# Bitwise operations

(Redirected from Bit shifts)

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Comparison | Matching

Memory Operations

Write a routine to perform a bitwise AND, OR, and XOR on two integers, a bitwise NOT on the first integer, a left shift, right shift, right arithmetic shift, left rotate, and right rotate.

All shifts and rotates should be done on the first integer with a shift/rotate amount of the second integer.

If any operation is not available in your language, note it.

## 11l

Translation of: Kotlin
```V x = 10
V y = 2
print(‘x       = ’x)
print(‘y       = ’y)
print(‘NOT x   = ’(-)x)
print(‘x AND y = ’(x [&] y))
print(‘x OR  y = ’(x [|] y))
print(‘x XOR y = ’(x (+) y))
print(‘x SHL y = ’(x << y))
print(‘x SHR y = ’(x >> y))
print(‘x ROL y = ’rotl(x, y))
print(‘x ROR y = ’rotr(x, y))```
Output:
```x       = 10
y       = 2
NOT x   = -11
x AND y = 2
x OR  y = 10
x XOR y = 8
x SHL y = 40
x SHR y = 2
x ROL y = 40
x ROR y = -2147483646
```

## 360 Assembly

```*        Bitwise operations        15/02/2017
BITWISE  CSECT
USING  BITWISE,R13
B      72(R15)
DC     17F'0'
STM    R14,R12,12(R13)
ST     R13,4(R15)
ST     R15,8(R13)
LR     R13,R15
L      R1,A
XDECO  R1,PG
MVC    OP,=CL7'A='
XPRNT  OP,L'OP+L'PG
L      R1,B
XDECO  R1,PG
MVC    OP,=CL7'B='
XPRNT  OP,L'OP+L'PG
*                                  And
L      R1,A
N      R1,B
XDECO  R1,PG
MVC    OP,=C'A AND B'
XPRNT  OP,L'OP+L'PG
*                                  Or
L      R1,A
O      R1,B
XDECO  R1,PG
MVC    OP,=C'A OR  B'
XPRNT  OP,L'OP+L'PG
*                                  Xor
L      R1,A
X      R1,B
XDECO  R1,PG
MVC    OP,=C'A XOR B'
XPRNT  OP,L'OP+L'PG
*                                  Not
L      R1,A
X      R1,=X'FFFFFFFF'    not (by xor -1)
XDECO  R1,PG
MVC    OP,=CL7'NOT A'
XPRNT  OP,L'OP+L'PG
*
MVC    A,=X'80000008'     a=-2147483640 (-2^31+8)
L      R1,A
XDECO  R1,PG
MVC    OP,=CL7'A='
XPRNT  OP,L'OP+L'PG
*                                  shift right arithmetic (on 31 bits)
L      R1,A
SRA    R1,3
XDECO  R1,PG
MVC    OP,=C'A SRA 3'
XPRNT  OP,L'OP+L'PG
*                                  shift left arithmetic (on 31 bits)
L      R1,A
SLA    R1,3
XDECO  R1,PG
MVC    OP,=C'A SLA 3'
XPRNT  OP,L'OP+L'PG
*                                  shift right logical (on 32 bits)
L      R1,A
SRL    R1,3
XDECO  R1,PG
MVC    OP,=C'A SRL 3'
XPRNT  OP,L'OP+L'PG
*                                  shift left logical (on 32 bits)
L      R1,A
SLL    R1,3
XDECO  R1,PG
MVC    OP,=C'A SLL 3'
XPRNT  OP,L'OP+L'PG
*
RETURN   L      R13,4(0,R13)
LM     R14,R12,12(R13)
XR     R15,R15
BR     R14
A        DC     F'21'
B        DC     F'3'
OP       DS     CL7
PG       DS     CL12
YREGS
END    BITWISE```
Output:
```A=               21
B=                3
A AND B           1
A OR  B          23
A XOR B          22
NOT A           -22
A=      -2147483640
A SRA 3  -268435455
A SLA 3 -2147483584
A SRL 3   268435457
A SLL 3          64
```

## 6502 Assembly

Bitwise operations are done using the accumulator and an immediate constant (prefixed with #) or a value at a specified memory location (no #.)

```LDA #\$05
STA temp ;temp equals 5 for the following```
AND
```LDA #\$08
AND temp```
OR
```LDA #\$08
ORA temp```
XOR
```LDA #\$08
EOR temp```
NOT
```LDA #\$08
EOR #255```

The 6502 doesn't have arithmetic shift right, but it can be replicated, provided the negative flag is set according to the value in the accumulator.

```    LDA #\$FF
CLC  ;clear the carry. That way, ROR will not accidentally shift a 1 into the top bit of a positive number
BPL SKIP
SEC  ;if the value in A is negative, setting the carry will ensure that ROR will insert a 1 into bit 7 of A upon rotating.
SKIP:
ROR```

The 6502 can only rotate a value by one, not an arbitrary number. A looping routine is needed for rotates larger than 1. Also, the 6502's `ROL` and `ROR` rotate instructions both rotate through the carry, unlike the instructions on other architectures with the same name. (68000, x86, and ARM all have a "ROR" command but it doesn't rotate through the carry on those CPUs.)

```LDA #\$01
ROL ;if the carry was set prior to the ROL, A = 3. If the carry was clear, A = 2.```
```LDA #\$01
ROR ;if the carry was set prior to the ROR, A = 0x80. If clear, A = 0.```

## 8051 Assembly

Integer one is assumed to be a, integer two assumed to be b. Each operation affects one or both operands and would not be used sequentially. The end result of each operation resides in a. The shift and rotate operations should likely push psw and pop psw because they affect the carry flag.

```; bitwise AND
anl a, b

; bitwise OR
orl a, b

; bitwise XOR
xrl a, b

; bitwise NOT
cpl a

; left shift
inc b
rrc a
loop:
rlc a
clr c
djnz b, loop

; right shift
inc b
rlc a
loop:
rrc a
clr c
djnz b, loop

; arithmetic right shift
push 20
inc b
rlc a
mov 20.0, c
loop:
rrc a
mov c, 20.0
djnz b, loop
pop 20

; left rotate
inc b
rr a
loop:
rl a
djnz b, loop

; right rotate
inc b
rl a
loop:
rr a
djnz b, loop
```

## 8086 Assembly

AND
```MOV AX,0345h
MOV BX,0444h
AND AX,BX
```
OR
```MOV AX,0345h
MOV BX,0444h
OR AX,BX
```
XOR
```MOV AX,0345h
MOV BX,0444h
XOR AX,BX
```
NOT
```MOV AX,0345h
NOT AX
```
Left Shift
```MOV AX,03h
MOV CL,02h
SHL AX,CL
```
Right Shift
```MOV AX,03h
MOV CL,02h
SHR AX,CL
```
Arithmetic Right Shift
```MOV AX,03h
MOV CL,02h
SAR AX,CL
```
Left Rotate
```MOV AX,03h
MOV CL,02h
ROL AX,CL
```
Right Rotate
```MOV AX,03h
MOV CL,02h
ROR AX,CL
```
Left Rotate Through Carry
```MOV AX,03h
MOV CL,02h
RCL AX,CL
```
Right Rotate Through Carry
```MOV AX,03h
MOV CL,02h
RCR AX,CL
```

## 68000 Assembly

Like with most 68000 commands, you can specify a length parameter. Anything outside that length is unaffected by the operation.

AND
```MOVE.W #\$100,D0
MOVE.W #\$200,D1
AND.W D0,D1
```
OR
```MOVE.W #\$100,D0
MOVE.W #\$200,D1
OR.W D0,D1
```
XOR
```MOVE.W #\$100,D0
MOVE.W #\$200,D1
EOR.W D0,D1
```
NOT
```MOVE.W #\$100,D0
NOT.W D0
```
Left Shift
```MOVE.W #\$FF,D0
MOVE.W #\$04,D1
LSL.W D1,D0   ;shifts 0x00FF left 4 bits
```
Right Shift
```MOVE.W #\$FF,D0
MOVE.W #\$04,D1
LSR.W D1,D0   ;shifts 0x00FF right 4 bits
```
Arithmetic Right Shift
```MOVE.W #\$FF00,D0
MOVE.W #\$04,D1
ASR.W D1,D0   ;shifts 0xFF00 right 4 bits, preserving its sign
```
Left Rotate
```MOVE.W #\$FF00,D0
MOVE.W #\$04,D1
ROL.W D1,D0
```
Right Rotate
```MOVE.W #\$FF00,D0
MOVE.W #\$04,D1
ROR.W D1,D0
```
Left Rotate Through Extend Flag
```MOVE.W #\$FF00,D0
MOVE.W #\$04,D1
ROXL.W D1,D0
```
Right Rotate Through Extend Flag
```MOVE.W #\$FF00,D0
MOVE.W #\$04,D1
ROXR.W D1,D0
```

## ABAP

This works in ABAP 7.40 and above. The missing arithmetic shift operations have been implemented with arithmetic, whereas the logical shift and the rotate operations have been implemented using the built in string functions shift_left and shift_right.

```report z_bitwise_operations.

class hex_converter definition.
public section.
class-methods:
to_binary
importing
hex_value           type x
returning
value(binary_value) type string,

to_decimal
importing
hex_value            type x
returning
value(decimal_value) type int4.
endclass.

class hex_converter implementation.
method to_binary.
data(number_of_bits) = xstrlen( hex_value ) * 8.

do number_of_bits times.
get bit sy-index of hex_value into data(bit).

binary_value = |{ binary_value }{ bit }|.
enddo.
endmethod.

method to_decimal.
decimal_value = hex_value.
endmethod.
endclass.

class missing_bitwise_operations definition.
public section.
class-methods:
arithmetic_shift_left
importing
old_value   type x
change_with type x
exporting
new_value   type x,

arithmetic_shift_right
importing
old_value   type x
change_with type x
exporting
new_value   type x,

logical_shift_left
importing
old_value   type x
change_with type x
exporting
new_value   type x,

logical_shift_right
importing
old_value   type x
change_with type x
exporting
new_value   type x,

rotate_left
importing
old_value   type x
change_with type x
exporting
new_value   type x,

rotate_right
importing
old_value   type x
change_with type x
exporting
new_value   type x.
endclass.

class missing_bitwise_operations implementation.
method arithmetic_shift_left.
clear new_value.

new_value = old_value * 2 ** change_with.
endmethod.

method arithmetic_shift_right.
clear new_value.

new_value = old_value div 2 ** change_with.
endmethod.

method logical_shift_left.
clear new_value.

data(bits) = hex_converter=>to_binary( old_value ).

data(length_of_bit_sequence) = strlen( bits ).

bits = shift_left(
val = bits
places = change_with ).

while strlen( bits ) < length_of_bit_sequence.
bits = |{ bits }0|.
endwhile.

do strlen( bits ) times.
data(index) = sy-index - 1.

data(current_bit) = bits+index(1).

if current_bit eq `1`.
set bit sy-index of new_value.
endif.
enddo.
endmethod.

method logical_shift_right.
clear new_value.

data(bits) = hex_converter=>to_binary( old_value ).

data(length_of_bit_sequence) = strlen( bits ).

bits = shift_right(
val = bits
places = change_with ).

while strlen( bits ) < length_of_bit_sequence.
bits = |0{ bits }|.
endwhile.

do strlen( bits ) times.
data(index) = sy-index - 1.

data(current_bit) = bits+index(1).

if current_bit eq `1`.
set bit sy-index of new_value.
endif.
enddo.
endmethod.

method rotate_left.
clear new_value.

data(bits) = hex_converter=>to_binary( old_value ).

bits = shift_left(
val = bits
circular = change_with ).

do strlen( bits ) times.
data(index) = sy-index - 1.

data(current_bit) = bits+index(1).

if current_bit eq `1`.
set bit sy-index of new_value.
endif.
enddo.
endmethod.

method rotate_right.
clear new_value.

data(bits) = hex_converter=>to_binary( old_value ).

bits = shift_right(
val = bits
circular = change_with ).

do strlen( bits ) times.
data(index) = sy-index - 1.

data(current_bit) = bits+index(1).

if current_bit eq `1`.
set bit sy-index of new_value.
endif.
enddo.
endmethod.
endclass.

start-of-selection.
data:
a      type x length 4 value 255,
b      type x length 4 value 2,
result type x length 4.

write: |a         -> { a }, { hex_converter=>to_binary( a ) }, { hex_converter=>to_decimal( a ) }|, /.

write: |b         -> { b }, { hex_converter=>to_binary( b ) }, { hex_converter=>to_decimal( b ) }|, /.

result = a bit-and b.
write: |a & b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

result = a bit-or b.
write: |a \| b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

result = a bit-xor b.
write: |a ^ b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

result = bit-not a.
write: |~a        -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>arithmetic_shift_left(
exporting
old_value = bit-not a
change_with = b
importing
new_value = result ).
write: |~a << b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>arithmetic_shift_right(
exporting
old_value = bit-not a
change_with = b
importing
new_value = result ).
write: |~a >> b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>logical_shift_left(
exporting
old_value = a
change_with = b
importing
new_value = result ).
write: |a <<< b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>logical_shift_right(
exporting
old_value = bit-not a
change_with = b
importing
new_value = result ).
write: |~a >>> b  -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>rotate_left(
exporting
old_value = bit-not a
change_with = b
importing
new_value = result ).
write: |~a rotl b -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

missing_bitwise_operations=>rotate_right(
exporting
old_value = a
change_with = b
importing
new_value = result ).
write: |a rotr b  -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.
```
Output:
```a         -> 000000FF, 00000000000000000000000011111111, 255

b         -> 00000002, 00000000000000000000000000000010, 2

a & b     -> 00000002, 00000000000000000000000000000010, 2

a | b     -> 000000FF, 00000000000000000000000011111111, 255

a ^ b     -> 000000FD, 00000000000000000000000011111101, 253

~a        -> FFFFFF00, 11111111111111111111111100000000, -256

~a << b   -> FFFFFC00, 11111111111111111111110000000000, -1024

~a >> b   -> FFFFFFC0, 11111111111111111111111111000000, -64

a <<< b   -> 000003FC, 00000000000000000000001111111100, 1020

~a >>> b  -> 3FFFFFC0, 00111111111111111111111111000000, 1073741760

~a rotl b -> FFFFFC03, 11111111111111111111110000000011, -1021

a rotr b  -> C000003F, 11000000000000000000000000111111, -1073741761
```

## ACL2

Unlisted operations are not available

```(defun bitwise (a b)
(list (logand a b)
(logior a b)
(logxor a b)
(lognot a)
(ash a b)
(ash a (- b))))
```

## Action!

```BYTE FUNC Not(BYTE a)
RETURN (a!\$FF)

PROC Main()
BYTE a=,b=,res

res=a&b
PrintF("%B AND %B = %B%E",a,b,res)

res=a%b
PrintF("%B OR %B = %B%E",a,b,res)

res=a!b
PrintF("%B XOR %B = %B%E",a,b,res)

res=Not(a)
PrintF("NOT %B = %B (by %B XOR \$FF)%E",a,res,a)

res=a RSH b
PrintF("%B SHR %B = %B%E",a,b,res)

res=a LSH b
PrintF("%B SHL %B = %B%E",a,b,res)
RETURN```
Output:
```127 AND 2 = 2
127 OR 2 = 127
127 XOR 2 = 125
NOT 127 = 128 (by 127 XOR \$FF)
127 SHR 2 = 31
127 SHL 2 = 252
```

## ActionScript

ActionScript does not support bitwise rotations.

```function bitwise(a:int, b:int):void
{
trace("And: ", a & b);
trace("Or: ", a | b);
trace("Xor: ", a ^ b);
trace("Not: ", ~a);
trace("Left Shift: ", a << b);
trace("Right Shift(Arithmetic): ", a >> b);
trace("Right Shift(Logical): ", a >>> b);
}
```

The following program performs all required operations and prints the resulting values in base 2 for easy checking of the bit values.

```with Ada.Text_IO, Interfaces;

procedure Bitwise is
subtype Byte is Unsigned_8;
package Byte_IO is new Ada.Text_Io.Modular_IO (Byte);

A : constant Byte    := 2#00011110#;
B : constant Byte    := 2#11110100#;
X : constant Byte    := 128;
N : constant Natural := 1;
begin
Put ("A and B = ");  Byte_IO.Put (Item => A and B, Base => 2);  New_Line;
Put ("A or B  = ");  Byte_IO.Put (Item => A or B,  Base => 2);  New_Line;
Put ("A xor B = ");  Byte_IO.Put (Item => A xor B, Base => 2);  New_Line;
Put ("not A   = ");  Byte_IO.Put (Item => not A,   Base => 2);  New_Line;
New_Line (2);
Put_Line (Unsigned_8'Image (Shift_Left  (X, N)));
Put_Line (Unsigned_8'Image (Shift_Right (X, N)));
Put_Line (Unsigned_8'Image (Shift_Right_Arithmetic (X, N)));
Put_Line (Unsigned_8'Image (Rotate_Left  (X, N)));
Put_Line (Unsigned_8'Image (Rotate_Right (X, N)));
end Bitwise;
```

## Aikido

Translation of: Javascript

There is no rotate support built in to Aikido.

```function bitwise(a, b){
println("a AND b: " + (a & b))
println("a OR b: "+ (a | b))
println("a XOR b: "+ (a ^ b))
println("NOT a: " + ~a)
println("a << b: " + (a << b)) // left shift
println("a >> b: " + (a >> b)) // arithmetic right shift
println("a >>> b: " + (a >>> b)) // logical right shift
}```

## ALGOL 68

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

Aside from decimal, ALGOL 68 has 5 different alternative was of representing the number 170:

• 2r00000000000000000000000010101010, 4r0000000000002222, 8r00000000252, 16r000000aa
• and as an array of BOOL: FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
```main:(

PRIO SLC = 8, SRC = 8; # SLC and SRC are not built in, define and overload them here #
OP SLC = (BITS b, INT rotate) BITS: b SHL rotate OR b SHR ( bits width - rotate );
OP SRC = (BITS b, INT rotate) BITS: b SHR rotate OR b SHL ( bits width - rotate );
# SRC and SRL are non-standard, but versions are built in to ALGOL 68R's standard prelude #

PRIO XOR = 2;
OP XOR = (BITS p, q) BITS: p AND NOT q OR NOT p AND q;
# XOR is non-standard, but a version is built in to ALGOL 68G's standard prelude #

# ALGOL 68 has 5 different ways of representing a BINary BITS - Bases: 2, 4, 8, 16 and flip/flop #
FORMAT b5 = \$"2r"2r32d," 4r"4r16d," 8r"8r11d," 16r"16r8d," "gl\$;
OP BBBBB = (BITS b)[]BITS: (b,b,b,b,b);

PROC bitwise = (BITS a, BITS b, INT shift)VOID:
(
printf((
\$"         bits shorths: "gxgl\$, bits shorths, "1 plus the number of extra SHORT BITS types",
\$"         bits lengths: "gxgl\$, bits lengths, "1 plus the number of extra LONG BITS types",
\$"             max bits: "gl\$, max bits,
\$"        long max bits: "gl\$, long max bits,
\$"   long long max bits: "gl\$, long long max bits,
\$"           bits width: "gxgl\$, bits width, "The number of CHAR required to display BITS",
\$"      long bits width: "gxgl\$, long bits width, "The number of CHAR required to display LONG BITS",
\$" long long bits width: "gxgl\$, long long bits width, "The number of CHAR required to display LONG LONG BITS",
\$"         bytes shorths: "gxgl\$, bytes shorths, "1 plus the number of extra SHORT BYTES types",
\$"         bytes lengths: "gxgl\$, bits lengths, "1 plus the number of extra LONG BYTES types",
\$"          bytes width: "gxgl\$, bytes width, "The number of CHAR required to display BYTES",
\$"     long bytes width: "gxgl\$, long bytes width, "The number of CHAR required to display LONG BYTES"
));

printf((\$" a:       "f(b5)\$, BBBBB a));
printf((\$" b:       "f(b5)\$, BBBBB b));
printf((\$" a AND b: "f(b5)\$, BBBBB(a AND b)));
printf((\$" a OR b:  "f(b5)\$, BBBBB(a OR b)));
printf((\$" a XOR b: "f(b5)\$, BBBBB(a XOR b)));
printf((\$" NOT b:   "f(b5)\$, BBBBB NOT a));
printf((\$" a SHL "d": "f(b5)\$, shift, BBBBB(a SHL shift)));
printf((\$" a SHR "d": "f(b5)\$, shift, BBBBB(a SHR shift)));

printf((\$" a SLC "d": "f(b5)\$, shift, BBBBB(a SLC shift)));
printf((\$" a SRC "d": "f(b5)\$, shift, BBBBB(a SRC shift)))
COMMENT with original ALGOL 68 character set;
printf((\$" a AND b: "f(b5)\$, BBBBB(a ∧ b)));
printf((\$" a OR b:  "f(b5)\$, BBBBB(a ∨ b)));
printf((\$" NOT b:   "f(b5)\$, BBBBB ¬ a));
printf((\$" a SHL "d": "f(b5)\$, shift, BBBBB(a ↑ shift)));
printf((\$" a SHR "d": "f(b5)\$, shift, BBBBB(a ↓ shift)));
Also:
printf((\$" a AND b: "f(b5)\$, BBBBB(a /\ b)));
printf((\$" a OR b: "f(b5)\$, BBBBB(a \/ b)));
COMMENT
);

bitwise(BIN 255, BIN 170, 5)
# or using alternate representations for 255 and 170 in BITS #
CO
bitwise(2r11111111,2r10101010,5);
bitwise(4r3333,4r2222,5);
bitwise(8r377,8r252,5);
bitwise(16rff,16raa,5)
END CO
)```

Output:

```         bits shorths:          +1 1 plus the number of extra SHORT BITS types
bits lengths:          +3 1 plus the number of extra LONG BITS types
max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
long long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
bits width:         +32 The number of CHAR required to display BITS
long bits width:        +116 The number of CHAR required to display LONG BITS
long long bits width:        +232 The number of CHAR required to display LONG LONG BITS
bytes shorths:          +1 1 plus the number of extra SHORT BYTES types
bytes lengths:          +3 1 plus the number of extra LONG BYTES types
bytes width:         +32 The number of CHAR required to display BYTES
long bytes width:         +64 The number of CHAR required to display LONG BYTES
a:       2r00000000000000000000000011111111 4r0000000000003333 8r00000000377 16r000000ff FFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT
b:       2r00000000000000000000000010101010 4r0000000000002222 8r00000000252 16r000000aa FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
a AND b: 2r00000000000000000000000010101010 4r0000000000002222 8r00000000252 16r000000aa FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
a OR b:  2r00000000000000000000000011111111 4r0000000000003333 8r00000000377 16r000000ff FFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT
a XOR b: 2r00000000000000000000000001010101 4r0000000000001111 8r00000000125 16r00000055 FFFFFFFFFFFFFFFFFFFFFFFFFTFTFTFT
NOT b:   2r11111111111111111111111100000000 4r3333333333330000 8r37777777400 16rffffff00 TTTTTTTTTTTTTTTTTTTTTTTTFFFFFFFF
a SHL 5: 2r00000000000000000001111111100000 4r0000000001333200 8r00000017740 16r00001fe0 FFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF
a SHR 5: 2r00000000000000000000000000000111 4r0000000000000013 8r00000000007 16r00000007 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTT
a SLC 5: 2r00000000000000000001111111100000 4r0000000001333200 8r00000017740 16r00001fe0 FFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF
a SRC 5: 2r11111000000000000000000000000111 4r3320000000000013 8r37000000007 16rf8000007 TTTTTFFFFFFFFFFFFFFFFFFFFFFFFTTT
```

Note that an INT can be widened into BITS, and BITS can be widened into an array of BOOL. eg:

```# unpack (widen) some data back into an a BOOL array #
INT i := 170;
BITS j := BIN i;
[bits width]BOOL k := j;

printf((\$g", 8r"8r4d", "8(g)l\$, i, j, k[bits width-8+1:]));

# now pack some data back into an INT #
k[bits width-8+1:] := (FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE);
j := bits pack(k);
i := ABS j;

printf((\$g", 8r"8r4d", "8(g)l\$, i, j, k[bits width-8+1:]))```

Output:

```       +170, 8r0252, TFTFTFTF
+85, 8r0125, FTFTFTFT
```

## ALGOL W

```% performs bitwise and, or, not, left-shift and right shift on the integers n1 and n2 %
% Algol W does not have xor, arithmetic right shift, left rotate or right rotate      %
procedure bitOperations ( integer value n1, n2 ) ;
begin
bits b1, b2;
% the Algol W bitwse operations operate on bits values, so we first convert the   %
% integers to bits values using the builtin bitstring procedure                   %
% the results are converted back to integers using the builtin number procedure   %
% all Algol W bits and integers are 32 bits quantities                            %
b1 := bitstring( n1 );
b2 := bitstring( n2 );
% perform the operaations and display the results as integers                     %
write( n1, " and ", n2, " = ", number( b1 and b2 ) );
write( n1, " or  ", n2, " = ", number( b1 or  b2 ) );
write( "                "
,     " not ", n1, " = ", number(    not b1 ) );
write( n1, " shl ", n2, " = ", number( b1 shl n2 ), " (  left-shift )"  );
write( n1, " shr ", n2, " = ", number( b1 shr n2 ), " ( right-shift )"  )
end bitOPerations ;```

## AppleScript

Applescript has no bitwise operators. It's probably not the right tool to reach for if you need to work with bits.

If we really do need to use Applescript for bitwise operations, two immediate possibilities come to mind:

• We can use JavaScript operators through an ObjC bridge to JavaScript for Automation, or
• we can write our own functions – converting between 32-bit signed integers and corresponding lists of booleans, and performing the bitwise operations on the boolean lists before converting back to integers.

First option – 'dialling out to JavaScript for Automation':

This is feasible, (see below) subject to the limitations that:

• Javascript lacks bit rotation operators, and
• in the case of the JS left shift operator (<<) the right operand needs to be masked with 0x1F (31), which is its maximum effective value.

```use AppleScript version "2.4"
use framework "Foundation"

-- BIT OPERATIONS FOR APPLESCRIPT (VIA JAVASCRIPT FOR AUTOMATION)

-- bitAND :: Int -> Int -> Int
on bitAND(x, y)
jsOp2("&", x, y)
end bitAND

-- bitOR :: Int -> Int -> Int
on bitOR(x, y)
jsOp2("|", x, y)
end bitOR

-- bitXOr :: Int -> Int -> Int
on bitXOR(x, y)
jsOp2("^", x, y)
end bitXOR

-- bitNOT :: Int -> Int
on bitNOT(x)
jsOp1("~", x)
end bitNOT

-- (<<) :: Int -> Int -> Int
on |<<|(x, y)
if 31 < y then
0
else
jsOp2("<<", x, y)
end if
end |<<|

-- Logical right shift
-- (>>>) :: Int -> Int -> Int
on |>>>|(x, y)
jsOp2(">>>", x, y)
end |>>>|

-- Arithmetic right shift
-- (>>) :: Int -> Int -> Int
on |>>|(x, y)
jsOp2(">>", x, y)
end |>>|

-- TEST ----------------------------------------------------------
on run
-- Using an ObjC interface to Javascript for Automation

set strClip to bitWise(255, 170)
set the clipboard to strClip
strClip
end run

-- bitWise :: Int -> Int -> String
on bitWise(a, b)
set labels to {"a AND b", "a OR b", "a XOR b", "NOT a", ¬
"a << b", "a >>> b", "a >> b"}
set xs to {bitAND(a, b), bitOR(a, b), bitXOR(a, b), bitNOT(a), ¬
|<<|(a, b), |>>>|(a, b), |>>|(a, b)}

script asBin
property arrow : " -> "
on |λ|(x, y)
justifyRight(8, space, x) & arrow & ¬
justifyRight(14, space, y as text) & arrow & showBinary(y)
end |λ|
end script

unlines({"32 bit signed integers   (in two's complement binary encoding)", "", ¬
unlines(zipWith(asBin, ¬
{"a = " & a as text, "b = " & b as text}, {a, b})), "", ¬
unlines(zipWith(asBin, labels, xs))})
end bitWise

-- CONVERSIONS AND DISPLAY

-- bitsFromInt :: Int -> Either String [Bool]
on bitsFromIntLR(x)
script go
on |λ|(n, d, bools)
set xs to {0 ≠ d} & bools
if n > 0 then
|λ|(n div 2, n mod 2, xs)
else
xs
end if
end |λ|
end script

set a to abs(x)
if (2.147483647E+9) < a then
|Left|("Integer overflow – maximum is (2 ^ 31) - 1")
else
set bs to go's |λ|(a div 2, a mod 2, {})
if 0 > x then
|Right|(replicate(32 - (length of bs), true) & ¬
binSucc(map(my |not|, bs)))
else
set bs to go's |λ|(a div 2, a mod 2, {})
|Right|(replicate(32 - (length of bs), false) & bs)
end if
end if
end bitsFromIntLR

-- Successor function (+1) for unsigned binary integer

-- binSucc :: [Bool] -> [Bool]
on binSucc(bs)
script succ
on |λ|(a, x)
if a then
if x then
Tuple(a, false)
else
Tuple(x, true)
end if
else
Tuple(a, x)
end if
end |λ|
end script

set tpl to mapAccumR(succ, true, bs)
if |1| of tpl then
{true} & |2| of tpl
else
|2| of tpl
end if
end binSucc

-- showBinary :: Int -> String
on showBinary(x)
script showBin
on |λ|(xs)
script bChar
on |λ|(b)
if b then
"1"
else
"0"
end if
end |λ|
end script

map(bChar, xs)
end |λ|
end script
bindLR(my bitsFromIntLR(x), showBin)
end showBinary

-- JXA ------------------------------------------------------------------

--jsOp2 :: String -> a -> b -> c
on jsOp2(strOp, a, b)
bindLR(evalJSLR(unwords({a as text, strOp, b as text})), my |id|) as integer
end jsOp2

--jsOp2 :: String -> a -> b
on jsOp1(strOp, a)
bindLR(evalJSLR(unwords({strOp, a as text})), my |id|) as integer
end jsOp1

-- evalJSLR :: String -> Either String a
on evalJSLR(strJS)
try -- NB if gJSC is global it must be released
-- (e.g. set to null) at end of script
gJSC's evaluateScript
on error
set gJSC to current application's JSContext's new()
log ("new JSC")
end try
set v to unwrap((gJSC's evaluateScript:(strJS))'s toObject())
if v is missing value then
|Left|("JS evaluation error")
else
|Right|(v)
end if
end evalJSLR

-- GENERIC FUNCTIONS --------------------------------------------------

-- Left :: a -> Either a b
on |Left|(x)
{type:"Either", |Left|:x, |Right|:missing value}
end |Left|

-- Right :: b -> Either a b
on |Right|(x)
{type:"Either", |Left|:missing value, |Right|:x}
end |Right|

-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
{type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple

-- Absolute value.
-- abs :: Num -> Num
on abs(x)
if 0 > x then
-x
else
x
end if
end abs

-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
on bindLR(m, mf)
if missing value is not |Right| of m then
mReturn(mf)'s |λ|(|Right| of m)
else
m
end if
end bindLR

-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(item i of xs, v, i, xs)
end repeat
return v
end tell
end foldr

-- id :: a -> a
on |id|(x)
x
end |id|

-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- 'The mapAccumR function behaves like a combination of map and foldr;
--  it applies a function to each element of a list, passing an accumulating
--  parameter from |Right| to |Left|, and returning a final value of this
--  accumulator together with the new list.' (see Hoogle)
-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
on mapAccumR(f, acc, xs)
script
on |λ|(x, a, i)
tell mReturn(f) to set pair to |λ|(|1| of a, x, i)
Tuple(|1| of pair, (|2| of pair) & |2| of a)
end |λ|
end script
foldr(result, Tuple(acc, []), xs)
end mapAccumR

-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- not :: Bool -> Bool
on |not|(p)
not p
end |not|

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if n < 1 then return out
set dbl to {a}

repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate

-- unlines :: [String] -> String
on unlines(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines

-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to {my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords

-- unwrap :: NSObject -> a
on unwrap(objCValue)
if objCValue is missing value then
missing value
else
set ca to current application
item 1 of ((ca's NSArray's arrayWithObject:objCValue) as list)
end if
end unwrap

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set lng to min(length of xs, length of ys)
if 1 > lng then return {}
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, item i of ys)
end repeat
return lst
end tell
end zipWith
```
Output:
```32 bit signed integers   (in two's complement binary encoding)

a = 255 ->            255 -> 00000000000000000000000011111111
b = 170 ->            170 -> 00000000000000000000000010101010

a AND b ->            170 -> 00000000000000000000000010101010
a OR b ->            255 -> 00000000000000000000000011111111
a XOR b ->             85 -> 00000000000000000000000001010101
NOT a ->           -256 -> 11111111111111111111111100000000
a << b ->              0 -> 00000000000000000000000000000000
a >>> b ->              0 -> 00000000000000000000000000000000
a >> b ->              0 -> 00000000000000000000000000000000```

Second option – writing our own bitwise functions for Applescript:

```use AppleScript version "2.4"
use framework "Foundation"

-- BITWISE OPERATIONS FOR APPLESCRIPT ---------------------------------------

-- bitAND :: Int -> Int -> Int
on bitAND(x, y)
bitOp2(my |and|, x, y)
end bitAND

-- bitOR :: Int -> Int -> Int
on bitOR(x, y)
bitOp2(my |or|, x, y)
end bitOR

-- bitXOr :: Int -> Int -> Int
on bitXOR(x, y)
bitOp2(my xor, x, y)
end bitXOR

-- bitNOT :: Int -> Int
on bitNOT(x)
script notBits
on |λ|(xs)
bindLR(intFromBitsLR(map(my |not|, xs)), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(x), notBits)
end bitNOT

-- (<<) :: Int -> Int -> Int
on |<<|(a, b)
script logicLshift
on |λ|(bs)
bindLR(intFromBitsLR(take(32, drop(b, bs) & replicate(b, false))), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(a), logicLshift)
end |<<|

-- Logical right shift
-- (>>>) :: Int -> Int -> Int
on |>>>|(a, b)
script logicRShift
on |λ|(bs)
bindLR(intFromBitsLR(take(32, replicate(b, false) & drop(b, bs))), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(a), logicRShift)
end |>>>|

-- Arithmetic right shift
-- (>>) :: Int -> Int -> Int
on |>>|(a, b)
script arithRShift
on |λ|(bs)
if 0 < length of bs then
set sign to item 1 of bs
else
set sign to false
end if
bindLR(intFromBitsLR(take(32, replicate(b, sign) & drop(b, bs))), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(a), arithRShift)

end |>>|

-- bitRotL :: Int -> Int -> Int
on bitRotL(a, b)
script lRot
on |λ|(bs)
bindLR(intFromBitsLR(rotate(-b, bs)), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(a), lRot)
end bitRotL

-- bitRotR :: Int -> Int -> Int
on bitRotR(a, b)
script rRot
on |λ|(bs)
bindLR(intFromBitsLR(rotate(b, bs)), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(a), rRot)
end bitRotR

-- TEST ---------------------------------------------------------------

-- bitWise :: Int -> Int -> String
on bitWise(a, b)
set labels to {"a AND b", "a OR b", "a XOR b", "NOT a", ¬
"a << b", "a >>> b", "a >> b", "ROTL a b", "ROTR a b"}
set xs to {bitAND(a, b), bitOR(a, b), bitXOR(a, b), bitNOT(a), ¬
|<<|(a, b), |>>>|(a, b), |>>|(a, b), bitRotL(a, b), bitRotR(a, b)}

script asBin
property arrow : " -> "
on |λ|(x, y)
justifyRight(8, space, x) & arrow & ¬
justifyRight(14, space, y as text) & arrow & showBinary(y)
end |λ|
end script

unlines({"32 bit signed integers   (in two's complement binary encoding)", "", ¬
unlines(zipWith(asBin, ¬
{"a = " & a as text, "b = " & b as text}, {a, b})), "", ¬
unlines(zipWith(asBin, labels, xs))})
end bitWise

on run
-- Assuming 32 bit signed integers (in two's complement binary encoding)

set strClip to bitWise(255, 170)
set the clipboard to strClip
strClip
end run

-- BINARY INTEGER CONVERSIONS AND DISPLAY  ------------------------------------------------------------------

-- bitsFromInt :: Int -> Either String [Bool]
on bitsFromIntLR(x)
script go
on |λ|(n, d, bools)
set xs to {0 ≠ d} & bools
if n > 0 then
|λ|(n div 2, n mod 2, xs)
else
xs
end if
end |λ|
end script

set a to abs(x)
if (2.147483647E+9) < a then
|Left|("Integer overflow – maximum is (2 ^ 31) - 1")
else
set bs to go's |λ|(a div 2, a mod 2, {})
if 0 > x then
|Right|(replicate(32 - (length of bs), true) & ¬
binSucc(map(my |not|, bs)))
else
set bs to go's |λ|(a div 2, a mod 2, {})
|Right|(replicate(32 - (length of bs), false) & bs)
end if
end if
end bitsFromIntLR

-- intFromBitsLR :: [Bool] -> Either String Int
on intFromBitsLR(xs)
script bitSum
on |λ|(x, a, i)
if x then
a + (2 ^ (31 - i))
else
a
end if
end |λ|
end script

set lngBits to length of xs
if 32 < lngBits then
|Left|("Applescript limited to signed 32 bit integers")
else if 1 > lngBits then
|Right|(0 as integer)
else
set bits to (rest of xs)
if item 1 of xs then
|Right|(0 - foldr(bitSum, 1, map(my |not|, bits)) as integer)
else
|Right|(foldr(bitSum, 0, bits) as integer)
end if
end if
end intFromBitsLR

-- showBinary :: Int -> String
on showBinary(x)
script showBin
on |λ|(xs)
script bChar
on |λ|(b)
if b then
"1"
else
"0"
end if
end |λ|
end script

map(bChar, xs)
end |λ|
end script
bindLR(my bitsFromIntLR(x), showBin)
end showBinary

-- bitOp2 :: ((Bool -> Bool -> Bool) -> Int -> Int -> Int
on bitOp2(f, x, y)
script yBits
on |λ|(bitX)
script zipOp
on |λ|(bitY)
bitZipWithLR(f, bitX, bitY)
end |λ|
end script
bindLR(bindLR(bindLR(bitsFromIntLR(y), ¬
zipOp), my intFromBitsLR), my |id|)
end |λ|
end script
bindLR(bitsFromIntLR(x), yBits)
end bitOp2

-- bitZipWithLR ::  ((a, b) -> c ) -> [Bool] -> [Bool] -> Either String  [(Bool, Bool)]
on bitZipWithLR(f, xs, ys)
set intX to length of xs
set intY to length of ys
set intMax to max(intX, intY)
if 33 > intMax then
if intX > intY then
set {bxs, bys} to {xs, ys & replicate(intX - intY, false)}
else
set {bxs, bys} to {xs & replicate(intY - intX, false), ys}
end if
tell mReturn(f)
set lst to {}
repeat with i from 1 to intMax
set end of lst to |λ|(item i of bxs, item i of bys)
end repeat
return |Right|(lst)
end tell
else
|Left|("Above maximum of 32 bits")
end if
end bitZipWithLR

-- Successor function (+1) for unsigned binary integer

-- binSucc :: [Bool] -> [Bool]
on binSucc(bs)
script succ
on |λ|(a, x)
if a then
if x then
Tuple(a, false)
else
Tuple(x, true)
end if
else
Tuple(a, x)
end if
end |λ|
end script

set tpl to mapAccumR(succ, true, bs)
if |1| of tpl then
{true} & |2| of tpl
else
|2| of tpl
end if
end binSucc

-- BOOLEANS  ----------------------------------------------------

-- |or| :: Bool -> Bool -> Bool
on |or|(x, y)
x or y
end |or|

-- |and| :: Bool -> Bool -> Bool
on |and|(x, y)
x and y
end |and|

-- xor :: Bool -> Bool -> Bool
on xor(x, y)
(x or y) and not (x and y)
end xor

-- not :: Bool -> Bool
on |not|(p)
not p
end |not|

-- GENERAL ----------------------------------------------------

-- Right :: b -> Either a b
on |Right|(x)
{type:"Either", |Left|:missing value, |Right|:x}
end |Right|

-- Left :: a -> Either a b
on |Left|(x)
{type:"Either", |Left|:x, |Right|:missing value}
end |Left|

-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
{type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple

-- Absolute value.
-- abs :: Num -> Num
on abs(x)
if 0 > x then
-x
else
x
end if
end abs

-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
on bindLR(m, mf)
if missing value is not |Right| of m then
mReturn(mf)'s |λ|(|Right| of m)
else
m
end if
end bindLR

-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
if class of xs is not string then
if n < length of xs then
items (1 + n) thru -1 of xs
else
{}
end if
else
if n < length of xs then
text (1 + n) thru -1 of xs
else
""
end if
end if
end drop

-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from lng to 1 by -1
set v to |λ|(item i of xs, v, i, xs)
end repeat
return v
end tell
end foldr

-- id :: a -> a
on |id|(x)
x
end |id|

-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
if n > length of strText then
text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
else
strText
end if
end justifyRight

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- 'The mapAccumR function behaves like a combination of map and foldr;
--  it applies a function to each element of a list, passing an accumulating
--  parameter from |Right| to |Left|, and returning a final value of this
--  accumulator together with the new list.' (see Hoogle)
-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
on mapAccumR(f, acc, xs)
script
on |λ|(x, a, i)
tell mReturn(f) to set pair to |λ|(|1| of a, x, i)
Tuple(|1| of pair, (|2| of pair) & |2| of a)
end |λ|
end script
foldr(result, Tuple(acc, []), xs)
end mapAccumR

-- max :: Ord a => a -> a -> a
on max(x, y)
if x > y then
x
else
y
end if
end max

-- min :: Ord a => a -> a -> a
on min(x, y)
if y < x then
y
else
x
end if
end min

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if n < 1 then return out
set dbl to {a}

repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate

-- rotate :: Int -> [a] -> [a]
on rotate(n, xs)
set lng to length of xs
if 0 > n then
set d to (-n) mod lng
else
set d to lng - (n mod lng)
end if
drop(d, xs) & take(d, xs)
end rotate

-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
if class of xs is string then
if 0 < n then
text 1 thru min(n, length of xs) of xs
else
""
end if
else
if 0 < n then
items 1 thru min(n, length of xs) of xs
else
{}
end if
end if
end take

-- unlines :: [String] -> String
on unlines(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set str to xs as text
set my text item delimiters to dlm
str
end unlines

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
set lng to min(length of xs, length of ys)
if 1 > lng then return {}
set lst to {}
tell mReturn(f)
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, item i of ys)
end repeat
return lst
end tell
end zipWith
```
Output:
```32 bit signed integers   (in two's complement binary encoding)

a = 255 ->            255 -> 00000000000000000000000011111111
b = 170 ->            170 -> 00000000000000000000000010101010

a AND b ->            170 -> 00000000000000000000000010101010
a OR b ->            255 -> 00000000000000000000000011111111
a XOR b ->             85 -> 00000000000000000000000001010101
NOT a ->           -256 -> 11111111111111111111111100000000
a << b ->              0 -> 00000000000000000000000000000000
a >>> b ->              0 -> 00000000000000000000000000000000
a >> b ->              0 -> 00000000000000000000000000000000
ROTL a b ->         261120 -> 00000000000000111111110000000000
ROTR a b ->  1.06954752E+9 -> 00111111110000000000000000000000```

A third option is the mathematical one, although it still involves looping through the hypothetical bits where two numbers are involved, unless I've missed a trick. The handlers below all assume positive number inputs (except for arithmeticRightShift()) and attempt to return results of class integer. The "hi bits" of numbers which don't fit the specified register sizes are discarded.

```on bitwiseAND(n1, n2, registerSize)
set out to 0
-- Multiplying equivalent bit values by each other gives 1 where they're both 1 and 0 otherwise.
repeat with i from 0 to registerSize - 1
tell (2 ^ i) to set out to out + (n1 div it) * (n2 div it) mod 2 * it
end repeat

return out div 1
end bitwiseAND

on bitwiseOR(n1, n2, registerSize)
set out to 0
-- Adding bit values plus a further 1 gives a carry of 1 if either or both values are 1, but not if they're both 0.
repeat with i from 0 to registerSize - 1
tell (2 ^ i) to set out to out + (n1 div it mod 2 + n2 div it mod 2 + 1) div 2 * it
end repeat

return out div 1
end bitwiseOR

on bitwiseXOR(n1, n2, registerSize)
set out to 0
-- Adding bit values gives 1 if they're different and 0 (with or without a carry) if they're both the same.
repeat with i from 0 to registerSize - 1
tell (2 ^ i) to set out to out + (n1 div it + n2 div it) mod 2 * it
end repeat

return out div 1
end bitwiseXOR

on bitwiseNOT(n, registerSize)
-- Subtract n from an all-1s value (ie. from 1 less than 2 ^ registerSize).
tell (2 ^ registerSize) to return (it - 1 - n mod it) div 1
end bitwiseNOT

on leftShift(n, shift, registerSize)
-- Multiply by 2 ^ shift and lose any bits beyond the left of the register.
return n * (2 ^ shift) mod (2 ^ registerSize) div 1
end leftShift

on rightShift(n, shift, registerSize)
-- Divide by 2 ^ shift and lose any bits beyond the right of the register.
return n mod (2 ^ registerSize) div (2 ^ shift)
end rightShift

on arithmeticRightShift(n, shift, registerSize)
set n to n mod (2 ^ registerSize)
-- If the number's positive and notionally sets the sign bit, reinterpret it as a negative.
tell (2 ^ (registerSize - 1)) to if (n ≥ it) then set n to n mod it - it
-- Right shift by the appropriate amount
set out to n div (2 ^ shift)
-- If the result for a negative is 0, change it to -1.
if ((n < 0) and (out is 0)) then set out to -1
return out
end arithmeticRightShift

on leftRotate(n, shift, registerSize)
-- Cut the register at the appropriate point, left shift the right side and right shift the left by the appropriate amounts.
set shift to shift mod (registerSize)
return leftShift(n, shift, registerSize) + rightShift(n, registerSize - shift, registerSize)
end leftRotate

on rightRotate(n, shift, registerSize)
-- As left rotate, but applying the shift amounts to the opposite sides.
set shift to shift mod registerSize
return rightShift(n, shift, registerSize) + leftShift(n, registerSize - shift, registerSize)
end rightRotate

bitwiseAND(92, 7, 16) --> 4
bitwiseOR(92, 7, 16) --> 95
bitwiseXOR(92, 7, 16) --> 91
bitwiseNOT(92, 16) --> 64453
bitwiseNOT(92, 8) --> 163
bitwiseNOT(92, 32) --> 4.294967203E+9
leftShift(92, 7, 16) --> 11776
leftShift(92, 7, 8) --> 0
rightShift(92, 7, 16) --> 0
arithmeticRightShift(92, 7, 16) --> 0
arithmeticRightShift(-92, 7, 16) --> -1
leftRotate(92, 7, 8) --> 46
rightRotate(92, 7, 8) --> 184
rightRotate(92, 7, 16) --> 47104
```

## ARM Assembly

Works with: as version Raspberry Pi
```/* ARM assembly Raspberry PI  */
/*  program binarydigit.s   */
/* Constantes    */
.equ STDOUT, 1
.equ WRITE,  4
.equ EXIT,   1
/* Initialized data */
.data
szMessResultAnd: .asciz "Result of And : \n"
szMessResultOr: .asciz "Result of Or : \n"
szMessResultEor: .asciz "Result of Exclusif Or : \n"
szMessResultNot: .asciz "Result of Not : \n"
szMessResultLsl: .asciz "Result of left shift : \n"
szMessResultLsr: .asciz "Result of right shift : \n"
szMessResultAsr: .asciz "Result of Arithmetic right shift : \n"
szMessResultRor: .asciz "Result of rotate right : \n"
szMessResultRrx: .asciz "Result of rotate right with extend : \n"
szMessResultClear: .asciz "Result of Bit Clear : \n"

sMessAffBin: .ascii "Register value : "
sZoneBin: .space 36,' '
.asciz "\n"

/*  code section */
.text
.global main
main:                /* entry of program  */
push {fp,lr}    /* save des  2 registres */
bl affichageMess
mov r0,#5
and r0,#15
bl affichage2
bl affichageMess
mov r0,#5
orr r0,#15
bl affichage2
bl affichageMess
mov r0,#5
eor r0,#15
bl affichage2
bl affichageMess
mov r0,#5
mvn r0,r0
bl affichage2
bl affichageMess
mov r0,#5
lsl r0,#1
bl affichage2
bl affichageMess
mov r0,#5
lsr r0,#1
bl affichage2
bl affichageMess
mov r0,#-5
bl affichage2
mov r0,#-5
asr r0,#1
bl affichage2
bl affichageMess
mov r0,#5
ror r0,#1
bl affichage2
bl affichageMess
mov r0,#5
mov r1,#15
rrx r0,r1
bl affichage2
bl affichageMess
mov r0,#5
bic r0,#0b100     @  clear 3ieme bit
bl affichage2
bic r0,#4          @  clear 3ieme bit  ( 4 = 100 binary)
bl affichage2

100:   /* standard end of the program */
mov r0, #0                  @ return code
pop {fp,lr}                 @restaur 2 registers
mov r7, #EXIT              @ request to exit program
swi 0                       @ perform the system call
/******************************************************************/
/*     register display in binary                              */
/******************************************************************/
/* r0 contains the register */
affichage2:
push {r0,lr}     /* save  registers */
push {r1-r5} /* save others registers */
mrs r5,cpsr  /* saves state register in r5 */
mov r2,#0    @ read bit position counter
mov r3,#0    @ position counter of the written character
1:               @ loop
lsls r0,#1    @ left shift  with flags
movcc r4,#48  @ flag carry off   character '0'
movcs r4,#49  @ flag carry on    character '1'
strb r4,[r1,r3]   @ character ->   display zone
add r3,r3,#1      @ + 1 position counter of the written character
cmp r2,#8         @ 8 bits read
addeq r3,r3,#1   @ + 1 position counter of the written character
cmp r2,#16         @ etc
cmp r2,#24
cmp r2,#31        @ 32 bits shifted ?
ble 1b           @  no -> loop

bl affichageMess           @ display result

100:
msr cpsr,r5    /*restaur state register */
pop {r1-r5}  /* restaur others registers */
pop {r0,lr}
bx lr

/******************************************************************/
/*     display text with size calculation                         */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr}    			/* save  registres */
push {r0,r1,r2,r7}    		/* save others registres */
mov r2,#0   				/* counter length */
1:      	/* loop length calculation */
ldrb r1,[r0,r2]  			/* read octet start position + index */
cmp r1,#0       			/* if 0 its over */
bne 1b          			/* and loop */
/* so here r2 contains the length of the message */
mov r1,r0        			/* address message in r1 */
mov r0,#STDOUT      		/* code to write to the standard output Linux */
mov r7, #WRITE             /* code call system write */
swi #0                      /* call systeme */
pop {r0,r1,r2,r7}     		/* restaur others registres */
pop {fp,lr}    				/* restaur des  2 registres */
bx lr	        			/* return  */```

## Arturo

```a: 255
b: 2

print [a "AND" b "=" and a b]
print [a "OR" b "=" or a b]
print [a "XOR" b "=" xor a b]
print ["NOT" a "=" not a]
print [a "SHL" b "=" shl a b]
print [a "SHR" b "=" shr a b]
```
Output:
```255 AND 2 = 2
255 OR 2 = 255
255 XOR 2 = 253
NOT 255 = -256
255 SHL 2 = 1020
255 SHR 2 = 63 ```

## AutoHotkey

```bitwise(3, 4)
bitwise(a, b)
{
MsgBox % "a and b: " . a & b
MsgBox % "a or b: " . a | b
MsgBox % "a xor b: " . a ^ b
MsgBox % "not a: " . ~a       ; treated as unsigned integer
MsgBox % "a << b: " . a << b  ; left shift
MsgBox % "a >> b: " . a >> b  ; arithmetic right shift
}
```

## AutoIt

No arithmetic shift.

```bitwise(255, 5)
Func bitwise(\$a, \$b)
MsgBox(1, '', _
\$a & " AND " & \$b & ": " & BitAND(\$a, \$b) & @CRLF & _
\$a & " OR " & \$b & ": " & BitOR(\$a, \$b) & @CRLF & _
\$a & " XOR " & \$b & ": " & BitXOR(\$a, \$b) & @CRLF & _
"NOT " & \$a & ": " & BitNOT(\$a) & @CRLF & _
\$a & " SHL " & \$b & ": " & BitShift(\$a, \$b * -1) & @CRLF & _
\$a & " SHR " & \$b & ": " & BitShift(\$a, \$b) & @CRLF & _
\$a & " ROL " & \$b & ": " & BitRotate(\$a, \$b) & @CRLF & _
\$a & " ROR " & \$b & ": " & BitRotate(\$a, \$b * -1) & @CRLF )
EndFunc
```
Output:
```255 AND 5: 5
255 OR 5: 255
255 XOR 5: 250
NOT 255: -256
255 SHL 5: 8160
255 SHR 5: 7
255 ROL 5: 8160
255 ROR 5: 63495```

## AWK

Standard awk does not have bitwise operators. Gawk has built-in functions for many bitwise operations. No rotation of bits.

Works with: gawk
```BEGIN {
n = 11
p = 1
print n " or  " p " = " or(n,p)
print n " and " p " = " and(n,p)
print n " xor " p " = " xor(n,p)
print n " <<  " p " = " lshift(n, p)   # left shift
print n " >>  " p " = " rshift(n, p)   # right shift
printf "not %d = 0x%x\n", n, compl(n)  # bitwise complement
}
```

OpenBSD `/usr/bin/awk` (a variant of nawk) has these same functions, with a few differences. Gawk uses 53-bit unsigned integers, but OpenBSD awk uses 32-bit signed integers. Therefore Gawk prints `not 11 = 0x1ffffffffffff4`, but OpenBSD awk prints `not 11 = 0xfffffff4`.

## Axe

```Lbl BITS
r₁→A
r₂→B
Disp "AND:",A·B▶Dec,i
Disp "OR:",AᕀB▶Dec,i
Disp "XOR:",A▫B▶Dec,i
Disp "NOT:",not(A)ʳ▶Dec,i
.No language support for shifts or rotations
Return```

Note that the symbols for AND, OR, and XOR are the stat plot marks near the bottom of the Catalog.

## Babel

In Babel, we prefix the logic operators with a 'c' to denote that they are C-style operations, that is, they are word-width operations, not arbitrary size operations. The following program combines the numbers 5 and 9 using the various bitwise operators and then displays the results.

`({5 9}) ({cand} {cor} {cnor} {cxor} {cxnor} {shl} {shr} {ashr} {rol}) cart ! {give <- cp -> compose !} over ! {eval} over ! {;} each`
Output:
```[val 0x1 ]
[val 0xd ]
[val 0xfffffff7 ]
[val 0xc ]
[val 0xfffffff3 ]
[val 0xa00 ]
[val 0x0 ]
[val 0x0 ]
[val 0xa00 ]```

The cnot operator works on just one operand:

`9 cnot ;`
Output:
`[val 0xfffffff6 ]`

## BASIC

Works with: QuickBasic version 4.5

QuickBasic does not have shift or rotate operations defined. Here are the logical operations:

```SUB bitwise (a, b)
PRINT a AND b
PRINT a OR b
PRINT a XOR b
PRINT NOT a
END SUB
```
Works with: FreeBASIC

FreeBASIC does not have rotate operators. Shift Right operator performs arithmetic shift if the left value is signed number and logical shift if the left value is unsigned number.

```SUB bitwise (a AS Integer, b AS Integer)
DIM u AS UInteger

PRINT "a AND b = "; a AND b
PRINT "a OR b  = "; a OR b
PRINT "a XOR b = "; a XOR b
PRINT "NOT a   = "; NOT a
PRINT "a SHL b = "; a SHL b
PRINT "a SHR b (arithmetic) = "; a SHR b
u = a
PRINT "a SHR b (logical) = "; u SHR b
END SUB
```

### Commodore BASIC

Commodore BASIC V2.0 does not have XOR, left shift, right shift, right arithmetic shift, left rotate, and right rotate operators. In this implementation the XOR operation is done with an equivalent formula.

```10 INPUT "A="; A
20 INPUT "B="; B
30 PRINT "A AND B =" A AND B    :rem AND
40 PRINT "A OR B =" A OR B      :rem OR
50 PRINT "A XOR B =" (A AND(NOT B))OR((NOT A)AND B)    :rem XOR
60 PRINT "NOT A =" NOT A        :rem NOT
```
Input:
```A=? 2
B=? 6```
Output:
```A AND B = 2
A OR B = 6
A XOR B = 4
NOT A =-3
```

### IS-BASIC

```100 LET A=10:LET B=12
110 PRINT A;"and";B;"=";A AND B
120 PRINT A;"band";B;"=";A BAND B
130 PRINT A;"or ";B;"=";A OR B
140 PRINT A;"bor";B;"=";A BOR B
150 PRINT A;"xor";B;"=";XOR(A,B)
160 PRINT " not";A;"=";NOT A
170 DEF XOR(A,B)=(A BOR B)-(A BAND B)```

### Sinclair ZX81 BASIC

ZX81 BASIC has no integer type (a major lacuna) and consequently no bitwise operations; but the CPU has them, so we can use a tiny machine code routine to do the actual work and then return to BASIC to print the answers.

This program is a proof of concept, really, and will only work with 8-bit values. In addition, with 1k of RAM there is only space for the first of the shifts/rotates; the others could be implemented along exactly the same lines.

The disassembly of the Z80 code would be:

```           org   4084
3a 83 40   ld    a, (4083)
47         ld    b, a
3a 82 40   ld    a, (4082)
a0         and   b
00         nop            ; negate and shift instructions take 2 bytes
06 00      ld    b, 0
4f         ld    c, a     ; value in BC reg pair is returned to BASIC
c9         ret```

We then use `POKE` statements to replace the `and` instruction with each successive operation we want to perform.

Note that the left shift instruction shifts by one bit at a time, so we need a loop. The present program has the loop written in BASIC, because it seemed sensible to use BASIC for anything we could use it for and only drop into machine code when there was no alternative; it would of course be faster to do the whole thing in machine code.

Finally, observe that the first line reserves 15 bytes for our machine code routine by hiding them in a comment.

``` 10 REM ABCDEFGHIJKLMNO
20 INPUT A
30 INPUT B
40 POKE 16514,A
50 POKE 16515,B
70 LET R\$="3A8340473A8240A00006004FC9"
90 LET R\$=R\$(3 TO )
110 IF R\$<>"" THEN GOTO 80
120 PRINT A;" AND ";B;" = ";USR 16516
130 POKE 16523,176
140 PRINT A;" OR ";B;" = ";USR 16516
150 POKE 16523,168
160 PRINT A;" XOR ";B;" = ";USR 16516
170 POKE 16523,237
180 POKE 16524,68
190 PRINT "NOT ";A;" = ";USR 16516
200 POKE 16523,203
210 POKE 16524,39
220 FOR I=1 TO B
230 POKE 16514,USR 16516
240 NEXT I
250 PRINT A;" << ";B;" = ";PEEK 16514
```
Input:
```21
3```
Output:
```21 AND 3 = 1
21 OR 3 = 23
21 XOR 3 = 22
NOT 21 = 235
21 << 3 = 168```

### Tiny BASIC

Tiny BASIC has only one data type- the signed 16-bit integer- and no bitwise operations. This code emulates bitwise operations on unsigned 15-bit integers. Since the logic gates AND, NOR, and NXOR are characterised by having exactly two, exactly zero, and exactly one on bit in their inputs, their code is identical except for having a different number of target on bits (line 500 onward). The OR and XOR gates are just NOT NOR and NOT NXOR. The shift and rotate operations are simple divisions and mutiplications by 2, with care taken to avoid overflow, and a carry flag where applicable.

```REM VARIABLES
REM      A = first number
REM      B = second number
REM      C = result
REM      P = current bit position
REM      U = number of on bits at position P, or carry flag for rotate ops
REM      Z = logic gate selection, then target number of on bits

10  LET P = 16384
LET F = 0
PRINT "1.   A and B"
PRINT "2.   A  or B"
PRINT "3.   A xor B"
PRINT "4.   not A"
PRINT "5.   A shr B"
PRINT "6.   A shl B"
PRINT "7.   A ror B"
PRINT "8.   A rol B"
PRINT "Select a bitwise operation."
INPUT Z
IF Z < 1 THEN GOTO 10
IF Z > 8 THEN GOTO 10
11  PRINT "What is A? "
INPUT A
IF A < 0 THEN GOTO 11
IF Z = 4 THEN GOTO 15
12  PRINT "What is B?"
INPUT B
IF B < 0 THEN GOTO 12
15  GOSUB 100 + 10*Z
PRINT "The result is ", C,"."
END
110 LET Z = 2
GOSUB 500
RETURN
120 LET Z = 0
GOSUB 500
LET A = C
GOSUB 140
RETURN
130 LET Z = 1
GOSUB 500
LET A = C
GOSUB 140
RETURN
140 LET C = 32767 - A
RETURN
150 IF B = 0 THEN RETURN
LET A = A / 2
LET B = B - 1
GOTO 150
160 IF B = 0 THEN RETURN
IF A > P THEN LET A = A - P
LET A = A * 2
LET B = B - 1
GOTO 160
170 IF B = 0 THEN RETURN
LET U = 0
IF 2*(A/2) <> A THEN LET U = 1
LET A = A / 2 + U*P
LET B = B - 1
LET C = A
GOTO 170
180 IF B = 0 THEN RETURN
LET U = 0
IF A >= P THEN LET U = 1
LET A = (A-F*P)*2 + U
LET B = B - 1
LET C = A
GOTO 180
500 LET U = 0
IF B >= P THEN LET U = 1
IF A >= P THEN LET U = U + 1
IF U = Z THEN LET C = C + P
IF A >= P THEN LET A = A - P
IF B >= P THEN LET B = B - P
LET P = P / 2
IF P = 0 THEN RETURN
GOTO 500```

### uBasic/4tH

Translation of: 11l

uBasic/4tH provides the most common bitwise operations as functions. It's not too difficult to provide the arithmetic left and right shift operations.

```x = 10
y = 2

Print "x       = "; x
Print "y       = "; y
Print "NOT x   = "; NOT(x)
Print "x AND y = "; AND(x, y)
Print "x OR  y = "; OR(x, y)
Print "x XOR y = "; XOR(x, y)
Print "x SHL y = "; SHL(x, y)
Print "x SHR y = "; SHL(x, -y)
Print "x ROL y = "; FUNC(_rotl (x, y))
Print "x ROR y = "; FUNC(_rotr (x, y))

End

_rotr Param (2) : Return (OR(SHL(a@, -b@), SHL(a@, Info("wordsize")-b@)))
_rotl Param (2) : Return (OR(SHL(a@, b@), SHL(a@, -Info("wordsize")+b@)))```
Output:
```x       = 10
y       = 2
NOT x   = -11
x AND y = 2
x OR  y = 10
x XOR y = 8
x SHL y = 40
x SHR y = 2
x ROL y = 40
x ROR y = -9223372036854775806

0 OK, 0:320```

## BASIC256

```# bitwise operators - floating point numbers will be cast to integer
a = 0b00010001
b = 0b11110000
print a
print int(a * 2)  # shift left (multiply by 2)
print a \ 2  # shift right (integer divide by 2)
print a | b  # bitwise or on two integer values
print a & b  # bitwise or on two integer values```

## Batch File

The SET command with the /A option supports arithmetic and bit operations on signed 8 byte integers.

The SET /? documentation claims it supports logical shift operations, but in reality it performs an arithmetic right shift.

The following script (bitops.bat) not only demonstrates the basic bit operations, it also uses bit operations to convert each integral value into a string of 32 binary digits.

```@echo off
setlocal
set /a "a=%~1, b=%~2"
call :num2bin %a% aStr
call :num2bin %b% bStr

::AND
set /a "val=a&b"
call :display "%a% AND %b%" %val% %aStr% %bStr%

::OR
set /a "val=a|b"
call :display "%a% OR %b%" %val% %aStr% %bStr%

::XOR
set /a "val=a^b"
call :display "%a% XOR %b%" %val% %aStr% %bStr%

::NOT
set /a "val=~a"
call :display "NOT %a%" %val% %aStr%

::LEFT SHIFT
set /a "val=a<<b"
call :display "%a% Left Shift %b%" %val% %aStr%

::ARITHMETIC RIGHT SHIFT
set /a "val=a>>b"
call :display "%a% Arithmetic Right Shift %b%" %val% %aStr%

::The remaining operations do not have native support
::  %% = mod
::  ! = logical negation where !(zero)=1 and !(non-zero)=0
::  * = multiplication
::  - = subtraction

::LOGICAL RIGHT SHIFT (No native support)
set /a "val=(a>>b)&~((0x80000000>>b-1)*!!b)"
call :display "%a% Logical Right Shift %b%" %val% %aStr%

::ROTATE LEFT (No native support)
set /a "val=(a<<b%%32) | (a>>32-b%%32)&~((0x80000000>>31-b%%32)*!!(32-b%%32))"
call :display "%a% Rotate Left %b%" %val% %aStr%

::ROTATE RIGHT (No native support)
set /a "val=(a<<32-b%%32) | (a>>b%%32)&~((0x80000000>>b%%32-1)*!!(b%%32)) "
call :display "%a% Rotate Right %b%" %val% %aStr%

exit /b

:display op result aStr [bStr]
echo(
echo %~1 = %2
echo %3
if "%4" neq "" echo %4
call :num2bin %2
exit /b

:num2bin    IntVal [RtnVar]
setlocal enableDelayedExpansion
set n=%~1
set rtn=
for /l %%b in (0,1,31) do (
set /a "d=n&1, n>>=1"
set rtn=!d!!rtn!
)
(endlocal & rem -- return values
if "%~2" neq "" (set %~2=%rtn%) else echo %rtn%
)
exit /b
```

Sample output

```>bitops 0x800000FE 7

-2147483394 AND 7 = 6
10000000000000000000000011111110
00000000000000000000000000000111
00000000000000000000000000000110

-2147483394 OR 7 = -2147483393
10000000000000000000000011111110
00000000000000000000000000000111
10000000000000000000000011111111

-2147483394 XOR 7 = -2147483399
10000000000000000000000011111110
00000000000000000000000000000111
10000000000000000000000011111001

NOT -2147483394 = 2147483393
10000000000000000000000011111110
01111111111111111111111100000001

-2147483394 Left Shift 7 = 32512
10000000000000000000000011111110
00000000000000000111111100000000

-2147483394 Arithmetic Right Shift 7 = -16777215
10000000000000000000000011111110
11111111000000000000000000000001

-2147483394 Logical Right Shift 7 = 16777217
10000000000000000000000011111110
00000001000000000000000000000001

-2147483394 Rotate Left 7 = 32576
10000000000000000000000011111110
00000000000000000111111101000000

-2147483394 Rotate Right 7 = -50331647
10000000000000000000000011111110
11111101000000000000000000000001
```

## BBC BASIC

```      number1% = &89ABCDEF
number2% = 8

PRINT ~ number1% AND number2% : REM bitwise AND
PRINT ~ number1% OR number2%  : REM bitwise OR
PRINT ~ number1% EOR number2% : REM bitwise exclusive-OR
PRINT ~ NOT number1%          : REM bitwise NOT
PRINT ~ number1% << number2%  : REM left shift
PRINT ~ number1% >>> number2% : REM right shift (logical)
PRINT ~ number1% >> number2%  : REM right shift (arithmetic)
PRINT ~ (number1% << number2%) OR (number1% >>> (32-number2%)) : REM left rotate
PRINT ~ (number1% >>> number2%) OR (number1% << (32-number2%)) : REM right rotate
```

## beeswax

```#eX~T~T_#
###>N{` AND `~{~` = `&{Nz1~3J
UXe#
##>{` OR  `~{~` = `|{Nz1~5J
UXe#
##>{` XOR `~{~` = `\${Nz1~7J
UXe#
##>`NOT `{` = `!{Nz1~9J
UXe#
##>{` <<  `~{~` = `({Nz1~9PPJ
UXe#
##>{` >>> `~{~` = `){` (logical shift right)`N7F+M~1~J
UXe#
##>{` ROL `~{~` = `[{N7F+P~1~J
UXe#
##>{` ROR `~{~` = `]{NN8F+P~1~J
UXe#
##>`Arithmetic shift right is not originally implemented in beeswax.`N     q
qN`,noitagen yb dezilaer eb nac srebmun evitagen rof RSA ,yllacinhcet tuB`N<
##>`logical shift right, and negating the result again:`NN7F++~1~J
UXe#      #>e#
#>~1~[&'pUX{` >> `~{~` = `){` , interpreted as (positive) signed Int64 number (MSB=0), equivalent to >>>`NN;
###
>UX`-`!P{M!` >> `~{~` = `!)!`-`M!{` , interpreted as (negative) signed Int64 number (MSB=1)`NN;
#>e#```

Example:

```julia> beeswax("Bitops.bswx",0,0.0,Int(20000))
i9223653511831486512
i48

9223653511831486512 AND 48 = 48
9223653511831486512 OR  48 = 9223653511831486512
9223653511831486512 XOR 48 = 9223653511831486464
NOT 9223653511831486512 = 9223090561878065103
9223653511831486512 <<  48 = 13510798882111488
9223653511831486512 >>> 48 = 32769 (logical shift right)
9223653511831486512 ROL 48 = 13651540665434112
9223653511831486512 ROR 48 = 3178497

Arithmetic shift right is not originally implemented in beeswax.

But technically, ASR for negative numbers can be realized by negation,
logical shift right, and negating the result again:

-9223090561878065104 >> 48 = -32767 , interpreted as (negative) signed Int64 number (MSB=1)
```

The natural number range for beeswax is unsigned Int64, but it is easy to implement signed Int64 by realizing negative numbers by their 2’s complements or interpreting numbers as negative if their MSB is 1, as shown in the example above.

Arithmetic shift right is not originally implemented in beeswax because it does not make sense for unsigned integers, but for negative numbers, it can be realized easily with

`A>>B = NOT(NOT(A)>>>B)`

as demonstrated above.

In beeswax, rotate left (ROL) and rotate right (ROT) operators are implemented using modulo 64, so rotations by more than 63 bits wrap around:

```A ROL B = A<<(B%64)+A>>>(64-B%64)
A ROR B = A>>>(B%64)+A<<(64-B%64)```

## Befunge

```> v   MCR                                        >v
1    2       3   4       5            6>61g-:|        8       9
>&&\481p >88*61p371p >:61g\`!:68*+71g81gp|    7 >61g2/61p71g1+71pv
>v>v>v>v  <                             >      ^
>#A       1 \$^         ^                                           <
B       6^                   <
^>^>^>^1  C                 |!`5p18:+1g18\$    <
^  9   p#p17*93p189p150     <    >61g71g81gg+71g81gpv D
>071g81gp          v      ^               <
AND            >+2\`!#^_>                v
XOR             +2%  #^_>                v
OR              +1\`!#^_>                v
NOT             !    #^_>                v
LSHFT           0    #^_>48*71g3+81gp    v
RSHFT           \$      48*71g3+81gp  #^_>v E
END             v    #^_>                >61g2*61pv
@    F
v_^#                              `2:<
>71g81gg.48*71g2+81gp79*1-71g2+81g1+pv
^                                    <_v#!`2p15:+1g15p18+1g18<
^                                         < G
```

The labelled points (1 to G) are: 1. Read in A and B, 2. Set the current operating row (R) to 4, 3. Set the current bit value (M) to 64, 4. Set Current operating column (C) to 3, 5. Check if M > A (i.e. bit is 0 or 1), 6. Write the bit value into location (R,C), 7. A = A - M, 8. M = M/2, 9. C++, A&B. Storage of corresponding bits, C. Initialise R & C to operation storage (OP) and M to 1, D. Increment OP by M if true, E. M = M*2, F (2 rows below). Print value of OP, increment operation to perform by moving ">" down, G. If doing the NOT, LSHFT or RSHFT (current operation to perform > 3) only read A.

The code requires input be separated by spaces and only works for numbers less than 128, due to form of bit storage and ASCII locations not able to store beyond 127. Overflow will happen if 127 is shifted left due to aforementioned ASCII limit in most Befunge-93 interpreters.

Inputs:

```21 3
```
Output:
```1 22 23 106 42 10
```

## C

```void bitwise(int a, int b)
{
printf("a and b: %d\n", a & b);
printf("a or b: %d\n", a | b);
printf("a xor b: %d\n", a ^ b);
printf("not a: %d\n", ~a);
printf("a << n: %d\n", a << b); /* left shift */
printf("a >> n: %d\n", a >> b); /* on most platforms: arithmetic right shift */
/* convert the signed integer into unsigned, so it will perform logical shift */
unsigned int c = a;
printf("c >> b: %d\n", c >> b); /* logical right shift */
/* there are no rotation operators in C */
return 0;
}
```

To rotate an integer, you can combine a left shift and a right shift:

```/* rotate x to the right by s bits */
unsigned int rotr(unsigned int x, unsigned int s)
{
return (x >> s) | (x << 32 - s);
}
```
With a smart enough compiler, the above actually compiles into a single machine bit rotate instruction when possible. E.g. `gcc -S` on IA32 produced following assembly code:
```rotr:
movl    4(%esp), %eax        ; arg1: x
movl    8(%esp), %ecx        ; arg2: s
rorl    %cl, %eax            ; right rotate x by s
ret```

## C#

```static void bitwise(int a, int b)
{
Console.WriteLine("a and b is {0}", a & b);
Console.WriteLine("a or b is {0}", a | b);
Console.WriteLine("a xor b is {0}", a ^ b);
Console.WriteLine("not a is {0}", ~a);
Console.WriteLine("a lshift b is {0}", a << b);
Console.WriteLine("a arshift b is {0}", a >> b); // When the left operand of the >> operator is of a signed integral type,
// the operator performs an arithmetic shift right
uint c = (uint)a;
Console.WriteLine("c rshift b is {0}", c >> b); // When the left operand of the >> operator is of an unsigned integral type,
// the operator performs a logical shift right
// there are no rotation operators in C#
}
```

## C++

Translation of: C
```#include <iostream>

void bitwise(int a, int b)
{
std::cout << "a and b: " << (a & b)  << '\n'; // Note: parentheses are needed because & has lower precedence than <<
std::cout << "a or b:  " << (a | b)  << '\n';
std::cout << "a xor b: " << (a ^ b)  << '\n';
std::cout << "not a:   " << ~a       << '\n';

// Note: the C/C++ shift operators are not guaranteed to work if the shift count (that is, b)
// is negative, or is greater or equal to the number of bits in the integer being shifted.
std::cout << "a shl b: " << (a << b) << '\n'; // Note: "<<" is used both for output and for left shift
std::cout << "a shr b: " << (a >> b) << '\n'; // typically arithmetic right shift, but not guaranteed
unsigned int ua = a;
std::cout << "a lsr b: " << (ua >> b) << '\n'; // logical right shift (guaranteed)

// there are no rotation operators in C++, but as of c++20 there is a standard-library rotate function.
// The rotate function works for all rotation amounts, but the integer being rotated must always be an
// unsigned integer.
std::cout << "a rol b: " << std::rotl(ua, b) << '\n';
std::cout << "a ror b: " << std::rotr(ua, b) << '\n';

}
```

## Clojure

```(bit-and x y)
(bit-or x y)
(bit-xor x y)
(bit-not x)
(bit-shift-left x n)
(bit-shift-right x n)
;;There is no built-in for rotation.
```

## COBOL

Results are displayed in decimal.

```       IDENTIFICATION DIVISION.
PROGRAM-ID. bitwise-ops.

DATA DIVISION.
LOCAL-STORAGE SECTION.
01  a                       PIC 1(32) USAGE BIT.
01  b                       PIC 1(32) USAGE BIT.

01  result                  PIC 1(32) USAGE BIT.
01  result-disp             REDEFINES result PIC S9(9) COMP.

01  a-int                   USAGE BINARY-LONG.
01  b-int                   USAGE BINARY-LONG.

PROCEDURE DIVISION USING a-int, b-int.
MOVE FUNCTION BOOLEAN-OF-INTEGER(a-int, 32) TO a
MOVE FUNCTION BOOLEAN-OF-INTEGER(b-int, 32) TO b

COMPUTE result = a B-AND b
DISPLAY "a and b is " result-disp

COMPUTE result = a B-OR b
DISPLAY "a or b is " result-disp

COMPUTE result = B-NOT a
DISPLAY "Not a is " result-disp

COMPUTE result = a B-XOR b
DISPLAY "a exclusive-or b is " result-disp

*> COBOL does not have shift or rotation operators.

GOBACK
.
```
Works with: Visual COBOL
```       IDENTIFICATION DIVISION.
PROGRAM-ID. mf-bitwise-ops.

DATA DIVISION.
LOCAL-STORAGE SECTION.
01  result                  USAGE BINARY-LONG.

78  arg-len                 VALUE LENGTH OF result.

01  a                       USAGE BINARY-LONG.
01  b                       USAGE BINARY-LONG.

PROCEDURE DIVISION USING a, b.
main-line.
MOVE b TO result
CALL "CBL_AND" USING a, result, VALUE arg-len
DISPLAY "a and b is " result

MOVE b TO result
CALL "CBL_OR" USING a, result, VALUE arg-len
DISPLAY "a or b is " result

MOVE a TO result
CALL "CBL_NOT" USING result, VALUE arg-len
DISPLAY "Not a is " result

MOVE b TO result
CALL "CBL_XOR" USING a, result, VALUE arg-len
DISPLAY "a exclusive-or b is " result

MOVE b TO result
CALL "CBL_EQ" USING a, result, VALUE arg-len
DISPLAY "Logical equivalence of a and b is " result

MOVE b TO result
CALL "CBL_IMP" USING a, result, VALUE arg-len
DISPLAY "Logical implication of a and b is " result

GOBACK
.
```

## CoffeeScript

CoffeeScript provides sugar for some JavaScript operators, but the bitwise operators are taken directly from JS. See more here: http://coffeescript.org/#operators

```f = (a, b) ->
p "and", a & b
p "or", a | b
p "xor", a ^ b
p "not", ~a
p "<<", a << b
p ">>", a >> b
# no rotation shifts that I know of

p = (label, n) -> console.log label, n

f(10,2)
```

output

```> coffee foo.coffee
and 2
or 10
xor 8
not -11
<< 40
>> 2
```

## Common Lisp

```(defun bitwise (a b)
(print (logand a b))  ; AND
(print (logior a b))  ; OR ("ior" = inclusive or)
(print (logxor a b))  ; XOR
(print (lognot a))    ; NOT
(print (ash a b))     ; arithmetic left shift (positive 2nd arg)
(print (ash a (- b))) ; arithmetic right shift (negative 2nd arg)
; no logical shift
)
```

Left and right logical shift may be implemented by the following functions:

```(defun shl (x width bits)
"Compute bitwise left shift of x by 'bits' bits, represented on 'width' bits"
(logand (ash x bits)
(1- (ash 1 width))))

(defun shr (x width bits)
"Compute bitwise right shift of x by 'bits' bits, represented on 'width' bits"
(logand (ash x (- bits))
(1- (ash 1 width))))
```

Left and right rotation may be implemented by the following functions:

```(defun rotl (x width bits)
"Compute bitwise left rotation of x by 'bits' bits, represented on 'width' bits"
(logior (logand (ash x (mod bits width))
(1- (ash 1 width)))
(logand (ash x (- (- width (mod bits width))))
(1- (ash 1 width)))))

(defun rotr (x width bits)
"Compute bitwise right rotation of x by 'bits' bits, represented on 'width' bits"
(logior (logand (ash x (- (mod bits width)))
(1- (ash 1 width)))
(logand (ash x (- width (mod bits width)))
(1- (ash 1 width)))))
```

## D

```T rot(T)(in T x, in int shift) pure nothrow @nogc {
return (x >>> shift) | (x << (T.sizeof * 8 - shift));
}

void testBit(in int a, in int b) {
import std.stdio;
writefln("Input: a = %d, b = %d", a, b);
writefln("AND  : %8b  & %08b = %032b (%4d)", a, b, a & b, a & b);
writefln(" OR  : %8b  | %08b = %032b (%4d)", a, b, a | b, a | b);
writefln("XOR  : %8b  ^ %08b = %032b (%4d)", a, b, a ^ b, a ^ b);
writefln("LSH  : %8b << %08b = %032b (%4d)", a, b, a << b, a << b);
writefln("RSH  : %8b >> %08b = %032b (%4d)", a, b, a >> b, a >> b);
writefln("NOT  : %8s  ~ %08b = %032b (%4d)", "", a, ~a, ~a);
writefln("ROT  : rot(%8b, %d)     = %032b (%4d)",
a, b, rot(a, b), rot(a, b));
}

void main() {
immutable int a = 0b_1111_1111; // bit literal 255
immutable int b = 0b_0000_0010; // bit literal 2

testBit(a, b);
}
```
Output:
```Input: a = 255, b = 2
AND  : 11111111  & 00000010 = 00000000000000000000000000000010 (   2)
OR  : 11111111  | 00000010 = 00000000000000000000000011111111 ( 255)
XOR  : 11111111  ^ 00000010 = 00000000000000000000000011111101 ( 253)
LSH  : 11111111 << 00000010 = 00000000000000000000001111111100 (1020)
RSH  : 11111111 >> 00000010 = 00000000000000000000000000111111 (  63)
NOT  :           ~ 11111111 = 11111111111111111111111100000000 (-256)
ROT  : rot(11111111, 2)     = 11000000000000000000000000111111 (-1073741761)```

Compilers are usually able to optimize the code pattern of the rot function to one CPU instruction plus loads. The DMD compiler too performs such optimization.

## Delphi

```program Bitwise;

{\$APPTYPE CONSOLE}

begin
Writeln('2 and 3 = ', 2 and 3);
Writeln('2 or 3 = ', 2 or 3);
Writeln('2 xor 3 = ', 2 xor 3);
Writeln('not 2 = ', not 2);
Writeln('2 shl 3 = ', 2 shl 3);
Writeln('2 shr 3 = ', 2 shr 3);
// there are no built-in rotation operators in Delphi
end.
```

## DWScript

```PrintLn('2 and 3 = '+IntToStr(2 and 3));
PrintLn('2 or 3 = '+IntToStr(2 or 3));
PrintLn('2 xor 3 = '+IntToStr(2 xor 3));
PrintLn('not 2 = '+IntToStr(not 2));
PrintLn('2 shl 3 = '+IntToStr(2 shl 3));
PrintLn('2 shr 3 = '+IntToStr(2 shr 3));
```

## E

E provides arbitrary-size integers, so there is no distinct arithmetic and logical shift right. E does not provide bit rotate operations.

```def bitwise(a :int, b :int) {
println(`Bitwise operations:
a AND b: \${a & b}
a OR b: \${a | b}
a XOR b: \${a ^ b}
NOT a: " + \${~a}
a left shift b: \${a << b}
a right shift b: \${a >> b}
`)
}```

## ECL

```BitwiseOperations(INTEGER A, INTEGER B) := FUNCTION
BitAND := A & B;
BitOR  := A | B;
BitXOR := A ^ B;
BitNOT := BNOT A;
BitSL  := A << B;
BitSR  := A >> B;
DS     := DATASET([{A,B,'Bitwise AND:',BitAND},
{A,B,'Bitwise OR:',BitOR},
{A,B,'Bitwise XOR',BitXOR},
{A,B,'Bitwise NOT A:',BitNOT},
{A,B,'ShiftLeft A:',BitSL},
{A,B,'ShiftRight A:',BitSR}],
{INTEGER AVal,INTEGER BVal,STRING15 valuetype,INTEGER val});
RETURN DS;
END;

BitwiseOperations(255,5);
//right arithmetic shift, left and right rotate not implemented
/*
OUTPUT:
255	5	Bitwise AND:   	5
255	5	Bitwise OR:    	255
255	5	Bitwise XOR    	250
255	5	Bitwise NOT A: 	-256
255	5	ShiftLeft A:   	8160
255	5	ShiftRight A:  	7

*/
```

## Ecstasy

```module BitwiseOps
{
@Inject Console console;
void run()
{
for ((Int64 n1, Int64 n2) : [0=7, 1=5, 42=2, 0x123456789ABCDEF=0xFF])  // <- test data
{
static String hex(Int64 n)   // <- this is a locally scoped helper function
{
// formats the integer as a hex string, but drops the leading '0' bytes
return n.toByteArray() [(n.leadingZeroCount / 8).minOf(7) ..< 8].toString();
}

console.print(\$|For values {n1} ({hex(n1)}) and {n2} ({hex(n2)}):
|  {hex(n1)} AND {hex(n2)} = {hex(n1 & n2)}
|  {hex(n1)} OR {hex(n2)} = {hex(n1 | n2)}
|  {hex(n1)} XOR {hex(n2)} = {hex(n1 ^ n2)}
|  NOT {hex(n1)} = {hex(~n1)}
|  left shift {hex(n1)} by {n2} = {hex(n1 << n2)}
|  right shift {hex(n1)} by {n2} = {hex(n1 >> n2)}
|  right arithmetic shift {hex(n1)} by {n2} = {hex(n1 >>> n2)}
|  left rotate {hex(n1)} by {n2} = {hex(n1.rotateLeft(n2))}
|  right rotate {hex(n1)} by {n2} = {hex(n1.rotateRight(n2))}
|  leftmost bit of {hex(n1)} = {hex(n1.leftmostBit)}
|  rightmost bit of {hex(n1)} = {hex(n1.rightmostBit)}
|  trailing zero count of {hex(n1)} = {n1.trailingZeroCount}
|  bit count (aka "population") of {hex(n1)} = {n1.bitCount}
|  reversed bits of {hex(n1)} = {hex(n1.reverseBits())}
|  reverse bytes of {hex(n1)} = {hex(n1.reverseBytes())}
|
);
}
}
}
```

Results in (extracted for just one of the test values):

Output:
```For values 1 (0x01) and 5 (0x05):
0x01 AND 0x05 = 0x01
0x01 OR 0x05 = 0x05
0x01 XOR 0x05 = 0x04
NOT 0x01 = 0xFFFFFFFFFFFFFFFE
left shift 0x01 by 5 = 0x20
right shift 0x01 by 5 = 0x00
right arithmetic shift 0x01 by 5 = 0x00
left rotate 0x01 by 5 = 0x20
right rotate 0x01 by 5 = 0x0800000000000000
leftmost bit of 0x01 = 0x01
rightmost bit of 0x01 = 0x01
leading zero count of 0x01 = 63
trailing zero count of 0x01 = 0
bit count (aka "population") of 0x01 = 1
reversed bits of 0x01 = 0x8000000000000000
reverse bytes of 0x01 = 0x0100000000000000
```

## Elena

ELENA 4.x :

```import extensions;

extension testOp
{
bitwiseTest(y)
{
console.printLine(self," and ",y," = ",self.and(y));
console.printLine(self," or ",y," = ",self.or(y));
console.printLine(self," xor ",y," = ",self.xor(y));
console.printLine("not ",self," = ",self.Inverted);
console.printLine(self," shr ",y," = ",self.shiftRight(y));
console.printLine(self," shl ",y," = ",self.shiftLeft(y));
}
}

public program()
{
}```
Output:
```255 and 2 = 2
255 or 2 = 255
255 xor 2 = 253
not 255 = -256
255 shr 2 = 63
255 shl 2 = 1020
```

## Elixir

```defmodule Bitwise_operation do
use Bitwise

def test(a \\ 255, b \\ 170, c \\ 2) do
IO.puts "Bitwise function:"
IO.puts "band(#{a}, #{b}) = #{band(a, b)}"
IO.puts "bor(#{a}, #{b}) = #{bor(a, b)}"
IO.puts "bxor(#{a}, #{b}) = #{bxor(a, b)}"
IO.puts "bnot(#{a}) = #{bnot(a)}"
IO.puts "bsl(#{a}, #{c}) = #{bsl(a, c)}"
IO.puts "bsr(#{a}, #{c}) = #{bsr(a, c)}"
IO.puts "\nBitwise as operator:"
IO.puts "#{a} &&& #{b} = #{a &&& b}"
IO.puts "#{a} ||| #{b} = #{a ||| b}"
IO.puts "#{a} ^^^ #{b} = #{a ^^^ b}"
IO.puts "~~~#{a} = #{~~~a}"
IO.puts "#{a} <<< #{c} = #{a <<< c}"
IO.puts "#{a} >>> #{c} = #{a >>> c}"
end
end

Bitwise_operation.test
```
Output:
```Bitwise function:
band(255, 170) = 170
bor(255, 170) = 255
bxor(255, 170) = 85
bnot(255) = -256
bsl(255, 2) = 1020
bsr(255, 2) = 63

Bitwise as operator:
255 &&& 170 = 170
255 ||| 170 = 255
255 ^^^ 170 = 85
~~~255 = -256
255 <<< 2 = 1020
255 >>> 2 = 63
```

## Erlang

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

```-module(bitwise_operations).

-export([test/0]).

test() ->
A = 255,
B = 170,
io:format("~p band ~p = ~p\n",[A,B,A band B]),
io:format("~p bor ~p = ~p\n",[A,B,A bor B]),
io:format("~p bxor ~p = ~p\n",[A,B,A bxor B]),
io:format("not ~p = ~p\n",[A,bnot A]),
io:format("~p bsl ~p = ~p\n",[A,B,A bsl B]),
io:format("~p bsr ~p = ~p\n",[A,B,A bsr B]).
```

outputs:

```255 band 170 = 170
255 bor 170 = 255
255 bxor 170 = 85
not 255 = -256
255 bsl 170 = 381627307539845370001346183518875822092557105621893120
255 bsr 170 = 0
```

## F#

```let bitwise a b =
printfn "a and b: %d" (a &&& b)
printfn "a or  b: %d" (a ||| b)
printfn "a xor b: %d" (a ^^^ b)
printfn "not a: %d"   (~~~a)
printfn "a shl b: %d" (a <<< b)
printfn "a shr b: %d" (a >>> b)          // arithmetic shift
printfn "a shr b: %d" ((uint32 a) >>> b) // logical shift
// No rotation operators.
```

## Factor

```"a=" "b=" [ write readln string>number ] bi@
{
[ bitand "a AND b: " write . ]
[ bitor "a OR b: " write . ]
[ bitxor "a XOR b: " write . ]
[ drop bitnot "NOT a: " write . ]
[ abs shift "a asl b: " write . ]
[ neg shift "a asr b: " write . ]
} 2cleave
```

outputs:

```a=255
b=5
a AND b: 5
a OR b: 255
a XOR b: 250
NOT a: -256
a asl b: 8160
a asr b: 7
```

Currently rotation and logical shifts are not implemented.

## FALSE

Only AND, OR, and NOT are available.

```10 3
\\$@\$@\$@\$@\  { 3 copies }
"a & b = "&."
a | b  = "|."
~a = "%~."
"```

## Forth

```: arshift 0 ?do 2/ loop ;            \ 2/ is an arithmetic shift right by one bit (2* shifts left one bit)
: bitwise ( a b -- )
cr ." a = " over . ." b = " dup .
cr ." a and b = " 2dup and .
cr ." a  or b = " 2dup  or .
cr ." a xor b = " 2dup xor .
cr ." not a = " over invert .
cr ." a shl b = " 2dup lshift .
cr ." a shr b = " 2dup rshift .
cr ." a ashr b = " 2dup arshift .
2drop ;
```

Rotation is not standard, but may be provided in particular Forth implementations, or as an assembly instruction in CODE words.

## Fortran

In ISO Fortran 90 and later the following BIT INTRINSIC functions are defined:

```integer :: i, j = -1, k = 42
logical :: a

i = bit_size(j)       ! returns the number of bits in the given INTEGER variable

! bitwise boolean operations on integers
i = iand(k, j)        ! returns bitwise AND of K and J
i = ior(k, j)         ! returns bitwise OR of K and J
i = ieor(k, j)        ! returns bitwise EXCLUSIVE OR of K and J
i = not(j)            ! returns bitwise NOT of J

! single-bit integer/logical operations (bit positions are zero-based)
a = btest(i, 4)       ! returns logical .TRUE. if bit position 4 of I is 1, .FALSE. if 0
i = ibclr(k, 8)       ! returns value of K with 8th bit position "cleared" (set to 0)
i = ibset(k, 13)      ! returns value of K with 13th bit position "set" (set to 1)

! multi-bit integer operations
i = ishft(k, j)       ! returns value of K shifted by J bit positions, with ZERO fill
!    (right shift if J < 0 and left shift if J > 0).
i = ishftc(k, j)      ! returns value of K shifted CIRCULARLY by J bit positions
!    (right circular shift if J < 0 and left if J > 0)
i = ishftc(k, j, 20)  ! returns value as before except that ONLY the 20 lowest order
!    (rightmost) bits are circularly shifted
i = ibits(k, 7, 8)    ! extracts 8 contiguous bits from K starting at position 7 and
!    returns them as the rightmost bits of an otherwise
!    zero-filled integer. For non-negative K this is
!    arithmetically equivalent to:   MOD((K / 2**7), 2**8)
```

The following INTRINSIC ELEMENTAL SUBROUTINE is also defined:

``` call mvbits(k, 2, 4, j, 0)  ! copy a sequence of 4 bits from k starting at bit 2 into j starting at bit 0
```
```
program    bits_rosetta
implicit none

call bitwise(14,3)

contains

subroutine bitwise(a,b)
implicit none
integer, intent(in):: a,b
character(len=*), parameter :: fmt1 = '(2(a,i10))'
character(len=*),parameter :: fmt2 = '(3(a,b32.32),i20)'

write(*,fmt1) 'input a=',a,' b=',b
write(*,fmt2) 'and : ', a,' &  ',b,' = ',iand(a, b),iand(a, b)
write(*,fmt2) 'or  : ', a,' |  ',b,' = ',ior(a, b),ior(a, b)
write(*,fmt2) 'xor : ', a,' ^  ',b,' = ',ieor(a, b),ieor(a, b)
write(*,fmt2) 'lsh : ', a,' << ',b,' = ',shiftl(a,b),shiftl(a,b) !since F2008, otherwise use ishft(a, abs(b))
write(*,fmt2) 'rsh : ', a,' >> ',b,' = ',shiftr(a,b),shiftr(a,b) !since F2008, otherwise use ishft(a, -abs(b))
write(*,fmt2) 'not : ', a,' ~  ',b,' = ',not(a),not(a)
write(*,fmt2) 'rot : ', a,' r  ',b,' = ',ishftc(a,-abs(b)),ishftc(a,-abs(b))

end subroutine bitwise

end program bits_rosetta
```

Output

```Input a=        14 b=         3
AND : 00000000000000000000000000001110 &  00000000000000000000000000000011 = 00000000000000000000000000000010                   2
OR  : 00000000000000000000000000001110 |  00000000000000000000000000000011 = 00000000000000000000000000001111                  15
XOR : 00000000000000000000000000001110 ^  00000000000000000000000000000011 = 00000000000000000000000000001101                  13
LSH : 00000000000000000000000000001110 << 00000000000000000000000000000011 = 00000000000000000000000001110000                 112
RSH : 00000000000000000000000000001110 >> 00000000000000000000000000000011 = 00000000000000000000000000000001                   1
NOT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11111111111111111111111111110001                 -15
ROT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11000000000000000000000000000001         -1073741823
```

## Free Pascal

```program Bitwise;
{\$mode objfpc}
var
// Pascal uses a native int type as a default literal type
// Make sure the operants work on an exact type.
x:shortint = 2;
y:ShortInt = 3;
begin
Writeln('2 and 3 = ', x and y);
Writeln('2 or 3 = ', x or y);
Writeln('2 xor 3 = ', x xor y);
Writeln('not 2 = ', not x);
Writeln('2 shl 3 = ', x >> y);
Writeln('2 shr 3 = ', x << y);
writeln('2 rol 3 = ', rolbyte(x,y));
writeln('2 ror 3 = ', rorbyte(x,y));
writeln('2 sar 3 = ', sarshortint(x,y));
end.
```

## FreeBASIC

```' FB 1.05.0 Win64 (Note the (U)Integer type is 64 bits)

' FB doesn't have built-in logical shift right or rotation operators
' but, as they're not difficult to implement, I've done so below.

Function lsr(x As Const Integer, y As Const Integer) As Integer
Dim As UInteger z = x
Return z Shr y
End Function

Function rol(x As Const Integer, y As Const UInteger) As Integer
Dim z As Integer = x
Dim high As Integer
For i As Integer = 1 To y
high = Bit(z, 63)
For j As Integer = 62 To 0 Step -1
If Bit(z, j) Then
z = BitSet(z, j + 1)
Else
z = BitReset (z, j + 1)
End If
Next j
If high Then
z = BitSet(z, 0)
Else
z = BitReset(z, 0)
End If
Next i
Return z
End Function

Function ror(x As Const Integer, y As Const UInteger) As Integer
Dim z As Integer = x
Dim low As Integer
For i As Integer = 1 To y
low = Bit(z, 0)
For j As Integer = 1 To 63
If Bit(z, j) Then
z = BitSet(z, j - 1)
Else
z = BitReset (z, j - 1)
End If
Next j
If low Then
z = BitSet(z, 63)
Else
z = BitReset(z, 63)
End If
Next i
Return z
End Function

Sub bitwise(x As Integer, y As Integer)
Print "x       = "; x
Print "y       = "; y
Print "x AND y = "; x And y
Print "x OR y  = "; x Or y
Print "x XOR y = "; x XOr y
Print "NOT x   = "; Not x
Print "x SHL y = "; x Shl y
Print "x SHR y = "; x Shr y
Print "x LSR y = "; lsr(x, y)
Print "x ROL y = "; rol(x, y)
Print "x ROR y = "; ror(x, y)
End Sub

bitwise -15, 3
Print
Print "Press any key to quit"
Sleep
```
Output:
```x       = -15
y       =  3
x AND y =  1
x OR y  = -13
x XOR y = -14
NOT x   =  14
x SHL y = -120
x SHR y = -2
x LSR y =  2305843009213693950
x ROL y = -113
x ROR y =  4611686018427387902
```

## FutureBasic

FB does not have a bitwise symbol for not, but rather uses the "not" expression. It does not support predefined bitwise symbols for rotate left and rotate right, but functions in this demo provide that capability.

```window 1, @"Bitwise Operations", (0,0,650,270)

def fn rotl( b as long, n as long ) as long = ( ( 2^n * b) mod 256) or (b > 127)
def fn rotr( b as long, n as long ) as long = (b >> n mod 32) or ( b << (32-n) mod 32)

local fn bitwise( a as long, b as long )
print @"Input: a = "; a; @"  b = "; b
print
print @"AND  :", @"a && b = ", bin(a && b), @": "; a && b
print @"NAND :", @"a ^& b = ", bin(a ^& b), @": "; a ^& b
print @"OR   :", @"a || b = ", bin(a || b), @": "; a || b
print @"NOR  :", @"a ^| b = ", bin(a ^| b), @": "; a ^| b
print @"XOR  :", @"a ^^ b = ", bin(a ^^ b), @": "; a ^^ b
print @"NOT  :", @" not a = ", bin( not a), @": ";  not a
print
print @"Left shift   :", @"a << b =", bin(a << b), @": "; a << b
print @"Right shift  :", @"a >> b =", bin(a >> b), @": "; a >> b
print
print @"Rotate left  :", @"fn rotl( a, b ) = ", bin(fn rotl( a, b)), @": "; fn rotl( a, b )
print @"Rotate right :", @"fn rotr( a, b ) = ", bin(fn rotr( a, b )),@": "; fn rotr( a, b )
end fn

fn bitwise( 255, 2 )

HandleEvents```

Output:

```Input: a =  255  b =  2

AND  : a && b =  00000000000000000000000000000010 :  2
NAND : a ^& b =  00000000000000000000000011111101 :  253
OR   : a || b =  00000000000000000000000011111111 :  255
NOR  : a ^| b =  11111111111111111111111111111111 : -1
XOR  : a ^^ b =  00000000000000000000000011111101 :  253
NOT  :  not a =  11111111111111111111111100000000 : -256

Left shift   : a << b = 00000000000000000000001111111100 :  1020
Right shift  : a >> b = 00000000000000000000000000111111 :  63

Rotate left  : fn rotl( a, b ) =  11111111111111111111111111111111 : -1
Rotate right : fn rotr( a, b ) =  11000000000000000000000000111111 : -1073741761
```

## Go

```package main

import "fmt"

func bitwise(a, b int16) {
fmt.Printf("a:   %016b\n", uint16(a))
fmt.Printf("b:   %016b\n", uint16(b))

// Bitwise logical operations
fmt.Printf("and: %016b\n", uint16(a&b))
fmt.Printf("or:  %016b\n", uint16(a|b))
fmt.Printf("xor: %016b\n", uint16(a^b))
fmt.Printf("not: %016b\n", uint16(^a))

if b < 0 {
fmt.Println("Right operand is negative, but all shifts require an unsigned right operand (shift distance).")
return
}
ua := uint16(a)
ub := uint32(b)

// Logical shifts (unsigned left operand)
fmt.Printf("shl: %016b\n", uint16(ua<<ub))
fmt.Printf("shr: %016b\n", uint16(ua>>ub))

// Arithmetic shifts (signed left operand)
fmt.Printf("las: %016b\n", uint16(a<<ub))
fmt.Printf("ras: %016b\n", uint16(a>>ub))

// Rotations
fmt.Printf("rol: %016b\n", uint16(a<<ub|int16(uint16(a)>>(16-ub))))
fmt.Printf("ror: %016b\n", uint16(int16(uint16(a)>>ub)|a<<(16-ub)))
}

func main() {
var a, b int16 = -460, 6
bitwise(a, b)
}
```

Output:

```a:   1111111000110100
b:   0000000000000110
and: 0000000000000100
or:  1111111000110110
xor: 1111111000110010
not: 0000000111001011
shl: 1000110100000000
shr: 0000001111111000
las: 1000110100000000
ras: 1111111111111000
rol: 1000110100111111
ror: 1101001111111000```

## Groovy

```def bitwise = { a, b ->
println """
a & b   = \${a} & \${b}   = \${a & b}
a | b   = \${a} | \${b}   = \${a | b}
a ^ b   = \${a} ^ \${b}   = \${a ^ b}
~ a     = ~ \${a}     = \${~ a}
a << b  = \${a} << \${b}  = \${a << b}
a >> b  = \${a} >> \${b}  = \${a >> b}         arithmetic (sign-preserving) shift
a >>> b = \${a} >>> \${b} = \${a >>> b}  logical (zero-filling) shift
"""
}
```

Program:

```bitwise(-15,3)
```

Output:

```a & b   = -15 & 3   = 1
a | b   = -15 | 3   = -13
a ^ b   = -15 ^ 3   = -14
~ a     = ~ -15     = 14
a << b  = -15 << 3  = -120
a >> b  = -15 >> 3  = -2         arithmetic (sign-preserving) shift
a >>> b = -15 >>> 3 = 536870910  logical (zero-filling) shift```

## Harbour

Harbour language has a set of core functions, which are fully optimized at compile time, to perform bitwise operations.

```PROCEDURE Main(...)
local n1 := 42, n2 := 2
local aPar := hb_AParams()
local nRot

if ! Empty( aPar )
n1 := Val( aPar )
if ! Empty( aPar )
n2 := Val( aPar )
endif
endif
clear screen

? "Bitwise operations with two integers"
? "n1 =", hb_ntos(n1)
? "n2 =", hb_ntos(n2)
? "------------------------------------"
? "AND          -->", hb_BitAnd( n1, n2 )
? "OR           -->", hb_BitOr( n1, n2 )
? "XOR          -->", hb_BitXor( n1, n2 )
? "NOT          -->", hb_BitNot( n1 )
? "LSHIFT       -->", hb_bitShift( n1, n2 )
? "RSHIFT       -->", hb_bitShift( n1, -n2 )
? "RarSHIFT     -->", hb_bitShift( n1, -n2 )

/* left/right rotation is not implemented, but we can use inline C-code to do it */
/* rotate n1 to the left by n2 bits */
nRot := hb_Inline( n1, n2 ) {
HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );
hb_retni( (x << s) | (x >> (-s & 31)) );
}            // (x << s) | (x >> (32 - s));
? "Rotate left  -->", nRot

/* rotate n1 to the right by n2 bits */
nRot := HB_INLINE( n1, n2 ){
HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );
hb_retni( (x >> s) | (x << (32 - s)) );
}
? "Rotate right -->", nRot

return
```

Output:

```  Bitwise operations with two integers
n1 = 42
n2 = 2
------------------------------------
AND          -->          2
OR           -->         42
XOR          -->         40
NOT          -->        -43
LSHIFT       -->        168
RSHIFT       -->         10
RarSHIFT     -->         10
Rotate left  -->        168
Rotate right -->          -2147483638
```

The operations in Data.Bits work on Int, Integer, and any of the sized integer and word types.

```import Data.Bits

bitwise :: Int -> Int -> IO ()
bitwise a b =
mapM_
print
[ a .&. b
, a .|. b
, a `xor` b
, complement a
, shiftL a b -- left shift
, shiftR a b -- arithmetic right shift
, shift a b -- You can also use the "unified" shift function;
-- positive is for left shift, negative is for right shift
, shift a (-b)
, rotateL a b -- rotate left
, rotateR a b -- rotate right
, rotate a b -- You can also use the "unified" rotate function;
-- positive is for left rotate, negative is for right rotate
, rotate a (-b)
]

main :: IO ()
main = bitwise 255 170
```
Output:
```170
255
85
-256
0
0
0
0
1121501860331520
1069547520
1121501860331520
1069547520```

If you were shifting Words (unsigned integers) instead of Ints, then the shift would be automatically logical shifts:

```import Data.Word
print \$ shiftL (-1 :: Word) 1
print \$ shiftR (-1 :: Word) 1
```

## HicEst

There is no rotate and no shift support built in to HicEst

```i = IAND(k, j)
i = IOR( k, j)
i = IEOR(k, j)
i = NOT( k   )```

## HPPPL

```EXPORT BITOPS(a, b)
BEGIN
PRINT(BITAND(a, b));
PRINT(BITOR(a, b));
PRINT(BITXOR(a, b));
PRINT(BITNOT(a));
PRINT(BITSL(a, b));
PRINT(BITSR(a, b));
// HPPPL has no builtin rotates or arithmetic right shift.
END;```

## Icon and Unicon

```procedure main()
bitdemo(255,2)
bitdemo(-15,3)
end

procedure bitdemo(i,i2)
write()
demowrite("i",i)
demowrite("i2",i2)
demowrite("complement i",icom(i))
demowrite("i or i2",ior(i,i2))
demowrite("i and i2",iand(i,i2))
demowrite("i xor i2",ixor(i,i2))
demowrite("i shift " || i2,ishift(i,i2))
demowrite("i shift -" || i2,ishift(i,-i2))
return
end

procedure demowrite(vs,v)
return write(vs, ": ", v, " = ", int2bit(v),"b")
end
```

Icon/Unicon implements bitwise operations on integers. Because integers can be transparently large integers operations that require fixed sizes don't make sense and aren't defined. These include rotation and logical shifting (shift is arithmetic) . Please note also that 'not' is a reserved word and the negation function is 'icom'

Sample output:

```i: 255 = 11111111b
i2: 2 = 10b
complement i: -256 = -100000000b
i or i2: 255 = 11111111b
i and i2: 2 = 10b
i xor i2: 253 = 11111101b
i shift 2: 1020 = 1111111100b
i shift -2: 63 = 111111b

i: -15 = -1111b
i2: 3 = 11b
complement i: 14 = 1110b
i or i2: -13 = -1101b
i and i2: 1 = 1b
i xor i2: -14 = -1110b
i shift 3: -120 = -1111000b
i shift -3: -2 = -10b```

## Inform 6

Inform 6 has no xor or rotate operators. It also has no shift operators, although the Z-machine, its usual target architecture, does. These can be accessed with inline assembly, which is done here.

```[ bitwise a b temp;
print "a and b: ", a & b, "^";
print "a or b: ", a | b, "^";
print "not a: ", ~a, "^";
@art_shift a b -> temp;
print "a << b (arithmetic): ", temp, "^";
temp = -b;
@art_shift a temp -> temp;
print "a >> b (arithmetic): ", temp, "^";
@log_shift a b -> temp;
print "a << b (logical): ", temp, "^";
temp = -b;
@log_shift a temp -> temp;
print "a >> b (logical): ", temp, "^";
];```

## J

Here are the "bitwise operators":

```bAND=:  17 b.  NB. 16+#.0 0 0 1
bOR=:   23 b.  NB. 16+#.0 1 1 1
bXOR=:  22 b.  NB. 16+#.0 1 1 0
b1NOT=: 28 b.  NB. 16+#.1 1 0 0
bLshift=:  33 b.~ NB. see http://www.jsoftware.com/help/release/bdot.htm
bRshift=:  33 b.~ -
bRAshift=: 34 b.~ -
bLrot=:    32 b.~
bRrot=:    32 b.~ -
```

And here is a routine which takes a list of bitwise operators and two numbers and displays a table of results from combining those two numbers with each of the operators:

```bitwise=: 1 :0
:
smoutput (((":x),"1' ',.(>u),.' '),"1":y),"1' => ',"1'.X'{~#:x u`:0 y
)
```

And here they are in action:

```   254 bAND`bOR`bXOR`b1NOT`bLshift`bRshift`bRAshift`bLrot`bRrot bitwise 3
254 bAND     3 => ............................X.
254 bOR      3 => ......................XXXXXXXX
254 bXOR     3 => ......................XXXXXX.X
254 b1NOT    3 => XXXXXXXXXXXXXXXXXXXXXX.......X
254 bLshift  3 => ...................XXXXXXX....
254 bRshift  3 => .........................XXXXX
254 bRAshift 3 => .........................XXXXX
254 bLrot    3 => ...................XXXXXXX....
254 bRrot    3 => .........................XXXXX
```

Further test

```bXOR/ 3333 5555 7777 9999
8664
```

## Java

```public static void bitwise(int a, int b){
System.out.println("a AND b: " + (a & b));
System.out.println("a OR b: "+ (a | b));
System.out.println("a XOR b: "+ (a ^ b));
System.out.println("NOT a: " + ~a);
System.out.println("a << b: " + (a << b)); // left shift
System.out.println("a >> b: " + (a >> b)); // arithmetic right shift
System.out.println("a >>> b: " + (a >>> b)); // logical right shift
System.out.println("a rol b: " + Integer.rotateLeft(a, b)); //rotate left, Java 1.5+
System.out.println("a ror b: " + Integer.rotateRight(a, b)); //rotate right, Java 1.5+
}
```

All of the operators may be combined with the = operator to save space. For example, the following lines each do the same thing:

```a <<= 3;
a = a << 3;
a *= 8; //2 * 2 * 2 = 8
a = a * 8;
```

## JavaScript

There are no integers in Javascript, but there are still bitwise operators. They will convert their number operands into integers before performing they task. In other languages, these operators are very close to the hardware and very fast. In JavaScript, they are very far from the hardware and very slow and rarely used.

```function bitwise(a, b){
alert("a AND b: " + (a & b));
alert("a OR b: "+ (a | b));
alert("a XOR b: "+ (a ^ b));
alert("a << b: " + (a << b)); // left shift
alert("a >> b: " + (a >> b)); // arithmetic right shift
alert("a >>> b: " + (a >>> b)); // logical right shift
}
```

## Julia

```# Version 5.2
@show 1 & 2   # AND
@show 1 | 2   # OR
@show 1 ^ 2   # XOR -- for Julia 6.0 the operator is `⊻`
@show ~1      # NOT
@show 1 >>> 2 # SHIFT RIGHT (LOGICAL)
@show 1 >> 2  # SHIFT RIGHT (ARITMETIC)
@show 1 << 2  # SHIFT LEFT (ARITMETIC/LOGICAL)

A = BitArray([true, true, false, false, true])
@show A ror(A,1) ror(A,2) ror(A,5) # ROTATION RIGHT
@show rol(A,1) rol(A,2) rol(A,5) # ROTATION LEFT
```
Output:
```1 & 2 = 0
1 | 2 = 3
1 ^ 2 = 1
~1 = -2
1 >>> 2 = 0
1 >> 2 = 0
1 << 2 = 4
A = Bool[true,true,false,false,true]
ror(A,1) = Bool[true,true,true,false,false]
ror(A,2) = Bool[false,true,true,true,false]
ror(A,5) = Bool[true,true,false,false,true]
rol(A,1) = Bool[true,false,false,true,true]
rol(A,2) = Bool[false,false,true,true,true]
rol(A,5) = Bool[true,true,false,false,true]
```

## Kotlin

```fun main() {
// inferred type of x and y is Int (32-bit signed integer)
val x = 10
val y = 2
println("x = \$x")
println("y = \$y")
println("NOT x = \${x.inv()}")
println("x AND y = \${x and y}")
println("x OR y = \${x or y}")
println("x XOR y = \${x xor y}")

// All operations below actually return (x OP (y % 32)) so that a value is never completely shifted out
println("x SHL y = \${x shl y}")
println("x ASR y = \${x shr y}") // arithmetic shift right (sign bit filled)
println("x LSR y = \${x ushr y}") // logical shift right (zero filled)
println("x ROL y = \${x.rotateLeft(y)}")
println("x ROR y = \${x.rotateRight(y)}")
}
```
Output:
```x = 10
y = 2
NOT x = -11
x AND y = 2
x OR y = 10
x XOR y = 8
x SHL y = 40
x ASR y = 2
x LSR y = 2
x ROL y = 40
x ROR y = -2147483646
```

## LFE

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

```(defun bitwise (a b)
(lists:map
(lambda (x) (io:format "~p~n" `(,x)))
`(,(band a b)
,(bor a b)
,(bxor a b)
,(bnot a)
,(bsl a b)
,(bsr a b)))
'ok)

(defun dec->bin (x)
(integer_to_list x 2))

(defun describe (func arg1 arg2 result)
(io:format "(~s ~s ~s): ~s~n"
(list func (dec->bin arg1) (dec->bin arg2) (dec->bin result))))

(defun bitwise
((a b 'binary)
(describe "band" a b (band a b))
(describe "bor" a b (bor a b))
(describe "bxor" a b (bxor a b))
(describe "bnot" a b (bnot a))
(describe "bsl" a b (bsl a b))
(describe "bsr" a b (bsr a b))))
```

Example usage:

```> (bitwise 255 170)
170
255
85
-256
381627307539845370001346183518875822092557105621893120
0
ok
> (bitwise 255 170 'binary)
(band 11111111 10101010): 10101010
(bor 11111111 10101010): 11111111
(bxor 11111111 10101010): 1010101
(bnot 11111111): -100000000
(bsl 11111111 10101010): 1111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
(bsr 11111111 10101010): 0
ok
>
```

## Liberty BASIC

Written as functions.

```'   bitwise operations on byte-sized variables

v =int( 256 *rnd( 1))

s = 1

print "Shift            ="; s; " place."
print
print "Number as dec. = "; v; " & as 8-bits byte = ", dec2Bin\$( v)
print "NOT  as dec.          =  "; bitInvert(   v),    dec2Bin\$( bitInvert(   v))
print "Shifted left  as dec. =  "; shiftLeft(   v, s), dec2Bin\$( shiftLeft(   v, s))
print "Shifted right as dec. =  "; shiftRight(  v, s), dec2Bin\$( shiftRight(  v, s))
print "Rotated left  as dec. =  "; rotateLeft(  v, s), dec2Bin\$( rotateLeft(  v, s))
print "Rotated right as dec. =  "; rotateRight( v, s), dec2Bin\$( rotateRight( v, s))

end

function shiftLeft( b, n)
shiftLeft =( b *2^n) and 255
end function

function shiftRight( b, n)
shiftRight =int(b /2^n)
end function

function rotateLeft( b, n)
rotateLeft = (( 2^n *b) mod 256) or ( b >127)
end function

function rotateRight( b, n)
rotateRight = (128*( b and 1)) or int( b /2)
end function

function bitInvert( b)
bitInvert =b xor 255
end function

function dec2Bin\$( num) '   Given an integer decimal 0 <--> 255, returns binary equivalent as a string
n =num
dec2Bin\$ =""
while ( num >0)
dec2Bin\$    =str\$( num mod 2) +dec2Bin\$
num         =int(  num /2)
wend
dec2Bin\$ =right\$( "00000000" +dec2Bin\$, 8)
end function```

## Lingo

Lingo has built-in functions for bitwise AND, OR, XOR and NOT:

```put bitAND(2,7)
put bitOR(2,7)
put bitXOR(2,7)
put bitNOT(7)```

Bit shifting and rotating has to be implemented by custom functions.

## LiveCode

```put "and:" && (255 bitand 2) & comma into bitops
put " or:" && (255 bitor 2) & comma after bitops
put " xor:" && (255 bitxor 2) & comma after bitops
put " not:" && (bitnot 255) after bitops
put bitops

-- Ouput
and: 2, or: 255, xor: 253, not: 4294967040```

LiveCode does not provide built-in bit-shift operations.

## LLVM

```; ModuleID = 'test.o'
;e means little endian
;p: { pointer size : pointer abi : preferred alignment for pointers }
;i same for integers
;v is for vectors
;f for floats
;a for aggregate types
;s for stack objects
;n: {size:size:size...}, best integer sizes
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"
;this was compiled with mingw32; thus it must be linked to an ABI compatible c library
target triple = "i386-mingw32"

@.str = private constant [13 x i8] c"a and b: %d\0A\00", align 1 ; <[13 x i8]*> [#uses=1]
@.str1 = private constant [12 x i8] c"a or b: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str2 = private constant [13 x i8] c"a xor b: %d\0A\00", align 1 ; <[13 x i8]*> [#uses=1]
@.str3 = private constant [11 x i8] c"not a: %d\0A\00", align 1 ; <[11 x i8]*> [#uses=1]
@.str4 = private constant [12 x i8] c"a << n: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str5 = private constant [12 x i8] c"a >> n: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str6 = private constant [12 x i8] c"c >> b: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]

;A function that will do many bitwise opreations to two integer arguments, %a and %b
define void @bitwise(i32 %a, i32 %b) nounwind {
;entry block
entry:
;Register to store (a & b)
%0 = and i32 %b, %a                             ; <i32> [#uses=1]
;print the results
%1 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([13 x i8]* @.str, i32 0, i32 0), i32 %0) nounwind ; <i32> [#uses=0]
;Register to store (a | b)
%2 = or i32 %b, %a                              ; <i32> [#uses=1]
;print the results
%3 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str1, i32 0, i32 0), i32 %2) nounwind ; <i32> [#uses=0]
;Register to store (a ^ b)
%4 = xor i32 %b, %a                             ; <i32> [#uses=1]
;print the results
%5 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([13 x i8]* @.str2, i32 0, i32 0), i32 %4) nounwind ; <i32> [#uses=0]
;Register to store (~a)
%not = xor i32 %a, -1                           ; <i32> [#uses=1]
;print the results
%6 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([11 x i8]* @.str3, i32 0, i32 0), i32 %not) nounwind ; <i32> [#uses=0]
;Register to store (a << b)
%7 = shl i32 %a, %b                             ; <i32> [#uses=1]
;print the results
%8 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str4, i32 0, i32 0), i32 %7) nounwind ; <i32> [#uses=0]
;Register to store (a >> b) (a is signed)
%9 = ashr i32 %a, %b                            ; <i32> [#uses=1]
;print the results
%10 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str5, i32 0, i32 0), i32 %9) nounwind ; <i32> [#uses=0]
;Register to store (c >> b), where c is unsiged (eg. logical right shift)
%11 = lshr i32 %a, %b                           ; <i32> [#uses=1]
;print the results
%12 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str6, i32 0, i32 0), i32 %11) nounwind ; <i32> [#uses=0]

;terminator instruction
ret void
}

;Declare external fuctions
declare i32 @printf(i8* nocapture, ...) nounwind
```

## Logo

Works with: UCB Logo
```to bitwise :a :b
(print [a and b:] BitAnd :a :b)
(print [a or b:] BitOr :a :b)
(print [a xor b:] BitXor :a :b)
(print [not a:] BitNot :a)
; shifts are to the left if positive, to the right if negative
(print [a lshift b:] LShift :a :b)
(print [a lshift -b:] LShift :a minus :b)
(print [-a ashift -b:] AShift minus :a minus :b)
end
bitwise 255 5```

The output of this program is:

```a and b: 5
a or b: 255
a xor b: 250
not a: -256
a lshift b: 8160
a lshift -b: 7
-a ashift -b: -8```

## LSE64

 This example is incorrect. Please fix the code and remove this message.Details: No reason given.
```over : 2 pick
2dup : over over

bitwise : \
" A=" ,t over ,h sp " B=" ,t dup ,h nl \
" A and B=" ,t 2dup & ,h nl \
" A  or B=" ,t 2dup | ,h nl \
" A xor B=" ,t over ^ ,h nl \
" not A="  ,t      ~ ,h nl

\ a \ 7 bitwise   # hex literals```

## Lua

LuaBitOp implements bitwise functionality for Lua:

```local bit = require"bit"

local vb = {
0, 1, -1, 2, -2, 0x12345678, 0x87654321,
0x33333333, 0x77777777, 0x55aa55aa, 0xaa55aa55,
0x7fffffff, 0x80000000, 0xffffffff
}

local function cksum(name, s, r)
local z = 0
for i=1,#s do z = (z + string.byte(s, i)*i) % 2147483629 end
if z ~= r then
error("bit."..name.." test failed (got "..z..", expected "..r..")", 0)
end
end

local function check_unop(name, r)
local f = bit[name]
local s = ""
if pcall(f) or pcall(f, "z") or pcall(f, true) then
error("bit."..name.." fails to detect argument errors", 0)
end
for _,x in ipairs(vb) do s = s..","..tostring(f(x)) end
cksum(name, s, r)
end

local function check_binop(name, r)
local f = bit[name]
local s = ""
if pcall(f) or pcall(f, "z") or pcall(f, true) then
error("bit."..name.." fails to detect argument errors", 0)
end
for _,x in ipairs(vb) do
for _,y in ipairs(vb) do s = s..","..tostring(f(x, y)) end
end
cksum(name, s, r)
end

local function check_binop_range(name, r, yb, ye)
local f = bit[name]
local s = ""
if pcall(f) or pcall(f, "z") or pcall(f, true) or pcall(f, 1, true) then
error("bit."..name.." fails to detect argument errors", 0)
end
for _,x in ipairs(vb) do
for y=yb,ye do s = s..","..tostring(f(x, y)) end
end
cksum(name, s, r)
end

local function check_shift(name, r)
check_binop_range(name, r, 0, 31)
end

-- Minimal sanity checks.
assert(0x7fffffff == 2147483647, "broken hex literals")
assert(0xffffffff == -1 or 0xffffffff == 2^32-1, "broken hex literals")
assert(tostring(-1) == "-1", "broken tostring()")
assert(tostring(0xffffffff) == "-1" or tostring(0xffffffff) == "4294967295", "broken tostring()")

-- Basic argument processing.
assert(bit.tobit(1) == 1)
assert(bit.band(1) == 1)
assert(bit.bxor(1,2) == 3)
assert(bit.bor(1,2,4,8,16,32,64,128) == 255)
```

The RiscLua dialect, for RISC OS, has 32-bit integers as the default number type. It provides binary operations & (and), | (or), ^^ (xor), << (logical shift left), >> (logical shift right) and a unary operation ~ (negate).

### Lua 5.3+

As of Lua 5.3 most of the required operations are built-in, and those still missing could be derived from them:

```a = 0xAA55AA55
b = 0x4
print(string.format("%8X and %8X = %16X", a, b, a&b))
print(string.format("%8X or  %8X = %16X", a, b, a|b))
print(string.format("%8X xor %8X = %16X", a, b, a~b))
print(string.format("%8s not %8X = %16X", "", a, ~a))
print(string.format("%8X shl %8X = %16X", a, b, a<<b))
print(string.format("%8X shr %8X = %16X", a, b, a>>b))
-- not built-in, 32-bit substitutes provided:
local function sar(x,n) return (x>>n) | (x&0x80000000==0 and 0 or (0xffffffff<<(32-n))&0xffffffff) end
local function rol(x,n) return ((x<<n)&0xffffffff) | (x>>(32-n)) end
local function ror(x,n) return (x>>n) | ((x<<(32-n))&0xffffffff) end
print(string.format("%8X sar %8X = %16X", a, b, sar(a,b)))
print(string.format("%8X rol %8X = %16X", a, b, rol(a,b)))
print(string.format("%8X ror %8X = %16X", a, b, ror(a,b)))
```
Output:
```AA55AA55 and        4 =                4
AA55AA55 or         4 =         AA55AA55
AA55AA55 xor        4 =         AA55AA51
not AA55AA55 = FFFFFFFF55AA55AA
AA55AA55 shl        4 =        AA55AA550
AA55AA55 shr        4 =          AA55AA5
AA55AA55 sar        4 =         FAA55AA5
AA55AA55 rol        4 =         A55AA55A
AA55AA55 ror        4 =         5AA55AA5```

## Maple

```with(Bits):
bit:=proc(A,B)
local a,b,c,d,e,f,g,h,i,x,bitpow;
bitpow := 2^B:
a:=And(A,B);
b:=Not(A);
c:=Or(A,B);
d:=Xor(A,B);
#Left Shift
e:= irem(2*A,bitpow);
#Right Shift
f := iquo(A,2);
#Left Rotate
g:= irem(2*A,bitpow,'x')+x;
#Rightarithshift
i:= iquo(A,2)+bitpow/2*irem(A,bitpow/2);
return a,b,c,d,e,f,g,i;
end proc;```

## Mathematica/ Wolfram Language

Most functions are built-in or can be made really easily:

```(*and xor and or*)
BitAnd[integer1, integer2]
BitXor[integer1, integer2]
BitOr[integer1, integer2]

(*logical not*)
BitNot[integer1]

(*left and right shift*)
BitShiftLeft[integer1]
BitShiftRight[integer1]

(*rotate digits left and right*)
FromDigits[RotateLeft[IntegerDigits[integer1, 2]], 2]
FromDigits[RotateRight[IntegerDigits[integer1, 2]], 2]

(*right arithmetic shift*)
FromDigits[Prepend[Most[#], #[]], 2] &[IntegerDigits[integer1, 2]]
```

The function BitShiftLeft, BitShiftRight, RotateRight, RotateLeft all take a second argument, which is the displacement, by default it is set to 1. BitAnd, BitXor and BitOr can handle more than 2 arguments:

```BitXor[3333, 5555, 7777, 9999]
```

gives back:

```8664
```

## MATLAB / Octave

Newer versions of MATLAB have even more bitwise operations than those demonstrated here. A complete list of bitwise operations for the newest version of MATLAB can be found at MathWorks

```function bitwiseOps(a,b)

disp(sprintf('%d and %d = %d', [a b bitand(a,b)]));
disp(sprintf('%d or %d = %d', [a b bitor(a,b)]));
disp(sprintf('%d xor %d = %d', [a b bitxor(a,b)]));
disp(sprintf('%d << %d = %d', [a b bitshift(a,b)]));
disp(sprintf('%d >> %d = %d', [a b bitshift(a,-b)]));

end
```

Output:

```>> bitwiseOps(255,2)
255 and 2 = 2
255 or 2 = 255
255 xor 2 = 253
255 << 2 = 1020
255 >> 2 = 63
```

## Maxima

```load(functs)\$

a: 3661\$
b: 2541\$

logor(a, b);
/* 4077 */

logand(a, b);
/* 2125 */

logxor(a, b);
/* 1952 */

/* NOT(x) is simply -x - 1
-a - 1;
/* -3662 */

logor(a, -a - 1);
/* -1 */

logand(a, -a - 1);
/* 0 */
```

## MAXScript

```fn bitwise a b =
(
format "a and b: %\n" (bit.and a b)
format "a or b: %\n" (bit.or a b)
format "a xor b: %\n" (bit.xor a b)
format "not a: %\n" (bit.not a)
format "Left shift a: %\n" (bit.shift a b)
format "Right shift a: %\n" (bit.shift a -b)
)

bitwise 255 170```

MAXScript doesn't have arithmetic shift or rotate operations.

## ML/I

ML/I only supports bitwise AND and OR operations. These are available from version CKD onwards.

```MCSKIP "WITH" NL
"" Bitwise operations
"" assumes macros on input stream 1, terminal on stream 2
MCSKIP MT,<>
MCINS %.
MCDEF SL SPACES NL AS <MCSET T1=%A1.
MCSET T2=%A2.
a and b = %%T1.&%T2..
a or b  = %%T1.|%T2..
The other operators are not supported.
MCSET S10=0
>
MCSKIP SL WITH *
MCSET S1=1
*MCSET S10=2```

## Modula-3

```MODULE Bitwise EXPORTS Main;

IMPORT IO, Fmt, Word;

VAR c: Word.T;

PROCEDURE Bitwise(a, b: INTEGER) =
BEGIN
IO.Put("a AND b: " & Fmt.Int(Word.And(a, b)) & "\n");
IO.Put("a OR b: " & Fmt.Int(Word.Or(a, b)) & "\n");
IO.Put("a XOR b: " & Fmt.Int(Word.Xor(a, b)) & "\n");
IO.Put("NOT a: " & Fmt.Int(Word.Not(a)) & "\n");
c := a;
IO.Put("c LeftShift b: " & Fmt.Unsigned(Word.LeftShift(c, b)) & "\n");
IO.Put("c RightShift b: " & Fmt.Unsigned(Word.RightShift(c, b)) & "\n");
IO.Put("c LeftRotate b: " & Fmt.Unsigned(Word.LeftRotate(c, b)) & "\n");
IO.Put("c RightRotate b: " & Fmt.Unsigned(Word.RightRotate(c, b)) & "\n");
END Bitwise;

BEGIN
Bitwise(255, 5);
END Bitwise.
```

Output:

```a AND b: 5
a OR b: 255
a XOR b: 250
NOT a: -256
c LeftShift b: 1fe0
c RightShift b: 7
c LeftRotate b: 1fe0
c RightRotate b: f8000007
```

## Neko

```/**
<doc>
<h2>bitwise operations</h2>
<p>Tectonics:
<br>  nekoc bitwise.neko
<br>  neko bitwise</p>
</doc>
*/

// Neko is a signed 31 bit integer VM, full 32 bit requires builtins

// Function to show bitwise operations on a,b
var bitwise = function(a, b) {
var ia = int32_new(a);
var ib = int32_new(b);

\$print("Neko 32 bit integer library\n");
\$print("a AND b: ", a, " ", b, " ", int32_and(ia, ib), "\n");
\$print("a OR b:  ", a, " ", b, " ", int32_or(ia, ib), "\n");
\$print("a XOR b: ", a, " ", b, " ", int32_xor(ia, ib), "\n");
\$print("ones complement a:   ", a, " ", int32_complement(ia), "\n");
\$print("a SHL b: ", a, " ", b, " ", int32_shl(ia, ib), "\n");
\$print("a SHR b: ", a, " ", b, " ", int32_shr(ia, ib), "\n");
\$print("a USHR b: ", a, " ", b, " ", int32_ushr(ia, ib), "\n");
\$print("a ROL b: is not directly supported in Neko Int32\n");
\$print("a ROR b: is not directly supported in Neko Int32\n");

\$print("\nNormal Neko 31 bit signed integers\n");
a = \$int(a);
b = \$int(b);
\$print("a AND b: ", a, " ", b, " ", a & b, "\n");
\$print("a OR  b: ", a, " ", b, " ", a | b, "\n");
\$print("a XOR b: ", a, " ", b, " ", a ^ b, "\n");
\$print("NOT a: is not directly supported in Neko syntax\n");
\$print("a SHL b: ", a, " ", b, " ", a << b, "\n");
\$print("a SHR b: ", a, " ", b, " ", a >> b, "\n");
\$print("a USHR b: ", a, " ", b, " ", a >>> b, "\n");
\$print("a ROL b: is not directly supported in Neko syntax\n");
\$print("a ROR b: is not directly supported in Neko syntax\n");
}

// Pass command line arguments to the demo function
// initially as float, to ensure no internal bit truncation
if a == null a = 0;
if b == null b = 0;

bitwise(a,b);
```
Output:
```prompt\$ nekoc bitwise.neko
prompt\$ neko bitwise 0x7fffffff 2
Neko 32 bit integer library
a AND b: 2147483647 2 2
a OR b:  2147483647 2 2147483647
a XOR b: 2147483647 2 2147483645
ones complement a:   2147483647 -2147483648
a SHL b: 2147483647 2 -4
a SHR b: 2147483647 2 536870911
a USHR b: 2147483647 2 536870911
a ROL b: is not directly supported in Neko Int32
a ROR b: is not directly supported in Neko Int32

Normal Neko 31 bit signed integers
a AND b: -1 2 2
a OR  b: -1 2 -1
a XOR b: -1 2 -3
NOT a: is not directly supported in Neko syntax
a SHL b: -1 2 -4
a SHR b: -1 2 -1
a USHR b: -1 2 1073741823
a ROL b: is not directly supported in Neko syntax
a ROR b: is not directly supported in Neko syntax```

## Nemerle

```def i = 255;
def j = 2;

WriteLine(\$"\$i and \$j is \$(i & j)");
WriteLine(\$"\$i or \$j is \$(i | j)");
WriteLine(\$"\$i xor \$j is \$(i ^ j)");
WriteLine(\$"not \$i is \$(~i)");
WriteLine(\$"\$i lshift \$j is \$(i << j)");
WriteLine(\$"\$i arshift \$j is \$(i >> j)");          // When the left operand of the >> operator is of a signed integral type,
// the operator performs an arithmetic shift right
WriteLine(\$"\$(i :> uint) rshift \$j is \$(c >> j)"); // When the left operand of the >> operator is of an unsigned integral type,
// the operator performs a logical shift right
// there are no rotation operators in Nemerle, but you could define your own w/ a macro if you really wanted it
```

## Nim

```proc bitwise(a, b) =
echo "a and b: " , a and b
echo "a or b: ", a or b
echo "a xor b: ", a xor b
echo "not a: ", not a
echo "a << b: ", a shl b
echo "a >> b: ", a shr b
```

## NSIS

All bitwise operations in NSIS are handled by the IntOp instruction.

```Function Bitwise
Push \$0
Push \$1
Push \$2
StrCpy \$0 7
StrCpy \$1 2

IntOp \$2 \$0 & \$1
DetailPrint "Bitwise AND: \$0 & \$1 = \$2"
IntOp \$2 \$0 | \$1
DetailPrint "Bitwise OR: \$0 | \$1 = \$2"
IntOp \$2 \$0 ^ \$1
DetailPrint "Bitwise XOR: \$0 ^ \$1 = \$2"
IntOp \$2 \$0 ~
DetailPrint "Bitwise NOT (negate in NSIS docs): ~\$0 = \$2"
DetailPrint "There are no Arithmetic shifts in NSIS"
IntOp \$2 \$0 >> \$1
DetailPrint "Right Shift: \$0 >> 1 = \$2"
IntOp \$2 \$0 << \$1
DetailPrint "Left Shift: \$0 << \$1 = \$2"
DetailPrint "There are no Rotates in NSIS"

Pop \$2
Pop \$1
Pop \$0
FunctionEnd
```

## Oberon-2

Works with: oo2c version 2
```MODULE Bitwise;
IMPORT
SYSTEM,
Out;

PROCEDURE Do(a,b: LONGINT);
VAR
x,y: SET;
BEGIN
x := SYSTEM.VAL(SET,a);y := SYSTEM.VAL(SET,b);
Out.String("a and b :> ");Out.Int(SYSTEM.VAL(LONGINT,x * y),0);Out.Ln;
Out.String("a or b  :> ");Out.Int(SYSTEM.VAL(LONGINT,x + y),0);Out.Ln;
Out.String("a xor b :> ");Out.Int(SYSTEM.VAL(LONGINT,x / y),0);Out.Ln;
Out.String("a and ~b:> ");Out.Int(SYSTEM.VAL(LONGINT,x - y),0);Out.Ln;
Out.String("~a      :> ");Out.Int(SYSTEM.VAL(LONGINT,-x),0);Out.Ln;
Out.String("a left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,b)),0);Out.Ln;
Out.String("a right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,-b)),0);Out.Ln;
Out.String("a left rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,b)),0);Out.Ln;
Out.String("a right rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,-b)),0);Out.Ln;
Out.String("a arithmetic left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,b)),0);Out.Ln;
Out.String("a arithmetic right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,-b)),0);Out.Ln
END Do;

BEGIN
Do(10,2);
END Bitwise.
```
Output:
```a and b :> 2
a or b  :> 10
a xor b :> 8
a and ~b:> 8
~a      :> -11
a left shift b :> 40
a right shift b :> 2
a left rotate b :> 40
a right rotate b :> -2147483646
a arithmetic left shift b :> 40
a arithmetic right shift b :> 2
```

## Objeck

```use IO;

bundle Default {
class Test {
function : Main(args : String[]) ~ Nil {
BitWise(3, 4);
}

function : BitWise(a : Int, b : Int) ~ Nil {
Console->GetInstance()->Print("a and b: ")->PrintLine(a and b);
Console->GetInstance()->Print("a or b: ")->PrintLine(a or b);
Console->GetInstance()->Print("a xor b: ")->PrintLine(a xor b);
# shift left & right are supported by the compiler and VM but not
# exposed to end-users; those instructions are used for optimizations
}
}
}```

## OCaml

```let bitwise a b =
Printf.printf "a and b: %d\n" (a land b);
Printf.printf "a or b: %d\n" (a lor b);
Printf.printf "a xor b: %d\n" (a lxor b);
Printf.printf "not a: %d\n" (lnot a);
Printf.printf "a lsl b: %d\n" (a lsl b);  (* left shift *)
Printf.printf "a asr b: %d\n" (a asr b);  (* arithmetic right shift *)
Printf.printf "a lsr b: %d\n" (a lsr b);  (* logical right shift *)
;;
```

## Octave

There's no arithmetic shift nor rotation (and the not can be done through a xor)

```function bitops(a, b)
s = sprintf("%s %%s %s = %%s\n", dec2bin(a), dec2bin(b));
printf(s, "or", dec2bin(bitor(a, b)));
printf(s, "and", dec2bin(bitand(a, b)));
printf(s, "xor", dec2bin(bitxor(a, b)));
printf(s, "left shift", dec2bin(bitshift(a, abs(b))));
printf(s, "right shift", dec2bin(bitshift(a, -abs(b))));
printf("simul not %s = %s", dec2bin(a), dec2bin(bitxor(a, 0xffffffff)));
endfunction

bitops(0x1e, 0x3);
```

## Oforth

There is no built-in for not and rotation

```: bitwise(a, b)
a b bitAnd println
a b bitOr println
a b bitXor println
a bitLeft(b) println
a bitRight(b) println ;```

## ooRexx

```/* ooRexx *************************************************************
/ Bit Operations work as in Rexx (of course)
* Bit operations are performed up to the length of the shorter string.
* The rest of the longer string is copied to the result.
* ooRexx introduces the possibility to specify a padding character
* to be used for expanding the shorter string.
* 10.11.2012 Walter Pachl taken over from REXX and extended for ooRexx
**********************************************************************/
a=21
b=347
Say '          a :'c2b(a) '        'c2x(a)
Say '          b :'c2b(b)           c2x(b)
Say 'bitand(a,b) :'c2b(bitand(a,b)) c2x(bitand(a,b))
Say 'bitor(a,b)  :'c2b(bitor(a,b))  c2x(bitor(a,b))
Say 'bitxor(a,b) :'c2b(bitxor(a,b)) c2x(bitxor(a,b))
p='11111111'B
Say 'ooRexx only:'
Say 'a~bitor(b,p):'c2b(a~bitor(b,p)) c2x(a~bitor(b,p))
Exit
c2b: return x2b(c2x(arg(1)))
```

Output:

```          a :0011001000110001         3231
b :001100110011010000110111 333437
bitand(a,b) :001100100011000000110111 323037
bitor(a,b)  :001100110011010100110111 333537
bitxor(a,b) :000000010000010100110111 010537
ooRexx only:
a~bitor(b,p):001100110011010111111111 3335FF
```

## OpenEdge/Progress

The only bit operators available in OpenEdge are the GET-BITS() and PUT-BITS() functions. These functions can be used to implement all bitwise operators.

## PARI/GP

Pari does not support bitwise rotations, which have no obvious meaning with arbitrary-precision integers. See also `bitnegimply` for another bitwise operator. For shifts, see also `shiftmul`.

```bo(a,b)={
print("And: "bitand(a,b));
print("Or: "bitor(a,b));
print("Not: "bitneg(a));
print("Xor: "bitxor(a,b));
print("Left shift: ",a<<b);
print("Right shift: ",a>>b);
}```

## Pascal

While Standard Pascal does not have bitwise operations, most Pascal implementations (including Turbo Pascal and Delphi) extend the standard logical operators to also provide bitwise operations:

```var
a, b: integer;
begin
a := 10; { binary 1010 }
b := 12; { binary 1100 }
writeln('a and b = ', a and b); {  8 = 1000 }
writeln('a or b  = ', a or b);  { 14 = 1110 }
writeln('a xor b = ', a xor b)  {  6 = 0110 }
end.
```

## Perl

```use integer;

sub bitwise :prototype(\$\$) {
(\$a, \$b) = @_;
print 'a and b: '. (\$a & \$b) ."\n";
print 'a or b: '.  (\$a | \$b) ."\n";
print 'a xor b: '. (\$a ^ \$b) ."\n";
print 'not a: '.   (~\$a)     ."\n";
print 'a >> b: ', \$a >> \$b, "\n"; # logical right shift

use integer; # "use integer" enables bitwise operations to return signed ints
print "after use integer:\n";
print 'a << b: ', \$a << \$b, "\n"; # left shift
print 'a >> b: ', \$a >> \$b, "\n"; # arithmetic right shift
}
```

## Phix

Phix has four builtin bitwise operations (and/or/xor/not)_bits, which each have sequence and unsigned variants. Note careful use of latter (unsigned) routines here, since Phix naturally preserves signs (and common sense) when it can, rather than rudely treat, for instance, +4,294,967,295 as -1, unless explicitly told to do so as it is below. Likewise the builtin shift operators deliver signed and unbounded results, so we'll wrap them here. There are no builtin rotate routines, but easy enough to devise. The distributed copy (1.0.2+) also contains an (older) inline assembly version, which is obviously not JavaScript compatible, but may be significantly faster, for desktop-only applications.

```-- demo\rosetta\Bitwise_operations.exw
with javascript_semantics
enum SHL, SAR, SHR, ROL, ROR
function bitop(atom a, integer b, integer op)
atom res
if op=SHL then
-- Note: Phix doesn't quietly discard high bits...
res = and_bitsu(a << b,#FFFF_FFFF)
elsif op=SAR then
-- Note: Phix doesn't really do "unsigned numbers",
--       Should you want to treat 4G-1 as -1 then:
if a>#7FFF_FFFF then a -= #1_0000_0000 end if
res = and_bitsu(a >> b,#FFFF_FFFF)
elsif op=SHR then
res = and_bitsu(a >> b,#FFFF_FFFF)
elsif op=ROL then
return or_bitsu(a >> 32-b, and_bits(a << b,#FFFF_FFFF))
elsif op=ROR then
return or_bitsu(a >> b, and_bits(a << 32-b,#FFFF_FFFF))
else
?9/0
end if
return res
end function

procedure bitwise(atom a, atom b)
printf(1,"and_bits(%b,%b) = %032b\n",{a,b,and_bitsu(a,b)})
printf(1," or_bits(%b,%b) = %032b\n",{a,b, or_bitsu(a,b)})
printf(1,"xor_bits(%b,%b) = %032b\n",{a,b,xor_bitsu(a,b)})
printf(1,"not_bits(%b)     = %032b\n",{a,not_bitsu(a)})
printf(1,"     shl(%b,%b) = %032b\n",{a,b,bitop(a,b,SHL)})
printf(1,"     sar(%b,%b) = %032b\n",{a,b,bitop(a,b,SAR)})
printf(1,"     shr(%b,%b) = %032b\n",{a,b,bitop(a,b,SHR)})
printf(1,"     rol(%b,%b) = %032b\n",{a,b,bitop(a,b,ROL)})
printf(1,"     ror(%b,%b) = %032b\n",{a,b,bitop(a,b,ROR)})
end procedure

bitwise(0x800000FE,7)
```
Output:
```and_bits(10000000000000000000000011111110,111) = 00000000000000000000000000000110
or_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111111
xor_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111001
not_bits(10000000000000000000000011111110)     = 01111111111111111111111100000001
shl(10000000000000000000000011111110,111) = 00000000000000000111111100000000
sar(10000000000000000000000011111110,111) = 11111111000000000000000000000001
shr(10000000000000000000000011111110,111) = 00000001000000000000000000000001
rol(10000000000000000000000011111110,111) = 00000000000000000111111101000000
ror(10000000000000000000000011111110,111) = 11111101000000000000000000000001
```

## Phixmonti

```6 var a 3 var b

def tab
9 tochar print
enddef

def printBits
8 int>bit reverse print nl
enddef

a print " = " print tab a printBits
b print " = " print tab b printBits
tab "------------------------" print nl
"AND = " print tab a b bitand printBits
"OR =  " print tab a b bitor printBits
"XOR = " print tab a b bitxor printBits
"NOT = " print tab a bitnot printBits```

## PHP

```function bitwise(\$a, \$b)
{
function zerofill(\$a,\$b) {
if(\$a>=0) return \$a>>\$b;
if(\$b==0) return ((\$a>>1)&0x7fffffff)*2+((\$a>>\$b)&1); // this line shifts a 0 into the sign bit for compatibility, replace with "if(\$b==0) return \$a;" if you need \$b=0 to mean that nothing happens
return ((~\$a)>>\$b)^(0x7fffffff>>(\$b-1));

echo '\$a AND \$b: ' . \$a & \$b . '\n';
echo '\$a OR \$b: ' . \$a | \$b . '\n';
echo '\$a XOR \$b: ' . \$a ^ \$b . '\n';
echo 'NOT \$a: ' . ~\$a . '\n';
echo '\$a << \$b: ' . \$a << \$b . '\n'; // left shift
echo '\$a >> \$b: ' . \$a >> \$b . '\n'; // arithmetic right shift
echo 'zerofill(\$a, \$b): ' . zerofill(\$a, \$b) . '\n'; // logical right shift
}
```

## PicoLisp

PicoLisp has no specific word size. Numbers grow to arbitrary length. Therefore, bitwise NOT, logical (non-arithmetic) SHIFTs, and rotate operations do not make sense.

Bitwise AND:

```: (& 6 3)
-> 2

: (& 7 3 1)
-> 1```

Bitwise AND-Test (tests if all bits in the first argument are set in the following arguments):

```: (bit? 1 2)
-> NIL

: (bit? 6 3)
-> NIL

: (bit? 6 15 255)
-> 6```

Bitwise OR:

```: (| 1 2)
-> 3

: (| 1 2 4 8)
-> 15```

Bitwise XOR:

```: (x| 2 7)
-> 5

: (x| 2 7 1)
-> 4```

Shift (right with a positive count, left with a negative count):

```: (>> 1 8)
-> 4

: (>> 3 16)
-> 2

: (>> -3 16)
-> 128

: (>> -1 -16)
-> -32```

## Pike

Rotate operations are not available

```void bitwise(int a, int b)
{
write("a and b: %d\n", a & b);
write("a or b:  %d\n", a | b);
write("a xor b: %d\n", a ^ b);
write("not a:   %d\n", ~a);
write("a << b:  0x%x\n", a << b);
write("a >> b:  %d\n", a >> b);
// ints in Pike do not overflow, if a particular size of the int
// is desired then cap it with an AND operation
write("a << b & 0xffffffff (32bit cap):  0x%x\n",
a << b & 0xffffffff);
}

void main()
{
bitwise(255, 30);
}
```
Output:
```a and b: 30
a or b:  255
a xor b: 225
not a:   -256
a << b:  0x3fc0000000
a >> b:  0
a << b & 0xffffffff (32bit cap):  0xc0000000
```

## PL/I

```/* PL/I can perform bit operations on binary integers. */
k = iand(i,j);
k = ior(i,j);
k = inot(i,j);
k = ieor(i,j);
k = isll(i,n); /* unsigned shifts i left  by n places. */
k = isrl(i,n); /* unsigned shifts i right by n places. */
k = lower2(i, n); /* arithmetic right shift i by n places. */
k = raise2(i, n); /* arithmetic left  shift i by n places. */

/* PL/I can also perform boolean operations on bit strings */
/* of any length: */

declare (s, t, u) bit (*);

u = s & t; /* logical and  */
u = s | t; /* logical or   */
u = ^ s;   /* logical not  */
u = s ^ t; /* exclusive or */

/* Built-in rotate functions are not available. */
/* They can be readily implemented by the user, though: */

u = substr(s, length(s), 1) || substr(s, 1, length(s)-1); /* implements rotate right. */
u = substr(s, 2) || substr(s, 1, 1);                      /* implements rotate left.  */```

## Pop11

```define bitwise(a, b);
printf(a && b, 'a and b = %p\n');
printf(a || b, 'a or b = %p\n');
printf(a ||/& b, 'a xor b = %p\n');
printf(~~ a, 'not a = %p\n');
printf(a << b, 'left shift of a by b = %p\n');
printf(a >> b, 'arithmetic right shift of a by b = %p\n');
enddefine;```

Conceptually in Pop11 integers have infinite precision, in particular negative numbers conceptually have infinitely many leading 1's in two's complement notation. Hence, logical right shift is not defined. If needed, logical right shift can be simulated by masking high order bits.

Similarly, on infinitely precise numbers rotation is undefined.

## PowerShell

Logical right shift and rotations are not supported in PowerShell.

Works with: PowerShell version 2.0
```\$X -band \$Y
\$X -bor  \$Y
\$X -bxor \$Y
-bnot \$X
```
Works with: PowerShell version 3.0
```\$X -shl \$Y
# Arithmetic right shift
\$X -shr \$Y

# Requires quite a stretch of the imagination to call this "native" support of right rotate, but it works
[System.Security.Cryptography.SHA256Managed].GetMethod('RotateRight', 'NonPublic, Static', \$null, @([UInt32], [Int32]), \$null).Invoke(\$null, @([uint32]\$X, \$Y))
```

## PureBasic

```Procedure Bitwise(a, b)
Debug  a & b      ; And
Debug a | b       ;Or
Debug a ! b       ; XOr
Debug ~a          ;Not
Debug a << b      ; shift left
Debug a >> b      ; arithmetic shift right
; Logical shift right and rotates are not available
; You can of use inline ASM to achieve this:
Define Temp
; logical shift right
!mov edx, dword [p.v_a]
!mov ecx, dword [p.v_b]
!shr edx, cl
!mov dword [p.v_Temp], edx
Debug Temp
; rotate left
!mov edx, dword [p.v_a]
!mov ecx, dword [p.v_b]
!rol edx, cl
!mov dword [p.v_Temp], edx
Debug Temp
; rotate right
!mov edx, dword [p.v_a]
!mov ecx, dword [p.v_b]
!ror edx, cl
!mov dword [p.v_Temp], edx
Debug Temp
EndProcedure
```

## Python

### Python 3

Python has variable length integers. Usually implementations require fixed-width integers. This we get by &-ing values with a mask of all ones of sufficient length. Below we use a combination of a mask and zero-extended fixed-width binary output formatting in calculations and result displays.

```def bitwise_built_ins(width, a, b):
mask = (1 << width) - 1
print(f"""\
AND:     0b{a :0{width}b}
& 0b{b :0{width}b}
= 0b{(a & b) & mask :0{width}b}

OR:      0b{a :0{width}b}
| 0b{b :0{width}b}
= 0b{(a | b) & mask :0{width}b}

XOR:     0b{a :0{width}b}
^ 0b{b :0{width}b}
= 0b{(a ^ b) & mask :0{width}b}

NOT:   ~ 0b{a :0{width}b}

SHIFTS

RIGHT:   0b{a :0{width}b} >> 1
= 0b{(a >> 1) & mask :0{width}b}

LEFT:    0b{a :0{width}b} << 1
= 0b{(a << 1) & mask :0{width}b}
""")

def rotr(width, a, n):
"Rotate a, n times to the right"
if n < 0:
return rotl(width, a, -n)
elif n == 0:
return a
else:
mask = (1 << width) - 1
a, n = a & mask, n % width
return ((a >> n)    # top moved down
| ((a & ((1 << n) - 1))   # Bottom masked...
<< (width - n)))  # ... then moved up

def rotl(width, a, n):
"Rotate a, n times to the left"
if n < 0:
return rotr(width, a, -n)
elif n == 0:
return a
else:
mask = (1 << width) - 1
a, n = a & mask, n % width
return (((a << n) & mask)      # bottom shifted up and masked
| (a >> (width - n)))  # Top moved down

def asr(width, a, n):
"Arithmetic shift a, n times to the right. (sign preserving)."
mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)
if n < 0:
return  (a << -n) & mask
elif n == 0:
return a
elif n >= width:
else:
if a & top_bit_mask:    # Sign bit set?
signs = (1 << n) - 1
return a >> n | (signs << width - n)
else:
return a >> n

def helper_funcs(width, a):
mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)
aa = a | top_bit_mask  # a with top bit set
print(f"""\
ROTATIONS

RIGHT:   rotr({width}, 0b{a :0{width}b}, 1)
=       0b{rotr(width, a, 1) :0{width}b}
rotr({width}, 0b{a :0{width}b}, 2)
=       0b{rotr(width, a, 2) :0{width}b}
rotr({width}, 0b{a :0{width}b}, 4)
=       0b{rotr(width, a, 4) :0{width}b}

LEFT:    rotl({width}, 0b{a :0{width}b}, 1)
=       0b{rotl(width, a, 1) :0{width}b}
rotl({width}, 0b{a :0{width}b}, 2)
=       0b{rotl(width, a, 2) :0{width}b}
rotl({width}, 0b{a :0{width}b}, 4)
=       0b{rotl(width, a, 4) :0{width}b}

SIGN-EXTENDING ARITHMETIC SHIFT RIGHT

asr({width}, 0b{a :0{width}b}, 1)
=      0b{asr(width, a, 1) :0{width}b}
asr({width}, 0b{aa :0{width}b}, 1)
=      0b{asr(width, aa, 1) :0{width}b}
asr({width}, 0b{a :0{width}b}, 2)
=      0b{asr(width, a, 2) :0{width}b}
asr({width}, 0b{aa :0{width}b}, 2)
=      0b{asr(width, aa, 2) :0{width}b}
asr({width}, 0b{a :0{width}b}, 4)
=      0b{asr(width, a, 4) :0{width}b}
asr({width}, 0b{aa :0{width}b}, 4)
=      0b{asr(width, aa, 4) :0{width}b}
""")

if __name__ == '__main__':
bitwise_built_ins(8, 27, 125)
helper_funcs(8, 27)
```
Output:
```    AND:     0b00011011
& 0b01111101
= 0b00011001

OR:      0b00011011
| 0b01111101
= 0b01111111

XOR:     0b00011011
^ 0b01111101
= 0b01100110

NOT:   ~ 0b00011011
= 0b11100100

SHIFTS

RIGHT:   0b00011011 >> 1
= 0b00001101

LEFT:    0b00011011 << 1
= 0b00110110

ROTATIONS

RIGHT:   rotr(8, 0b00011011, 1)
=       0b10001101
rotr(8, 0b00011011, 2)
=       0b11000110
rotr(8, 0b00011011, 4)
=       0b10110001

LEFT:    rotl(8, 0b00011011, 1)
=       0b00110110
rotl(8, 0b00011011, 2)
=       0b01101100
rotl(8, 0b00011011, 4)
=       0b10110001

SIGN-EXTENDING ARITHMETIC SHIFT RIGHT

asr(8, 0b00011011, 1)
=      0b00001101
asr(8, 0b10011011, 1)
=      0b11001101
asr(8, 0b00011011, 2)
=      0b00000110
asr(8, 0b10011011, 2)
=      0b11100110
asr(8, 0b00011011, 4)
=      0b00000001
asr(8, 0b10011011, 4)
=      0b11111001 ```

### Python 2

```def bitwise(a, b):
print 'a and b:', a & b
print 'a or b:', a | b
print 'a xor b:', a ^ b
print 'not a:', ~a
print 'a << b:', a << b # left shift
print 'a >> b:', a >> b # arithmetic right shift
```

Python does not have built in rotate or logical right shift operations.

Note: Newer Python versions (circa 2.4?) will automatically promote integers into "long integers" (arbitrary length, bounded by available memory). This can be noticed especially when using left shift operations. When using bitwise operations one usually wants to keep these bounded to specific sizes such as 8, 16, 32 or 64 bit widths. To do these we use the AND operator with specific values (bitmasks). For example:

```# 8-bit bounded shift:
x = x << n & 0xff
# ditto for 16 bit:
x = x << n & 0xffff
# ... and 32-bit:
x = x << n & 0xffffffff
# ... and 64-bit:
x = x << n & 0xffffffffffffffff
```

We can easily implement our own rotation functions. For left rotations this is down by ORing the left shifted and masked lower bits against the right shifted upper bits. For right rotations we perform the converse operations, ORing a set of right shifted lower bits against the appropriate number of left shifted upper bits.

```def bitstr(n, width=None):
"""return the binary representation of n as a string and
optionally zero-fill (pad) it to a given length
"""
result = list()
while n:
result.append(str(n%2))
n = int(n/2)
if (width is not None) and len(result) < width:
result.extend(['0'] * (width - len(result)))
result.reverse()
return ''.join(result)

int to coerce the size to a given length)
"""
if n >= 0:
return 2**n - 1
else:
return 0

def rol(n, rotations=1, width=8):
"""Return a given number of bitwise left rotations of an integer n,
for a given bit field width.
"""
rotations %= width
if rotations < 1:
return n
n &= mask(width) ## Should it be an error to truncate here?
return ((n << rotations) & mask(width)) | (n >> (width - rotations))

def ror(n, rotations=1, width=8):
"""Return a given number of bitwise right rotations of an integer n,
for a given bit field width.
"""
rotations %= width
if rotations < 1:
return n
return (n >> rotations) | ((n << (width - rotations)) & mask(width))
```

In this example we show a relatively straightforward function for converting integers into strings of bits, and another simple mask() function to create arbitrary lengths of bits against which we perform our masking operations. Also note that the implementation of these functions defaults to single bit rotations of 8-bit bytes. Additional arguments can be used to over-ride these defaults. Any case where the number of rotations modulo the width is zero represents a rotation of all bits back to their starting positions. This implementation should handle any integer number of rotations over bitfields of any valid (positive integer) length.

## QB64

```' no rotations and shift aritmetic are available in QB64
' Bitwise operator in Qbasic and QB64
'AND (operator) the bit is set when both bits are set.
'EQV (operator) the bit is set when both are set or both are not set.
'IMP (operator) the bit is set when both are set or both are unset or the second condition bit is set.
'OR (operator) the bit is set when either bit is set.
'NOT (operator) the bit is set when a bit is not set and not set when a bit is set.
'XOR (operator) the bit is set when just one of the bits are set.
Print "Qbasic and QB64 operators"
Print " Operator        1 vs 1   1 vs 0   0 vs 0"

Print "AND", 1 And 1, 1 And 0, 0 And 0
Print " OR", 1 Or 1, 1 Or 0, 0 Or 0
Print "XOR", 1 Xor 1, 1 Xor 0, 0 Xor 0
Print "EQV", 1 Eqv 1, 1 Eqv 0, 0 Eqv 0
Print "IMP", 1 Imp 1, 1 Imp 0, 0 Imp 0
Print "NOT", Not 1, Not 0, Not -1, Not -2

Print "QB64 operators"
Dim As _Byte a, b, c
a = 1: b = 1: c = 1
For i = 1 To 4
Print a, b, c
Print _SHL(a, i), _SHL(b, i * 2), _SHL(c, i * 3)
Next
a = 16: b = 32: c = 8
For i = 1 To 4
Print a, b, c
Print _SHR(a, i), _SHR(b, i * 2), _SHR(c, i * 3)
Next```

## Quackery

Integers in Quackery are bignums, so the bitwise left rotate word `rot64` rotates specifically the least significant 64 bits of an integer. There is no corresponding bitwise right rotate, but it is readily defined from `rot64`.

```  [ [] swap
64 times
[ 2 /mod
number\$ rot join swap ]
drop
echo\$ cr ]                                   is echobin (   n -->   )

[ 64 swap - rot64 ]                            is rrot64  (   n --> n )

[ say "first integer:   " over       echobin
say "second integer:  " dup        echobin
say "bitwise AND:     " 2dup &     echobin
say "bitwise OR:      " 2dup |     echobin
say "bitwise XOR:     " 2dup ^     echobin
say "bitwise NOT:     " over ~     echobin
say "bitwise LSHIFT:  " 2dup <<    echobin
say "bitwise RSHIFT:  " 2dup >>    echobin
say "bitwise LROTATE: " 2dup rot64 echobin
say "bitwise RROTATE: "     rrot64 echobin ] is task    ( n n -->   )

Output:
```first integer:   0000000000000000000000000000000000000000000011111111111111111111
second integer:  0000000000000000000000000000000000000000000000000000000000001111
bitwise AND:     0000000000000000000000000000000000000000000000000000000000001111
bitwise OR:      0000000000000000000000000000000000000000000011111111111111111111
bitwise XOR:     0000000000000000000000000000000000000000000011111111111111110000
bitwise NOT:     1111111111111111111111111111111111111111111100000000000000000000
bitwise LSHIFT:  0000000000000000000000000000011111111111111111111000000000000000
bitwise RSHIFT:  0000000000000000000000000000000000000000000000000000000000011111
bitwise LROTATE: 0000000000000000000000000000011111111111111111111000000000000000
bitwise RROTATE: 1111111111111110000000000000000000000000000000000000000000011111
```

## R

### Native functions in R 3.x

```# Since R 3.0.0, the base package provides bitwise operators, see ?bitwAnd

a <- 35
b <- 42
bitwAnd(a, b)
bitwOr(a, b)
bitwXor(a, b)
bitwNot(a)
bitwShiftL(a, 2)
bitwShiftR(a, 2)
```

### Using as.hexmode or as.octmode

```a <- as.hexmode(35)
b <- as.hexmode(42)
as.integer(a & b)      # 34
as.integer(a | b)      # 43
as.integer(xor(a, b))  # 9
```

### Using intToBits

The logical operators in R, namely &, | and !, are designed to work on logical vectors rather than bits. It is possible to convert from integer to logical vector and back to make these work as required, e.g.

```intToLogicalBits <- function(intx) as.logical(intToBits(intx))
logicalBitsToInt <- function(lb) as.integer(sum((2^(0:31))[lb]))
"%AND%" <- function(x, y)
{
logicalBitsToInt(intToLogicalBits(x) & intToLogicalBits(y))
}
"%OR%" <- function(x, y)
{
logicalBitsToInt(intToLogicalBits(x) | intToLogicalBits(y))
}

35 %AND% 42    # 34
35 %OR% 42     # 42
```

### Using bitops package

```library(bitops)
bitAnd(35, 42)          # 34
bitOr(35, 42)           # 43
bitXor(35, 42)          # 9
bitFlip(35, bitWidth=8) # 220
bitShiftL(35, 1)        # 70
bitShiftR(35, 1)        # 17
# Note that no bit rotation is provided in this package
```

## Racket

```#lang racket
(define a 255)
(define b 5)
(list (bitwise-and a b)
(bitwise-ior a b)
(bitwise-xor a b)
(bitwise-not a)
(arithmetic-shift a b)      ; left shift
(arithmetic-shift a (- b))) ; right shift
```

Output:

```'(5 255 250 -256 8160 7)
```

## Raku

(formerly Perl 6)

Works with: Rakudo version 2017.05
```constant MAXINT = uint.Range.max;
constant BITS = MAXINT.base(2).chars;

# define rotate ops for the fun of it
multi sub infix:<⥁>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).list.rotate(b).reverse] }
multi sub infix:<⥀>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).reverse.list.rotate(b)] }

sub int-bits (Int \$a, Int \$b) {
say '';
say_bit "\$a", \$a;
say '';
say_bit "2's complement \$a", +^\$a;
say_bit "\$a and \$b", \$a +& \$b;
say_bit "\$a or \$b",  \$a +| \$b;
say_bit "\$a xor \$b", \$a +^ \$b;
say_bit "\$a unsigned shift right \$b", (\$a +& MAXINT) +> \$b;
say_bit "\$a signed shift right \$b", \$a +> \$b;
say_bit "\$a rotate right \$b", \$a ⥁ \$b;
say_bit "\$a shift left \$b", \$a +< \$b;
say_bit "\$a rotate left \$b", \$a ⥀ \$b;
}

int-bits(7,2);
int-bits(-65432,31);

sub say_bit (\$message, \$value) {
printf("%30s: %{'0' ~ BITS}b\n", \$message, \$value +& MAXINT);
}
```
Output:
```                             7: 0000000000000000000000000000000000000000000000000000000000000111

2's complement 7: 1111111111111111111111111111111111111111111111111111111111111000
7 and 2: 0000000000000000000000000000000000000000000000000000000000000010
7 or 2: 0000000000000000000000000000000000000000000000000000000000000111
7 xor 2: 0000000000000000000000000000000000000000000000000000000000000101
7 unsigned shift right 2: 0000000000000000000000000000000000000000000000000000000000000001
7 signed shift right 2: 0000000000000000000000000000000000000000000000000000000000000001
7 rotate right 2: 1100000000000000000000000000000000000000000000000000000000000001
7 shift left 2: 0000000000000000000000000000000000000000000000000000000000011100
7 rotate left 2: 0000000000000000000000000000000000000000000000000000000000011100

-65432: 1111111111111111111111111111111111111111111111110000000001101000

2's complement -65432: 0000000000000000000000000000000000000000000000001111111110010111
-65432 and 31: 0000000000000000000000000000000000000000000000000000000000001000
-65432 or 31: 1111111111111111111111111111111111111111111111110000000001111111
-65432 xor 31: 1111111111111111111111111111111111111111111111110000000001110111
-65432 unsigned shift right 31: 0000000000000000000000000000000111111111111111111111111111111111
-65432 signed shift right 31: 1111111111111111111111111111111111111111111111111111111111111111
-65432 rotate right 31: 1111111111111110000000001101000111111111111111111111111111111111
-65432 shift left 31: 1111111111111111100000000011010000000000000000000000000000000000
-65432 rotate left 31: 1111111111111111100000000011010001111111111111111111111111111111```

## Red

```Red [Source: https://github.com/vazub/rosetta-red]

a: 10
b: 2

print [
pad "a =" 10 a newline
pad "b =" 10 b newline
pad "a AND b:" 10 a and b newline
pad "a OR b:" 10 a or b newline
pad "a XOR b:" 10 a xor b newline
pad "NOT a:" 10 complement a newline
pad "a >>> b:" 10 a >>> b newline
pad "a >> b:" 10 a >> b newline
pad "a << b:" 10 a << b newline
; there are no circular shift operators in Red
]
```
Output:
```a =        10
b =        2
a AND b:   2
a OR b:    10
a XOR b:   8
NOT a:     -11
a >>> b:   2
a >> b:    2
a << b:    40
```

## Retro

There is no predefined arithmetic shifts in Retro.

```: bitwise ( ab- )
cr
over     "a = %d\n" puts
dup      "b = %d\n" puts
2over and "a and b = %d\n" puts
2over or  "a or b = %d\n" puts
2over xor "a xor b = %d\n" puts
over not "not a = %d\n" puts
2over <<  "a << b = %d\n" puts
2over >>  "a >> b = %d\n" puts
2drop ;```

## REXX

``` ╔═══════════════════════════════════════════════════════════════════════════════════════╗
║ Since REXX stores numbers  (indeed, all values)  as characters, it makes no sense to  ║
║ "rotate"  a value,  since there aren't any boundaries for the value.    I.E.:  there  ║
║ isn't any 32─bit word  "container"  or  "cell"  (for instance)  to store an integer.  ║
║                                                                                       ║
║ Furthermore, since REXX numbers can be arbitrary precision,  the concept of rotating  ║
║ a number has no meaning.                                                              ║
╚═══════════════════════════════════════════════════════════════════════════════════════╝
```
```/*REXX program performs  bit─wise operations  on integers:   &   |   &&   ¬   «L   »R   */
numeric digits 1000                              /*be able to handle ginormous integers.*/
say  center('decimal', 9)      center("value", 9)        center('bits', 50)
say  copies('─'      , 9)      copies("─"    , 9)        copies('─',    50)
a = 21 ;   call show           a          ,      'A'                   /* display   A   */
b =  3 ;   call show              b       ,      'B'                   /* display   B   */
call show      bAnd(a, b)      ,      'A & B'               /*  and          */
call show       bOr(a, b)      ,      'A | B'               /*   or          */
call show      bXor(a, b)      ,      'A && B'              /*  xor          */
call show      bNot(a)         ,      '¬ A'                 /*  not          */
call show   bShiftL(a, b)      ,      'A [«B]'              /* shift  left   */
call show   bShiftR(a, b)      ,      'A [»B]'              /* shirt right   */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show:    say  right( arg(1), 9)  center( arg(2), 9)  right( d2b( arg(1) ), 50);     return
d2b:     return x2b( d2x( arg(1) ) ) + 0         /*some REXXes have the   D2B   BIF.    */
b2d:     return x2d( b2x( arg(1) ) )             /*  "     "     "   "    B2D    "      */
bNot:    return b2d( translate( d2b( arg(1) ), 10, 01) )     +0   /*+0 ≡ normalizes a #.*/
bShiftL: return b2d( d2b( arg(1) ) || copies(0, arg(2) ) )   +0   /* " "      "     " " */
bAnd:    return c2d( bitand( d2c( arg(1) ), d2c( arg(2) ) ) )
bOr:     return c2d(  bitor( d2c( arg(1) ), d2c( arg(2) ) ) )
bXor:    return c2d( bitxor( d2c( arg(1) ), d2c( arg(2) ) ) )
bShiftR: \$=substr(reverse(d2b(arg(1))),arg(2)+1); if \$='' then \$=0; return b2d(reverse(\$))
```
output:
``` decimal    value                          bits
───────── ───────── ──────────────────────────────────────────────────
21     A                                                  10101
3     B                                                     11
1   A & B                                                    1
23   A | B                                                10111
22  A && B                                                10110
10    ¬ A                                                  1010
168  A [«B]                                             10101000
2  A [»B]                                                   10
```

## Ring

```x = 8
y = 2

see "x & y - Binary AND : " + (x & y) + nl
see "x | y - Binary OR : " + (x | y) + nl
see "x ^ y - Binary XOR : " + (x ^ y) +nl
see "~x - Binary Ones Complement : " + (~x) + nl
see "x << y - Binary Left Shift : " + (x << y) + nl
see "x >> y - Binary Right Shift : " + (x >> y) + nl```

## RLaB

In RLaB the bitwise operations are available for integers type of numbers. For the operations below if both arguments are integers then the result of the operation is an integer as well.

```>> x = int(3);
>> y = int(1);
>> z = x && y; printf("0x%08x\n",z); // logical 'and'
0x00000001
>> z = x || y; printf("0x%08x\n",z); // logical 'or'
0x00000003
>> z = !x; printf("0x%08x\n",z);     // logical 'not'
0xfffffffc
>> i2 = int(2);
>> z = x * i2; printf("0x%08x\n",z);  // left-shift is multiplication by 2 where both arguments are integers
0x00000006
>> z = x / i2; printf("0x%08x\n",z);  // right-shift is division by 2 where both arguments are integers
0x00000001```

## Robotic

```input string "First value"
set "local1" to "input"
input string "Second value"
set "local2" to "input"

. ">>> is an arithmetic shift; >> is a logical shift"
[ "a AND b = ('local1' a 'local2')"
[ "a OR b = ('local1' o 'local2')"
[ "a XOR b = ('local1' x 'local2')"
[ "NOT a = (~'local1')"
[ "a << b = ('local1' << 'local2')"
[ "a >> b = ('local1' >> 'local2')"
[ "a >>> b = ('local1' >>> 'local2')"
end
. "Bitwise rotation is not natively supported"```

## RPL

```≪ { AND OR XOR NOT SL SR ASR RL RR } → a b ops
≪ {} 1 ops SIZE FOR j
a →STR " " + IF j 3 ≤ THEN b →STR + " " + END
ops j GET →STR 2 OVER SIZE 1 - SUB + " -> " +
a j 3 ≤ b IFT ops j GET EVAL →STR + +
NEXT
≫ ≫ ‘BITOPS’ STO
```
Output:
```{ "# 355h # 113h AND -> # 111h"
"# 355h # 113h OR -> # 357h"
"# 355h # 113h XOR -> # 246h"
"# 355h NOT -> # FCAAh"
"# 355h SL -> # 6AAh"
"# 355h SR -> # 1AAh"
"# 355h ASR -> # 1AAh"
"# 355h RL -> # 6AAh"
"# 355h RR -> # 81AAh" }
```

Operations made with a word size set at 16 bits.

## Ruby

```def bitwise(a, b)
form = "%1\$7s:%2\$6d  %2\$016b"
puts form % ["a", a]
puts form % ["b", b]
puts form % ["a and b", a & b]
puts form % ["a or b ", a | b]
puts form % ["a xor b", a ^ b]
puts form % ["not a  ", ~a]
puts form % ["a << b ", a << b]  # left shift
puts form % ["a >> b ", a >> b]  # arithmetic right shift
end

bitwise(14,3)
```
Output:
```      a:    14  0000000000001110
b:     3  0000000000000011
a and b:     2  0000000000000010
a or b :    15  0000000000001111
a xor b:    13  0000000000001101
not a  :   -15  ..11111111110001
a << b :   112  0000000001110000
a >> b :     1  0000000000000001
```

## Rust

```fn main() {
let a: u8 = 105;
let b: u8 = 91;
println!("a      = {:0>8b}", a);
println!("b      = {:0>8b}", b);
println!("a | b  = {:0>8b}", a | b);
println!("a & b  = {:0>8b}", a & b);
println!("a ^ b  = {:0>8b}", a ^ b);
println!("!a     = {:0>8b}", !a);
println!("a << 3 = {:0>8b}", a << 3);
println!("a >> 3 = {:0>8b}", a >> 3);
}
```

Output:

```a      = 01101001
b      = 01011011
a | b  = 01111011
a & b  = 01001001
a ^ b  = 00110010
!a     = 10010110
a << 3 = 01001000
a >> 3 = 00001101
```

## SAS

```/* rotations are not available, but are easy to implement with the other bitwise operators */
data _null_;
a=105;
b=91;
c=bxor(a,b);
d=band(a,b);
e=bor(a,b);
f=bnot(a); /* on 32 bits */
g=blshift(a,1);
h=brshift(a,1);
put _all_;
run;
```

## Scala

```def bitwise(a: Int, b: Int) {
println("a and b: " + (a & b))
println("a or b: " + (a | b))
println("a xor b: " + (a ^ b))
println("not a: " + (~a))
println("a << b: " + (a << b)) // left shift
println("a >> b: " + (a >> b)) // arithmetic right shift
println("a >>> b: " + (a >>> b)) // unsigned right shift
println("a rot b: " + Integer.rotateLeft(a, b)) // Rotate Left
println("a rol b: " + Integer.rotateRight(a, b)) // Rotate Right
}
```

## Scheme

Works with: Scheme version R$^6$ RS
```(import (rnrs arithmetic bitwise (6)))

(define (bitwise a b)
(display (bitwise-and a b))
(newline)
(display (bitwise-ior a b))
(newline)
(display (bitwise-xor a b))
(newline)
(display (bitwise-not a))
(newline)
(display (bitwise-arithmetic-shift-right a b))
(newline))

(bitwise 255 5)
```

Output:

```5
255
250
-256
7
```

Note: bitwise operations were also described in SRFI-60, with additional aliases (and previously discussed in SRFI-33 which remained draft).

## Seed7

The type integer is intended for arithmetic operations. Besides arithmetic shifts, which are seen as multiplication and division by powers of two, no bitwise operations are supported. The type bin32 is intended for bit-pattern operations. Bin32 has the same internal representation as integer. That way conversions between them don't cause an overhead. Right shifting of bin32 values is done with logical shifts.

```\$ include "seed7_05.s7i";
include "bin32.s7i";

const proc: bitwise (in integer: a, in integer: b) is func
begin
writeln("integer operations:");
writeln("a << b:   " <& a << b  radix 2 lpad0 32); # left shift
writeln("a >> b:   " <& a >> b  radix 2 lpad0 32); # arithmetic right shift
end func;

const proc: bitwise (in bin32: a, in bin32: b) is func
begin
writeln("bin32 operations:");
writeln("a and b:  " <& a & b  radix 2 lpad0 32);
writeln("a or b:   " <& a | b  radix 2 lpad0 32);
writeln("a xor b:  " <& a >< b  radix 2 lpad0 32);
writeln("a << b:   " <& a << ord(b)  radix 2 lpad0 32);  # left shift
writeln("a >> b:   " <& a >> ord(b)  radix 2 lpad0 32);  # logical right shift
writeln("a rotL b: " <& rotLeft(a, ord(b))  radix 2 lpad0 32);  # Rotate Left
writeln("a rolR b: " <& rotRight(a, ord(b))  radix 2 lpad0 32); # Rotate Right
end func;

const proc: main is func
begin
bitwise(65076, 6);
bitwise(bin32(65076), bin32(6));
end func;```
Output:
```a:        00000000000000001111111000110100
b:        00000000000000000000000000000110
integer operations:
a << b:   00000000001111111000110100000000
a >> b:   00000000000000000000001111111000
bin32 operations:
a and b:  00000000000000000000000000000100
a or b:   00000000000000001111111000110110
a xor b:  00000000000000001111111000110010
not a:    11111111111111110000000111001011
a << b:   00000000001111111000110100000000
a >> b:   00000000000000000000001111111000
a rotL b: 00000000001111111000110100000000
a rolR b: 11010000000000000000001111111000
```

## Sidef

```func bitwise(a, b) {
say ('a and b : ',  a & b)
say ('a or b  : ',  a | b)
say ('a xor b : ',  a ^ b)
say ('not a   : ',     ~a)
say ('a << b  : ', a << b)  # left shift
say ('a >> b  : ', a >> b)  # arithmetic right shift
}

bitwise(14,3)
```
Output:
```a and b : 2
a or b  : 15
a xor b : 13
not a   : -15
a << b  : 112
a >> b  : 1
```

## Simula

```BEGIN
COMMENT TO MY KNOWLEDGE SIMULA DOES NOT SUPPORT BITWISE OPERATIONS SO WE MUST WRITE PROCEDURES FOR THE JOB ;
INTEGER WORDSIZE;
WORDSIZE := 32;
BEGIN

PROCEDURE TOBITS(N,B); INTEGER N; BOOLEAN ARRAY B;
BEGIN
INTEGER I,BITN;
FOR I := WORDSIZE-1 STEP -1 UNTIL 0 DO BEGIN
BITN := MOD(N,2); B(I) := BITN<>0; N := N // 2;
END;
END TOBITS;

INTEGER PROCEDURE FROMBITS(B); BOOLEAN ARRAY B;
BEGIN
INTEGER I, RESULT;
FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO
RESULT := 2 * RESULT + (IF B(I) THEN 1 ELSE 0);
FROMBITS := RESULT;
END FROMBITS;

INTEGER PROCEDURE BITOP(A,B,F);
INTEGER A,B;
PROCEDURE F IS BOOLEAN PROCEDURE F(A,B); BOOLEAN A,B;;
BEGIN
INTEGER I;
BOOLEAN ARRAY BA(0:WORDSIZE-1);
BOOLEAN ARRAY BB(0:WORDSIZE-1);
TOBITS(A,BA);
TOBITS(B,BB);
FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I),BB(I));
BITOP := FROMBITS(BA);
END BITOP;

INTEGER PROCEDURE BITUOP(A,F);
INTEGER A;
PROCEDURE F IS BOOLEAN PROCEDURE F(A); BOOLEAN A;;
BEGIN
INTEGER I;
BOOLEAN ARRAY BA(0:WORDSIZE-1);
TOBITS(A,BA);
FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I));
BITUOP := FROMBITS(BA);
END BITUOP;

BOOLEAN PROCEDURE OPAND(A,B); BOOLEAN A,B; OPAND := A AND B;
INTEGER PROCEDURE BITAND(A,B); INTEGER A,B; BITAND := BITOP(A,B,OPAND);

BOOLEAN PROCEDURE OPOR(A,B); BOOLEAN A,B; OPOR := A OR B;
INTEGER PROCEDURE BITOR(A,B); INTEGER A,B; BITOR := BITOP(A,B,OPOR);

BOOLEAN PROCEDURE OPXOR(A,B); BOOLEAN A,B; OPXOR := (A AND NOT B) OR (NOT A AND B);
INTEGER PROCEDURE BITXOR(A,B); INTEGER A,B; BITXOR := BITOP(A,B,OPXOR);

BOOLEAN PROCEDURE OPNOT(A); BOOLEAN A; OPNOT := NOT A;
INTEGER PROCEDURE BITNOT(A); INTEGER A; BITNOT := BITUOP(A,OPNOT);

INTEGER PROCEDURE BITSHL(A,B); INTEGER A,B;
BEGIN
IF B < 0 THEN A := BITSHR(A,-B)
ELSE WHILE B > 0 DO BEGIN A := 2 * A; B := B-1; END;
BITSHL := A;
END BITSHL;

INTEGER PROCEDURE BITSHR(A,B); INTEGER A,B;
BEGIN
IF B < 0 THEN A := BITSHL(A,-B)
ELSE WHILE B > 0 DO BEGIN A := A // 2; B := B-1; END;
BITSHR := A;
END BITSHR;

INTEGER PROCEDURE BITROTR(A,B); INTEGER A,B;
BEGIN
INTEGER I,J;
BOOLEAN ARRAY BA(0:WORDSIZE-1);
BOOLEAN ARRAY BB(0:WORDSIZE-1);
TOBITS(A,BA);
FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BEGIN
J := MOD(I + B, WORDSIZE); BB(J) := BA(I);
END;
BITROTR := FROMBITS(BB);
END BITROTR;

INTEGER PROCEDURE BITROTL(A,B); INTEGER A,B;
BITROTL := BITROTR(A,-B);

PROCEDURE BITWISE(A,B); INTEGER A,B;
BEGIN
OUTTEXT("A AND B   : "); OUTINT(BITAND(A,B),0); OUTIMAGE;
OUTTEXT("A OR B    : "); OUTINT(BITOR (A,B),0); OUTIMAGE;
OUTTEXT("A XOR B   : "); OUTINT(BITXOR(A,B),0); OUTIMAGE;
OUTTEXT("NOT A     : "); OUTINT(BITNOT(A),  0); OUTIMAGE;
OUTTEXT("A << B    : "); OUTINT(BITSHL(A,B),0); OUTIMAGE;  ! LEFT SHIFT ;
OUTTEXT("A >> B    : "); OUTINT(BITSHR(A,B),0); OUTIMAGE;  ! ARITHMETIC RIGHT SHIFT ;
OUTTEXT("A ROTL B  : "); OUTINT(BITROTL(A,B),0); OUTIMAGE;  ! ROTATE LEFT ;
OUTTEXT("A ROTR B  : "); OUTINT(BITROTR(A,B),0); OUTIMAGE;  ! ROTATE RIGHT ;
END BITWISE;

BITWISE(14,3);
END;
END```
Output:
```A AND B   : 2
A OR B    : 15
A XOR B   : 13
NOT A     : -15
A << B    : 112
A >> B    : 1
A ROTL B  : 112
A ROTR B  : -1073741823
```

## Slate

```[ |:a :b |

inform: (a bitAnd: b) printString.
inform: (a bitOr: b) printString.
inform: (a bitXor: b) printString.
inform: (a bitNot) printString.
inform: (a << b) printString.
inform: (a >> b) printString.

] applyTo: {8. 12}.```

Bold text

## Smalltalk

Works with: GNU Smalltalk
Works with: Smalltalk/X

Since GNU Smalltalk by default runs without a graphical user interface, I wrote the program in that dialect. The actual methods for bitwise operations (bitAnd:, etc.) are the same in all implementations.

```| testBitFunc |
testBitFunc := [ :a :b |
('%1 and %2 is %3' % { a. b. (a bitAnd: b) }) displayNl.
('%1 or %2 is %3' % { a. b. (a bitOr: b) }) displayNl.
('%1 xor %2 is %3' % { a. b. (a bitXor: b) }) displayNl.
('not %1 is %2' % { a. (a bitInvert) }) displayNl.
('%1 left shift %2 is %3' % { a. b. (a bitShift: b) }) displayNl.
('%1 right shift %2 is %3' % { a. b. (a bitShift: (b negated)) }) displayNl.
].
testBitFunc value: 16r7F value: 4 .
```

Works with: Smalltalk/X
```(a bitClear: b) "mask out bits"
(a bitAt: index) "retrieve a bit (bit-index, one-based)"
(a setBit: index) "set a bit (bit-index)"
(a clearBit: index) "clear a bit (bit-index)"
(a invertBit: index) "invert a bit (bit index)"
lowBit "find the index of the lowest one-bit; zero if none"
highBit "find the index of the highest one-bit; zero if none"
bitCount "count the one-bits"
```

Notice that all of those work on arbitrarily large integers (i.e. 1000 factorial lowBit -> 995).

## SparForte

As a structured script.

```#!/usr/local/bin/spar
pragma annotate( summary, "bitarith" )
@( description, "Write a routine to perform a bitwise AND, OR, and XOR on" )
@( description, "two integers, a bitwise NOT on the first integer, a left" )
@( description, "shift, right shift, right arithmetic shift, left rotate," )
@( description, "and right rotate. All shifts and rotates should be done on" )
@( description, "the first integer with a shift/rotate amount of the second" )
@( description, "integer." )
@( category, "tutorials" )
@( author, "Ken O. Burtch" )
@( see_also, "http://rosettacode.org/wiki/Bitwise_operations" );

pragma software_model( shell_script );
pragma restriction( no_external_commands );

procedure bitarith is
A : constant natural := 255;
B : constant natural := 170;
X : constant natural := 128;
N : constant natural := 1;
begin
put( "A and B = " ) @ (A and B); new_line;
put( "A or  B = " ) @ (A or  B); new_line;
put( "A xor B = " ) @ (A xor B); new_line;
new_line;
put( "A << B = " ) @ ( numerics.shift_left( X, N ) ); new_line;
put( "A >> B = " ) @ ( numerics.shift_right( X, N ) ); new_line;
put( "A >>> B = " ) @ ( numerics.shift_right_arithmetic( X, N ) ); new_line;
put( "A rotl B = " ) @ ( numerics.rotate_left( X, N ) ); new_line;
put( "A rotr B = " ) @ ( numerics.rotate_right( X, N ) ); new_line;
end bitarith;
```

## Standard ML

For integers, IntInfs provide bitwise operations:

```fun bitwise_ints (a, b) = (
print ("a and b: " ^ IntInf.toString (IntInf.andb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
print ("a or b: "  ^ IntInf.toString (IntInf.orb  (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
print ("a xor b: " ^ IntInf.toString (IntInf.xorb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
print ("not a: "   ^ IntInf.toString (IntInf.notb (IntInf.fromInt a                  )) ^ "\n");
print ("a lsl b: " ^ IntInf.toString (IntInf.<<   (IntInf.fromInt a, Word.fromInt b  )) ^ "\n");  (* left shift *)
print ("a asr b: " ^ IntInf.toString (IntInf.~>>  (IntInf.fromInt a, Word.fromInt b  )) ^ "\n")   (* arithmetic right shift *)
)
```

More shifts are available for words (unsigned ints):

```fun bitwise_words (a, b) = (
print ("a and b: " ^ Word.fmt StringCvt.DEC (Word.andb (a, b)) ^ "\n");
print ("a or b: "  ^ Word.fmt StringCvt.DEC (Word.orb  (a, b)) ^ "\n");
print ("a xor b: " ^ Word.fmt StringCvt.DEC (Word.xorb (a, b)) ^ "\n");
print ("not a: "   ^ Word.fmt StringCvt.DEC (Word.notb a     ) ^ "\n");
print ("a lsl b: " ^ Word.fmt StringCvt.DEC (Word.<< (a, b)  ) ^ "\n");  (* left shift *)
print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.~>> (a, b) ) ^ "\n");  (* arithmetic right shift *)
print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.>> (a, b)  ) ^ "\n")   (* logical right shift *)
)
```

## Stata

Stata does not have bitwise operators as of version 15.1. It's possible to use Mata functions inbase and frombase to convert integers to binary strings, and operate on these, but it will be much slower than native operators. William Matsuoka has written functions for this here.

## Swift

```func bitwise(a: Int, b: Int) {
// All bitwise operations (including shifts)
// require both operands to be the same type
println("a AND b: \(a & b)")
println("a OR b: \(a | b)")
println("a XOR b: \(a ^ b)")
println("NOT a: \(~a)")
println("a << b: \(a << b)") // left shift
// for right shifts, if the operands are unsigned, Swift performs
// a logical shift; if signed, an arithmetic shift.
println("a >> b: \(a >> b)") // arithmetic right shift
println("a lsr b: \(Int(bitPattern: UInt(bitPattern: a) >> UInt(bitPattern: b)))") // logical right shift
}

bitwise(-15,3)
```
Output:
```a AND b: 1
a OR b: -13
a XOR b: -14
NOT a: 14
a << b: -120
a >> b: -2
a lsr b: 2305843009213693950
```

## SystemVerilog

Verilog, being a hardware description language, had pretty comprehensive support for bit twiddling; though rotation is still a slightly manual operation. Just to be different, I decided to use a couple of 53-bit integers:

```program main;

initial begin
bit [52:0] a,b,c;
a = 53'h123476547890fe;
b = 53'h06453bdef23ca6;

c = a & b; \$display("%h & %h = %h", a,b,c);
c = a | b; \$display("%h | %h = %h", a,b,c);
c = a ^ b; \$display("%h ^ %h = %h", a,b,c);
c = ~ a;   \$display("~%h = %h", a, c);

c = a << 5; \$display("%h << 5 = %h", a, c);
c = a >> 5; \$display("%h >> 5 = %h", a, c);

c = { a[53-23:0], a[52-:23] }; \$display("%h rotate-left 23 = %h", a, c);
c = { a[1:0], a[52:2] }; \$display("%h rotate-right 2 = %h", a, c);
end

endprogram
```

If we want to do a variable bit rotation, then we need to think in hardware terms, and build a mux structure (this could be a function, but using a module allows it to be parameterized:

```module rotate(in, out, shift);

parameter BITS = 32;
parameter SHIFT_BITS = 5;

input  [BITS-1:0] in;
output [BITS-1:0] out;
input  [SHIFT_BITS-1:0] shift;

always_comb foreach (out[i]) out[i] = in[ (i+shift) % BITS ];

endmodule
```

of course, one could always write the foreach loop inline.

## Tailspin

Bytes values are infinitely extended to the left by sign extension when needed. The shift message can be used for all types of shifts, depending on the fill pattern which is infinitely repeated as needed to supply bits for vacated positions.

```def a: [x f075 x];
def b: [x 81 x];

(\$a and \$b) -> '\$a; and \$b; is \$;\$#10;' -> !OUT::write
(\$a or \$b) -> '\$a; or \$b; is \$;\$#10;' -> !OUT::write
(\$a xor \$b) -> '\$a; xor \$b; is \$;\$#10;' -> !OUT::write
\$a::inverse -> 'not \$a; is \$;\$#10;' -> !OUT::write
\$a::shift&{left: 3, fill: [x 00 x]} -> '\$a; shifted left 3 bits is \$;\$#10;' -> !OUT::write
\$a::shift&{left: -3, fill: [x 00 x]} -> '\$a; shifted right 3 bits is \$;\$#10;' -> !OUT::write
\$a::shift&{left: -3, fill: \$a(0)} -> '\$a; arithmetically shifted right 3 bits is \$;\$#10;' -> !OUT::write
\$a::shift&{left: 3, fill: \$a} -> '\$a; rotated left 3 bits is \$;\$#10;' -> !OUT::write
\$a::shift&{left: -3, fill: \$a} -> '\$a; rotated right 3 bits is \$;\$#10;' -> !OUT::write```
Output:
```f075 and 81 is f001
f075 or 81 is fff5
f075 xor 81 is 0ff4
not f075 is 0f8a
f075 shifted left 3 bits is 83a8
f075 shifted right 3 bits is 1e0e
f075 arithmetically shifted right 3 bits is fe0e
f075 rotated left 3 bits is 83af
f075 rotated right 3 bits is be0e
```

## Tcl

```proc bitwise {a b} {
puts [format "a and b: %#08x" [expr {\$a & \$b}]]
puts [format "a or b: %#08x"  [expr {\$a | \$b}]]
puts [format "a xor b: %#08x" [expr {\$a ^ \$b}]]
puts [format "not a: %#08x"   [expr {~\$a}]]
puts [format "a << b: %#08x"  [expr {\$a << \$b}]]
puts [format "a >> b: %#08x"  [expr {\$a >> \$b}]]
}
```

There are no built-in operations for arithmetic right shift or for bit rotation. Indeed, rotation precludes the use of arbitrary-width integers and can only be defined with respect to a particular width. However, we can simulate these operations for 32-bit values (requires Tcl 8.5):

```proc bitwiseUnsupported {a b} {
set bits 0xFFFFFFFF
# Force interpretation as a 32-bit unsigned value
puts [format "a ArithRightShift b: %#08x" [expr {(\$a & \$bits) >> \$b}]]
puts [format "a RotateRight b: %#08x" [expr {
((\$a >> \$b) & (\$bits >> \$b)) |
((\$a << (32-\$b)) & (\$bits ^ (\$bits >> \$b)))
}]]
puts [format "a RotateLeft b: %#08x" [expr {
((\$a << \$b) & \$bits & (\$bits << \$b)) |
((\$a >> (32-\$b)) & (\$bits ^ (\$bits << \$b)))
}]]
}
```

## TI-89 BASIC

While the TI-89 supports arbitrary-size integers, all bitwise arithmetic is performed on the rightmost 32 bits of the integers' two's complement representation.

The right shift operation fills the new leftmost bit with a copy of the old leftmost bit.

```bitwise(a,b)
Prgm
Local show, oldbase
Define show(label, x)=Prgm
Local r
setMode("Base","DEC")
string(x) → r
setMode("Base","HEX")
Disp label & r & " " & string(x)
EndPrgm
getMode("Base") → oldbase
show("", {a, b})
show("And ", a and b)
show("Or  ", a or b)
show("Xor ", a xor b)
show("Not ", not a)
Pause "[Press ENTER]"
show("LSh ", shift(a,b))
show("RSh ", shift(a,–b))
show("LRo ", rotate(a,b))
show("RRo ", rotate(a,–b))
setMode("Base",oldbase)
EndPrgm```

## Vala

```void testbit(int a, int b) {
print(@"input: a = \$a, b = \$b\n");
print(@"AND:  \$a  & \$b = \$(a & b)\n");
print(@"OR:   \$a  | \$b = \$(a | b)\n");
print(@"XOR:  \$a  ^ \$b = \$(a ^ b)\n");
print(@"LSH:  \$a << \$b = \$(a << b)\n");
print(@"RSH:  \$a >> \$b = \$(a >> b)\n");
print(@"NOT:  ~\$a = \$(~a)\n");
/* there are no rotation operators in vala, but you could define your own
function to do what is required. */
}

void main() {
int a = 255;
int b = 2;
testbit(a,b);
}
```
Output:
```input: a = 255, b = 2
AND:  255  & 2 = 2
OR:   255  | 2 = 255
XOR:  255  ^ 2 = 253
LSH:  255 << 2 = 1020
RSH:  255 >> 2 = 63
NOT:  ~255 = -256
```

## VBA

In VBA, the logical operators And, Or, Xor, Not are actually binary operators. There are also Eqv and Imp (for bitwise "equivalence" and "logical implication").

```Debug.Print Hex(&HF0F0 And &HFF00)  'F000
Debug.Print Hex(&HF0F0 Or &HFF00)   'FFF0
Debug.Print Hex(&HF0F0 Xor &HFF00)  'FF0
Debug.Print Hex(Not &HF0F0)         'F0F
Debug.Print Hex(&HF0F0 Eqv &HFF00)  'F00F
Debug.Print Hex(&HF0F0 Imp &HFF00)  'FF0F
```

The other operations in the task are not builtin, but are easy to implement. Integers are signed, and overflow throws and exception, one must take care of this.

```Function MaskL(k As Integer) As Long
If k < 1 Then
ElseIf k > 31 Then
Else
MaskL = (-1) Xor (2 ^ (32 - k) - 1)
End If
End Function
Function MaskR(k As Integer) As Long
If k < 1 Then
ElseIf k > 31 Then
Else
MaskR = 2 ^ k - 1
End If
End Function
Function Bit(k As Integer) As Long
If k < 0 Or k > 31 Then
Bit = 0
ElseIf k = 31 Then
Else
Bit = 2 ^ k
End If
End Function
Function ShiftL(n As Long, k As Integer) As Long
If k = 0 Then
ShiftL = n
ElseIf k > 31 Then
ShiftL = 0
ElseIf k < 0 Then
ShiftL = ShiftR(n, -k)
Else
ShiftL = (n And MaskR(31 - k)) * 2 ^ k
If (n And Bit(31 - k)) <> 0 Then ShiftL = ShiftL Or MaskL(1)
End If
End Function
Function ShiftR(n As Long, k As Integer) As Long
If k = 0 Then
ShiftR = n
ElseIf k > 31 Then
ShiftR = 0
ElseIf k < 0 Then
ShiftR = ShiftL(n, -k)
Else
ShiftR = (n And MaskR(31)) \ 2 ^ k
If (n And MaskL(1)) <> 0 Then ShiftR = ShiftR Or Bit(31 - k)
End If
End Function
Function RotateL(n As Long, k As Integer) As Long
k = (32768 + k) Mod 32
If k = 0 Then
RotateL = n
Else
RotateL = ShiftL(n, k) Or ShiftR(n, 32 - k)
End If
End Function
Function RotateR(n As Long, k As Integer) As Long
k = (32768 + k) Mod 32
If k = 0 Then
RotateR = n
Else
RotateR = ShiftR(n, k) Or ShiftL(n, 32 - k)
End If
End Function
Function ClearBit(n As Long, k As Integer) As Long
ClearBit = n And Not Bit(k)
End Function
Function SetBit(n As Long, k As Integer) As Long
SetBit = n Or Bit(k)
End Function
Function SwitchBit(n As Long, k As Integer) As Long
SwitchBit = n Xor Bit(k)
End Function
Function TestBit(n As Long, k As Integer) As Boolean
TestBit = (n And Bit(k)) <> 0
End Function
```

Examples

```Debug.Print Hex(MaskL(8))               'FF000000
Debug.Print Hex(Bit(7))                 '80
Debug.Print Hex(ShiftL(-1, 8))          'FFFFFF00
Debug.Print Hex(ShiftL(-1, -8))         'FFFFFF
Debug.Print Hex(ShiftR(-1, 8))          'FFFFFF
Debug.Print Hex(ShiftR(-1, -8))         'FFFFFF00
Debug.Print Hex(RotateL(65535, 8))      'FFFF00
Debug.Print Hex(RotateL(65535, -8))     'FF0000FF
Debug.Print Hex(RotateR(65535, 8))      'FF0000FF
Debug.Print Hex(RotateR(65535, -8))     'FFFF00
```

## Visual Basic

Works with: Visual Basic version VB6 Standard

identical syntax as in #VBA.

## Visual Basic .NET

```Sub Test(a as Integer, b as Integer)
WriteLine("And " & a And b)
WriteLine("Or " & a Or b)
WriteLine("Xor " & a Xor b)
WriteLine("Not " & Not a)
WriteLine("Left Shift " & a << 2)
WriteLine("Right Shift " & a >> 2)
End Sub
```

Visual Basic doesn't have built-in support for bitwise rotation.

## Wren

In Wren all numbers are represented in 64-bit floating point form.

Although the same bitwise operators are supported as in C, the operands are converted to unsigned 32-bit integers before the operation is performed and return values of this form.

Consequently, it is not usually a good idea to try and perform bitwise operations on integer values outside this range or on non-integral values.

Given this limitation, there is no difference between logical and arithmetic left and right shift operations. Although Wren doesn't support circular shift operators, it is not difficult to write functions to perform them.

```var rl = Fn.new { |x, y| x << y | x >> (32-y) }

var rr = Fn.new { |x, y| x >> y | x << (32-y) }

var bitwise = Fn.new { |x, y|
if (!x.isInteger || !y.isInteger || x < 0 || y < 0 || x > 0xffffffff || y > 0xffffffff) {
Fiber.abort("Operands must be in the range of a 32-bit unsigned integer")
}
System.print(" x      = %(x)")
System.print(" y      = %(y)")
System.print(" x & y  = %(x & y)")
System.print(" x | y  = %(x | y)")
System.print(" x ^ y  = %(x ^ y)")
System.print("~x      = %(~x)")
System.print(" x << y = %(x << y)")
System.print(" x >> y = %(x >> y)")
System.print(" x rl y = %(rl.call(x, y))")
System.print(" x rr y = %(rr.call(x, y))")
}

bitwise.call(10, 2)
```
Output:
``` x      = 10
y      = 2
x & y  = 2
x | y  = 10
x ^ y  = 8
~x      = 4294967285
x << y = 40
x >> y = 2
x rl y = 40
x rr y = 2147483650
```

## x86 Assembly

Works with: nasm

It must be linked with the libc and "start" code; lazyly a gcc bitops.o works, being bitops.o produced by nasm -f elf bitops.asm (I've chosen ELF since I am on a GNU/Linux box)

```	extern printf
global main

section .text
main
mov	eax, dword [_a]
mov	ecx, dword [_b]
push	ecx
push	eax

and 	eax, ecx
mov	ebx, _opand
call	out_ops

call	get_nums
or	eax, ecx
mov	ebx, _opor
call	out_ops

call	get_nums
xor     eax, ecx
mov	ebx, _opxor
call	out_ops

call	get_nums
shr	eax, cl
mov	ebx, _opshr
call	out_ops

call	get_nums
shl	eax, cl
mov	ebx, _opshl
call	out_ops

call	get_nums
rol	eax, cl
mov	ebx, _oprol
call	out_ops

call	get_nums
ror	eax, cl
mov	ebx, _opror
call	out_ops

call	get_nums
sal	eax, cl
mov	ebx, _opsal
call	out_ops

call	get_nums
sar	eax, cl
mov	ebx, _opsar
call	out_ops

mov	eax, dword [esp+0]
not	eax
push 	eax
not	eax
push	eax
push	_opnot
push	_null
push	_testn
call	printf

ret

out_ops
push	eax
push	ecx
push	ebx
push	dword [_a]
push	_test
call	printf
ret

get_nums
mov	eax, dword [esp+4]
mov	ecx, dword [esp+8]
ret

section .data

_a	dd	11
_b	dd	3

section .rodata
_test	db	'%08x %s %08x = %08x', 10, 0
_testn	db	'%08s %s %08x = %08x', 10, 0
_opand	db	'and', 0
_opor	db	'or ', 0
_opxor	db	'xor', 0
_opshl	db	'shl', 0
_opshr	db	'shr', 0
_opror	db	'ror', 0
_oprol	db	'rol', 0
_opnot	db	'not', 0
_opsal	db	'sal', 0
_opsar	db	'sar', 0
_null	db 	0

end
```

## XBasic

Works with: Windows XBasic
```PROGRAM "bitwise"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION ULONG Rotr(ULONG x, ULONG s)

FUNCTION Entry()
SLONG a, b
ULONG ua, ub
a = 21
b = 3
ua = a
ub = b
PRINT
PRINT "= Decimal ="
PRINT LTRIM\$(STR\$(a)); " AND"; b; ":"; a & b ' also: a AND b
PRINT LTRIM\$(STR\$(a)); " OR"; b; ":"; a | b ' also: a OR b
PRINT LTRIM\$(STR\$(a)); " XOR"; b; ":"; a ^ b' also: a XOR b
PRINT "NOT"; a; ":"; ~a ' also: NOT a
PRINT LTRIM\$(STR\$(a)); " <<<"; b; ":"; a <<< b ' arithmetic left shift
PRINT LTRIM\$(STR\$(a)); " >>>"; b; ":"; a >>> b ' arithmetic right shift
PRINT LTRIM\$(STR\$(ua)); " <<"; b; ":"; ua << b ' bitwise left shift
PRINT LTRIM\$(STR\$(ua)); " >>"; b; ":"; ua >> b ' bitwise right shift
PRINT LTRIM\$(STR\$(ua)); " rotr"; ub; ":"; Rotr(ua, ub)
PRINT
PRINT "= Binary ="
PRINT BIN\$(a); " AND "; BIN\$(b); ": "; BIN\$(a & b)
PRINT BIN\$(a); " OR "; BIN\$(b); ": "; BIN\$(a | b)
PRINT BIN\$(a); " XOR "; BIN\$(b); ": "; BIN\$(a ^ b)
PRINT "NOT "; BIN\$(a); ": "; BIN\$(~a)
PRINT BIN\$(a); " <<< "; BIN\$(b); ": "; BIN\$(a <<< b)
PRINT BIN\$(a); " >>> "; BIN\$(b); ": "; BIN\$(a >>> b)
PRINT BIN\$(ua); " << "; BIN\$(b); ": "; BIN\$(ua << b)
PRINT BIN\$(ua); " >> "; BIN\$(b); ": "; BIN\$(ua >> b)
PRINT BIN\$(ua); " Rotr "; BIN\$(ub); ": "; BIN\$(Rotr(ua, ub))
END FUNCTION

' Rotate x to the right by s bits
FUNCTION ULONG Rotr(ULONG x, ULONG s)
RETURN (x >> s) | (x << (SIZE(ULONG) * 8 - s))
END FUNCTION
END PROGRAM
```
Output:
```= Decimal =
21 AND 3: 1
21 OR 3: 23
21 XOR 3: 22
NOT 21:-22
21 <<< 3: 168
21 >>> 3: 2
21 << 3: 168
21 >> 3: 2
21 Rotr 3: 2684354562

= Binary =
10101 AND 11: 1
10101 OR 11: 10111
10101 XOR 11: 10110
NOT 10101: 11111111111111111111111111101010
10101 <<< 11: 10101000
10101 >>> 11: 10
10101 << 11: 10101000
10101 >> 11: 10
10101 Rotr 11: 10100000000000000000000000000010
```

## XLISP

```(defun bitwise-operations (a b)
; rotate operations are not supported
(print `(,a and ,b = ,(logand a b)))
(print `(,a or ,b = ,(logior a b)))
(print `(,a xor ,b = ,(logxor a b)))
(print `(,a left shift by ,b = ,(lsh a b)))
(print `(,a right shift by ,b = ,(lsh a (- b)))) ; negative second operand shifts right
(print `(,a arithmetic right shift by ,b = ,(ash a (- b)))) )
```

## XPL0

```Text(0, "A and B = ");  HexOut(0, A and B);  CrLf(0);   \alternate symbol: &
Text(0, "A or B = ");   HexOut(0, A or B);   CrLf(0);   \alternate symbol: !
Text(0, "A xor B = ");  HexOut(0, A xor B);  CrLf(0);   \alternate symbol: |
Text(0, "not A = ");    HexOut(0, not A);    CrLf(0);   \alternate symbol: ~
Text(0, "A << B = ");   HexOut(0, A << B);   CrLf(0);
Text(0, "A >> B logical = ");  HexOut(0, A >> B);  CrLf(0);
Text(0, "A >> B arithmetic = ");  HexOut(0, A ->> B);  CrLf(0);

\Rotate operations must be done by calling a function such as:
func ROR(A, B); int A, B; return A>>B ! A<<(32-B);

Text(0, "A ror B = ");  HexOut(0, ROR(A,B));  CrLf(0);```

The reason the "!" and "|" symbols may seem reversed is that the OR operator was introduced at a time when only uppercase characters were available (such as on the Apple II). The XOR operator was added later.

## Yabasic

```sub formBin\$(n)
return right\$("00000000" + bin\$(n), 8)
end sub

a = 6 : b = 3
print a, " = \t", formBin\$(a)
print b, " = \t", formBin\$(b)
print "\t--------"
print "AND = \t", formBin\$(and(a, b))
print "OR = \t", formBin\$(or(a, b))
print "XOR = \t", formBin\$(xor(a, b))
print "NOT ", a, " =\t", formBin\$(xor(255, a))```
```6 =	00000110
3 =	00000011
--------
AND =	00000010
OR =	00000111
XOR =	00000101
NOT 6 =	11111001```

## Z80 Assembly

AND
```LD A,&05
AND &1F   ;0x05 & 0x1F
```
OR
```LD A,&05
OR &1F   ;0x05 | 0x1F
```
XOR
```LD A,&05
XOR &1F   ;0x05 ^ 0x1F
```
NOT
```LD A,&05
CPL
```
Left Shift (Z80 can only shift by one at a time.)
```LD A,&05
SLA A
```
Right Shift
```LD A,&05
SRL A
```
Arithmetic Right Shift
```LD A,&05
SRA A
```

Z80 has two different types of bit rotates.

• `RL/RR` rotates through the carry. The state of the carry before the rotate gets rotated in, and the bit that rotates out is put into the carry.
• `RLC/RRC` copies the bit "pushed out" to the carry but the old carry isn't rotated in.
```LD A,&05
RLA

LD A,&05
RRA

LD A,&05
RLCA

LD A,&05
RRCA
```

## zkl

No bitwise rotates. Shifts are unsigned.

```(7).bitAnd(1) //-->1
(8).bitOr(1)  //-->9
(7).bitXor(1) //-->6
(1).bitNot() : "%,x".fmt(_) //-->ff|ff|ff|ff|ff|ff|ff|fe
(7).shiftRight(1) //-->3
(7).shiftLeft(1)  //-->0xe
(-1).toString(16) //-->ffffffffffffffff
(-1).shiftRight(1).toString(16) //-->7fffffffffffffff```