go
- Groovy
- Haskell
- Icon
- Unicon
- Icon Programming Library
- J
- Java
- JavaScript
- Jq
- Julia
- K
- Lambdatalk
- Kotlin
- Lobster
- Logo
- Lua
- M2000 Interpreter
- M4
- Maple
- Mathematica
- Wolfram Language
- MATLAB
- Maxima
- Miranda
- Modula-2
- Nim
- OCaml
- Octave
- OpenEdge/Progress
- Oz
- PARI/GP
- Pascal
- PascalABC.NET
- Perl
- Ntheory
- Perl5i
- Phix
- PHP
- Picat
- PicoLisp
- Pop11
- PowerShell
- Prolog
- Pure
- PureBasic
- Pyret
- Python
- Quackery
- R
- Racket
- Raku
- Refal
- REXX
- Ring
- RPL
- Ruby
- Rust
- Scala
- Scheme
- Seed7
- SETL
- Sidef
- Smalltalk
- SPAD
- SparForte
- Standard ML
- Stata
- Swift
- Tailspin
- Tcl
- TXR
- UBasic/4tH
- Uiua
- Ursala
- V
- VBA
- VBScript
- Wren
- Wren-perm
- XPL0
- Zkl
- Pages with too many expensive parser function calls