Bitwise operations

From Rosetta Code
Revision as of 16:26, 17 June 2024 by Miks1965 (talk | contribs) (PascalABC.NET)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Task
Bitwise operations
You are encouraged to solve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Comparison | Matching

Memory Operations
Pointers & references | Addresses


Task

Write a routine to perform a bitwise AND, OR, and XOR on two integers, a bitwise NOT on the first integer, a left shift, right shift, right arithmetic shift, left rotate, and right rotate.

All shifts and rotates should be done on the first integer with a shift/rotate amount of the second integer.

If any operation is not available in your language, note it.

11l

Translation of: Kotlin
V x = 10
V y = 2
print(‘x       = ’x)
print(‘y       = ’y)
print(‘NOT x   = ’(~x))
print(‘x AND y = ’(x [&] y))
print(‘x OR  y = ’(x [|] y))
print(‘x XOR y = ’(x (+) y))
print(‘x SHL y = ’(x << y))
print(‘x SHR y = ’(x >> y))
print(‘x ROL y = ’rotl(x, y))
print(‘x ROR y = ’rotr(x, y))
Output:
x       = 10
y       = 2
NOT x   = -11
x AND y = 2
x OR  y = 10
x XOR y = 8
x SHL y = 40
x SHR y = 2
x ROL y = 40
x ROR y = -2147483646

360 Assembly

*        Bitwise operations        15/02/2017
BITWISE  CSECT
         USING  BITWISE,R13
         B      72(R15)
         DC     17F'0'
         STM    R14,R12,12(R13)
         ST     R13,4(R15)
         ST     R15,8(R13)
         LR     R13,R15
         L      R1,A
         XDECO  R1,PG
         MVC    OP,=CL7'A='
         XPRNT  OP,L'OP+L'PG
         L      R1,B
         XDECO  R1,PG
         MVC    OP,=CL7'B='
         XPRNT  OP,L'OP+L'PG
*                                  And
         L      R1,A
         N      R1,B
         XDECO  R1,PG
         MVC    OP,=C'A AND B'
         XPRNT  OP,L'OP+L'PG
*                                  Or
         L      R1,A
         O      R1,B
         XDECO  R1,PG
         MVC    OP,=C'A OR  B'
         XPRNT  OP,L'OP+L'PG
*                                  Xor
         L      R1,A
         X      R1,B
         XDECO  R1,PG
         MVC    OP,=C'A XOR B'
         XPRNT  OP,L'OP+L'PG
*                                  Not
         L      R1,A
         X      R1,=X'FFFFFFFF'    not (by xor -1)
         XDECO  R1,PG
         MVC    OP,=CL7'NOT A'
         XPRNT  OP,L'OP+L'PG
*
         MVC    A,=X'80000008'     a=-2147483640 (-2^31+8)
         L      R1,A
         XDECO  R1,PG
         MVC    OP,=CL7'A='
         XPRNT  OP,L'OP+L'PG
*                                  shift right arithmetic (on 31 bits)
         L      R1,A
         SRA    R1,3
         XDECO  R1,PG
         MVC    OP,=C'A SRA 3'
         XPRNT  OP,L'OP+L'PG
*                                  shift left arithmetic (on 31 bits)
         L      R1,A
         SLA    R1,3
         XDECO  R1,PG
         MVC    OP,=C'A SLA 3'
         XPRNT  OP,L'OP+L'PG
*                                  shift right logical (on 32 bits)
         L      R1,A
         SRL    R1,3
         XDECO  R1,PG
         MVC    OP,=C'A SRL 3'
         XPRNT  OP,L'OP+L'PG
*                                  shift left logical (on 32 bits)
         L      R1,A
         SLL    R1,3
         XDECO  R1,PG
         MVC    OP,=C'A SLL 3'
         XPRNT  OP,L'OP+L'PG
*
RETURN   L      R13,4(0,R13)
         LM     R14,R12,12(R13)
         XR     R15,R15
         BR     R14
A        DC     F'21'
B        DC     F'3'
OP       DS     CL7
PG       DS     CL12
         YREGS
         END    BITWISE
Output:
A=               21
B=                3
A AND B           1
A OR  B          23
A XOR B          22
NOT A           -22
A=      -2147483640
A SRA 3  -268435455
A SLA 3 -2147483584
A SRL 3   268435457
A SLL 3          64

6502 Assembly

Bitwise operations are done using the accumulator and an immediate constant (prefixed with #) or a value at a specified memory location (no #.)

LDA #$05
STA temp ;temp equals 5 for the following
AND
LDA #$08
AND temp
OR
LDA #$08
ORA temp
XOR
LDA #$08
EOR temp
NOT
LDA #$08
EOR #255

The 6502 doesn't have arithmetic shift right, but it can be replicated, provided the negative flag is set according to the value in the accumulator.

    LDA #$FF
    CLC  ;clear the carry. That way, ROR will not accidentally shift a 1 into the top bit of a positive number
    BPL SKIP
        SEC  ;if the value in A is negative, setting the carry will ensure that ROR will insert a 1 into bit 7 of A upon rotating.
SKIP:
    ROR

The 6502 can only rotate a value by one, not an arbitrary number. A looping routine is needed for rotates larger than 1. Also, the 6502's ROL and ROR rotate instructions both rotate through the carry, unlike the instructions on other architectures with the same name. (68000, x86, and ARM all have a "ROR" command but it doesn't rotate through the carry on those CPUs.)

LDA #$01
ROL ;if the carry was set prior to the ROL, A = 3. If the carry was clear, A = 2.
LDA #$01
ROR ;if the carry was set prior to the ROR, A = 0x80. If clear, A = 0.

8051 Assembly

Integer one is assumed to be a, integer two assumed to be b. Each operation affects one or both operands and would not be used sequentially. The end result of each operation resides in a. The shift and rotate operations should likely push psw and pop psw because they affect the carry flag.

; bitwise AND
anl a, b

; bitwise OR
orl a, b

; bitwise XOR
xrl a, b

; bitwise NOT
cpl a

; left shift
inc b
rrc a
loop:
rlc a
clr c
djnz b, loop

; right shift
inc b
rlc a
loop:
rrc a
clr c
djnz b, loop

; arithmetic right shift
push 20
inc b
rlc a
mov 20.0, c
loop:
rrc a
mov c, 20.0
djnz b, loop
pop 20

; left rotate
inc b
rr a
loop:
rl a
djnz b, loop

; right rotate
inc b
rl a
loop:
rr a
djnz b, loop

8086 Assembly

AND
MOV AX,0345h
MOV BX,0444h
AND AX,BX
OR
MOV AX,0345h
MOV BX,0444h
OR AX,BX
XOR
MOV AX,0345h
MOV BX,0444h
XOR AX,BX
NOT
MOV AX,0345h
NOT AX
Left Shift
MOV AX,03h
MOV CL,02h
SHL AX,CL
Right Shift
MOV AX,03h
MOV CL,02h
SHR AX,CL
Arithmetic Right Shift
MOV AX,03h
MOV CL,02h
SAR AX,CL
Left Rotate
MOV AX,03h
MOV CL,02h
ROL AX,CL
Right Rotate
MOV AX,03h
MOV CL,02h
ROR AX,CL
Left Rotate Through Carry
MOV AX,03h
MOV CL,02h
RCL AX,CL
Right Rotate Through Carry
MOV AX,03h
MOV CL,02h
RCR AX,CL

68000 Assembly

Like with most 68000 commands, you can specify a length parameter. Anything outside that length is unaffected by the operation.

AND
MOVE.W #$100,D0
MOVE.W #$200,D1
AND.W D0,D1
OR
MOVE.W #$100,D0
MOVE.W #$200,D1
OR.W D0,D1
XOR
MOVE.W #$100,D0
MOVE.W #$200,D1
EOR.W D0,D1
NOT
MOVE.W #$100,D0
NOT.W D0
Left Shift
MOVE.W #$FF,D0
MOVE.W #$04,D1
LSL.W D1,D0   ;shifts 0x00FF left 4 bits
Right Shift
MOVE.W #$FF,D0
MOVE.W #$04,D1
LSR.W D1,D0   ;shifts 0x00FF right 4 bits
Arithmetic Right Shift
MOVE.W #$FF00,D0
MOVE.W #$04,D1
ASR.W D1,D0   ;shifts 0xFF00 right 4 bits, preserving its sign
Left Rotate
MOVE.W #$FF00,D0
MOVE.W #$04,D1
ROL.W D1,D0
Right Rotate
MOVE.W #$FF00,D0
MOVE.W #$04,D1
ROR.W D1,D0
Left Rotate Through Extend Flag
MOVE.W #$FF00,D0
MOVE.W #$04,D1
ROXL.W D1,D0
Right Rotate Through Extend Flag
MOVE.W #$FF00,D0
MOVE.W #$04,D1
ROXR.W D1,D0

AArch64 Assembly

Works with: as version Raspberry Pi 3B version Buster 64 bits
or android 64 bits with application Termux
/* ARM assembly AARCH64 Raspberry PI 3B */
/*  program bitwise64.s   */

/************************************/
/* Constantes                       */
/************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc" 

/************************************/
/* Initialized data                 */
/************************************/
.data
szMessResultAnd:   .asciz "Result of And : \n"
szMessResultOr:    .asciz "Result of Or : \n"
szMessResultEor:   .asciz "Result of Exclusif Or : \n"
szMessResultNot:   .asciz "Result of Not : \n"
szMessResultLsl:   .asciz "Result of left shift : \n"
szMessResultLsr:   .asciz "Result of right shift : \n"
szMessResultAsr:   .asciz "Result of Arithmetic right shift : \n"
szMessResultRor:   .asciz "Result of rotate right : \n"
szMessResultClear: .asciz "Result of Bit Clear : \n"

sMessAffBin:       .ascii "Register: "
sZoneBin:          .space 65,' '
                   .asciz "\n"
/************************************/
/*  code section                    */
/************************************/
.text
.global main 
main:
    ldr x0,qAdrszMessResultAnd
    bl affichageMess
    mov x0,#5
    and x0,x0,#15

    bl affichage2
    ldr x0,qAdrszMessResultOr
    bl affichageMess
    mov x0,#5
    orr x0,x0,#15
    bl affichage2
    ldr x0,qAdrszMessResultEor
    bl affichageMess
    mov x0,#5
    eor x0,x0,#15
    bl affichage2
    ldr x0,qAdrszMessResultNot
    bl affichageMess
    mov x0,#5
    mvn x0,x0
    bl affichage2
    ldr x0,qAdrszMessResultLsl
    bl affichageMess
    mov x0,#5
    lsl x0,x0,#1
    bl affichage2
    ldr x0,qAdrszMessResultLsr
    bl affichageMess
    mov x0,#5
    lsr x0,x0,#1
    bl affichage2
    ldr x0,qAdrszMessResultAsr
    bl affichageMess
    mov x0,#-5
    bl affichage2
    mov x0,#-5
    asr x0,x0,#1
    bl affichage2
    ldr x0,qAdrszMessResultRor
    bl affichageMess
    mov x0,#5
    ror x0,x0,#1
    bl affichage2

    ldr x0,qAdrszMessResultClear
    bl affichageMess
    mov x0,0b1111
    bic x0,x0,#0b100      //  clear 3ieme bit
    bl affichage2
    mov x0,0b11111
    bic x0,x0,#6          //  clear 2ieme et 3ième bit  ( 6 = 110 binary)
    bl affichage2

100:
    mov x0, #0
    mov x8,EXIT 
    svc 0
qAdrszMessResultAnd:  .quad szMessResultAnd
qAdrszMessResultOr:   .quad szMessResultOr
qAdrszMessResultEor:  .quad szMessResultEor
qAdrszMessResultNot:  .quad szMessResultNot
qAdrszMessResultLsl:  .quad szMessResultLsl
qAdrszMessResultLsr:  .quad szMessResultLsr
qAdrszMessResultAsr:  .quad szMessResultAsr
qAdrszMessResultRor:  .quad szMessResultRor
qAdrszMessResultClear:  .quad szMessResultClear
/******************************************************************/
/*     display register in binary                              */ 
/******************************************************************/
/* x0 contains the register */
/* x1 contains the address of receipt area */
affichage2:
    stp x1,lr,[sp,-16]!        // save  registers
    ldr x1,qAdrsZoneBin
    bl conversion2
    ldr x0,qAdrsZoneMessBin
    bl affichageMess
    ldp x1,lr,[sp],16          // restaur  2 registres
    ret                        // retour adresse lr x30   
qAdrsZoneBin:     .quad sZoneBin         
qAdrsZoneMessBin: .quad sMessAffBin
/******************************************************************/
/*     register conversion in binary                              */ 
/******************************************************************/
/* x0 contains the value */
/* x1 contains the address of receipt area */
conversion2:
    stp x2,lr,[sp,-16]!        // save  registers
    stp x3,x4,[sp,-16]!        // save  registers
    mov x3,64                  // position counter of the written character
2:                             // loop
    tst x0,1                   // test first bit 
    lsr x0,x0,#1               // shift right one bit
    bne 3f
    mov x2,#48                 // bit = 0 => character '0'
    b 4f
3:
    mov x2,#49                 //   bit = 1   => character '1' 
4:
    strb w2,[x1,x3]            // character in reception area at position counter
    subs x3,x3,#1              //  0 bits ?
    bgt 2b                     // no!  loop

100:
    ldp x3,x4,[sp],16          // restaur  2 registres
    ldp x2,lr,[sp],16          // restaur  2 registres
    ret                        // retour adresse lr x30  

/***************************************************/
/*      ROUTINES INCLUDE                           */
/***************************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeARM64.inc"
Output:
Result of And :
Register:  0000000000000000000000000000000000000000000000000000000000000101
Result of Or :
Register:  0000000000000000000000000000000000000000000000000000000000001111
Result of Exclusif Or :
Register:  0000000000000000000000000000000000000000000000000000000000001010
Result of Not :
Register:  1111111111111111111111111111111111111111111111111111111111111010
Result of left shift :
Register:  0000000000000000000000000000000000000000000000000000000000001010
Result of right shift :
Register:  0000000000000000000000000000000000000000000000000000000000000010
Result of Arithmetic right shift :
Register:  1111111111111111111111111111111111111111111111111111111111111011
Register:  1111111111111111111111111111111111111111111111111111111111111101
Result of rotate right :
Register:  1000000000000000000000000000000000000000000000000000000000000010
Result of Bit Clear :
Register:  0000000000000000000000000000000000000000000000000000000000001011
Register:  0000000000000000000000000000000000000000000000000000000000011001

ABAP

This works in ABAP 7.40 and above. The missing arithmetic shift operations have been implemented with arithmetic, whereas the logical shift and the rotate operations have been implemented using the built in string functions shift_left and shift_right.

report z_bitwise_operations.

class hex_converter definition.
  public section.
    class-methods:
      to_binary
        importing
          hex_value           type x
        returning
          value(binary_value) type string,

      to_decimal
        importing
          hex_value            type x
        returning
          value(decimal_value) type int4.
endclass.


class hex_converter implementation.
  method to_binary.
    data(number_of_bits) = xstrlen( hex_value ) * 8.

    do number_of_bits times.
      get bit sy-index of hex_value into data(bit).

      binary_value = |{ binary_value }{ bit }|.
    enddo.
  endmethod.


  method to_decimal.
    decimal_value = hex_value.
  endmethod.
endclass.


class missing_bitwise_operations definition.
  public section.
    class-methods:
      arithmetic_shift_left
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x,

      arithmetic_shift_right
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x,

      logical_shift_left
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x,

      logical_shift_right
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x,

      rotate_left
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x,

      rotate_right
        importing
          old_value   type x
          change_with type x
        exporting
          new_value   type x.
endclass.


class missing_bitwise_operations implementation.
  method arithmetic_shift_left.
    clear new_value.

    new_value = old_value * 2 ** change_with.
  endmethod.


  method arithmetic_shift_right.
    clear new_value.

    new_value = old_value div 2 ** change_with.
  endmethod.


  method logical_shift_left.
    clear new_value.

    data(bits) = hex_converter=>to_binary( old_value ).

    data(length_of_bit_sequence) = strlen( bits ).

    bits = shift_left(
      val = bits
      places = change_with ).

    while strlen( bits ) < length_of_bit_sequence.
      bits = |{ bits }0|.
    endwhile.

    do strlen( bits ) times.
      data(index) = sy-index - 1.

      data(current_bit) = bits+index(1).

      if current_bit eq `1`.
        set bit sy-index of new_value.
      endif.
    enddo.
  endmethod.


  method logical_shift_right.
    clear new_value.

    data(bits) = hex_converter=>to_binary( old_value ).

    data(length_of_bit_sequence) = strlen( bits ).

    bits = shift_right(
      val = bits
      places = change_with ).

    while strlen( bits ) < length_of_bit_sequence.
      bits = |0{ bits }|.
    endwhile.

    do strlen( bits ) times.
      data(index) = sy-index - 1.

      data(current_bit) = bits+index(1).

      if current_bit eq `1`.
        set bit sy-index of new_value.
      endif.
    enddo.
  endmethod.


  method rotate_left.
    clear new_value.

    data(bits) = hex_converter=>to_binary( old_value ).

    bits = shift_left(
      val = bits
      circular = change_with ).

    do strlen( bits ) times.
      data(index) = sy-index - 1.

      data(current_bit) = bits+index(1).

      if current_bit eq `1`.
        set bit sy-index of new_value.
      endif.
    enddo.
  endmethod.


  method rotate_right.
    clear new_value.

    data(bits) = hex_converter=>to_binary( old_value ).

    bits = shift_right(
      val = bits
      circular = change_with ).

    do strlen( bits ) times.
      data(index) = sy-index - 1.

      data(current_bit) = bits+index(1).

      if current_bit eq `1`.
        set bit sy-index of new_value.
      endif.
    enddo.
  endmethod.
endclass.


start-of-selection.
  data:
    a      type x length 4 value 255,
    b      type x length 4 value 2,
    result type x length 4.

  write: |a         -> { a }, { hex_converter=>to_binary( a ) }, { hex_converter=>to_decimal( a ) }|, /.

  write: |b         -> { b }, { hex_converter=>to_binary( b ) }, { hex_converter=>to_decimal( b ) }|, /.

  result = a bit-and b.
  write: |a & b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  result = a bit-or b.
  write: |a \| b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  result = a bit-xor b.
  write: |a ^ b     -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  result = bit-not a.
  write: |~a        -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>arithmetic_shift_left(
    exporting
      old_value = bit-not a
      change_with = b
    importing
      new_value = result ).
  write: |~a << b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>arithmetic_shift_right(
    exporting
      old_value = bit-not a
      change_with = b
    importing
      new_value = result ).
  write: |~a >> b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>logical_shift_left(
    exporting
      old_value = a
      change_with = b
    importing
      new_value = result ).
  write: |a <<< b   -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>logical_shift_right(
    exporting
      old_value = bit-not a
      change_with = b
    importing
      new_value = result ).
  write: |~a >>> b  -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>rotate_left(
    exporting
      old_value = bit-not a
      change_with = b
    importing
      new_value = result ).
  write: |~a rotl b -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.

  missing_bitwise_operations=>rotate_right(
    exporting
      old_value = a
      change_with = b
    importing
      new_value = result ).
  write: |a rotr b  -> { result }, { hex_converter=>to_binary( result ) }, { hex_converter=>to_decimal( result ) }|, /.
Output:
a         -> 000000FF, 00000000000000000000000011111111, 255

b         -> 00000002, 00000000000000000000000000000010, 2

a & b     -> 00000002, 00000000000000000000000000000010, 2

a | b     -> 000000FF, 00000000000000000000000011111111, 255

a ^ b     -> 000000FD, 00000000000000000000000011111101, 253

~a        -> FFFFFF00, 11111111111111111111111100000000, -256

~a << b   -> FFFFFC00, 11111111111111111111110000000000, -1024

~a >> b   -> FFFFFFC0, 11111111111111111111111111000000, -64

a <<< b   -> 000003FC, 00000000000000000000001111111100, 1020

~a >>> b  -> 3FFFFFC0, 00111111111111111111111111000000, 1073741760

~a rotl b -> FFFFFC03, 11111111111111111111110000000011, -1021

a rotr b  -> C000003F, 11000000000000000000000000111111, -1073741761

ACL2

Unlisted operations are not available

(defun bitwise (a b)
   (list (logand a b)
         (logior a b)
         (logxor a b)
         (lognot a)
         (ash a b)
         (ash a (- b))))

Action!

BYTE FUNC Not(BYTE a)
RETURN (a!$FF)

PROC Main()
  BYTE a=[127],b=[2],res

  res=a&b
  PrintF("%B AND %B = %B%E",a,b,res)
  
  res=a%b
  PrintF("%B OR %B = %B%E",a,b,res)

  res=a!b
  PrintF("%B XOR %B = %B%E",a,b,res)

  res=Not(a)
  PrintF("NOT %B = %B (by %B XOR $FF)%E",a,res,a)

  res=a RSH b
  PrintF("%B SHR %B = %B%E",a,b,res)

  res=a LSH b
  PrintF("%B SHL %B = %B%E",a,b,res)
RETURN
Output:

Screenshot from Atari 8-bit computer

127 AND 2 = 2
127 OR 2 = 127
127 XOR 2 = 125
NOT 127 = 128 (by 127 XOR $FF)
127 SHR 2 = 31
127 SHL 2 = 252

ActionScript

ActionScript does not support bitwise rotations.

function bitwise(a:int, b:int):void
{
	trace("And: ", a & b);
	trace("Or: ", a | b);
	trace("Xor: ", a ^ b);
	trace("Not: ", ~a);
	trace("Left Shift: ", a << b);
	trace("Right Shift(Arithmetic): ", a >> b);
	trace("Right Shift(Logical): ", a >>> b);
}

Ada

The following program performs all required operations and prints the resulting values in base 2 for easy checking of the bit values.

with Ada.Text_IO, Interfaces;
use  Ada.Text_IO, Interfaces;

procedure Bitwise is
   subtype Byte is Unsigned_8;
   package Byte_IO is new Ada.Text_Io.Modular_IO (Byte);

   A : constant Byte    := 2#00011110#;
   B : constant Byte    := 2#11110100#;
   X : constant Byte    := 128;
   N : constant Natural := 1;
begin
   Put ("A and B = ");  Byte_IO.Put (Item => A and B, Base => 2);  New_Line;
   Put ("A or B  = ");  Byte_IO.Put (Item => A or B,  Base => 2);  New_Line;
   Put ("A xor B = ");  Byte_IO.Put (Item => A xor B, Base => 2);  New_Line;
   Put ("not A   = ");  Byte_IO.Put (Item => not A,   Base => 2);  New_Line;
   New_Line (2);
   Put_Line (Unsigned_8'Image (Shift_Left  (X, N)));
   Put_Line (Unsigned_8'Image (Shift_Right (X, N)));
   Put_Line (Unsigned_8'Image (Shift_Right_Arithmetic (X, N)));
   Put_Line (Unsigned_8'Image (Rotate_Left  (X, N)));
   Put_Line (Unsigned_8'Image (Rotate_Right (X, N)));
end Bitwise;

Aikido

Translation of: Javascript

There is no rotate support built in to Aikido.

function bitwise(a, b){
   println("a AND b: " + (a & b))
   println("a OR b: "+ (a | b))
   println("a XOR b: "+ (a ^ b))
   println("NOT a: " + ~a)
   println("a << b: " + (a << b)) // left shift
   println("a >> b: " + (a >> b)) // arithmetic right shift
   println("a >>> b: " + (a >>> b)) // logical right shift
}

ALGOL 68

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386

Aside from decimal, ALGOL 68 has 5 different alternative was of representing the number 170:

  • 2r00000000000000000000000010101010, 4r0000000000002222, 8r00000000252, 16r000000aa
  • and as an array of BOOL: FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
main:(

  PRIO SLC = 8, SRC = 8; # SLC and SRC are not built in, define and overload them here #
  OP SLC = (BITS b, INT rotate) BITS: b SHL rotate OR b SHR ( bits width - rotate );
  OP SRC = (BITS b, INT rotate) BITS: b SHR rotate OR b SHL ( bits width - rotate );
  # SRC and SRL are non-standard, but versions are built in to ALGOL 68R's standard prelude #

  PRIO XOR = 2;
  OP XOR = (BITS p, q) BITS: p AND NOT q OR NOT p AND q;
  # XOR is non-standard, but a version is built in to ALGOL 68G's standard prelude #

  # ALGOL 68 has 5 different ways of representing a BINary BITS - Bases: 2, 4, 8, 16 and flip/flop #
  FORMAT b5 = $"2r"2r32d," 4r"4r16d," 8r"8r11d," 16r"16r8d," "gl$;
  OP BBBBB = (BITS b)[]BITS: (b,b,b,b,b);

  PROC bitwise = (BITS a, BITS b, INT shift)VOID:
  (
    printf((
      $"         bits shorths: "gxgl$, bits shorths, "1 plus the number of extra SHORT BITS types",
      $"         bits lengths: "gxgl$, bits lengths, "1 plus the number of extra LONG BITS types",
      $"             max bits: "gl$, max bits,
      $"        long max bits: "gl$, long max bits,
      $"   long long max bits: "gl$, long long max bits,
      $"           bits width: "gxgl$, bits width, "The number of CHAR required to display BITS",
      $"      long bits width: "gxgl$, long bits width, "The number of CHAR required to display LONG BITS",
      $" long long bits width: "gxgl$, long long bits width, "The number of CHAR required to display LONG LONG BITS",
      $"         bytes shorths: "gxgl$, bytes shorths, "1 plus the number of extra SHORT BYTES types",
      $"         bytes lengths: "gxgl$, bits lengths, "1 plus the number of extra LONG BYTES types",
      $"          bytes width: "gxgl$, bytes width, "The number of CHAR required to display BYTES",
      $"     long bytes width: "gxgl$, long bytes width, "The number of CHAR required to display LONG BYTES"
    ));

    printf(($" a:       "f(b5)$, BBBBB a));
    printf(($" b:       "f(b5)$, BBBBB b));
    printf(($" a AND b: "f(b5)$, BBBBB(a AND b)));
    printf(($" a OR b:  "f(b5)$, BBBBB(a OR b)));
    printf(($" a XOR b: "f(b5)$, BBBBB(a XOR b)));
    printf(($" NOT b:   "f(b5)$, BBBBB NOT a));
    printf(($" a SHL "d": "f(b5)$, shift, BBBBB(a SHL shift)));
    printf(($" a SHR "d": "f(b5)$, shift, BBBBB(a SHR shift)));

    printf(($" a SLC "d": "f(b5)$, shift, BBBBB(a SLC shift)));
    printf(($" a SRC "d": "f(b5)$, shift, BBBBB(a SRC shift)))
COMMENT with original ALGOL 68 character set;
    printf(($" a AND b: "f(b5)$, BBBBB(a ∧ b)));
    printf(($" a OR b:  "f(b5)$, BBBBB(a ∨ b)));
    printf(($" NOT b:   "f(b5)$, BBBBB ¬ a));
    printf(($" a SHL "d": "f(b5)$, shift, BBBBB(a ↑ shift)));
    printf(($" a SHR "d": "f(b5)$, shift, BBBBB(a ↓ shift)));
Also:
    printf(($" a AND b: "f(b5)$, BBBBB(a /\ b)));
    printf(($" a OR b: "f(b5)$, BBBBB(a \/ b)));
COMMENT
  );

  bitwise(BIN 255, BIN 170, 5)
# or using alternate representations for 255 and 170 in BITS #
CO
  bitwise(2r11111111,2r10101010,5);
  bitwise(4r3333,4r2222,5);
  bitwise(8r377,8r252,5);
  bitwise(16rff,16raa,5)
END CO
)

Output:

         bits shorths:          +1 1 plus the number of extra SHORT BITS types
         bits lengths:          +3 1 plus the number of extra LONG BITS types
             max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
        long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
   long long max bits: TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
           bits width:         +32 The number of CHAR required to display BITS
      long bits width:        +116 The number of CHAR required to display LONG BITS
 long long bits width:        +232 The number of CHAR required to display LONG LONG BITS
         bytes shorths:          +1 1 plus the number of extra SHORT BYTES types
         bytes lengths:          +3 1 plus the number of extra LONG BYTES types
          bytes width:         +32 The number of CHAR required to display BYTES
     long bytes width:         +64 The number of CHAR required to display LONG BYTES
 a:       2r00000000000000000000000011111111 4r0000000000003333 8r00000000377 16r000000ff FFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT
 b:       2r00000000000000000000000010101010 4r0000000000002222 8r00000000252 16r000000aa FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
 a AND b: 2r00000000000000000000000010101010 4r0000000000002222 8r00000000252 16r000000aa FFFFFFFFFFFFFFFFFFFFFFFFTFTFTFTF
 a OR b:  2r00000000000000000000000011111111 4r0000000000003333 8r00000000377 16r000000ff FFFFFFFFFFFFFFFFFFFFFFFFTTTTTTTT
 a XOR b: 2r00000000000000000000000001010101 4r0000000000001111 8r00000000125 16r00000055 FFFFFFFFFFFFFFFFFFFFFFFFFTFTFTFT
 NOT b:   2r11111111111111111111111100000000 4r3333333333330000 8r37777777400 16rffffff00 TTTTTTTTTTTTTTTTTTTTTTTTFFFFFFFF
 a SHL 5: 2r00000000000000000001111111100000 4r0000000001333200 8r00000017740 16r00001fe0 FFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF
 a SHR 5: 2r00000000000000000000000000000111 4r0000000000000013 8r00000000007 16r00000007 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFTTT
 a SLC 5: 2r00000000000000000001111111100000 4r0000000001333200 8r00000017740 16r00001fe0 FFFFFFFFFFFFFFFFFFFTTTTTTTTFFFFF
 a SRC 5: 2r11111000000000000000000000000111 4r3320000000000013 8r37000000007 16rf8000007 TTTTTFFFFFFFFFFFFFFFFFFFFFFFFTTT

Note that an INT can be widened into BITS, and BITS can be widened into an array of BOOL. eg:

# unpack (widen) some data back into an a BOOL array #
INT i := 170;
BITS j := BIN i;
[bits width]BOOL k := j;

printf(($g", 8r"8r4d", "8(g)l$, i, j, k[bits width-8+1:]));

# now pack some data back into an INT #
k[bits width-8+1:] := (FALSE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, TRUE);
j := bits pack(k);
i := ABS j;

printf(($g", 8r"8r4d", "8(g)l$, i, j, k[bits width-8+1:]))

Output:

       +170, 8r0252, TFTFTFTF
        +85, 8r0125, FTFTFTFT

ALGOL W

% performs bitwise and, or, not, left-shift and right shift on the integers n1 and n2 %
% Algol W does not have xor, arithmetic right shift, left rotate or right rotate      %
procedure bitOperations ( integer value n1, n2 ) ;
begin
    bits b1, b2;
    % the Algol W bitwse operations operate on bits values, so we first convert the   %
    % integers to bits values using the builtin bitstring procedure                   %
    % the results are converted back to integers using the builtin number procedure   %
    % all Algol W bits and integers are 32 bits quantities                            %
    b1 := bitstring( n1 );
    b2 := bitstring( n2 );
    % perform the operaations and display the results as integers                     %
    write( n1, " and ", n2, " = ", number( b1 and b2 ) );
    write( n1, " or  ", n2, " = ", number( b1 or  b2 ) );
    write( "                "
         ,     " not ", n1, " = ", number(    not b1 ) );
    write( n1, " shl ", n2, " = ", number( b1 shl n2 ), " (  left-shift )"  );
    write( n1, " shr ", n2, " = ", number( b1 shr n2 ), " ( right-shift )"  )
end bitOPerations ;

AppleScript

Applescript has no bitwise operators. It's probably not the right tool to reach for if you need to work with bits.

If we really do need to use Applescript for bitwise operations, two immediate possibilities come to mind:

  • We can use JavaScript operators through an ObjC bridge to JavaScript for Automation, or
  • we can write our own functions – converting between 32-bit signed integers and corresponding lists of booleans, and performing the bitwise operations on the boolean lists before converting back to integers.


First option – 'dialling out to JavaScript for Automation':

This is feasible, (see below) subject to the limitations that:

  • Javascript lacks bit rotation operators, and
  • in the case of the JS left shift operator (<<) the right operand needs to be masked with 0x1F (31), which is its maximum effective value.


use AppleScript version "2.4"
use framework "Foundation"
use scripting additions

-- BIT OPERATIONS FOR APPLESCRIPT (VIA JAVASCRIPT FOR AUTOMATION)

-- bitAND :: Int -> Int -> Int
on bitAND(x, y)
    jsOp2("&", x, y)
end bitAND

-- bitOR :: Int -> Int -> Int
on bitOR(x, y)
    jsOp2("|", x, y)
end bitOR

-- bitXOr :: Int -> Int -> Int
on bitXOR(x, y)
    jsOp2("^", x, y)
end bitXOR

-- bitNOT :: Int -> Int
on bitNOT(x)
    jsOp1("~", x)
end bitNOT

-- (<<) :: Int -> Int -> Int
on |<<|(x, y)
    if 31 < y then
        0
    else
        jsOp2("<<", x, y)
    end if
end |<<|

-- Logical right shift
-- (>>>) :: Int -> Int -> Int
on |>>>|(x, y)
    jsOp2(">>>", x, y)
end |>>>|

-- Arithmetic right shift
-- (>>) :: Int -> Int -> Int
on |>>|(x, y)
    jsOp2(">>", x, y)
end |>>|


-- TEST ----------------------------------------------------------
on run
    -- Using an ObjC interface to Javascript for Automation
    
    set strClip to bitWise(255, 170)
    set the clipboard to strClip
    strClip
end run

-- bitWise :: Int -> Int -> String
on bitWise(a, b)
    set labels to {"a AND b", "a OR b", "a XOR b", "NOT a", ¬
        "a << b", "a >>> b", "a >> b"}
    set xs to {bitAND(a, b), bitOR(a, b), bitXOR(a, b), bitNOT(a), ¬
        |<<|(a, b), |>>>|(a, b), |>>|(a, b)}
    
    script asBin
        property arrow : " -> "
        on |λ|(x, y)
            justifyRight(8, space, x) & arrow & ¬
                justifyRight(14, space, y as text) & arrow & showBinary(y)
        end |λ|
    end script
    
    unlines({"32 bit signed integers   (in two's complement binary encoding)", "", ¬
        unlines(zipWith(asBin, ¬
            {"a = " & a as text, "b = " & b as text}, {a, b})), "", ¬
        unlines(zipWith(asBin, labels, xs))})
end bitWise

-- CONVERSIONS AND DISPLAY

-- bitsFromInt :: Int -> Either String [Bool]
on bitsFromIntLR(x)
    script go
        on |λ|(n, d, bools)
            set xs to {0  d} & bools
            if n > 0 then
                |λ|(n div 2, n mod 2, xs)
            else
                xs
            end if
        end |λ|
    end script
    
    set a to abs(x)
    if (2.147483647E+9) < a then
        |Left|("Integer overflow – maximum is (2 ^ 31) - 1")
    else
        set bs to go's |λ|(a div 2, a mod 2, {})
        if 0 > x then
            |Right|(replicate(32 - (length of bs), true) & ¬
                binSucc(map(my |not|, bs)))
        else
            set bs to go's |λ|(a div 2, a mod 2, {})
            |Right|(replicate(32 - (length of bs), false) & bs)
        end if
    end if
end bitsFromIntLR

-- Successor function (+1) for unsigned binary integer

-- binSucc :: [Bool] -> [Bool]
on binSucc(bs)
    script succ
        on |λ|(a, x)
            if a then
                if x then
                    Tuple(a, false)
                else
                    Tuple(x, true)
                end if
            else
                Tuple(a, x)
            end if
        end |λ|
    end script
    
    set tpl to mapAccumR(succ, true, bs)
    if |1| of tpl then
        {true} & |2| of tpl
    else
        |2| of tpl
    end if
end binSucc

-- showBinary :: Int -> String
on showBinary(x)
    script showBin
        on |λ|(xs)
            script bChar
                on |λ|(b)
                    if b then
                        "1"
                    else
                        "0"
                    end if
                end |λ|
            end script
            
            map(bChar, xs)
        end |λ|
    end script
    bindLR(my bitsFromIntLR(x), showBin)
end showBinary


-- JXA ------------------------------------------------------------------

--jsOp2 :: String -> a -> b -> c
on jsOp2(strOp, a, b)
    bindLR(evalJSLR(unwords({a as text, strOp, b as text})), my |id|) as integer
end jsOp2

--jsOp2 :: String -> a -> b
on jsOp1(strOp, a)
    bindLR(evalJSLR(unwords({strOp, a as text})), my |id|) as integer
end jsOp1

-- evalJSLR :: String -> Either String a
on evalJSLR(strJS)
    try -- NB if gJSC is global it must be released 
        -- (e.g. set to null) at end of script
        gJSC's evaluateScript
    on error
        set gJSC to current application's JSContext's new()
        log ("new JSC")
    end try
    set v to unwrap((gJSC's evaluateScript:(strJS))'s toObject())
    if v is missing value then
        |Left|("JS evaluation error")
    else
        |Right|(v)
    end if
end evalJSLR

-- GENERIC FUNCTIONS --------------------------------------------------

-- Left :: a -> Either a b
on |Left|(x)
    {type:"Either", |Left|:x, |Right|:missing value}
end |Left|

-- Right :: b -> Either a b
on |Right|(x)
    {type:"Either", |Left|:missing value, |Right|:x}
end |Right|

-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
    {type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple

-- Absolute value.
-- abs :: Num -> Num
on abs(x)
    if 0 > x then
        -x
    else
        x
    end if
end abs

-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
on bindLR(m, mf)
    if missing value is not |Right| of m then
        mReturn(mf)'s |λ|(|Right| of m)
    else
        m
    end if
end bindLR

-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from lng to 1 by -1
            set v to |λ|(item i of xs, v, i, xs)
        end repeat
        return v
    end tell
end foldr

-- id :: a -> a
on |id|(x)
    x
end |id|

-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
    if n > length of strText then
        text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
    else
        strText
    end if
end justifyRight

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- 'The mapAccumR function behaves like a combination of map and foldr; 
--  it applies a function to each element of a list, passing an accumulating 
--  parameter from |Right| to |Left|, and returning a final value of this 
--  accumulator together with the new list.' (see Hoogle)
-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
on mapAccumR(f, acc, xs)
    script
        on |λ|(x, a, i)
            tell mReturn(f) to set pair to |λ|(|1| of a, x, i)
            Tuple(|1| of pair, (|2| of pair) & |2| of a)
        end |λ|
    end script
    foldr(result, Tuple(acc, []), xs)
end mapAccumR

-- min :: Ord a => a -> a -> a
on min(x, y)
    if y < x then
        y
    else
        x
    end if
end min

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn

-- not :: Bool -> Bool
on |not|(p)
    not p
end |not|

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary 
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
    set out to {}
    if n < 1 then return out
    set dbl to {a}
    
    repeat while (n > 1)
        if (n mod 2) > 0 then set out to out & dbl
        set n to (n div 2)
        set dbl to (dbl & dbl)
    end repeat
    return out & dbl
end replicate

-- unlines :: [String] -> String
on unlines(xs)
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, linefeed}
    set str to xs as text
    set my text item delimiters to dlm
    str
end unlines

-- unwords :: [String] -> String
on unwords(xs)
    set {dlm, my text item delimiters} to {my text item delimiters, space}
    set s to xs as text
    set my text item delimiters to dlm
    return s
end unwords

-- unwrap :: NSObject -> a
on unwrap(objCValue)
    if objCValue is missing value then
        missing value
    else
        set ca to current application
        item 1 of ((ca's NSArray's arrayWithObject:objCValue) as list)
    end if
end unwrap

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
    set lng to min(length of xs, length of ys)
    if 1 > lng then return {}
    set lst to {}
    tell mReturn(f)
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, item i of ys)
        end repeat
        return lst
    end tell
end zipWith
Output:
32 bit signed integers   (in two's complement binary encoding)

 a = 255 ->            255 -> 00000000000000000000000011111111
 b = 170 ->            170 -> 00000000000000000000000010101010

 a AND b ->            170 -> 00000000000000000000000010101010
  a OR b ->            255 -> 00000000000000000000000011111111
 a XOR b ->             85 -> 00000000000000000000000001010101
   NOT a ->           -256 -> 11111111111111111111111100000000
  a << b ->              0 -> 00000000000000000000000000000000
 a >>> b ->              0 -> 00000000000000000000000000000000
  a >> b ->              0 -> 00000000000000000000000000000000


Second option – writing our own bitwise functions for Applescript:

use AppleScript version "2.4"
use framework "Foundation"
use scripting additions

-- BITWISE OPERATIONS FOR APPLESCRIPT ---------------------------------------

-- bitAND :: Int -> Int -> Int
on bitAND(x, y)
    bitOp2(my |and|, x, y)
end bitAND

-- bitOR :: Int -> Int -> Int
on bitOR(x, y)
    bitOp2(my |or|, x, y)
end bitOR

-- bitXOr :: Int -> Int -> Int
on bitXOR(x, y)
    bitOp2(my xor, x, y)
end bitXOR

-- bitNOT :: Int -> Int
on bitNOT(x)
    script notBits
        on |λ|(xs)
            bindLR(intFromBitsLR(map(my |not|, xs)), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(x), notBits)
end bitNOT

-- (<<) :: Int -> Int -> Int
on |<<|(a, b)
    script logicLshift
        on |λ|(bs)
            bindLR(intFromBitsLR(take(32, drop(b, bs) & replicate(b, false))), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(a), logicLshift)
end |<<|

-- Logical right shift
-- (>>>) :: Int -> Int -> Int
on |>>>|(a, b)
    script logicRShift
        on |λ|(bs)
            bindLR(intFromBitsLR(take(32, replicate(b, false) & drop(b, bs))), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(a), logicRShift)
end |>>>|

-- Arithmetic right shift
-- (>>) :: Int -> Int -> Int
on |>>|(a, b)
    script arithRShift
        on |λ|(bs)
            if 0 < length of bs then
                set sign to item 1 of bs
            else
                set sign to false
            end if
            bindLR(intFromBitsLR(take(32, replicate(b, sign) & drop(b, bs))), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(a), arithRShift)
    
end |>>|

-- bitRotL :: Int -> Int -> Int
on bitRotL(a, b)
    script lRot
        on |λ|(bs)
            bindLR(intFromBitsLR(rotate(-b, bs)), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(a), lRot)
end bitRotL

-- bitRotR :: Int -> Int -> Int
on bitRotR(a, b)
    script rRot
        on |λ|(bs)
            bindLR(intFromBitsLR(rotate(b, bs)), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(a), rRot)
end bitRotR

-- TEST ---------------------------------------------------------------

-- bitWise :: Int -> Int -> String
on bitWise(a, b)
    set labels to {"a AND b", "a OR b", "a XOR b", "NOT a", ¬
        "a << b", "a >>> b", "a >> b", "ROTL a b", "ROTR a b"}
    set xs to {bitAND(a, b), bitOR(a, b), bitXOR(a, b), bitNOT(a), ¬
        |<<|(a, b), |>>>|(a, b), |>>|(a, b), bitRotL(a, b), bitRotR(a, b)}
    
    script asBin
        property arrow : " -> "
        on |λ|(x, y)
            justifyRight(8, space, x) & arrow & ¬
                justifyRight(14, space, y as text) & arrow & showBinary(y)
        end |λ|
    end script
    
    unlines({"32 bit signed integers   (in two's complement binary encoding)", "", ¬
        unlines(zipWith(asBin, ¬
            {"a = " & a as text, "b = " & b as text}, {a, b})), "", ¬
        unlines(zipWith(asBin, labels, xs))})
end bitWise

on run
    -- Assuming 32 bit signed integers (in two's complement binary encoding)
    
    set strClip to bitWise(255, 170)
    set the clipboard to strClip
    strClip
end run

-- BINARY INTEGER CONVERSIONS AND DISPLAY  ------------------------------------------------------------------

-- bitsFromInt :: Int -> Either String [Bool]
on bitsFromIntLR(x)
    script go
        on |λ|(n, d, bools)
            set xs to {0  d} & bools
            if n > 0 then
                |λ|(n div 2, n mod 2, xs)
            else
                xs
            end if
        end |λ|
    end script
    
    set a to abs(x)
    if (2.147483647E+9) < a then
        |Left|("Integer overflow – maximum is (2 ^ 31) - 1")
    else
        set bs to go's |λ|(a div 2, a mod 2, {})
        if 0 > x then
            |Right|(replicate(32 - (length of bs), true) & ¬
                binSucc(map(my |not|, bs)))
        else
            set bs to go's |λ|(a div 2, a mod 2, {})
            |Right|(replicate(32 - (length of bs), false) & bs)
        end if
    end if
end bitsFromIntLR

-- intFromBitsLR :: [Bool] -> Either String Int
on intFromBitsLR(xs)
    script bitSum
        on |λ|(x, a, i)
            if x then
                a + (2 ^ (31 - i))
            else
                a
            end if
        end |λ|
    end script
    
    set lngBits to length of xs
    if 32 < lngBits then
        |Left|("Applescript limited to signed 32 bit integers")
    else if 1 > lngBits then
        |Right|(0 as integer)
    else
        set bits to (rest of xs)
        if item 1 of xs then
            |Right|(0 - foldr(bitSum, 1, map(my |not|, bits)) as integer)
        else
            |Right|(foldr(bitSum, 0, bits) as integer)
        end if
    end if
end intFromBitsLR

-- showBinary :: Int -> String
on showBinary(x)
    script showBin
        on |λ|(xs)
            script bChar
                on |λ|(b)
                    if b then
                        "1"
                    else
                        "0"
                    end if
                end |λ|
            end script
            
            map(bChar, xs)
        end |λ|
    end script
    bindLR(my bitsFromIntLR(x), showBin)
end showBinary

-- bitOp2 :: ((Bool -> Bool -> Bool) -> Int -> Int -> Int
on bitOp2(f, x, y)
    script yBits
        on |λ|(bitX)
            script zipOp
                on |λ|(bitY)
                    bitZipWithLR(f, bitX, bitY)
                end |λ|
            end script
            bindLR(bindLR(bindLR(bitsFromIntLR(y), ¬
                zipOp), my intFromBitsLR), my |id|)
        end |λ|
    end script
    bindLR(bitsFromIntLR(x), yBits)
end bitOp2

-- bitZipWithLR ::  ((a, b) -> c ) -> [Bool] -> [Bool] -> Either String  [(Bool, Bool)]
on bitZipWithLR(f, xs, ys)
    set intX to length of xs
    set intY to length of ys
    set intMax to max(intX, intY)
    if 33 > intMax then
        if intX > intY then
            set {bxs, bys} to {xs, ys & replicate(intX - intY, false)}
        else
            set {bxs, bys} to {xs & replicate(intY - intX, false), ys}
        end if
        tell mReturn(f)
            set lst to {}
            repeat with i from 1 to intMax
                set end of lst to |λ|(item i of bxs, item i of bys)
            end repeat
            return |Right|(lst)
        end tell
    else
        |Left|("Above maximum of 32 bits")
    end if
end bitZipWithLR

-- Successor function (+1) for unsigned binary integer

-- binSucc :: [Bool] -> [Bool]
on binSucc(bs)
    script succ
        on |λ|(a, x)
            if a then
                if x then
                    Tuple(a, false)
                else
                    Tuple(x, true)
                end if
            else
                Tuple(a, x)
            end if
        end |λ|
    end script
    
    set tpl to mapAccumR(succ, true, bs)
    if |1| of tpl then
        {true} & |2| of tpl
    else
        |2| of tpl
    end if
end binSucc

-- BOOLEANS  ----------------------------------------------------

-- |or| :: Bool -> Bool -> Bool
on |or|(x, y)
    x or y
end |or|

-- |and| :: Bool -> Bool -> Bool
on |and|(x, y)
    x and y
end |and|

-- xor :: Bool -> Bool -> Bool
on xor(x, y)
    (x or y) and not (x and y)
end xor

-- not :: Bool -> Bool
on |not|(p)
    not p
end |not|

-- GENERAL ----------------------------------------------------

-- Right :: b -> Either a b
on |Right|(x)
    {type:"Either", |Left|:missing value, |Right|:x}
end |Right|

-- Left :: a -> Either a b
on |Left|(x)
    {type:"Either", |Left|:x, |Right|:missing value}
end |Left|

-- Tuple (,) :: a -> b -> (a, b)
on Tuple(a, b)
    {type:"Tuple", |1|:a, |2|:b, length:2}
end Tuple

-- Absolute value.
-- abs :: Num -> Num
on abs(x)
    if 0 > x then
        -x
    else
        x
    end if
end abs

-- bindLR (>>=) :: Either a -> (a -> Either b) -> Either b
on bindLR(m, mf)
    if missing value is not |Right| of m then
        mReturn(mf)'s |λ|(|Right| of m)
    else
        m
    end if
end bindLR

-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
    if class of xs is not string then
        if n < length of xs then
            items (1 + n) thru -1 of xs
        else
            {}
        end if
    else
        if n < length of xs then
            text (1 + n) thru -1 of xs
        else
            ""
        end if
    end if
end drop

-- foldr :: (a -> b -> b) -> b -> [a] -> b
on foldr(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from lng to 1 by -1
            set v to |λ|(item i of xs, v, i, xs)
        end repeat
        return v
    end tell
end foldr

-- id :: a -> a
on |id|(x)
    x
end |id|

-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller, strText)
    if n > length of strText then
        text -n thru -1 of ((replicate(n, cFiller) as text) & strText)
    else
        strText
    end if
end justifyRight

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
    tell mReturn(f)
        set lng to length of xs
        set lst to {}
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, i, xs)
        end repeat
        return lst
    end tell
end map

-- 'The mapAccumR function behaves like a combination of map and foldr; 
--  it applies a function to each element of a list, passing an accumulating 
--  parameter from |Right| to |Left|, and returning a final value of this 
--  accumulator together with the new list.' (see Hoogle)
-- mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
on mapAccumR(f, acc, xs)
    script
        on |λ|(x, a, i)
            tell mReturn(f) to set pair to |λ|(|1| of a, x, i)
            Tuple(|1| of pair, (|2| of pair) & |2| of a)
        end |λ|
    end script
    foldr(result, Tuple(acc, []), xs)
end mapAccumR

-- max :: Ord a => a -> a -> a
on max(x, y)
    if x > y then
        x
    else
        y
    end if
end max

-- min :: Ord a => a -> a -> a
on min(x, y)
    if y < x then
        y
    else
        x
    end if
end min

-- Lift 2nd class handler function into 1st class script wrapper 
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    if class of f is script then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary 
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
    set out to {}
    if n < 1 then return out
    set dbl to {a}
    
    repeat while (n > 1)
        if (n mod 2) > 0 then set out to out & dbl
        set n to (n div 2)
        set dbl to (dbl & dbl)
    end repeat
    return out & dbl
end replicate

-- rotate :: Int -> [a] -> [a]
on rotate(n, xs)
    set lng to length of xs
    if 0 > n then
        set d to (-n) mod lng
    else
        set d to lng - (n mod lng)
    end if
    drop(d, xs) & take(d, xs)
end rotate

-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
    if class of xs is string then
        if 0 < n then
            text 1 thru min(n, length of xs) of xs
        else
            ""
        end if
    else
        if 0 < n then
            items 1 thru min(n, length of xs) of xs
        else
            {}
        end if
    end if
end take

-- unlines :: [String] -> String
on unlines(xs)
    set {dlm, my text item delimiters} to ¬
        {my text item delimiters, linefeed}
    set str to xs as text
    set my text item delimiters to dlm
    str
end unlines

-- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
on zipWith(f, xs, ys)
    set lng to min(length of xs, length of ys)
    if 1 > lng then return {}
    set lst to {}
    tell mReturn(f)
        repeat with i from 1 to lng
            set end of lst to |λ|(item i of xs, item i of ys)
        end repeat
        return lst
    end tell
end zipWith
Output:
32 bit signed integers   (in two's complement binary encoding)

 a = 255 ->            255 -> 00000000000000000000000011111111
 b = 170 ->            170 -> 00000000000000000000000010101010

 a AND b ->            170 -> 00000000000000000000000010101010
  a OR b ->            255 -> 00000000000000000000000011111111
 a XOR b ->             85 -> 00000000000000000000000001010101
   NOT a ->           -256 -> 11111111111111111111111100000000
  a << b ->              0 -> 00000000000000000000000000000000
 a >>> b ->              0 -> 00000000000000000000000000000000
  a >> b ->              0 -> 00000000000000000000000000000000
ROTL a b ->         261120 -> 00000000000000111111110000000000
ROTR a b ->  1.06954752E+9 -> 00111111110000000000000000000000

A third option is the mathematical one, although it still involves looping through the hypothetical bits where two numbers are involved, unless I've missed a trick. The handlers below all assume positive number inputs (except for arithmeticRightShift()) and attempt to return results of class integer. The "hi bits" of numbers which don't fit the specified register sizes are discarded.

on bitwiseAND(n1, n2, registerSize)
    set out to 0
    -- Multiplying equivalent bit values by each other gives 1 where they're both 1 and 0 otherwise.
    repeat with i from 0 to registerSize - 1
        tell (2 ^ i) to set out to out + (n1 div it) * (n2 div it) mod 2 * it
    end repeat
    
    return out div 1
end bitwiseAND

on bitwiseOR(n1, n2, registerSize)
    set out to 0
    -- Adding bit values plus a further 1 gives a carry of 1 if either or both values are 1, but not if they're both 0.
    repeat with i from 0 to registerSize - 1
        tell (2 ^ i) to set out to out + (n1 div it mod 2 + n2 div it mod 2 + 1) div 2 * it
    end repeat
    
    return out div 1
end bitwiseOR

on bitwiseXOR(n1, n2, registerSize)
    set out to 0
    -- Adding bit values gives 1 if they're different and 0 (with or without a carry) if they're both the same.
    repeat with i from 0 to registerSize - 1
        tell (2 ^ i) to set out to out + (n1 div it + n2 div it) mod 2 * it
    end repeat
    
    return out div 1
end bitwiseXOR

on bitwiseNOT(n, registerSize)
    -- Subtract n from an all-1s value (ie. from 1 less than 2 ^ registerSize).
    tell (2 ^ registerSize) to return (it - 1 - n mod it) div 1
end bitwiseNOT

on leftShift(n, shift, registerSize)
    -- Multiply by 2 ^ shift and lose any bits beyond the left of the register.
    return n * (2 ^ shift) mod (2 ^ registerSize) div 1
end leftShift

on rightShift(n, shift, registerSize)
    -- Divide by 2 ^ shift and lose any bits beyond the right of the register.
    return n mod (2 ^ registerSize) div (2 ^ shift)
end rightShift

on arithmeticRightShift(n, shift, registerSize)
    set n to n mod (2 ^ registerSize)
    -- If the number's positive and notionally sets the sign bit, reinterpret it as a negative.
    tell (2 ^ (registerSize - 1)) to if (n  it) then set n to n mod it - it
    -- Right shift by the appropriate amount
    set out to n div (2 ^ shift)
    -- If the result for a negative is 0, change it to -1.
    if ((n < 0) and (out is 0)) then set out to -1
    return out
end arithmeticRightShift

on leftRotate(n, shift, registerSize)
    -- Cut the register at the appropriate point, left shift the right side and right shift the left by the appropriate amounts.
    set shift to shift mod (registerSize)
    return leftShift(n, shift, registerSize) + rightShift(n, registerSize - shift, registerSize)
end leftRotate

on rightRotate(n, shift, registerSize)
    -- As left rotate, but applying the shift amounts to the opposite sides.
    set shift to shift mod registerSize
    return rightShift(n, shift, registerSize) + leftShift(n, registerSize - shift, registerSize)
end rightRotate

bitwiseAND(92, 7, 16) --> 4
bitwiseOR(92, 7, 16) --> 95
bitwiseXOR(92, 7, 16) --> 91
bitwiseNOT(92, 16) --> 64453
bitwiseNOT(92, 8) --> 163
bitwiseNOT(92, 32) --> 4.294967203E+9
leftShift(92, 7, 16) --> 11776
leftShift(92, 7, 8) --> 0
rightShift(92, 7, 16) --> 0
arithmeticRightShift(92, 7, 16) --> 0
arithmeticRightShift(-92, 7, 16) --> -1
leftRotate(92, 7, 8) --> 46
rightRotate(92, 7, 8) --> 184
rightRotate(92, 7, 16) --> 47104

ARM Assembly

Works with: as version Raspberry Pi
/* ARM assembly Raspberry PI  */
/*  program binarydigit.s   */
/* Constantes    */
.equ STDOUT, 1
.equ WRITE,  4
.equ EXIT,   1
/* Initialized data */
.data
szMessResultAnd: .asciz "Result of And : \n"
szMessResultOr: .asciz "Result of Or : \n"
szMessResultEor: .asciz "Result of Exclusif Or : \n"
szMessResultNot: .asciz "Result of Not : \n"
szMessResultLsl: .asciz "Result of left shift : \n"
szMessResultLsr: .asciz "Result of right shift : \n"
szMessResultAsr: .asciz "Result of Arithmetic right shift : \n"
szMessResultRor: .asciz "Result of rotate right : \n"
szMessResultRrx: .asciz "Result of rotate right with extend : \n"
szMessResultClear: .asciz "Result of Bit Clear : \n"

sMessAffBin: .ascii "Register value : "
sZoneBin: .space 36,' '
              .asciz "\n"

/*  code section */
.text
.global main 
main:                /* entry of program  */
    push {fp,lr}    /* save des  2 registres */
    ldr r0,iAdrszMessResultAnd
    bl affichageMess
    mov r0,#5
    and r0,#15
    bl affichage2
    ldr r0,iAdrszMessResultOr
    bl affichageMess
    mov r0,#5
    orr r0,#15
    bl affichage2
    ldr r0,iAdrszMessResultEor
    bl affichageMess
    mov r0,#5
    eor r0,#15
    bl affichage2
    ldr r0,iAdrszMessResultNot
    bl affichageMess
    mov r0,#5
    mvn r0,r0
    bl affichage2
    ldr r0,iAdrszMessResultLsl
    bl affichageMess
    mov r0,#5
    lsl r0,#1
    bl affichage2
    ldr r0,iAdrszMessResultLsr
    bl affichageMess
    mov r0,#5
    lsr r0,#1
    bl affichage2
    ldr r0,iAdrszMessResultAsr
    bl affichageMess
    mov r0,#-5
    bl affichage2
    mov r0,#-5
    asr r0,#1
    bl affichage2
    ldr r0,iAdrszMessResultRor
    bl affichageMess
    mov r0,#5
    ror r0,#1
    bl affichage2
    ldr r0,iAdrszMessResultRrx
    bl affichageMess
    mov r0,#5
    mov r1,#15
    rrx r0,r1
    bl affichage2
	ldr r0,iAdrszMessResultClear
    bl affichageMess
	mov r0,#5
    bic r0,#0b100     @  clear 3ieme bit
    bl affichage2
	bic r0,#4          @  clear 3ieme bit  ( 4 = 100 binary)
    bl affichage2

100:   /* standard end of the program */
    mov r0, #0                  @ return code
    pop {fp,lr}                 @restaur 2 registers
    mov r7, #EXIT              @ request to exit program
    swi 0                       @ perform the system call
iAdrszMessResultAnd:  .int szMessResultAnd
iAdrszMessResultOr:  .int szMessResultOr
iAdrszMessResultEor:  .int szMessResultEor
iAdrszMessResultNot:  .int szMessResultNot
iAdrszMessResultLsl:  .int szMessResultLsl
iAdrszMessResultLsr:  .int szMessResultLsr
iAdrszMessResultAsr:  .int szMessResultAsr
iAdrszMessResultRor:  .int szMessResultRor
iAdrszMessResultRrx:  .int szMessResultRrx
iAdrszMessResultClear:  .int szMessResultClear
/******************************************************************/
/*     register display in binary                              */ 
/******************************************************************/
/* r0 contains the register */
affichage2:
    push {r0,lr}     /* save  registers */  
    push {r1-r5} /* save others registers */
    mrs r5,cpsr  /* saves state register in r5 */
    ldr r1,iAdrsZoneBin
    mov r2,#0    @ read bit position counter
    mov r3,#0    @ position counter of the written character
1:               @ loop 
    lsls r0,#1    @ left shift  with flags
    movcc r4,#48  @ flag carry off   character '0'
    movcs r4,#49  @ flag carry on    character '1'
    strb r4,[r1,r3]   @ character ->   display zone
    add r2,r2,#1      @ + 1 read bit position counter
    add r3,r3,#1      @ + 1 position counter of the written character
    cmp r2,#8         @ 8 bits read
    addeq r3,r3,#1   @ + 1 position counter of the written character
    cmp r2,#16         @ etc
    addeq r3,r3,#1
    cmp r2,#24
    addeq r3,r3,#1
    cmp r2,#31        @ 32 bits shifted ?
    ble 1b           @  no -> loop

    ldr r0,iAdrsZoneMessBin   @ address of message result
    bl affichageMess           @ display result
    
100:
    msr cpsr,r5    /*restaur state register */
    pop {r1-r5}  /* restaur others registers */
    pop {r0,lr}
    bx lr	
iAdrsZoneBin: .int sZoneBin	   
iAdrsZoneMessBin: .int sMessAffBin

/******************************************************************/
/*     display text with size calculation                         */ 
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
    push {fp,lr}    			/* save  registres */ 
    push {r0,r1,r2,r7}    		/* save others registres */
    mov r2,#0   				/* counter length */
1:      	/* loop length calculation */
    ldrb r1,[r0,r2]  			/* read octet start position + index */
    cmp r1,#0       			/* if 0 its over */
    addne r2,r2,#1   			/* else add 1 in the length */
    bne 1b          			/* and loop */
                                /* so here r2 contains the length of the message */
    mov r1,r0        			/* address message in r1 */
    mov r0,#STDOUT      		/* code to write to the standard output Linux */
    mov r7, #WRITE             /* code call system write */
    swi #0                      /* call systeme */
    pop {r0,r1,r2,r7}     		/* restaur others registres */
    pop {fp,lr}    				/* restaur des  2 registres */ 
    bx lr	        			/* return  */

Arturo

a: 255
b: 2

print [a "AND" b "=" and a b]
print [a "OR" b "=" or a b]
print [a "XOR" b "=" xor a b]
print ["NOT" a "=" not a]
print [a "SHL" b "=" shl a b]
print [a "SHR" b "=" shr a b]
Output:
255 AND 2 = 2 
255 OR 2 = 255 
255 XOR 2 = 253 
NOT 255 = -256 
255 SHL 2 = 1020 
255 SHR 2 = 63 

AutoHotkey

bitwise(3, 4)
bitwise(a, b)
{
  MsgBox % "a and b: " . a & b 
  MsgBox % "a or b: " . a | b 
  MsgBox % "a xor b: " . a ^ b 
  MsgBox % "not a: " . ~a       ; treated as unsigned integer
  MsgBox % "a << b: " . a << b  ; left shift
  MsgBox % "a >> b: " . a >> b  ; arithmetic right shift
}

AutoIt

No arithmetic shift.

bitwise(255, 5)
Func bitwise($a, $b)
  MsgBox(1, '', _
    $a & " AND " & $b & ": " & BitAND($a, $b) & @CRLF & _
    $a & " OR " & $b & ": " & BitOR($a, $b) & @CRLF & _
    $a & " XOR " & $b & ": " & BitXOR($a, $b) & @CRLF & _
    "NOT " & $a & ": " & BitNOT($a) & @CRLF & _
    $a & " SHL " & $b & ": " & BitShift($a, $b * -1) & @CRLF & _
    $a & " SHR " & $b & ": " & BitShift($a, $b) & @CRLF & _
    $a & " ROL " & $b & ": " & BitRotate($a, $b) & @CRLF & _
    $a & " ROR " & $b & ": " & BitRotate($a, $b * -1) & @CRLF )
EndFunc
Output:
255 AND 5: 5
255 OR 5: 255
255 XOR 5: 250
NOT 255: -256
255 SHL 5: 8160
255 SHR 5: 7
255 ROL 5: 8160
255 ROR 5: 63495

AWK

Standard awk does not have bitwise operators. Gawk has built-in functions for many bitwise operations. No rotation of bits.

Works with: gawk
BEGIN {
  n = 11
  p = 1
  print n " or  " p " = " or(n,p)
  print n " and " p " = " and(n,p)
  print n " xor " p " = " xor(n,p)
  print n " <<  " p " = " lshift(n, p)   # left shift
  print n " >>  " p " = " rshift(n, p)   # right shift
  printf "not %d = 0x%x\n", n, compl(n)  # bitwise complement
}

OpenBSD /usr/bin/awk (a variant of nawk) has these same functions, with a few differences. Gawk uses 53-bit unsigned integers, but OpenBSD awk uses 32-bit signed integers. Therefore Gawk prints not 11 = 0x1ffffffffffff4, but OpenBSD awk prints not 11 = 0xfffffff4.

Axe

Lbl BITS
r₁→A
r₂→B
Disp "AND:",A·B▶Dec,i
Disp "OR:",AᕀB▶Dec,i
Disp "XOR:",A▫B▶Dec,i
Disp "NOT:",not(A)ʳ▶Dec,i
.No language support for shifts or rotations
Return

Note that the symbols for AND, OR, and XOR are the stat plot marks near the bottom of the Catalog.

Babel

In Babel, we prefix the logic operators with a 'c' to denote that they are C-style operations, that is, they are word-width operations, not arbitrary size operations. The following program combines the numbers 5 and 9 using the various bitwise operators and then displays the results.

({5 9}) ({cand} {cor} {cnor} {cxor} {cxnor} {shl} {shr} {ashr} {rol}) cart ! {give <- cp -> compose !} over ! {eval} over ! {;} each
Output:
[val 0x1 ]
[val 0xd ]
[val 0xfffffff7 ]
[val 0xc ]
[val 0xfffffff3 ]
[val 0xa00 ]
[val 0x0 ]
[val 0x0 ]
[val 0xa00 ]

The cnot operator works on just one operand:

9 cnot ;
Output:
[val 0xfffffff6 ]

BASIC

Works with: QuickBasic version 4.5

QuickBasic does not have shift or rotate operations defined. Here are the logical operations:

SUB bitwise (a, b)
  PRINT a AND b
  PRINT a OR b
  PRINT a XOR b
  PRINT NOT a
END SUB
Works with: FreeBASIC

FreeBASIC does not have rotate operators. Shift Right operator performs arithmetic shift if the left value is signed number and logical shift if the left value is unsigned number.

SUB bitwise (a AS Integer, b AS Integer)
  DIM u AS UInteger

  PRINT "a AND b = "; a AND b
  PRINT "a OR b  = "; a OR b
  PRINT "a XOR b = "; a XOR b
  PRINT "NOT a   = "; NOT a
  PRINT "a SHL b = "; a SHL b
  PRINT "a SHR b (arithmetic) = "; a SHR b
  u = a
  PRINT "a SHR b (logical) = "; u SHR b
END SUB

Commodore BASIC

Commodore BASIC V2.0 does not have XOR, left shift, right shift, right arithmetic shift, left rotate, and right rotate operators. In this implementation the XOR operation is done with an equivalent formula.

10 INPUT "A="; A
20 INPUT "B="; B
30 PRINT "A AND B =" A AND B    :rem AND
40 PRINT "A OR B =" A OR B      :rem OR
50 PRINT "A XOR B =" (A AND(NOT B))OR((NOT A)AND B)    :rem XOR
60 PRINT "NOT A =" NOT A        :rem NOT
Input:
A=? 2
B=? 6
Output:
A AND B = 2
A OR B = 6
A XOR B = 4
NOT A =-3

IS-BASIC

100 LET A=10:LET B=12
110 PRINT A;"and";B;"=";A AND B
120 PRINT A;"band";B;"=";A BAND B
130 PRINT A;"or ";B;"=";A OR B
140 PRINT A;"bor";B;"=";A BOR B
150 PRINT A;"xor";B;"=";XOR(A,B)
160 PRINT " not";A;"=";NOT A
170 DEF XOR(A,B)=(A BOR B)-(A BAND B)

Sinclair ZX81 BASIC

ZX81 BASIC has no integer type (a major lacuna) and consequently no bitwise operations; but the CPU has them, so we can use a tiny machine code routine to do the actual work and then return to BASIC to print the answers.

This program is a proof of concept, really, and will only work with 8-bit values. In addition, with 1k of RAM there is only space for the first of the shifts/rotates; the others could be implemented along exactly the same lines.

The disassembly of the Z80 code would be:

           org   4084
3a 83 40   ld    a, (4083)
47         ld    b, a
3a 82 40   ld    a, (4082)
a0         and   b
00         nop            ; negate and shift instructions take 2 bytes
06 00      ld    b, 0
4f         ld    c, a     ; value in BC reg pair is returned to BASIC
c9         ret

We then use POKE statements to replace the and instruction with each successive operation we want to perform.

Note that the left shift instruction shifts by one bit at a time, so we need a loop. The present program has the loop written in BASIC, because it seemed sensible to use BASIC for anything we could use it for and only drop into machine code when there was no alternative; it would of course be faster to do the whole thing in machine code.

Finally, observe that the first line reserves 15 bytes for our machine code routine by hiding them in a comment.

 10 REM ABCDEFGHIJKLMNO
 20 INPUT A
 30 INPUT B
 40 POKE 16514,A
 50 POKE 16515,B
 60 LET ADDR=16516
 70 LET R$="3A8340473A8240A00006004FC9"
 80 POKE ADDR,CODE R$*16+CODE R$(2)-476
 90 LET R$=R$(3 TO )
100 LET ADDR=ADDR+1
110 IF R$<>"" THEN GOTO 80
120 PRINT A;" AND ";B;" = ";USR 16516
130 POKE 16523,176
140 PRINT A;" OR ";B;" = ";USR 16516
150 POKE 16523,168
160 PRINT A;" XOR ";B;" = ";USR 16516
170 POKE 16523,237
180 POKE 16524,68
190 PRINT "NOT ";A;" = ";USR 16516
200 POKE 16523,203
210 POKE 16524,39
220 FOR I=1 TO B
230 POKE 16514,USR 16516
240 NEXT I
250 PRINT A;" << ";B;" = ";PEEK 16514
Input:
21
3
Output:
21 AND 3 = 1
21 OR 3 = 23
21 XOR 3 = 22
NOT 21 = 235
21 << 3 = 168

Tiny BASIC

Tiny BASIC has only one data type- the signed 16-bit integer- and no bitwise operations. This code emulates bitwise operations on unsigned 15-bit integers. Since the logic gates AND, NOR, and NXOR are characterised by having exactly two, exactly zero, and exactly one on bit in their inputs, their code is identical except for having a different number of target on bits (line 500 onward). The OR and XOR gates are just NOT NOR and NOT NXOR. The shift and rotate operations are simple divisions and mutiplications by 2, with care taken to avoid overflow, and a carry flag where applicable.

REM VARIABLES
REM      A = first number
REM      B = second number
REM      C = result
REM      P = current bit position
REM      U = number of on bits at position P, or carry flag for rotate ops
REM      Z = logic gate selection, then target number of on bits

10  LET P = 16384
    LET F = 0
    PRINT "1.   A and B"
    PRINT "2.   A  or B"
    PRINT "3.   A xor B"
    PRINT "4.   not A"
    PRINT "5.   A shr B"
    PRINT "6.   A shl B"
    PRINT "7.   A ror B"
    PRINT "8.   A rol B"
    PRINT "Select a bitwise operation."
    INPUT Z
    IF Z < 1 THEN GOTO 10
    IF Z > 8 THEN GOTO 10
11  PRINT "What is A? "
    INPUT A
    IF A < 0 THEN GOTO 11
    IF Z = 4 THEN GOTO 15
12  PRINT "What is B?"
    INPUT B
    IF B < 0 THEN GOTO 12
15  GOSUB 100 + 10*Z
    PRINT "The result is ", C,"."
    END
110 LET Z = 2
    GOSUB 500
    RETURN
120 LET Z = 0
    GOSUB 500
    LET A = C
    GOSUB 140
    RETURN
130 LET Z = 1
    GOSUB 500
    LET A = C
    GOSUB 140
    RETURN
140 LET C = 32767 - A
    RETURN
150 IF B = 0 THEN RETURN
    LET A = A / 2
    LET B = B - 1
    GOTO 150
160 IF B = 0 THEN RETURN
    IF A > P THEN LET A = A - P
    LET A = A * 2
    LET B = B - 1
    GOTO 160
170 IF B = 0 THEN RETURN
    LET U = 0
    IF 2*(A/2) <> A THEN LET U = 1
    LET A = A / 2 + U*P
    LET B = B - 1
    LET C = A
    GOTO 170
180 IF B = 0 THEN RETURN
    LET U = 0
    IF A >= P THEN LET U = 1
    LET A = (A-F*P)*2 + U
    LET B = B - 1
    LET C = A
    GOTO 180
500 LET U = 0
    IF B >= P THEN LET U = 1
    IF A >= P THEN LET U = U + 1
    IF U = Z THEN LET C = C + P
    IF A >= P THEN LET A = A - P
    IF B >= P THEN LET B = B - P
    LET P = P / 2
    IF P = 0 THEN RETURN
    GOTO 500

uBasic/4tH

Translation of: 11l

uBasic/4tH provides the most common bitwise operations as functions. It's not too difficult to provide the arithmetic left and right shift operations.

x = 10
y = 2

Print "x       = "; x 
Print "y       = "; y 
Print "NOT x   = "; NOT(x)
Print "x AND y = "; AND(x, y)
Print "x OR  y = "; OR(x, y)
Print "x XOR y = "; XOR(x, y)
Print "x SHL y = "; SHL(x, y)
Print "x SHR y = "; SHL(x, -y) 
Print "x ROL y = "; FUNC(_rotl (x, y))
Print "x ROR y = "; FUNC(_rotr (x, y))

End

_rotr Param (2) : Return (OR(SHL(a@, -b@), SHL(a@, Info("wordsize")-b@)))
_rotl Param (2) : Return (OR(SHL(a@, b@), SHL(a@, -Info("wordsize")+b@)))
Output:
x       = 10
y       = 2
NOT x   = -11
x AND y = 2
x OR  y = 10
x XOR y = 8
x SHL y = 40
x SHR y = 2
x ROL y = 40
x ROR y = -9223372036854775806

0 OK, 0:320

BASIC256

# bitwise operators - floating point numbers will be cast to integer
a = 0b00010001
b = 0b11110000
print a
print int(a * 2)  # shift left (multiply by 2)
print a \ 2  # shift right (integer divide by 2)
print a | b  # bitwise or on two integer values
print a & b  # bitwise or on two integer values

Batch File

The SET command with the /A option supports arithmetic and bit operations on signed 8 byte integers.

The SET /? documentation claims it supports logical shift operations, but in reality it performs an arithmetic right shift.

The following script (bitops.bat) not only demonstrates the basic bit operations, it also uses bit operations to convert each integral value into a string of 32 binary digits.

@echo off
setlocal
set /a "a=%~1, b=%~2"
call :num2bin %a% aStr
call :num2bin %b% bStr

::AND
set /a "val=a&b"
call :display "%a% AND %b%" %val% %aStr% %bStr%

::OR
set /a "val=a|b"
call :display "%a% OR %b%" %val% %aStr% %bStr%

::XOR
set /a "val=a^b"
call :display "%a% XOR %b%" %val% %aStr% %bStr%

::NOT
set /a "val=~a"
call :display "NOT %a%" %val% %aStr%

::LEFT SHIFT
set /a "val=a<<b"
call :display "%a% Left Shift %b%" %val% %aStr%

::ARITHMETIC RIGHT SHIFT
set /a "val=a>>b"
call :display "%a% Arithmetic Right Shift %b%" %val% %aStr%

::The remaining operations do not have native support
::The implementations use additional operators
::  %% = mod
::  ! = logical negation where !(zero)=1 and !(non-zero)=0
::  * = multiplication
::  - = subtraction

::LOGICAL RIGHT SHIFT (No native support)
set /a "val=(a>>b)&~((0x80000000>>b-1)*!!b)"
call :display "%a% Logical Right Shift %b%" %val% %aStr%

::ROTATE LEFT (No native support)
set /a "val=(a<<b%%32) | (a>>32-b%%32)&~((0x80000000>>31-b%%32)*!!(32-b%%32))"
call :display "%a% Rotate Left %b%" %val% %aStr%

::ROTATE RIGHT (No native support)
set /a "val=(a<<32-b%%32) | (a>>b%%32)&~((0x80000000>>b%%32-1)*!!(b%%32)) "
call :display "%a% Rotate Right %b%" %val% %aStr%

exit /b


:display op result aStr [bStr]
echo(
echo %~1 = %2
echo %3
if "%4" neq "" echo %4
call :num2bin %2
exit /b


:num2bin    IntVal [RtnVar]
  setlocal enableDelayedExpansion
  set n=%~1
  set rtn=
  for /l %%b in (0,1,31) do (
    set /a "d=n&1, n>>=1"
    set rtn=!d!!rtn!
  )
  (endlocal & rem -- return values
    if "%~2" neq "" (set %~2=%rtn%) else echo %rtn%
  )
exit /b

Sample output

>bitops 0x800000FE 7

-2147483394 AND 7 = 6
10000000000000000000000011111110
00000000000000000000000000000111
00000000000000000000000000000110

-2147483394 OR 7 = -2147483393
10000000000000000000000011111110
00000000000000000000000000000111
10000000000000000000000011111111

-2147483394 XOR 7 = -2147483399
10000000000000000000000011111110
00000000000000000000000000000111
10000000000000000000000011111001

NOT -2147483394 = 2147483393
10000000000000000000000011111110
01111111111111111111111100000001

-2147483394 Left Shift 7 = 32512
10000000000000000000000011111110
00000000000000000111111100000000

-2147483394 Arithmetic Right Shift 7 = -16777215
10000000000000000000000011111110
11111111000000000000000000000001

-2147483394 Logical Right Shift 7 = 16777217
10000000000000000000000011111110
00000001000000000000000000000001

-2147483394 Rotate Left 7 = 32576
10000000000000000000000011111110
00000000000000000111111101000000

-2147483394 Rotate Right 7 = -50331647
10000000000000000000000011111110
11111101000000000000000000000001

BBC BASIC

      number1% = &89ABCDEF
      number2% = 8
      
      PRINT ~ number1% AND number2% : REM bitwise AND
      PRINT ~ number1% OR number2%  : REM bitwise OR
      PRINT ~ number1% EOR number2% : REM bitwise exclusive-OR
      PRINT ~ NOT number1%          : REM bitwise NOT
      PRINT ~ number1% << number2%  : REM left shift
      PRINT ~ number1% >>> number2% : REM right shift (logical)
      PRINT ~ number1% >> number2%  : REM right shift (arithmetic)
      PRINT ~ (number1% << number2%) OR (number1% >>> (32-number2%)) : REM left rotate
      PRINT ~ (number1% >>> number2%) OR (number1% << (32-number2%)) : REM right rotate

beeswax

#eX~T~T_#
###>N{` AND `~{~` = `&{Nz1~3J
UXe#
##>{` OR  `~{~` = `|{Nz1~5J
UXe#
##>{` XOR `~{~` = `${Nz1~7J
UXe#
##>`NOT `{` = `!{Nz1~9J
UXe#
##>{` <<  `~{~` = `({Nz1~9PPJ
UXe#
##>{` >>> `~{~` = `){` (logical shift right)`N7F+M~1~J
UXe#
##>{` ROL `~{~` = `[{N7F+P~1~J
UXe#
##>{` ROR `~{~` = `]{NN8F+P~1~J
UXe#
##>`Arithmetic shift right is not originally implemented in beeswax.`N     q
 qN`,noitagen yb dezilaer eb nac srebmun evitagen rof RSA ,yllacinhcet tuB`N<
##>`logical shift right, and negating the result again:`NN7F++~1~J
UXe#      #>e#
 #>~1~[&'pUX{` >> `~{~` = `){` , interpreted as (positive) signed Int64 number (MSB=0), equivalent to >>>`NN;
          ###
         >UX`-`!P{M!` >> `~{~` = `!)!`-`M!{` , interpreted as (negative) signed Int64 number (MSB=1)`NN;
           #>e#

Example:

julia> beeswax("Bitops.bswx",0,0.0,Int(20000))
i9223653511831486512
i48

9223653511831486512 AND 48 = 48
9223653511831486512 OR  48 = 9223653511831486512
9223653511831486512 XOR 48 = 9223653511831486464
NOT 9223653511831486512 = 9223090561878065103
9223653511831486512 <<  48 = 13510798882111488
9223653511831486512 >>> 48 = 32769 (logical shift right)
9223653511831486512 ROL 48 = 13651540665434112
9223653511831486512 ROR 48 = 3178497

Arithmetic shift right is not originally implemented in beeswax.

But technically, ASR for negative numbers can be realized by negation,
logical shift right, and negating the result again:

-9223090561878065104 >> 48 = -32767 , interpreted as (negative) signed Int64 number (MSB=1)

The natural number range for beeswax is unsigned Int64, but it is easy to implement signed Int64 by realizing negative numbers by their 2’s complements or interpreting numbers as negative if their MSB is 1, as shown in the example above.

Arithmetic shift right is not originally implemented in beeswax because it does not make sense for unsigned integers, but for negative numbers, it can be realized easily with

A>>B = NOT(NOT(A)>>>B)

as demonstrated above.

In beeswax, rotate left (ROL) and rotate right (ROT) operators are implemented using modulo 64, so rotations by more than 63 bits wrap around:

A ROL B = A<<(B%64)+A>>>(64-B%64)
A ROR B = A>>>(B%64)+A<<(64-B%64)

Befunge

> v   MCR                                        >v
    1    2       3   4       5            6>61g-:|        8       9
  >&&\481p >88*61p371p >:61g\`!:68*+71g81gp|    7 >61g2/61p71g1+71pv
   >v>v>v>v  <                             >      ^
>#A       1 $^         ^                                           <
  B       6^                   <
   ^>^>^>^1  C                 |!`5p18:+1g18$    <
   ^  9   p#p17*93p189p150     <    >61g71g81gg+71g81gpv D
          >071g81gp          v      ^               <
              AND            >+2\`!#^_>                v
              XOR             +2%  #^_>                v
              OR              +1\`!#^_>                v
              NOT             !    #^_>                v
              LSHFT           0    #^_>48*71g3+81gp    v
              RSHFT           $      48*71g3+81gp  #^_>v E
              END             v    #^_>                >61g2*61pv
                              @    F
                           v_^#                              `2:<
                           >71g81gg.48*71g2+81gp79*1-71g2+81g1+pv
   ^                                    <_v#!`2p15:+1g15p18+1g18<
^                                         < G

The labelled points (1 to G) are: 1. Read in A and B, 2. Set the current operating row (R) to 4, 3. Set the current bit value (M) to 64, 4. Set Current operating column (C) to 3, 5. Check if M > A (i.e. bit is 0 or 1), 6. Write the bit value into location (R,C), 7. A = A - M, 8. M = M/2, 9. C++, A&B. Storage of corresponding bits, C. Initialise R & C to operation storage (OP) and M to 1, D. Increment OP by M if true, E. M = M*2, F (2 rows below). Print value of OP, increment operation to perform by moving ">" down, G. If doing the NOT, LSHFT or RSHFT (current operation to perform > 3) only read A.

The code requires input be separated by spaces and only works for numbers less than 128, due to form of bit storage and ASCII locations not able to store beyond 127. Overflow will happen if 127 is shifted left due to aforementioned ASCII limit in most Befunge-93 interpreters.

Inputs:

21 3
Output:
1 22 23 106 42 10

C

void bitwise(int a, int b)
{
  printf("a and b: %d\n", a & b);
  printf("a or b: %d\n", a | b);
  printf("a xor b: %d\n", a ^ b);
  printf("not a: %d\n", ~a);
  printf("a << n: %d\n", a << b); /* left shift */
  printf("a >> n: %d\n", a >> b); /* on most platforms: arithmetic right shift */
  /* convert the signed integer into unsigned, so it will perform logical shift */
  unsigned int c = a;
  printf("c >> b: %d\n", c >> b); /* logical right shift */
  /* there are no rotation operators in C */
  return 0;
}

To rotate an integer, you can combine a left shift and a right shift:

/* rotate x to the right by s bits */
unsigned int rotr(unsigned int x, unsigned int s)
{
	return (x >> s) | (x << 32 - s);
}

With a smart enough compiler, the above actually compiles into a single machine bit rotate instruction when possible. E.g. gcc -S on IA32 produced following assembly code:

rotr:
        movl    4(%esp), %eax        ; arg1: x
        movl    8(%esp), %ecx        ; arg2: s
        rorl    %cl, %eax            ; right rotate x by s
        ret

C#

static void bitwise(int a, int b)
        {
            Console.WriteLine("a and b is {0}", a & b);
            Console.WriteLine("a or b is {0}", a | b);
            Console.WriteLine("a xor b is {0}", a ^ b);
            Console.WriteLine("not a is {0}", ~a);
            Console.WriteLine("a lshift b is {0}", a << b);
            Console.WriteLine("a arshift b is {0}", a >> b); // When the left operand of the >> operator is of a signed integral type, 
                                                             // the operator performs an arithmetic shift right
            uint c = (uint)a;
            Console.WriteLine("c rshift b is {0}", c >> b); // When the left operand of the >> operator is of an unsigned integral type, 
                                                            // the operator performs a logical shift right
            // there are no rotation operators in C#
        }

C++

Translation of: C
#include <iostream>

void bitwise(int a, int b)
{
  std::cout << "a and b: " << (a & b)  << '\n'; // Note: parentheses are needed because & has lower precedence than <<
  std::cout << "a or b:  " << (a | b)  << '\n';
  std::cout << "a xor b: " << (a ^ b)  << '\n';
  std::cout << "not a:   " << ~a       << '\n';

  // Note: the C/C++ shift operators are not guaranteed to work if the shift count (that is, b)
  // is negative, or is greater or equal to the number of bits in the integer being shifted.
  std::cout << "a shl b: " << (a << b) << '\n'; // Note: "<<" is used both for output and for left shift
  std::cout << "a shr b: " << (a >> b) << '\n'; // typically arithmetic right shift, but not guaranteed
  unsigned int ua = a;
  std::cout << "a lsr b: " << (ua >> b) << '\n'; // logical right shift (guaranteed)

  // there are no rotation operators in C++, but as of c++20 there is a standard-library rotate function.
  // The rotate function works for all rotation amounts, but the integer being rotated must always be an
  // unsigned integer.
  std::cout << "a rol b: " << std::rotl(ua, b) << '\n';
  std::cout << "a ror b: " << std::rotr(ua, b) << '\n';
  
}

Clojure

(bit-and x y)
(bit-or x y)
(bit-xor x y)
(bit-not x)
(bit-shift-left x n)
(bit-shift-right x n)
;;There is no built-in for rotation.

COBOL

Works with: COBOL 2023

COBOL 2002 added support for bitwise operations. Shift and rotation operators were added in COBOL 2023. Results are displayed in decimal.

       IDENTIFICATION DIVISION.
       PROGRAM-ID. bitwise-ops.

       DATA DIVISION.
       LOCAL-STORAGE SECTION.
       01  a                       PIC 1(32) USAGE BIT.
       01  b                       PIC 1(32) USAGE BIT.
       01  result                  PIC 1(32) USAGE BIT.
       01  result-disp             REDEFINES result
                                   PIC S9(9) USAGE COMPUTATIONAL.
       LINKAGE SECTION.
       01  a-int                   USAGE BINARY-LONG.
       01  b-int                   USAGE BINARY-LONG.

       PROCEDURE DIVISION USING a-int, b-int.
           MOVE FUNCTION BOOLEAN-OF-INTEGER(a-int, 32) TO a
           MOVE FUNCTION BOOLEAN-OF-INTEGER(b-int, 32) TO b

           COMPUTE result = a B-AND b
           DISPLAY "a and b is " result-disp

           COMPUTE result = a B-OR b
           DISPLAY "a or b is " result-disp

           COMPUTE result = B-NOT a
           DISPLAY "Not a is " result-disp

           COMPUTE result = a B-XOR b
           DISPLAY "a exclusive-or b is " result-disp

      *>   More complex operations can be constructed from these.

           COMPUTE result = B-NOT (a B-XOR b)
           DISPLAY "Logical equivalence of a and b is " result-disp

           COMPUTE result = (B-NOT a) B-AND b
           DISPLAY "Logical implication of a and b is " result-disp

      *>   Shift and rotation operators were only added in COBOL 2023.

           COMPUTE result = a B-SHIFT-L b
           DISPLAY "a shifted left by b is " result-disp

           COMPUTE result = b B-SHIFT-R a
           DISPLAY "b shifted right by a is " result-disp

           COMPUTE result = a B-SHIFT-LC b
           DISPLAY "a rotated left by b is " result-disp

           COMPUTE result = b B-SHIFT-RC a
           DISPLAY "b rotated right by a is " result-disp

           GOBACK.

       END PROGRAM bitwise-ops.
Works with: GnuCOBOL
Works with: Visual COBOL

In older implementations, non-standard extensions were developed as built-in subroutines.

       IDENTIFICATION DIVISION.
       PROGRAM-ID. mf-bitwise-ops.

       DATA DIVISION.
       LOCAL-STORAGE SECTION.
       01  result                  USAGE BINARY-LONG.
       78  arg-len                 VALUE LENGTH OF result.

       LINKAGE SECTION.
       01  a                       USAGE BINARY-LONG.
       01  b                       USAGE BINARY-LONG.

       PROCEDURE DIVISION USING a, b.
       main-line.
           MOVE b TO result
           CALL "CBL_AND" USING a, result, VALUE arg-len
           DISPLAY "a and b is " result

           MOVE b TO result
           CALL "CBL_OR" USING a, result, VALUE arg-len
           DISPLAY "a or b is " result

           MOVE a TO result
           CALL "CBL_NOT" USING result, VALUE arg-len
           DISPLAY "Not a is " result

           MOVE b TO result
           CALL "CBL_XOR" USING a, result, VALUE arg-len
           DISPLAY "a exclusive-or b is " result

           MOVE b TO result
           CALL "CBL_EQ" USING a, result, VALUE arg-len
           DISPLAY "Logical equivalence of a and b is " result

           MOVE b TO result
           CALL "CBL_IMP" USING a, result, VALUE arg-len
           DISPLAY "Logical implication of a and b is " result

           GOBACK.

       END PROGRAM mf-bitwise-ops.

CoffeeScript

CoffeeScript provides sugar for some JavaScript operators, but the bitwise operators are taken directly from JS. See more here: http://coffeescript.org/#operators

f = (a, b) ->
  p "and", a & b
  p "or", a | b
  p "xor", a ^ b
  p "not", ~a
  p "<<", a << b
  p ">>", a >> b
  # no rotation shifts that I know of
  
p = (label, n) -> console.log label, n

f(10,2)

output

> coffee foo.coffee 
and 2
or 10
xor 8
not -11
<< 40
>> 2

Common Lisp

(defun bitwise (a b)
  (print (logand a b))  ; AND
  (print (logior a b))  ; OR ("ior" = inclusive or)
  (print (logxor a b))  ; XOR
  (print (lognot a))    ; NOT
  (print (ash a b))     ; arithmetic left shift (positive 2nd arg)
  (print (ash a (- b))) ; arithmetic right shift (negative 2nd arg)
                        ; no logical shift
)

Left and right logical shift may be implemented by the following functions:

(defun shl (x width bits)
  "Compute bitwise left shift of x by 'bits' bits, represented on 'width' bits"
  (logand (ash x bits)
          (1- (ash 1 width))))

(defun shr (x width bits)
  "Compute bitwise right shift of x by 'bits' bits, represented on 'width' bits"
  (logand (ash x (- bits))
          (1- (ash 1 width))))

Left and right rotation may be implemented by the following functions:

(defun rotl (x width bits)
  "Compute bitwise left rotation of x by 'bits' bits, represented on 'width' bits"
  (logior (logand (ash x (mod bits width))
                  (1- (ash 1 width)))
          (logand (ash x (- (- width (mod bits width))))
                  (1- (ash 1 width)))))

(defun rotr (x width bits)
  "Compute bitwise right rotation of x by 'bits' bits, represented on 'width' bits"
  (logior (logand (ash x (- (mod bits width)))
                  (1- (ash 1 width)))
          (logand (ash x (- width (mod bits width)))
                  (1- (ash 1 width)))))

D

T rot(T)(in T x, in int shift) pure nothrow @nogc {
    return (x >>> shift) | (x << (T.sizeof * 8 - shift));
}

void testBit(in int a, in int b) {
  import std.stdio;
  writefln("Input: a = %d, b = %d", a, b);
  writefln("AND  : %8b  & %08b = %032b (%4d)", a, b, a & b, a & b);
  writefln(" OR  : %8b  | %08b = %032b (%4d)", a, b, a | b, a | b);
  writefln("XOR  : %8b  ^ %08b = %032b (%4d)", a, b, a ^ b, a ^ b);
  writefln("LSH  : %8b << %08b = %032b (%4d)", a, b, a << b, a << b);
  writefln("RSH  : %8b >> %08b = %032b (%4d)", a, b, a >> b, a >> b);
  writefln("NOT  : %8s  ~ %08b = %032b (%4d)", "", a, ~a, ~a);
  writefln("ROT  : rot(%8b, %d)     = %032b (%4d)",
           a, b, rot(a, b), rot(a, b));
}

void main() {
  immutable int a = 0b_1111_1111; // bit literal 255
  immutable int b = 0b_0000_0010; // bit literal 2

  testBit(a, b);
}
Output:
Input: a = 255, b = 2
AND  : 11111111  & 00000010 = 00000000000000000000000000000010 (   2)
 OR  : 11111111  | 00000010 = 00000000000000000000000011111111 ( 255)
XOR  : 11111111  ^ 00000010 = 00000000000000000000000011111101 ( 253)
LSH  : 11111111 << 00000010 = 00000000000000000000001111111100 (1020)
RSH  : 11111111 >> 00000010 = 00000000000000000000000000111111 (  63)
NOT  :           ~ 11111111 = 11111111111111111111111100000000 (-256)
ROT  : rot(11111111, 2)     = 11000000000000000000000000111111 (-1073741761)

Compilers are usually able to optimize the code pattern of the rot function to one CPU instruction plus loads. The DMD compiler too performs such optimization.

Delphi

program Bitwise;

{$APPTYPE CONSOLE}

begin
  Writeln('2 and 3 = ', 2 and 3);
  Writeln('2 or 3 = ', 2 or 3);
  Writeln('2 xor 3 = ', 2 xor 3);
  Writeln('not 2 = ', not 2);
  Writeln('2 shl 3 = ', 2 shl 3);
  Writeln('2 shr 3 = ', 2 shr 3);
// there are no built-in rotation operators in Delphi
  Readln;
end.

DWScript

PrintLn('2 and 3 = '+IntToStr(2 and 3));
PrintLn('2 or 3 = '+IntToStr(2 or 3));
PrintLn('2 xor 3 = '+IntToStr(2 xor 3));
PrintLn('not 2 = '+IntToStr(not 2));
PrintLn('2 shl 3 = '+IntToStr(2 shl 3));
PrintLn('2 shr 3 = '+IntToStr(2 shr 3));

E

E provides arbitrary-size integers, so there is no distinct arithmetic and logical shift right. E does not provide bit rotate operations.

def bitwise(a :int, b :int) {
   println(`Bitwise operations:
   a AND b: ${a & b}
   a OR b: ${a | b}
   a XOR b: ${a ^ b}
   NOT a: " + ${~a}
   a left shift b: ${a << b}
   a right shift b: ${a >> b}
`)
}

EasyLang

# numbers are doubles, bit operations use 32 bits and are unsigned
x = 11
y = 2
print bitnot x
print bitand x y
print bitor x y
print bitxor x y
print bitshift x y
print bitshift x -y

ECL

BitwiseOperations(INTEGER A, INTEGER B) := FUNCTION
  BitAND := A & B;
  BitOR  := A | B;
  BitXOR := A ^ B;
  BitNOT := BNOT A;
  BitSL  := A << B; 
  BitSR  := A >> B;
  DS     := DATASET([{A,B,'Bitwise AND:',BitAND},
	             {A,B,'Bitwise OR:',BitOR},
		     {A,B,'Bitwise XOR',BitXOR},
		     {A,B,'Bitwise NOT A:',BitNOT},
		     {A,B,'ShiftLeft A:',BitSL},
		     {A,B,'ShiftRight A:',BitSR}],
		     {INTEGER AVal,INTEGER BVal,STRING15 valuetype,INTEGER val});
  RETURN DS;
END;

BitwiseOperations(255,5);
//right arithmetic shift, left and right rotate not implemented
/* 
   OUTPUT:
   255	5	Bitwise AND:   	5
   255	5	Bitwise OR:    	255
   255	5	Bitwise XOR    	250
   255	5	Bitwise NOT A: 	-256
   255	5	ShiftLeft A:   	8160
   255	5	ShiftRight A:  	7
   
*/

Ecstasy

module BitwiseOps {
    @Inject Console console;
    void run() {
        for ((Int64 n1, Int64 n2) : [0=7, 1=5, 42=2, 0x123456789ABCDEF=0xFF]) { // <- test data
            static String hex(Int64 n) { // <- this is a locally scoped helper function
                // formats the integer as a hex string, but drops the leading '0' bytes
                return n.toByteArray() [(n.leadingZeroCount / 8).minOf(7) ..< 8].toString();
            }

            console.print($|For values {n1} ({hex(n1)}) and {n2} ({hex(n2)}):
                           |  {hex(n1)} AND {hex(n2)} = {hex(n1 & n2)}
                           |  {hex(n1)} OR {hex(n2)} = {hex(n1 | n2)}
                           |  {hex(n1)} XOR {hex(n2)} = {hex(n1 ^ n2)}
                           |  NOT {hex(n1)} = {hex(~n1)}
                           |  left shift {hex(n1)} by {n2} = {hex(n1 << n2)}
                           |  right shift {hex(n1)} by {n2} = {hex(n1 >> n2)}
                           |  right arithmetic shift {hex(n1)} by {n2} = {hex(n1 >>> n2)}
                           |  left rotate {hex(n1)} by {n2} = {hex(n1.rotateLeft(n2))}
                           |  right rotate {hex(n1)} by {n2} = {hex(n1.rotateRight(n2))}
                           |  leftmost bit of {hex(n1)} = {hex(n1.leftmostBit)}
                           |  rightmost bit of {hex(n1)} = {hex(n1.rightmostBit)}
                           |  leading zero count of {hex(n1)} = {n1.leadingZeroCount}
                           |  trailing zero count of {hex(n1)} = {n1.trailingZeroCount}
                           |  bit count (aka "population") of {hex(n1)} = {n1.bitCount}
                           |  reversed bits of {hex(n1)} = {hex(n1.reverseBits())}
                           |  reverse bytes of {hex(n1)} = {hex(n1.reverseBytes())}
                           |
                         );
        }
    }
}

Results in (extracted for just one of the test values):

Output:
For values 1 (0x01) and 5 (0x05):
  0x01 AND 0x05 = 0x01
  0x01 OR 0x05 = 0x05
  0x01 XOR 0x05 = 0x04
  NOT 0x01 = 0xFFFFFFFFFFFFFFFE
  left shift 0x01 by 5 = 0x20
  right shift 0x01 by 5 = 0x00
  right arithmetic shift 0x01 by 5 = 0x00
  left rotate 0x01 by 5 = 0x20
  right rotate 0x01 by 5 = 0x0800000000000000
  leftmost bit of 0x01 = 0x01
  rightmost bit of 0x01 = 0x01
  leading zero count of 0x01 = 63
  trailing zero count of 0x01 = 0
  bit count (aka "population") of 0x01 = 1
  reversed bits of 0x01 = 0x8000000000000000
  reverse bytes of 0x01 = 0x0100000000000000

Elena

ELENA 6.x :

import extensions;

extension testOp
{
    bitwiseTest(y)
    {
        console.printLine(self," and ",y," = ",self & y);
        console.printLine(self," or ",y," = ",self | y);
        console.printLine(self," xor ",y," = ",self ^ y);
        console.printLine("not ",self," = ",self.BInverted);
        console.printLine(self," shr ",y," = ",self.shiftRight(y));
        console.printLine(self," shl ",y," = ",self.shiftLeft(y));
    }
}

public program()
{
    console.loadLineTo(new Integer()).bitwiseTest(console.loadLineTo(new Integer()))
}
Output:
255 and 2 = 2
255 or 2 = 255
255 xor 2 = 253
not 255 = -256
255 shr 2 = 63
255 shl 2 = 1020

Elixir

defmodule Bitwise_operation do
  use Bitwise
  
  def test(a \\ 255, b \\ 170, c \\ 2) do
    IO.puts "Bitwise function:"
    IO.puts "band(#{a}, #{b}) = #{band(a, b)}"
    IO.puts "bor(#{a}, #{b}) = #{bor(a, b)}"
    IO.puts "bxor(#{a}, #{b}) = #{bxor(a, b)}"
    IO.puts "bnot(#{a}) = #{bnot(a)}"
    IO.puts "bsl(#{a}, #{c}) = #{bsl(a, c)}"
    IO.puts "bsr(#{a}, #{c}) = #{bsr(a, c)}"
    IO.puts "\nBitwise as operator:"
    IO.puts "#{a} &&& #{b} = #{a &&& b}"
    IO.puts "#{a} ||| #{b} = #{a ||| b}"
    IO.puts "#{a} ^^^ #{b} = #{a ^^^ b}"
    IO.puts "~~~#{a} = #{~~~a}"
    IO.puts "#{a} <<< #{c} = #{a <<< c}"
    IO.puts "#{a} >>> #{c} = #{a >>> c}"
  end
end

Bitwise_operation.test
Output:
Bitwise function:
band(255, 170) = 170
bor(255, 170) = 255
bxor(255, 170) = 85
bnot(255) = -256
bsl(255, 2) = 1020
bsr(255, 2) = 63

Bitwise as operator:
255 &&& 170 = 170
255 ||| 170 = 255
255 ^^^ 170 = 85
~~~255 = -256
255 <<< 2 = 1020
255 >>> 2 = 63

Erlang

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

-module(bitwise_operations).

-export([test/0]).

test() ->
   A = 255,
   B = 170,
   io:format("~p band ~p = ~p\n",[A,B,A band B]),
   io:format("~p bor ~p = ~p\n",[A,B,A bor B]),
   io:format("~p bxor ~p = ~p\n",[A,B,A bxor B]),
   io:format("not ~p = ~p\n",[A,bnot A]),
   io:format("~p bsl ~p = ~p\n",[A,B,A bsl B]),
   io:format("~p bsr ~p = ~p\n",[A,B,A bsr B]).

outputs:

255 band 170 = 170
255 bor 170 = 255
255 bxor 170 = 85
not 255 = -256
255 bsl 170 = 381627307539845370001346183518875822092557105621893120
255 bsr 170 = 0

F#

let bitwise a b =
    printfn "a and b: %d" (a &&& b)
    printfn "a or  b: %d" (a ||| b)
    printfn "a xor b: %d" (a ^^^ b)
    printfn "not a: %d"   (~~~a)
    printfn "a shl b: %d" (a <<< b)
    printfn "a shr b: %d" (a >>> b)          // arithmetic shift
    printfn "a shr b: %d" ((uint32 a) >>> b) // logical shift
    // No rotation operators.

Factor

"a=" "b=" [ write readln string>number ] bi@
{
    [ bitand "a AND b: " write . ]
    [ bitor "a OR b: " write . ] 
    [ bitxor "a XOR b: " write . ]
    [ drop bitnot "NOT a: " write . ]
    [ abs shift "a asl b: " write . ]
    [ neg shift "a asr b: " write . ]
} 2cleave

outputs:

a=255
b=5
a AND b: 5
a OR b: 255
a XOR b: 250
NOT a: -256
a asl b: 8160
a asr b: 7

Currently rotation and logical shifts are not implemented.

FALSE

Only AND, OR, and NOT are available.

10 3
\$@$@$@$@\  { 3 copies }
"a & b = "&."
a | b  = "|."
~a = "%~."
"

Forth

: arshift 0 ?do 2/ loop ;            \ 2/ is an arithmetic shift right by one bit (2* shifts left one bit)
: bitwise ( a b -- )
  cr ." a = " over . ." b = " dup .
  cr ." a and b = " 2dup and .
  cr ." a  or b = " 2dup  or .
  cr ." a xor b = " 2dup xor .
  cr ." not a = " over invert . 
  cr ." a shl b = " 2dup lshift .
  cr ." a shr b = " 2dup rshift .
  cr ." a ashr b = " 2dup arshift .
  2drop ;

Rotation is not standard, but may be provided in particular Forth implementations, or as an assembly instruction in CODE words.

Fortran

In ISO Fortran 90 and later the following BIT INTRINSIC functions are defined:

integer :: i, j = -1, k = 42
logical :: a
    
i = bit_size(j)       ! returns the number of bits in the given INTEGER variable
    
! bitwise boolean operations on integers
i = iand(k, j)        ! returns bitwise AND of K and J
i = ior(k, j)         ! returns bitwise OR of K and J
i = ieor(k, j)        ! returns bitwise EXCLUSIVE OR of K and J
i = not(j)            ! returns bitwise NOT of J
    
! single-bit integer/logical operations (bit positions are zero-based)
a = btest(i, 4)       ! returns logical .TRUE. if bit position 4 of I is 1, .FALSE. if 0
i = ibclr(k, 8)       ! returns value of K with 8th bit position "cleared" (set to 0)
i = ibset(k, 13)      ! returns value of K with 13th bit position "set" (set to 1)
    
! multi-bit integer operations
i = ishft(k, j)       ! returns value of K shifted by J bit positions, with ZERO fill
                      !    (right shift if J < 0 and left shift if J > 0).
i = ishftc(k, j)      ! returns value of K shifted CIRCULARLY by J bit positions
                      !    (right circular shift if J < 0 and left if J > 0)
i = ishftc(k, j, 20)  ! returns value as before except that ONLY the 20 lowest order
                      !    (rightmost) bits are circularly shifted
i = ibits(k, 7, 8)    ! extracts 8 contiguous bits from K starting at position 7 and
                      !    returns them as the rightmost bits of an otherwise
                      !    zero-filled integer. For non-negative K this is
                      !    arithmetically equivalent to:   MOD((K / 2**7), 2**8)

The following INTRINSIC ELEMENTAL SUBROUTINE is also defined:

 call mvbits(k, 2, 4, j, 0)  ! copy a sequence of 4 bits from k starting at bit 2 into j starting at bit 0
 
program    bits_rosetta
implicit none

 call bitwise(14,3)

 contains

subroutine bitwise(a,b)
implicit none
 integer, intent(in):: a,b
 character(len=*), parameter :: fmt1 = '(2(a,i10))'
 character(len=*),parameter :: fmt2 = '(3(a,b32.32),i20)'

write(*,fmt1) 'input a=',a,' b=',b
write(*,fmt2) 'and : ', a,' &  ',b,' = ',iand(a, b),iand(a, b)
write(*,fmt2) 'or  : ', a,' |  ',b,' = ',ior(a, b),ior(a, b)
write(*,fmt2) 'xor : ', a,' ^  ',b,' = ',ieor(a, b),ieor(a, b)
write(*,fmt2) 'lsh : ', a,' << ',b,' = ',shiftl(a,b),shiftl(a,b) !since F2008, otherwise use ishft(a, abs(b))
write(*,fmt2) 'rsh : ', a,' >> ',b,' = ',shiftr(a,b),shiftr(a,b) !since F2008, otherwise use ishft(a, -abs(b))
write(*,fmt2) 'not : ', a,' ~  ',b,' = ',not(a),not(a)
write(*,fmt2) 'rot : ', a,' r  ',b,' = ',ishftc(a,-abs(b)),ishftc(a,-abs(b))

end subroutine bitwise

end program bits_rosetta

Output

Input a=        14 b=         3
AND : 00000000000000000000000000001110 &  00000000000000000000000000000011 = 00000000000000000000000000000010                   2
OR  : 00000000000000000000000000001110 |  00000000000000000000000000000011 = 00000000000000000000000000001111                  15
XOR : 00000000000000000000000000001110 ^  00000000000000000000000000000011 = 00000000000000000000000000001101                  13
LSH : 00000000000000000000000000001110 << 00000000000000000000000000000011 = 00000000000000000000000001110000                 112
RSH : 00000000000000000000000000001110 >> 00000000000000000000000000000011 = 00000000000000000000000000000001                   1
NOT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11111111111111111111111111110001                 -15
ROT : 00000000000000000000000000001110 ~  00000000000000000000000000000011 = 11000000000000000000000000000001         -1073741823

Free Pascal

program Bitwise;
{$mode objfpc}
var
  // Pascal uses a native int type as a default literal type
  // Make sure the operants work on an exact type.
  x:shortint = 2;
  y:ShortInt = 3;
begin
  Writeln('2 and 3 = ', x and y);
  Writeln('2 or 3 = ', x or y);
  Writeln('2 xor 3 = ', x xor y);
  Writeln('not 2 = ', not x);
  Writeln('2 shl 3 = ', x >> y);
  Writeln('2 shr 3 = ', x << y);
  writeln('2 rol 3 = ', rolbyte(x,y));
  writeln('2 ror 3 = ', rorbyte(x,y));
  writeln('2 sar 3 = ', sarshortint(x,y));
  Readln;
end.

FreeBASIC

' FB 1.05.0 Win64 (Note the (U)Integer type is 64 bits)

' FB doesn't have built-in logical shift right or rotation operators
' but, as they're not difficult to implement, I've done so below.

Function lsr(x As Const Integer, y As Const Integer) As Integer
  Dim As UInteger z = x
  Return z Shr y
End Function
 
Function rol(x As Const Integer, y As Const UInteger) As Integer
  Dim z As Integer = x
  Dim high As Integer
  For i As Integer = 1 To y
    high = Bit(z, 63)
    For j As Integer = 62 To 0 Step -1
      If Bit(z, j) Then
        z = BitSet(z, j + 1)
      Else
        z = BitReset (z, j + 1)
      End If
    Next j
    If high Then
      z = BitSet(z, 0)
    Else
      z = BitReset(z, 0)
    End If
  Next i
  Return z
End Function

Function ror(x As Const Integer, y As Const UInteger) As Integer
  Dim z As Integer = x
  Dim low As Integer
  For i As Integer = 1 To y
    low = Bit(z, 0)
    For j As Integer = 1 To 63 
      If Bit(z, j) Then
        z = BitSet(z, j - 1)
      Else
        z = BitReset (z, j - 1)
      End If
    Next j
    If low Then
      z = BitSet(z, 63)
    Else
      z = BitReset(z, 63)
    End If
  Next i
  Return z
End Function  

Sub bitwise(x As Integer, y As Integer)
  Print "x       = "; x
  Print "y       = "; y
  Print "x AND y = "; x And y
  Print "x OR y  = "; x Or y
  Print "x XOR y = "; x XOr y
  Print "NOT x   = "; Not x
  Print "x SHL y = "; x Shl y
  Print "x SHR y = "; x Shr y
  Print "x LSR y = "; lsr(x, y)
  Print "x ROL y = "; rol(x, y)
  Print "x ROR y = "; ror(x, y)
End Sub

bitwise -15, 3
Print
Print "Press any key to quit"
Sleep
Output:
x       = -15
y       =  3
x AND y =  1
x OR y  = -13
x XOR y = -14
NOT x   =  14
x SHL y = -120
x SHR y = -2
x LSR y =  2305843009213693950
x ROL y = -113
x ROR y =  4611686018427387902

FutureBasic

FB does not have a bitwise symbol for not, but rather uses the "not" expression. It does not support predefined bitwise symbols for rotate left and rotate right, but functions in this demo provide that capability.

window 1, @"Bitwise Operations", (0,0,650,270)

def fn rotl( b as long, n as long ) as long = ( ( 2^n * b) mod 256) or (b > 127)
def fn rotr( b as long, n as long ) as long = (b >> n mod 32) or ( b << (32-n) mod 32)

local fn bitwise( a as long, b as long )
  print @"Input: a = "; a; @"  b = "; b
  print
  print @"AND  :", @"a && b = ", bin(a && b), @": "; a && b
  print @"NAND :", @"a ^& b = ", bin(a ^& b), @": "; a ^& b
  print @"OR   :", @"a || b = ", bin(a || b), @": "; a || b
  print @"NOR  :", @"a ^| b = ", bin(a ^| b), @": "; a ^| b
  print @"XOR  :", @"a ^^ b = ", bin(a ^^ b), @": "; a ^^ b
  print @"NOT  :", @" not a = ", bin( not a), @": ";  not a
  print
  print @"Left shift   :", @"a << b =", bin(a << b), @": "; a << b
  print @"Right shift  :", @"a >> b =", bin(a >> b), @": "; a >> b
  print
  print @"Rotate left  :", @"fn rotl( a, b ) = ", bin(fn rotl( a, b)), @": "; fn rotl( a, b )
  print @"Rotate right :", @"fn rotr( a, b ) = ", bin(fn rotr( a, b )),@": "; fn rotr( a, b )
end fn

fn bitwise( 255, 2 )

HandleEvents

Output:

Input: a =  255  b =  2

AND  : a && b =  00000000000000000000000000000010 :  2
NAND : a ^& b =  00000000000000000000000011111101 :  253
OR   : a || b =  00000000000000000000000011111111 :  255
NOR  : a ^| b =  11111111111111111111111111111111 : -1
XOR  : a ^^ b =  00000000000000000000000011111101 :  253
NOT  :  not a =  11111111111111111111111100000000 : -256

Left shift   : a << b = 00000000000000000000001111111100 :  1020
Right shift  : a >> b = 00000000000000000000000000111111 :  63

Rotate left  : fn rotl( a, b ) =  11111111111111111111111111111111 : -1
Rotate right : fn rotr( a, b ) =  11000000000000000000000000111111 : -1073741761

Go

package main

import "fmt"

func bitwise(a, b int16) {
	fmt.Printf("a:   %016b\n", uint16(a))
	fmt.Printf("b:   %016b\n", uint16(b))

	// Bitwise logical operations
	fmt.Printf("and: %016b\n", uint16(a&b))
	fmt.Printf("or:  %016b\n", uint16(a|b))
	fmt.Printf("xor: %016b\n", uint16(a^b))
	fmt.Printf("not: %016b\n", uint16(^a))

	if b < 0 {
		fmt.Println("Right operand is negative, but all shifts require an unsigned right operand (shift distance).")
		return
	}
	ua := uint16(a)
	ub := uint32(b)

	// Logical shifts (unsigned left operand)
	fmt.Printf("shl: %016b\n", uint16(ua<<ub))
	fmt.Printf("shr: %016b\n", uint16(ua>>ub))

	// Arithmetic shifts (signed left operand)
	fmt.Printf("las: %016b\n", uint16(a<<ub))
	fmt.Printf("ras: %016b\n", uint16(a>>ub))

	// Rotations
	fmt.Printf("rol: %016b\n", uint16(a<<ub|int16(uint16(a)>>(16-ub))))
	fmt.Printf("ror: %016b\n", uint16(int16(uint16(a)>>ub)|a<<(16-ub)))
}

func main() {
	var a, b int16 = -460, 6
	bitwise(a, b)
}

Output:

a:   1111111000110100
b:   0000000000000110
and: 0000000000000100
or:  1111111000110110
xor: 1111111000110010
not: 0000000111001011
shl: 1000110100000000
shr: 0000001111111000
las: 1000110100000000
ras: 1111111111111000
rol: 1000110100111111
ror: 1101001111111000

Groovy

def bitwise = { a, b ->
    println """
a & b   = ${a} & ${b}   = ${a & b}
a | b   = ${a} | ${b}   = ${a | b}
a ^ b   = ${a} ^ ${b}   = ${a ^ b}
~ a     = ~ ${a}     = ${~ a}
a << b  = ${a} << ${b}  = ${a << b}
a >> b  = ${a} >> ${b}  = ${a >> b}         arithmetic (sign-preserving) shift
a >>> b = ${a} >>> ${b} = ${a >>> b}  logical (zero-filling) shift
"""
}

Program:

bitwise(-15,3)

Output:

a & b   = -15 & 3   = 1
a | b   = -15 | 3   = -13
a ^ b   = -15 ^ 3   = -14
~ a     = ~ -15     = 14
a << b  = -15 << 3  = -120
a >> b  = -15 >> 3  = -2         arithmetic (sign-preserving) shift
a >>> b = -15 >>> 3 = 536870910  logical (zero-filling) shift

Harbour

Harbour language has a set of core functions, which are fully optimized at compile time, to perform bitwise operations.

PROCEDURE Main(...)
   local n1 := 42, n2 := 2
   local aPar := hb_AParams()
   local nRot
   
   if ! Empty( aPar )
      n1 := Val( aPar[1] )
      hb_Adel( aPar, 1, .T. )
      if ! Empty( aPar )
         n2 := Val( aPar[1] )
      endif
   endif
   clear screen
   
   ? "Bitwise operations with two integers"
   ? "n1 =", hb_ntos(n1)
   ? "n2 =", hb_ntos(n2)
   ? "------------------------------------"
   ? "AND          -->", hb_BitAnd( n1, n2 )
   ? "OR           -->", hb_BitOr( n1, n2 )
   ? "XOR          -->", hb_BitXor( n1, n2 )
   ? "NOT          -->", hb_BitNot( n1 )
   ? "LSHIFT       -->", hb_bitShift( n1, n2 )
   ? "RSHIFT       -->", hb_bitShift( n1, -n2 )
   ? "RarSHIFT     -->", hb_bitShift( n1, -n2 )
      
   /* left/right rotation is not implemented, but we can use inline C-code to do it */
   /* rotate n1 to the left by n2 bits */
   nRot := hb_Inline( n1, n2 ) {
      HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );
      hb_retni( (x << s) | (x >> (-s & 31)) );
   }            // (x << s) | (x >> (32 - s));
   ? "Rotate left  -->", nRot   

   /* rotate n1 to the right by n2 bits */
   nRot := HB_INLINE( n1, n2 ){ 
      HB_UINT x = hb_parni( 1 ), s = hb_parni( 2 );
      hb_retni( (x >> s) | (x << (32 - s)) );
   }
   ? "Rotate right -->", nRot
   
   return

Output:

  Bitwise operations with two integers
  n1 = 42
  n2 = 2
  ------------------------------------
  AND          -->          2
  OR           -->         42
  XOR          -->         40
  NOT          -->        -43
  LSHIFT       -->        168
  RSHIFT       -->         10
  RarSHIFT     -->         10
  Rotate left  -->        168
  Rotate right -->          -2147483638

Haskell

The operations in Data.Bits work on Int, Integer, and any of the sized integer and word types.

import Data.Bits

bitwise :: Int -> Int -> IO ()
bitwise a b =
  mapM_
    print
    [ a .&. b
    , a .|. b
    , a `xor` b
    , complement a
    , shiftL a b -- left shift
    , shiftR a b -- arithmetic right shift
    , shift a b -- You can also use the "unified" shift function;
      -- positive is for left shift, negative is for right shift
    , shift a (-b)
    , rotateL a b -- rotate left
    , rotateR a b -- rotate right
    , rotate a b -- You can also use the "unified" rotate function;
      -- positive is for left rotate, negative is for right rotate
    , rotate a (-b)
    ]

main :: IO ()
main = bitwise 255 170
Output:
170
255
85
-256
0
0
0
0
1121501860331520
1069547520
1121501860331520
1069547520

If you were shifting Words (unsigned integers) instead of Ints, then the shift would be automatically logical shifts:

import Data.Word
print $ shiftL (-1 :: Word) 1
print $ shiftR (-1 :: Word) 1

HicEst

There is no rotate and no shift support built in to HicEst

i = IAND(k, j)
i = IOR( k, j)
i = IEOR(k, j)
i = NOT( k   )

HPPPL

EXPORT BITOPS(a, b)
BEGIN
	PRINT(BITAND(a, b));
	PRINT(BITOR(a, b));
	PRINT(BITXOR(a, b));
	PRINT(BITNOT(a));
	PRINT(BITSL(a, b));
	PRINT(BITSR(a, b));
	// HPPPL has no builtin rotates or arithmetic right shift.
END;

Icon and Unicon

procedure main()
bitdemo(255,2)
bitdemo(-15,3)
end

procedure bitdemo(i,i2)
   write()
   demowrite("i",i)
   demowrite("i2",i2)
   demowrite("complement i",icom(i))     
   demowrite("i or i2",ior(i,i2))
   demowrite("i and i2",iand(i,i2))
   demowrite("i xor i2",ixor(i,i2))
   demowrite("i shift " || i2,ishift(i,i2))
   demowrite("i shift -" || i2,ishift(i,-i2))
   return
end

procedure demowrite(vs,v)
return write(vs, ": ", v, " = ", int2bit(v),"b")
end

Icon/Unicon implements bitwise operations on integers. Because integers can be transparently large integers operations that require fixed sizes don't make sense and aren't defined. These include rotation and logical shifting (shift is arithmetic) . Please note also that 'not' is a reserved word and the negation function is 'icom'

Sample output:

i: 255 = 11111111b
i2: 2 = 10b
complement i: -256 = -100000000b
i or i2: 255 = 11111111b
i and i2: 2 = 10b
i xor i2: 253 = 11111101b
i shift 2: 1020 = 1111111100b
i shift -2: 63 = 111111b


i: -15 = -1111b
i2: 3 = 11b
complement i: 14 = 1110b
i or i2: -13 = -1101b
i and i2: 1 = 1b
i xor i2: -14 = -1110b
i shift 3: -120 = -1111000b
i shift -3: -2 = -10b

Inform 6

Inform 6 has no xor or rotate operators. It also has no shift operators, although the Z-machine, its usual target architecture, does. These can be accessed with inline assembly, which is done here.

[ bitwise a b temp;
  print "a and b: ", a & b, "^";
  print "a or b: ", a | b, "^";
  print "not a: ", ~a, "^";
  @art_shift a b -> temp;
  print "a << b (arithmetic): ", temp, "^";
  temp = -b;
  @art_shift a temp -> temp;
  print "a >> b (arithmetic): ", temp, "^";
  @log_shift a b -> temp;
  print "a << b (logical): ", temp, "^";
  temp = -b;
  @log_shift a temp -> temp;
  print "a >> b (logical): ", temp, "^";
];

J

Here are the "bitwise operators":

bAND=:  17 b.  NB. 16+#.0 0 0 1
bOR=:   23 b.  NB. 16+#.0 1 1 1
bXOR=:  22 b.  NB. 16+#.0 1 1 0
b1NOT=: 28 b.  NB. 16+#.1 1 0 0
bLshift=:  33 b.~ NB. see http://www.jsoftware.com/help/release/bdot.htm
bRshift=:  33 b.~ -
bRAshift=: 34 b.~ -
bLrot=:    32 b.~
bRrot=:    32 b.~ -

And here is a routine which takes a list of bitwise operators and two numbers and displays a table of results from combining those two numbers with each of the operators:

bitwise=: 1 :0
:
  smoutput (((":x),"1' ',.(>u),.' '),"1":y),"1' => ',"1'.X'{~#:x u`:0 y
)

And here they are in action:

   254 bAND`bOR`bXOR`b1NOT`bLshift`bRshift`bRAshift`bLrot`bRrot bitwise 3
254 bAND     3 => ............................X.
254 bOR      3 => ......................XXXXXXXX
254 bXOR     3 => ......................XXXXXX.X
254 b1NOT    3 => XXXXXXXXXXXXXXXXXXXXXX.......X
254 bLshift  3 => ...................XXXXXXX....
254 bRshift  3 => .........................XXXXX
254 bRAshift 3 => .........................XXXXX
254 bLrot    3 => ...................XXXXXXX....
254 bRrot    3 => .........................XXXXX

Further test

bXOR/ 3333 5555 7777 9999
8664

Java

public static void bitwise(int a, int b){
  System.out.println("a AND b: " + (a & b));
  System.out.println("a OR b: "+ (a | b));
  System.out.println("a XOR b: "+ (a ^ b));
  System.out.println("NOT a: " + ~a);
  System.out.println("a << b: " + (a << b)); // left shift
  System.out.println("a >> b: " + (a >> b)); // arithmetic right shift
  System.out.println("a >>> b: " + (a >>> b)); // logical right shift
  System.out.println("a rol b: " + Integer.rotateLeft(a, b)); //rotate left, Java 1.5+
  System.out.println("a ror b: " + Integer.rotateRight(a, b)); //rotate right, Java 1.5+
}

All of the operators may be combined with the = operator to save space. For example, the following lines each do the same thing:

a <<= 3;
a = a << 3;
a *= 8; //2 * 2 * 2 = 8
a = a * 8;

JavaScript

There are no integers in Javascript, but there are still bitwise operators. They will convert their number operands into integers before performing they task. In other languages, these operators are very close to the hardware and very fast. In JavaScript, they are very far from the hardware and very slow and rarely used.

function bitwise(a, b){
   alert("a AND b: " + (a & b));
   alert("a OR b: "+ (a | b));
   alert("a XOR b: "+ (a ^ b));
   alert("NOT a: " + ~a);
   alert("a << b: " + (a << b)); // left shift
   alert("a >> b: " + (a >> b)); // arithmetic right shift
   alert("a >>> b: " + (a >>> b)); // logical right shift
}

jq

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

jq has no built-in bitwise operations, but the "bitwise" module defines all those needed for the task at hand except for rotations. Here `rotateLeft` and rotateRight` functions are defined relative to a given width.

The examples are taken from the entry for Wren.

include "bitwise" {search: "."};  # adjust as required

def leftshift($n; $width):
   [(range(0,$n)| 0), limit($width - $n; bitwise)][:$width] | to_int;

# Using a width of $width bits: x << n | x >> ($width-n)
def rotateLeft($x; $n; $width): 
  $x | bitwise_or(leftshift($n; $width); rightshift($width-$n));

# Using a width of $width bits: x << n | x >> ($width-n)
def rotateRight($x; $n; $width):
  $x | bitwise_or(rightshift($n); leftshift($width-$n; $width) );

def task($x; $y):
  def isInteger: type == "number" and . == round;
  if ($x|isInteger|not) or ($y|isInteger|not) or 
     $x < 0 or $y < 0 or $x > 4294967295 or $y > 4294967295
  then "Operands must be in the range of a 32-bit unsigned integer" | error
  else
    " x      = \($x)",
    " y      = \($y)",
    " x & y  = \(bitwise_and($x; $y))",
    " x | y  = \(bitwise_or($x; $y))",
    " x ^ y  = \(null | xor(x; $y))",
    "~x      = \(32 | flip($x))",
    " x << y = \($x | leftshift($y))",
    " x >> y = \($x | rightshift($y))",
    " x rl y = \(rotateLeft($x; $y; 32))",
    " x rr y = \(rotateRight($x; $y; 32))"
    end;

task(10; 2)
Output:
 x      = 10
 y      = 2
 x & y  = 2
 x | y  = 10
 x ^ y  = 8
~x      = 4294967295
 x << y = 40
 x >> y = 2
 x rl y = 40
 x rr y = 2147483650

Julia

# Version 5.2
@show 1 & 2   # AND
@show 1 | 2   # OR
@show 1 ^ 2   # XOR -- for Julia 6.0 the operator is `⊻`
@show ~1      # NOT
@show 1 >>> 2 # SHIFT RIGHT (LOGICAL)
@show 1 >> 2  # SHIFT RIGHT (ARITMETIC)
@show 1 << 2  # SHIFT LEFT (ARITMETIC/LOGICAL)

A = BitArray([true, true, false, false, true])
@show A ror(A,1) ror(A,2) ror(A,5) # ROTATION RIGHT
@show rol(A,1) rol(A,2) rol(A,5) # ROTATION LEFT
Output:
1 & 2 = 0
1 | 2 = 3
1 ^ 2 = 1
~1 = -2
1 >>> 2 = 0
1 >> 2 = 0
1 << 2 = 4
A = Bool[true,true,false,false,true]
ror(A,1) = Bool[true,true,true,false,false]
ror(A,2) = Bool[false,true,true,true,false]
ror(A,5) = Bool[true,true,false,false,true]
rol(A,1) = Bool[true,false,false,true,true]
rol(A,2) = Bool[false,false,true,true,true]
rol(A,5) = Bool[true,true,false,false,true]

Kotlin

fun main() {
    // inferred type of x and y is Int (32-bit signed integer)
    val x = 10
    val y = 2
    println("x = $x")
    println("y = $y")
    println("NOT x = ${x.inv()}")
    println("x AND y = ${x and y}")
    println("x OR y = ${x or y}")
    println("x XOR y = ${x xor y}")

    // All operations below actually return (x OP (y % 32)) so that a value is never completely shifted out
    println("x SHL y = ${x shl y}")
    println("x ASR y = ${x shr y}") // arithmetic shift right (sign bit filled)
    println("x LSR y = ${x ushr y}") // logical shift right (zero filled)
    println("x ROL y = ${x.rotateLeft(y)}")
    println("x ROR y = ${x.rotateRight(y)}")
}
Output:
x = 10
y = 2
NOT x = -11
x AND y = 2
x OR y = 10
x XOR y = 8
x SHL y = 40
x ASR y = 2
x LSR y = 2
x ROL y = 40
x ROR y = -2147483646

LFE

All these operations are built-in functions except right arithmetic shift, left rotate, and right rotate.

(defun bitwise (a b)
  (lists:map
    (lambda (x) (io:format "~p~n" `(,x)))
    `(,(band a b) 
      ,(bor a b)
      ,(bxor a b)
      ,(bnot a)
      ,(bsl a b)
      ,(bsr a b)))
  'ok)

(defun dec->bin (x) 
  (integer_to_list x 2))

(defun describe (func arg1 arg2 result)
  (io:format "(~s ~s ~s): ~s~n" 
             (list func (dec->bin arg1) (dec->bin arg2) (dec->bin result))))

(defun bitwise
  ((a b 'binary)
    (describe "band" a b (band a b))
    (describe "bor" a b (bor a b))
    (describe "bxor" a b (bxor a b))
    (describe "bnot" a b (bnot a))
    (describe "bsl" a b (bsl a b))
    (describe "bsr" a b (bsr a b))))

Example usage:

> (bitwise 255 170)
170
255
85
-256
381627307539845370001346183518875822092557105621893120
0
ok
> (bitwise 255 170 'binary)
(band 11111111 10101010): 10101010
(bor 11111111 10101010): 11111111
(bxor 11111111 10101010): 1010101
(bnot 11111111): -100000000
(bsl 11111111 10101010): 1111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
(bsr 11111111 10101010): 0
ok
>

Liberty BASIC

Written as functions.

'   bitwise operations on byte-sized variables

v =int( 256 *rnd( 1))

s = 1

print "Shift            ="; s; " place."
print
print "Number as dec. = "; v; " & as 8-bits byte = ", dec2Bin$( v)
print "NOT  as dec.          =  "; bitInvert(   v),    dec2Bin$( bitInvert(   v))
print "Shifted left  as dec. =  "; shiftLeft(   v, s), dec2Bin$( shiftLeft(   v, s))
print "Shifted right as dec. =  "; shiftRight(  v, s), dec2Bin$( shiftRight(  v, s))
print "Rotated left  as dec. =  "; rotateLeft(  v, s), dec2Bin$( rotateLeft(  v, s))
print "Rotated right as dec. =  "; rotateRight( v, s), dec2Bin$( rotateRight( v, s))

end

function shiftLeft( b, n)
    shiftLeft =( b *2^n) and 255
end function

function shiftRight( b, n)
    shiftRight =int(b /2^n)
end function

function rotateLeft( b, n)
    rotateLeft = (( 2^n *b) mod 256) or ( b >127)
end function

function rotateRight( b, n)
    rotateRight = (128*( b and 1)) or int( b /2)
end function

function bitInvert( b)
    bitInvert =b xor 255
end function

function dec2Bin$( num) '   Given an integer decimal 0 <--> 255, returns binary equivalent as a string
    n =num
    dec2Bin$ =""
    while ( num >0)
        dec2Bin$    =str$( num mod 2) +dec2Bin$
        num         =int(  num /2)
    wend
    dec2Bin$ =right$( "00000000" +dec2Bin$, 8)
end function

Lingo

Lingo has built-in functions for bitwise AND, OR, XOR and NOT:

put bitAND(2,7)
put bitOR(2,7)
put bitXOR(2,7)
put bitNOT(7)

Bit shifting and rotating has to be implemented by custom functions.

LiveCode

put "and:" && (255 bitand 2) & comma into bitops
put " or:" && (255 bitor 2) & comma after bitops
put " xor:" && (255 bitxor 2) & comma after bitops
put " not:" && (bitnot 255) after bitops
put bitops

-- Ouput
and: 2, or: 255, xor: 253, not: 4294967040

LiveCode does not provide built-in bit-shift operations.

LLVM

; ModuleID = 'test.o'
;e means little endian
;p: { pointer size : pointer abi : preferred alignment for pointers }
;i same for integers
;v is for vectors
;f for floats
;a for aggregate types
;s for stack objects
;n: {size:size:size...}, best integer sizes 
target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-f80:32:32-n8:16:32"
;this was compiled with mingw32; thus it must be linked to an ABI compatible c library
target triple = "i386-mingw32"

@.str = private constant [13 x i8] c"a and b: %d\0A\00", align 1 ; <[13 x i8]*> [#uses=1]
@.str1 = private constant [12 x i8] c"a or b: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str2 = private constant [13 x i8] c"a xor b: %d\0A\00", align 1 ; <[13 x i8]*> [#uses=1]
@.str3 = private constant [11 x i8] c"not a: %d\0A\00", align 1 ; <[11 x i8]*> [#uses=1]
@.str4 = private constant [12 x i8] c"a << n: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str5 = private constant [12 x i8] c"a >> n: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]
@.str6 = private constant [12 x i8] c"c >> b: %d\0A\00", align 1 ; <[12 x i8]*> [#uses=1]

;A function that will do many bitwise opreations to two integer arguments, %a and %b
define void @bitwise(i32 %a, i32 %b) nounwind {
;entry block
entry:
  ;Register to store (a & b)
  %0 = and i32 %b, %a                             ; <i32> [#uses=1]
  ;print the results
  %1 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([13 x i8]* @.str, i32 0, i32 0), i32 %0) nounwind ; <i32> [#uses=0]
  ;Register to store (a | b)
  %2 = or i32 %b, %a                              ; <i32> [#uses=1]
  ;print the results
  %3 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str1, i32 0, i32 0), i32 %2) nounwind ; <i32> [#uses=0]
  ;Register to store (a ^ b)
  %4 = xor i32 %b, %a                             ; <i32> [#uses=1]
  ;print the results
  %5 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([13 x i8]* @.str2, i32 0, i32 0), i32 %4) nounwind ; <i32> [#uses=0]
  ;Register to store (~a)
  %not = xor i32 %a, -1                           ; <i32> [#uses=1]
  ;print the results
  %6 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([11 x i8]* @.str3, i32 0, i32 0), i32 %not) nounwind ; <i32> [#uses=0]
  ;Register to store (a << b)
  %7 = shl i32 %a, %b                             ; <i32> [#uses=1]
  ;print the results
  %8 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str4, i32 0, i32 0), i32 %7) nounwind ; <i32> [#uses=0]
  ;Register to store (a >> b) (a is signed)
  %9 = ashr i32 %a, %b                            ; <i32> [#uses=1]
  ;print the results
  %10 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str5, i32 0, i32 0), i32 %9) nounwind ; <i32> [#uses=0]
  ;Register to store (c >> b), where c is unsiged (eg. logical right shift)
  %11 = lshr i32 %a, %b                           ; <i32> [#uses=1]
  ;print the results
  %12 = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds ([12 x i8]* @.str6, i32 0, i32 0), i32 %11) nounwind ; <i32> [#uses=0]
  
  ;terminator instruction
  ret void
}

;Declare external fuctions
declare i32 @printf(i8* nocapture, ...) nounwind

Works with: UCB Logo
to bitwise :a :b
  (print [a and b:] BitAnd :a :b)
  (print [a or b:] BitOr :a :b)
  (print [a xor b:] BitXor :a :b)
  (print [not a:] BitNot :a)
  ; shifts are to the left if positive, to the right if negative
  (print [a lshift b:] LShift :a :b)
  (print [a lshift -b:] LShift :a minus :b)
  (print [-a ashift -b:] AShift minus :a minus :b)
end
bitwise 255 5

The output of this program is:

a and b: 5
a or b: 255 
a xor b: 250
not a: -256
a lshift b: 8160
a lshift -b: 7
-a ashift -b: -8

LSE64

This example is incorrect. Please fix the code and remove this message.

Details: No reason given.

over : 2 pick
2dup : over over
 
bitwise : \
  " A=" ,t over ,h sp " B=" ,t dup ,h nl \
  " A and B=" ,t 2dup & ,h nl \
  " A  or B=" ,t 2dup | ,h nl \
  " A xor B=" ,t over ^ ,h nl \
  " not A="  ,t      ~ ,h nl
 
\ a \ 7 bitwise   # hex literals

Lua

LuaBitOp implements bitwise functionality for Lua:

local bit = require"bit"

local vb = {
  0, 1, -1, 2, -2, 0x12345678, 0x87654321,
  0x33333333, 0x77777777, 0x55aa55aa, 0xaa55aa55,
  0x7fffffff, 0x80000000, 0xffffffff
}

local function cksum(name, s, r)
  local z = 0
  for i=1,#s do z = (z + string.byte(s, i)*i) % 2147483629 end
  if z ~= r then
    error("bit."..name.." test failed (got "..z..", expected "..r..")", 0)
  end
end

local function check_unop(name, r)
  local f = bit[name]
  local s = ""
  if pcall(f) or pcall(f, "z") or pcall(f, true) then
    error("bit."..name.." fails to detect argument errors", 0)
  end
  for _,x in ipairs(vb) do s = s..","..tostring(f(x)) end
  cksum(name, s, r)
end

local function check_binop(name, r)
  local f = bit[name]
  local s = ""
  if pcall(f) or pcall(f, "z") or pcall(f, true) then
    error("bit."..name.." fails to detect argument errors", 0)
  end
  for _,x in ipairs(vb) do
    for _,y in ipairs(vb) do s = s..","..tostring(f(x, y)) end
  end
  cksum(name, s, r)
end

local function check_binop_range(name, r, yb, ye)
  local f = bit[name]
  local s = ""
  if pcall(f) or pcall(f, "z") or pcall(f, true) or pcall(f, 1, true) then
    error("bit."..name.." fails to detect argument errors", 0)
  end
  for _,x in ipairs(vb) do
    for y=yb,ye do s = s..","..tostring(f(x, y)) end
  end
  cksum(name, s, r)
end

local function check_shift(name, r)
  check_binop_range(name, r, 0, 31)
end

-- Minimal sanity checks.
assert(0x7fffffff == 2147483647, "broken hex literals")
assert(0xffffffff == -1 or 0xffffffff == 2^32-1, "broken hex literals")
assert(tostring(-1) == "-1", "broken tostring()")
assert(tostring(0xffffffff) == "-1" or tostring(0xffffffff) == "4294967295", "broken tostring()")

-- Basic argument processing.
assert(bit.tobit(1) == 1)
assert(bit.band(1) == 1)
assert(bit.bxor(1,2) == 3)
assert(bit.bor(1,2,4,8,16,32,64,128) == 255)

The RiscLua dialect, for RISC OS, has 32-bit integers as the default number type. It provides binary operations & (and), | (or), ^^ (xor), << (logical shift left), >> (logical shift right) and a unary operation ~ (negate).

Lua 5.3+

As of Lua 5.3 most of the required operations are built-in, and those still missing could be derived from them:

a = 0xAA55AA55
b = 0x4
print(string.format("%8X and %8X = %16X", a, b, a&b))
print(string.format("%8X or  %8X = %16X", a, b, a|b))
print(string.format("%8X xor %8X = %16X", a, b, a~b))
print(string.format("%8s not %8X = %16X", "", a, ~a))
print(string.format("%8X shl %8X = %16X", a, b, a<<b))
print(string.format("%8X shr %8X = %16X", a, b, a>>b))
-- not built-in, 32-bit substitutes provided:
local function sar(x,n) return (x>>n) | (x&0x80000000==0 and 0 or (0xffffffff<<(32-n))&0xffffffff) end
local function rol(x,n) return ((x<<n)&0xffffffff) | (x>>(32-n)) end
local function ror(x,n) return (x>>n) | ((x<<(32-n))&0xffffffff) end
print(string.format("%8X sar %8X = %16X", a, b, sar(a,b)))
print(string.format("%8X rol %8X = %16X", a, b, rol(a,b)))
print(string.format("%8X ror %8X = %16X", a, b, ror(a,b)))
Output:
AA55AA55 and        4 =                4
AA55AA55 or         4 =         AA55AA55
AA55AA55 xor        4 =         AA55AA51
         not AA55AA55 = FFFFFFFF55AA55AA
AA55AA55 shl        4 =        AA55AA550
AA55AA55 shr        4 =          AA55AA5
AA55AA55 sar        4 =         FAA55AA5
AA55AA55 rol        4 =         A55AA55A
AA55AA55 ror        4 =         5AA55AA5

Maple

with(Bits):
bit:=proc(A,B)
local a,b,c,d,e,f,g,h,i,x,bitpow;
bitpow := 2^B:
a:=And(A,B);
b:=Not(A);
c:=Or(A,B);
d:=Xor(A,B);
#Left Shift
e:= irem(2*A,bitpow);
#Right Shift
f := iquo(A,2);
#Left Rotate
g:= irem(2*A,bitpow,'x')+x;
#Rightarithshift
i:= iquo(A,2)+bitpow/2*irem(A,bitpow/2);
return a,b,c,d,e,f,g,i;
end proc;

Mathematica / Wolfram Language

Most functions are built-in or can be made really easily:

(*and xor and or*)
BitAnd[integer1, integer2]
BitXor[integer1, integer2]
BitOr[integer1, integer2]

(*logical not*)
BitNot[integer1]

(*left and right shift*)
BitShiftLeft[integer1]
BitShiftRight[integer1]

(*rotate digits left and right*)
FromDigits[RotateLeft[IntegerDigits[integer1, 2]], 2]
FromDigits[RotateRight[IntegerDigits[integer1, 2]], 2]

(*right arithmetic shift*)
FromDigits[Prepend[Most[#], #[[1]]], 2] &[IntegerDigits[integer1, 2]]

The function BitShiftLeft, BitShiftRight, RotateRight, RotateLeft all take a second argument, which is the displacement, by default it is set to 1. BitAnd, BitXor and BitOr can handle more than 2 arguments:

BitXor[3333, 5555, 7777, 9999]

gives back:

8664

MATLAB / Octave

Newer versions of MATLAB have even more bitwise operations than those demonstrated here. A complete list of bitwise operations for the newest version of MATLAB can be found at MathWorks

function bitwiseOps(a,b)

    disp(sprintf('%d and %d = %d', [a b bitand(a,b)]));
    disp(sprintf('%d or %d = %d', [a b bitor(a,b)]));
    disp(sprintf('%d xor %d = %d', [a b bitxor(a,b)]));
    disp(sprintf('%d << %d = %d', [a b bitshift(a,b)]));
    disp(sprintf('%d >> %d = %d', [a b bitshift(a,-b)]));   

end

Output:

>> bitwiseOps(255,2)
255 and 2 = 2
255 or 2 = 255
255 xor 2 = 253
255 << 2 = 1020
255 >> 2 = 63

Maxima

load(functs)$

a: 3661$
b: 2541$

logor(a, b);
/* 4077 */

logand(a, b);
/* 2125 */

logxor(a, b);
/* 1952 */

/* NOT(x) is simply -x - 1
-a - 1;
/* -3662 */

logor(a, -a - 1);
/* -1 */

logand(a, -a - 1);
/* 0 */

MAXScript

fn bitwise a b =
(
    format "a and b: %\n" (bit.and a b)
    format "a or b: %\n" (bit.or a b)
    format "a xor b: %\n" (bit.xor a b)
    format "not a: %\n" (bit.not a)
    format "Left shift a: %\n" (bit.shift a b)
    format "Right shift a: %\n" (bit.shift a -b)
)

bitwise 255 170

MAXScript doesn't have arithmetic shift or rotate operations.

ML/I

ML/I only supports bitwise AND and OR operations. These are available from version CKD onwards.

MCSKIP "WITH" NL
"" Bitwise operations
"" assumes macros on input stream 1, terminal on stream 2
MCSKIP MT,<>
MCINS %.
MCDEF SL SPACES NL AS <MCSET T1=%A1.
MCSET T2=%A2.
a and b = %%T1.&%T2..
a or b  = %%T1.|%T2..
The other operators are not supported.
MCSET S10=0
>
MCSKIP SL WITH *
MCSET S1=1
*MCSET S10=2

Modula-3

MODULE Bitwise EXPORTS Main;

IMPORT IO, Fmt, Word;

VAR c: Word.T;

PROCEDURE Bitwise(a, b: INTEGER) =
  BEGIN
    IO.Put("a AND b: " & Fmt.Int(Word.And(a, b)) & "\n");
    IO.Put("a OR b: " & Fmt.Int(Word.Or(a, b)) & "\n");
    IO.Put("a XOR b: " & Fmt.Int(Word.Xor(a, b)) & "\n");
    IO.Put("NOT a: " & Fmt.Int(Word.Not(a)) & "\n");
    c := a;
    IO.Put("c LeftShift b: " & Fmt.Unsigned(Word.LeftShift(c, b)) & "\n");
    IO.Put("c RightShift b: " & Fmt.Unsigned(Word.RightShift(c, b)) & "\n");
    IO.Put("c LeftRotate b: " & Fmt.Unsigned(Word.LeftRotate(c, b)) & "\n");
    IO.Put("c RightRotate b: " & Fmt.Unsigned(Word.RightRotate(c, b)) & "\n");
  END Bitwise;

BEGIN
  Bitwise(255, 5);
END Bitwise.

Output:

a AND b: 5
a OR b: 255
a XOR b: 250
NOT a: -256
c LeftShift b: 1fe0
c RightShift b: 7
c LeftRotate b: 1fe0
c RightRotate b: f8000007

Neko

/**
 <doc>
   <h2>bitwise operations</h2>
   <p>Tectonics:
     <br>  nekoc bitwise.neko
     <br>  neko bitwise</p>
 </doc>
*/

// Neko is a signed 31 bit integer VM, full 32 bit requires builtins
var int32_new = $loader.loadprim("std@int32_new", 1);
var int32_and = $loader.loadprim("std@int32_and", 2);
var int32_or = $loader.loadprim("std@int32_or", 2);
var int32_xor = $loader.loadprim("std@int32_xor", 2);
var int32_shl = $loader.loadprim("std@int32_shl", 2);
var int32_shr = $loader.loadprim("std@int32_shr", 2);
var int32_ushr = $loader.loadprim("std@int32_ushr", 2);
var int32_complement = $loader.loadprim("std@int32_complement", 1);

// Function to show bitwise operations on a,b
var bitwise = function(a, b) {
  var ia = int32_new(a);
  var ib = int32_new(b);

  $print("Neko 32 bit integer library\n");
  $print("a AND b: ", a, " ", b, " ", int32_and(ia, ib), "\n");
  $print("a OR b:  ", a, " ", b, " ", int32_or(ia, ib), "\n");
  $print("a XOR b: ", a, " ", b, " ", int32_xor(ia, ib), "\n");
  $print("ones complement a:   ", a, " ", int32_complement(ia), "\n");
  $print("a SHL b: ", a, " ", b, " ", int32_shl(ia, ib), "\n");
  $print("a SHR b: ", a, " ", b, " ", int32_shr(ia, ib), "\n");
  $print("a USHR b: ", a, " ", b, " ", int32_ushr(ia, ib), "\n");
  $print("a ROL b: is not directly supported in Neko Int32\n");
  $print("a ROR b: is not directly supported in Neko Int32\n");

  $print("\nNormal Neko 31 bit signed integers\n");
  a = $int(a);
  b = $int(b);
  $print("a AND b: ", a, " ", b, " ", a & b, "\n");
  $print("a OR  b: ", a, " ", b, " ", a | b, "\n");
  $print("a XOR b: ", a, " ", b, " ", a ^ b, "\n");
  $print("NOT a: is not directly supported in Neko syntax\n");
  $print("a SHL b: ", a, " ", b, " ", a << b, "\n");
  $print("a SHR b: ", a, " ", b, " ", a >> b, "\n");
  $print("a USHR b: ", a, " ", b, " ", a >>> b, "\n");
  $print("a ROL b: is not directly supported in Neko syntax\n");
  $print("a ROR b: is not directly supported in Neko syntax\n");
}

// Pass command line arguments to the demo function
// initially as float, to ensure no internal bit truncation
var a = $float($loader.args[0]);
var b = $float($loader.args[1]);
if a == null a = 0;
if b == null b = 0;

bitwise(a,b);
Output:
prompt$ nekoc bitwise.neko
prompt$ neko bitwise 0x7fffffff 2
Neko 32 bit integer library
a AND b: 2147483647 2 2
a OR b:  2147483647 2 2147483647
a XOR b: 2147483647 2 2147483645
ones complement a:   2147483647 -2147483648
a SHL b: 2147483647 2 -4
a SHR b: 2147483647 2 536870911
a USHR b: 2147483647 2 536870911
a ROL b: is not directly supported in Neko Int32
a ROR b: is not directly supported in Neko Int32

Normal Neko 31 bit signed integers
a AND b: -1 2 2
a OR  b: -1 2 -1
a XOR b: -1 2 -3
NOT a: is not directly supported in Neko syntax
a SHL b: -1 2 -4
a SHR b: -1 2 -1
a USHR b: -1 2 1073741823
a ROL b: is not directly supported in Neko syntax
a ROR b: is not directly supported in Neko syntax

Nemerle

def i = 255;
def j = 2;

WriteLine($"$i and $j is $(i & j)");
WriteLine($"$i or $j is $(i | j)");
WriteLine($"$i xor $j is $(i ^ j)");
WriteLine($"not $i is $(~i)");
WriteLine($"$i lshift $j is $(i << j)");
WriteLine($"$i arshift $j is $(i >> j)");          // When the left operand of the >> operator is of a signed integral type, 
                                                   // the operator performs an arithmetic shift right
WriteLine($"$(i :> uint) rshift $j is $(c >> j)"); // When the left operand of the >> operator is of an unsigned integral type, 
                                                   // the operator performs a logical shift right
// there are no rotation operators in Nemerle, but you could define your own w/ a macro if you really wanted it

Nim

proc bitwise(a, b) =
  echo "a and b: " , a and b
  echo "a or b: ", a or b
  echo "a xor b: ", a xor b
  echo "not a: ", not a
  echo "a << b: ", a shl b
  echo "a >> b: ", a shr b

NSIS

All bitwise operations in NSIS are handled by the IntOp instruction.

Function Bitwise
	Push $0
	Push $1
	Push $2
	StrCpy $0 7
	StrCpy $1 2
	
	IntOp $2 $0 & $1
	DetailPrint "Bitwise AND: $0 & $1 = $2"
	IntOp $2 $0 | $1
	DetailPrint "Bitwise OR: $0 | $1 = $2"
	IntOp $2 $0 ^ $1
	DetailPrint "Bitwise XOR: $0 ^ $1 = $2"
	IntOp $2 $0 ~
	DetailPrint "Bitwise NOT (negate in NSIS docs): ~$0 = $2"
	DetailPrint "There are no Arithmetic shifts in NSIS"
	IntOp $2 $0 >> $1 
	DetailPrint "Right Shift: $0 >> 1 = $2"
	IntOp $2 $0 << $1
	DetailPrint "Left Shift: $0 << $1 = $2"
	DetailPrint "There are no Rotates in NSIS"
	
	
	Pop $2
	Pop $1
	Pop $0
FunctionEnd

Oberon-2

Works with: oo2c version 2
MODULE Bitwise;
IMPORT
  SYSTEM,
  Out;

PROCEDURE Do(a,b: LONGINT);
VAR
  x,y: SET;
BEGIN
  x := SYSTEM.VAL(SET,a);y := SYSTEM.VAL(SET,b);
  Out.String("a and b :> ");Out.Int(SYSTEM.VAL(LONGINT,x * y),0);Out.Ln;
  Out.String("a or b  :> ");Out.Int(SYSTEM.VAL(LONGINT,x + y),0);Out.Ln;
  Out.String("a xor b :> ");Out.Int(SYSTEM.VAL(LONGINT,x / y),0);Out.Ln;
  Out.String("a and ~b:> ");Out.Int(SYSTEM.VAL(LONGINT,x - y),0);Out.Ln;
  Out.String("~a      :> ");Out.Int(SYSTEM.VAL(LONGINT,-x),0);Out.Ln;
  Out.String("a left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,b)),0);Out.Ln;
  Out.String("a right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.LSH(x,-b)),0);Out.Ln;
  Out.String("a left rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,b)),0);Out.Ln;
  Out.String("a right rotate b :> ");Out.Int(SYSTEM.VAL(LONGINT,SYSTEM.ROT(x,-b)),0);Out.Ln;
  Out.String("a arithmetic left shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,b)),0);Out.Ln;
  Out.String("a arithmetic right shift b :> ");Out.Int(SYSTEM.VAL(LONGINT,ASH(a,-b)),0);Out.Ln
END Do;

BEGIN
  Do(10,2);
END Bitwise.
Output:
a and b :> 2
a or b  :> 10
a xor b :> 8
a and ~b:> 8
~a      :> -11
a left shift b :> 40
a right shift b :> 2
a left rotate b :> 40
a right rotate b :> -2147483646
a arithmetic left shift b :> 40
a arithmetic right shift b :> 2

Objeck

use IO;

bundle Default {
  class Test {
    function : Main(args : String[]) ~ Nil {
      BitWise(3, 4);
    }

    function : BitWise(a : Int, b : Int) ~ Nil {
        Console->GetInstance()->Print("a and b: ")->PrintLine(a and b);
      Console->GetInstance()->Print("a or b: ")->PrintLine(a or b);
      Console->GetInstance()->Print("a xor b: ")->PrintLine(a xor b);
      # shift left & right are supported by the compiler and VM but not 
      # exposed to end-users; those instructions are used for optimizations
    }
  }
}

OCaml

let bitwise a b =
  Printf.printf "a and b: %d\n" (a land b);
  Printf.printf "a or b: %d\n" (a lor b);
  Printf.printf "a xor b: %d\n" (a lxor b);
  Printf.printf "not a: %d\n" (lnot a);
  Printf.printf "a lsl b: %d\n" (a lsl b);  (* left shift *)
  Printf.printf "a asr b: %d\n" (a asr b);  (* arithmetic right shift *)
  Printf.printf "a lsr b: %d\n" (a lsr b);  (* logical right shift *)
;;

Octave

There's no arithmetic shift nor rotation (and the not can be done through a xor)

function bitops(a, b)
  s = sprintf("%s %%s %s = %%s\n", dec2bin(a), dec2bin(b));
  printf(s, "or", dec2bin(bitor(a, b)));
  printf(s, "and", dec2bin(bitand(a, b)));
  printf(s, "xor", dec2bin(bitxor(a, b)));
  printf(s, "left shift", dec2bin(bitshift(a, abs(b))));
  printf(s, "right shift", dec2bin(bitshift(a, -abs(b))));
  printf("simul not %s = %s", dec2bin(a), dec2bin(bitxor(a, 0xffffffff)));
endfunction

bitops(0x1e, 0x3);

Oforth

There is no built-in for not and rotation

: bitwise(a, b)
   a b bitAnd println
   a b bitOr println
   a b bitXor println
   a bitLeft(b) println
   a bitRight(b) println ;

ooRexx

/* ooRexx *************************************************************
/ Bit Operations work as in Rexx (of course)
* Bit operations are performed up to the length of the shorter string.
* The rest of the longer string is copied to the result.
* ooRexx introduces the possibility to specify a padding character
* to be used for expanding the shorter string.
* 10.11.2012 Walter Pachl taken over from REXX and extended for ooRexx
**********************************************************************/
a=21
b=347
Say '          a :'c2b(a) '        'c2x(a)
Say '          b :'c2b(b)           c2x(b)
Say 'bitand(a,b) :'c2b(bitand(a,b)) c2x(bitand(a,b))
Say 'bitor(a,b)  :'c2b(bitor(a,b))  c2x(bitor(a,b))
Say 'bitxor(a,b) :'c2b(bitxor(a,b)) c2x(bitxor(a,b))
p='11111111'B
Say 'ooRexx only:'
Say 'a~bitor(b,p):'c2b(a~bitor(b,p)) c2x(a~bitor(b,p))
Exit
c2b: return x2b(c2x(arg(1)))

Output:

          a :0011001000110001         3231
          b :001100110011010000110111 333437
bitand(a,b) :001100100011000000110111 323037
bitor(a,b)  :001100110011010100110111 333537
bitxor(a,b) :000000010000010100110111 010537
ooRexx only:
a~bitor(b,p):001100110011010111111111 3335FF

OpenEdge/Progress

The only bit operators available in OpenEdge are the GET-BITS() and PUT-BITS() functions. These functions can be used to implement all bitwise operators.

PARI/GP

Pari does not support bitwise rotations, which have no obvious meaning with arbitrary-precision integers. See also bitnegimply for another bitwise operator. For shifts, see also shiftmul.

bo(a,b)={
  print("And: "bitand(a,b));
  print("Or: "bitor(a,b));
  print("Not: "bitneg(a));
  print("Xor: "bitxor(a,b));
  print("Left shift: ",a<<b);
  print("Right shift: ",a>>b);
}

Pascal

While Standard Pascal does not have bitwise operations, most Pascal implementations (including Turbo Pascal and Delphi) extend the standard logical operators to also provide bitwise operations:

var
 a, b: integer;
begin
 a := 10; { binary 1010 }
 b := 12; { binary 1100 }
 writeln('a and b = ', a and b); {  8 = 1000 }
 writeln('a or b  = ', a or b);  { 14 = 1110 }
 writeln('a xor b = ', a xor b)  {  6 = 0110 }
end.

PascalABC.NET

begin
  var (a,b) := ReadInteger2;
  Println($'not {a} = {not a}');
  Println($'{a} and {b} = {a and b}');
  Println($'{a} or {b} = {a or b}');
  Println($'{a} xor {b} = {a xor b}');
  Println($'{a} shl {b} = {a shl b}');
  Println($'{a} shr {b} = {a shr b}');
end.
Output:
7 3
not 7 = -8
7 and 3 = 3
7 or 3 = 7
7 xor 3 = 4
7 shl 3 = 56
7 shr 3 = 0

Perl

use integer;
 
sub bitwise :prototype($$) {
   ($a, $b) = @_;
   print 'a and b: '. ($a & $b) ."\n";
   print 'a or b: '.  ($a | $b) ."\n";
   print 'a xor b: '. ($a ^ $b) ."\n";
   print 'not a: '.   (~$a)     ."\n";
   print 'a >> b: ', $a >> $b, "\n"; # logical right shift

   use integer; # "use integer" enables bitwise operations to return signed ints
   print "after use integer:\n";
   print 'a << b: ', $a << $b, "\n"; # left shift
   print 'a >> b: ', $a >> $b, "\n"; # arithmetic right shift
}

Phix

Phix has four builtin bitwise operations (and/or/xor/not)_bits, which each have sequence and unsigned variants. Note careful use of latter (unsigned) routines here, since Phix naturally preserves signs (and common sense) when it can, rather than rudely treat, for instance, +4,294,967,295 as -1, unless explicitly told to do so as it is below. Likewise the builtin shift operators deliver signed and unbounded results, so we'll wrap them here. There are no builtin rotate routines, but easy enough to devise. The distributed copy (1.0.2+) also contains an (older) inline assembly version, which is obviously not JavaScript compatible, but may be significantly faster, for desktop-only applications.

-- demo\rosetta\Bitwise_operations.exw
with javascript_semantics
enum SHL, SAR, SHR, ROL, ROR
function bitop(atom a, integer b, integer op)
    atom res
    if op=SHL then
        -- Note: Phix doesn't quietly discard high bits...
        res = and_bitsu(a << b,#FFFF_FFFF)
    elsif op=SAR then
        -- Note: Phix doesn't really do "unsigned numbers",
        --       Should you want to treat 4G-1 as -1 then:
        if a>#7FFF_FFFF then a -= #1_0000_0000 end if
        res = and_bitsu(a >> b,#FFFF_FFFF)
    elsif op=SHR then
        res = and_bitsu(a >> b,#FFFF_FFFF)
    elsif op=ROL then
        return or_bitsu(a >> 32-b, and_bits(a << b,#FFFF_FFFF))
    elsif op=ROR then
        return or_bitsu(a >> b, and_bits(a << 32-b,#FFFF_FFFF))
    else
        ?9/0
    end if
    return res
end function

procedure bitwise(atom a, atom b)
    printf(1,"and_bits(%b,%b) = %032b\n",{a,b,and_bitsu(a,b)})
    printf(1," or_bits(%b,%b) = %032b\n",{a,b, or_bitsu(a,b)})
    printf(1,"xor_bits(%b,%b) = %032b\n",{a,b,xor_bitsu(a,b)})
    printf(1,"not_bits(%b)     = %032b\n",{a,not_bitsu(a)})
    printf(1,"     shl(%b,%b) = %032b\n",{a,b,bitop(a,b,SHL)})
    printf(1,"     sar(%b,%b) = %032b\n",{a,b,bitop(a,b,SAR)})
    printf(1,"     shr(%b,%b) = %032b\n",{a,b,bitop(a,b,SHR)})
    printf(1,"     rol(%b,%b) = %032b\n",{a,b,bitop(a,b,ROL)})
    printf(1,"     ror(%b,%b) = %032b\n",{a,b,bitop(a,b,ROR)})
end procedure
 
bitwise(0x800000FE,7)
Output:
and_bits(10000000000000000000000011111110,111) = 00000000000000000000000000000110
 or_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111111
xor_bits(10000000000000000000000011111110,111) = 10000000000000000000000011111001
not_bits(10000000000000000000000011111110)     = 01111111111111111111111100000001
     shl(10000000000000000000000011111110,111) = 00000000000000000111111100000000
     sar(10000000000000000000000011111110,111) = 11111111000000000000000000000001
     shr(10000000000000000000000011111110,111) = 00000001000000000000000000000001
     rol(10000000000000000000000011111110,111) = 00000000000000000111111101000000
     ror(10000000000000000000000011111110,111) = 11111101000000000000000000000001

Phixmonti

6 var a 3 var b

def tab
    9 tochar print
enddef

def printBits
    8 int>bit reverse print nl
enddef

a print " = " print tab a printBits
b print " = " print tab b printBits
tab "------------------------" print nl
"AND = " print tab a b bitand printBits
"OR =  " print tab a b bitor printBits
"XOR = " print tab a b bitxor printBits
"NOT = " print tab a bitnot printBits

PHP

function bitwise($a, $b)
{
    function zerofill($a,$b) { 
        if($a>=0) return $a>>$b;
        if($b==0) return (($a>>1)&0x7fffffff)*2+(($a>>$b)&1); // this line shifts a 0 into the sign bit for compatibility, replace with "if($b==0) return $a;" if you need $b=0 to mean that nothing happens
        return ((~$a)>>$b)^(0x7fffffff>>($b-1)); 

    echo '$a AND $b: ' . $a & $b . '\n';
    echo '$a OR $b: ' . $a | $b . '\n';
    echo '$a XOR $b: ' . $a ^ $b . '\n';
    echo 'NOT $a: ' . ~$a . '\n';
    echo '$a << $b: ' . $a << $b . '\n'; // left shift  
    echo '$a >> $b: ' . $a >> $b . '\n'; // arithmetic right shift
    echo 'zerofill($a, $b): ' . zerofill($a, $b) . '\n'; // logical right shift
}

PicoLisp

PicoLisp has no specific word size. Numbers grow to arbitrary length. Therefore, bitwise NOT, logical (non-arithmetic) SHIFTs, and rotate operations do not make sense.

Bitwise AND:

: (& 6 3)
-> 2

: (& 7 3 1)
-> 1

Bitwise AND-Test (tests if all bits in the first argument are set in the following arguments):

: (bit? 1 2)
-> NIL

: (bit? 6 3)
-> NIL

: (bit? 6 15 255)
-> 6

Bitwise OR:

: (| 1 2)
-> 3

: (| 1 2 4 8)
-> 15

Bitwise XOR:

: (x| 2 7)
-> 5

: (x| 2 7 1)
-> 4

Shift (right with a positive count, left with a negative count):

: (>> 1 8)
-> 4

: (>> 3 16)
-> 2

: (>> -3 16)
-> 128

: (>> -1 -16)
-> -32

Pike

Rotate operations are not available

void bitwise(int a, int b)
{
    write("a and b: %d\n", a & b);
    write("a or b:  %d\n", a | b);
    write("a xor b: %d\n", a ^ b);
    write("not a:   %d\n", ~a);
    write("a << b:  0x%x\n", a << b);
    write("a >> b:  %d\n", a >> b);
    // ints in Pike do not overflow, if a particular size of the int
    // is desired then cap it with an AND operation
    write("a << b & 0xffffffff (32bit cap):  0x%x\n",
          a << b & 0xffffffff);
}

void main()
{
    bitwise(255, 30);
}
Output:
a and b: 30
a or b:  255
a xor b: 225
not a:   -256
a << b:  0x3fc0000000
a >> b:  0
a << b & 0xffffffff (32bit cap):  0xc0000000

PL/I

/* PL/I can perform bit operations on binary integers. */
k = iand(i,j);
k = ior(i,j);
k = inot(i,j);
k = ieor(i,j);
k = isll(i,n); /* unsigned shifts i left  by n places. */
k = isrl(i,n); /* unsigned shifts i right by n places. */
k = lower2(i, n); /* arithmetic right shift i by n places. */
k = raise2(i, n); /* arithmetic left  shift i by n places. */

/* PL/I can also perform boolean operations on bit strings */
/* of any length: */

declare (s, t, u) bit (*);

u = s & t; /* logical and  */
u = s | t; /* logical or   */
u = ^ s;   /* logical not  */
u = s ^ t; /* exclusive or */

/* Built-in rotate functions are not available. */
/* They can be readily implemented by the user, though: */

u = substr(s, length(s), 1) || substr(s, 1, length(s)-1); /* implements rotate right. */
u = substr(s, 2) || substr(s, 1, 1);                      /* implements rotate left.  */

Pop11

define bitwise(a, b);
    printf(a && b, 'a and b = %p\n');
    printf(a || b, 'a or b = %p\n');
    printf(a ||/& b, 'a xor b = %p\n');
    printf(~~ a, 'not a = %p\n');
    printf(a << b, 'left shift of a by b = %p\n');
    printf(a >> b, 'arithmetic right shift of a by b = %p\n');
enddefine;

Conceptually in Pop11 integers have infinite precision, in particular negative numbers conceptually have infinitely many leading 1's in two's complement notation. Hence, logical right shift is not defined. If needed, logical right shift can be simulated by masking high order bits.

Similarly, on infinitely precise numbers rotation is undefined.

PowerShell

Logical right shift and rotations are not supported in PowerShell.

Works with: PowerShell version 2.0
$X -band $Y
$X -bor  $Y
$X -bxor $Y
-bnot $X
Works with: PowerShell version 3.0
$X -shl $Y
# Arithmetic right shift
$X -shr $Y

# Requires quite a stretch of the imagination to call this "native" support of right rotate, but it works
[System.Security.Cryptography.SHA256Managed].GetMethod('RotateRight', 'NonPublic, Static', $null, @([UInt32], [Int32]), $null).Invoke($null, @([uint32]$X, $Y))

PureBasic

Procedure Bitwise(a, b)
  Debug  a & b      ; And
  Debug a | b       ;Or
  Debug a ! b       ; XOr
  Debug ~a          ;Not
  Debug a << b      ; shift left
  Debug a >> b      ; arithmetic shift right
  ; Logical shift right and rotates are not available
  ; You can of use inline ASM to achieve this:
  Define Temp
  ; logical shift right
  !mov edx, dword [p.v_a]
  !mov ecx, dword [p.v_b]
  !shr edx, cl
  !mov dword [p.v_Temp], edx
  Debug Temp
  ; rotate left
  !mov edx, dword [p.v_a]
  !mov ecx, dword [p.v_b]
  !rol edx, cl
  !mov dword [p.v_Temp], edx
  Debug Temp
  ; rotate right
  !mov edx, dword [p.v_a]
  !mov ecx, dword [p.v_b]
  !ror edx, cl
  !mov dword [p.v_Temp], edx
  Debug Temp
EndProcedure

Python

Python 3

Python has variable length integers. Usually implementations require fixed-width integers. This we get by &-ing values with a mask of all ones of sufficient length. Below we use a combination of a mask and zero-extended fixed-width binary output formatting in calculations and result displays.

def bitwise_built_ins(width, a, b):
    mask = (1 << width) - 1
    print(f"""\
    AND:     0b{a :0{width}b} 
           & 0b{b :0{width}b} 
           = 0b{(a & b) & mask :0{width}b}
           
    OR:      0b{a :0{width}b} 
           | 0b{b :0{width}b} 
           = 0b{(a | b) & mask :0{width}b}
           
    XOR:     0b{a :0{width}b} 
           ^ 0b{b :0{width}b} 
           = 0b{(a ^ b) & mask :0{width}b}
           
    NOT:   ~ 0b{a :0{width}b} 
           = 0b{(~a) & mask :0{width}b}
           
    SHIFTS
    
      RIGHT:   0b{a :0{width}b} >> 1
             = 0b{(a >> 1) & mask :0{width}b}      
    
      LEFT:    0b{a :0{width}b} << 1
             = 0b{(a << 1) & mask :0{width}b}      
""")

def rotr(width, a, n):
    "Rotate a, n times to the right"
    if n < 0:
        return rotl(width, a, -n)
    elif n == 0:
        return a
    else:
        mask = (1 << width) - 1
        a, n = a & mask, n % width
        return ((a >> n)    # top moved down
                | ((a & ((1 << n) - 1))   # Bottom masked...
                   << (width - n)))  # ... then moved up    

def rotl(width, a, n):
    "Rotate a, n times to the left"
    if n < 0:
        return rotr(width, a, -n)
    elif n == 0:
        return a
    else:
        mask = (1 << width) - 1
        a, n = a & mask, n % width
        return (((a << n) & mask)      # bottom shifted up and masked
                | (a >> (width - n)))  # Top moved down  
    
def asr(width, a, n):
    "Arithmetic shift a, n times to the right. (sign preserving)."
    mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)
    if n < 0:
        return  (a << -n) & mask
    elif n == 0:
        return a
    elif n >= width:
        return mask if a & top_bit_mask else 0
    else:
        a = a & mask
        if a & top_bit_mask:    # Sign bit set?
            signs = (1 << n) - 1
            return a >> n | (signs << width - n)
        else:
            return a >> n
    
      
def helper_funcs(width, a):
    mask, top_bit_mask = ((1 << width) - 1), 1 << (width - 1)
    aa = a | top_bit_mask  # a with top bit set
    print(f"""\
    ROTATIONS
    
      RIGHT:   rotr({width}, 0b{a :0{width}b}, 1)
               =       0b{rotr(width, a, 1) :0{width}b}      
               rotr({width}, 0b{a :0{width}b}, 2)
               =       0b{rotr(width, a, 2) :0{width}b}      
               rotr({width}, 0b{a :0{width}b}, 4)
               =       0b{rotr(width, a, 4) :0{width}b}      
    
      LEFT:    rotl({width}, 0b{a :0{width}b}, 1)
               =       0b{rotl(width, a, 1) :0{width}b}      
               rotl({width}, 0b{a :0{width}b}, 2)
               =       0b{rotl(width, a, 2) :0{width}b}      
               rotl({width}, 0b{a :0{width}b}, 4)
               =       0b{rotl(width, a, 4) :0{width}b}    
    
    SIGN-EXTENDING ARITHMETIC SHIFT RIGHT
    
               asr({width}, 0b{a :0{width}b}, 1)
               =      0b{asr(width, a, 1) :0{width}b}      
               asr({width}, 0b{aa :0{width}b}, 1)
               =      0b{asr(width, aa, 1) :0{width}b}      
               asr({width}, 0b{a :0{width}b}, 2)
               =      0b{asr(width, a, 2) :0{width}b}      
               asr({width}, 0b{aa :0{width}b}, 2)
               =      0b{asr(width, aa, 2) :0{width}b}      
               asr({width}, 0b{a :0{width}b}, 4)
               =      0b{asr(width, a, 4) :0{width}b} 
               asr({width}, 0b{aa :0{width}b}, 4)
               =      0b{asr(width, aa, 4) :0{width}b} 
""")

if __name__ == '__main__':
    bitwise_built_ins(8, 27, 125)
    helper_funcs(8, 27)
Output:
    AND:     0b00011011 
           & 0b01111101 
           = 0b00011001
           
    OR:      0b00011011 
           | 0b01111101 
           = 0b01111111
           
    XOR:     0b00011011 
           ^ 0b01111101 
           = 0b01100110
           
    NOT:   ~ 0b00011011 
           = 0b11100100
           
    SHIFTS
    
      RIGHT:   0b00011011 >> 1
             = 0b00001101      
    
      LEFT:    0b00011011 << 1
             = 0b00110110      

    ROTATIONS
    
      RIGHT:   rotr(8, 0b00011011, 1)
               =       0b10001101      
               rotr(8, 0b00011011, 2)
               =       0b11000110      
               rotr(8, 0b00011011, 4)
               =       0b10110001      
    
      LEFT:    rotl(8, 0b00011011, 1)
               =       0b00110110      
               rotl(8, 0b00011011, 2)
               =       0b01101100      
               rotl(8, 0b00011011, 4)
               =       0b10110001    
    
    SIGN-EXTENDING ARITHMETIC SHIFT RIGHT
    
               asr(8, 0b00011011, 1)
               =      0b00001101      
               asr(8, 0b10011011, 1)
               =      0b11001101      
               asr(8, 0b00011011, 2)
               =      0b00000110      
               asr(8, 0b10011011, 2)
               =      0b11100110      
               asr(8, 0b00011011, 4)
               =      0b00000001 
               asr(8, 0b10011011, 4)
               =      0b11111001 

Python 2

def bitwise(a, b):
        print 'a and b:', a & b
        print 'a or b:', a | b
        print 'a xor b:', a ^ b
        print 'not a:', ~a
        print 'a << b:', a << b # left shift
        print 'a >> b:', a >> b # arithmetic right shift

Python does not have built in rotate or logical right shift operations.

Note: Newer Python versions (circa 2.4?) will automatically promote integers into "long integers" (arbitrary length, bounded by available memory). This can be noticed especially when using left shift operations. When using bitwise operations one usually wants to keep these bounded to specific sizes such as 8, 16, 32 or 64 bit widths. To do these we use the AND operator with specific values (bitmasks). For example:

# 8-bit bounded shift:
x = x << n & 0xff
# ditto for 16 bit:
x = x << n & 0xffff
# ... and 32-bit:
x = x << n & 0xffffffff
# ... and 64-bit:
x = x << n & 0xffffffffffffffff

We can easily implement our own rotation functions. For left rotations this is down by ORing the left shifted and masked lower bits against the right shifted upper bits. For right rotations we perform the converse operations, ORing a set of right shifted lower bits against the appropriate number of left shifted upper bits.

def bitstr(n, width=None):
   """return the binary representation of n as a string and
      optionally zero-fill (pad) it to a given length
   """
   result = list()
   while n:
      result.append(str(n%2))
      n = int(n/2)
   if (width is not None) and len(result) < width:
      result.extend(['0'] * (width - len(result)))
   result.reverse()
   return ''.join(result)

def mask(n):
   """Return a bitmask of length n (suitable for masking against an
      int to coerce the size to a given length)
   """
   if n >= 0:
       return 2**n - 1
   else:
       return 0

def rol(n, rotations=1, width=8):
    """Return a given number of bitwise left rotations of an integer n,
       for a given bit field width.
    """
    rotations %= width
    if rotations < 1:
        return n
    n &= mask(width) ## Should it be an error to truncate here?
    return ((n << rotations) & mask(width)) | (n >> (width - rotations))

def ror(n, rotations=1, width=8):
    """Return a given number of bitwise right rotations of an integer n,
       for a given bit field width.
    """
    rotations %= width
    if rotations < 1:
        return n
    n &= mask(width)
    return (n >> rotations) | ((n << (width - rotations)) & mask(width))

In this example we show a relatively straightforward function for converting integers into strings of bits, and another simple mask() function to create arbitrary lengths of bits against which we perform our masking operations. Also note that the implementation of these functions defaults to single bit rotations of 8-bit bytes. Additional arguments can be used to over-ride these defaults. Any case where the number of rotations modulo the width is zero represents a rotation of all bits back to their starting positions. This implementation should handle any integer number of rotations over bitfields of any valid (positive integer) length.

QB64

' no rotations and shift aritmetic are available in QB64
' Bitwise operator in Qbasic and QB64
'AND (operator) the bit is set when both bits are set.
'EQV (operator) the bit is set when both are set or both are not set.
'IMP (operator) the bit is set when both are set or both are unset or the second condition bit is set.
'OR (operator) the bit is set when either bit is set.
'NOT (operator) the bit is set when a bit is not set and not set when a bit is set.
'XOR (operator) the bit is set when just one of the bits are set.
Print "Qbasic and QB64 operators"
Print " Operator        1 vs 1   1 vs 0   0 vs 0"

Print "AND", 1 And 1, 1 And 0, 0 And 0
Print " OR", 1 Or 1, 1 Or 0, 0 Or 0
Print "XOR", 1 Xor 1, 1 Xor 0, 0 Xor 0
Print "EQV", 1 Eqv 1, 1 Eqv 0, 0 Eqv 0
Print "IMP", 1 Imp 1, 1 Imp 0, 0 Imp 0
Print "NOT", Not 1, Not 0, Not -1, Not -2

Print "QB64 operators"
Dim As _Byte a, b, c
a = 1: b = 1: c = 1
For i = 1 To 4
    Print a, b, c
    Print _SHL(a, i), _SHL(b, i * 2), _SHL(c, i * 3)
Next
a = 16: b = 32: c = 8
For i = 1 To 4
    Print a, b, c
    Print _SHR(a, i), _SHR(b, i * 2), _SHR(c, i * 3)
Next

Quackery

Integers in Quackery are bignums, so the bitwise left rotate word rot64 rotates specifically the least significant 64 bits of an integer. There is no corresponding bitwise right rotate, but it is readily defined from rot64.

  [ [] swap 
    64 times 
      [ 2 /mod 
        number$ rot join swap ]
    drop 
    echo$ cr ]                                   is echobin (   n -->   )

  [ 64 swap - rot64 ]                            is rrot64  (   n --> n )

  [ say "first integer:   " over       echobin
    say "second integer:  " dup        echobin
    say "bitwise AND:     " 2dup &     echobin  
    say "bitwise OR:      " 2dup |     echobin
    say "bitwise XOR:     " 2dup ^     echobin
    say "bitwise NOT:     " over ~     echobin
    say "bitwise LSHIFT:  " 2dup <<    echobin
    say "bitwise RSHIFT:  " 2dup >>    echobin
    say "bitwise LROTATE: " 2dup rot64 echobin
    say "bitwise RROTATE: "     rrot64 echobin ] is task    ( n n -->   )

hex FFFFF hex F task
Output:
first integer:   0000000000000000000000000000000000000000000011111111111111111111
second integer:  0000000000000000000000000000000000000000000000000000000000001111
bitwise AND:     0000000000000000000000000000000000000000000000000000000000001111
bitwise OR:      0000000000000000000000000000000000000000000011111111111111111111
bitwise XOR:     0000000000000000000000000000000000000000000011111111111111110000
bitwise NOT:     1111111111111111111111111111111111111111111100000000000000000000
bitwise LSHIFT:  0000000000000000000000000000011111111111111111111000000000000000
bitwise RSHIFT:  0000000000000000000000000000000000000000000000000000000000011111
bitwise LROTATE: 0000000000000000000000000000011111111111111111111000000000000000
bitwise RROTATE: 1111111111111110000000000000000000000000000000000000000000011111

R

Native functions in R 3.x

# Since R 3.0.0, the base package provides bitwise operators, see ?bitwAnd

a <- 35
b <- 42
bitwAnd(a, b)
bitwOr(a, b)
bitwXor(a, b)
bitwNot(a)
bitwShiftL(a, 2)
bitwShiftR(a, 2)

See also https://cran.r-project.org/doc/manuals/r-release/NEWS.3.html.

Using as.hexmode or as.octmode

a <- as.hexmode(35)
b <- as.hexmode(42)
as.integer(a & b)      # 34
as.integer(a | b)      # 43
as.integer(xor(a, b))  # 9

Using intToBits

The logical operators in R, namely &, | and !, are designed to work on logical vectors rather than bits. It is possible to convert from integer to logical vector and back to make these work as required, e.g.

intToLogicalBits <- function(intx) as.logical(intToBits(intx))
logicalBitsToInt <- function(lb) as.integer(sum((2^(0:31))[lb]))
"%AND%" <- function(x, y) 
{
   logicalBitsToInt(intToLogicalBits(x) & intToLogicalBits(y))
}
"%OR%" <- function(x, y) 
{
   logicalBitsToInt(intToLogicalBits(x) | intToLogicalBits(y))
}

35 %AND% 42    # 34
35 %OR% 42     # 42

Using bitops package

library(bitops)
bitAnd(35, 42)          # 34
bitOr(35, 42)           # 43
bitXor(35, 42)          # 9
bitFlip(35, bitWidth=8) # 220
bitShiftL(35, 1)        # 70
bitShiftR(35, 1)        # 17
# Note that no bit rotation is provided in this package

Racket

#lang racket
(define a 255)
(define b 5)
(list (bitwise-and a b)
      (bitwise-ior a b)
      (bitwise-xor a b)
      (bitwise-not a)
      (arithmetic-shift a b)      ; left shift
      (arithmetic-shift a (- b))) ; right shift

Output:

'(5 255 250 -256 8160 7)

Raku

(formerly Perl 6)

Works with: Rakudo version 2017.05
constant MAXINT = uint.Range.max;
constant BITS = MAXINT.base(2).chars;

# define rotate ops for the fun of it
multi sub infix:<⥁>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).list.rotate(b).reverse] }
multi sub infix:<⥀>(Int:D \a, Int:D \b) { :2[(a +& MAXINT).polymod(2 xx BITS-1).reverse.list.rotate(b)] }

sub int-bits (Int $a, Int $b) {
    say '';
    say_bit "$a", $a;
    say '';
    say_bit "2's complement $a", +^$a;
    say_bit "$a and $b", $a +& $b;
    say_bit "$a or $b",  $a +| $b;
    say_bit "$a xor $b", $a +^ $b;
    say_bit "$a unsigned shift right $b", ($a +& MAXINT) +> $b;
    say_bit "$a signed shift right $b", $a +> $b;
    say_bit "$a rotate right $b", $a ⥁ $b;
    say_bit "$a shift left $b", $a +< $b;
    say_bit "$a rotate left $b", $a ⥀ $b;
}

int-bits(7,2);
int-bits(-65432,31);

sub say_bit ($message, $value) {
    printf("%30s: %{'0' ~ BITS}b\n", $message, $value +& MAXINT);
}
Output:
                             7: 0000000000000000000000000000000000000000000000000000000000000111

              2's complement 7: 1111111111111111111111111111111111111111111111111111111111111000
                       7 and 2: 0000000000000000000000000000000000000000000000000000000000000010
                        7 or 2: 0000000000000000000000000000000000000000000000000000000000000111
                       7 xor 2: 0000000000000000000000000000000000000000000000000000000000000101
      7 unsigned shift right 2: 0000000000000000000000000000000000000000000000000000000000000001
        7 signed shift right 2: 0000000000000000000000000000000000000000000000000000000000000001
              7 rotate right 2: 1100000000000000000000000000000000000000000000000000000000000001
                7 shift left 2: 0000000000000000000000000000000000000000000000000000000000011100
               7 rotate left 2: 0000000000000000000000000000000000000000000000000000000000011100

                        -65432: 1111111111111111111111111111111111111111111111110000000001101000

         2's complement -65432: 0000000000000000000000000000000000000000000000001111111110010111
                 -65432 and 31: 0000000000000000000000000000000000000000000000000000000000001000
                  -65432 or 31: 1111111111111111111111111111111111111111111111110000000001111111
                 -65432 xor 31: 1111111111111111111111111111111111111111111111110000000001110111
-65432 unsigned shift right 31: 0000000000000000000000000000000111111111111111111111111111111111
  -65432 signed shift right 31: 1111111111111111111111111111111111111111111111111111111111111111
        -65432 rotate right 31: 1111111111111110000000001101000111111111111111111111111111111111
          -65432 shift left 31: 1111111111111111100000000011010000000000000000000000000000000000
         -65432 rotate left 31: 1111111111111111100000000011010001111111111111111111111111111111

Red

Red [Source: https://github.com/vazub/rosetta-red]

a: 10
b: 2

print [
	pad "a =" 10 a newline
	pad "b =" 10 b newline
	pad "a AND b:" 10 a and b newline
	pad "a OR b:" 10 a or b newline
	pad "a XOR b:" 10 a xor b newline
	pad "NOT a:" 10 complement a newline
	pad "a >>> b:" 10 a >>> b newline
	pad "a >> b:" 10 a >> b newline
	pad "a << b:" 10 a << b newline
	; there are no circular shift operators in Red
]
Output:
a =        10 
b =        2
a AND b:   2
a OR b:    10
a XOR b:   8
NOT a:     -11
a >>> b:   2
a >> b:    2
a << b:    40

Retro

There is no predefined arithmetic shifts in Retro.

: bitwise ( ab- )
  cr
  over     "a = %d\n" puts
  dup      "b = %d\n" puts
  2over and "a and b = %d\n" puts
  2over or  "a or b = %d\n" puts
  2over xor "a xor b = %d\n" puts
  over not "not a = %d\n" puts
  2over <<  "a << b = %d\n" puts
  2over >>  "a >> b = %d\n" puts
  2drop ;

REXX

 ╔═══════════════════════════════════════════════════════════════════════════════════════╗
 ║ Since REXX stores numbers  (indeed, all values)  as characters, it makes no sense to  ║
 ║ "rotate"  a value,  since there aren't any boundaries for the value.    I.E.:  there  ║
 ║ isn't any 32─bit word  "container"  or  "cell"  (for instance)  to store an integer.  ║
 ║                                                                                       ║
 ║ Furthermore, since REXX numbers can be arbitrary precision,  the concept of rotating  ║
 ║ a number has no meaning.                                                              ║
 ╚═══════════════════════════════════════════════════════════════════════════════════════╝
/*REXX program performs  bit─wise operations  on integers:   &   |   &&   ¬   «L   »R   */
numeric digits 1000                              /*be able to handle ginormous integers.*/
           say  center('decimal', 9)      center("value", 9)        center('bits', 50)
           say  copies('─'      , 9)      copies("─"    , 9)        copies('─',    50)
a = 21 ;   call show           a          ,      'A'                   /* display   A   */
b =  3 ;   call show              b       ,      'B'                   /* display   B   */
           call show      bAnd(a, b)      ,      'A & B'               /*  and          */
           call show       bOr(a, b)      ,      'A | B'               /*   or          */
           call show      bXor(a, b)      ,      'A && B'              /*  xor          */
           call show      bNot(a)         ,      '¬ A'                 /*  not          */
           call show   bShiftL(a, b)      ,      'A [«B]'              /* shift  left   */
           call show   bShiftR(a, b)      ,      'A [»B]'              /* shirt right   */
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
show:    say  right( arg(1), 9)  center( arg(2), 9)  right( d2b( arg(1) ), 50);     return
d2b:     return x2b( d2x( arg(1) ) ) + 0         /*some REXXes have the   D2B   BIF.    */
b2d:     return x2d( b2x( arg(1) ) )             /*  "     "     "   "    B2D    "      */
bNot:    return b2d( translate( d2b( arg(1) ), 10, 01) )     +0   /*+0 ≡ normalizes a #.*/
bShiftL: return b2d( d2b( arg(1) ) || copies(0, arg(2) ) )   +0   /* " "      "     " " */
bAnd:    return c2d( bitand( d2c( arg(1) ), d2c( arg(2) ) ) )
bOr:     return c2d(  bitor( d2c( arg(1) ), d2c( arg(2) ) ) )
bXor:    return c2d( bitxor( d2c( arg(1) ), d2c( arg(2) ) ) )
bShiftR: $=substr(reverse(d2b(arg(1))),arg(2)+1); if $='' then $=0; return b2d(reverse($))
output:
 decimal    value                          bits
───────── ───────── ──────────────────────────────────────────────────
       21     A                                                  10101
        3     B                                                     11
        1   A & B                                                    1
       23   A | B                                                10111
       22  A && B                                                10110
       10    ¬ A                                                  1010
      168  A [«B]                                             10101000
        2  A [»B]                                                   10

Ring

x = 8
y = 2

see "x & y - Binary AND : " + (x & y) + nl 
see "x | y - Binary OR : " + (x | y) + nl
see "x ^ y - Binary XOR : " + (x ^ y) +nl
see "~x - Binary Ones Complement : " + (~x) + nl
see "x << y - Binary Left Shift : " + (x << y) + nl
see "x >> y - Binary Right Shift : " + (x >> y) + nl

RLaB

In RLaB the bitwise operations are available for integers type of numbers. For the operations below if both arguments are integers then the result of the operation is an integer as well.

>> x = int(3);
>> y = int(1);
>> z = x && y; printf("0x%08x\n",z); // logical 'and'
0x00000001
>> z = x || y; printf("0x%08x\n",z); // logical 'or'
0x00000003
>> z = !x; printf("0x%08x\n",z);     // logical 'not'
0xfffffffc
>> i2 = int(2);
>> z = x * i2; printf("0x%08x\n",z);  // left-shift is multiplication by 2 where both arguments are integers
0x00000006
>> z = x / i2; printf("0x%08x\n",z);  // right-shift is division by 2 where both arguments are integers
0x00000001

Robotic

input string "First value"
set "local1" to "input"
input string "Second value"
set "local2" to "input"

. ">>> is an arithmetic shift; >> is a logical shift"
[ "a AND b = ('local1' a 'local2')"
[ "a OR b = ('local1' o 'local2')"
[ "a XOR b = ('local1' x 'local2')"
[ "NOT a = (~'local1')"
[ "a << b = ('local1' << 'local2')"
[ "a >> b = ('local1' >> 'local2')"
[ "a >>> b = ('local1' >>> 'local2')"
end
. "Bitwise rotation is not natively supported"

RPL

≪ { AND OR XOR NOT SL SR ASR RL RR } → a b ops
  ≪ {} 1 ops SIZE FOR j  
       a →STR " " + IF j 3 ≤ THEN b →STR + " " + END
       ops j GET →STR 2 OVER SIZE 1 - SUB + " -> " +
       a j 3 ≤ b IFT ops j GET EVAL →STR + +
   NEXT
≫ ≫ ‘BITOPS’ STO 
Output:
{ "# 355h # 113h AND -> # 111h"
  "# 355h # 113h OR -> # 357h"
  "# 355h # 113h XOR -> # 246h"
  "# 355h NOT -> # FCAAh"
  "# 355h SL -> # 6AAh"
  "# 355h SR -> # 1AAh"
  "# 355h ASR -> # 1AAh"
  "# 355h RL -> # 6AAh"
  "# 355h RR -> # 81AAh" }

Operations made with a word size set at 16 bits.

Ruby

def bitwise(a, b)
  form = "%1$7s:%2$6d  %2$016b"
  puts form % ["a", a]
  puts form % ["b", b]
  puts form % ["a and b", a & b]
  puts form % ["a or b ", a | b]
  puts form % ["a xor b", a ^ b]
  puts form % ["not a  ", ~a]
  puts form % ["a << b ", a << b]  # left shift
  puts form % ["a >> b ", a >> b]  # arithmetic right shift
end

bitwise(14,3)
Output:
      a:    14  0000000000001110
      b:     3  0000000000000011
a and b:     2  0000000000000010
a or b :    15  0000000000001111
a xor b:    13  0000000000001101
not a  :   -15  ..11111111110001
a << b :   112  0000000001110000
a >> b :     1  0000000000000001

Rust

fn main() {
    let a: u8 = 105;
    let b: u8 = 91;
    println!("a      = {:0>8b}", a);
    println!("b      = {:0>8b}", b);
    println!("a | b  = {:0>8b}", a | b);
    println!("a & b  = {:0>8b}", a & b);
    println!("a ^ b  = {:0>8b}", a ^ b);
    println!("!a     = {:0>8b}", !a);
    println!("a << 3 = {:0>8b}", a << 3);
    println!("a >> 3 = {:0>8b}", a >> 3);
}

Output:

a      = 01101001
b      = 01011011
a | b  = 01111011
a & b  = 01001001
a ^ b  = 00110010
!a     = 10010110
a << 3 = 01001000
a >> 3 = 00001101

SAS

/* rotations are not available, but are easy to implement with the other bitwise operators */
data _null_;
   a=105;
   b=91;
   c=bxor(a,b);
   d=band(a,b);
   e=bor(a,b);
   f=bnot(a); /* on 32 bits */
   g=blshift(a,1);
   h=brshift(a,1);
   put _all_;
run;

S-BASIC

S-BASIC does not have bitwise shift or rotate operators. The test values are taken from the 11l example.

var a, b = integer
a = 10
b = 2
print "a ="; a; tab(16); hex$(a)
print "b ="; b; tab(16); hex$(b)
print "a and b ="; a and b; tab(16); hex$(a and b)
print "a or b  ="; a or b; tab(16); hex$(a or b)
print "a xor b ="; a xor b; tab(16); hex$(a xor b)
print "not a   ="; not a; tab(16); hex$(not a)

end
Output:
a = 10         000A
b = 2          0002
a and b = 2    0002
a or b  = 10   000A
a xor b = 688  02CD
not a   =-11   FFF5

Scala

def bitwise(a: Int, b: Int) {
  println("a and b: " + (a & b))
  println("a or b: " + (a | b))
  println("a xor b: " + (a ^ b))
  println("not a: " + (~a))
  println("a << b: " + (a << b)) // left shift
  println("a >> b: " + (a >> b)) // arithmetic right shift
  println("a >>> b: " + (a >>> b)) // unsigned right shift
  println("a rot b: " + Integer.rotateLeft(a, b)) // Rotate Left
  println("a rol b: " + Integer.rotateRight(a, b)) // Rotate Right
}

Scheme

Works with: Scheme version RRS
(import (rnrs arithmetic bitwise (6)))

(define (bitwise a b)
  (display (bitwise-and a b))
  (newline)
  (display (bitwise-ior a b))
  (newline)
  (display (bitwise-xor a b))
  (newline)
  (display (bitwise-not a))
  (newline)
  (display (bitwise-arithmetic-shift-right a b))
  (newline))

(bitwise 255 5)

Output:

5
255
250
-256
7

Note: bitwise operations were also described in SRFI-60, with additional aliases (and previously discussed in SRFI-33 which remained draft).

Seed7

The type integer is intended for arithmetic operations. Besides arithmetic shifts, which are seen as multiplication and division by powers of two, no bitwise operations are supported. The type bin32 is intended for bit-pattern operations. Bin32 has the same internal representation as integer. That way conversions between them don't cause an overhead. Right shifting of bin32 values is done with logical shifts.

$ include "seed7_05.s7i";
  include "bin32.s7i";

const proc: bitwise (in integer: a, in integer: b) is func
  begin
    writeln("a:        " <& a  radix 2 lpad0 32);
    writeln("b:        " <& b  radix 2 lpad0 32);
    writeln("integer operations:");
    writeln("a << b:   " <& a << b  radix 2 lpad0 32); # left shift
    writeln("a >> b:   " <& a >> b  radix 2 lpad0 32); # arithmetic right shift
  end func;

const proc: bitwise (in bin32: a, in bin32: b) is func
  begin
    writeln("bin32 operations:");
    writeln("a and b:  " <& a & b  radix 2 lpad0 32);
    writeln("a or b:   " <& a | b  radix 2 lpad0 32);
    writeln("a xor b:  " <& a >< b  radix 2 lpad0 32);
    writeln("not a:    " <& ~a  radix 2 lpad0 32);
    writeln("a << b:   " <& a << ord(b)  radix 2 lpad0 32);  # left shift
    writeln("a >> b:   " <& a >> ord(b)  radix 2 lpad0 32);  # logical right shift
    writeln("a rotL b: " <& rotLeft(a, ord(b))  radix 2 lpad0 32);  # Rotate Left
    writeln("a rolR b: " <& rotRight(a, ord(b))  radix 2 lpad0 32); # Rotate Right
  end func;

const proc: main is func
  begin
    bitwise(65076, 6);
    bitwise(bin32(65076), bin32(6));
  end func;
Output:
a:        00000000000000001111111000110100
b:        00000000000000000000000000000110
integer operations:
a << b:   00000000001111111000110100000000
a >> b:   00000000000000000000001111111000
bin32 operations:
a and b:  00000000000000000000000000000100
a or b:   00000000000000001111111000110110
a xor b:  00000000000000001111111000110010
not a:    11111111111111110000000111001011
a << b:   00000000001111111000110100000000
a >> b:   00000000000000000000001111111000
a rotL b: 00000000001111111000110100000000
a rolR b: 11010000000000000000001111111000

Sidef

func bitwise(a, b) {
   say ('a and b : ',  a & b)
   say ('a or b  : ',  a | b)
   say ('a xor b : ',  a ^ b)
   say ('not a   : ',     ~a)
   say ('a << b  : ', a << b)  # left shift
   say ('a >> b  : ', a >> b)  # arithmetic right shift
}
 
bitwise(14,3)
Output:
a and b : 2
a or b  : 15
a xor b : 13
not a   : -15
a << b  : 112
a >> b  : 1

Simula

BEGIN
   COMMENT TO MY KNOWLEDGE SIMULA DOES NOT SUPPORT BITWISE OPERATIONS SO WE MUST WRITE PROCEDURES FOR THE JOB ;
   INTEGER WORDSIZE;
   WORDSIZE := 32;
   BEGIN

      PROCEDURE TOBITS(N,B); INTEGER N; BOOLEAN ARRAY B;
      BEGIN
         INTEGER I,BITN;
         FOR I := WORDSIZE-1 STEP -1 UNTIL 0 DO BEGIN
            BITN := MOD(N,2); B(I) := BITN<>0; N := N // 2;
         END;
      END TOBITS;

      INTEGER PROCEDURE FROMBITS(B); BOOLEAN ARRAY B;
      BEGIN
         INTEGER I, RESULT;
         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO
             RESULT := 2 * RESULT + (IF B(I) THEN 1 ELSE 0);
         FROMBITS := RESULT;
      END FROMBITS;

      INTEGER PROCEDURE BITOP(A,B,F);
         INTEGER A,B;
         PROCEDURE F IS BOOLEAN PROCEDURE F(A,B); BOOLEAN A,B;;
      BEGIN
         INTEGER I;
         BOOLEAN ARRAY BA(0:WORDSIZE-1);
         BOOLEAN ARRAY BB(0:WORDSIZE-1);
         TOBITS(A,BA);
         TOBITS(B,BB);
         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I),BB(I));
         BITOP := FROMBITS(BA);
      END BITOP;

      INTEGER PROCEDURE BITUOP(A,F);
         INTEGER A;
         PROCEDURE F IS BOOLEAN PROCEDURE F(A); BOOLEAN A;;
      BEGIN
         INTEGER I;
         BOOLEAN ARRAY BA(0:WORDSIZE-1);
         TOBITS(A,BA);
         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BA(I) := F(BA(I));
         BITUOP := FROMBITS(BA);
      END BITUOP;

      BOOLEAN PROCEDURE OPAND(A,B); BOOLEAN A,B; OPAND := A AND B;
      INTEGER PROCEDURE BITAND(A,B); INTEGER A,B; BITAND := BITOP(A,B,OPAND);

      BOOLEAN PROCEDURE OPOR(A,B); BOOLEAN A,B; OPOR := A OR B;
      INTEGER PROCEDURE BITOR(A,B); INTEGER A,B; BITOR := BITOP(A,B,OPOR);

      BOOLEAN PROCEDURE OPXOR(A,B); BOOLEAN A,B; OPXOR := (A AND NOT B) OR (NOT A AND B);
      INTEGER PROCEDURE BITXOR(A,B); INTEGER A,B; BITXOR := BITOP(A,B,OPXOR);

      BOOLEAN PROCEDURE OPNOT(A); BOOLEAN A; OPNOT := NOT A;
      INTEGER PROCEDURE BITNOT(A); INTEGER A; BITNOT := BITUOP(A,OPNOT);

      INTEGER PROCEDURE BITSHL(A,B); INTEGER A,B;
      BEGIN
          IF B < 0 THEN A := BITSHR(A,-B)
          ELSE WHILE B > 0 DO BEGIN A := 2 * A; B := B-1; END;
          BITSHL := A;
      END BITSHL;

      INTEGER PROCEDURE BITSHR(A,B); INTEGER A,B;
      BEGIN
          IF B < 0 THEN A := BITSHL(A,-B)
          ELSE WHILE B > 0 DO BEGIN A := A // 2; B := B-1; END;
          BITSHR := A;
      END BITSHR;

      INTEGER PROCEDURE BITROTR(A,B); INTEGER A,B;
      BEGIN
         INTEGER I,J;
         BOOLEAN ARRAY BA(0:WORDSIZE-1);
         BOOLEAN ARRAY BB(0:WORDSIZE-1);
         TOBITS(A,BA);
         FOR I := 0 STEP 1 UNTIL WORDSIZE-1 DO BEGIN
            J := MOD(I + B, WORDSIZE); BB(J) := BA(I);
         END;
         BITROTR := FROMBITS(BB);
      END BITROTR;

      INTEGER PROCEDURE BITROTL(A,B); INTEGER A,B;
         BITROTL := BITROTR(A,-B);

      PROCEDURE BITWISE(A,B); INTEGER A,B;
      BEGIN
        OUTTEXT("A AND B   : "); OUTINT(BITAND(A,B),0); OUTIMAGE;
        OUTTEXT("A OR B    : "); OUTINT(BITOR (A,B),0); OUTIMAGE;
        OUTTEXT("A XOR B   : "); OUTINT(BITXOR(A,B),0); OUTIMAGE;
        OUTTEXT("NOT A     : "); OUTINT(BITNOT(A),  0); OUTIMAGE;
        OUTTEXT("A << B    : "); OUTINT(BITSHL(A,B),0); OUTIMAGE;  ! LEFT SHIFT ;
        OUTTEXT("A >> B    : "); OUTINT(BITSHR(A,B),0); OUTIMAGE;  ! ARITHMETIC RIGHT SHIFT ;
        OUTTEXT("A ROTL B  : "); OUTINT(BITROTL(A,B),0); OUTIMAGE;  ! ROTATE LEFT ;
        OUTTEXT("A ROTR B  : "); OUTINT(BITROTR(A,B),0); OUTIMAGE;  ! ROTATE RIGHT ;
      END BITWISE;
      
      BITWISE(14,3);
   END;
END
Output:
A AND B   : 2
A OR B    : 15
A XOR B   : 13
NOT A     : -15
A << B    : 112
A >> B    : 1
A ROTL B  : 112
A ROTR B  : -1073741823

Slate

[ |:a :b |

 inform: (a bitAnd: b) printString.
 inform: (a bitOr: b) printString.
 inform: (a bitXor: b) printString.
 inform: (a bitNot) printString.
 inform: (a << b) printString.
 inform: (a >> b) printString.

] applyTo: {8. 12}.

Bold text

Smalltalk

Works with: GNU Smalltalk
Works with: Smalltalk/X

Since GNU Smalltalk by default runs without a graphical user interface, I wrote the program in that dialect. The actual methods for bitwise operations (bitAnd:, etc.) are the same in all implementations.

| testBitFunc |
testBitFunc := [ :a :b |
     ('%1 and %2 is %3' % { a. b. (a bitAnd: b) }) displayNl.
     ('%1 or %2 is %3' % { a. b. (a bitOr: b) }) displayNl.
     ('%1 xor %2 is %3' % { a. b. (a bitXor: b) }) displayNl.
     ('not %1 is %2' % { a. (a bitInvert) }) displayNl.
     ('%1 left shift %2 is %3' % { a. b. (a bitShift: b) }) displayNl.
     ('%1 right shift %2 is %3' % { a. b. (a bitShift: (b negated)) }) displayNl.
 ].
testBitFunc value: 16r7F value: 4 .

in addition to the above,

Works with: Smalltalk/X
(a bitClear: b) "mask out bits"
(a bitAt: index) "retrieve a bit (bit-index, one-based)"
(a setBit: index) "set a bit (bit-index)"
(a clearBit: index) "clear a bit (bit-index)"
(a invertBit: index) "invert a bit (bit index)"
lowBit "find the index of the lowest one-bit; zero if none"
highBit "find the index of the highest one-bit; zero if none"
bitCount "count the one-bits"

Notice that all of those work on arbitrarily large integers (i.e. 1000 factorial lowBit -> 995).

SparForte

As a structured script.

#!/usr/local/bin/spar
pragma annotate( summary, "bitarith" )
       @( description, "Write a routine to perform a bitwise AND, OR, and XOR on" )
       @( description, "two integers, a bitwise NOT on the first integer, a left" )
       @( description, "shift, right shift, right arithmetic shift, left rotate," )
       @( description, "and right rotate. All shifts and rotates should be done on" )
       @( description, "the first integer with a shift/rotate amount of the second" )
       @( description, "integer." )
       @( category, "tutorials" )
       @( author, "Ken O. Burtch" )
       @( see_also, "http://rosettacode.org/wiki/Bitwise_operations" );
pragma license( unrestricted );

pragma software_model( shell_script );
pragma restriction( no_external_commands );

procedure bitarith is
  A : constant natural := 255;
  B : constant natural := 170;
  X : constant natural := 128;
  N : constant natural := 1;
begin
  put( "A and B = " ) @ (A and B); new_line;
  put( "A or  B = " ) @ (A or  B); new_line;
  put( "A xor B = " ) @ (A xor B); new_line;
  new_line;
  put( "A << B = " ) @ ( numerics.shift_left( X, N ) ); new_line;
  put( "A >> B = " ) @ ( numerics.shift_right( X, N ) ); new_line;
  put( "A >>> B = " ) @ ( numerics.shift_right_arithmetic( X, N ) ); new_line;
  put( "A rotl B = " ) @ ( numerics.rotate_left( X, N ) ); new_line;
  put( "A rotr B = " ) @ ( numerics.rotate_right( X, N ) ); new_line;
end bitarith;

Standard ML

For integers, IntInfs provide bitwise operations:

fun bitwise_ints (a, b) = (
  print ("a and b: " ^ IntInf.toString (IntInf.andb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
  print ("a or b: "  ^ IntInf.toString (IntInf.orb  (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
  print ("a xor b: " ^ IntInf.toString (IntInf.xorb (IntInf.fromInt a, IntInf.fromInt b)) ^ "\n");
  print ("not a: "   ^ IntInf.toString (IntInf.notb (IntInf.fromInt a                  )) ^ "\n");
  print ("a lsl b: " ^ IntInf.toString (IntInf.<<   (IntInf.fromInt a, Word.fromInt b  )) ^ "\n");  (* left shift *)
  print ("a asr b: " ^ IntInf.toString (IntInf.~>>  (IntInf.fromInt a, Word.fromInt b  )) ^ "\n")   (* arithmetic right shift *)
)

More shifts are available for words (unsigned ints):

fun bitwise_words (a, b) = (
  print ("a and b: " ^ Word.fmt StringCvt.DEC (Word.andb (a, b)) ^ "\n");
  print ("a or b: "  ^ Word.fmt StringCvt.DEC (Word.orb  (a, b)) ^ "\n");
  print ("a xor b: " ^ Word.fmt StringCvt.DEC (Word.xorb (a, b)) ^ "\n");
  print ("not a: "   ^ Word.fmt StringCvt.DEC (Word.notb a     ) ^ "\n");
  print ("a lsl b: " ^ Word.fmt StringCvt.DEC (Word.<< (a, b)  ) ^ "\n");  (* left shift *)
  print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.~>> (a, b) ) ^ "\n");  (* arithmetic right shift *)
  print ("a asr b: " ^ Word.fmt StringCvt.DEC (Word.>> (a, b)  ) ^ "\n")   (* logical right shift *)
)

Stata

Stata does not have bitwise operators as of version 15.1. It's possible to use Mata functions inbase and frombase to convert integers to binary strings, and operate on these, but it will be much slower than native operators. William Matsuoka has written functions for this here.

Swift

func bitwise(a: Int, b: Int) {
  // All bitwise operations (including shifts)
  // require both operands to be the same type
  println("a AND b: \(a & b)")
  println("a OR b: \(a | b)")
  println("a XOR b: \(a ^ b)")
  println("NOT a: \(~a)")
  println("a << b: \(a << b)") // left shift
  // for right shifts, if the operands are unsigned, Swift performs
  // a logical shift; if signed, an arithmetic shift.
  println("a >> b: \(a >> b)") // arithmetic right shift
  println("a lsr b: \(Int(bitPattern: UInt(bitPattern: a) >> UInt(bitPattern: b)))") // logical right shift
}

bitwise(-15,3)
Output:
a AND b: 1
a OR b: -13
a XOR b: -14
NOT a: 14
a << b: -120
a >> b: -2
a lsr b: 2305843009213693950

SystemVerilog

Verilog, being a hardware description language, had pretty comprehensive support for bit twiddling; though rotation is still a slightly manual operation. Just to be different, I decided to use a couple of 53-bit integers:

program main;

  initial begin
    bit [52:0] a,b,c;
    a = 53'h123476547890fe;
    b = 53'h06453bdef23ca6;

    c = a & b; $display("%h & %h = %h", a,b,c);
    c = a | b; $display("%h | %h = %h", a,b,c);
    c = a ^ b; $display("%h ^ %h = %h", a,b,c);
    c = ~ a;   $display("~%h = %h", a, c);

    c = a << 5; $display("%h << 5 = %h", a, c);
    c = a >> 5; $display("%h >> 5 = %h", a, c);

    c = { a[53-23:0], a[52-:23] }; $display("%h rotate-left 23 = %h", a, c);
    c = { a[1:0], a[52:2] }; $display("%h rotate-right 2 = %h", a, c);
  end

endprogram

If we want to do a variable bit rotation, then we need to think in hardware terms, and build a mux structure (this could be a function, but using a module allows it to be parameterized:

module rotate(in, out, shift);

  parameter BITS = 32;
  parameter SHIFT_BITS = 5;

  input  [BITS-1:0] in;
  output [BITS-1:0] out;
  input  [SHIFT_BITS-1:0] shift;

  always_comb foreach (out[i]) out[i] = in[ (i+shift) % BITS ];

endmodule

of course, one could always write the foreach loop inline.

Tailspin

Bytes values are infinitely extended to the left by sign extension when needed. The shift message can be used for all types of shifts, depending on the fill pattern which is infinitely repeated as needed to supply bits for vacated positions.

def a: [x f075 x];
def b: [x 81 x];

($a and $b) -> '$a; and $b; is $;$#10;' -> !OUT::write
($a or $b) -> '$a; or $b; is $;$#10;' -> !OUT::write
($a xor $b) -> '$a; xor $b; is $;$#10;' -> !OUT::write
$a::inverse -> 'not $a; is $;$#10;' -> !OUT::write
$a::shift&{left: 3, fill: [x 00 x]} -> '$a; shifted left 3 bits is $;$#10;' -> !OUT::write
$a::shift&{left: -3, fill: [x 00 x]} -> '$a; shifted right 3 bits is $;$#10;' -> !OUT::write
$a::shift&{left: -3, fill: $a(0)} -> '$a; arithmetically shifted right 3 bits is $;$#10;' -> !OUT::write
$a::shift&{left: 3, fill: $a} -> '$a; rotated left 3 bits is $;$#10;' -> !OUT::write
$a::shift&{left: -3, fill: $a} -> '$a; rotated right 3 bits is $;$#10;' -> !OUT::write
Output:
f075 and 81 is f001
f075 or 81 is fff5
f075 xor 81 is 0ff4
not f075 is 0f8a
f075 shifted left 3 bits is 83a8
f075 shifted right 3 bits is 1e0e
f075 arithmetically shifted right 3 bits is fe0e
f075 rotated left 3 bits is 83af
f075 rotated right 3 bits is be0e

Tcl

proc bitwise {a b} {
    puts [format "a and b: %#08x" [expr {$a & $b}]]
    puts [format "a or b: %#08x"  [expr {$a | $b}]]
    puts [format "a xor b: %#08x" [expr {$a ^ $b}]]
    puts [format "not a: %#08x"   [expr {~$a}]]
    puts [format "a << b: %#08x"  [expr {$a << $b}]]
    puts [format "a >> b: %#08x"  [expr {$a >> $b}]]
}

There are no built-in operations for arithmetic right shift or for bit rotation. Indeed, rotation precludes the use of arbitrary-width integers and can only be defined with respect to a particular width. However, we can simulate these operations for 32-bit values (requires Tcl 8.5):

proc bitwiseUnsupported {a b} {
    set bits 0xFFFFFFFF
    # Force interpretation as a 32-bit unsigned value
    puts [format "a ArithRightShift b: %#08x" [expr {($a & $bits) >> $b}]]
    puts [format "a RotateRight b: %#08x" [expr {
        (($a >> $b) & ($bits >> $b)) |
        (($a << (32-$b)) & ($bits ^ ($bits >> $b)))
    }]]
    puts [format "a RotateLeft b: %#08x" [expr {
        (($a << $b) & $bits & ($bits << $b)) |
        (($a >> (32-$b)) & ($bits ^ ($bits << $b)))
    }]]
}

TI-89 BASIC

While the TI-89 supports arbitrary-size integers, all bitwise arithmetic is performed on the rightmost 32 bits of the integers' two's complement representation.

The right shift operation fills the new leftmost bit with a copy of the old leftmost bit.

bitwise(a,b)
Prgm
  Local show, oldbase
  Define show(label, x)=Prgm
    Local r
    setMode("Base","DEC")
    string(x) → r
    setMode("Base","HEX")
    Disp label & r & " " & string(x)
  EndPrgm
  getMode("Base") → oldbase
  show("", {a, b})
  show("And ", a and b)
  show("Or  ", a or b)
  show("Xor ", a xor b)
  show("Not ", not a)
  Pause "[Press ENTER]"
  show("LSh ", shift(a,b))
  show("RSh ", shift(a,–b))
  show("LRo ", rotate(a,b))
  show("RRo ", rotate(a,–b))
  setMode("Base",oldbase)
EndPrgm

Uxntal

|00 @System  [ &vector $2 &wst  $1 &rst $1 &eaddr $2 &ecode $1 &pad $1 &r $2 &g $2 &b $2 &debug $1 &halt $1 ]
|10 @Console [ &vector $2 &read $1 &pad $5 &write $1 &error $1 ]

( program )
|0100 @on-reset ( -> )
	#0a02
	DUP2 SWP ;Labels/a <print-arg> ;Labels/b <print-arg>
	bitwise
	halt
BRK

@bitwise ( a b -- )
	;Labels/not <print-str> ;Labels/a <print-str> ;Labels/equ <print-str> DUP2 [ POP #ff EOR ] <print-result>
	;Labels/and <print-label> DUP2 [ AND ] <print-result>
	;Labels/or <print-label> DUP2 [ ORA ] <print-result>
	;Labels/xor <print-label> DUP2 [ EOR ] <print-result>
	;Labels/shl <print-label> DUP2 [ #40 SFT SFT ] <print-result>
	;Labels/shr <print-label> DUP2 [ SFT ] <print-result>
	;Labels/rol <print-label> DUP2 [ #40 SFT #00 ROT ROT SFT2 ORA ] <print-result>
	;Labels/ror <print-label> [ SWP #00 ROT SFT2 ORA ] <print-result>
	JMP2r

@halt ( -- )
	#01 .System/halt DEO
	BRK

@<print-arg> ( a name* -- )
	<print-str> ;Labels/equ <print-str> <print-result>
	JMP2r

@<print-result> ( a -- )
	<print-hex> ;Labels/newline <print-str>
	JMP2r

@<print-label> ( label* -- )
	;Labels/a <print-str>
	<print-str>
	;Labels/b <print-str>
	;Labels/equ <print-str>
	JMP2r

@<print-hex> ( byte -- )
	[ LIT "$ ] .Console/write DEO
	DUP #04 SFT <print-hex>/l
	&l ( -- )
		#0f AND DUP #09 GTH #27 MUL ADD [ LIT "0 ] ADD .Console/write DEO
		JMP2r

@<print-str> ( str* -- )
	&while ( -- )
		LDAk .Console/write DEO
		INC2 LDAk ?&while
	POP2 JMP2r

@Labels
	&a "a 20 $1
	&b "b 20 $1
	&equ "= 20 $1
	&newline 0a $1
	&not "NOT 20 $1
	&and "AND 20 $1
	&or "OR 20 $1
	&xor "XOR 20 $1
	&shl "SHL 20 $1
	&shr "SHR 20 $1
	&rol "ROL 20 $1
	&ror "ROR 20 $1
Output:
a = $0a
b = $02
NOT a = $f5
a AND b = $02
a OR b = $0a
a XOR b = $08
a SHL b = $28
a SHR b = $02
a ROL b = $28
a ROR b = $82

Vala

void testbit(int a, int b) {
  print(@"input: a = $a, b = $b\n");
  print(@"AND:  $a  & $b = $(a & b)\n");
  print(@"OR:   $a  | $b = $(a | b)\n");
  print(@"XOR:  $a  ^ $b = $(a ^ b)\n");
  print(@"LSH:  $a << $b = $(a << b)\n");
  print(@"RSH:  $a >> $b = $(a >> b)\n");
  print(@"NOT:  ~$a = $(~a)\n");
  /* there are no rotation operators in vala, but you could define your own 
     function to do what is required. */
}

void main() { 
  int a = 255;
  int b = 2;
  testbit(a,b); 
}
Output:
input: a = 255, b = 2
AND:  255  & 2 = 2
OR:   255  | 2 = 255
XOR:  255  ^ 2 = 253
LSH:  255 << 2 = 1020
RSH:  255 >> 2 = 63
NOT:  ~255 = -256

VBA

In VBA, the logical operators And, Or, Xor, Not are actually binary operators. There are also Eqv and Imp (for bitwise "equivalence" and "logical implication").

Debug.Print Hex(&HF0F0 And &HFF00)  'F000
Debug.Print Hex(&HF0F0 Or &HFF00)   'FFF0
Debug.Print Hex(&HF0F0 Xor &HFF00)  'FF0
Debug.Print Hex(Not &HF0F0)         'F0F
Debug.Print Hex(&HF0F0 Eqv &HFF00)  'F00F
Debug.Print Hex(&HF0F0 Imp &HFF00)  'FF0F

The other operations in the task are not builtin, but are easy to implement. Integers are signed, and overflow throws and exception, one must take care of this.

Function MaskL(k As Integer) As Long
    If k < 1 Then
        MaskL = 0
    ElseIf k > 31 Then
        MaskL = -1
    Else
        MaskL = (-1) Xor (2 ^ (32 - k) - 1)
    End If
End Function
Function MaskR(k As Integer) As Long
    If k < 1 Then
        MaskR = 0
    ElseIf k > 31 Then
        MaskR = -1
    Else
        MaskR = 2 ^ k - 1
    End If
End Function
Function Bit(k As Integer) As Long
    If k < 0 Or k > 31 Then
        Bit = 0
    ElseIf k = 31 Then
        Bit = MaskL(1)
    Else
        Bit = 2 ^ k
    End If
End Function
Function ShiftL(n As Long, k As Integer) As Long
    If k = 0 Then
        ShiftL = n
    ElseIf k > 31 Then
        ShiftL = 0
    ElseIf k < 0 Then
        ShiftL = ShiftR(n, -k)
    Else
        ShiftL = (n And MaskR(31 - k)) * 2 ^ k
        If (n And Bit(31 - k)) <> 0 Then ShiftL = ShiftL Or MaskL(1)
    End If
End Function
Function ShiftR(n As Long, k As Integer) As Long
    If k = 0 Then
        ShiftR = n
    ElseIf k > 31 Then
        ShiftR = 0
    ElseIf k < 0 Then
        ShiftR = ShiftL(n, -k)
    Else
        ShiftR = (n And MaskR(31)) \ 2 ^ k
        If (n And MaskL(1)) <> 0 Then ShiftR = ShiftR Or Bit(31 - k)
    End If
End Function
Function RotateL(n As Long, k As Integer) As Long
    k = (32768 + k) Mod 32
    If k = 0 Then
        RotateL = n
    Else
        RotateL = ShiftL(n, k) Or ShiftR(n, 32 - k)
    End If
End Function
Function RotateR(n As Long, k As Integer) As Long
    k = (32768 + k) Mod 32
    If k = 0 Then
        RotateR = n
    Else
        RotateR = ShiftR(n, k) Or ShiftL(n, 32 - k)
    End If
End Function
Function ClearBit(n As Long, k As Integer) As Long
    ClearBit = n And Not Bit(k)
End Function
Function SetBit(n As Long, k As Integer) As Long
    SetBit = n Or Bit(k)
End Function
Function SwitchBit(n As Long, k As Integer) As Long
    SwitchBit = n Xor Bit(k)
End Function
Function TestBit(n As Long, k As Integer) As Boolean
    TestBit = (n And Bit(k)) <> 0
End Function

Examples

Debug.Print Hex(MaskL(8))               'FF000000
Debug.Print Hex(MaskR(8))               'FF
Debug.Print Hex(Bit(7))                 '80
Debug.Print Hex(ShiftL(-1, 8))          'FFFFFF00
Debug.Print Hex(ShiftL(-1, -8))         'FFFFFF
Debug.Print Hex(ShiftR(-1, 8))          'FFFFFF
Debug.Print Hex(ShiftR(-1, -8))         'FFFFFF00
Debug.Print Hex(RotateL(65535, 8))      'FFFF00
Debug.Print Hex(RotateL(65535, -8))     'FF0000FF
Debug.Print Hex(RotateR(65535, 8))      'FF0000FF
Debug.Print Hex(RotateR(65535, -8))     'FFFF00

Visual Basic

Works with: Visual Basic version VB6 Standard

identical syntax as in #VBA.

Visual Basic .NET

Sub Test(a as Integer, b as Integer)
   WriteLine("And " & a And b)
   WriteLine("Or " & a Or b)
   WriteLine("Xor " & a Xor b)
   WriteLine("Not " & Not a)
   WriteLine("Left Shift " & a << 2)
   WriteLine("Right Shift " & a >> 2)
End Sub

Visual Basic doesn't have built-in support for bitwise rotation.

Wren

In Wren all numbers are represented in 64-bit floating point form.

Although the same bitwise operators are supported as in C, the operands are converted to unsigned 32-bit integers before the operation is performed and return values of this form.

Consequently, it is not usually a good idea to try and perform bitwise operations on integer values outside this range or on non-integral values.

Given this limitation, there is no difference between logical and arithmetic left and right shift operations. Although Wren doesn't support circular shift operators, it is not difficult to write functions to perform them.

var rl = Fn.new { |x, y| x << y | x >> (32-y) }

var rr = Fn.new { |x, y| x >> y | x << (32-y) }

var bitwise = Fn.new { |x, y|
    if (!x.isInteger || !y.isInteger || x < 0 || y < 0 || x > 0xffffffff || y > 0xffffffff) {
        Fiber.abort("Operands must be in the range of a 32-bit unsigned integer")
    }
    System.print(" x      = %(x)")
    System.print(" y      = %(y)")
    System.print(" x & y  = %(x & y)")
    System.print(" x | y  = %(x | y)")
    System.print(" x ^ y  = %(x ^ y)")
    System.print("~x      = %(~x)")
    System.print(" x << y = %(x << y)")
    System.print(" x >> y = %(x >> y)")
    System.print(" x rl y = %(rl.call(x, y))")
    System.print(" x rr y = %(rr.call(x, y))")
}

bitwise.call(10, 2)
Output:
 x      = 10
 y      = 2
 x & y  = 2
 x | y  = 10
 x ^ y  = 8
~x      = 4294967285
 x << y = 40
 x >> y = 2
 x rl y = 40
 x rr y = 2147483650

x86 Assembly

Works with: nasm

It must be linked with the libc and "start" code; lazyly a gcc bitops.o works, being bitops.o produced by nasm -f elf bitops.asm (I've chosen ELF since I am on a GNU/Linux box)

	extern printf
	global main
	
	section .text
main
	mov	eax, dword [_a]
	mov	ecx, dword [_b]
	push	ecx
	push	eax
	
	and 	eax, ecx
	mov	ebx, _opand
	call	out_ops

	call	get_nums
	or	eax, ecx
	mov	ebx, _opor
	call	out_ops

	call	get_nums
	xor     eax, ecx
	mov	ebx, _opxor
	call	out_ops

	call	get_nums
	shr	eax, cl
	mov	ebx, _opshr
	call	out_ops

	call	get_nums
	shl	eax, cl
	mov	ebx, _opshl
	call	out_ops

	call	get_nums
	rol	eax, cl
	mov	ebx, _oprol
	call	out_ops

	call	get_nums
	ror	eax, cl
	mov	ebx, _opror
	call	out_ops

	call	get_nums
	sal	eax, cl
	mov	ebx, _opsal
	call	out_ops

	call	get_nums
	sar	eax, cl
	mov	ebx, _opsar
	call	out_ops

	mov	eax, dword [esp+0]
	not	eax
	push 	eax
	not	eax
	push	eax
	push	_opnot
	push	_null
	push	_testn
	call	printf
	add	esp, 20
	
	add	esp, 8
	ret

out_ops
	push	eax
	push	ecx
	push	ebx
	push	dword [_a]
	push	_test
	call	printf
	add	esp, 20
	ret

get_nums
	mov	eax, dword [esp+4]
	mov	ecx, dword [esp+8]
	ret

	section .data
	
_a	dd	11
_b	dd	3

	section .rodata
_test	db	'%08x %s %08x = %08x', 10, 0
_testn	db	'%08s %s %08x = %08x', 10, 0 
_opand	db	'and', 0
_opor	db	'or ', 0
_opxor	db	'xor', 0
_opshl	db	'shl', 0
_opshr	db	'shr', 0
_opror	db	'ror', 0
_oprol	db	'rol', 0
_opnot	db	'not', 0
_opsal	db	'sal', 0
_opsar	db	'sar', 0
_null	db 	0

	end

XBasic

Works with: Windows XBasic
PROGRAM "bitwise"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION ULONG Rotr(ULONG x, ULONG s)

FUNCTION Entry()
  SLONG a, b
  ULONG ua, ub
  a = 21
  b = 3
  ua = a
  ub = b
  PRINT
  PRINT "= Decimal ="
  PRINT LTRIM$(STR$(a)); " AND"; b; ":"; a & b ' also: a AND b
  PRINT LTRIM$(STR$(a)); " OR"; b; ":"; a | b ' also: a OR b
  PRINT LTRIM$(STR$(a)); " XOR"; b; ":"; a ^ b' also: a XOR b
  PRINT "NOT"; a; ":"; ~a ' also: NOT a
  PRINT LTRIM$(STR$(a)); " <<<"; b; ":"; a <<< b ' arithmetic left shift
  PRINT LTRIM$(STR$(a)); " >>>"; b; ":"; a >>> b ' arithmetic right shift
  PRINT LTRIM$(STR$(ua)); " <<"; b; ":"; ua << b ' bitwise left shift
  PRINT LTRIM$(STR$(ua)); " >>"; b; ":"; ua >> b ' bitwise right shift
  PRINT LTRIM$(STR$(ua)); " rotr"; ub; ":"; Rotr(ua, ub)
  PRINT
  PRINT "= Binary ="
  PRINT BIN$(a); " AND "; BIN$(b); ": "; BIN$(a & b)
  PRINT BIN$(a); " OR "; BIN$(b); ": "; BIN$(a | b)
  PRINT BIN$(a); " XOR "; BIN$(b); ": "; BIN$(a ^ b)
  PRINT "NOT "; BIN$(a); ": "; BIN$(~a)
  PRINT BIN$(a); " <<< "; BIN$(b); ": "; BIN$(a <<< b)
  PRINT BIN$(a); " >>> "; BIN$(b); ": "; BIN$(a >>> b)
  PRINT BIN$(ua); " << "; BIN$(b); ": "; BIN$(ua << b)
  PRINT BIN$(ua); " >> "; BIN$(b); ": "; BIN$(ua >> b)
  PRINT BIN$(ua); " Rotr "; BIN$(ub); ": "; BIN$(Rotr(ua, ub))
END FUNCTION

' Rotate x to the right by s bits
FUNCTION ULONG Rotr(ULONG x, ULONG s)
  RETURN (x >> s) | (x << (SIZE(ULONG) * 8 - s))
END FUNCTION
END PROGRAM
Output:
= Decimal =
21 AND 3: 1
21 OR 3: 23
21 XOR 3: 22
NOT 21:-22
21 <<< 3: 168
21 >>> 3: 2
21 << 3: 168
21 >> 3: 2
21 Rotr 3: 2684354562

= Binary =
10101 AND 11: 1
10101 OR 11: 10111
10101 XOR 11: 10110
NOT 10101: 11111111111111111111111111101010
10101 <<< 11: 10101000
10101 >>> 11: 10
10101 << 11: 10101000
10101 >> 11: 10
10101 Rotr 11: 10100000000000000000000000000010

XLISP

(defun bitwise-operations (a b)
	; rotate operations are not supported
	(print `(,a and ,b = ,(logand a b)))
	(print `(,a or ,b = ,(logior a b)))
	(print `(,a xor ,b = ,(logxor a b)))
	(print `(,a left shift by ,b = ,(lsh a b)))
	(print `(,a right shift by ,b = ,(lsh a (- b)))) ; negative second operand shifts right
	(print `(,a arithmetic right shift by ,b = ,(ash a (- b)))) )

XPL0

Text(0, "A and B = ");  HexOut(0, A and B);  CrLf(0);   \alternate symbol: &
Text(0, "A or B = ");   HexOut(0, A or B);   CrLf(0);   \alternate symbol: !
Text(0, "A xor B = ");  HexOut(0, A xor B);  CrLf(0);   \alternate symbol: |
Text(0, "not A = ");    HexOut(0, not A);    CrLf(0);   \alternate symbol: ~
Text(0, "A << B = ");   HexOut(0, A << B);   CrLf(0);
Text(0, "A >> B logical = ");  HexOut(0, A >> B);  CrLf(0);
Text(0, "A >> B arithmetic = ");  HexOut(0, A ->> B);  CrLf(0);

\Rotate operations must be done by calling a function such as:
func ROR(A, B); int A, B; return A>>B ! A<<(32-B);

Text(0, "A ror B = ");  HexOut(0, ROR(A,B));  CrLf(0);

The reason the "!" and "|" symbols may seem reversed is that the OR operator was introduced at a time when only uppercase characters were available (such as on the Apple II). The XOR operator was added later.

Yabasic

sub formBin$(n)
    return right$("00000000" + bin$(n), 8)
end sub

a = 6 : b = 3
print a, " = \t", formBin$(a)
print b, " = \t", formBin$(b)
print "\t--------"
print "AND = \t", formBin$(and(a, b))
print "OR = \t", formBin$(or(a, b))
print "XOR = \t", formBin$(xor(a, b))
print "NOT ", a, " =\t", formBin$(xor(255, a))
6 =	00000110
3 =	00000011
	--------
AND =	00000010
OR =	00000111
XOR =	00000101
NOT 6 =	11111001

Z80 Assembly

AND
LD A,&05
AND &1F   ;0x05 & 0x1F
OR
LD A,&05
OR &1F   ;0x05 | 0x1F
XOR
LD A,&05
XOR &1F   ;0x05 ^ 0x1F
NOT
LD A,&05
CPL
Left Shift (Z80 can only shift by one at a time.)
LD A,&05
SLA A
Right Shift
LD A,&05
SRL A
Arithmetic Right Shift
LD A,&05
SRA A

Z80 has two different types of bit rotates.

  • RL/RR rotates through the carry. The state of the carry before the rotate gets rotated in, and the bit that rotates out is put into the carry.
  • RLC/RRC copies the bit "pushed out" to the carry but the old carry isn't rotated in.
LD A,&05
RLA

LD A,&05
RRA

LD A,&05
RLCA

LD A,&05
RRCA

zkl

No bitwise rotates. Shifts are unsigned.

(7).bitAnd(1) //-->1
(8).bitOr(1)  //-->9
(7).bitXor(1) //-->6
(1).bitNot() : "%,x".fmt(_) //-->ff|ff|ff|ff|ff|ff|ff|fe
(7).shiftRight(1) //-->3
(7).shiftLeft(1)  //-->0xe
(-1).toString(16) //-->ffffffffffffffff
(-1).shiftRight(1).toString(16) //-->7fffffffffffffff