Amb
You are encouraged to solve this task according to the task description, using any language you may know.
Define and give an example of the Amb operator.
The Amb operator (short for "ambiguous") expresses nondeterminism. This doesn't refer to randomness (as in "nondeterministic universe") but is closely related to the term as it is used in automata theory ("non-deterministic finite automaton").
The Amb operator takes a variable number of expressions (or values if that's simpler in the language) and yields a correct one which will satisfy a constraint in some future computation, thereby avoiding failure.
Problems whose solution the Amb operator naturally expresses can be approached with other tools, such as explicit nested iterations over data sets, or with pattern matching. By contrast, the Amb operator appears integrated into the language. Invocations of Amb are not wrapped in any visible loops or other search patterns; they appear to be independent.
Essentially Amb(x, y, z) splits the computation into three possible futures: a future in which the value x is yielded, a future in which the value y is yielded and a future in which the value z is yielded. The future which leads to a successful subsequent computation is chosen. The other "parallel universes" somehow go away. Amb called with no arguments fails.
For simplicity, one of the domain values usable with Amb may denote failure, if that is convenient. For instance, it is convenient if a Boolean false denotes failure, so that Amb(false) fails, and thus constraints can be expressed using Boolean expressions like Amb(x * y == 8) which unless x and y add to four.
A pseudo-code program which satisfies this constraint might look like:
let x = Amb(1, 2, 3) let y = Amb(7, 6, 4, 5) Amb(x * y = 8) print x, y
The output is 2 4
because Amb(1, 2, 3)
correctly chooses the future in which x
has value 2
, Amb(7, 6, 4, 5)
chooses 4
and consequently Amb(x * y = 8)
produces a success.
Alternatively, failure could be represented using strictly Amb()
:
unless x * y = 8 do Amb()
Or else Amb could take the form of two operators or functions: one for producing values and one for enforcing constraints:
let x = Ambsel(1, 2, 3) let y = Ambsel(4, 5, 6) Ambassert(x * y = 8) print x, y
where Ambassert
behaves like Amb()
if the Boolean expression is false, otherwise it allows the future computation to take place, without yielding any value.
The task is to somehow implement Amb, and demonstrate it with a program which chooses one word from each of the following four sets of character strings to generate a four-word sentence:
"the" "that" "a"
"frog" "elephant" "thing"
"walked" "treaded" "grows"
"slowly" "quickly"
The constraint to be satisfied is that the last character of each word (other than the last) is the same as the first character of its successor.
The only successful sentence is "that thing grows slowly"
; other combinations do not satisfy the constraint and thus fail.
The goal of this task isn't to simply process the four lists of words with explicit, deterministic program flow such as nested iteration, to trivially demonstrate the correct output. The goal is to implement the Amb operator, or a facsimile thereof that is possible within the language limitations.
11l
F amb(comp, options, prev = ‘’) -> Array[String]
I options.empty
R []
L(opt) options[0]
// If this is the base call, prev is empty and we need to continue.
I prev != ‘’ & !comp(prev, opt)
L.continue
// Take care of the case where we have no options left.
I options.len == 1
R [opt]
// Traverse into the tree.
V res = amb(comp, options[1..], opt)
// If it was a failure, try the next one.
if !res.empty
R opt [+] res // We have a match
R []
V sets = [[‘the’, ‘that’, ‘a’],
[‘frog’, ‘elephant’, ‘thing’],
[‘walked’, ‘treaded’, ‘grows’],
[‘slowly’, ‘quickly’]]
V result = amb((s, t) -> s.last == t[0], sets)
print(result.join(‘ ’))
- Output:
that thing grows slowly
Ada
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;
with Ada.Text_IO; use Ada.Text_IO;
procedure Test_Amb is
type Alternatives is array (Positive range <>) of Unbounded_String;
type Amb (Count : Positive) is record
This : Positive := 1;
Left : access Amb;
List : Alternatives (1..Count);
end record;
function Image (L : Amb) return String is
begin
return To_String (L.List (L.This));
end Image;
function "/" (L, R : String) return Amb is
Result : Amb (2);
begin
Append (Result.List (1), L);
Append (Result.List (2), R);
return Result;
end "/";
function "/" (L : Amb; R : String) return Amb is
Result : Amb (L.Count + 1);
begin
Result.List (1..L.Count) := L.List ;
Append (Result.List (Result.Count), R);
return Result;
end "/";
function "=" (L, R : Amb) return Boolean is
Left : Unbounded_String renames L.List (L.This);
begin
return Element (Left, Length (Left)) = Element (R.List (R.This), 1);
end "=";
procedure Failure (L : in out Amb) is
begin
loop
if L.This < L.Count then
L.This := L.This + 1;
else
L.This := 1;
Failure (L.Left.all);
end if;
exit when L.Left = null or else L.Left.all = L;
end loop;
end Failure;
procedure Join (L : access Amb; R : in out Amb) is
begin
R.Left := L;
while L.all /= R loop
Failure (R);
end loop;
end Join;
W_1 : aliased Amb := "the" / "that" / "a";
W_2 : aliased Amb := "frog" / "elephant" / "thing";
W_3 : aliased Amb := "walked" / "treaded" / "grows";
W_4 : aliased Amb := "slowly" / "quickly";
begin
Join (W_1'Access, W_2);
Join (W_2'Access, W_3);
Join (W_3'Access, W_4);
Put_Line (Image (W_1) & ' ' & Image (W_2) & ' ' & Image (W_3) & ' ' & Image (W_4));
end Test_Amb;
The type Amb is implemented with the operations "/" to construct it from strings. Each instance keeps its state. The operation Failure performs back tracing. Join connects two elements into a chain. The implementation propagates Constraint_Error when matching fails.
- Output:
that thing grows slowly
ALGOL 68
Note: This program violates ALGOL 68's scoping rules when a locally scoped procedure is returned to a more global scope. ELLA ALGOL 68RS misses this violation, but ALGOL 68 Genie spots it at run time and then produces an assert. However ELLA ALGOL 68RS does produce the desired result, but may potentially suffer from "mysterious" stack problems.
MODE PAGE = FLEX[0]STRING;
MODE YIELDPAGE = PROC(PAGE)VOID;
MODE ITERPAGE = PROC(YIELDPAGE)VOID;
OP INITITERPAGE = (PAGE self)ITERPAGE:
(YIELDPAGE yield)VOID: # scope violation #
FOR i TO UPB self DO
yield(self[i])
OD;
OP + = (ITERPAGE for strings, PAGE b)ITERPAGE:
(YIELDPAGE yield)VOID: # scope violation #
for strings((PAGE amb)VOID:(
[UPB amb + 1]STRING joined;
joined[:UPB amb] := amb;
STRING last string := amb[UPB amb];
CHAR last char := last string[UPB last string];
FOR i TO UPB b DO
IF last char = b[i][1] THEN
joined[UPB joined] := b[i];
yield(joined)
FI
OD
));
OP + = (PAGE a, PAGE b)ITERPAGE: INITITERPAGE a + b;
ITERPAGE gen amb :=
PAGE("the", "that", "a") +
PAGE("frog", "elephant", "thing") +
PAGE("walked", "treaded", "grows") +
PAGE("slowly", "quickly");
PAGE sep;
#FOR PAGE amb IN # gen amb( # ) DO #
## (PAGE amb)VOID:
print((amb[1]+" "+amb[2]+" "+amb[3]+" "+amb[4], new line))
#OD# )
- Output:
that thing grows slowly
ATS
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
#include
"share/HATS/atspre_staload_libats_ML.hats"
//
(* ****** ****** *)
//
staload "libats/ML/SATS/monad_list.sats"
staload _ = "libats/ML/DATS/monad_list.dats"
//
(* ****** ****** *)
//
datatype
words =
| Sing of stringGt(0)
| Comb of (words, words)
//
(* ****** ****** *)
//
extern
fun words_get_beg(words): char
extern
fun words_get_end(words): char
//
(* ****** ****** *)
//
implement
words_get_beg(w0) =
(
case+ w0 of
| Sing(cs) => cs[0]
| Comb(w1, w2) => words_get_beg(w1)
)
//
implement
words_get_end(w0) =
(
case+ w0 of
| Sing(cs) => cs[pred(length(cs))]
| Comb(w1, w2) => words_get_end(w2)
)
//
(* ****** ****** *)
//
fun
words_comb
(
w1: words, w2: words
) : list0(words) =
if (words_get_end(w1)=words_get_beg(w2))
then list0_sing(Comb(w1, w2)) else list0_nil()
//
(* ****** ****** *)
//
extern
fun
fprint_words: fprint_type(words)
//
overload fprint with fprint_words
//
implement
fprint_words(out, ws) =
(
case+ ws of
| Sing(w) => fprint(out, w)
| Comb(w1, w2) => fprint!(out, w1, ' ', w2)
)
//
implement fprint_val<words> = fprint_words
//
(* ****** ****** *)
//
typedef
a = stringGt(0) and b = words
//
val ws1 =
$list{a}("this", "that", "a")
val ws1 =
list_map_fun<a><b>(ws1, lam(x) => Sing(x))
val ws1 = monad_list_list(list0_of_list_vt(ws1))
//
val ws2 =
$list{a}("frog", "elephant", "thing")
val ws2 =
list_map_fun<a><b>(ws2, lam(x) => Sing(x))
val ws2 = monad_list_list(list0_of_list_vt(ws2))
//
val ws3 =
$list{a}("walked", "treaded", "grows")
val ws3 =
list_map_fun<a><b>(ws3, lam(x) => Sing(x))
val ws3 = monad_list_list(list0_of_list_vt(ws3))
//
val ws4 =
$list{a}("slowly", "quickly")
val ws4 =
list_map_fun<a><b>(ws4, lam(x) => Sing(x))
val ws4 = monad_list_list(list0_of_list_vt(ws4))
//
(* ****** ****** *)
//
val
ws12 =
monad_bind2<b,b><b>
(ws1, ws2, lam (w1, w2) => monad_list_list(words_comb(w1, w2)))
val
ws123 =
monad_bind2<b,b><b>
(ws12, ws3, lam (w12, w3) => monad_list_list(words_comb(w12, w3)))
val
ws1234 =
monad_bind2<b,b><b>
(ws123, ws4, lam (w123, w4) => monad_list_list(words_comb(w123, w4)))
//
(* ****** ****** *)
implement main0 () =
{
val () = fprintln! (stdout_ref, "ws1234 = ", ws1234)
}
(* ****** ****** *)
AutoHotkey
Search autohotkey.com: [1]
Source: AMB - Ambiguous selector by infogulch
set1 := "the that a"
set2 := "frog elephant thing"
set3 := "walked treaded grows"
set4 := "slowly quickly"
MsgBox % amb( "", set1, set2, set3, set4 )
; this takes a total of 17 iterations to complete
amb( char = "", set1 = "", set2 = "", set3 = "", set4 = "" )
{ ; original call to amb must leave char param blank
Loop, Parse, set1, %A_Space%
If (char = (idxchar := SubStr(A_LoopField, 1, 1)) && set2 = ""
|| (char = idxchar || char = "") && ((retval:= amb(SubStr(A_LoopField, 0, 1), set2, set3, set4)) != ""))
Return A_LoopField " " retval
Return ""
}
BASIC
BaCon
This code tries to implement ambsel$() in a generic way. It accepts any amount of string arguments (but at least two). The ambsel$() function generates combinations of the items in the provided arguments using recursion, and sends each combination to a function pointer to verify the requirement. The function pointer can be set to any function.
DECLARE (*ambassert)() TYPE NUMBER
FUNCTION amb_recurse$(text$[], nr, total, result$)
LOCAL ctr
LOCAL str$, test$
FOR ctr = 1 TO AMOUNT(text$[nr])
str$ = APPEND$(result$, 0, TOKEN$(text$[nr], ctr))
IF nr = total-1 THEN
IF ambassert(str$) THEN RETURN str$
ELSE
test$ = amb_recurse$(text$, nr+1, total, str$)
IF AMOUNT(test$) = total THEN RETURN test$
ENDIF
NEXT
RETURN ""
ENDFUNC
FUNCTION ambsel$(VAR data$ SIZE dim)
RETURN IIF$(dim < 2, "ambsel$ needs more than 1 argument", amb_recurse$(data$, 0, dim, ""))
ENDFUNC
FUNCTION this_is_some_constraint(var$)
DOTIMES AMOUNT(var$)-1
IF RIGHT$(TOKEN$(var$, _), 1) != LEFT$(TOKEN$(var$, _+1), 1) THEN RETURN FALSE
DONE
RETURN TRUE
ENDFUNC
' AMBASSERT: pointing to a constraint function
ambassert = this_is_some_constraint
' AMBSEL$: generate result from arguments in delimited string format
PRINT ambsel$("the that a", "frog elephant thing", "walked treaded grows", "slowly quickly")
- Output:
that thing grows slowly
Bracmat
( ( Amb
= first last list words word solution
. !arg:(?first.?list)
& ( !list:
| !list:(.?words) ?list
& !words
: ?
%( @(?word:!first ? @?last)
& Amb$(!last.!list):?solution
& !word !solution:?solution
)
?
& !solution
)
)
& Amb
$ (
. (.the that a)
(.frog elephant thing)
(.walked treaded grows)
(.slowly quickly)
)
)
that thing grows slowly
C
Note: This uses the continuations code from https://web.archive.org/web/20120619201518/http://homepage.mac.com:80/sigfpe/Computing/continuations.html
typedef const char * amb_t;
amb_t amb(size_t argc, ...)
{
amb_t *choices;
va_list ap;
int i;
if(argc) {
choices = malloc(argc*sizeof(amb_t));
va_start(ap, argc);
i = 0;
do { choices[i] = va_arg(ap, amb_t); } while(++i < argc);
va_end(ap);
i = 0;
do { TRY(choices[i]); } while(++i < argc);
free(choices);
}
FAIL;
}
int joins(const char *left, const char *right) { return left[strlen(left)-1] == right[0]; }
int _main() {
const char *w1,*w2,*w3,*w4;
w1 = amb(3, "the", "that", "a");
w2 = amb(3, "frog", "elephant", "thing");
w3 = amb(3, "walked", "treaded", "grows");
w4 = amb(2, "slowly", "quickly");
if(!joins(w1, w2)) amb(0);
if(!joins(w2, w3)) amb(0);
if(!joins(w3, w4)) amb(0);
printf("%s %s %s %s\n", w1, w2, w3, w4);
return EXIT_SUCCESS;
}
C#
The implementation of the Amb class
using System;
using System.Collections.Generic;
public class Amb : IDisposable
{
List<IValueSet> streams = new List<IValueSet>();
List<IAssertOrAction> assertsOrActions = new List<IAssertOrAction>();
volatile bool stopped = false;
public IAmbValue<T> DefineValues<T>(params T[] values)
{
return DefineValueSet(values);
}
public IAmbValue<T> DefineValueSet<T>(IEnumerable<T> values)
{
ValueSet<T> stream = new ValueSet<T>();
stream.Enumerable = values;
streams.Add(stream);
return stream;
}
public Amb Assert(Func<bool> function)
{
assertsOrActions.Add(new AmbAssert()
{
Level = streams.Count,
IsValidFunction = function
});
return this;
}
public Amb Perform(Action action)
{
assertsOrActions.Add(new AmbAction()
{
Level = streams.Count,
Action = action
});
return this;
}
public void Stop()
{
stopped = true;
}
public void Dispose()
{
RunLevel(0, 0);
if (!stopped)
{
throw new AmbException();
}
}
void RunLevel(int level, int actionIndex)
{
while (actionIndex < assertsOrActions.Count && assertsOrActions[actionIndex].Level <= level)
{
if (!assertsOrActions[actionIndex].Invoke() || stopped)
return;
actionIndex++;
}
if (level < streams.Count)
{
using (IValueSetIterator iterator = streams[level].CreateIterator())
{
while (iterator.MoveNext())
{
RunLevel(level + 1, actionIndex);
}
}
}
}
interface IValueSet
{
IValueSetIterator CreateIterator();
}
interface IValueSetIterator : IDisposable
{
bool MoveNext();
}
interface IAssertOrAction
{
int Level { get; }
bool Invoke();
}
class AmbAssert : IAssertOrAction
{
internal int Level;
internal Func<bool> IsValidFunction;
int IAssertOrAction.Level { get { return Level; } }
bool IAssertOrAction.Invoke()
{
return IsValidFunction();
}
}
class AmbAction : IAssertOrAction
{
internal int Level;
internal Action Action;
int IAssertOrAction.Level { get { return Level; } }
bool IAssertOrAction.Invoke()
{
Action(); return true;
}
}
class ValueSet<T> : IValueSet, IAmbValue<T>, IValueSetIterator
{
internal IEnumerable<T> Enumerable;
private IEnumerator<T> enumerator;
public T Value { get { return enumerator.Current; } }
public IValueSetIterator CreateIterator()
{
enumerator = Enumerable.GetEnumerator();
return this;
}
public bool MoveNext()
{
return enumerator.MoveNext();
}
public void Dispose()
{
enumerator.Dispose();
}
}
}
public interface IAmbValue<T>
{
T Value { get; }
}
public class AmbException : Exception
{
public AmbException() : base("AMB is angry") { }
}
Usage:
// original problem
using (Amb amb = new Amb())
{
var set1 = amb.DefineValues("the", "that", "a");
var set2 = amb.DefineValues("frog", "elephant", "thing");
var set3 = amb.DefineValues("walked", "treaded", "grows");
var set4 = amb.DefineValues("slowly", "quickly");
amb.Assert(() => IsJoinable(set1.Value, set2.Value));
amb.Assert(() => IsJoinable(set2.Value, set3.Value));
amb.Assert(() => IsJoinable(set3.Value, set4.Value));
amb.Perform(() =>
{
System.Console.WriteLine("{0} {1} {2} {3}", set1.Value, set2.Value, set3.Value, set4.Value);
amb.Stop();
});
}
// problem from http://www.randomhacks.net/articles/2005/10/11/amb-operator
using (Amb amb = new Amb())
{
IAmbValue<int> x = amb.DefineValues(1, 2, 3);
IAmbValue<int> y = amb.DefineValues(4, 5, 6);
amb.Assert(() => x.Value * y.Value == 8);
amb.Perform(() =>
{
System.Console.WriteLine("{0} {1}", x.Value, y.Value);
amb.Stop();
});
}
The following is a more idiomatic and not (or less) idiosyncratic C# version of Amb. The above uses a clever but unorthodox use of Dispose() to launch the backtracking (and a few other interesting quirks). Interesting but it can throw an exception in Dispose() which is strongly discouraged in C#.
Compared to many other language solutions here, it does have the explicit Require, meaning it is a general solution, not tied to the specific example in this task.(I suggest the task description is updated to ensure that a general amb operator is provided rather than a custom one for the single provided example). It uses a ToString override to return Value.ToString(), again to help in the spirit of things, but if the variables were used directly, one would have to be use the Value property instead.
Also the internal algorithm allows manual external tuning minimising the verification steps required. This is shown in the ordering of the choices and requirements in the problem to be solved. This, I think, is closer to the spirit of Amb, as defined here, although really this is quite different to McCarthy's class of ambiguous functions.
using System;
using System.Collections.Generic;
namespace Amb {
public interface IValue<T> {
T Value { get; }
string ToString();
}
public sealed class Amb {
public IValue<T> Choose<T>(params T[] choices) {
var array = new ChoiceArray<T> { Values = choices };
_choices.Add(array);
return array;
}
public void Require(Func<bool> predicate) =>
_constraints.Add(new Constraint { Predicate = predicate, AppliesForItems = _choices.Count });
public bool Disambiguate() => Disambiguate(0, 0);
interface IChoices {
int Length { get; }
int Index { get; set; }
}
interface IConstraint {
int AppliesForItems { get; }
bool Invoke();
}
readonly List<IChoices> _choices = new();
readonly List<IConstraint> _constraints = new();
bool Disambiguate(int choicesTracked, int constraintIdx) {
while (constraintIdx < _constraints.Count && _constraints[constraintIdx].AppliesForItems <= choicesTracked) {
if (!_constraints[constraintIdx].Invoke())
return false;
constraintIdx++;
}
if (choicesTracked == _choices.Count)
return true;
for (var i = 0; i < _choices[choicesTracked].Length; i++) {
_choices[choicesTracked].Index = i;
if (Disambiguate(choicesTracked + 1, constraintIdx))
return true;
}
return false;
}
class Constraint : IConstraint {
internal Func<bool> Predicate;
public int AppliesForItems { get; set; }
public bool Invoke() => Predicate?.Invoke() ?? default;
}
class ChoiceArray<T> : IChoices, IValue<T> {
internal T[] Values;
public int Index { get; set; }
public T Value => Values[Index];
public int Length => Values.Length;
public override string ToString() => Value.ToString();
}
}
}
Usage:
using System.Linq;
using static System.Console;
namespace Amb {
class Program {
static void Main(string[] args) {
var amb = new Amb();
var set1 = amb.Choose("the", "that", "a");
var set2 = amb.Choose("frog", "elephant", "thing");
amb.Require(() => set1.Value.Last() == set2.Value[0]);
var set3 = amb.Choose("walked", "treaded", "grows");
amb.Require(() => set2.Value.Last() == set3.Value[0]);
var set4 = amb.Choose("slowly", "quickly");
amb.Require(() => set3.Value.Last() == set4.Value[0]);
WriteLine(amb.Disambiguate()? $"{set1} {set2} {set3} {set4}" : "Amb failed");
Read();
// problem from http://www.randomhacks.net/articles/2005/10/11/amb-operator
amb = new Amb();
var x = amb.Choose(1, 2, 3);
var y = amb.Choose(4, 5, 6);
amb.Require(() => x.Value * y.Value == 8);
WriteLine(amb.Disambiguate() ? $"{x} * {y} = 8" : "Amb failed");
Read();
}
}
}
Output:
that thing grows slowly 2 * 4 = 8
This is a compact solution using Csharp script (.csx) and LINQ query format:
using static System.Console;
using System.Linq;
string[] w1 = { "the", "that", "a" };
string[] w2 = { "frog", "elephant", "thing" };
string[] w3 = { "walked", "treaded", "grows" };
string[] w4 = { "slowly", "quickly" };
var result = from a in w1
join b in w2 on a?.LastOrDefault() equals b?.FirstOrDefault()
join c in w3 on b?.LastOrDefault() equals c?.FirstOrDefault()
join d in w4 on c?.LastOrDefault() equals d?.FirstOrDefault()
select new [] {a, b, c, d};
WriteLine(string.Join(" ", result.SelectMany(x => x)));
double[] x = { 1, 2, 3 };
double[] y = { 7, 6, 4, 5 };
var result2 = from a in x
join b in y on a equals 8 / b
select new[] { a, b };
WriteLine(string.Join(" ", result2.SelectMany(x => x)));
Output:
that thing grows slowly 2 4
C++
Implemented at compile time using boost::hana and C++20.
#include <iostream>
#include <string_view>
#include <boost/hana.hpp>
#include <boost/hana/experimental/printable.hpp>
using namespace std;
namespace hana = boost::hana;
// Define the Amb function. The first parameter is the constraint to be
// enforced followed by the potential values.
constexpr auto Amb(auto constraint, auto&& ...params)
{
// create the set of all possible solutions
auto possibleSolutions = hana::cartesian_product(hana::tuple(params...));
// find one that matches the constraint
auto foldOperation = [constraint](auto a, auto b)
{
bool meetsConstraint = constraint(a);
return meetsConstraint ? a : b;
};
return hana::fold_right(possibleSolutions, foldOperation);
}
void AlgebraExample()
{
// use a tuple to hold the possible values of each variable
constexpr hana::tuple x{1, 2, 3};
constexpr hana::tuple y{7, 6, 4, 5};
// the constraint enforcing x * y == 8
constexpr auto constraint = [](auto t)
{
return t[hana::size_c<0>] * t[hana::size_c<1>] == 8;
};
// find the solution using the Amb function
auto result = Amb(constraint, x, y);
cout << "\nx = " << hana::experimental::print(x);
cout << "\ny = " << hana::experimental::print(y);
cout << "\nx * y == 8: " << hana::experimental::print(result);
}
void StringExample()
{
// the word lists to choose from
constexpr hana::tuple words1 {"the"sv, "that"sv, "a"sv};
constexpr hana::tuple words2 {"frog"sv, "elephant"sv, "thing"sv};
constexpr hana::tuple words3 {"walked"sv, "treaded"sv, "grows"sv};
constexpr hana::tuple words4 {"slowly"sv, "quickly"sv};
// the constraint that the first letter of a word is the same as the last
// letter of the previous word
constexpr auto constraint = [](const auto t)
{
auto adjacent = hana::zip(hana::drop_back(t), hana::drop_front(t));
return hana::all_of(adjacent, [](auto t)
{
return t[hana::size_c<0>].back() == t[hana::size_c<1>].front();
});
};
// find the solution using the Amb function
auto wordResult = Amb(constraint, words1, words2, words3, words4);
cout << "\n\nWords 1: " << hana::experimental::print(words1);
cout << "\nWords 2: " << hana::experimental::print(words2);
cout << "\nWords 3: " << hana::experimental::print(words3);
cout << "\nWords 4: " << hana::experimental::print(words4);
cout << "\nSolution: " << hana::experimental::print(wordResult) << "\n";
}
int main()
{
AlgebraExample();
StringExample();
}
- Output:
x = (1, 2, 3) y = (7, 6, 4, 5) x * y == 8: (2, 4) Words 1: (the, that, a) Words 2: (frog, elephant, thing) Words 3: (walked, treaded, grows) Words 4: (slowly, quickly) Solution: (that, thing, grows, slowly)
Without external libraries
#include <functional>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
std::string join(const std::string& delimiter, const std::vector<std::string>& list) {
return list.empty() ? "" : std::accumulate(++list.begin(), list.end(), list[0],
[delimiter](auto& a, auto& b) { return a + delimiter + b; });
}
std::vector<std::string> amb(std::function<bool(std::string&, std::string&)> func,
std::vector<std::vector<std::string>> options, std::string previous) {
if ( options.empty() ) {
return std::vector<std::string>();
}
for ( std::string& option : options.front() ) {
if ( ! previous.empty() && ! func(previous, option) ) {
continue;
}
if ( options.size() == 1 ) {
return std::vector<std::string>(1, option);
}
std::vector<std::vector<std::string>> next_options(options.begin() + 1, options.end());
std::vector<std::string> result = amb(func, next_options, option);
if ( ! result.empty() ) {
result.emplace(result.begin(), option);
return result;
}
}
return std::vector<std::string>();
}
std::string Amb(std::vector<std::vector<std::string>> options) {
std::function<bool(std::string, std::string)> continues =
[](std::string before, std::string after) { return before.back() == after.front(); };
std::vector<std::string> amb_result = amb(continues, options, "");
return ( amb_result.empty() ) ? "No match found" : join(" ", amb_result);
}
int main() {
std::vector<std::vector<std::string>> words = { { "the", "that", "a" },
{ "frog", "elephant", "thing" },
{ "walked", "treaded", "grows" },
{ "slowly", "quickly" } };
std::cout << Amb(words) << std::endl;
}
- Output:
that thing grows slowly
Clojure
(ns amb
(:use clojure.contrib.monads))
(defn amb [wss]
(let [valid-word (fn [w1 w2]
(if (and w1 (= (last w1) (first w2)))
(str w1 " " w2)))]
(filter #(reduce valid-word %)
(with-monad sequence-m (m-seq wss)))))
amb> (amb '(("the" "that" "a") ("frog" "elephant" "thing") ("walked" "treaded" "grows") ("slowly" "quickly")))
(("that" "thing" "grows" "slowly"))
Common Lisp
Macro
Common Lisp lacks the call/cc
present in Scheme, and so the straightforward implementation using continuations would require a full-blown code walker (and could still have some issues with dynamically bound variables). A workable compromise uses the condition system and some convenience macros to define amblet
a binding construct like let
except that if a variable's init-form is of the form (amb {form}*)
the amblet
's body will be evaluated with the variable bound to successive values produced by each form
until some evaluation does not signal an amb-error
.
(define-condition amb-failure () ()
(:report "No amb alternative succeeded."))
(defun invoke-ambiguously (function thunks)
"Call function with successive values produced by successive
functions in thunks until some invocation of function does not signal
an amb-failure."
(do ((thunks thunks (rest thunks)))
((endp thunks) (error 'amb-failure))
(let ((argument (funcall (first thunks))))
(handler-case (return (funcall function argument))
(amb-failure ())))))
(defmacro amblet1 ((var form) &body body)
"If form is of the form (amb {form}*) then amblet1 is a convenient
syntax for invoke-ambiguously, by which body is evaluated with var
bound the results of each form until some evaluation of body does not
signal an amb-failure. For any other form, amblet binds var the result
of form, and evaluates body."
(if (and (listp form) (eq (first form) 'amb))
`(invoke-ambiguously
#'(lambda (,var) ,@body)
(list ,@(loop for amb-form in (rest form)
collecting `#'(lambda () ,amb-form))))
`(let ((,var ,form))
,@body)))
(defmacro amblet (bindings &body body)
"Like let, except that if an init-form is of the form (amb {form}*),
then the corresponding var is bound with amblet1."
(if (endp bindings)
`(progn ,@body)
`(amblet1 ,(first bindings)
(amblet ,(rest bindings)
,@body))))
Example:
> (flet ((string-adjacent (s1 s2) (char= (char s1 (1- (length s1))) (char s2 0)))) (amblet ((w1 (amb "the" "that" "a")) (w2 (amb "frog" "elephant" "thing")) (w3 (amb "walked" "treaded" "grows")) (w4 (amb "slowly" "quickly"))) (if (and (string-adjacent w1 w2) (string-adjacent w2 w3) (string-adjacent w3 w4)) (list w1 w2 w3 w4) (signal 'amb-failure)))) ("that" "thing" "grows" "slowly")
Macro with dynamic variables
(defparameter *amb-ops* nil)
(defparameter *amb-hist* nil)
(setf *random-state* (make-random-state t))
(defun shuffle (items)
(loop for i from 0 with r = items with l = (length r) while (< i l) do
(rotatef (elt r i) (elt r (+ i (random (- l i)))))
finally (return r)))
;;; (assert '(mess in, mess out))
(defmacro amb (a &rest rest)
(let ((f (first rest))
(rest (rest rest)))
(if (not f)
`(let ((items (shuffle ,a)))
(let ((y (car (last *amb-hist*)))
(o (car (last *amb-ops*))))
(loop for x in items do
(if (or (not *amb-ops*)
(funcall o y x))
(return (append *amb-hist* (list x))))
(elt items (random (length items))))))
`(let ((items (shuffle ,a)))
(let ((y (car (last *amb-hist*)))
(o (car (last *amb-ops*))))
(loop for x in items do
(if (or (not *amb-ops*)
(funcall o y x))
(let ((*amb-hist* (append *amb-hist* (list x)))
(*amb-ops* (append *amb-ops* (list ,f))))
(let ((r ,@rest))
(if r (return r)))))))))))
;; test cases
(defun joins (a b)
(char= (char a (1- (length a))) (char b 0)))
(defun w34()
(amb '("walked" "treaded" "grows") #'joins
(amb '("slowly" "quickly"))))
(print
(amb '("the" "that" "a") #'joins
(amb '("frog" "elephant" "thing") #'joins
(w34))))
(print (amb '(1 2 5) #'<
(amb '(2 3 4) #'=
(amb '(3 4 5))))) ; 1 4 4, 2 3 3, etc
Property lists
1. Note
We use Common Lisp property list feature. For instance.
x = ambsel (1 2) y = ambsel (3 4) x.domain = (1 2) y.domain = (3 4) stack = (x y)
Initially.
x = 1, y = 3
We add constraints.
ambassert (x + y = 5) x + y = 5, x = 1, y = 4 ambassert (y - x = 1) x + y = 5 ^ y - x = 1, x = 2, y = 3
2. Program
;; 22.11.18 Ajout macro
(defvar *stack* nil)
(defvar *assert* t)
(defun ambnew ()
(setf *stack* nil)
(setf *assert* t))
(defmacro ambsel (name domain)
`(progn (defparameter ,name (first ,domain))
(pushnew ',name *stack*)
(setf (get ',name 'domain) ,domain)))
(defun ambassert (assert)
(setf *assert* (list 'and assert *assert*))
(if (eval *assert*)
t
(labels ((probe (&optional (stack *stack*))
(let* ((name (first stack))
(domain (get name 'domain)))
(dolist (value domain)
(set name value)
(cond ((eval *assert*) (return t))
((probe (rest stack)) (return t)))))))
(probe))))
3. Problem
(defun match (a b)
(equal (elt (reverse a) 0) (elt b 0)))
4. Execution
(ambsel *a* '("the" "that" "a")) (ambsel *b* '("frog" "elephant" "thing")) (ambsel *c* '("walked" "treaded" "grows")) (ambsel *d* '("slowly" "quickly")) (ambassert '(match *a* *b*)) (ambassert '(match *b* *c*)) (ambassert '(match *c* *d*)) (list *a* *b* *c* *d*)
- Output:
("that" "thing" "grows" "slowly")
5. Magic square
Complexity : 0(n2)
(defun magic-square (a b c d e f g h i)
(and (/= a b c d e f g h i)
(= (+ a b c)
(+ d e f)
(+ g h i)
(+ a d g)
(+ b e h)
(+ c f i)
(+ a e i)
(+ c e g))))
(ambsel *a* '(1 2 3 4 5 6 7 8 9)) (ambsel *b* '(1 2 3 4 5 6 7 8 9)) (ambsel *c* '(1 2 3 4 5 6 7 8 9)) (ambsel *d* '(1 2 3 4 5 6 7 8 9)) (ambsel *e* '(1 2 3 4 5 6 7 8 9)) (ambsel *f* '(1 2 3 4 5 6 7 8 9)) (ambsel *g* '(1 2 3 4 5 6 7 8 9)) (ambsel *h* '(1 2 3 4 5 6 7 8 9)) (ambsel *i* '(1 2 3 4 5 6 7 8 9)) (ambassert '(magic-square *a* *b* *c* *d* *e* *f* *g* *h* *i*)) (list *a* *b* *c*) (list *d* *e* *f*) (list *g* *h* *i*)
- Output:
(8 3 4) (1 5 9) (6 7 2)
That's all Folks !
cyril nocton (cyril.nocton@gmail.com) w/ google translate ¯\_(ツ)_/¯
D
import std.stdio, std.array;
/** This amb function takes a comparison function and
the possibilities that need to be checked.*/
//string[] amb(in bool function(in string, in string) pure comp,
const(string)[] amb(in bool function(in string, in string) pure comp,
in string[][] options,
in string prev = null) pure {
if (options.empty)
return null;
foreach (immutable opt; options.front) {
// If this is the base call, prev is null and we need to
// continue.
if (!prev.empty && !comp(prev, opt))
continue;
// Take care of the case where we have no options left.
if (options.length == 1)
return [opt];
// Traverse into the tree.
const res = amb(comp, options[1 .. $], opt);
// If it was a failure, try the next one.
if (!res.empty)
return opt ~ res; // We have a match!
}
return null; // No matches.
}
void main() {
immutable sets = [["the", "that", "a"],
["frog", "elephant", "thing"],
["walked", "treaded", "grows"],
["slowly", "quickly"]];
// Pass in the comparator and the available sets.
// (The comparator is not nothrow because of UTF.)
const result = amb((s, t) => s.back == t.front, sets);
if (result.empty)
writeln("No matches found!");
else
writefln("%-(%s %)", result);
}
- Output:
that thing grows slowly
E
E does not currently have any kind of backtracking control flow (though there is a proposal in the works to backtrack upon exceptions, for the sake of consistency). However, since (Almost) Everything Is Message Passing, we can create an object which represents a set of possible values.
This is complicated, however, by the fact that any given amb must appear to produce only one result; that is, def x := amb(["a", "b"]); x + x
produces aa or bb, not aa,bb,ab,ba as amb(["a", "b"]) + amb(["a", "b"])
would. Therefore, each choice is associated with the decisions which produced it: a map from amb objects to which member of them was chosen; any combination of two ambs discards any combination of choices which have inconsistent decisions.
Note that the choices are not evaluated lazily; this is a breadth-first rather than depth-first search through possibilities. Also, every amb remembers all of the ambs which produced it. As such, this is probably not a practical system for large problems.
pragma.enable("accumulator")
def [amb, unamb] := { # block hides internals
def Choice := Tuple[any, Map]
def [ambS, ambU] := <elib:sealing.makeBrand>("amb")
var counter := 0 # Used just for printing ambs
/** Check whether two sets of decisions are consistent */
def consistent(decA, decB) {
def overlap := decA.domain() & decB.domain()
for ambObj in overlap {
if (decA[ambObj] != decB[ambObj]) { return false }
}
return true
}
/** From an amb object, extract the possible choices */
def getChoices(obj, decisions) :List[Choice] {
if (decisions.maps(obj)) {
return [[decisions[obj], decisions]]
} else if (ambU.amplify(obj) =~ [[choices, _]]) {
return accum [] for [chosen, dec] ? (consistent(decisions, dec)) in choices { _ + getChoices(chosen, (decisions | dec).with(obj, chosen)) }
} else {
return [[obj, decisions]]
}
}
/** Construct an amb object with remembered decisions */
def ambDec(choices :List[Choice]) {
def serial := (counter += 1)
def ambObj {
to __printOn(out) {
out.print("<amb(", serial, ")")
for [chosen, decisions] in choices {
out.print(" ", chosen)
for k => v in decisions {
out.print(";", ambU.amplify(k)[0][1], "=", v)
}
}
out.print(">")
}
to __optSealedDispatch(brand) {
if (brand == ambS.getBrand()) {
return ambS.seal([choices, serial])
}
}
match [verb, args] {
var results := []
for [rec, rdec] in getChoices(ambObj, [].asMap()) {
def expandArgs(dec, prefix, choosing) {
switch (choosing) {
match [] { results with= [E.call(rec, verb, prefix), dec] }
match [argAmb] + moreArgs {
for [arg, adec] in getChoices(argAmb, dec) {
expandArgs(adec, prefix.with(arg), moreArgs)
}
}
}
}
expandArgs(rdec, [], args)
}
ambDec(results)
}
}
return ambObj
}
/** Construct an amb object with no remembered decisions. (public interface) */
def amb(choices) {
return ambDec(accum [] for c in choices { _.with([c, [].asMap()]) })
}
/** Get the possible results from an amb object, discarding decision info. (public interface) */
def unamb(ambObj) {
return accum [] for [c,_] in getChoices(ambObj, [].asMap()) { _.with(c) }
}
[amb, unamb]
}
def join(a, b) {
# This must not use the builtin if, since it coerces to boolean rather than passing messages.
# false.pick(x, y) returns y and true.pick(x, y) returns x; we protect the amb([]) from causing
# unconditional failure by putting both options in functions.
# <=> is the comparison operator that happens to be message-based.
return (a.last() <=> b[0]).pick(fn {
a + " " + b
}, fn {
amb([])
})()
}
def w1 := amb(["the", "that", "a" ])
def w2 := amb(["frog", "elephant", "thing" ])
def w3 := amb(["walked", "treaded", "grows" ])
def w4 := amb(["slowly", "quickly" ])
unamb(join(join(join(w1, w2), w3), w4))
- Comparison with Haskell
This can be compared with the Haskell use of lists as a monad to represent choice.
- Haskell uses lazy evaluation; E does not. This implementation does not simulate lazy evaluation with thunks; it is eager (computes every intermediate choice before continuing) and therefore inefficient if you only need one successful result.
- Haskell does not need to track decisions. This is because when using a monad in Haskell, the points of choice are explicitly written, either by monadic operators or combinators. The analogues to the two "ab" operations given above are:
do x <- ["a","b"]; return (x ++ x)
anddo x <- ["a","b"]; y <- ["a","b"]; return (x ++ y)
— the relevant difference being the number of<-
operators. In this implementation, we instead absorb the choice into normal method calls; the Haskell analogue would be something likeinstance Monoid a => Monoid (Amb a) where Amb ... `mconcat` Amb ... = ...
, which would have a similar need to track decisions.
Egison
; We don't need 'amb' in the code since pattern-matching of Egison automatically do backtracking.
(match-all {{"the" "that" "a"} {"frog" "elephant" "thing"} {"walked" "treaded" "grows"} {"slowly" "quickly"}} (list (multiset string))
[<cons <cons (& <snoc $c_1 _> $w_1) _>
(loop $i [2 $n]
<cons <cons (& <cons ,c_(- i 1) <snoc $c_i _>> $w_i) _> ...>
<nil>)>
(map (lambda [$i] w_i) (between 1 n))])
- Output:
{{"that" "thing" "grows" "slowly"}}
Ela
open list core
amb xs = x where
(Some x) = & join xs ""
join (x::xs) = amb' x (join xs)
join [] = \_ -> Some ""
eq' [] x = true
eq' w x = last w == head x
amb' [] _ _ = None
amb' (x::xs) n w
| eq' w x =
match n x with
Some v = Some (x ++ " " ++ v)
_ = amb' xs n w
| else = amb' xs n w
Usage:
amb [
["the","that","a"]
,["frog","elephant","thing"]
,["walked","treaded","grows"]
,["slowly","quickly"]
]
Elena
ELENA 6.0 :
import system'routines;
import extensions;
import extensions'routines;
// --- Joinable --
joinable(former,later) = (former[former.Length - 1] == later[0]);
dispatcher = new
{
eval(object a, Func2 f)
{
^ f(a[0],a[1])
}
eval(object a, Func3 f)
{
^ f(a[0], a[1],a[2])
}
eval(object a, Func4 f)
{
^ f(a[0],a[1],a[2],a[3])
}
eval(object a, Func5 f)
{
^ f(a[0],a[1],a[2],a[3],a[4])
}
};
// --- AmbValueCollection ---
class AmbValueCollection
{
object _combinator;
constructor new(params object[] args)
{
_combinator := SequentialEnumerator.load(params args)
}
seek(cond)
{
_combinator.reset();
_combinator.seekEach::(v => dispatcher.eval(v,cond))
}
do(f)
{
var result := *_combinator;
if (nil != result)
{
dispatcher.eval(result,f)
}
else
{
InvalidArgumentException.raise()
}
}
}
// --- ambOperator ---
singleton ambOperator
{
for(params object[] args)
= AmbValueCollection.new(params args);
}
// --- Program ---
public program()
{
try
{
ambOperator
.for(
new object[]{"the","that","a"},
new object[]{"frog", "elephant", "thing"},
new object[]{"walked", "treaded", "grows"},
new object[]{"slowly", "quickly"})
.seek::(a,b,c,d => joinable(a,b) && joinable(b,c) && joinable(c,d) )
.do::(a,b,c,d) { console.printLine(a," ",b," ",c," ",d) }
}
catch(Exception e)
{
console.printLine("AMB is angry")
};
console.readChar()
}
- Output:
that thing grows slowly
ERRE
PROGRAM AMB
!
! for rosettacode.org
!
!$KEY
DIM SET1$[2],SET2$[2],SET3$[2],SET4$[2]
FUNCTION WORDS_OK(STRING1$,STRING2$)
WORDS_OK=(RIGHT$(STRING1$,1)=LEFT$(STRING2$,1))
END FUNCTION
PROCEDURE AMB(SET1$[],SET2$[],SET3$[],SET4$[]->RESULT$)
RESULT$="" ! Empty string, e.g. fail
FOR A=0 TO 2 DO
FOR B=0 TO 2 DO
FOR C=0 TO 2 DO
FOR D=0 TO 2 DO
IF WORDS_OK(SET1$[A],SET2$[B]) AND WORDS_OK(SET2$[B],SET3$[C]) AND WORDS_OK(SET3$[C],SET4$[D]) THEN
RESULT$=SET1$[A]+" "+SET2$[B]+" "+SET3$[C]+" "+SET4$[D]
EXIT PROCEDURE
END IF
END FOR
END FOR
END FOR
END FOR
END PROCEDURE
BEGIN
PRINT(CHR$(12);) ! CLS
SET1$[0]="the" SET1$[1]="that" SET1$[2]="a"
SET2$[0]="frog" SET2$[1]="elephant" SET2$[2]="thing"
SET3$[0]="walked" SET3$[1]="treaded" SET3$[2]="grows"
SET4$[0]="slowly" SET4$[1]="quickly" SET4$[2]=""
AMB(SET1$[],SET2$[],SET3$[],SET4$[]->TEXT$)
IF TEXT$<>"" THEN
PRINT("Correct sentence would be:")
PRINT(TEXT$)
ELSE
PRINT("Failed to fine a correct sentence.")
END IF
PRINT
PRINT("Press any key to exit.")
REPEAT
GET(Z$)
UNTIL LEN(Z$)<>0
END PROGRAM
F#
Important differences to the Haskell solution:
- The list monad is not predefined in F#. (But it is easy to define it.)
- F# is not lazy, so this will check all combinations even if we just want one solution.
Both problems could be addressed by using sequence expressions instead.
// define the List "workflow" (monad)
type ListBuilder() =
member o.Bind( lst, f ) = List.concat( List.map (fun x -> f x) lst )
member o.Return( x ) = [x]
member o.Zero() = []
let list = ListBuilder()
let amb = id
// last element of a sequence
let last s = Seq.nth ((Seq.length s) - 1) s
// is the last element of left the same as the first element of right?
let joins left right = last left = Seq.head right
let example = list { let! w1 = amb ["the"; "that"; "a"]
let! w2 = amb ["frog"; "elephant"; "thing"]
let! w3 = amb ["walked"; "treaded"; "grows"]
let! w4 = amb ["slowly"; "quickly"]
if joins w1 w2 &&
joins w2 w3 &&
joins w3 w4
then
return String.concat " " [w1; w2; w3; w4]
}
printfn "%s" (List.head example)
Factor
USING: backtrack continuations kernel prettyprint sequences ;
IN: amb
CONSTANT: words {
{ "the" "that" "a" }
{ "frog" "elephant" "thing" }
{ "walked" "treaded" "grows" }
{ "slowly" "quickly" }
}
: letters-match? ( str1 str2 -- ? ) [ last ] [ first ] bi* = ;
: sentence-match? ( seq -- ? ) dup rest [ letters-match? ] 2all? ;
: select ( seq -- seq' ) [ amb-lazy ] map ;
: search ( -- )
words select dup sentence-match? [ " " join ] [ fail ] if . ;
MAIN: search
Running it from the listener :
( scratchpad ) "amb" run "that thing grows slowly"
FreeBASIC
Function wordsOK(string1 As String, string2 As String) As boolean
If Mid(string1, Len(string1), 1) = Mid(string2, 1, 1) Then
Return True
End If
Return False
End Function
Function Amb(A() As String, B() As String, C() As String, D() As String) As String
Dim As Integer a2, b2, c2, d2
For a2 = 0 To Ubound(A)
For b2 = 0 To Ubound(B)
For c2 = 0 To Ubound(C)
For d2 = 0 To Ubound(D)
If wordsOK(A(a2),B(b2)) And wordsOK(B(b2),C(c2)) And wordsOK(C(c2),D(d2)) Then
Return A(a2) + " " + B(b2) + " " + C(c2) + " " + D(d2)
End If
Next d2
Next c2
Next b2
Next a2
Return "" 'Cadena vacía, por ejemplo, falla
End Function
Dim As String set1(2), set2(2), set3(2), set4(1)
set1(0) = "the" : set1(1) = "that" : set1(2) = "a"
set2(0) = "frog" : set2(1) = "elephant" : set2(2) = "thing"
set3(0) = "walked" : set3(1) = "treaded" : set3(2) = "grows"
set4(0) = "slowly" : set4(1) = "quickly"
Dim As String text = Amb(set1(), set2(), set3(), set4())
If text <> "" Then
Print !"Correct sentence would be:\n" + text
Else
Print "Failed to fine a correct sentence."
End If
Sleep
FutureBasic
CFStringRef local fn Amb( a1 as CFArrayRef, a2 as CFArrayRef, a3 as CFArrayRef, a4 as CFArrayRef )
for CFStringRef s1 in a1
for CFStringRef s2 in a2
for CFStringRef s3 in a3
for CFStringRef s4 in a4
if ( ucc(s1,len(s1)-1) == ucc(s2) && ucc(s2,len(s2)-1) == ucc(s3) && ucc(s3,len(s3)-1) == ucc(s4) )
return concat @" ",(s1,s2,s3,s4)
end if
next
next
next
next
end fn = @""
void local fn DoIt
CFArrayRef a1 = @[@"the",@"that",@"a"]
CFArrayRef a2 = @[@"frog",@"elephant",@"thing"]
CFArrayRef a3 = @[@"walked",@"treaded",@"grows"]
CFArrayRef a4 = @[@"slowly",@"quickly"]
print fn Amb( a1, a2, a3, a4 )
end fn
fn DoIt
HandleEvents
Go
Solution with goroutines. See description on talk page.
package main
import (
"fmt"
"sync"
)
func ambStrings(ss []string) chan []string {
c := make(chan []string)
go func() {
for _, s := range ss {
c <- []string{s}
}
close(c)
}()
return c
}
func ambChain(ss []string, cIn chan []string) chan []string {
cOut := make(chan []string)
go func() {
var w sync.WaitGroup
for chain := range cIn {
w.Add(1)
go func(chain []string) {
for s1 := range ambStrings(ss) {
if s1[0][len(s1[0])-1] == chain[0][0] {
cOut <- append(s1, chain...)
}
}
w.Done()
}(chain)
}
w.Wait()
close(cOut)
}()
return cOut
}
func main() {
s1 := []string{"the", "that", "a"}
s2 := []string{"frog", "elephant", "thing"}
s3 := []string{"walked", "treaded", "grows"}
s4 := []string{"slowly", "quickly"}
c := ambChain(s1, ambChain(s2, ambChain(s3, ambStrings(s4))))
for s := range c {
fmt.Println(s)
}
}
- Output:
[that thing grows slowly]
Alternative solution:
package main
import "fmt"
func amb(wordsets [][]string, res []string) bool {
if len(wordsets) == 0 {
return true
}
var s string
l := len(res)
if l > 0 { s = res[l - 1] }
res = res[0:len(res) + 1]
for _, res[l] = range(wordsets[0]) {
if l > 0 && s[len(s) - 1] != res[l][0] { continue }
if amb(wordsets[1:len(wordsets)], res) {
return true
}
}
return false
}
func main() {
wordset := [][]string { { "the", "that", "a" },
{ "frog", "elephant", "thing" },
{ "walked", "treaded", "grows" },
{ "slowly", "quickly" } }
res := make([]string, len(wordset))
if amb(wordset, res[0:0]) {
fmt.Println(res)
} else {
fmt.Println("No amb found")
}
}
Haskell
Haskell's List monad returns all the possible choices. Use the "head" function on the result if you just want one.
import Control.Monad
amb = id
joins left right = last left == head right
example = do
w1 <- amb ["the", "that", "a"]
w2 <- amb ["frog", "elephant", "thing"]
w3 <- amb ["walked", "treaded", "grows"]
w4 <- amb ["slowly", "quickly"]
guard (w1 `joins` w2)
guard (w2 `joins` w3)
guard (w3 `joins` w4)
pure $ unwords [w1, w2, w3, w4]
Note that "amb" is defined as a no-op and is written only to help show the analogy with other implementations; ordinary style is to write e.g. w1 <- ["the", "that", "a"]
.
It may also be illuminating to show how this desugars (dropping the do notation) if we express it directly in terms of the list monad bind function (>>=) (or >>= without brackets as in infix operator), which is possibly more familiar (or more directly intelligible) as concatMap with its arguments flipped.
The function of amb can then be seen in the return of a list of bound values, if a predicate is matched, or the return of an empty list, if the predicate fails:
joins :: String -> String -> Bool
joins left right = last left == head right
-- First desugaring (dropping the do notation)
-- in terms of the bind operator (>>=) for the list monad
exampleBind :: String
exampleBind =
["the", "that", "a"] >>=
(\w1 ->
["frog", "elephant", "thing"] >>=
\w2 ->
["walked", "treaded", "grows"] >>=
\w3 ->
["slowly", "quickly"] >>=
(\w4 ->
if joins w1 w2
then (if joins w2 w3
then (if joins w3 w4
then unwords [w1, w2, w3, w4]
else [])
else [])
else []))
-- Second desugaring (still dropping the do notation)
-- in terms of the concatMap, which is >>= with its arguments flipped
exampleConcatMap :: String
exampleConcatMap =
concatMap
(\w1 ->
concatMap
(\w2 ->
concatMap
(\w3 ->
concatMap
(\w4 ->
if joins w1 w2
then (if joins w2 w3
then (if joins w3 w4
then unwords [w1, w2, w3, w4]
else [])
else [])
else [])
["slowly", "quickly"])
["walked", "treaded", "grows"])
["frog", "elephant", "thing"])
["the", "that", "a"]
main :: IO ()
main = do
print exampleBind
print exampleConcatMap
- Output:
"that thing grows slowly" "that thing grows slowly"
Or, immediately pairing each indeterminate value with a predicate (rather concluding with a compound predicate).
example :: [String]
example =
["the", "that", "a"] >>=
\w1 ->
when True ["frog", "elephant", "thing"] >>=
\w2 ->
when (joins w1 w2) ["walked", "treaded", "grows"] >>=
\w3 ->
when (joins w2 w3) ["slowly", "quickly"] >>=
\w4 -> when (joins w3 w4) [w1, w2, w3, w4]
joins :: String -> String -> Bool
joins left right = last left == head right
when :: Bool -> [a] -> [a]
when p xs =
if p
then xs
else []
main :: IO ()
main = print $ unwords example
"that thing grows slowly"
And a familar resugaring of a list monad wrapping of indeterminate values and constraints is, of course, the list comprehension notation, which has a semantics directly equivalent to that of amb tuples and contraints, and provides quite a clean and natural notation for their expression.
joins :: String -> String -> Bool
joins left right = last left == head right
example :: [String]
example =
[ unwords [w1, w2, w3, w4]
| w1 <- ["the", "that", "a"],
w2 <- ["frog", "elephant", "thing"],
joins w1 w2,
w3 <- ["walked", "treaded", "grows"],
joins w2 w3,
w4 <- ["slowly", "quickly"],
joins w3 w4
]
main :: IO ()
main = print example
- Output:
["that thing grows slowly"]
Haxe
class RosettaDemo
{
static var setA = ['the', 'that', 'a'];
static var setB = ['frog', 'elephant', 'thing'];
static var setC = ['walked', 'treaded', 'grows'];
static var setD = ['slowly', 'quickly'];
static public function main()
{
Sys.print(ambParse([ setA, setB, setC, setD ]).toString());
}
static function ambParse(sets : Array<Array<String>>)
{
var ambData : Dynamic = amb(sets);
for (data in 0...ambData.length)
{
var tmpData = parseIt(ambData[data]);
var tmpArray = tmpData.split(' ');
tmpArray.pop();
if (tmpArray.length == sets.length)
{
return tmpData;
}
}
return '';
}
static function amb(startingWith : String = '', sets : Array<Array<String>>) : Dynamic
{
if (sets.length == 0 || sets[0].length == 0) return;
var match : Dynamic = [];
for (reference in sets[0])
{
if (startingWith == '' || startingWith == reference.charAt(0))
{
var lastChar = reference.charAt(reference.length-1);
if (Std.is(amb(lastChar, sets.slice(1)), Array))
{
match.push([ reference, amb(lastChar, sets.slice(1))]);
}
else
{
match.push([ reference ]);
}
}
}
return match;
}
static function parseIt(data : Dynamic)
{
var retData = '';
if (Std.is(data, Array))
{
for (elements in 0...data.length)
{
if (Std.is(data[elements], Array))
{
retData = retData + parseIt(data[elements]);
}
else
{
retData = retData + data[elements] + ' ';
}
}
}
return retData;
}
}
Icon and Unicon
Insitux
(function amb op res
(filter #(= res (.. .. op args))
(.. for vec (skip 2 args))))
(var safe= @(= (0 args)))
(var predicate (comp vec (map (juxt 0 -1)) flatten (skip 1) (partition 2) (map (.. safe=)) (.. and)))
(amb predicate true ["the" "that" "a"] ["frog" "elephant" "thing"] ["walked" "treaded" "grows"] ["slowly" "quickly"])
;returns [["that" "thing" "grows" "slowly"]]
J
Here, we interpret the specification such that ambassert
picks an arbitrary valid example. In other words, it discards all unnecessary ambiguity (it arbitrarily picks a "single future" from among the valid "potential futures").
Since this task specifies an O(n^m) complexity problem, we'll also assume that the user knows to limit its use to small examples.
Implementation:
ambsel=: <^:99@,
ambassert=: {{
anames=. (#~ 99<:{{L.do y}}@>) (#~ 0=nc)/:~~.;:m
limit=. */alimits=. #@> avalues=. {{>^:98 do y}}every anames
j=. 0 while. do.
(anames)=. test=. (alimits#:j) {each avalues
try. do m
anames {{(x)=:y}}&> test break.
catch. end.
if. limit<:j=.j+1 do. assert.'no valid solution' end.
end. EMPTY
}}
Task example:
s1=: ambsel;:'the that a'
s2=: ambsel;:'frog elephant thing'
s3=: ambsel;:'walked treaded grows'
s4=: ambsel;:'slowly quickly'
edgematch=: {{ x,y assert. ({:;x)={.;y }}
{{)n edgematch/ s1,s2,s3,s4 }} ambassert
echo s1,s2,s3,s4
┌────┬─────┬─────┬──────┐
│that│thing│grows│slowly│
└────┴─────┴─────┴──────┘
Java
import java.util.ArrayList;
import java.util.List;
import java.util.function.BiFunction;
import java.util.stream.Collectors;
import java.util.stream.Stream;
public final class AmbTask {
public static void main(String[] aArgs) {
List<List<String>> words = List.of(
List.of( "the", "that", "a" ),
List.of( "frog", "elephant", "thing" ),
List.of( "walked", "treaded", "grows" ),
List.of( "slowly", "quickly" ) );
System.out.println(Amb(words));
}
private static String Amb(List<List<String>> aOptions) {
BiFunction<String, String, Boolean> continues = (before, after) -> before.endsWith(after.substring(0, 1));
List<String> ambResult = amb(continues, aOptions, "");
return ( ambResult.isEmpty() ) ? "No match found" : String.join(" ", ambResult);
}
private static List<String> amb(
BiFunction<String, String, Boolean> aBiFunction, List<List<String>> aOptions, String aPrevious) {
if ( aOptions.isEmpty() ) {
return new ArrayList<String>();
}
for ( String option : aOptions.get(0) ) {
if ( ! aPrevious.isEmpty() && ! aBiFunction.apply(aPrevious, option) ) {
continue;
}
if ( aOptions.size() == 1 ) {
return Stream.of(option).collect(Collectors.toList());
}
List<String> result = (ArrayList<String>) amb(aBiFunction, aOptions.subList(1, aOptions.size()), option);
if ( ! result.isEmpty() ) {
result.add(0, option);
return result;
}
}
return new ArrayList<String>();
}
}
- Output:
that thing grows slowly
JavaScript
Procedural
function ambRun(func) {
var choices = [];
var index;
function amb(values) {
if (values.length == 0) {
fail();
}
if (index == choices.length) {
choices.push({i: 0,
count: values.length});
}
var choice = choices[index++];
return values[choice.i];
}
function fail() { throw fail; }
while (true) {
try {
index = 0;
return func(amb, fail);
} catch (e) {
if (e != fail) {
throw e;
}
var choice;
while ((choice = choices.pop()) && ++choice.i == choice.count) {}
if (choice == undefined) {
return undefined;
}
choices.push(choice);
}
}
}
ambRun(function(amb, fail) {
function linked(s1, s2) {
return s1.slice(-1) == s2.slice(0, 1);
}
var w1 = amb(["the", "that", "a"]);
var w2 = amb(["frog", "elephant", "thing"]);
if (!linked(w1, w2)) fail();
var w3 = amb(["walked", "treaded", "grows"]);
if (!linked(w2, w3)) fail();
var w4 = amb(["slowly", "quickly"]);
if (!linked(w3, w4)) fail();
return [w1, w2, w3, w4].join(' ');
}); // "that thing grows slowly"
Functional
Defining amb as the list monad bind/inject operator:
(() => {
'use strict';
// amb :: [a] -> (a -> [b]) -> [b]
const amb = xs => f =>
xs.reduce((a, x) => a.concat(f(x)), []);
// when :: Bool -> [a] -> [a]
const when = p =>
xs => p ? (
xs
) : [];
// TEST -----------------------------------------------
const main = () => {
// joins :: String -> String -> Bool
const joins = (a, b) =>
b[0] === last(a);
console.log(
amb(['the', 'that', 'a'])
(w1 => when(true)(
amb(['frog', 'elephant', 'thing'])
(w2 => when(joins(w1, w2))(
amb(['walked', 'treaded', 'grows'])
(w3 => when(joins(w2, w3))(
amb(['slowly', 'quickly'])
(w4 => when(joins(w3, w4))(
unwords([w1, w2, w3, w4])
))
))
))
))
);
};
// GENERIC FUNCTIONS ----------------------------------
// last :: [a] -> a
const last = xs =>
0 < xs.length ? xs.slice(-1)[0] : undefined;
// unwords :: [String] -> String
const unwords = xs => xs.join(' ');
// MAIN ---
return main();
})();
- Output:
that thing grows slowly
jq
Two solutions are given. The first follows the style of the Prolog example. The second perhaps hews more closely to the intended specification of "amb".
Solution using amb/0
def amb: .[];
def joins:
(.[0][-1:]) as $left
| (.[1][0:1]) as $right
| if $left == $right then true else empty end;
Example:
(["the","that","a"] | amb) as $word1
| (["frog","elephant","thing"] | amb) as $word2
| [$word1, $word2] | joins
| (["walked","treaded","grows"] | amb) as $word3
| [$word2, $word3] | joins
| (["slowly","quickly"] | amb) as $word4
| [$word3, $word4] | joins
| [$word1, $word2, $word3, $word4]
- Output:
jq -n -f amb.jq
[
"that",
"thing",
"grows",
"slowly"
]
Solution using amb(condition):
def amb(condition): .[] | select(condition);
def joins:
(.[0][-1:]) as $left
| (.[1][0:1]) as $right
| $left == $right ;
Example:
(["the","that","a"] | amb(true)) as $word1
| (["frog","elephant","thing"] | amb( [$word1, .] | joins)) as $word2
| (["walked","treaded","grows"] | amb( [$word2, .] | joins)) as $word3
| (["slowly","quickly"] | amb( [$word3, .] | joins)) as $word4
| [$word1, $word2,$word3, $word4]
- Output:
As above.
Julia
# This is a general purpose AMB function that takes a two-argument failure function and
# arbitrary number of iterable objects and returns the first solution found as an array
# this function is in essence an iterative backtracking solver
function amb(failure, itrs...)
n = length(itrs)
if n == 1 return end
states = Vector(n)
values = Vector(n)
# starting point, we put down the first value from the first iterable object
states[1] = start(itrs[1])
values[1], states[1] = next(itrs[1], states[1])
i = 1
# main solver loop
while true
# test for failure
if i > 1 && failure(values[i-1], values[i])
# loop for generating a new value upon failure
# in fact this would be way more readable using goto, but Julia doesn't seem to have that :(
while true
# if we failed, we must generate a new value, but first we must check whether there is any
if done(itrs[i], states[i])
# backtracking step with sanity check in case we ran out of values from the current generator
if i == 1
return
else
i -= 1
continue
end
else
# if there is indeed a new value, generate it
values[i], states[i] = next(itrs[i], states[i])
break
end
end
else
# no failure branch
# if solution is ready (i.e. all generators are used) just return it
if i == n return values end
# else start up the next generator
i += 1
states[i] = start(itrs[i])
values[i], states[i] = next(itrs[i], states[i])
end
end
end
# Call our generic AMB function according to the task description and
# form the solution sentence from the returned array of words
amb((s1,s2) -> s1[end] != s2[1], # failure function
["the", "that", "a"],
["frog", "elephant", "thing"],
["walked", "treaded", "grows"],
["slowly", "quickly"]) |>
x -> join(x, " ") |>
println
iterator version
iter = Iterators.product(["the", "that", "a"], ["frog", "elephant", "thing"], ["walked", "treaded", "grows"], ["slowly", "quickly"])
@show [join(c, " ") for c in iter if all(i -> c[i][end] == c[i + 1][begin], 1:length(c)-1)] # ["that thing grows slowly"]
Kotlin
This solves the problem using backtracking whenever amb() is executed. amb will probably have unexpected behavior if any variables are mutated. Using simple assignment for variables shouldn't be a problem.
// version 1.2.41
import kotlin.coroutines.experimental.*
import kotlin.coroutines.experimental.intrinsics.*
fun main(args: Array<String>) = amb {
val a = amb("the", "that", "a")
val b = amb("frog", "elephant", "thing")
val c = amb("walked", "treaded", "grows")
val d = amb("slowly", "quickly")
if (a[a.lastIndex] != b[0]) amb()
if (b[b.lastIndex] != c[0]) amb()
if (c[c.lastIndex] != d[0]) amb()
println(listOf(a, b, c, d))
val x = amb(1, 2, 3)
val y = amb(7, 6, 4, 5)
if (x * y != 8) amb()
println(listOf(x, y))
}
class AmbException(): Exception("Refusing to execute")
data class AmbPair<T>(val cont: Continuation<T>, val valuesLeft: MutableList<T>)
@RestrictsSuspension
class AmbEnvironment {
val ambList = mutableListOf<AmbPair<*>>()
suspend fun <T> amb(value: T, vararg rest: T): T = suspendCoroutineOrReturn { cont ->
if (rest.size > 0) {
ambList.add(AmbPair(clone(cont), mutableListOf(*rest)))
}
value
}
suspend fun amb(): Nothing = suspendCoroutine<Nothing> { }
}
@Suppress("UNCHECKED_CAST")
fun <R> amb(block: suspend AmbEnvironment.() -> R): R {
var result: R? = null
var toThrow: Throwable? = null
val dist = AmbEnvironment()
block.startCoroutine(receiver = dist, completion = object : Continuation<R> {
override val context: CoroutineContext get() = EmptyCoroutineContext
override fun resume(value: R) { result = value }
override fun resumeWithException(exception: Throwable) { toThrow = exception }
})
while (result == null && toThrow == null && !dist.ambList.isEmpty()) {
val last = dist.ambList.run { this[lastIndex] }
if (last.valuesLeft.size == 1) {
dist.ambList.removeAt(dist.ambList.lastIndex)
last.apply {
(cont as Continuation<Any?>).resume(valuesLeft[0])
}
} else {
val value = last.valuesLeft.removeAt(last.valuesLeft.lastIndex)
(clone(last.cont) as Continuation<Any?>).resume(value)
}
}
if (toThrow != null)
{
throw toThrow!!
}
else if (result != null)
{
return result!!
}
else
{
throw AmbException()
}
}
val UNSAFE = Class.forName("sun.misc.Unsafe")
.getDeclaredField("theUnsafe")
.apply { isAccessible = true }
.get(null) as sun.misc.Unsafe
@Suppress("UNCHECKED_CAST")
fun <T: Any> clone(obj: T): T {
val clazz = obj::class.java
val copy = UNSAFE.allocateInstance(clazz) as T
copyDeclaredFields(obj, copy, clazz)
return copy
}
tailrec fun <T> copyDeclaredFields(obj: T, copy: T, clazz: Class<out T>) {
for (field in clazz.declaredFields) {
field.isAccessible = true
val v = field.get(obj)
field.set(copy, if (v === obj) copy else v)
}
val superclass = clazz.superclass
if (superclass != null) copyDeclaredFields(obj, copy, superclass)
}
- Output:
[that, thing, grows, slowly] [2, 4]
langur
This would build every valid set, but for the sample data, there's only one.
val wordsets = [
fw/the that a/,
fw/frog elephant thing/,
fw/walked treaded grows/,
fw/slowly quickly/,
]
val alljoin = fn words: for[=true] i of len(words)-1 {
if words[i][-1] != words[i+1][1]: break = false
}
# amb expects 2 or more arguments
val amb = fn ...[2..] words: if alljoin(words) { join words, by=" " }
writeln join(mapX(wordsets..., by=amb) -> filter, by="\n")
- Output:
that thing grows slowly
Latitude
Latitude supports callCC
natively, so `amb` can be implemented in a relatively straightforward fashion in terms of continuations.
;; This is the exception that will be thrown if an amb expression is
;; unsatisfiable.
AmbError ::= Exception clone tap {
self message := "Amb expression failed".
AmbError := self.
}.
;; The Amb object itself is primarily for internal use. It stores the
;; "next" backtracking point if an amb expression outright fails or
;; exhausts its possibilities at some point.
Amb ::= Object clone tap {
;; The default "next" point is to throw an exception. This will be
;; overridden in many cases, if there is an actual next handler to
;; jump to.
self nextHandler := { AmbError clone throw. }.
Amb := self.
}.
callAmb := {
;; We need an object which will be accessible from inside the
;; continuations that will store the next backtracking point which
;; will be called.
backtracker := Amb clone.
;; We define the dynamically-scoped method $amb which will try each
;; possibility that it is given. If all of those possibilities fail,
;; it will call the next handler.
$amb := {
takes '[cases].
;; This is the return point. We're going to try each element of
;; the cases variable (probably an array, but it could feasibly be
;; any collection type). For each element, we'll jump to this
;; point (which will wind up being the end of the $amb method). If
;; it ends up failing, the backtrack point will get called and
;; we'll try the next one.
callCC {
escapable.
;; Get the current backtrack point from the toplevel object and
;; store it within this continuation. The backtrack object's
;; current backtrack point will change as we make new attempts,
;; but this prevHandler variable is stored locally in this scope
;; and will not change, so we can always use it later.
prevHandler := #'(backtracker nextHandler).
;; We iterate over the collection to try each element.
cases visit {
takes '[curr].
callCC {
;; This inner continuation will be our new backtrack point.
;; We store the continuation object itself in the backtrack
;; object so that future $amb calls know to return to this
;; point if something goes wrong.
nextExit := #'$1.
backtracker nextHandler := { nextExit call (Nil). }.
;; Now we actually try the value by jumping to the end of
;; the $amb method and returning control to the caller.
return (curr).
}.
}.
;; If we exhaust each possibility, then that means every value
;; in the cases variable has been tried and has failed. So we
;; set the backtrack point back to what it was before we tried
;; all of these values, and then we jump back to that previous
;; backtrack point.
backtracker nextHandler := #'(prevHandler).
prevHandler.
;; prevHandler will always either perform a continuation jump
;; (if there is a new backtrack point to try) or throw an
;; exception (if we've exhausted all possibilities), so this
;; continuation block will never exit normally.
}.
}.
;; An instant failure at a point in an amb expression is equivalent
;; to an $amb call on an empty collection.
$fail := { $amb (Nil). }.
;; Now that the dynamic variables are in place, let's call the
;; block.
#'($1) call.
}.
Now, we can use this new method as follows.
callAmb {
x := $amb [1, 2, 3, 4].
y := $amb [7, 6, 4, 5].
(x * y == 8 ) ifFalse { $fail. }. ;; Note: $fail is equivalent to $amb [].
println [x, y]. ;; [2, 4]
}.
In the above implementation, $amb
is a local construct which operates inside a callAmb
block. We could just as easily have used a global Amb
instance and forgone the callAmb
block.
Lua
Original
function amb (set)
local workset = {}
if (#set == 0) or (type(set) ~= 'table') then return end
if #set == 1 then return set end
if #set > 2 then
local first = table.remove(set,1)
set = amb(set)
for i,v in next,first do
for j,u in next,set do
if v:byte(#v) == u[1]:byte(1) then table.insert(workset, {v,unpack(u)}) end
end
end
return workset
end
for i,v in next,set[1] do
for j,u in next,set[2] do
if v:byte(#v) == u:byte(1) then table.insert(workset,{v,u}) end
end
end
return workset
end
Usage example:
result = amb({{'the','that','a'},{'frog','elephant','thing'},{'walked','treaded','grows'},{'slowly','quickly'}})
for i,v in next,result do
io.write (i,':\t')
for j,u in next,v do
io.write (u,' ')
end
io.write ('\n')
end
Alternate
This implementation might (?) be closer in spirit to the task description, by avoiding "baking in" a specific rule within the implementation. The approach used is to post-filter a full cartesian product. Granted that this is not an efficient approach for large problems, nor problems where incremental filtering could reduce the size of the product (like this task), but it is entirely general, and can solve problems where 0..many solutions exist. It doesn't exactly follow any of the example patterns, but is fairly idiomatic for Lua.
Implementation:
function T(t) return setmetatable(t, {__index=table}) end
table.each = function(t,f) for i=1,#t do f(t[i]) end return t end
table.map = function(t,f) local s=T{} for i=1,#t do s[i]=f(t[i]) end return s end
table.clone = function(t) local s=T{} for k,v in ipairs(t) do s[k]=v end return s end
table.filter = function(t,f) local s=T{} for i=1,#t do if f(t[i]) then s[#s+1]=t[i] end end return s end
function Amb(f, ...)
local function cartprod(...)
local sets, temp, prod = {...}, T{}, T{}
local function descend(depth)
for k,v in pairs(sets[depth]) do
temp[depth] = v
if (depth==#sets) then prod[#prod+1] = temp:clone() else descend(depth+1) end
temp[depth] = nil
end
end
descend(1)
return prod
end
return type(f)=='function' and cartprod(...):filter(f) or {f,...}
end
Demonstration:
print("Per task requirements:")
w1 = Amb('the','that','a')
w2 = Amb('frog','elephant','thing')
w3 = Amb('walked','treaded','grows')
w4 = Amb('slowly','quickly')
function rule(t) local a,b,c,d = unpack(t) return a:byte(#a)==b:byte(1) and b:byte(#b)==c:byte(1) and c:byte(#c)==d:byte(1) end
answers = Amb(rule, w1, w2, w3, w4)
answers:map(function(t) return t:concat(" ") end):each(print)
print()
print("Modified task, seek equal length of words:")
w1 = Amb('the','that','a','which')
w2 = Amb('red','green','blue','yellow')
w3 = Amb('frog','elephant','cow','thing')
w4 = Amb('walked','treaded','grew','shrunk')
w5 = Amb('slow','quick','moderately')
function rule(t) local a,b,c,d,e = unpack(t) return #a==#b and #b==#c and #c==#d and #d==#e end
answers = Amb(rule, w1, w2, w3, w4, w5)
answers:map(function(t) return t:concat(" ") end):each(print)
print()
print("Modified example, seek product of 12:")
x = Amb(1,2,3)
y = Amb(4,5,6)
function rule(t) local x,y = unpack(t) return x*y==12 end
answers = Amb(rule, x, y)
answers:map(function(t) return t:concat(" ") end):each(print)
print()
print("Pythagorean triples:")
x = Amb(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
y = Amb(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
z = Amb(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)
function rule(t) local x,y,z = unpack(t) return x^2 + y^2 == z^2 end
answers = Amb(rule, x, y, z)
answers:map(function(t) return t:concat(" ") end):each(print)
print()
print("When there is no solution:")
x = Amb(1,2,3)
y = Amb(4,5,6)
function rule(t) local x,y = unpack(t) return x*y==7 end
answers = Amb(rule, x, y, z)
print("#answers = " .. #answers)
print()
print("send + more = money:")
-- intuitive simplification applied: m must be 1 ==> others may not be 1 (reduces complexity from 10^8 to 9^7)
-- ("m is allowed to be leading zero" solutions exist, e.g. 2 8 1 7 0 3 6 5, and this could find them, but why?)
s = Amb(0,2,3,4,5,6,7,8,9)
e = Amb(0,2,3,4,5,6,7,8,9)
n = Amb(0,2,3,4,5,6,7,8,9)
d = Amb(0,2,3,4,5,6,7,8,9)
m = Amb(1)
o = Amb(0,2,3,4,5,6,7,8,9)
r = Amb(0,2,3,4,5,6,7,8,9)
y = Amb(0,2,3,4,5,6,7,8,9)
function rule(t)
for i=1,#t do for j=i+1,#t do if t[i]==t[j] then return false end end end
local s,e,n,d,m,o,r,y = unpack(t)
return s*1000 + e*100 + 10*n + d + m*1000 + o*100 + r*10 + e == m*10000 + o*1000 + n*100 + e*10 + y
end
answers = Amb(rule, s, e, n, d, m, o, r, y)
answers:map(function(t) return t:concat(" ") end):each(print)
- Output:
Per task requirements: that thing grows slowly Modified task, seek equal length of words: that blue frog grew slow Modified example, seek product of 12: 2 6 3 4 Pythagorean triples: 3 4 5 4 3 5 5 12 13 6 8 10 8 6 10 9 12 15 12 5 13 12 9 15 When there is no solution: #answers = 0 send + more = money: 9 5 6 7 1 0 8 2
M2000 Interpreter
We capture lambda functions in lambfa functions. To work with strings and numbers we use arrays so inside amb function we don't care about type of values in arrays.
Faster for two parameters amb function and first solution
Module AmbFunction {
Function Amb (failure) {
// get an array of s items, return an array of 1 item
// we do this so we forget the type of element
getitem=lambda (n, c) -> {
dim z(1) :link c to c()
stock c(n) keep 1, z(0) // copy from c(n) to z(0) one item
=z()
}
read a
c1=lambda a, getitem (i, &any, &ret) ->{
any=getitem(i, a)
ret=any
=true
}
m=stack.size
if m=0 then Error "At least two arrays needed"
c=c1
while m>1 {
read b
c1=lambda c2=c, j=0, m=len(a), b, failure, getitem (i, &any, &ret) ->{
any=getitem(i, b)
ret=(,) : ok=false : anyother=(,)
do
if c2(j, &anyother, &ret) then
if not failure(any, anyother) then
ok=true
ret=cons(ret, any)
end if
end if
j++
until ok or j=m
if j=m then j=0
=ok
}
c=c1 : a=b : m--
}
read b
amb1=lambda c2=c, j=0, m=len(a), b, failure, getitem (&ret) ->{
ret=(,) : ok=false: anyother=(,)
k=each(b)
while k
any=getitem(k^, b)
do
if c2(j, &anyother, &ret) then
if not failure(any, anyother) then
ok=true
ret=cons(ret, any)
end if
end if
j++
until ok or j=m
if j=m then j=0
if ok then exit
end while
=ok
}
ret=(,)
if amb1(&ret) then =ret else =(,) ' default return value
}
a=(1, 2, 3)
b=(7, 6, 4, 5)
failure=lambda (a,b)->{
=a#val(0)*b#val(0)<>8
}
Print amb(failure, a, b)#str$()
a=("the", "that", "a")
b=("frog", "elephant", "thing")
c=("walked", "treaded", "grows")
d=("slowly", "quickly")
failure=lambda (a,b)->{
=left$(a#val$(0),1)<>right$(b#val$(0),1)
}
Print amb(failure, a, b, c, d)#str$()
}
AmbFunction
- Output:
2 4 that thing grows slowly
Versatile
Module AmbFunction {
Enum Solution {First, Any=-1}
Function Amb(way as Solution, failure) {
// get an array of s items, return an array of 1 item
// we do this so we forget the type of element
getitem=lambda (n, c) -> {
dim z(1) :link c to c()
stock c(n) keep 1, z(0) // copy from c(n) to z(0) one item
=z()
}
read a
c1=lambda i=0, a, getitem (&any, &ret) ->{
any=getitem(i, a)
ret=any
i++
ok=i=len(a)
if ok then i=0
=ok
}
m=stack.size
if m=0 then Error "At least two arrays needed"
c=c1
while m>0 {
read a
c1=lambda c2=c, i=0, a, getitem (&any, &ret) ->{
any=getitem(i, a)
ret=(,) : ok=false : anyother=(,)
ok=c2(&anyother, &ret)
ret=cons(ret, any)
if ok then i++
ok=i=len(a)
if ok then i=0
=ok
}
c=c1 : m--
}
ok=false
any=(,)
flush
while not ok
ret=(,)
ok=c(&any, &ret)
s=stack(ret)
if not failure(! s) then data ret : if way>0 then ok=true
End While
if empty then
ret=(("",),)
else
ret=array([])
end if
=ret
}
a=(1, 2, 3)
b=(7, 6, 4, 5)
failure=lambda (a,b)->{
=a*b<>8
}
Print Amb(First, failure, a, b)#val(0)#str$()
a=("the", "that", "a")
b=("frog", "elephant", "thing")
c=("walked", "treaded", "grows")
d=("slowly", "quickly")
failure=lambda (a$, b$, c$, d$)->{
def amb(x$, y$)=right$(x$,1)<>left$(y$,1)
=amb(a$,b$) or amb(b$,c$) or amb(c$, d$)
}
Print amb(First, failure, a, b, c, d)#Val(0)#str$()
Range=lambda (a, f) ->{
for i=a to f-1: data i: next
=array([])
}
Print "Small Pythagorean triples problem:"
a=range(1,11)
failure=lambda (a, b, z)->{
=not (a^2+b^2=z^2 and b>a)
}
all=amb(Any,failure, a, a, a)
k=each(all)
while k
z=array(k)
Print z#str$()
end while
a=range(1,6)
c=range(0,6)
N=9
failure=lambda N (a, b, c, d, e)->{
=not (a+b+c+d+e=N and a>=b and b>=c and c>=d and d>=e)
}
all=amb(Any,failure, a, a, c, c, c)
k=each(all)
document ret$
while k
z=array(k)
ret$=replace$("+0", " ", z#str$("+"))+" ="+str$(N)+{
}
end while
Sort descending ret$
Print #-2, ret$
clipboard ret$
}
AmbFunction
- Output:
2 4 that thing grows slowly Small Pythagorean triples problem: 3 4 5 6 8 10 5+4 = 9 5+3+1 = 9 5+2+2 = 9 5+2+1+1 = 9 5+1+1+1+1 = 9 4+4+1 = 9 4+3+2 = 9 4+3+1+1 = 9 4+2+2+1 = 9 4+2+1+1+1 = 9 3+3+3 = 9 3+3+2+1 = 9 3+3+1+1+1 = 9 3+2+2+2 = 9 3+2+2+1+1 = 9 2+2+2+2+1 = 9
Mathematica / Wolfram Language
Make all the tuples of all the lists, then filter out the good ones:
CheckValid[i_List]:=If[Length[i]<=1,True,And@@(StringTake[#[[1]],-1]==StringTake[#[[2]],1]&/@Partition[i,2,1])]
sets={{"the","that","a"},{"frog","elephant","thing"},{"walked","treaded","grows"},{"slowly","quickly"}};
Select[Tuples[sets],CheckValid]
gives back:
{{"that", "thing", "grows", "slowly"}}
Note that it will return multiple values if multiple sentences match the requirement, that is why the returned value is a list of list (1 element, 4 elements).
Alternative algorithm (slightly faster on most data sets):
CheckValid2[i_List] := StringFreeQ[StringJoin[Riffle[i, ","]], a_ ~~ "," ~~ b_ /; a =!= b]
Mercury
Like Prolog, Mercury has built-in nondeterminacy; however, Mercury is explicit about it, and statically checks it.
:- module amb.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is cc_multi.
:- implementation.
:- import_module list, string, char, int.
main(!IO) :-
( solution(S) -> io.write_string(S, !IO), io.nl(!IO)
; io.write_string("No solutions found :-(\n", !IO) ).
:- pred solution(string::out) is nondet.
solution(S) :-
member(A, ["the", "that", "a"]),
member(N, ["frog", "elephant", "thing"]),
member(V, ["walked", "treaded", "grows"]),
member(E, ["slowly", "quickly"]),
S = join_list(" ", [A, N, V, E]),
rule1(A, N), rule1(N, V), rule1(V, E).
:- pred rule1(string::in, string::in) is semidet.
rule1(A, B) :- last_char(A) = C, first_char(B, C, _).
:- func last_char(string::in) = (char::out) is semidet.
last_char(S) = C :- index(S, length(S) - 1, C).
The Amb defined in the Prolog solution is similar to the use of list.member/2 above. Predicates could be used instead:
:- pred noun(string).
:- mode noun(out) is multi. % provide any one noun.
:- mode noun(in) is semidet. % fail if given string isn't a known noun.
noun("frog").
noun("elephant").
noun("thing").
NetRexx
/* REXX **************************************************************
* 25.08.2013 Walter Pachl derived from REXX version 2
*********************************************************************/
w=''
l=0
mm=0
mkset(1,'the that a if',w,mm,l)
mkset(2,'frog elephant thing',w,mm,l)
mkset(3,'walked treaded grows trots',w,mm,l)
mkset(4,'slowly quickly',w,mm,l)
show(w,mm,l)
Loop i=1 to 3 /* loop over sets */
k=i+1 /* the following set */
Loop ii=1 To 10 /* loop over elements in set k*/
If w[i,ii].words=i Then Do /* a sentence part found */
Loop jj=1 To 10 /* loop over following words */
If w[i,ii].right(1)=w[k,jj].left(1) Then Do /* fitting */
ns=w[i,ii]' 'w[k,jj] /* build new sentence (part) */
If ns.words=k Then /* 'complete' part */
add(w,k,ns) /* add to set k */
End
End
End
End
End
Say 'Results:'
Loop jj=1 To 10 /* show the results */
If w[4,jj].words=4 Then
Say '-->' w[4,jj]
End
method add(w,k,s) public static
/*********************************************************************
* add a fitting sentence (part) s to set w[k,*]
*********************************************************************/
Loop i=1 To 10 While w[k,i]>'' /* look for an empty slot */
End
w[k,i]=s /* add the sentence (part) */
Return
method mkset(n,arg,smp,mm,l) public static
/*********************************************************************
* create set smp[n,*] from data in arg
* mm[0] maximum number of elements in any set
* l[n] maximum word length in set n
*********************************************************************/
loop i = 1 to arg.words
smp[n,i] = arg.word(i)
If smp[n,i].length>l[n] Then
l[n]=smp[n,i].length
end
if i-1>mm[0] Then Do
mm[0]=i-1
End
return
method show(w,mm,l) public static
/*********************************************************************
* show the input
*********************************************************************/
Say 'Input:'
Loop j=1 To mm[0] /* output lines */
ol=''
Loop i=1 To 4
ol=ol w[i,j].left(l[i])
End
Say ol.strip
End;
say ''
Return
- Output:
Input: the frog walked slowly that elephant treaded quickly a thing grows if trots Results: --> the elephant trots slowly --> that thing grows slowly --> if frog grows slowly
Note: the output of the input is truncated (columns three and four),
but the results are correct for the data specified,
but not for the input as specified for this task
(ditto for the PL/I example and the REXX version 2 example).
length corrected. thanks. extraneous input: intentional and harmless !?!
This Rosetta Code task said: demonstrate it with a program which chooses one word from each of the following four sets,
and instead, used a different set (causing a different result).
Nim
import sugar, strutils
proc amb(comp: proc(a, b: string): bool,
options: seq[seq[string]],
prev: string = ""): seq[string] =
if options.len == 0: return @[]
for opt in options[0]:
# If this is the base call, prev is nil and we need to continue.
if prev.len != 0 and not comp(prev, opt): continue
# Take care of the case where we have no options left.
if options.len == 1: return @[opt]
# Traverse into the tree.
let res = amb(comp, options[1..options.high], opt)
# If it was a failure, try the next one.
if res.len > 0: return opt & res # We have a match.
return @[]
const sets = @[@["the", "that", "a"],
@["frog", "elephant", "thing"],
@["walked", "treaded", "grows"],
@["slowly", "quickly"]]
let result = amb((s, t: string) => (s[s.high] == t[0]), sets)
if result.len == 0:
echo "No matches found!"
else:
echo result.join " "
- Output:
that thing grows slowly
OCaml
There is no Amb operator in OCaml. So below are two solutions to solve the same task. The first one is the more idiomatic for OCaml (and is similar to the Haskell solution), it builds all possible combinations and then take the good result in it.
The second solution tries to be closer to the way of solving the problem of Amb. It does not build and accumulate the combinations, it iterates over these with a higher order function and it stops when it finds a solution that matches the predicate.
Filtering possible combinations
let set_1 = ["the"; "that"; "a"]
let set_2 = ["frog"; "elephant"; "thing"]
let set_3 = ["walked"; "treaded"; "grows"]
let set_4 = ["slowly"; "quickly"]
let combs ll =
let rec aux acc = function
| [] -> (List.map List.rev acc)
| hd::tl ->
let acc =
List.fold_left
(fun _ac l ->
List.fold_left (fun _ac v -> (v::l)::_ac) _ac hd
) [] acc
in
aux acc tl
in
aux [[]] ll
let last s = s.[pred(String.length s)]
let joined a b = (last a = b.[0])
let rec test = function
| a::b::tl -> (joined a b) && (test (b::tl))
| _ -> true
let print_set set =
List.iter (Printf.printf " %s") set;
print_newline();
;;
let () =
let sets = combs [set_1; set_2; set_3; set_4] in
let sets = List.filter test sets in
List.iter print_set sets;
;;
We can take all the good results with List.filter or just take the first one with List.find.
Higher order function
Here the function comb_search replaces the function combs and uses arrays instead of lists. This function takes successively all the possible results by their indicies (with the array nx). When a result satisfies the predicate p, it is returned
let set_1 = [| "the"; "that"; "a" |]
let set_2 = [| "frog"; "elephant"; "thing" |]
let set_3 = [| "walked"; "treaded"; "grows" |]
let set_4 = [| "slowly"; "quickly" |]
let comb_search p aa =
let nx = Array.make (Array.length aa) 0 in
let lx = Array.map Array.length aa in
let la = Array.length aa in
let rec loop() =
let res = Array.mapi (fun i j -> aa.(i).(j)) nx in
if p res then (res)
else
( nx.(0) <- nx.(0) + 1;
if nx.(0) < lx.(0)
then loop()
else
( nx.(0) <- 0;
let rec roll n =
if n >= la then raise Not_found
else
( nx.(n) <- nx.(n) + 1;
if nx.(n) >= lx.(n)
then ( nx.(n) <- 0; roll (n+1) )
else loop()
)
in
roll 1
)
)
in
loop()
let last s = s.[pred(String.length s)]
let joined a b = (last a = b.[0])
let rec test = function
| a::b::tl -> (joined a b) && (test (b::tl))
| _ -> true
let test r = test(Array.to_list r)
let print_set set =
Array.iter (Printf.printf " %s") set;
print_newline();
;;
let () =
let result = comb_search test [| set_1; set_2; set_3; set_4 |] in
print_set result;
;;
OpenEdge/Progress
DEF VAR cset AS CHAR EXTENT 4 INIT [
"the,that,a",
"frog,elephant,thing",
"walked,treaded,grows",
"slowly,quickly"
].
FUNCTION getAmb RETURNS CHARACTER (
i_cwords AS CHAR,
i_iset AS INT
):
DEF VAR cresult AS CHAR.
DEF VAR ii AS INT.
DEF VAR cword AS CHAR.
DO ii = 1 TO NUM-ENTRIES( cset [ i_iset ] ) WHILE NUM-ENTRIES( cresult, " " ) < EXTENT( cset ):
cword = ENTRY( ii, cset[ i_iset ] ).
IF i_cwords = "" OR
SUBSTRING( i_cwords, LENGTH( i_cwords ), 1 ) = SUBSTRING( cword, 1, 1 )
THEN DO:
IF i_iset = EXTENT ( cset ) THEN
cresult = i_cwords + " " + cword.
ELSE
cresult = getAmb( i_cwords + " " + cword, i_iset + 1 ).
END.
END.
RETURN cresult.
END FUNCTION. /* getAmb */
MESSAGE getAmb( "", 1 ) VIEW-AS ALERT-BOX.
- Output:
--------------------------- Message --------------------------- that thing grows slowly --------------------------- OK ---------------------------
Oz
Oz is, among other things, a logic programming language and has a choice operator. Using recursion we can easily build an Amb operator with it.
declare
fun {Amb Xs}
case Xs of nil then fail
[] [X] then X
[] X|Xr then
choice X
[] {Amb Xr}
end
end
end
fun {Example}
W1 = {Amb ["the" "that" "a"]}
W2 = {Amb ["frog" "elephant" "thing"]}
W3 = {Amb ["walked" "treaded" "grows"]}
W4 = {Amb ["slowly" "quickly"]}
in
{List.last W1 W2.1}
{List.last W2 W3.1}
{List.last W3 W4.1}
W1#" "#W2#" "#W3#" "#W4
end
in
{ForAll {SearchAll Example} System.showInfo}
In Oz, the programmer explicitly controls how a logic program is executed (search strategy, number of required solutions, laziness, which physical machines are used for the search process...). In this case we use the predefined function SearchAll to eagerly calculate all possible solution. All work is done within the current process.
PARI/GP
Amb(V)={
amb(vector(#V,i,vector(#V[i],j,Vec(V[i][j]))),[])
};
amb(V,s)={
if (#V == 0, return(concat(s)));
my(v=V[1],U=vecextract(V,2^#V-2),t,final=if(#s,s[#s]));
if(#s, s = concat(s,[" "]));
for(i=1,#v,
if ((#s == 0 || final == v[i][1]),
t = amb(U, concat(s, v[i]));
if (t, return(t))
)
);
0
};
Amb([["the","that","a"],["frog","elephant","thing"],["walked","treaded","grows"],["slowly","quickly"]])
Perl
Using fork
This first Perl implementation of the amb
operator provides an interface which
satisfies the terms of the task precisely. It shouldn't be used in real code
though, unless you know for a fact that the computer you are using it on has a
very lightweight fork() system call.
It is provided here simply to demonstrate that it can be done.
use strict;
use warnings;
use constant EXIT_FAILURE => 1;
use constant EXIT_SUCCESS => 0;
sub amb {
exit(EXIT_FAILURE) if !@_;
for my $word (@_) {
my $pid = fork;
die $! unless defined $pid;
return $word if !$pid;
my $wpid = waitpid $pid, 0;
die $! unless $wpid == $pid;
exit(EXIT_SUCCESS) if $? == EXIT_SUCCESS;
}
exit(EXIT_FAILURE);
}
sub joined {
my ($join_a, $join_b) = @_;
substr($join_a, -1) eq substr($join_b, 0, 1);
}
my $w1 = amb(qw(the that a));
my $w2 = amb(qw(frog elephant thing));
my $w3 = amb(qw(walked treaded grows));
my $w4 = amb(qw(slowly quickly));
amb() unless joined $w1, $w2;
amb() unless joined $w2, $w3;
amb() unless joined $w3, $w4;
print "$w1 $w2 $w3 $w4\n";
exit(EXIT_SUCCESS);
Using the regex engine
This version also stays relatively true to the spirit of the task description. The amb routine in this case generates regex alternations, which are then dynamically interpolated into a regex and iterated/backtracked over by the regex engine. Please note that this approach only works well for simple search problems; for more demanding ones it scales quite badly in both speed and memory usage.
#!/usr/bin/perl
use strict;
use warnings;
use feature 'say';
use re 'eval';
sub amb :prototype($@) {
my $var = shift;
join ' || ', map { "(?{ $var = '$_' })" } @_;
}
sub joins {
substr(shift,-1,1) eq substr(shift,0,1)
}
my ($a,$b,$c,$d);
'' =~ m/
(??{ amb '$a', qw[the that a] })
(??{ amb '$b', qw[frog elephant thing] })
(??{ amb '$c', qw[walked treaded grows] })
(??{ amb '$d', qw[slowly quickly] })
(?(?{ joins($b, $c) })|(*FAIL))
(?(?{ joins($a, $b) })|(*FAIL))
(?(?{ joins($c, $d) })|(*FAIL))
(?{ say "$a $b $c $d" })
/x;
Using a higher-order function
In practice, one wouldn't try to squeeze such a search problem into the
amb
interface shown in the task description, when coding in Perl.
The main purpose of the amb
operator is backtracking, and a more
conventional Perl idiom for that purpose is for the user to pass a subroutine
of their own into a function which acts as a backtracking engine.
The following code does just that: the first arguments for amb(...) are one or more arrays of values, followed by a user-defined subroutine. The amb(...) function arbitrarily selects one value from each of the arrays, and calls the user's supplied sub with the selected values.
If the user's supplied sub calls amb() with no arguments, the outer amb(...) will pick the next set of values. If the user's supplied sub returns normally, then the return value from the sub will be the return value of amb(...).
This version uses vastly less memory, and is quite reusable.
use strict;
use warnings;
sub amb {
if( @_ == 0 ) {
no warnings 'exiting';
next AMB;
}
my $code = pop;
my @words = @_;
my @index = (0) x @words;
AMB: while( 1 ) {
my @w = map $words[$_][$index[$_]], 0 .. $#_;
return $code->( @w );
} continue {
my $i = 0;
while( ++$index[$i] == @{$words[$i]} ) {
$index[$i] = 0;
return if ++$i == @index;
}
}
}
my @w1 = qw(the that a);
my @w2 = qw(frog elephant thing);
my @w3 = qw(walked treaded grows);
my @w4 = qw(slowly quickly);
sub joined {
my ($join_a, $join_b) = @_;
substr($join_a, -1) eq substr($join_b, 0, 1);
}
amb( \(@w1, @w2, @w3, @w4), sub {
my ($w1, $w2, $w3, $w4) = @_;
amb() unless joined($w1, $w2);
amb() unless joined($w2, $w3);
amb() unless joined($w3, $w4);
print "$w1 $w2 $w3 $w4\n";
});
All three versions produce the same output.
- Output:
that thing grows slowly
Phix
Fairly simple recursive solution
function amb1(sequence sets, object res=0, integer idx=1) integer ch = 0, pass = 0 if idx>length(sets) then pass = 1 else if res=0 then res = repeat(0,length(sets)) else res = deep_copy(res) ch = sets[idx-1][res[idx-1]][$] end if for k=1 to length(sets[idx]) do if ch=0 or sets[idx][k][1]=ch then res[idx] = k {pass,res} = amb1(sets,res,idx+1) if pass then exit end if end if end for end if return {pass,res} end function sequence sets = {{"the","that","a"}, {"frog","elephant","thing"}, {"walked","treaded","grows"}, {"slowly","quickly"}} {integer pass, sequence res} = amb1(sets) if pass then puts(1,"success: ") for i=1 to length(sets) do res[i] = sets[i][res[i]] end for ?res else puts(1,"failure\n") end if
- Output:
success: {"that","thing","grows","slowly"}
To make things a bit more interesting/flexible, I factored out the inner test to a routine passed as an argument, and likewise added an optional result routine for multiple results. And to prove it the following solves three rather different problems instead of just one.
function amb(sequence sets, integer testrid, integer resrid=-1, object res=0, integer idx=1) integer flag = (res==0), pass = 0 if idx>length(sets) then pass = 1 if resrid!=-1 then resrid(sets,res) end if else if flag then res = repeat(0,length(sets)) end if for k=1 to length(sets[idx]) do res[idx] = k if flag or testrid(sets,deep_copy(res),idx) then {pass,res} = amb(sets,testrid,resrid,deep_copy(res),idx+1) if pass and resrid=-1 then exit end if end if end for end if return {pass,res} end function function pairable(sequence sets, sequence res, integer idx) return sets[idx-1][res[idx-1]][$] = sets[idx][res[idx]][1] end function procedure AMB_Show(sequence sets, sequence res) res = deep_copy(res) for i=1 to length(sets) do res[i] = sets[i][res[i]] end for printf(1,"success: %v\n",{res}) end procedure function pythagorean(sequence /*sets*/, sequence res, integer idx) -- (note that res[idx]==sets[idx][res[idx]] in all cases) integer {x,y,z} = res return idx<3 or (x*x+y*y=z*z) end function procedure pythag_show(sequence /*sets*/, sequence res) printf(1,"success: %v\n",{res}) end procedure -- see http://www.randomhacks.net/articles/2005/10/11/amb-operator function not8(sequence sets, sequence res, integer idx) -- (note that idx==2 in all cases) -- (at the last moment, I flipped the test, after realising that -- someone had completely misunderstood the original article... -- return sets[1][res[1]]*sets[idx][res[idx]]!=8 return sets[1][res[1]]*sets[idx][res[idx]]=8 end function procedure not8_show(sequence sets, sequence res) puts(1,"success: ") ?{sets[1][res[1]],sets[2][res[2]]} end procedure sequence sets = {{"the","that","a"}, {"frog","elephant","thing"}, {"walked","treaded","grows"}, {"slowly","quickly"}} sequence sets2 = repeat(tagset(11),3) sequence sets3 = {{1, 2, 3}, {4, 5, 6}} puts(1,"\nThe original:\n") {} = amb(sets,pairable,AMB_Show) puts(1,"\nSmall Pythagorean triples problem:\n") {} = amb(sets2,pythagorean,pythag_show) puts(1,"\nSome strange not 8 problem:\n") -- (now fixed) {} = amb(sets3,not8,not8_show)
- Output:
The original: success: {"that","thing","grows","slowly"} Small Pythagorean triples problem: success: {3,4,5} success: {4,3,5} success: {6,8,10} success: {8,6,10} Some strange not 8 problem: success: {2,4}
Picat
Here are two approaches, both use nondeterministic predicates (append/3 and member/2, respectively). Here we test the 4 combinations of the different implementations of amb/2 and joins/2.
go ?=>
% select which version of amb/2 and joins/2 to test
member(Amb,[amb,amb2]),
member(Joins,[joins,join2]),
println([amb=Amb,joins=Joins]),
test_amb(amb,joins, Word1,Word2,Word3,Word4),
println([Word1, Word2, Word3, Word4]),
nl,
fail, % get other solutions
nl.
go => true.
% Test a combination of amb and joins
test_amb(Amb,Joins, Word1,Word2,Word3,Word4) =>
call(Amb, Word1, ["the","that","a"]),
call(Amb, Word2, ["frog","elephant","thing"]),
call(Amb, Word3, ["walked","treaded","grows"]),
call(Amb, Word4, ["slowly","quickly"]),
call(Joins, Word1, Word2),
call(Joins, Word2, Word3),
call(Joins, Word3, Word4).
% Based on the Prolog solution.
amb(E, [E|_]).
amb(E, [_|ES]) :- amb(E, ES).
joins(Left, Right) =>
append(_, [T], Left),
append([R], _, Right),
( T != R -> amb(_, [])
; true ).
% Another approach, using member/2 for
% generating the words.
amb2([],[]).
amb2(Word,Words) :- member(Word,Words).
joins2(Word1,Word2) :- Word1.last() = Word2.first().
PicoLisp
For backtracking, Pilog (PicoLisp Prolog) is the natural choice.
(be amb (@E @Lst)
(lst @E @Lst) )
(be joins (@Left @Right)
(^ @T (last (chop (-> @Left))))
(^ @R (car (chop (-> @Right))))
(or
((equal @T @R))
((amb @ NIL)) ) ) # Explicitly using amb fail as required
(be ambExample ((@Word1 @Word2 @Word3 @Word4))
(amb @Word1 ("the" "that" "a"))
(amb @Word2 ("frog" "elephant" "thing"))
(amb @Word3 ("walked" "treaded" "grows"))
(amb @Word4 ("slowly" "quickly"))
(joins @Word1 @Word2)
(joins @Word2 @Word3)
(joins @Word3 @Word4) )
- Output:
: (? (ambExample @Result)) @Result=("that" "thing" "grows" "slowly") -> NIL
PL/I
*process or(!) source attributes xref;
amb: Proc Options(main);
/*********************************************************************
* 25.08.2013 Walter Pachl
*********************************************************************/
Dcl w(4,10) Char(40) Var
Init('the','that','a','if',(6)(1)' ',
'frog','elephant','thing',(7)(1)' ',
'walked','treaded','grows','trots',(6)(1)' ',
'slowly','quickly',(8)(1)' ');
Dcl ns Char(40) Var;
Dcl (i,k,j,ii,jj,m,n) Bin Fixed(31);
n=hbound(w,1); /* number of sets */
m=hbound(w,2); /* max number of words in set */
Call show; /* show the input */
Do i=1 To n-1; /* loop over sets */
k=i+1; /* the following set */
Do ii=1 To m; /* loop over elements in set k*/
If words(w(i,ii))=i Then Do; /* a sentence part found */
Do jj=1 To m; /* loop over following words */
If right(w(i,ii),1)=left(w(k,jj),1) Then Do; /* fitting */
ns=w(i,ii)!!' '!!w(k,jj); /* build new sentence (part) */
If words(ns)=k Then /* 'complete' part */
Call add(k,ns); /* add to set k */
End;
End;
End;
End;
Do jj=1 To m; /* show the results */
If words(w(4,jj))=4 Then
put edit('--> ',w(4,jj))(Skip,a,a);
End;
add: Proc(ni,s);
/*********************************************************************
* add a sentence (part) to set ni
*********************************************************************/
Dcl (i,ni) Bin Fixed(31);
Dcl s Char(40) Var;
Do i=1 To m While(w(ni,i)>''); /* look for an empty slot */
End;
w(ni,i)=s; /* add the sentence (part) */
End;
words: Proc(s) Returns(Bin Fixed(31));
/*********************************************************************
* return the number of blank separated words in s
*********************************************************************/
Dcl s Char(40) Var;
Dcl nw Bin Fixed(31) Init(0);
Dcl i Bin Fixed(31) Init(1);
If s>'' Then Do;
nw=1;
Do i=1 To length(s);
If substr(s,i,1)=' ' Then
nw+=1;
End;
End;
Return(nw);
End;
show: Proc;
/*********************************************************************
* show the input sets
*********************************************************************/
Dcl (i,j,mm) Bin Fixed(31) Init(0);
Dcl l(4) Bin Fixed(31) Init((4)0);
Do i=1 To n;
Do j=1 To m;
If w(i,j)>'' Then Do;
mm=max(mm,j); /* max number of words in any set */
l(i)=max(l(i),length(w(i,j))); /* max word length in set i */
End;
End;
End;
Put Edit('Input:')(Skip,a);
Do j=1 To mm; /* output lines */
Put Skip;
Do i=1 To n;
Put Edit(w(i,j),' ')(a(l(i)),a);
End;
End;
Put Skip;
End;
End;
- Output:
Input: (extended by 2 words!) the frog walked slowly that elephant treaded quickly a thing grows if trots --> the elephant trots slowly --> that thing grows slowly --> if frog grows slowly
Prolog
amb(E, [E|_]).
amb(E, [_|ES]) :- amb(E, ES).
joins(Left, Right) :-
append(_, [T], Left),
append([R], _, Right),
( T \= R -> amb(_, []) % (explicitly using amb fail as required)
; true ).
amb_example([Word1, Word2, Word3, Word4]) :-
amb(Word1, ["the","that","a"]),
amb(Word2, ["frog","elephant","thing"]),
amb(Word3, ["walked","treaded","grows"]),
amb(Word4, ["slowly","quickly"]),
joins(Word1, Word2),
joins(Word2, Word3),
joins(Word3, Word4).
PureBasic
Procedure Words_Ok(String1.s, String2.s)
If Mid(String1,Len(String1),1)=Mid(String2,1,1)
ProcedureReturn #True
EndIf
ProcedureReturn #False
EndProcedure
Procedure.s Amb(Array A.s(1), Array B.s(1), Array C.s(1), Array D.s(1))
Protected a, b, c, d
For a=0 To ArraySize(A())
For b=0 To ArraySize(B())
For c=0 To ArraySize(C())
For d=0 To ArraySize(D())
If Words_Ok(A(a),B(b)) And Words_Ok(B(b),C(c)) And Words_Ok(C(c),D(d))
ProcedureReturn A(a)+" "+B(b)+" "+C(c)+" "+D(d)
EndIf
Next
Next
Next
Next
ProcedureReturn "" ; Empty string, e.g. fail
EndProcedure
If OpenConsole()
Define Text.s
Dim Set1.s(2)
Dim Set2.s(2)
Dim Set3.s(2)
Dim Set4.s(1)
Set1(0)="the": set1(1)="that": set1(2)="a"
Set2(0)="frog": set2(1)="elephant": set2(2)="thing"
Set3(0)="walked": set3(1)="treaded": set3(2)="grows"
Set4(0)="slowly": set4(1)="quickly"
text=Amb(set1(),set2(),Set3(),set4())
If Text<>""
PrintN("Correct sentence would be,"+#CRLF$+Text)
Else
PrintN("Failed to fine a correct sentence.")
EndIf
PrintN(#CRLF$+#CRLF$+"Press ENTER to exit."): Input()
CloseConsole()
EndIf
Python
Procedural
(Note: The code is also imported and used as a module in the solution to this task).
Python does not have the amb function, but the declarative style of programming and the use of the one "function" to do all three tasks of:
- Setting ranges
- Setting the constraint
- Iterating over all solutions
can be done in what appears to be a declarative manner with the following class Amb:
import itertools as _itertools
class Amb(object):
def __init__(self):
self._names2values = {} # set of values for each global name
self._func = None # Boolean constraint function
self._valueiterator = None # itertools.product of names values
self._funcargnames = None # Constraint parameter names
def __call__(self, arg=None):
if hasattr(arg, '__code__'):
##
## Called with a constraint function.
##
globls = arg.__globals__ if hasattr(arg, '__globals__') else arg.func_globals
# Names used in constraint
argv = arg.__code__.co_varnames[:arg.__code__.co_argcount]
for name in argv:
if name not in self._names2values:
assert name in globls, \
"Global name %s not found in function globals" % name
self._names2values[name] = globls[name]
# Gather the range of values of all names used in the constraint
valuesets = [self._names2values[name] for name in argv]
self._valueiterator = _itertools.product(*valuesets)
self._func = arg
self._funcargnames = argv
return self
elif arg is not None:
##
## Assume called with an iterable set of values
##
arg = frozenset(arg)
return arg
else:
##
## blank call tries to return next solution
##
return self._nextinsearch()
def _nextinsearch(self):
arg = self._func
globls = arg.__globals__
argv = self._funcargnames
found = False
for values in self._valueiterator:
if arg(*values):
# Set globals.
found = True
for n, v in zip(argv, values):
globls[n] = v
break
if not found: raise StopIteration
return values
def __iter__(self):
return self
def __next__(self):
return self()
next = __next__ # Python 2
if __name__ == '__main__':
if True:
amb = Amb()
print("\nSmall Pythagorean triples problem:")
x = amb(range(1,11))
y = amb(range(1,11))
z = amb(range(1,11))
for _dummy in amb( lambda x, y, z: x*x + y*y == z*z ):
print ('%s %s %s' % (x, y, z))
if True:
amb = Amb()
print("\nRosetta Code Amb problem:")
w1 = amb(["the", "that", "a"])
w2 = amb(["frog", "elephant", "thing"])
w3 = amb(["walked", "treaded", "grows"])
w4 = amb(["slowly", "quickly"])
for _dummy in amb( lambda w1, w2, w3, w4: \
w1[-1] == w2[0] and \
w2[-1] == w3[0] and \
w3[-1] == w4[0] ):
print ('%s %s %s %s' % (w1, w2, w3, w4))
if True:
amb = Amb()
print("\nAmb problem from "
"http://www.randomhacks.net/articles/2005/10/11/amb-operator:")
x = amb([1, 2, 3])
y = amb([4, 5, 6])
for _dummy in amb( lambda x, y: x * y != 8 ):
print ('%s %s' % (x, y))
- Output:
Small Pythagorean triples problem: 3 4 5 4 3 5 6 8 10 8 6 10 Rosetta Code Amb problem: that thing grows slowly Amb problem from http://www.randomhacks.net/articles/2005/10/11/amb-operator: 1 4 1 5 1 6 2 5 2 6 3 4 3 5 3 6
List Comprehension
The semantics of Python's list comprehension notation is also formally equivalent to that of the list monad structure in the Haskell versions above.
List comprehensions provide quite a clean and natural encoding of the amb relationship between sets of indeterminate values and sets of constraints:
# joins :: String -> String -> Bool
def joins(a, b):
return a[-1] == b[0]
print (
[
' '.join([w1, w2, w3, w4])
for w1 in ['the', 'that', 'a']
for w2 in ['frog', 'elephant', 'thing']
for w3 in ['walked', 'treaded', 'grows']
for w4 in ['slowly', 'quickly']
if joins(w1, w2) and joins(w2, w3) and joins(w3, w4)
]
)
- Output:
['that thing grows slowly']
Rearranging this by pairing each indeterminate value with a predicate may foreground and clarify the way in which list comprehensions encode amb pairings:
def main():
print (
unlines([
unwords([w1, w2, w3, w4])
for w1 in ['the', 'that', 'a']
if True
for w2 in ['frog', 'elephant', 'thing']
if joins(w1, w2)
for w3 in ['walked', 'treaded', 'grows']
if joins(w2, w3)
for w4 in ['slowly', 'quickly']
if joins(w3, w4)
])
)
# joins :: String -> String -> Bool
def joins(a, b):
return a[-1] == b[0]
# unlines :: [String] -> String
def unlines(xs):
return '\n'.join(xs)
# unwords :: [String] -> String
def unwords(xs):
return ' '.join(xs)
if __name__ == '__main__':
main()
- Output:
that thing grows slowly
List Monad
Defining amb directly as the list monad bind operator, and using it to enchain indeterminate values and predicates:
from itertools import chain
# amb :: [a] -> (a -> [b]) -> [b]
def amb(xs):
return lambda f: list(
chain.from_iterable(
map(f, xs)
)
)
# main :: IO ()
def main():
xs = enumFromTo(1)(10)
print ('Pythagorean triples from integers 1-10:')
print (
amb(xs)(
lambda x: amb(xs)
(lambda y: amb(xs)
(lambda z: when(
x * x + y * y == z * z
)(
(x, y, z)
)
))
)
)
# joins :: String -> String -> Bool
def joins(a, b):
return a[-1] == b[0]
print ('\nRC problem given above:')
print (
amb(['the', 'that', 'a'])(
lambda w1: amb(
['frog', 'elephant', 'thing']
)(lambda w2: amb(
['walked', 'treaded', 'grows']
)(lambda w3: amb(
['slowly', 'quickly']
)(lambda w4: when(
joins(w1, w2) and joins(w2, w3) and joins(w3, w4)
)(
(w1, w2, w3, w4)
))))
)
)
print('\nAdditional problem reference in procedural version above:')
print(
amb([1, 2, 3])
(
lambda x: amb([4, 5, 6])
(
lambda y: when(x * y != 8)
(
(x, y)
)
)
)
)
# GENERIC -------------------------------------------------
# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
return lambda n: list(range(m, 1 + n))
# when :: Bool -> [a] -> [a]
def when(p):
return lambda x: [x] if p else []
# MAIN ---
if __name__ == '__main__':
main()
- Output:
Pythagorean triples from integers 1-10: [(3, 4, 5), (4, 3, 5), (6, 8, 10), (8, 6, 10)] RC problem given above: [('that', 'thing', 'grows', 'slowly')] Additional problem reference in procedural version above: [(1, 4), (1, 5), (1, 6), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)]
Or, if we prefer to pair each indeterminate value with its immediate predicate, rather than using a single compound predicate at the end of the expression:
from itertools import chain
# amb :: [a] -> (a -> [b]) -> [b]
def amb(xs):
return lambda f: list(
chain.from_iterable(
map(f, xs)
)
)
# when :: Bool -> [a] -> [a]
def when(p):
return lambda xs: xs if p else []
# TEST ----------------------------------------------------
# joins :: String -> String -> Bool
def joins(a, b):
return a[-1] == b[0]
print (
amb(['the', 'that', 'a'])(
lambda w1: when(True)
(amb(['frog', 'elephant', 'thing'])
(lambda w2: when(joins(w1, w2))
(amb(['walked', 'treaded', 'grows'])
(lambda w3: when(joins(w2, w3))
(amb(['slowly', 'quickly'])
(lambda w4: when(joins(w3, w4))(
[w1, w2, w3, w4]
))))))
)
)
)
- Output:
['that', 'thing', 'grows', 'slowly']
R
A brute force approach that depends on the expand.grid() function, which generates all possible paths through a list of vectors:
checkSentence <- function(sentence){
# Input: character vector
# Output: whether the sentence formed by the elements of the vector is valid
for (index in 1:(length(sentence)-1)){
first.word <- sentence[index]
second.word <- sentence[index+1]
last.letter <- substr(first.word, nchar(first.word), nchar(first.word))
first.letter <- substr(second.word, 1, 1)
if (last.letter != first.letter){ return(FALSE) }
}
return(TRUE)
}
amb <- function(sets){
# Input: list of character vectors containing all sets to consider
# Output: list of character vectors that are valid
all.paths <- apply(expand.grid(sets), 2, as.character)
all.paths.list <- split(all.paths, 1:nrow(all.paths))
winners <- all.paths.list[sapply(all.paths.list, checkSentence)]
return(winners)
}
- Output:
sentence1 <- c("that", "thing", "grows", "slowly")
sentence2 <- c("rosetta", "code", "is", "cool")
sentence <- list(sentence1, sentence2)
sapply(sentence, checkSentence)
[1] TRUE FALSE
set1 <- c("the", "that", "a")
set2 <- c("frog", "elephant", "thing")
set3 <- c("walked", "treaded", "grows")
set4 <- c("slowly", "quickly")
sets <- list(set1, set2, set3, set4)
amb(sets)
$`26`
[1] "that" "thing" "grows" "slowly"
Racket
#lang racket
;; A quick `amb' implementation (same as in the Twelve Statements task)
(define failures null)
(define (fail)
(if (pair? failures) ((first failures)) (error "no more choices!")))
(define (amb/thunks choices)
(let/cc k (set! failures (cons k failures)))
(if (pair? choices)
(let ([choice (first choices)]) (set! choices (rest choices)) (choice))
(begin (set! failures (rest failures)) (fail))))
(define-syntax-rule (amb E ...) (amb/thunks (list (lambda () E) ...)))
(define (assert condition) (unless condition (fail)))
;; Problem solution
(define (joins? left right)
(regexp-match? #px"(.)\0\\1" (~a left "\0" right)))
(let ([result (list (amb "the" "that" "a")
(amb "frog" "elephant" "thing")
(amb "walked" "treaded" "grows")
(amb "slowly" "quickly"))])
(for ([x result] [y (cdr result)]) (assert (joins? x y)))
result)
;; -> '("that" "thing" "grows" "slowly")
Raku
(formerly Perl 6)
Using Junctions
Junctions are a construct that behave similarly to the wanted Amb operator. The only difference is, that they don't preserve the state that was True inside any control structure (like an if).
There is currently a trick, how you only get the "true" values from a Junction for any test: return from a subroutine. Because of DeMorgans Law, you'll have to switch and and or, since you want to return on falseness. Just look at 'all' in combination with the sub(){return unless test} as the amb operator.
#| an array of four words, that have more possible values.
#| Normally we would want `any' to signify we want any of the values, but well negate later and thus we need `all'
my @a =
(all «the that a»),
(all «frog elephant thing»),
(all «walked treaded grows»),
(all «slowly quickly»);
sub test (Str $l, Str $r) {
$l.ends-with($r.substr(0,1))
}
(sub ($w1, $w2, $w3, $w4){
# return if the values are false
return unless [and] test($w1, $w2), test($w2, $w3),test($w3, $w4);
# say the results. If there is one more Container layer around them this doesn't work, this is why we need the arguments here.
say "$w1 $w2 $w3 $w4"
})(|@a); # supply the array as argumetns
Using the Regex Engine
By using a reduction metaoperator to calculate all possible combinations, we can Amb any number of sets with no arbitrary limits. A simple regex pattern can find out if a certain combination is correct or not.
# The Task #
my @firstSet = «the that a»;
my @secondSet = «frog elephant thing»;
my @thirdSet = «walked treaded grows»;
my @fourthSet = «slowly quickly»;
.say for doAmb [@firstSet, @secondSet, @thirdSet, @fourthSet];
sub doAmb( @lol ) { # Takes out the correct sentences.
my @sentences = map *.join(" "), [X] @lol;
grep &isAmb, @sentences;
}
sub isAmb( $sentence ) { # Checks `$sentence` for correctness.
$sentence !~~ / (.) " " (.) <!{$0 eq $1}> / # <https://docs.raku.org/language/regexes#Regex_boolean_condition_check>
}
Red
Red ["Amb operator"]
findblock: function [
blk [block!]
][
foreach w blk [
if all [word? w block? get w] [return w]
if block? w [findblock w]
]
]
amb: function [
cond [block!]
][
either b: findblock cond [
foreach a get b [
cond2: replace/all/deep copy/deep cond b a
if amb cond2 [set b a return true]]
][do cond]
]
; examples
x: [1 2 3 4]
y: [4 5 6]
z: [5 2]
print amb [x * y * z = 8]
print [x y z]
a: ["the" "that" "a"]
b: ["frog" "elephant" "thing"]
c: ["walked" "treaded" "grows"]
d: ["slowly" "quickly"]
print amb [
all [
equal? last a first b
equal? last b first c
equal? last c first d
]
]
print [a b c d]
- Output:
true 1 4 2 true that thing grows slowly
REXX
version 1
/* REXX **************************************************************
* 25.08.2013 Walter Pachl derived from PL/I
*********************************************************************/
mm=0
w.=''
l.=0
Call mkset 1,'the that a if'
Call mkset 2,'frog elephant thing'
Call mkset 3,'walked treaded grows trots'
Call mkset 4,'slowly quickly'
Call show
Do i=1 to 3 /* loop over sets */
Call showm
k=i+1 /* the following set */
Do ii=1 To 10 /* loop over elements in set k*/
If words(w.i.ii)=i Then Do /* a sentence part found */
Do jj=1 To 10 /* loop over following words */
If right(w.i.ii,1)=left(w.k.jj,1) Then Do /* fitting */
ns=w.i.ii' 'w.k.jj /* build new sentence (part) */
If words(ns)=k Then /* 'complete' part */
Call add k,ns /* add to set k */
End
End
End
End
End
Do jj=1 To 10 /* show the results */
If words(w.4.jj)=4 Then
Say '-->' w.4.jj
End
Return
add: Procedure Expose w.
/*********************************************************************
* add a sentence (part) to set ni
*********************************************************************/
Parse Arg ni,s
Do i=1 To 10 While w.ni.i>'' /* look for an empty slot */
End
w.ni.i=s /* add the sentence (part) */
Return
mkset: Procedure Expose w. mm l.
/*********************************************************************
* initialize the sets
*********************************************************************/
Parse Arg i,wl
Do j=1 By 1 While wl<>''
Parse Var wl w.i.j wl
l.i=max(l.i,length(w.i.j))
End
mm=max(mm,j-1)
Return
show: Procedure Expose w. mm l.
/*********************************************************************
* show the input
*********************************************************************/
Say 'Input:'
Do j=1 To mm /* output lines */
ol=''
Do i=1 To 4
ol=ol left(w.i.j,l.i)
End
Say strip(ol)
End;
say ''
Return
showm: Procedure Expose w.
/*********************************************************************
* show the sets' contents
*********************************************************************/
dbg=0
If dbg Then Do
Do i=1 To 4
Do j=1 To 10
If w.i.j>'' Then
Say i j w.i.j
End
End
End
Return
- output identical to PL/I's i
Input: the frog walked slowly that elephant treaded quickly a thing grows if trots --> the elephant trots slowly --> that thing grows slowly --> if frog grows slowly
version 2
An assumption was made that equivalent lowercase and uppercase (Latin) letters are considered a match,
although that isn't case here for these words (required by this task).
/*REXX program demonstrates the Amd operator, choosing a word from each set. */
@.1 = "the that a"
@.2 = "frog elephant thing"
@.3 = "walked treaded grows"
@.4 = "slowly quickly"
@.0 = 4 /*define the number of sets being ised.*/
call Amb 1 /*find all word combinations that works*/
exit /*stick a fork in it, we're all done. */
/*--------------------------------------------------------------------------------------*/
Amb: procedure expose @.; parse arg # x; arg . u /*ARG uppercases U value. */
if #>@.0 then do; y= word(u, 1) /*Y: is a uppercased U. */
do n=2 to words(u); ?= word(u, n)
if left(?, 1) \== right(y, 1) then return; y= ?
end /*n*/
say strip(x) /*¬show superfluous blanks.*/
end
do j=1 for words(@.#); call Amb #+1 x word(@.#, j) /*gen all combos recursively*/
end /*j*/; return
- output when using the default internal inputs:
that thing grows slowly
Ring
# Project : Amb
set1 = ["the","that","a"]
set2 = ["frog","elephant","thing"]
set3 = ["walked","treaded","grows"]
set4 = ["slowly","quickly"]
text = amb(set1,set2,set3,set4)
if text != ""
see "Correct sentence would be: " + nl + text + nl
else
see "Failed to fine a correct sentence."
ok
func wordsok(string1, string2)
if substr(string1,len(string1),1) = substr(string2,1,1)
return true
ok
return false
func amb(a,b,c,d)
for a2 = 1 to len(a)
for b2 =1 to len(b)
for c2 = 1 to len(c)
for d2 = 1 to len(d)
if wordsok(a[a2],b[b2]) and wordsok(b[b2],c[c2]) and wordsok(c[c2],d[d2])
return a[a2]+" "+b[b2]+" "+c[c2]+" "+d[d2]
ok
next
next
next
next
return ""
Output:
Correct sentence would be: that thing grows slowly
Ruby
require "continuation"
class Amb
class ExhaustedError < RuntimeError; end
def initialize
@fail = proc { fail ExhaustedError, "amb tree exhausted" }
end
def choose(*choices)
prev_fail = @fail
callcc { |sk|
choices.each { |choice|
callcc { |fk|
@fail = proc {
@fail = prev_fail
fk.call(:fail)
}
if choice.respond_to? :call
sk.call(choice.call)
else
sk.call(choice)
end
}
}
@fail.call
}
end
def failure
choose
end
def assert(cond)
failure unless cond
end
end
A = Amb.new
w1 = A.choose("the", "that", "a")
w2 = A.choose("frog", "elephant", "thing")
w3 = A.choose("walked", "treaded", "grows")
w4 = A.choose("slowly", "quickly")
A.choose() unless w1[-1] == w2[0]
A.choose() unless w2[-1] == w3[0]
A.choose() unless w3[-1] == w4[0]
puts w1, w2, w3, w4
Rust
use std::ops::Add;
struct Amb<'a> {
list: Vec<Vec<&'a str>>,
}
fn main() {
let amb = Amb {
list: vec![
vec!["the", "that", "a"],
vec!["frog", "elephant", "thing"],
vec!["walked", "treaded", "grows"],
vec!["slowly", "quickly"],
],
};
match amb.do_amb(0, 0 as char) {
Some(text) => println!("{}", text),
None => println!("Nothing found"),
}
}
impl<'a> Amb<'a> {
fn do_amb(&self, level: usize, last_char: char) -> Option<String> {
if self.list.is_empty() {
panic!("No word list");
}
if self.list.len() <= level {
return Some(String::new());
}
let mut res = String::new();
let word_list = &self.list[level];
for word in word_list {
if word.chars().next().unwrap() == last_char || last_char == 0 as char {
res = res.add(word).add(" ");
let answ = self.do_amb(level + 1, word.chars().last().unwrap());
match answ {
Some(x) => {
res = res.add(&x);
return Some(res);
}
None => res.clear(),
}
}
}
None
}
}
Monadic
// ==== main ==== //
fn main() {
let results =
amb(&["the", "that", "a"]) >> move |a|
amb(&["frog", "elephant", "thing"]) >> move |b|
amb(&["walked", "treaded", "grows"]) >> move |c|
amb(&["slowly", "quickly"]) >> move |d|
assert(joins(a, b)) >> move |_|
assert(joins(b, c)) >> move |_|
assert(joins(c, d)) >> move |_|
ret((a, b, c, d));
for (a, b, c, d) in results {
println!("{} {} {} {}", a, b, c, d);
}
}
fn joins(x: &str, y: &str) -> bool {
x.chars().last() == y.chars().next()
}
// ==== Amb ==== //
struct Amb<T: Iterator>(T);
impl<T: Iterator> IntoIterator for Amb<T> {
type IntoIter = T;
type Item = T::Item;
fn into_iter(self) -> Self::IntoIter { self.0 }
}
impl<T, U, F> std::ops::Shr<F> for Amb<T>
where
T: Iterator,
U: Iterator,
F: FnMut(T::Item) -> Amb<U>,
{
type Output = Amb<std::iter::FlatMap<T, Amb<U>, F>>;
fn shr(self, f: F) -> Self::Output {
Self(self.0.flat_map(f))
}
}
fn amb<I: IntoIterator>(i: I) -> Amb<I::IntoIter> {
Amb(i.into_iter())
}
fn assert(x: bool) -> Amb<impl Iterator<Item = ()>> {
Amb(std::iter::once(()).filter(move |_| x))
}
fn ret<T>(x: T) -> Amb<impl Iterator<Item = T>> {
Amb(std::iter::once(x))
}
Scala
object Amb {
def amb(wss: List[List[String]]): Option[String] = {
def _amb(ws: List[String], wss: List[List[String]]): Option[String] = wss match {
case Nil => ((Some(ws.head): Option[String]) /: ws.tail)((a, w) => a match {
case Some(x) => if (x.last == w.head) Some(x + " " + w) else None
case None => None
})
case ws1 :: wss1 => ws1.flatMap(w => _amb(w :: ws, wss1)).headOption
}
_amb(Nil, wss.reverse)
}
def main(args: Array[String]) {
println(amb(List(List("the", "that", "a"),
List("frog", "elephant", "thing"),
List("walked", "treaded", "grows"),
List("slowly", "quickly"))))
}
}
Scheme
(define fail
(lambda ()
(error "Amb tree exhausted")))
(define-syntax amb
(syntax-rules ()
((AMB) (FAIL)) ; Two shortcuts.
((AMB expression) expression)
((AMB expression ...)
(LET ((FAIL-SAVE FAIL))
((CALL-WITH-CURRENT-CONTINUATION ; Capture a continuation to
(LAMBDA (K-SUCCESS) ; which we return possibles.
(CALL-WITH-CURRENT-CONTINUATION
(LAMBDA (K-FAILURE) ; K-FAILURE will try the next
(SET! FAIL (LAMBDA () (K-FAILURE 'anything-is-fine-here))) ; possible expression.
(K-SUCCESS ; Note that the expression is
(LAMBDA () ; evaluated in tail position
expression)))) ; with respect to AMB.
...
(SET! FAIL FAIL-SAVE) ; Finally, if this is reached,
FAIL-SAVE))))))) ; we restore the saved FAIL.
(let ((w-1 (amb "the" "that" "a"))
(w-2 (amb "frog" "elephant" "thing"))
(w-3 (amb "walked" "treaded" "grows"))
(w-4 (amb "slowly" "quickly")))
(define (joins? left right)
(equal? (string-ref left (- (string-length left) 1)) (string-ref right 0)))
(if (joins? w-1 w-2) '() (amb))
(if (joins? w-2 w-3) '() (amb))
(if (joins? w-3 w-4) '() (amb))
(list w-1 w-2 w-3 w-4))
Without macros
This is a procedural alternative written in a functional style without macros, allowing for arbitrarily many lists whose values are determined at runtime, mostly based on Matt Might's stack-based implementation. The set! operations can be simplified into push! and pop! operations. The fail! operation is abstracted away from the library user into an internal variable (hence the % prefix), exposing a friendly assert! instead.
(define %fail-stack '())
(define (%fail!)
(if (null? %fail-stack)
(error 'amb "Backtracking stack exhausted!")
(let ((backtrack (car %fail-stack)))
(set! %fail-stack (cdr %fail-stack))
(backtrack backtrack))))
(define (amb choices)
(let ((cc (call-with-current-continuation values)))
(if (null? choices)
(%fail!)
(let ((choice (car choices)))
(set! %fail-stack (cons cc %fail-stack))
(set! choices (cdr choices))
choice))))
(define (assert! condition)
(unless condition (%fail!)))
;;; The list can contain as many lists as desired.
(define words (list '("the" "that" "a")
'("frog" "elephant" "thing")
'("walked" "treaded" "grows")
'("slowly" "quickly")))
(define (joins? a b)
(char=? (string-ref a (sub1 (string-length a))) (string-ref b 0)))
(let ((sentence (map amb words)))
(fold (lambda (x y)
(assert! (joins? x y))
y)
(car sentence) (cdr sentence))
sentence)
Solution 3.
I tested solution 2. under both Gauche Scheme and Racket Scheme. (Slight modifications were needed; for example, Gauche needed "sub1" to be changed to "+ -1".)
In both cases, this error was generated: "Backtracking stack exhausted!"
The bug was caused by a misunderstanding of the order of the arguments passed to the lambda in "fold". The 1st argument is the new item pulled from the list, and the 2nd argument is the value that has been accumulated during the folding process. (In Common Lisp's "reduce", the reverse order is used.)
Works under Gauche Scheme and Racket Scheme.
;; Gauche needs this:
(use srfi-13) ;; For "string-take-right" & "string-take".
;; Racket would need:
;; (require srfi/13)
;; (require srfi/1)
(define %fail-stack '())
(define (%fail!)
(if (null? %fail-stack)
(error 'amb "Backtracking stack exhausted!")
(let ((backtrack (car %fail-stack)))
(set! %fail-stack (cdr %fail-stack))
(backtrack backtrack))))
(define (amb choices)
(let ((cc (call-with-current-continuation values)))
(if (null? choices)
(%fail!)
(let ((choice (car choices)))
(set! %fail-stack (cons cc %fail-stack))
(set! choices (cdr choices))
choice))))
(define (assert! condition)
(unless condition (%fail!)))
;;; The list can contain as many lists as desired.
(define words (list '("the" "that" "a")
'("frog" "elephant" "thing")
'("walked" "treaded" "grows")
'("slowly" "quickly")))
(define (joins? a b)
(equal?
(string-take-right a 1)
(string-take b 1)))
(let ((sentence (map amb words)))
(fold
(lambda (latest prev)
(assert! (joins? prev latest))
latest)
(car sentence)
(cdr sentence))
sentence)
- Output:
("that" "thing" "grows" "slowly")
Seed7
$ include "seed7_05.s7i";
const type: setListType is array array string;
const func array string: amb (in string: word1, in setListType: listOfSets) is func
result
var array string: ambResult is 0 times "";
local
var string: word2 is "";
begin
for word2 range listOfSets[1] do
if length(ambResult) = 0 and word1[length(word1) len 1] = word2[1 len 1] then
if length(listOfSets) = 1 then
ambResult := [] (word1) & [] (word2);
else
ambResult := amb(word2, listOfSets[2 ..]);
if length(ambResult) <> 0 then
ambResult := [] (word1) & ambResult;
end if;
end if;
end if;
end for;
end func;
const func array string: amb (in setListType: listOfSets) is func
result
var array string: ambResult is 0 times "";
local
var string: word1 is "";
begin
for word1 range listOfSets[1] do
if length(ambResult) = 0 then
ambResult := amb(word1, listOfSets[2 ..]);
end if;
end for;
end func;
const proc: main is func
local
var array string: ambResult is 0 times "";
var string: word is "";
begin
ambResult := amb([] ([] ("the", "that", "a"),
[] ("frog", "elephant", "thing"),
[] ("walked", "treaded", "grows"),
[] ("slowly", "quickly")));
for word range ambResult do
write(word <& " ");
end for;
writeln;
end func;
- Output:
that thing grows slowly
SETL
program amb;
sets := unstr('[{the that a} {frog elephant thing} {walked treaded grows} {slowly quickly}]');
words := [amb(words): words in sets];
if exists lWord = words(i), rWord in {words(i+1)} |
lWord(#lWord) /= rWord(1) then
fail;
end if;
proc amb(words);
return arb {word in words | ok};
end proc;
end program;
Sadly ok and fail were only ever implemented in CIMS SETL, and are not in any compiler or interpreter that is available today, so this is not very useful as it stands.
Alternate version (avoids backtracking)
program amb;
sets := unstr('[{the that a} {frog elephant thing} {walked treaded grows} {slowly quickly}]');
print(amb(sets));
proc amb(sets);
return amb1([], {}, sets);
end proc;
proc amb1(prev, mbLast, sets);
if sets = [] then
return prev;
else
words fromb sets;
if exists word in words |
(forall last in mbLast |
last(#last) = word(1)) and
(exists sentence in {amb1(prev with word, {word}, sets)} |
true) then
return sentence;
end if;
end if;
end proc;
end program;
We cheat a bit here - this version of amb must be given the whole list of word sets, and that list is consumed recursively. It can't pick a word from an individual list.
Smalltalk
Here Amp is a relatively generic backtracking solver. It can return the first solution, all or a user confirmed subset of the solutions (i.e. ask if more solutions are to be generated). It uses proceedable exceptions (aka Notifications) for this feature.
The code is in portable chunk format, so it should load into all Smalltalks (making the private class public, maybe).
Object subclass:#Amb
instanceVariableNames:''
classVariableNames:''
poolDictionaries:''
category:'Rosetta'
!
Smalltalk::Notification subclass:#FoundSolution
instanceVariableNames:''
classVariableNames:''
poolDictionaries:''
privateIn:Amb
!
!Amb::FoundSolution methods!
defaultAction
^ parameter
! !
!Amb class methods!
try:values in:aBlock
values do:[:each |
|rslt|
(rslt := aBlock value:each) notNil ifTrue:[
"hint: Notifications simply return nil, if there is no handler"
(FoundSolution raiseRequestWith:rslt) notNil ifTrue:[ ^ rslt ].
].
].
^ nil
! !
with this, we can search for solutions as in:
result :=
Amb try:#('the' 'that' 'a') in:[:w1 |
Amb try:#('frog' 'elephant' 'thing') in:[:w2 |
w2 first = w1 last ifTrue:[
Amb try:#('walked' 'traded' 'grows') in:[:w3 |
w3 first = w2 last ifTrue:[
Amb try:#('slowly' 'quickly') in:[:w4 |
Transcript showCR: e'trying {{w1 . w2 . w3 . w4}}'. "debug trace only"
w4 first = w3 last ifTrue:[
{w1 . w2 . w3 . w4} ]]]]]]].
Transcript showCR: e'found solution: {result}'
- Output:
trying #(the elephant traded slowly) trying #(the elephant traded quickly) trying #(that thing grows slowly) found solution: #(that thing grows slowly)
As shown in the trace, the search tree is pruned, and no more w3/w4 combinations are tried if w1/w2 don't join.
The above continues searching as long as the raise of FoundNotification returns nil (which it will not in the above example, therefore stopping with the first solution). Thus the following rectangle search will also return only the very first solution:
result :=
Amb try:(1 to:11) in:[:x |
Amb try:(1 to:11) in:[:y |
Amb try:(1 to:11) in:[:z |
(x squared + y squared = z squared) ifTrue:[
{x . y . z}
].
]]].
Transcript showCR: e'found rectangle {result}'.
- Output:
found rectangle #(3 4 5)
To add an "all solutions" feature, catch the FoundNotification and proceed with nil. This is packed into two utility methods in the Amb class:
!Amb class methods!
until:questionBlock in:aBlock
"compute solutions, asking if more solutions are to be searched
via questionBlock (gets the found solution as arg)"
|allResults|
allResults := OrderedCollection new.
aBlock on:FoundSolution do:[:ex |
allResults add:ex parameter.
(questionBlock value:ex parameter) ifTrue:[^ allResults].
ex proceedWith:nil.
].
^ allResults
!
allSolutions:aBlock
^ self until:[:solution | false] in:aBlock
!
In the above, the FoundNotification (exception) is caught, and a confirmation action is asked if more solutions are to be searched. Now, we can get all solutions of the rectangle problem with:
result :=
Amb allSolutions:[
Amb try:(1 to:11) in:[:x |
Amb try:(1 to:11) in:[:y |
y <= x ifTrue:[
Amb try:(1 to:11) in:[:z |
(x squared + y squared = z squared) ifTrue:[
{x . y . z} ]]]]]].
Transcript showCR: e'all rectangles: {result}'.
(the search skips symmetric solutions)
We can also ask the user interactively, if more solutions are to be searched:
result :=
Amb
until:[:solution |
(Dialog confirm: e'Found solution: {solution}\nSee more?') not
] in:[
Amb try:(1 to:100) in:[:x |
Amb try:(1 to:100) in:[:y |
y <= x ifTrue:[
Amb try:(1 to:100) in:[:z |
(x squared + y squared = z squared) ifTrue:[
{x . y . z} ]]]]]].
Transcript showCR: result.
stopping after 10 OK-confirmations of the appearing dialog window, we get the first 10 solutions:
- Output:
OrderedCollection(#(4 3 5) #(8 6 10) #(12 5 13) #(12 9 15) #(15 8 17) #(16 12 20) #(20 15 25) #(21 20 29) #(24 7 25) #(24 10 26) #(24 18 30))
A minor ugliness are the nested "try:in:" constructs, and we may like to have one call for all (although this does not support early pruning):
tryAll:valuesCollection in:aBlock
"try each set of values in aBlock;
aBlock's number of args must be the number of elements in valuesCollection"
|tryAll|
tryAll :=
[:valuesCollection :argsIn |
valuesCollection isEmpty ifTrue:[
aBlock valueWithArguments:argsIn
] ifFalse:[
self try:(valuesCollection first) in:[:arg |
tryAll value:(valuesCollection from:2) value:argsIn,{arg} ]]].
^ tryAll value:valuesCollection value:#()
with this, the puzzle is now solved with:
Amb
tryAll:#(
('the' 'that' 'a')
('frog' 'elephant' 'thing')
('walked' 'traded' 'grows')
('slowly' 'quickly')
) in:[:w1 :w2 :w3 :w4 |
(w2 first = w1 last
and:[ w3 first = w2 last
and:[ w4 first = w3 last
]]) ifTrue:[
{w1 . w2 . w3 . w4} ]]
For your amusement: Amb is nice to solve puzzles like this one:
"/ find { s. e. n. d. m. o. r. y.}
"/ such that:
"/ send
"/ + more
"/ -------
"/ = money
result :=
Amb try:(0 to:9) in:[:s |
Amb try:(0 to:9) in:[:e | e~=s ifTrue:[
Amb try:(0 to:9) in:[:n | (n~=e)&(n~=s) ifTrue:[
Amb try:(0 to:9) in:[:d | (d~=n)&(d~=e)&(d~=s) ifTrue:[
Amb try:(1 to:1) in:[:m | (m~=d)&(m~=n)&(m~=e)&(m~=s) ifTrue:[
Amb try:(0 to:9) in:[:o | (o~=m)&(o~=d)&(o~=n)&(o~=e)&(o~=s) ifTrue:[
Amb try:(0 to:9) in:[:r | (r~=o)&(r~=m)&(r~=d)&(r~=n)&(r~=e)&(r~=s) ifTrue:[
Amb try:(0 to:9) in:[:y | (y~=r)&(y~=o)&(y~=m)&(y~=d)&(y~=n)&(y~=e)&(y~=s) ifTrue:[
(
( (1000 * s) + (100 * e) + (10 * n) + d)
+ ( (1000 * m) + (100 * o) + (10 * r) + e)
= ((10000 * m) + (1000 * o) + (100 * n) + (10 * e) + y)
) ifTrue:[
Transcript showCR: e' {s}{e}{n}{d}'.
Transcript showCR: e' + {m}{o}{r}{e}'.
Transcript showCR: e' -----------'.
Transcript showCR: e' = {m}{o}{n}{e}{y}'.
{'s'->s . 'e'->e . 'n'->n . 'd'->d . 'm'->m . 'o'->o . 'r'->r . 'y'->y }
].
]]]]]]]]]]]]]]].
Transcript cr; showCR: result.
- Output:
9567 + 1085 ----------- = 10652 Array(s->9 e->5 n->6 d->7 m->1 o->0 r->8 y->2)
Tcl
Brute Force
Brute force, with quick kill of failing attempts:
set amb {
{the that a}
{frog elephant thing}
{walked treaded grows}
{slowly quickly}
}
proc joins {a b} {
expr {[string index $a end] eq [string index $b 0]}
}
foreach i [lindex $amb 0] {
foreach j [lindex $amb 1] {
if ![joins $i $j] continue
foreach k [lindex $amb 2] {
if ![joins $j $k] continue
foreach l [lindex $amb 3] {
if [joins $k $l] {
puts [list $i $j $k $l]
}
}
}
}
}
With Coroutines
A more sophisticated using Tcl 8.6's coroutine facility that avoids the assumption of what the problem is in the code structure:
package require Tcl 8.6
proc cp {args} {
coroutine cp.[incr ::cps] apply {{list args} {
yield [info coroutine]
foreach item $list {
if {[llength $args]} {
set c [cp {*}$args]
while 1 { yield [list $item {*}[$c]] }
} else { yield $item }
}
return -code break
}} {*}$args
}
proc amb {name filter args} {
coroutine $name apply {{filter args} {
set c [cp {*}$args]
yield [info coroutine]
while 1 {
set value [$c]
if {[{*}$filter $value]} { yield $value }
}
return -code break
}} $filter {*}$args
}
proc joins {a b} {
expr {[string index $a end] eq [string index $b 0]}
}
proc joins* list {
foreach a [lrange $list 0 end-1] b [lrange $list 1 end] {
if {![joins $a $b]} {return 0}
}
return 1
}
amb words joins* \
{the that a} \
{frog elephant thing} \
{walked treaded grows} \
{slowly quickly}
while 1 { puts [words] }
TUSCRIPT
$$ MODE TUSCRIPT
set1="the'that'a"
set2="frog'elephant'thing"
set3="walked'treaded'grows"
set4="slowly'quickly"
LOOP w1=set1
lastw1=EXTRACT (w1,-1,0)
LOOP w2=set2
IF (w2.sw.$lastw1) THEN
lastw2=EXTRACT (w2,-1,0)
LOOP w3=set3
IF (w3.sw.$lastw2) THEN
lastw3=EXTRACT (w3,-1,0)
LOOP w4=set4
IF (w4.sw.$lastw3) sentence=JOIN (w1," ",w2,w3,w4)
ENDLOOP
ENDIF
ENDLOOP
ENDIF
ENDLOOP
ENDLOOP
PRINT sentence
- Output:
that thing grows slowly
TXR
Delimited Continuations
Because we are using delimited continuations, we are able to confine the amb
computation into a scope. To express this, we define an amb-scope
operator which is just a syntactic sugar for using block
to create a delimiting prompt whose name is amb-scope
. Everything outside of an instance of this operator knows nothing about amb
and is not involved in the backtracking flow at all. As far as the outside is concerned, the amb-scope
block calculates something, terminates and returns a value, like any other ordinary Lisp form:
(defmacro amb-scope (. forms)
^(block amb-scope ,*forms))
Next, we define amb
as a function.
But first, a note about a convention: we are using the Lisp object nil
not only to represent Boolean false, but also a failure. Thus (amb nil)
fails. A nil
return out of the entire amb-scope
denotes overall failure.
The function is very simple. It captures a single continuation and binds it to the cont
variable, using the suspend
macro. Then, it iterates over all of its arguments. Each argument which is nil
is ignored. For any other value, the function effectively asks the question, "if, with this argument, I run my future computation to completion (i.e. back up to the delimiting contour defined by amb-scope
) will the answer be a Boolean true?". It asks the question simply by invoking the continuation on the argument. If the answer is affirmative, then it breaks out of the loop and returns that argument value immediately. Otherwise the iteration continues with the next argument, to try a different alternative future. If the loop runs through to completion, then the function returns nil
, indicating failure.
(defun amb (. args)
(suspend amb-scope cont
(each ((a args))
(when (and a (call cont a))
(return-from amb a)))))
And some test code:
- Output:
$ txr -i amb.tl 1> (amb-scope (let ((w1 (amb "the" "that" "a")) (w2 (amb "frog" "elephant" "thing")) (w3 (amb "walked" "treaded" "grows")) (w4 (amb "slowly" "quickly"))) (amb (and (eql [w1 -1] [w2 0]) (eql [w2 -1] [w3 0]) (eql [w3 -1] [w4 0]))) (list w1 w2 w3 w4))) ("that" "thing" "grows" "slowly") 2>
Pattern Language
This is not exactly the implementation of an operator, but a solution worth presenting. The language has the built in pattern matching and backtracking behavior suited for this type of text mining task.
For convenience, we prepare the data in four files:
$ cat amb/set1 the that a $ cat amb/set2 frog elephant thing $ cat amb/set3 walked treaded grows $ cat amb/set4 slowly quickly
Then code is:
@(define first_last (first last whole))
@ (all)
@(skip :greedy)@{last 1}
@ (and)
@{first 1}@(skip)
@ (and)
@whole
@ (end)
@(end)
@(next "amb/set1")
@(skip)
@(first_last fi1 la1 w1)
@(next "amb/set2")
@(skip)
@(first_last la1 la2 w2)
@(next "amb/set3")
@(skip)
@(first_last la2 la3 w3)
@(next "amb/set4")
@(skip)
@(first_last la3 la4 w4)
@(output)
@w1 @w2 @w3 @w4
@(end)
- Run:
$ ./txr amb.txr that thing grows slowly
As you can see, this has the "nondeterministic flavor" of Amb.
The @(skip)
directives"magically" skip over the lines of input that do not succeed.
This example naturally handles empty strings, since the first_last
function simply does not match such inputs.
Here is how to embed the task's specific data in the code:
@(define first_last (first last whole))
@ (all)
@(skip :greedy)@{last 1}
@ (and)
@{first 1}@(skip)
@ (and)
@whole
@ (end)
@(end)
@(next :list ("the" "that" "a"))
@(skip)
@(first_last fi1 la1 w1)
@(next :list ("frog" "elephant" "thing"))
@(skip)
@(first_last la1 la2 w2)
@(next :list ("walked" "treaded" "grows"))
@(skip)
@(first_last la2 la3 w3)
@(next :list ("slowly" "quickly"))
@(skip)
@(first_last la3 la4 w4)
@(output)
@w1 @w2 @w3 @w4
@(end)
uBasic/4tH
uBasic/4tH has limited support for arrays, so some workarounds are required to make this work.
' set up the arrays
Push "the", "that", "a" : a = FUNC(_Ambsel (0))
Push "frog", "elephant", "thing" : b = FUNC(_Ambsel (a))
Push "walked", "treaded", "grows" : c = FUNC(_Ambsel (b))
Push "slowly", "quickly" : f = FUNC(_Ambsel (c))
' we'll reuse variable f ;-)
Proc _Ambassert (_Connect) ' now assert the function required
For w = 1 To @(0) ' and evaluate..
For x = a+1 To a+@(a)
For y = b+1 To b+@(b)
For z = c+1 To c+@(c)
If FUNC(_Amb (@(w), @(x))) * FUNC(_Amb (@(x), @(y))) * FUNC(_Amb (@(y), @(z))) Then
Print Show(@(w)), Show(@(x)), Show(@(y)), Show(@(z))
EndIf
Next
Next
Next
Next
End
_Ambsel ' array setup
Param (1)
Local (1)
@(a@) = Used()
For b@ = a@+1 To a@ + @(a@)
@(b@) = Pop ()
Next
Return (b@)
_Amb Param (2) : Return (FUNC(f (a@, b@)))
_Ambassert Param (1) : f = a@ : Return ' set up the function
_Connect Param (2) : Return (Peek (a@, Len(a@)-1) = Peek(b@, 0))
- Output:
that thing grows slowly 0 OK, 0:772
VBScript
Implementation
class ambiguous
dim sRule
public property let rule( x )
sRule = x
end property
public default function amb(p1, p2)
amb = eval(sRule)
end function
end class
Invocation
dim amb
set amb = new ambiguous
amb.rule = "right(p1,1)=left(p2,1)"
dim w1, w2, w3, w4
for each w1 in split("the that a", " ")
for each w2 in split("frog elephant thing", " ")
for each w3 in split("walked treaded grows", " ")
for each w4 in split("slowly quickly", " ")
if amb(w1, w2) and amb(w2, w3) and amb(w3, w4) then
wscript.echo w1, w2, w3, w4
end if
next
next
next
next
- Output:
that thing grows slowly
V (Vlang)
fn main() {
word_set := [["the", "that", "a"],
["frog", "elephant", "thing"],
["walked", "treaded", "grows"],
["slowly", "quickly"]]
text := amb(word_set)
if text != "" {println("Correct answer is: \n ${text} \n")}
else {println("Failed to find a correct answer.")}
}
fn word_check(str_1 string, str_2 string) bool {
if str_1.substr_ni(str_1.len - 1, str_1.len) == str_2.substr_ni(0, 1) {return true}
return false
}
fn amb(arrays[][]string) string {
for words_0 in arrays[0] {
for words_1 in arrays[1] {
for words_2 in arrays[2] {
for words_3 in arrays[3] {
if word_check(words_0, words_1) && word_check(words_1, words_2) && word_check(words_2, words_3) {
return "${words_0} ${words_1} ${words_2} ${words_3}"
}
}
}
}
}
return ""
}
- Output:
Correct answer is: that thing grows slowly
Wren
Based on the 'alternative' version.
var finalRes = []
var amb // recursive closure
amb = Fn.new { |wordsets, res|
if (wordsets.count == 0) {
finalRes.addAll(res)
return true
}
var s = ""
var l = res.count
if (l > 0) s = res[l-1]
res.add("")
for (word in wordsets[0]) {
res[l] = word
if (l > 0 && s[-1] != res[l][0]) continue
if (amb.call(wordsets[1..-1], res.toList)) return true
}
return false
}
var wordsets = [
[ "the", "that", "a" ],
[ "frog", "elephant", "thing" ],
[ "walked", "treaded", "grows" ],
[ "slowly", "quickly" ]
]
if (amb.call(wordsets, [])) {
System.print(finalRes.join(" "))
} else {
System.print("No amb found")
}
- Output:
that thing grows slowly
Yabasic
sub wordsOK(string1$, string2$)
return right$(string1$, 1) == left$(string2$, 1)
End sub
sub Amb$(A$(), B$(), C$(), D$())
local a2, b2, c2, d2
For a2 = 1 To arraysize(A$(), 1)
For b2 = 1 To arraysize(B$(), 1)
For c2 = 1 To arraysize(C$(), 1)
For d2 = 1 To arraysize(D$(), 1)
If wordsOK(A$(a2), B$(b2)) And wordsOK(B$(b2), C$(c2)) And wordsOK(C$(c2), D$(d2)) Then
Return A$(a2) + " " + B$(b2) + " " + C$(c2) + " " + D$(d2)
End If
Next
Next
Next
Next
Return ""
End sub
Dim set1$(1), set2$(1), set3$(1), set4$(1)
void = token("the that a", set1$())
void = token("frog elephant thing", set2$())
void = token("walked treaded grows", set3$())
void = token("slowly quickly", set4$())
result$ = Amb$(set1$(), set2$(), set3$(), set4$())
If result$ <> "" Then
Print "Correct sentence would be: ", result$
Else
Print "Failed to fine a correct sentence."
End If
- Output:
Correct sentence would be: that thing grows slowly ---Program done, press RETURN---
zkl
zkl doesn't support dynamic scoping so no variable update (without using reflection, which is not a good thing).
These solutions assume that the solution space is ordered: the possibilities in a always precede those in b, etc.
Some constraints on the constraint to make the task easier: it is a function of two strings rather than n items. All solutions are returned, empty list otherwise.
fcn joins(a,b){ a[-1]==b[0] } // the constraint
The do-it-in-one-wack solution:
amb(joins,
T("the","that","a"),
T("frog","elephant","thing"),
T("walked","treaded","grows"),
T("slowly","quickly")
).println();
- Output:
L("that thing grows slowly")
Or, we can defer the computations (the future method starts a worker thread, the result is not forced until it is used).
a:=amb.future(joins,T("the","that","a"),T("frog","elephant","thing"));
b:=amb.future(joins,T("walked","treaded","grows"),T("slowly","squacking"));
c:=amb.future(joins,a,b); // a future of futures
println(a,b,c);
c=c.noop(); // trigger the landslide, referencing c forces a result for a,b,c
println(a.noop(),b.noop(),c); // even though a has a result, it doesn't know it until we force it
- Output:
DeferredDeferredDeferred L("the elephant","that thing")L("grows slowly","grows squacking")L("that thing grows slowly","that thing grows squacking")
Your basic Cartesian product recursive decent tree traversal, making extensive use of varargs:
fcn amb(f,a,b,etc){
fcn(sink,f,a,b,etc){
abc:=vm.arglist[2,*]; // ((the,that),(frog,elephant))
if(abc.len()<2) return(sink.write(abc[0][0])); // back out of recursion
foreach a,b in (abc[0],abc[1]){ // Cartesian product
if(f(a,b)) self.fcn(sink,f,T(String(a," ",b)),abc[2,*].xplode());
}
}(s:=List(),vm.pasteArgs());
s
}
A more general solution, where each possible solution is a list, which is passed to the constraining function and the first solution found is returned:
fcn amb(f,a,b,c,etc){ Walker.cproduct(vm.pasteArgs(1)).filter1(f) }
// [()] notation unpacks parameter list: f((1,2,3))-->a=1,b=2,c=3
fcn f([(a,b,c,d)]){ joins(a,b) and joins(b,c) and joins(c,d) }
amb(f, T("the","that","a"), T("frog","elephant","thing"),
T("walked","treaded","grows"), T("slowly","quickly")
).println();
- Output:
L("that","thing","grows","slowly")
Here is an example using an infinite list as the first possibility space:
amb(fcn([(x,y,z)]){ x*x + y*y == z*z },[1..],[1..10],[1..10]).println();
- Output:
L(3,4,5)
- Programming Tasks
- Solutions by Programming Task
- 11l
- Ada
- ALGOL 68
- ATS
- AutoHotkey
- BASIC
- BaCon
- Bracmat
- C
- C sharp
- C++
- Clojure
- Common Lisp
- D
- E
- E examples needing attention
- Examples needing attention
- Egison
- Ela
- Ela examples needing attention
- Elena
- ERRE
- ERRE examples needing attention
- F Sharp
- Factor
- FreeBASIC
- FutureBasic
- Go
- Haskell
- Haxe
- Icon
- Unicon
- Insitux
- J
- Java
- JavaScript
- Jq
- Julia
- Kotlin
- Langur
- Latitude
- Lua
- M2000 Interpreter
- Mathematica
- Wolfram Language
- Mercury
- NetRexx
- Nim
- OCaml
- OpenEdge/Progress
- Oz
- PARI/GP
- Perl
- Phix
- Picat
- PicoLisp
- PL/I
- Prolog
- PureBasic
- Python
- R
- Racket
- Raku
- Red
- REXX
- Ring
- Ruby
- Rust
- Scala
- Scheme
- Seed7
- SETL
- Smalltalk
- Tcl
- TUSCRIPT
- TXR
- UBasic/4tH
- VBScript
- V (Vlang)
- Wren
- Yabasic
- Zkl
- Gnuplot/Omit
- GUISS/Omit
- LaTeX/Omit
- Make/Omit
- PlainTeX/Omit
- TI-83 BASIC/Omit
- TI-89 BASIC/Omit